
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Programmable LiM: a Modular
and Reconfigurable Approach to

the Logic in Memory

Relatori:
Prof. Mariagrazia Graziano
Prof. Wenjing Rao

Candidato:
Umberto Casale

Ottobre 2020

Acknowledgments

After months of work, we come to the conclusion of this amazing journey: my thesis.
I learned a lot from my tutors and all the wonderful people leading me during these
months. I wish to acknowledge the support of my family and friends, with which I
shared happy times and suffering. They enjoyed for me and with me. Much appre-
ciation goes out to my Italian supervisor, the Professor Mariagrazia Graziano, for
the confidence she placed in me. I wish also to show my gratitude to my American
advisor, the Professor Wenjing Rao, for the constant willingness to help me and the
huge professionalism, despite the great distance separating us. Moreover, a special
thanks to Andrea Coluccio, who has never stopped believing in me and supporting
me. And finally, I’d like to express my deepest gratitude to all the professors lead-
ing me in this journey who they taught me all that I know: Mariagrazia Graziano,
Maurizo Zamboni, Giovanna Turvani and Marco Vacca.

UC

I

0.1 Summary

Data traffic between the CPU and the memory is the bottleneck for the proces-
sor’s performance: the Logic in Memory approach breaks down this wall. Memory
becomes much more than a storage device: it’s able to perform logic operations
directly inside it. So, this approach shifts the processor architecture from a CPU
center to another one where the processor is not involved in every computation.
The space of logic in memory has been explored for years, with several different ap-
proaches. This thesis work explores the logic in memory with a modular approach
called LEGO-Like approach. The designer builds the smart memory according to
his specifications: an RTL library of components is his design space. In other words,
he builds up the memory by choosing the bricks to use from the library first and
then assembling them together.
First of all, the state of art of the Logic in Memory is explored for contextualiz-
ing where this thesis works. Several architectures are explored: from a technological
level up to the RTL level. Then, the LEGO-Like approach is presented. It’s explored
at different degrees: from the high level architecture down to the RTL design of each
block. The first step explains how the ecosystem embedding a smart memory works:
a building block view shows which elements collaborate together for implementing
SIMD operations inside the memory. Then, each component is deeply analyzed: the
library of RTL components, the front-end and the back-end. The goal of the last
step is to answer two questions trough the performance evaluation : what is the
overhead due to the smart features? Is it worth it in comparison to a RISC-like
processor? The test-bench used is a Binarized Convolution Neural Network: it was
implemented on both a RISC-like processor(the DLX) and two LEGO LiM Units.

II

Table of contents

Acknowledgments I

0.1 Summary . II

1 Introduction 1

2 State of the art 3
2.1 Von Neumann paradigm . 3

2.1.1 Limitations . 3
2.2 Breaking down the Memory Wall 5

2.2.1 Memory hierarchy . 5
2.2.2 Prefetching . 5
2.2.3 Beyond the Von Neumann architecture 5

3 A new LiM approach: Lego-LiM architectures 11
3.1 Motivations . 11

4 Lego-LiM architecture: an HL overview 13
4.1 The high level architecture . 13

4.1.1 The control units . 14
4.1.2 Handshakes . 15

4.2 Lego LiM library . 17
4.2.1 Lego LiM . 17
4.2.2 LiM Cells . 19
4.2.3 Row Interfaces . 19
4.2.4 Lego LiM array : templates 21
4.2.5 Memory Interfaces . 26
4.2.6 Standard Interfaces . 27
4.2.7 How to deal with a buffer . 31

5 Lego-LiM library 33
5.1 LiM Cells . 33

5.1.1 Standard versions . 34
5.1.2 Buffer versions . 37
5.1.3 Row interfaces . 38
5.1.4 Adders . 41
5.1.5 Buffers . 44
5.1.6 Memory interfaces . 44

III

5.1.7 Cache-like MI . 45
5.1.8 Definitive Version . 51

6 The front-end 54
6.1 Overview . 54
6.2 Architecture . 54
6.3 Timing . 57

7 The back-end 59
7.1 Overview . 59
7.2 Execution of a nano Instruction . 60
7.3 Decoder Unit . 62

7.3.1 Generation of Configuration signals 63
7.3.2 Reading and Writing rows . 66

7.4 Memory Interface Unit . 67
7.4.1 Cache Miss . 69

7.5 Hazards . 70
7.6 Cache Coherence . 72

8 Operating Instructions 73
8.1 How to write the uROM . 73
8.2 Nano ISA . 75

8.2.1 Types of LiM instructions . 75
8.2.2 Instruction Format . 75
8.2.3 Addressing modes . 77
8.2.4 Destination . 80
8.2.5 OPCODE . 80

8.3 How to write the instruction decoders 84
8.3.1 OpCODE decoder for V1 . 84
8.3.2 OpCODE decoder fo V2 . 85
8.3.3 Fixed Decoders . 85

8.4 How to build a Lego LiM array . 87
8.4.1 Template: V1 or V2 ? . 88
8.4.2 Template: sizes . 88
8.4.3 LEGO LiM: which ones? in which order? 89
8.4.4 Example . 91

9 Impact of Smart Features 94
9.1 Introduction . 94
9.2 LiM array vs standard array . 94
9.3 LiM array vs standard array . 95

IV

10 Implementations 97
10.1 DLX: an overview . 98

10.1.1 Stages . 98
10.1.2 ISA . 98

10.2 INSTRUCTIONS . 98
10.3 REGISTERS . 99
10.4 DATA MEMORY . 99
10.5 Neural Network: the model chosen 100

10.5.1 Introduction of NN . 100
10.5.2 Implementation in LiM . 101
10.5.3 Implementation in DLX . 105
10.5.4 Results . 106

11 Conclusion 110

A Run-time SIMD 112

B User Manuals 114

C Performance evaluation 115
C.1 Simulation . 115
C.2 Back Annotation . 115

C.2.1 BA after synthesis . 116
C.2.2 BA after Place & Route . 117

D Characterization results 118
D.1 characterization . 118

D.1.1 Average Dynamic Power . 118
D.1.2 Storage Unit . 118
D.1.3 Characterization File . 120

E Instruction Set 122

V

List of tables

5.1 OPERATIONS IMPLEMENTABLE WITH THE ADDERS (A,B ARE
THE TWO SELECTED INPUTS OF THE ADDER) 41

5.2 COMPARISON BETWEEN MIS . 49
8.1 SEQ SIGNALS . 74
8.2 DESTINATION MODES. THE PURPLE TEXT INDICATES THAT

THE DESTINATION MODE IS JUST FOR ARRAY WITH OUT-
PUT BUFFER IN THE SMART ROW, THE GREEN MODE IS
THE ADDITIONAL ONE WITH V2. 80

8.3 CONFIGURATION OF ADDERS. FOR THE OPERATIONS SEE ?? 81
8.4 MOVEMENT OPERATIONS FOR THE TWO VERSIONS 84
10.1 EXECUTION TIMES DLX VS LIM 107

VI

List of figures

1.1 The LiM architecture drastically reduces the traffic of data between
memory and CPU . 1

2.1 The gap between memory and CPU is measured by comparing the
memory request of a single core and the latency of a DRAM access.
Both of them are relative data: the baseline for the CPU performance
is th VAX-11/780 ; the 64 KiB DRAM is the baseline for the memory
instead.This figure is inspired to the study done in [QAP]. 4

3.1 LEGO LiM approach . 12

4.1 High Level View of a LiM ecosystem. 13

4.2 Detailed view of a LiM ecosystem. Units grey colored have not been
developed for this project. 14

4.3 Hierarchy of the control units . 15

4.4 Handshake between the front-end and the back-end 16

4.5 Handshake between the front-end and the scheduler 17

4.6 HL view of a LiM array . 18

4.7 Hierarchy of a LiM row in three different cases: without RIs(a), whit
one RI(b) or whit staked RI . 18

4.8 The figure shows the complex operations that can be implemented
with buffers. Grey colored components are not involved in the op-
eration. Violet indicates component used in the first cycle and cyan
the ones used in the second cycle. (a) shows the smart section of a
template V2, (b) and(c) a LiM row 21

4.9 What will happen with an heterogeneous LiM array 22

4.10 The two available templates. Buffes belongs to the LiM rows. 23

4.11 signals generated by the nCU for both the versions 24

4.12 Taxonomy of a LiM array . 25

4.13 The figure shows and example of how to store the operands in the
array for an SIMD operation. In this case, the operand are stored
in the smart row and in the upper neighbours. The shared operands
have to be stored in the standard near instead. 26

4.14 High Level view of Memory Interface with a LiM array of 16 rows . . 27

4.15 The figures represent a MI with just one LiM row. Figure (a) is
the starting point. (b) and (c) demonstrates (ii). Moreover, (b)
underlines how blocks of the same family are interchangeable(i) . . . 28

4.16 The figure shows the symbolic view of the LEGO LiM 29

4.17 Interfaces of standard LiM cells . 30

VII

4.18 Interfaces of standard RIs . 31
4.19 Interfaces of MI . 31
4.20 Buffered Interfaces of Lego LiM . 32
5.1 High Level view of a LiM Cell. One multiplexer selects the input of

the SU and another one selects the input of the LU 33
5.2 Generic view of a standard versions of the LiM cells 34
5.3 Collection of all the LiM cells(standard version) stored in the LiMli-

brary . 36
5.4 The design space develops itself in two directions: complexity of the

interconnection and complexity of the logic(LiM complexity) 37
5.5 Generic view of a buffer versions of the LiM cells 38
5.6 Generic view of a standard versions of the RIs 39
5.7 Logic Unit of the RIs with a word of 8 bits 40
5.8 Generic view of a buffered versions of the RIs 41
5.9 architecture of adders for a word 3 bits wide 43
5.10 BUFFERS’ architectures . 44
5.11 MI for a LiM array(V1) with 7 rows in the standard section 46
5.12 The standard MI for an array(V2) with 16 rows 47
5.13 The pipelined MI for an array(V1) with 16 rows 48
5.14 The cache-like MI for an array(V1) with 16 rows 49
5.15 Comparison between the different implementations of a MI 50
5.16 Three implementations of a multiplexer 52
5.17 Results of the comparison between the three multiplexers 53
6.1 Architecture of the front-end . 55
6.2 Example of a complete LiM execution from the uCU point of view . . 57
7.1 High Level Overview of the back-end for V1 60
7.2 Execution of one nInstruction . 61
7.3 Execution of two nInstructions in parallel 62
7.4 High level view of the Decoder Unit 62
7.5 Extract of the smart section of a LiM array V2 showing the two types

of multi-row operation. Violet indicates the components used in the
first cycle and cyan the ones used in the second cycle. 64

7.6 Configuration of MI’s row mutliplexers 64
7.7 Configuration signal of RIs . 65
7.8 Configuration of RIs . 65
7.9 Example of the configuration of a smart row 66
7.10 Example of an SIMD operation required to perform a XOR between

the word stored in the smart row and a shared operand(W). The
result is then written into the upper neighbour. The last row doesn’t
have to be written . 67

7.11 High Level View of MMU . 68

VIII

7.12 Miss routine for a miss in the upper cache register 69

7.13 When units of a smart row are used 70

7.14 Writing space in violet and cache reading space in cyan 71

7.15 Hazards’ analysis. The blue operations are due to LiM instructions,
the red ones due to cache miss . 72

8.1 Instruction format(a). (b), (c), (d) show special cases: instructions
don’t involve programmable RIs, instructions don’t require cache, and
movements instructions respectively. The grey sections are don’t care. 76

8.2 Signal generated by the decode unit 78

8.3 Addressing Modes:The text color indicates the buffer required for im-
plementing that addressing mode and square indicates the version of
component required for implementing that addressing mode. Color
legend: purple for array with output buffer in the smart row, cyan
for array with input buffer in the smart row. Square legend: white
for the addressing modes always allowed, yellow and orange for the
version of LiM cells(yellow for at least version B and orange for ver-
sion BB), green and blue for RIs(blue for buffer version 2D or 2D
BB,if there is a buffer, and green for at least version 2D B) 78

8.4 Signal generated by the decode unit 79

8.5 Possible concatenation of smart row’s bricks. The starting point is
the violet block and the end point is the cyan one. The grey colored
blocks are not involved. 82

8.6 Portion of the smart section showing the modes of operation of V2.
The green bricks are used in the first cycle and the red ones in the
second cycle. The grey bricks are not involved. 83

8.7 MI for different degrees of SIMD . 89

8.8 Algorithm’s data-memory mapping 91

8.9 Algorithm’s flow . 92

8.10 Algorithm’s flow . 93

9.1 Impact of smart features. 95

9.2 Impact of smart features. 96

9.3 Impact of smart features. 96

10.1 High level view of a DLX. 98

10.2 Instruction format of DLX. 99

10.3 Neural Network’s neuron . 100

10.4 Neural Network’s neuron . 101

10.5 algorithm to array mapping . 102

10.6 Rows of the LiM array V1. (a) the standard row and (b) the smart
row. 103

10.7 Schedule of the operations . 104

IX

10.8 Rows of the LiM array V2. (a) the smart row 1 and (b) the smart
row 2. 105

10.9 Comparison between DLX and LiM array pre P&R: area(a), power(b)
and bandwidth(c) . 106

10.10Comparison between DLX and LiM array after the P&R 108
10.11Comparison between DLX and LiM array pre P&R with 28nm: area(a)

and power(b) . 108
10.12 . 109
10.13Comparison between 45nm based implementations and ones based on

28nm technology . 109
A.1 LiM array with 4 blocks, each one with 3 smart rows. 113
C.1 A figure with the maximum width you can use 116
C.2 low of the operations required for the BA after synthesis . Arrows of

the same color belongs to the same step 117
C.3 low of the operations required for the BA after P&R. Arrows of the

same color belongs to the same step 117
D.1 Storage Unit of LiM cells . 119

X

Chapter 1

Introduction

The Moore’s law is going to reach its peak for the available technology: new archi-

tectural approaches have to be found for improving processors’ performance. The

Logic in Memory (LiM) architecture changes the standard skeleton of processors

in order to solve one of its main bottleneck: the memory wall. Massive data ex-

changed between processor and memory is the issue and the LiM approach is the

best way to solve that(1.1).

(a) CPU center architecture (b) LiM architecture

Figure 1.1: The LiM architecture drastically reduces the traffic of data between
memory and CPU

Nowadays, several strategies for implementing a smart memory can be found in

literature: from changing the electrical properties of a memory cell to modifying

the analog circuits surrounding the memory array. All these approaches have one

common point: the array is application dependent. In other words, the memory was

designed with a view limited to specific operations, without any general purpose

features. This thesis work explores a new high level approach for computation in

memory: it has been called the Lego LiM approach. The key point is that the

LiM array is fully modular and programmable : the designer has to configure it

according to the complexity required. The design space for the LiM array is huge:

it can look like from a standard memory to a complex configurable array, similar to

an FPGA. The rest of the thesis is organized in three main blocks: the exploration

1

1 – Introduction

of the state of the art(chapter 2), the detailed analysis of the LEGO LiM Unit

from a high level view down to the RTL level(chapter 3 to 8) and the performance

estimation (chapter 9 to 10) . The last section has three main goals: comparing

the standard memory array with a LiM array, finding out the impact of the Control

Unit and analyzing the performance of a LiM Unit respect a standard RISC-like

processor.

2

Chapter 2

State of the art

2.1 Von Neumann paradigm

Modern computing architectures are CPU-center according to the Von Neumann

paradigm(VN paradigm): data are exchanged between CPU and memory for com-

putation purpose. A Von Neumann computer(no matter the architecture, Harvard

or VN) has three building blocks: the CPU, the BUS and the memory storing both

data and instructions. The CPU executing the instructions of the running program

changes the content of the memory in some way: the processor retrieves data from

memory, performs operations with them and writes back the results in the memory.

2.1.1 Limitations

This paradigm has to main limitations : the so called Von Neumann bottleneck and

the power consumption.

Von Neumann bottleneck

The terms Von Neumann bottleneck (coined by J.B. [2]) addresses the problems

related to the rigidity of the VN paradigm: a technological problem related to the

difference of performance between CPU and memory and, especially, an intellectual

barrier for the programmers.

• About the latter problem, in order to minimize the enormous traffic of words

between CPU and memory, the programmers spent a lot of time thinking on

code optimization rater than on conceptual tasks.

• For what concern the former problem, the gap between the progress made in

recent years on CMOS technology and the improvements obtained for memory

3

2 – State of the art

causes the difference of speed between CPU and memory: memories can’t

provide data to the CPU as fast as it could process that(2.1). So, no matter

how fast is the processor , the overall performance are limited by the memory

bandwidth. The scaling process of transistor just further increases the gap

between logic and memory performance.

Power Dissipation

Furthermore, the power consumption is another critical problem intrinsically re-

lated to the VN paradigm: a huge power dissipation is generated by the continuous

data movements between memory and CPU. This situation is exacerbated for data-

intensive applications.

Figure 2.1: The gap between memory and CPU is measured by comparing the
memory request of a single core and the latency of a DRAM access. Both of them
are relative data: the baseline for the CPU performance is th VAX-11/780 ; the
64 KiB DRAM is the baseline for the memory instead.This figure is inspired to the
study done in [QAP].

4

2 – State of the art

2.2 Breaking down the Memory Wall

To address this problem the weak components of the paradigm have to be improved

: the memory, the bus or the whole paradigm itself .

2.2.1 Memory hierarchy

To attenuate the memory wall , several architectures implement memory hierarchy

to hide the latency of the main memory by placing smaller but faster intermediate

memories between the main one and the processor([10]).

2.2.2 Prefetching

Another approach to break the memory wall is to implement the prefetching in order

to overcome the latency problem. The idea is to predict the next data to retrieve

in order to begin the read operation before the fetch phase. In other words, the

prefetching allows to anticipate the beginning of the fetch operation before the fetch

phase: so , the latency is just hidden behind other phases([10]).

2.2.3 Beyond the Von Neumann architecture

However,the approaches analyzed so far are not enough : the problem must be

tackle at the root. The idea is to go beyond the strictly separation between logic

and memory unit imposed by the von Neuamnn approach: computation in Mem-

ory moves logic units inside the memory in order to perform computation on data

without moving data outside the memory . This innovative approach brings three

main benefits:

• Reduction of data traffic between memory and CPU drastically decrease the

power consumption;

• Processing data directly inside the processor allows to fully exploit the internal

memory bandwidth;

• Increase the degree of parallelizability admitted introducing the possibility of

distributed computation(both in memory and in the processor).

5

2 – State of the art

Categories

According to [14] the state of art for the Logic in Memory can be categorized in

4 degree of smart memory: Computation near Memory(CnM), Computation

with Memory(CwM), Computation in Memory(CiM) and Logic in Mem-

ory(LiM),

CnM Architectures still observe the Von neumann paradigm: logic and Memory

are kept separate. The idea is to break down the interconnection latency by stacking

memory layers and logic ones in the same 3D structure. Data are moved from one

wafer to and other through a vertical electrical interconnection called TSV(trough-

silicon via) : the shorter interconnections bring wider memory bandwidth and lower

power consumption.

On one hand there are structures like [12] where the logic stacked in the 3D structure

handle the operations required to manage the DRAM memory layer: refresh, error

correction, sequencing and so on.

On the other hand, [9] maps a multicores(64 cores) architecture on a 3D-Architecture.

Each core has a MIPS-like architecture with the own dedicated memory tile.

CwM Computing with Memory exploits CAM for implementing operation in

a LUTlike approach: CPU generate a key and the memory directly generate the

results. Different approaches can be identified.

[7] reduces the data movement of the BLAST(Basic Local Alignment Search Tool

is a tool for alignment DNA sequences) by exploiting the ability to locally perform

parallel comparison locally of a 3D resistive CAM(ReCAM). The architecture is

name RADAR.

[8] adopts a similar approach: the electrical characteristic of a ReCAM allows to

perform some basic query functions directly in memory.

More complex logic operations can be implemented by the associative processor

proposed by [18]. The approach is very similar to a LUT: pre-computed results are

stored inside the ReCAM and the combination of the operands is used as Key for

it.

6

2 – State of the art

A different solution in exposed in [4], where the idea is to exploit the electri-

cal property of a 10T NOR cell based CAM for locally implementing the XNOR-

popcount of a BNN. The input images (IFMAPs) are stored in the CAM and the

weights are used as key: this is the starting point that made possible the implemen-

tation of popcountt as a CAM search operation.

CiM The wish to kept intact the memory array brought to the third approach for

the logic in memory architecture that [14] called Computing in Memory. Precisely,

the idea is to left unchanged the memory cell structure and exploit the analog

functionality of the peripheral circuitry around the array for implementing operation

directly inside the memory: data are read from the array, then they are computed

by the peripheral circuits and the results are written back in the array. Hence, there

are not movement of data between memory and the logic unit. Technologies used

for implemented this smart arrays are both nonvolatile and volatile.

PIMA architecture proposed by [1] implements complex computation in a mem-

ory based on Magnetic RAM (MRAM) technology. Precisely, the technology used

is the Spin Orbit Torque MRAM(SOT-MRAM): the magnetization direction of a

metal layer(the Free Layer) sets the equivalent resistance of the cell. It can assume

two values: the lower indicates the logic ’0’ and the higher is for logic ’1’. It allows

to perform operation between two or three data stored into the peripheral circuits :

OR, NOR, AND, NAND, maximum and minimum can be implemented.

[3] proposed a CiM architecture for accelerating Neural Network application.

Cells of the array are based on the metaloxide Resistive RAM technology : the

information is mapped on the resistance of the cell(low Resistance for 0 and high

Resistance for 1). The array is partitioned In three region: a subarrays able to

store data, a subarray with both storage and computation capability and another

subarray that contains temporary results . Peripheral circuits are properly adapted

for implementing the key operations of Neural network algorithm .

On the other hand, [15] and [16] respectively propose a DRAM and an SRAM

array that perform in Memory operation.

LiM The key idea behind the LiM approach is to give smart features to each

cell . Exactly, simple logic is integrated in the memory cell itself. In other word, a

7

2 – State of the art

cell has inside both a computation unit and a store unit. This approach avoids any

data traffic between memory and peripheral circuits(for CiM) or processing units

(for CnM).

[17] proposes an architecture called MISK where the LiM array is integrated as

a section of the cache memory. The LiM array has a structure organized in four

layers: memory, logic, memory and latch. The logic layer computes data coming

from the surrounded memory ones and the final or partial results are stored inside

the latches.

[5] introduces a LiM cell made up by three virtual layers, i.e. technological in-

dependent : Memory plane, Routing Plane and Logic Plane. Beside the traditional

write/read, the proposed architecture allows to : locally perform logic operations be-

tween adjacent cells(logic-logic ops), interconnect adjacent or not adjacent cells(Toc-

toc write/read and Remote write/read respectively). Moreover the paper proposes

an implementation in two layers(since technological limits) based on NanoMagnet

Logic technology.

A new computation in memory approach: CLiM

Which one of the computation in memory approach analyzed so far has to be im-

plement depends the target application. The idea key idea introduced in [14] is to

implement in the same structure all the different degrees of computation in memory.

The approach is called Configurable Logic In Memory (CLiM)

Architecture The proposed architectures is made up by two main blocks: a

CnM unit and a smart memory(LiM + CiM). The operations cannot be managed

by the logic in the memory, are executed in the dedicated logic near the main mem-

ory(CnM). Each cell of the smart memory integrates both storage and computation

unit(LiM). Moreover, for handling more complex operations inside the memory,

there are extra-row and extra-column logic blocks(CiM).

The CLiM cell has computation unit and a storage unit. The Computational

Block has a Full Adder and a logical block allowing to implement bit-wise oper-

ations. The inputs are the locally stored data and a signal provided by the input

multiplexer: can be an external signal or data coming from other cells(the source

8

2 – State of the art

cells of this signal depends on the location of the cell). The storage unit works as

a standard memory cell.

CLiM Array The interconnection among the cells of the CLiM array are man-

aged by several multiplexers embedded in each cell. Five connection can be estab-

lished :

• intra-cell connection for storing the result of computational block inside the

storage block of the same cell;

• inter-cell connection with the north-east cell;

• inter-cell connection with the south-east cell;

• inter-cell connection with the east cell;

• inter-cell connection with the south cell;

This articulated interconnection system allows to handle five types of operations:

• local : data are manipulated and then stored in the same cell;

• Intra-row/ column: several cells of the same row/column are interconnected

together for implementing an operation;

• inter-row/column: an operation involves cells of two rows/columns;

Interrow or column operations allows to implement logical bitwise operations

between two words stored in two consecutive row/ cell. On the other hand, both

inter and intrarow interconnections can be exploited for implementing more complex

structure as an Array Multiplier or a Ripple Carry.

Trade off Two degrees of freedom cab be exploit by the designer: interconnection

and computational unit. The configuration of the interconnection among cell is the

key point for implementing operation in memory: in other words, which cells are

interconnected determined what kind of operation can be implemented. However,

have a fully configurable interconnection system could be expensive in terms of cost

9

2 – State of the art

and logical required for managing it. On the other hand, an advanced computation

unit able to handle several kind of operation could be as useful as very expensive.

The approach adopted in [14] is to design special purpose CLiMA: this ap-

proach suits the complexity of the structure to the algorithm that has to be im-

plemented.The more detailed architecture presented in [14] is a CLiMA able to

accelerate operations of a Quantized Convolutional Neural Network. The cell can

be configured for implementing logical bitwise operation, arithmetic operation an

Shift operation.

Strong and Weak points The strong point of this approach are the configura-

bility and the parallelism offered by the architecture. On the other hand, the weak

points are the control Complexity and the Interconnection Complexity. Moreover,

the whole architecture has to be redesigned each time according to the application.

10

Chapter 3

A new LiM approach: Lego-LiM

architectures

3.1 Motivations

The LiM arrays implemented so far are ASIC-like unit: the design flow begins

from an application and ends with an architecture optimized for that specific bunch

of instructions. So, complexity and the instruction set are carved in stone. The

approach explored in this thesis work follows the opposite direction: adaptability

and user-friendliness are the strong points. The idea is to define a technological

independent and open source library of components(RTL level), where open source

means that is it can be upgraded with new units at any time. Then, the designer

can combine these building blocks for generating several different smart arrays(LiM

array), with different degrees of complexity. The instruction set of the memory is

laid down once the designer has built up the LiM array. Then, the programmer can

write programs that will run on it.

The library of building blocks is the LEGO-LiM library. Basically, it defines

the design space for the designer of the LiM architecture : it stores all the blocks

that can be used for building up the LiM array. These building blocks are called

LEGO-LiM. The designer has to select the LEGO-LiM from the library that allow

him to build a customized smart array with the proper instruction set: this approach

has been defined LEGO-Like approach(3.1). Indeed, the design flow is the same

adopted for building up a structure with LEGO bricks: a package of bricks can

generate thousand of different architectures depending on both which of that are

chosen and how they are placed together. Obviously, bricks must be placed in a

proper order for making the connections work. chapter 8 guides the designer to

build his customized LiM array and to adapt the Conrol Unit to it.

11

3 – A new LiM approach: Lego-LiM architectures

This approach allows to fit the architecture to the required complexity: power and

area loss can be avoided. The main strong points of this approach are flexibility and

configurability in terms of modularity.

(a) Step1: Select the LEGO LiM

(b) Step2: Put them together

Figure 3.1: LEGO LiM approach

12

Chapter 4

Lego-LiM architecture: an HL

overview

4.1 The high level architecture

The ecosystem embedding a smart memory(LiM ecosystem) has three main units(4.1):

the LiM Unit, the LiM scheduler and the CPU, or anyone uses a memory as a

storage device. The LiM scheduler manages the execution of LiM operations:

it decides both which instructions have to be executed in the memory and when

executing them. The whole process is completely transparent for the CPU: its in-

terface with the LiM unit is as complex as the one with a standard memory. Word

Line(WL), Read Enable(Ren), Write Enable(Wen), memory Address(Add), word

and memory out are the signals exchanged between them. The LiM Unit is the

core of this thesis project: it’s the smart memory array. Due to its nature, it’s able

to manage SIMD(Single Instruction Multiple Data) operations. Indeed, a smart

array is made up by stacked memory rows with smart features: SIMD operations

allow to fully exploit all of them in parallel.

Figure 4.1: High Level View of a LiM ecosystem.

13

4 – Lego-LiM architecture: an HL overview

4.2 explores with more details the whole system. The LiM unit is made up

by four blocks: the LiM array, that is the smart array itself; theLiM control

unit managing both the LiM array and the interface with the scheduler; the near

memory unit embedding dedicated computational units and the standard memory

decoder. Although neither the memory decoder nor a scheduler were implemented

for this thesis project, figure 4.2 offers a global point of view of the a complete LiM

ecosystem. Notice that the LiM unit, that is the focus of this project, is much more

than a storage unit: it takes the form of a co-processor.

Figure 4.2: Detailed view of a LiM ecosystem. Units grey colored have not been
developed for this project.

4.1.1 The control units

The control unit is implemented with an hierarchical approach(4.3): a nCU acts

as a front-end and a uCU acts as a back-end. If the first one is independent from

the array, the back-end has to be partially adapted to the implemented LiM array.

The big advantages of this approach are

• easier debug for the designer;

14

4 – Lego-LiM architecture: an HL overview

• easier programming for the user;

• flexibility: also if the LiM array changes, the main components of the CU

don’t change.

The nCU suits the LiM array implemented: it’s able to manage its smart features.

On the other hand, the uCU doesn’t see the LiM array. It manages the interface

with the scheduler and acts as arbiter for the LiM array: it decides if the array

has to be used as a standard memory by the CPU or if LiM operations have to be

implemented. In the latter case, the nCU controls it.

Figure 4.3: Hierarchy of the control units

The scheduler fills the LiM queue with the addresses of the programs to exe-

cute in the LiM unit. Once activated(LiM activate=1), the uCU translates the

addresses stored in the queue in flows of nano instructions(nInstructions) that

control the nCU. Each nInstruction implement a LiM operation: the nCU generates

the proper configuration signals for the LiM array.

4.1.2 Handshakes

Two different handshakes have to be observed: the one between the two CUs and

the one between the nCU and the scheduler.

nCU and uCU

The interface between the CUs consists in two signals: DONE sent by the nCU

and Request(REQ) sent by the uCU. REQ validates the nInstruction generated

15

4 – Lego-LiM architecture: an HL overview

by the uCU: the nCU fetches a new instruction as soon as the request is asserted

at the rising edge of the clock. Indeed, the nCU can read each clock cycle a new

nInstruction to manage. The DONE signal indicates the state of the nCU: idle if

it’s high and busy if it’s low. The DONE signal goes down after the fetch of the first

instruction, that is as the execution of instruction in the array begins. It comes back

high in the last cycle of the last instruction executed. Notice that each nInstuction

takes two cycle. 4.4 shows the timing for a generic stream of nInstructions.

Figure 4.4: Handshake between the front-end and the back-end

uCU and scheduler

The interface between the front-end and the scheduler consists in two signals: LiM

Enable(LiMen) and LiM Mode. The former is sent by the scheduler for activating

the execution of LiM instructions. The latter is generated by the uCU for giving a

feedback to the scheduler about the execution of LiM instructions: it’s high when

the LiM unit is executing a LiM operation and it’s low when the LiM unit is in idle.

The handshake takes four steps:

1. Load: the scheluder resets the CUs and loads the LiM queue. Then, the LiM

unit can be activated.

2. Start: the scheduler asserts the LiMen for starting the execution of LiM

operations. The LiM queue is fetched during the first rising edge and the

addressed instruction is sent to the uCU at the following rising edge.

3. Execution: after the second rising edge, the LiM execution starts. So, the

uCU gives the control of the array to the nCU(LiM mode asserted).

16

4 – Lego-LiM architecture: an HL overview

4. End: Once all the programs stored in the queue have been processed, the

uCU gives back the control to the CPU and alerts the scheduler by denying

the LiM mode.

Notice that the scheduler has to keep high the LiM enable until the LiM unit com-

pletes the execution of instructions. 4.5 shows the timing for a generic life cycle.

Figure 4.5: Handshake between the front-end and the scheduler

4.2 Lego LiM library

The Lego-LiM library defines the design space for the LiM architecture designer.

It is a collection of the Lego-LiM that can be used by the designer for customize his

architecture. This section explores the high level view of the whole library. Then,

the skeleton of a LiM array is presented too.

4.2.1 Lego LiM

The Lego-LiM are the building blocks of a LiM architecture. They need to be

heterogeneous enough to allow the designer to customize the architecture to the

given specifications: having a library with equal size blocks it would have made it

impossible. So, the winning strategy was been divide et impera: the blocks of the

library are classified in three families according to them scope(or granularity), and

each of these family is further split in classes depending on the functions imple-

mented. The former classification places the components on three layers(4.6): LiM

Cells, Row Interfaces and Memory Interface. The LiM Cells define how a bit, that

is the smallest information stored, can be manipulated. The Row Interfaces (RI)

define the operations that can be applied on the word stored in a row. The Memory

Interface(MI) manages the communication between different rows(inter-row).

17

4 – Lego-LiM architecture: an HL overview

(a) LiM Array (b) LiM cells

Figure 4.6: HL view of a LiM array

Notice that the row is where a word is stored, that is a group of LiM cells sharing

the same Bit Line. On the other hand, a LiM row is the portion of the LiM array

made up by a row and its smart plug-ins, that are the RIs. Between each row and

the MI there could be one or more stacked RIs. If there are one or more RIs, they

filter the data exchanged between cells and the MI. However, the row is always at

the lowest level of each row(bits). The scope of the CPU is limited to them. 5.1

shows the high level view of a LiM row in three cases, with three different degrees

of complexity.

(a) no RI (b) 1 RI (c) n RIs

Figure 4.7: Hierarchy of a LiM row in three different cases: without RIs(a), whit
one RI(b) or whit staked RI

Notice that, there is only one MI in each LiM array. It is the block with the

wider scope: it can communicate with all the LiM rows and with the near memory

unit, if there is one.

18

4 – Lego-LiM architecture: an HL overview

4.2.2 LiM Cells

The LiM cells are the components of the library with the finest granularity. Since

they define if and how the bit stored can be modify, they open the instruction set of

a LiM row: depending on the type of cell implemented, different logical bit-wise

operations can be implemented. In contrast to the standard memory cells, each

LiM cell has also smart capabilities. Depending on the logic feature, three families

can be identified:

• Memory Cells(M Cells): the logic unit is as easy that no logic operation can

be implemented;

• Logic Cells(L Cells): standard bitwise logical operations can be implemented;

• Arithmetic Cells(A Cells): since they embed at least an Full Adder or a

Half Adder, they allows to implements also arithmetic operations.

4.2.3 Row Interfaces

The row interfaces complete the instruction set of a LiM row. Indeed, each RI can

be seen as a plug-in that adds a smart feature to the row. Moreover, the RIs manage

the traffic of data inside the LiM row. There could be both rows with several stacked

row interfaces and rows without row interfaces.

Depending on the smart feature implemented, the row interfaces can be classified in

four groups:

• Shifters: they can alter the order of the bits stored in a row;

• Adders: they can perform both logical and arithmetic operations;

• Buffers: they allow to store either the output or the input of a row;

• Special Purpose: they are a bunch of row interfaces for implementing pecu-

liar operations.

19

4 – Lego-LiM architecture: an HL overview

The role of the Buffers

A buffer is a RI stores a temporary data for using it during the next clock cycles:

the Input Buffer stores a data coming from another LiM row; the Output Buffer

stores the result of the LiM row which it belongs to. Moreover, there is also an

InOut Buffer that is able to work as either an Input or an Output buffer. Using

a buffer as plug-in in a LiM row allows to increment the instruction set of the

array. Indeed, some operations can’t be performed without a buffer because of the

architecture of the LiM array(4.8): they’re feedback, complex algorithm and multi-

rows operations.

The Store Operation(4.8.b) also allows to store the result of an operation performed

in a LiM row in its row: this is what feedback stands for. It is implemented in two

steps: storing the result in the output buffer and then writing back the result in

the row. So, the output buffer is used for storing the partial result. Some complex

algorithms(4.8.c) can’t be performed in just one step: the partial results has to

be stored in the output buffer for further computing it in the next cycle. A multi-

rows operations(4.8.a) is an operation requiring two consecutive LiM rows to be

completed: it begins in a LiM row exploiting its smart features, and it has to be

further computed in a different one. For reasoning better explained in chapter 8,

the input buffer between these two LiM rows has to be used as a checkpoint: it’s

written with the partial result by the first LiM row and then it’s read by the second

LiM row.

Moreover, the input buffer allow to use two external operands for an operations(see

chapter 8).

20

4 – Lego-LiM architecture: an HL overview

(a) multi-rows operations (b) feedback (c) complex operation

Figure 4.8: The figure shows the complex operations that can be implemented with
buffers. Grey colored components are not involved in the operation. Violet indicates
component used in the first cycle and cyan the ones used in the second cycle. (a)
shows the smart section of a template V2, (b) and(c) a LiM row

Notice from 4.8 that a buffer has to be placed as the last RI of a row. This makes

a lot easier the configuration of RIs for managing the intra-row traffic. Although

it’s deeply explained in chapter 8, the key point is that this role keeps clear and sort

the stream of intra-row data: data are processed going down through the RIs of the

LiM rows toward the MI(Only the RIs activated processing the data, the other ones

are just transparent). Then, the result in output to the RIs can be either stored in

the buffer or it can be send to the MI. The only reason why a result goes upstream

is to be stored in the cells.

4.2.4 Lego LiM array : templates

The LiM unit executes SIMD(Single Instruction Multiple Data). So, it must have

a configuration, a shape that makes it feasible. A LiM array with all the LiM rows

different from each other would be unimplementable and useless.

Unimplementable because of a huge interconnection overhead: the CUs would gener-

ate an insane number of configuration signals, one for each LiM row(4.9). Moreover,

21

4 – Lego-LiM architecture: an HL overview

taking into account that, first, the number of these signal increases whit the depth

of the row and each configuration signal is up to 30 bits wide. So, It would became

the bottleneck of the architecture.

Useless because of all the rows has to be able to handle the same smart features

since the goal is to manage SIMD operations.

Figure 4.9: What will happen with an heterogeneous LiM array

So, the idea is that skeleton of ever LiM array can assume two different homoge-

neous templates, that is the number of different LiM row is very limited: Version

1(V1) and Version 2(V2). 4.10 shows two possible implementations. The designer

has to configure the smart row with the LEGO LiM of the library. Also buffers may

or may not be placed depending on the application. Obviously, the instruction set

reduces without them. If the V2 would allow to have a wider Instruction set, the

V1 allows to implement an higher number of the same instructions in parallel with

a given memory size.

22

4 – Lego-LiM architecture: an HL overview

(a) V1 (b) V2

Figure 4.10: The two available templates. Buffes belongs to the LiM rows.

These approach has two big advantages: more flexibility and the reduction of

the complexity of the CUs. Flexibility means that the core of the the back-end is

the same for all the implementation of the same template, independent from the

Lego-LiM implemented. Moreover, since the number of different LiM rows is very

small(four or five), the CU has to generates just few signals independently from

the memory size. Indeed, almost all the LiM rows of the same type share the

configuration signals, as shown in size(4.15). The only two exceptions are the first

and the last LiM rows of the smart section(see chapter 8 for the reason).

23

4 – Lego-LiM architecture: an HL overview

(a) V1 (b) V2

Figure 4.11: signals generated by the nCU for both the versions

Taxonomy

There are two types of LiM rows:the smart rows and the memory rows. If

the latter ones is made up of LiM cells with only memory capability(M-Cells), the

former ones have also smart features. Indeed, the smart rows embed either A-Cells

or L-Cells and they could have one or more row interfaces: how many and which

ones are choices of the designer. For both the templates, the LiM array has two

sections(4.12): the Smart Section and the Standard Section. The smart section

is where the LiM operations take place: it contains all the smart rows. How many

smart rows it needs to use depends on the degree of SIMD required, that is how

many operations have to be implemented in parallel. Moreover, there are also rows

with just memory capability in the smart sections: standard near rows. The two

standard rows surrounding a smart rows are usually called neighbourns of a smart

row.

About the standard section, it has a key role: it allows to avoid redundancy, that

is the storing of the same data multiple times in the memory. The rows of this

section are called standard far Rows.

All the smart rows work simultaneously for performing an SIMD instruction: this

24

4 – Lego-LiM architecture: an HL overview

(a) V1 (b) V2

Figure 4.12: Taxonomy of a LiM array

is why the SIMD operation is the best choice to fully exploit all the smart features

of the array.

Where to store the operand

A single LiM operation of a SIMD instruction takes place in a smart row. The smart

row can retrieve the operands to use:

• from one of the neighbors, that are the two rows surrounding a smart row;

• from the row of the smart row itself;

• from a row of the standard section trough the cache of the MI(see section

below).

In order to avoid redundancy, the operands shared by all the operations of an SIMD

instruction must be placed in the standard section and the ones change for each

operation either in the smart row or in a neighbors. So, a smart row needs to read

the cache just for retrieving shared operand stored in the standard section’s rows.

4.13 shows an example of how to store the operands of an SIMD operation.

Notice that it has to be coherent for all the operations executed in parallel. In other

25

4 – Lego-LiM architecture: an HL overview

words, if a smart row stores its operands(the ones not shared) in its row and in the

upper neighbor it has to be applied to all the other smart rows too(4.13)

(a) V1 (b) V2

Figure 4.13: The figure shows and example of how to store the operands in the array
for an SIMD operation. In this case, the operand are stored in the smart row and in
the upper neighbours. The shared operands have to be stored in the standard near
instead.

4.2.5 Memory Interfaces

The memory interface is the traffic light of the LiM array: it manages data move-

ments between different LiM rows. Moreover, it can handles the communication

with the near memory unit if it’s required. Since the interconnections have a key

role for the operation in a LiM array, a stand alone section(5.1.6) is dedicated to

the exploration of the design space for this components: the goal is to find the most

flexible and the least expensive implementation.

The MI is made up by two main blocks(4.14): a cache layer and the multi-

plexers layer. The former allows to cache two rows of the array. The latter allows

to interconnect LiM row: each smart rows can exchange data both with neighbors

and with the cache registers.

26

4 – Lego-LiM architecture: an HL overview

Figure 4.14: High Level view of Memory Interface with a LiM array of 16 rows

4.2.6 Standard Interfaces

The strong point of the LEGO bricks is the interface: the fixed interconnection

allows to match a brick with a lot of other ones that are compatible with it and,

moreover, to replace a brick with another one with the same interface , no matter

its color. Having in mind that, the interfaces of the Lego LiM blocks were founded

on three key points:

1. Fixed Interfaces within a family: blocks of the same family have the same

interface, that is the same input ports and output ones as well;

2. Fixed Interfaces between families: the interface between Cells and RIs,

the one between RIs or Cells and the MI and the one between two RIs are

fixed no matter which kind of blocks are placed;

3. Transparent for CPU: the standard interface between CPU and a standard

memory array must be kept unaltered .

(i) and (ii) allow to define a library of components that can be combined in a lot of

different ways. (ii) allows to concatenate components in the same way, no matter

which and how many are the blocks placed in each row. On the other hand, (i)

27

4 – Lego-LiM architecture: an HL overview

makes the components of the same families interchangeable to each other. In other

words, cells and RIs can be interfaced in the same way independently from the types

of components implemented; the same happens between RIs and MI, cells and MI

in absence of RI and between two RIs.

Having a standard interface allow to see the LiM library as a box of LEGO bricks(4.16).

(a) (b) (c)

Figure 4.15: The figures represent a MI with just one LiM row. Figure (a) is the
starting point. (b) and (c) demonstrates (ii). Moreover, (b) underlines how blocks
of the same family are interchangeable(i)

The following sections focus on the data signals exchanged between LEGO LiM.

About configuration signals, they are managed by the CU.

28

4 – Lego-LiM architecture: an HL overview

Figure 4.16: The figure shows the symbolic view of the LEGO LiM

29

4 – Lego-LiM architecture: an HL overview

Interface of Cells

The standard interface of cells have four ports, two of that are toward the CPU and

the other two are inner to the LiM array:

• Bit Line(BL) and Standard Output(STDout) are the standard memory

interface toward the CPU;

• External(EXT) and ROW OUT are the signals exchanged with the other

components of the LiM array. They are totally invisible for the outside world.

(a) Standard Cells Interface (b) ACell standardized

Figure 4.17: Interfaces of standard LiM cells

ROW OUT is the only signal generated by the cell and EXT is the second

operand to use for a logic operation that is performed inside the cell. However, there

is one main obstacle for the standardization of the cells’ interface: if standard logic

gates(that are the one embedded in LCells) have three ports, both half adder(HA)

and full adder(FA)(that are the ones embedded in ACells) require one and two

additional ports respectively. The Idea is to use a RI after each row made up by

ACells: any row of arithmetic cells must be followed by an any version of Adders.

This row interface manages the additional ports required by arithmetic cells and it

converts the interface in the standard one(4.17). This standardizes also the interface

of arithmetic cells.

Interface of RI

Apart from the adders, that essentially are a plug in of the A cells, and the buffers,

that are deeper analyzed in the next section, all the row interfaces have four ports:

30

4 – Lego-LiM architecture: an HL overview

two of them are toward the row(upside) and the other two are toward the memory

interface(downside)(4.18). Since the two sides are the same, several of them can be

concatenated. The signal coming from the memory interface(EXT) is propagated

trough all of them until the row: it can be used in each block of the LiM row.

Figure 4.18: Interfaces of standard RIs

Memory Interface

The interface of a LiM row with the MI is always the same(4.19): the MI receives

one signal from each LiM row and sends one signal toward each of them.

Figure 4.19: Interfaces of MI

4.2.7 How to deal with a buffer

The buffers have to be handled separately. Indeed, they require one more signal

to manage than the standard row interfaces: this is the output of the buffer. The

output of buffer can be used as operand for the operation perform in any other

blocks of the row. The idea is to create two main versions of each component, one

required for the smart rows without a buffer(Standard Version) and the other for

the ones with buffer(Buffer Version), in4.20.

Since the output buffer can be used in any component of the LiM row, it’s

propagated trough the architecture with the extB inRI and extB outRI signals.

Then, it arrives at the input of row too(extB). The huge advantage of this approach

31

4 – Lego-LiM architecture: an HL overview

is that the additional signal is locally managed where required. In other words, the

interconnection is made more intricate only in the rows with a buffer rather than

made more complicated the interconnection of the whole array.

(a) LiM Cells

(b) RIs

Figure 4.20: Buffered Interfaces of Lego LiM

32

Chapter 5

Lego-LiM library

The previous chapter draws the shape of the Lego LiM. This chapter does a further

step forward for analyzing the core of each block. Having a standard interface

for each component belonging to the same family requires an equal standard inner

architecture. In other words, components of the same family have also the same

organization of the low level architecture. Moreover, each component is totally

generic and technological independent: the user can decide both the parallelism and

the technology for any Lego LiM.

5.1 LiM Cells

Each LiM cell has three main sections(5.1), no matter the family : a storage unit

that is the traditional memory cell, a multiplexer selecting the input of the cell and

a logic unit filtering the output of the cell.

Figure 5.1: High Level view of a LiM Cell. One multiplexer selects the input of the
SU and another one selects the input of the LU

Depending on both the family and the version of the component, the multiplexer

and the logic unit can change. The following sections show the standard versions of

the cells first, and the version for supporting buffers then.

33

5 – Lego-LiM library

5.1.1 Standard versions

All the Cells have the same basic behavior(5.2) :

• storage feature: they can store either the BL coming from the CPU or Ext

, that is the signal coming from the rest of the LiM array;

• smart feature : the output of the cell is filtered by a logical unit before

leaving the LiM cell. The second operand of the bitwise operation is the Ext

signal.

Moreover, the Acells have two additional signals to manage: Cin and Cout.

Figure 5.2: Generic view of a standard versions of the LiM cells

Although the interface is the same, the smart feature changes from cell to cell.

5.3 shows all the LiM cells that populate the LiM library for the moment.

34

5 – Lego-LiM library

(a) ACells

(b) Mcells

35

5 – Lego-LiM library

(c) LCells

Figure 5.3: Collection of all the LiM cells(standard version) stored in the LiMlibrary

36

5 – Lego-LiM library

There could be thousand of different LiM cells. However, the design space(5.4)

was explored with a criteria that comes out clearly by looking at 5.3: starting from

the easiest cells, the complexity was been progressively increased.

Figure 5.4: The design space develops itself in two directions: complexity of the
interconnection and complexity of the logic(LiM complexity)

5.1.2 Buffer versions

The versions of LiM cells supporting buffers have the same basic behavior of standard

ones but with one more degree of freedom: the output of buffer is an extra possible

operand for both storage and smart operations. There are two versions for each cells

shown in 5.3 with a different complexity(5.5 : B Version and BB Version . Both

of them allows to storage either the BL, the Ext signal or the data coming from the

buffer (extB). The only difference is how many configurations for the input signals

of the logic units exists.

37

5 – Lego-LiM library

(a) Version B (b) Version BB

Figure 5.5: Generic view of a buffer versions of the LiM cells

5.1.3 Row interfaces

There are three main families of RIs: the buffers, the adders and the others. Since

the former two must be places in a proper level of the smart row, after an ACell the

first and at the end of the row the second, they require a peculiar inner architecture,

that is different from the standard one of the RI. So, they are treated in separate

sections.

Standard Version

The standard low level structure of the RIs has two main components(5.6): the logic

implementing the function characterizing the RI and three multiplexers, one for the

input of logic, another one for selecting the output toward the upper component

and the last one for the output toward the lower component.

38

5 – Lego-LiM library

(a) Version 1D (b) Version 2D

Figure 5.6: Generic view of a standard versions of the RIs

There are two versions for each RI: Up Version (1D) and Up/Dwn Version

(2D). They change for how many signals can be used as operand for the operations

implemented by the RI: (a) allows to use just data from an upper block and (b)

also a data from a lower block of the same LiM row. The data coming from the

MI(ext) is propagate trough all the RIs of a smart row until the row: it can be used

as operand in every block of a row. Notice that the flow of the computation can be

just upside-down. It’s deeply explained in chapter 8.

On the other hand, toward MI(downside) data are sent for computational task

or for sending data to a neighbour: either the logic or a data coming from upper

blocks of the smart row can be sent. 5.7 represents the LL view of standard version

of all the RIs in the library. About right and left shifters, more versions could be

implementable just varying how many bits can be shifted.

39

5 – Lego-LiM library

(a) Shifter: Right 1 shifter (b) Shifter: Left 1 shifter (c) Shifter: rounder

(d) Special Purpose: 1Counter

(e) Special Purpose: BSF

Figure 5.7: Logic Unit of the RIs with a word of 8 bits

Buffer Version

The versions of RIs supporting buffers have the same basic behavior of standard ones

but with one more signal to manage: the output of the buffer. Each RI delivers it

to the upper component, that can be either another RI or the row. This allows to

use the output of the buffer in each component of the smart rows. There are three

versions of buffered RIs which change for the number of operands allowed(5.8): just

the data coming upward(Up Version)(1DB), also the data coming downward(

Up/Dwn Version)(2DB) or also the output of the buffer (Up/DownB Version

)(2DBB).

40

5 – Lego-LiM library

(a) Version 1D B (b) Version 2D B (c) Version 2D BB

Figure 5.8: Generic view of a buffered versions of the RIs

5.1.4 Adders

Adders must be placed after a row of A-cells for implementing either logic or arith-

metic operations. There are two adders: the RCA and the RCA&Logic. 5.1

shows the operations that can be implemented by each adder.

Table 5.1: OPERATIONS IMPLEMENTABLE WITH THE ADDERS (A,B ARE
THE TWO SELECTED INPUTS OF THE ADDER)

RCA
Standard Buffer

A + B
A−B
−A + B
−A−B

RCA&Logic
Standard Buffer

AorB
AandB
A⊕B
A⊕B
AorB

A⊕B
A + B
A−B
−A + B
−A−B

AorB

A⊕B
AorB

A⊕B

About the standard versions, the two data involved in the operation are the

content of row and the external signal. Both RCA and RCA&Logic can implement

either addition or subtraction between them like a ripple carry adder. The data

send toward the RI can be either the carries or the sum. Moreover, the RCA&Logic

41

5 – Lego-LiM library

can perform complex logical operations. It’s implemented by interrupting the prop-

agation of the carries: the control signal SUB notADD replaces them.

About the buffered versions, the second operand can be either the buffer’s

content or the external signal. Moreover, with buffered cells, the content of the

row can be left out from the operation and the operations colored in cyan can be

performed between the external signal and the content of the buffer. Chapter 8

shows the configuration required for each operation too.

5.9 shows the low level architecture for both standard and buffer versions of the

adders.

42

5 – Lego-LiM library

(a) RCA standard

(b) RCA buffered

(c) RCA&Logic standard

(d) RCA&Logic buffered

Figure 5.9: architecture of adders for a word 3 bits wide

43

5 – Lego-LiM library

5.1.5 Buffers

Buffers are the only RI with storing capabilities: they can stores either input or

output of a LiM row to which they belong. So, the main component of a buffer is

a register: it’s fed by the input of its LiM row for the input buffer and with the

output of its LiM row for the output buffer(5.10).

(a) Input Buffer (b) Output Buffer (c) I-O Buffer

Figure 5.10: BUFFERS’ architectures

The buffer sends toward the row(upside) both the output of the register and the

data coming from the MI toward the row. For the Input-Output buffer, either the

output of the input register or the one of the output register can be sent. On the

other side, since the interface provides just one output toward MI, only one between

the output of the register and the output of the RI can be read by the MI.

5.1.6 Memory interfaces

The memory interface has a quite hard task: it interconnects all the rows together.

Since it must be placed in every LiM architecture, the best implementation must be

designed. The goal of the study done is to find the lightest MI being able to fully

connect the LiM array, where lightest means the one with the lowest power and

area impact and fully connect means that each row can communicate with any row.

Three solutions were explored: Standard MI, Pipelined MI and Cache-like MI.

Spoiler: the latter one is the best.

44

5 – Lego-LiM library

5.1.7 Cache-like MI

The main blocks of the Cache-like MI are the cache registers and the row

multiplexers(5.11). The row multiplexers are able to manage the interfaces of

all the rows belonging to the smart section in parallel:

• all the smart rows can be fed simultaneously either by the output of their

neighbors or by the output of the caches;

• all the standard near rows can be fed by one of the two surrounding smart

rows.

The cache registers feeds all the smart rows and they are fed by the standard

section of the array. The cache can read just the standard section because a smart

row needs it just for retrieving shared operands stored in the standard section(4.2.4).

Just like a standard Cache, if the shared operand required is in one of the cache

registers(hit), the communication happens without delay. On the other hand, if

the row it’s not in the cache, a miss occurs: the data has to be retrieved from the

LiM array and stored in the associated cache line, that is one of the two registers.

Using the cache terminology, the mapping of the LiM array on the cache is a direct

associative mapping, where each register is dedicated to an half of the standard

section of a LiM array, that is the cachable memory. No write strategy is required

since there aren’t problems of cache coherence(section 7.6).

45

5 – Lego-LiM library

Figure 5.11: MI for a LiM array(V1) with 7 rows in the standard section

Design choice

Each implementation fully connects all the rows.

The Standard MI(5.12) implements the interconnections in the most intuitive way:

a multiplexer wide as the memory size is placed at the input of each row. Each of

them is fed by the whole memory array. The price for a fully connect array is the

huge number of very large multiplexers required.

46

5 – Lego-LiM library

Figure 5.12: The standard MI for an array(V2) with 16 rows

The Pipelined MI(5.13) solves the problem of the number of multiplexers with

just one pipelined multiplexer handling all the interconnections: there is just one

multiplexer that is as wide as one of the N multiplexers of the previous version. It’s

an n-ways multiplexer implemented with layers of 2-ways multiplexers where each

two consecutive layers are interrupted by a registers’ layer. So, there is a reduction of

the number of multiplexer but an increasing number of registers. Moreover, although

each row can communicate with any other row, just one interconnection for clock

cycle can happen.

47

5 – Lego-LiM library

Figure 5.13: The pipelined MI for an array(V1) with 16 rows

The last one implementation solves both the previous problems: the Cache-like

MI it has smaller multiplexer and just two registers(5.14).

48

5 – Lego-LiM library

Figure 5.14: The cache-like MI for an array(V1) with 16 rows

5.2 summarizes the behavioral comparison between the three MIs, where the

focus is on four parameters: the complexity of multiplexers(MuxC), the overhead of

registers(OReg), the latency of 1 movement(L) and the parallelizability(Par), that

means how many movements can be simultaneously performed. The complexity of

multiplexer is defied as
∑

i MUX[i] ·Ninput[i]

Table 5.2: COMPARISON BETWEEN MIS

MI MuxC OReg L Par
standard N · (N − 1) 0 1 N
pipelined 1 · (N − 1) log2(N) log2(N) 1
cachelike N · 5 2 1(2) N

The table underlines how the Cache-like MI combines the strong points of the

49

5 – Lego-LiM library

other two versions:

1. N movements can be done in parallel without the overhead due to the huge

multiplexers of the STD architecture, where N is the number of rows;

2. the number of registers and the size of row multiplexers are independent from

the number of the rows;

3. the latency of one movements is just one cycle, or two cycles in case of miss.

The performance comparison was been tested by stimulating the three im-

plementations with the same algorithm. The focus of the analysis is on the critical

path, the power consumption and the area. These parameters have been evaluated

to vary of the memory depth: it sweeps from 8 rows to 1024 rows. On the other

hand, the word width is kept fixed at 16 bits. The evaluations were done with the

Back-annotation approach(Appendix A) before the place and route step.

Figure 5.15: Comparison between the different implementations of a MI

5.15 summarizes the results obtained. One consideration is clear: the standard

solution is unusable due to an almost exponentially growing of both power con-

sumption and area with the number of rows. On the other hand, the Cache-like

50

5 – Lego-LiM library

MI is just slightly affected by the number of rows: in other words, the impact of a

bigger memory on its performance is very light. That’s a huge advantage of this ap-

proach. The fourth plots in 5.15 compares it with the second best implementation:

the Cache-like approach allows to have a reduction saturated at almost 40% on the

power consumption and at 80% on the area overhead.

5.1.8 Definitive Version

Given that the best solution is the Cache-Like one, 5.14 is not the final version.

About the row multiplexers, two simplifications have to be done. First, since the

standard rows can be just used as destination of LiM operations, they don’t have to

receive also the output of the cache registers. Second, multiplexers are useless at the

input of standard far rows: they aren’t involved in LiM operations. They can just

be read for retrieving shared operands trough the cache, but they can’t be written.

About the cache, the correct use of the array is hardwired forced due to hazard and

cache coherence problems. These issues are analyzed in the chapter 7. Basically, as

explained in 4.2.4, a smart rows needs to reads for retrieving operands either one

of the neighbors or the standard section. Since the connection with neighbors is

hardwired, the cache is just need for retrieving the shared operands in the standard

section. So, the cache needs to read just the standard section: this is the correct

behavior of the cache that is not hardwired in 5.14. Moreover, since just one cache

register is written at a time, notice that the same configuration signal control both

of the cache multiplexer. The width of the control signal for the cache multiplexer

depends on the size of standard far section, that is the reading space of the cache.

51

5 – Lego-LiM library

Multiplexer: finding different implementations

The key element of all the MIs is the multiplexer. So, the first step for the anal-

ysis of the MIs was the exploration of the design space of the multiplexer. Three

solutions were explored: standard multiplexer(5.16.a), pipelined multiplexer(5.16.b)

and sequential multiplexer(5.16.c).

(a) standard multiplexer (b) pipelined multiplexer

(c) sequential multiplexer

Figure 5.16: Three implementations of a multiplexer

The pipeliend multipexer is an N-ways multiplexer where the stages of a 2-

way multiplexers are cut with registers’ stages. The sequential multiplexer has

three main elements: a counter, a register and a Parallel-IN-Parallel-OUT(PISO)

register. The fist step is to store the selection signal into the register and all the

inputs of the multiplexer into the PISO register. Then, the counter starts to count

until it reaches the value of the selected signal stored in the register. For each

counting the PISO shifts out one input.

The performance are evaluated with the Back-annotation approach(Appendix

52

5 – Lego-LiM library

A) before the place and route step: the number of ways sweeps from 2 to 1024

and the data width is kept fixed at 16 bits. The same algorithm stimulates all the

entities: it leads the farthest Input to Output. 5.17 summarizes the results.

Figure 5.17: Results of the comparison between the three multiplexers

The sequential multiplexer is unusable: it’s the slowest and the most expen-

sive both for area and power consumption. Moreover, the latency for getting out

the selected input linearly increases with the number of ways: indeed, the number

of shifts required linearly increases. Here the bottleneck is of course the counter.

About the pipelined version, it has both strong and weak points. The bottleneck

is the register’s overhead, that means an heavier power consumption and a bigger

latency(in terms of clock cycle numbers) than the standard version. On the other

hand, first, the latency is one clock if the pipe if fully fed, second, the critical path

is fixed and it’s the one of a two way multiplexer. Third, just one pipe multiplexer

can manage the interconnection between several input - output ports.

53

Chapter 6

The front-end

6.1 Overview

The front-end(uCU) is implemented with a micro-programmed Control Unit. The

huge advantages of this approach are the flexibility and accessibility. Flexibility

means that new instructions can be easily implemented just increasing the size

of the micro instruction memory, the micro ROM(uROM). Moreover, the micro-

programming is very user-friendly: it happens just writing 0 and 1 in the uROM. The

instruction written in this uROM are called micro-Instructions(uInstructions). A

micro-program(uprogram) is a bunch of uInstructions.

The implemented control unit manage explicit addressing for the evolution

from a uInstruction to the next one. It avoids the additional hardware required

for an implicit addressing. Explicit addressing means that the address of the next

sequential uInstruction is written in the uInstruction itself. About branches, just

2 ways branches are allowed: the next uInstruction can be the sequential one or

another one, that is the branch one. It’s managed with a kind of explicit addressing:

the address of the branch and the one of the sequential uInstruction change just for

the lowest significant bit. It reduces a lot the size of uROM required for managing the

explicit addressing. Moreover, the uprogram can also have calls to function : they

are called micro-calls(ucalls). They are managed almost as the branch instructions:

the call address and the return addresses can change just for the lowest significant

bit. The call address ends with logic 0.

6.2 Architecture

The building blocks of the uCU are(6.1):

54

6 – The front-end

• LiM Queue: it stores the queue of uPrograms to execute, that are the

addresses of the first uInstructions of each uProgram;

• micro address register(uAR): it’s the next uProgram to execute;

• micro program counter(uPC): it stores the address of the uInstruction in

execution;

• uROM : it’s the core of the uCU. It acts both as memory of the configuration

signals for the back-end and as the next uInstruction generator;

• sequencer (uSeq) : it selects the next uInstruction to execute leading by th

output of uROM ;

• micro return address register(uRAR): it store the address where to return

after the execution of the function called.

Figure 6.1: Architecture of the front-end

The uAR stores the previous output of the Queue, that is the next uProgram

that has to be executed. When a new program has to be executed, the uPC reads

55

6 – The front-end

the uAR : the output of the uPC addresses the first instruction of the uProgram just

started. So, the output of the uROM becomes the first uInstruction of this uPro-

gram. The uInstruction has three section: the signals for configuring the uSeq(the

pink ones in 6.1), the state signals(the blue ones in 6.1) and the configuration signals

for the back-end(the green ones in 6.1). The instructions sent to the back-end(nCU)

are called nInstruction. Each of them takes three rising edge for being executed.

The signals for the uSeq leads it in the generation of the next input of the uPC,

that is the next uInstruction. It can be the next instruction of the uProgram in

execution, the return address or the first instruction of the next uProgram to run,

that is the output of the uAR. Actually, the next instruction might or might not be

the branch target. When all the uInstruction of a uProgram has been executed, the

uPC is updated with the uAR: the programmer of the uROM has to proper write

the last uInstruction of each uProgram in order to alert the uSeq that the output

of the uROM is the last instruction of a uProgram. The state signals are the two

signals for the handshake with the scheduler and for managing the arbiter of the

array.

The orange portion of the architecture in 6.1 is need to end the LiM execution.

When all the uProgram stored in the queue has been executed, the uCU asserts the

LiM mode signal and the sMUXarray for giving back the control of the array to

the CPU. However, how could the uCU know which is the last uProgram? In other

words, how could the uCU know when the queue is empty? It does care because the

instruction following the last uInstruction of the last uPorgram must be the Wait

Instruction. It allows to complete the last nInstruction before getting back the

control of the array to the CPU. So, the programmer of the LiM queue(scheduler

programmer), that is the sequencer, and the programmer of the uROW(uProgram-

mer) must talk. The interface between them is done such that they don’t have

to talk a priori. It means that the uProgrammer writes the uROM without being

aware about how they will be executed, that is in which order. They communicate

run-time with two signals: the scheduler programmer asserts a flag with the last

uProgram to execute and the uProgrammer asserts a flag with the last uInstruction

of each uProgramm. When both of them are true, the uInstruction in execution

is the last one: the next one has to be the Wait instruction. The address of this

instruction is stored in a register in the uSequencer. The scheduler must write it

56

6 – The front-end

before starting.

Notice from 6.1 that the flag of a uProgram moves forward with it in the uCU and

the reset signals(violet one) is shared by all the registers.

6.3 Timing

7.2 shows the timing describing a complete life cycle of a uCU. After the reset and

the writing of the WAIT address’ register, the uPC addresses the idle instruction:

in this state both the CUs and the LiM array doesn’t work and the CPU controls

the memory. Once the scheduler enables the LiM unit, the output of the queue is

written in the uIR and then it’s shifted. It happens for two rising edges, that is

until the uPC is updated with the first output of the queue. Two rising edge after

the enabling of the LiM execution, the uPC is updated with the first uInstruction of

the first uProgram, the uAR with the second uProgram to exectued and the output

of the queue becomes the third uProgram to execute. So, the two starting cycles

make the uAR one step further than the uPC and the queue two steps further.

The flag of a uProgram moves forward with it in the uCU.

Figure 6.2: Example of a complete LiM execution from the uCU point of view

Notice that the uAR and Queue are updated at the same time when the uPC

57

6 – The front-end

reads the uAR, that is at the last nI of a uProgram. Instead, the uPC is always

updated when the LiM unit is activated. Indeed, the uCU fetches one uInstruction

for clock cycle. When the last uInstruction is written into the uPC, the uSeq selects

the WAIT address as the next uInstruction to run. This uInstruction waits for the

DONE signal before jumping to the DONE instruction. It means that the branch

is not taken until the nCU completes the execution of the last nInstruction. The

difference between the DONE and the IDLE instruction is the fetch enable signal:

in the former one the uAR is not fetched.

58

Chapter 7

The back-end

7.1 Overview

The back-end, that is the nCU, manages the execution of LiM operations, that

are SIMD. It’s a pipelined CU with two pipe stages. It translates the instructions

received by the front-end, nano Instructions(nInstructions), in configuration sig-

nals for the LiM array. It’s made up by two building blocks(7.1): the Decoder

Unit(Dec unit) and the Memory Interface Unit(MIU). The first unit parses the

nInstructions received for generating configuration signals for the LiM cells and the

Row Interfaces of the array. On the other hand, the MIU reads the source field of

the nInstruction for managing the MI. Since each block controls a different portion

of the LiM array, they can work in parallel. The big advantage is that also if a miss

happens in the MI, the execution will not be delayed.

The nCU generates five or six configuration signals depending on the version

of the array: V2 required an additional signal due to the two types of smart row.

As shown in figure 7.1 the rows of the same type share the configuration signal.

However, notice that two different signals are required for the first and the last row

of the smart section. The chapter 8 explains why it happens. Notice that additional

logic outside the units is required for the read operation of standard far rows: they

can be read just for writing cache on miss. So, the read enable signals (Ren) of that

is the miss signal generated by the MIU. Since the word line(WL) has to be enabled

for accessing to a row, it becomes high as the Ren is asserted.

The Miss Enable signal activates the MIU on a operation required the cache.

Moreover the decoders send to the cache also the configuration for the row multi-

plexers of the MI. Indeed,if the cache is not involved, the input of the of a smart

row depends on the operand field that the MIU doesn’t see.

The reset signal (Reboot) resets both all the registers of the back-end and the

59

7 – The back-end

Figure 7.1: High Level Overview of the back-end for V1

registers of the LiM array, that are the cache registers and the buffers.

The Request is propagated in the CU for enabling the registers storing the config-

uration signals entering in the execution stage.

Notice that the generation of the Done signal is hardwired: the request signal lets

it down. After one clock, the delayed request pulls it up again. Actually, also the

reboot signal can make it high.

7.2 Execution of a nano Instruction

As explained in the chapter 8, each nInstruction has 5 fields: OpCode, Operand,

Results, source address and function. If a row that is not a neighbour has to be read,

the source address indicates its address. It will accessed trough a cache register.

60

7 – The back-end

The execution of each operation takes two cycles(7.2): Decode & Miss and

Execution.

Figure 7.2: Execution of one nInstruction

The nInstruction register fetches a new nInstruction as soon as the request

signal is high at the rising edge of the clock. This nInstruction is splitted in two

subsections: the MIU reads the source address field and the decoder unit receives

the rest of the nInstruction. During the first cycle after the fetch, the MIU checks

for a miss and the decoder unit decodes the nInstruction. If the instruction involves

the cache, the decoder enables the MIU(MissEnable=1): if there is a miss, the MIU

proper updates the content of the cache registers during the next rising edge. Oth-

erwise, the signals generated by the MIU can’t affect the cache registers. Moreover,

the MIU generates the signal for the row multiplexers of the MI. During, the next

clock cycle the configuration signals generated are sent to the array. If it’s required

by the nInstruction, either the buffers or the smart rows are updated with the result

of the operation performed.

The pipelined structure allows to manage two instruction in parallel(7.3). The

DONE signal goes down at the decode stage of the first instruction and it returns

high at the execution cycle of the last nInstruction.

61

7 – The back-end

Figure 7.3: Execution of two nInstructions in parallel

7.3 Decoder Unit

The decoder unit receives four of the fields of a nInstruction. There is a decoder

dedicated to each field(7.4). The huge advantage of this approach is the flexibility. It

means that two decoders are independent from the array: the result decoder and the

operand decoder. Actually, they are the same for all the array designed starting from

the same template. On the other hand, the other two decoders strongly depends on

the LiM array, since they describe its smart features.

Figure 7.4: High level view of the Decoder Unit

62

7 – The back-end

7.3.1 Generation of Configuration signals

Overview

The Operand Decoder receives information about where the smart rows have to

retrieve them operand/s. So, it controls the configuration of the MI for intra-row

movements and the multiplexers of both cell’s logic unit and row interfaces’ logic

for selecting the operands. About the latter signal, it’s the same for all the row

interfaces; then, the op Code Decoder decides which ones have to be activated.

Moreover, it activates the MIU (miss flag =’1’) if the cache needs to be read.

The Op Code Decoder is aware about which units and in which order have to

be activated for performing the operation. It configures the RIs and selects the input

of cells’ storage unit. It generates a flag for each RI that is asserted: it’s high if the

RI is the highest logic unit of the LiM row involved in the operation(flagACTIVE-

MODE RIi). Moreover, for V2, it generates a flag for each one of the two smart

row’s type(flag SRi): it is asserted if the operation involves the smart row.

The Result Decoder receives information about where to store the result: it

can enable the writing of either output buffers or smart rows.

The Function Decoder just configures the more complex RIs, as a RCA, and

LiM cells. Indeed, all the RIs that don’t have to be configured have the same con-

figuration signal’s width. The same for the cells.

More complex cases

Actually, there are two situations where the decoders have to collaborate for gen-

erating the signals: they’re shown in 7.6 and in 7.7 . The fist situation is about

the configuration of the row multiplexers of the MI for the V2. The input buffers

of standard near rows are used for multi-row SIMD operations(7.5) as a checkpoint:

the smart row 1 has to read or write the lower input buffer and the smart row 2 the

upper one.

So, when the checkpoint is involved in the operation, the configuration of row

multiplexers depends on which smart row is activated. If the operand decoder

alerts that the input buffer of standard near rows has to be used as operand(7.6.a.),

the row multiplexers of the smart rows need to read the lower input buffer if the

63

7 – The back-end

(a) SR1−− >SR2 (b) SR2−− >SR1

Figure 7.5: Extract of the smart section of a LiM array V2 showing the two types
of multi-row operation. Violet indicates the components used in the first cycle and
cyan the ones used in the second cycle.

smart row 1 performs the operation(7.5.b) and the upper one if the smart row 2

is activated(7.5.a). On the other hand, if the result decoder alerts that the partial

result has to be stored in the checkpoint(7.6.b), the multiplexers of standard row near

need to read the upper smart row if the smart row 1 performs the operation(7.5.a)

and the lower one otherwise(7.5.b).

(a) (b)

Figure 7.6: Configuration of MI’s row mutliplexers

The second situation involves the configuration of the RIs(7.7). The idea is that

the opCode decoder configures the RI such that they can perform the operation

required. Then, the operand decoder configures the input of the only one RI re-

ceiving that. It means that if the operation require the concatenation of more row

interfaces, the operand decoder controls the input of the highest RI involved(RI-1

in 7.9.), that is the one receiving the operands.

64

7 – The back-end

Figure 7.7: Configuration signal of RIs

Configurations of a RI

Depending on the operation, the RI can be configured in three ways: active mode or

concatenate mode if it’s involved in the operation, transparent mode if it’s not(7.8).

RIs not involved in the operation are configured in transparent mode : it’s taken

apart, it just connects the upper with the lower unit. On the other hand, the RI

involved in the operation has to be configured in the active mode if it’s the highest

unit among the ones activated. In this mode, it sends the logic result toward the

MI(for storing it in the buffer or for sending it out). The input of the RI depends

on the operand required. On the other hand, if the RI is involved in the operation

but it’s not the highest unit activated, it has to be configured in the concatenate

mode: the operation is performed on the result coming from the upper RI and the

result is send toward the MI. The ext signal coming from lower RI is propagated

upward for having the possibility to use it in the activated RI as an operand.

(a) active mode (b) transparent
mode

(c) concatenate
mode

Figure 7.8: Configuration of RIs

65

7 – The back-end

An example is shown in 7.9.

Figure 7.9: Example of the configuration of a smart row

7.3.2 Reading and Writing rows

The decoders have also to generate signals for reading and writing the rows. A

distinction has to be done: smart rows, standard row far and standard row near.

About the generation of read enable signals, it’s completely managed by the

operands decoder: it knows where the operand has to be retrieved. Actually, it’s

a little bit more complicated for V2. Indeed, only the activated smart row type is

read. It means that a row of a smart row is read only if the decoder alerts the smart

rows is involved in the operation(flag SRi = 1).

About the generation of write signals, it depends on the LiM row. The smart

rows can be written just on a store operation. It happens if the opCode decoder

alerts that there is a store operation(storeAc xx =′ 1′), and the operand decoder

66

7 – The back-end

double checks only the write enable of the row that has to be written. So, there are

two security steps to go further in order to enable the writing of a row. About V2,

the store operation can be done either for one or for both the smart row’s types.

Actually, a further distinction has to be done among the standard near rows: there

is a signal for the inner rows, one for the first one and another one for the last one.

Indeed, when the upper rows have to be written, the last row does not have to be

written; on the other hand, when the lower rows have to be written, the first row

does not have to be written(7.10).

Figure 7.10: Example of an SIMD operation required to perform a XOR between the
word stored in the smart row and a shared operand(W). The result is then written
into the upper neighbour. The last row doesn’t have to be written

7.4 Memory Interface Unit

The MIU has two main sections: the Miss Management Unit and the registers(7.11).

There are two registers, one for each cache register: the Address Register Up

67

7 – The back-end

(Add RegU) and the Address Register Down (Add RegD). They stores the

address of the word stored in the caches. The Miss Management Unit(MMU)

generates a flag if a miss is find out: this signal is the Miss Flag.

Figure 7.11: High Level View of MMU

The MIU operates in two cycles. After the fetch of a new nInstruction, it receives

the source address. If a miss happens, the MIU generates signals for managing that,

both for the inner component and for the cache. However, if it’s not enabled by the

decoder unit, these signals have no effect. During the next rising edge of the clock,

the cache is updated if a miss happens.

Moreover, the MIU also generates the signals for the row multiplexers during the

first cycle: these configuration signals are sent toward the row multiplexers in the

next clock cycle. The MIU selects one of the cache register as input of the smart

rows: which one depends on the source address. Actually, if the instruction doesn’t

require cache(Miss enable = 0) these signals come from the decoder unit.

It has a key role to find out which half of the memory is the addressed word in.

The first bit of the source address isn’t used for the control of cache multiplexer

accomplish that. It indicates if the addressed word is in the lower or in the upper

half of the cacheable memory (as explained in chapter 4, the size of the control

68

7 – The back-end

signal for cache multiplexer depends on the depth of the standard section of the

LiM array) : if it’s zero, the word is in the upper half; if it’s one the word is in

the lower half. This information is used both for generating the control of the row

multiplexers and for enabling just one cache register and address register during a

miss.

7.4.1 Cache Miss

If a word of the standard memory has to be used as operand, its address is indicated

with the source address field. This word can be accessed just trough the associated

cache register: the upper cache register if its in the upper half of the standard

memory and the lower cache register otherwise.

A cache miss happens if the word addressed by the source address is not stored

in the cache. It has to move into the associated cache register before starting the

execution. The MIU asserts the flag miss if the source address is different from both

the addresses of the words stored in the caches, that are the contents of the address

registers. The Miss routine requires two actions(7.12): the source address is stored

in the proper address register and the cache enabled is updated with the addressed

word. Which register is updated depends on the half bit: the Add RegU register

and the upper cache register if it’s zero, the other two if it’s one.

Figure 7.12: Miss routine for a miss in the upper cache register

69

7 – The back-end

7.5 Hazards

The Hazards are conflicts raising when the executions of two instructions overlaps

with each other: in other words, it happens in a pipelined execution. They can be

classified in three categories: data hazards, structural hazards and control hazards.

The control hazards arises when an instruction changes the sequential flow of the

instruction in the pipeline. Since there aren’t instructions allowing to do that, are

not taken into account by the analysis below. The structural hazards happens

when two instructions would want to use the same hardware unit in the same cycle.

The data hazards arise when the same data is shared among consecutive instruc-

tions: conflicts can happen. There are three kinds of data hazard depending on

how the consecutive instructions access to the data: Read after write (RAW), Write

after read (WAR) and write after write (WAW).

Summarizing, no hazard can happen in a LiM unit. About structural hazard,

7.13 shows how each cycle stimulates a different unit: so two overlapped cycles work

on different units.

Figure 7.13: When units of a smart row are used

About data hazard, it’s fundamental to understand when data are accessed. A

row of the smart section can be written only by a LiM operation at the end of the

execution stage. A cache register can be written after that a miss arises at the end

70

7 – The back-end

of the decode&Miss stage. About reading, a LiM operation can retrieve an operand

either from a cache register and from a row of the smart section. On the other hand,

the standard section can be read for a miss. Moreover, a cache register can be read

after a miss too. So, the reading space of the cache is the standard section and the

writing space of LiM operations is the smart section 7.14.

Figure 7.14: Writing space in violet and cache reading space in cyan

7.15.a shows how it’s impossible to have a WAR or a WAW: there is only one

point where a certain register (either a row or a cache) cane be written and it

happens after that the previous instruction reads it. About RAW the situation is

more tricky. Since two types of writing can occur, there are tow possible scenarios:

• the first operation writes a smart row and the next one reads it for another

operation

• the first operation writes a cache for a miss and the next one reads it, either

for a miss or for an operation

7.15.b underlines that there aren’t hazard since the data is updated before that the

next one reads it.

71

7 – The back-end

(a) RAW (b) WAR and WAW

Figure 7.15: Hazards’ analysis. The blue operations are due to LiM instructions,
the red ones due to cache miss

Notice that wherever the cache would read also the smart section, an hazard

arose when the first operation writes a smart row and the following one reads it for

a miss: the data read is not yet updated by the previous instruction. This is the

reason why in chapter 5 the proper behavior has been hardwired forced: it avoids

the overlapping between the reading space of the cache and the writing space of LiM

operations.

7.6 Cache Coherence

A cache coherence issue happens when the content of the cache registers is outdated

with respect to the memory content. In other word, if a row stored in the cache is

written . A row can be written either by the CPU when the LiM array acts as a

std memory or by a LiM operation. About the first situation, when the LiM CUs

left the control of the memory to the CPU, they can’t track what happens to the

array. So, the scheduler has to reset the CUs, and so the cache registers too, before

of a LiM execution. On the other hand, the second situation can’t never happen:

the cache reading space and the writing space of LiM operations are hardwired

separated(7.14).

72

Chapter 8

Operating Instructions

This chapter is an handbook for the user. There is explained how to adapt the LiM

unit to the specifications of the user. In other words, how the designer is supposed

to create his own LiM unit, that is which sections have to be designed. The designer

has to intervene on the uROM for writing the uPrograms, on the decode unit for

managing his LiM array and he has to build the LiM array itself.

8.1 How to write the uROM

The uROM stores several uInstructions. Each of them has several fields. Focusing

on the signals required for the operation of the uCU, the fields are(6.1):

• Sequencer Configuration(Seq): It controls the input of the uPC. 8.1 de-

scribes the different configurations allowed.

• Conditional Code(CC): It enables or not the branch. The branch is taken if

the CC is high and the Done signal arrives from the nCU. As explained below,

it has to be asserted just for the wait instruction.

• next Address(nextADD): It’s the address of the next sequential uInstruction.

So, its size depends on the depth of the uROM.

• End uPorgram Flag(endPflag): it alerts the uCU that the output of the

uROM is the last uInstraction of a uProgram.

• Fetch Enable(FetchEN): if the uCU is activated, it enables the update of

both Queue and uAR. It happens in the last uInstruction of each uProgram,

that is before reading the uAR in the uPC.

73

8 – Operating Instructions

Table 8.1: SEQ SIGNALS

SEQ Effect
00 uPC <=uAR
01 uPC <=next sequential Address or jump Address
10 uPC <=return Address
11 uPC <=call Address & store return Address

Then, there is the sMUXarray signal. It arbiters on who has to control the LiM

array. It has to be enable for all the uInstructions of each uProgram. Moreover,

there are the signals for the handshakes. The LiM mode is the signal for the

handshake with the sequencer. It is low only when the LiM array doesn’t execute

instructions. At the end, the Request(Req) validates the nInstruction sent to the

nCU. It has to be asserted for each uInstruction of a uProgram.

How many uInstruction are stored in the uROM depends on the application.

However, it need to write three standard instructions in each uROM for making

the uCU properly works.: the idle instruction, the wait instruction and the end

instruction.

The Idle instruction is the uInstruction addressed by the uPC when it’s reset,

that happens before starting a LiM processing. So, this instruction must be written

in the first location on the uROM. This instruction need to enable the update of

both the uIR and the LiM queue: the fetch enable signal must be asserted and

the input of the uPC must be the uAR(seq= ”00”). About the interfaces with the

external world, the control of the array has to be left to the CU(sMUXarray = ’0’)

and the scheduler has to be alerted that the LiM Unit is in idle(LiM mode =’0’).

Moreover, this instruction has to not make working the nCU: the request signal

must be zero. The other signals are don’t care.

The End instruction is very similar to the idle one but it doesn’t enable the

update of the queue and the uIR. Indeed, it’s the last nInstruction executed: it

doesn’t need to read new programs.

The Wait instruction must be the one after the last uInstruction of the last

uProgram executed. This instruction must enable the jump to the End uInstruction

as soon as the Done signal arrives from the nCU(CC=’1’). So, the input of the uPC

has to be the next Add field with the last bit controlled by the Jump Unit(uSeq =

74

8 – Operating Instructions

”01”). Moreover, for making the branch possible, the address of the wait instruction

and the one of the End instruction has to change just for the LSB. Then, since no

new nInstructions are sent to the nCU, the request signal has to be disabled.

8.2 Nano ISA

The nano Instruction set architectur (nISA) describes which SIMD operations can

be implemented with the LiM array built.

8.2.1 Types of LiM instructions

All the LiM instructions(nInstructions) can be classified in two main categories:

executive and movements. The executive instruction are operations performed

in the smart rows. There are the bitwise operations, either logical or arithmetic, and

the operations performed on just one operand like shifting and rounding. On the

other hand, the movement instructions allow to exchange data between different

rows, that are inter-row movements, or to perform intra-row movements. There are

two movement instructions. The LOAD moves a data coming from the a neighbourn

into the input buffer of a smart row. The STORE moves the content of a smart

row’s output buffer into a row, either the one of a neighbourn or the one of the

smart row itself.

8.2.2 Instruction Format

The nInstruction has a Fixed field format for a given memory size. Indeed, since

a memory address is included in the instruction, the size of the instruction depends

on the size of the memory. However, a LiM instruction has five fields(8.1):

• OPCODE: it identifies the LiM operations to do

• OPERAND: it identifies the addressing mode, that is where to take the

operand/s

• RESULT: it encodes where to store the result,

75

8 – Operating Instructions

• SOURCE ADDRESS : it’s a plug-In of the operand. It’s used in case of

far operand

• FUNC: it’s a plug-In of opcode. It can be used for managing complex con-

figurable RI or cell, like adders

Figure 8.1: Instruction format(a). (b), (c), (d) show special cases: instructions
don’t involve programmable RIs, instructions don’t require cache, and movements
instructions respectively. The grey sections are don’t care.

If the operand is not a neighbourn, its address has to be specified trough the

source address. It will be read trough the cache. Operand, Result and source address

are independent from the array. They just depends on the template chosen and on

which buffer is used. On the other hand, both OpCode and Func strongly depend on

the LegoLiM of the LiM array : they describe the smart features of the smart rows.

Func field allows to manage components with an higher number of configuration

signals, that are the configurable cells of RIs.

With movements operations the last three fields has to be left void(8.1.d). For

these operations there is just one variable: where to send the output buffer for

STORE and what the input buffer has to be loaded with for LOAD. These variable

are fixed with the operand field.

76

8 – Operating Instructions

8.2.3 Addressing modes

An SIMD operation takes place into smart rows. From where the smart unit of the

smart rows retrieve the operands is specified by the addressing mode encoded into the

operand field. In other words, the addressing modes are the possible sources of the

instruction’s operand. It depends on the template used, on the buffer implemented

in the smart rows and on the version used for the components of the smart rows.

An instruction can call one or two operands : the bitwise operations require two

operands, the other ones just one. The main role is that just one of the two operands

can be external to the smart row because of the interface with memory interface has

just one input signal. External means a neighbor or the cache registers. Moreover,

since the operand decoder is just one, three constrains are laid down: the same

version has to be used for the LiM Cells of all the smart rows(std, B or BB), all the

RIs must be of the same Version(1D, 2D, 1D B, 2D B or 2D BB) and the same

buffer has to be used for all the smart rows. So, the same addressing mode is forced

for both the smart rows of a template V2. 8.3 summarizes all the addressing modes.

Depending on the buffer used and the versions of components, only the proper ones

can be implemented.

77

8 – Operating Instructions

Figure 8.2: Signal generated by the decode unit

Figure 8.3: Addressing Modes:The text color indicates the buffer required for im-
plementing that addressing mode and square indicates the version of component
required for implementing that addressing mode. Color legend: purple for array
with output buffer in the smart row, cyan for array with input buffer in the smart
row. Square legend: white for the addressing modes always allowed, yellow and
orange for the version of LiM cells(yellow for at least version B and orange for ver-
sion BB), green and blue for RIs(blue for buffer version 2D or 2D BB,if there is a
buffer, and green for at least version 2D B)

78

8 – Operating Instructions

The standard sources for an operand are: the neighbourns, that are the standard

row up and the standard rows surrounded the smart rows, the content of the smart

row itself or a row of the standard section(Others). In the latter case, the source

address has to be used for specifying the address of the row. Moreover, for V2 the

neighbourns can be either the content of the row or the content of the input buffer.

If a buffer is implemented in the smart rows, also it can be used as operand. An

input buffer added to the smart rows allows to partially overcome the limits of using

just one external operand(8.4). Indeed, exploiting LOAD is possible to perform an

operation with two external operands. The cost is an additional cycle : move a

neighbour in the input buffer of the smart row during the first cycle; perform the

operation with input buffer, that is a neighbour, and an external signal in the second

cycle.

About operations required two operands, the addressing modes are just the

proper combinations of the addressing modes for 1 operand, where proper means

that the role of using just one external operand must be observed.

Figure 8.4: Signal generated by the decode unit

79

8 – Operating Instructions

8.2.4 Destination

Where the result of a smart row operation has to be send is laid down by the

destination encoded in the result field. It depends on the template and on the

buffer of the smart rows. Also for the destination the approach is the same of the

addressing mode: there is one destination decoder generating the same configuration

for for all the smart rows. 8.2 summarizes all the possible destinations.

Table 8.2: DESTINATION MODES. THE PURPLE TEXT INDICATES THAT
THE DESTINATION MODE IS JUST FOR ARRAY WITH OUTPUT BUFFER
IN THE SMART ROW, THE GREEN MODE IS THE ADDITIONAL ONE WITH
V2.

Destination Modes
To the Near Memory Unit(Ext)

Row.Output-buffer (Row.Obuffer)
Neighbor.Input-buffer(Neighbor.Ibuffer)

The result can be directly stored either somewhere into the smart row or it can

be send to the near memory section(Ext). Inside the smart row itself, it can be

just stored in the the output buffer, if there is it. Moreover, V2 allows to store the

result also in the input buffer of neighbourns for multi-rows operations(7.5).

These basic options for result’s destination can be significantly increased trough an

output buffer. Indeed, the store operation allows to store the result either in the

smart row itself or in one of the neighbours at the cost of one additional cycle. First,

the result of the operation is stored in the output buffer, then it’s written in the des-

tination(smart row, upper neighbor or lower neighbor) with a store operation(??.b).

8.2.5 OPCODE

The opCodes describe the smart features of the array. So, they strongly depends on

the Lego LiM of the array. However, in order to generalize, some key points can be

fixed.

80

8 – Operating Instructions

executive instructions

There are two types of executive instructions: the ones involving just one unit of the

smart row and the ones involving from 2 to all the smart units of the row. Starting

with the first, each unit can used alone. So, the first step is to write down as many

opCodes as many are the units of the smart row. Each opCode can stimulated each

unit just one time. However, if there is an adder, it’s not enough. The opCode alerts

that the adder is involved but the func field has to specify which operation has to

be performed. 8.3 shows the func for adders. The same would happen with every

configurable RI(at the moment, the library has just the adders).

Table 8.3: CONFIGURATION OF ADDERS. FOR THE OPERATIONS SEE ??

RCA
func Operations

Standard Buffer
001 A + B
010 A−B
011 −A + B
100 −A−B

RCA&Logic
func Operations

Standard Buffer
0111 AorB (OR1)
0110 AandB(AND1)
0101 A⊕B(XOR1)
1011 A⊕B(XNOR1)
1000 AorB(OR2)

1100 A⊕B(XNOR2)
0001 A + B (SUM)
0010 A−B (SUB1)
0011 −A + B(SUB2)
0100 −A−B(SUB3)

1001 AorB(OR3)

1101 A⊕B(XNOR3)
1010 AorB(OR4)

1110 A⊕B(XNOR4)

Then, more units can be involved. They has to be concatenated in all the

possible way just observing one role: the units involved can be concatenated just

in order(8.5). It means that the logic in the row can be just executed for first in a

stream of operations and the furthest RI from the row as the last one.

81

8 – Operating Instructions

(a) (b)

(c) (d)

Figure 8.5: Possible concatenation of smart row’s bricks. The starting point is the
violet block and the end point is the cyan one. The grey colored blocks are not
involved.

With V2 the situation is a quite more tricky: the smart features of both the

smart rows have to be manages. There are two modes of operation: just one or both

the rows can work(8.6).

For one row mode, the other row is in idle. This mode can be activated for

two reasons: the operation implemented by the other row are useless for the running

algorithm or a multi-row SIMD operation has to be performed. The second case

is the most interesting. It means that the operation required both the rows : the

input buffer of standard near row is used as checkpoint. This kind of operation takes

two two cycle:

1. 1stcycle: one row performs the operation . The result is moved into the input

buffer of the standard row.

2. 2stcycle: the other row reads the partial result from the standard row and

performs the operation.

An additional cycle could be required because of a load operation for bringing inside

the partial result. It allows to use another external signal.

82

8 – Operating Instructions

(a) 1 Row (b) 2 Rows

Figure 8.6: Portion of the smart section showing the modes of operation of V2. The
green bricks are used in the first cycle and the red ones in the second cycle. The
grey bricks are not involved.

About the two rows mode, both the rows work independently from each other.

So, for this mode input buffer of standard near row can be used neither as operand

nor as destination.

Movement instructions

8.4 shows all the possible movement instructions. Notice that, for V2, load can be

performed just for one type of smart row at a time because of all the multiplexer

of the smart row share the same configuration signal. So, it could be impossible to

simultaneously load the Ibuffer of a neighbourn in both of the smart rows.

83

8 – Operating Instructions

Table 8.4: MOVEMENT OPERATIONS FOR THE TWO VERSIONS

V1
STORE

SmartRow.Obuffer −− > SmartRow (Row)
SmartRow.Obuffer −− > Upper Neighbor (UpRow)

SmartRow.Obuffer −− > Lower Neighbor (DownRow)

LOAD
SmartRow.Ibuffer < −− Row

SmartRow.Ibuffer < −− UpRow
SmartRow.Ibuffer < −− DownRow

V2
STORE

SmartRowi.Obuffer −− > Row
i=1,2 or 1&2SmartRowi.Obuffer −− > UpRo)

SmartRowi.Obuffer −− > DownRow

LOAD
SmartRow.Ibuffer < −− Row

i=1 or 2SmartRow.Ibuffer < −− UpRow
SmartRow.Ibuffer < −− DownRow

8.3 How to write the instruction decoders

Although there are four decoders, just two of them have to be configured by the

designer: the function one and the opCode one. About the other two decoders, they

are explained in 8.3.3.

The function decoder is just a plug-in of the opCode decoders for the configuration

of more complex RI such as an adder. About the opCode decoder, it completely

depends on the LiM array but it slightly changes between the two versions of tem-

plates. However, its skeleton is always the same. The following sections analyzes

the opCode decoder for V1 first; then, the differences with V2 are underlined. For

both the version, the most complex case is analyzed: it’s supposed to implement

I-Obuffer for both the versions.

8.3.1 OpCODE decoder for V1

There are five types of signal:

• SmartRow.S EXT notBL selects the input of the cell of the smart rows. It

cares just for store operations: the output of theb(extB) has to be selected;

• stdROWnear.S EXT notBL selects the input of the standard rows near.

It cares just for store operations: it has to select the data coming from the

smart rows(ext);

• WriteActive has to be asserted just for store operation;

• for each RI a RIi.flagACTIVE-MODE and a cnfgRIi are required. RIi.flagACTIVE-

MODE has to be asserted when the RI is used in active mode. cnfgRIi is

84

8 – Operating Instructions

the configuration of the RI: it selects the mode for the RI;

• The IOBuff.TowMI and IOBuff.enIbuff are required only if the buffer of

smart row is used. IOBuff.enIbuff need to be enabled just for load opera-

tions. IOBuff.TowMI selects the output toward MI of the smart rows. It has

to be always the output of the row with the exception of the store operations:

the output of the Obuffer is send toward MI for storing it in the neighbourns.

8.3.2 OpCODE decoder fo V2

there are three differences with V1:

• the writeActive is split in three signals: one for smart rows 1, one for smart

rows 2 and the latter one for the standard rows. Depending on the store

operation, one or both the writeActive signals for smart rows are activated.

The one for standard row is asserted in all the store operations;

• two signals enabling the smart rows’ types are required: flag SR2, flag SR1.

The flag signal of a smart row is asserted when the operation requires that

smart row. Otherwise it’s zero;

• there are two loads operation and three store operations(refmovementOP)

8.3.3 Fixed Decoders

An extract of the VHDL source of a LEGO LiM unit is reported below. It shows

the result and the operand decoder for the most complex case: template V2, with

IObuffer, Cells of version BB and RIs of version 2D BB. In case of simpler array,

the tables has to be pruned.

2 --------Operands DECODER --------

--INPUT: Operands

4 opDEC: process(Operands)

begin

6 Wen_stdROWnearFirst_Operands <='0'; Wen_stdROWnearLast_Operands <='0';
Wen_stdROWnearInner_Operands <='0';

case Operands is

8

85

8 – Operating Instructions

when ROW => selRowMux_std <= '0'; selRowMux_smart <="00";

EN_missCheck <='0'; S_inLogic <="00"; Ren_SmartROW <='1';
10 Wen_smartROW_Operands <='1';

Ren_stdROWnear <='0'; Ren_stdROWfar <='0';
cnfg1Count_MSBs_Operands <="00";

cnfgSH_MSBs_Operands <="00";

12

when Buff => selRowMux_std <= '0'; selRowMux_smart <="00";

EN_missCheck <='0'; S_inLogic <="01"; Ren_SmartROW <='0';
14 Wen_smartROW_Operands <='0';

Ren_stdROWnear <='0'; Ren_stdROWfar <='0';
cnfg1Count_MSBs_Operands <="01";

cnfgSH_MSBs_Operands <="01";

16

when DwnR => selRowMux_std <= '0'; selRowMux_smart <="11";

EN_missCheck <='0'; S_inLogic <="10"; Ren_SmartROW <='1';
18 Wen_smartROW_Operands <='0'; Wen_stdROWnearLast_Operands <='1';

Wen_stdROWnearInner_Operands <='1';
Ren_stdROWnear <='1'; Ren_stdROWfar <='0';

cnfg1Count_MSBs_Operands <="11";

cnfgSH_MSBs_Operands <="11";

20

when B_DwnR => selRowMux_std <= '0'; selRowMux_smart <="11";

EN_missCheck <='0'; S_inLogic <="11"; Ren_SmartROW <='0';
22 Wen_smartROW_Operands <='0';

Ren_stdROWnear <='1'; Ren_stdROWfar <='0';
cnfg1Count_MSBs_Operands <="00";

cnfgSH_MSBs_Operands <="00";

24

when UpR => selRowMux_std <= '1'; selRowMux_smart <="00";

EN_missCheck <='0'; S_inLogic <="10"; Ren_SmartROW <='1';
26 Wen_smartROW_Operands <='0';

Wen_stdROWnearFirst_Operands <='1';
Wen_stdROWnearInner_Operands <='1';

Ren_stdROWnear <='1'; Ren_stdROWfar <='0';
cnfg1Count_MSBs_Operands <="11";

cnfgSH_MSBs_Operands <="11";

28

when B_UpR => selRowMux_std <= '0'; selRowMux_smart <="00";

EN_missCheck <='0'; S_inLogic <="11"; Ren_SmartROW <='0';
30 Wen_smartROW_Operands <='0';

Ren_stdROWnear <='1'; Ren_stdROWfar <='0';
cnfg1Count_MSBs_Operands <="00";

cnfgSH_MSBs_Operands <="00";

32

when OthR => selRowMux_std <= '0'; selRowMux_smart <="00";

EN_missCheck <='1'; S_inLogic <="10"; Ren_SmartROW <='1';
34 Wen_smartROW_Operands <='0';

86

8 – Operating Instructions

Ren_stdROWnear <='0'; Ren_stdROWfar <='1';
cnfg1Count_MSBs_Operands <="11";

cnfgSH_MSBs_Operands <="11";

36

when B_OthR => selRowMux_std <= '0'; selRowMux_smart <="00";

EN_missCheck <='1'; S_inLogic <="11"; Ren_SmartROW <='0';
38 Wen_smartROW_Operands <='0';

Ren_stdROWnear <='0'; Ren_stdROWfar <='1';
cnfg1Count_MSBs_Operands <="00";

cnfgSH_MSBs_Operands <="00";

40

when others => selRowMux_std <= '0'; selRowMux_smart <="00";

EN_missCheck <='0'; S_inLogic <="00"; Ren_SmartROW <='1';
42 Wen_smartROW_Operands <='0';

Ren_stdROWnear <='0'; Ren_stdROWfar <='0';
cnfg1Count_MSBs_Operands <="00";

cnfgSH_MSBs_Operands <="00";

44 end case;

end process;

46

48

50 ------- Resource DECODER --------

--INPUT: Res

52 redDEC: process(Res)

begin

54

case Res is

56 when StoreBuff => EnObuff <= '1';
when StoreExt => EnObuff <= '0';

58 when others => EnObuff <= '0';
end case ;

60 end process;

8.4 How to build a Lego LiM array

Whatever is the template chosen, each LiM array is made up by a smart section

and a standard section. Since the standard section have just rows without smart

features, the designer has to just build the smart section. The designer has to lay

down: the template to use, the size of the sections and the Lego LiM of the smart

section(how many? which ones? which versions?).

87

8 – Operating Instructions

8.4.1 Template: V1 or V2 ?

The starting point is required to be the algorithms to implement: depending on

the degree of SIMD required, one of the two template has to be chosen. V1 allows

to have an higher parallelism but a less wide instruction set(4.13). Indeed, it can

handle just one SIMD operation for clock cycle but this operation can be performed

on an higher number of data rather than the V2. On the other hand, since V2

has two different types of smart row, two SIMD operations can be done in parallel.

However, the same operation can be performed less times in parallel with respect to

V1, giving a certain memory size.

8.4.2 Template: sizes

Once the template has been established, it has to be configured: the size of the

sections are two variables to fix. It depends on the parallelism required: increasing

the size of the smart section allows to have an higher number of operations done

in parallel. Of course, the drawback is the overhead in terms of area and power.

Depending one the size of standard section, the width of the cache multiplexers of

the MI changes: the parallelism of the control signal has to be adapted according to⌈
log2(

|StandardFar|
2

)

⌉
. Moreover, the MIU has to read the first bit of the source

address that is not used for controlling the cache multiplexers(8.7 shows it with

different degrees of SIMD).

Actually the size of the standard section depends on the data too. Indeed, the

operands shared by all of them have to be stored in the standard section(4.2.4). So,

the standard section has to be deep enough to store all of them.

88

8 – Operating Instructions

(a) degree=2(smallest) (b) degree= half of the memory size

(c) degree= highest

Figure 8.7: MI for different degrees of SIMD

8.4.3 LEGO LiM: which ones? in which order?

The next step is the design flow of the smart rows: which LEGO LiM use for building

them. Seven rules have been observed during the construction of a smart row:

• the same cell has to be used for a row

• an adder must be placed after an arithmetic cell

• If there is a buffer in the smart row, the same buffer version has to be used

for all the components of the row

• buffer has to be the last RI of the row

89

8 – Operating Instructions

• for V2, all the smart rows must have the same buffer

• all the LiM cell of smart rows must be of the same version

• one version of RI can be used for all the array

In order to chose the bricks to use, the algorithms to implement have to be analyzed

in order to extract the operations to implement. Each RI adds to the instruction

set a new smart feature, that is an operation performed on one operand, i.e. one

counting and shifts. The adders are the only exception. They are the plug-in of

arithmetic cell allows to implement complex logic and arithmetic operations. The

type of cell lays down the bitwise operations that the cell can perform.

Summarizing the key points from the nISA :

I a LiM operation can involves from one to all the unit of a smart rows;

II each unit of the smart row can be used just one time for clock cycle;

III the units of a smart row involved can be concatenated only observing the hier-

archy;

IV a LiM operation can use just one operand that is external to the smart rows,

either a neighbour or a cache register.

So, the last step is to analyzes the flow of the instructions, that is in which order

they have to be executed: it lays down where to place the RIs selected inside the

smart row. Then, the buffer in output of the smart row may or may not be placed.

The output buffer allows to implement SIMD requiring more cycles because of either

(ii) or (iii). On the other hand, the input buffer allows to overcome (iv). Remember

that the reset of each buffer is the reboot signal sending by the scheduler.

Moreover, which version to use for both smart rows’ cell and RIs need to be chosen.

It depends on the addressing mode required by the operations: the one operands

operation fixes the version of RI and the bitwise operations lays down the cells’

version. Of course, if buffers are implemented the buffer versions are required.

90

8 – Operating Instructions

8.4.4 Example

You want to design a LiM array implements just one algorithm, that is the one used

as test-bench in chapter 10. The first step is to parse the model of the algorithm

for obtaining the instructions required. 8.1 describes the algorithm.

2 · 1count(Xi ⊕W)− L i in[1,6] (8.1)

Template

Version Since just one algorithm has to be implemented, it’s better to have V1:

it allows to have an higher parallelism with the same memory size.

Sizes About the sizes of section, the degree of SIMD required and the shared data

has to be analyzed. Since six operations have to be done in parallel, six smart rows

are enough. Then, since W and L has to be shared by all the SIMD operations, they

has to be store in the standard far; in which row doesn’t care: so a standard section

of at least two rows is require. About the other data(The Xi), they could be placed

both either in the upper neighbourns, in the lower neighbourns or in the smart row.

However, since just one operand can be external and W and L are already external,

it’s useful to store it as internal, that is in the smart rows(8.8).

Figure 8.8: Algorithm’s data-memory mapping

91

8 – Operating Instructions

LEGO LiM

Which one About the LEGO LiM to select, the operations required are: two

bitwise (xnor and difference) and two one operands operations(one counting and left

shift). About bitwise operation, since there is an arithmetic operation, an Arithmetic

cell as well as an Adder as plugin are required. Since also a logic operation has to

be performed, the RCA&Logic adder is used. Then, it needs a shifter and a one

counter for implementing the one operand operations.

Hierarchy Then looking to the steps required(8.9), it can be identified the hier-

archy of the cell, if a buffer is required and which version of the bricks have to be

used.

Figure 8.9: Algorithm’s flow

About the hierarchy, the 1 counter has to be placed before the shifter because

of it has to be executed first. About buffer, an output buffer is required because

of the RCA&Logic has to be used two times. On the other hand, since the bitwise

operation require to use just one external operand, an input buffer would be useless.

So, two steps are required(8.10): the first step performs the operations until the

shift and the partial result is written in the buffer; the second step reads the buffer

and performs the subtraction.

92

8 – Operating Instructions

Figure 8.10: Algorithm’s flow

Version About the version of the bricks, the operands required by the operations

have to be analyzed: one operand operations for the RIs and bitwise ones for the

cells of smart rows. For one operand operations, just the external signal has to be

used as operand: version 2D BB is required. About the bitwise operation, since the

external signal don’t have to be left out, version B is enough for the cells. However,

in order to analyze the worst case, the version BB is implemented for the chapter 9.

93

Chapter 9

Impact of Smart Features

9.1 Introduction

This chapter analyzes two key aspects of the architecture : the impact of the smart

features and the impact of the Control Units. The two architectures that has to be

compared are stimulated trough the same test-bench and they are synthesized with

the same time constrains : clock with a period of 7 ns, skew of 0.07 ns and both

input and output delays of 0.5 ns. If the parallelism of the array is kept fixed, the

number of rows sweeps from 8 to 512. The performance after the place & route are

recorded following the approach described in appendix A. The test-bench stresses

the arrays: it writes one time all the rows. This approach was adopted for both the

comparisons.

The two LiM arrays analyzed are the ones described in the next chapter. Wherever

is the number of rows, the smart section is an half of the whole memory.

9.2 LiM array vs standard array

The first analysis evaluate the impact of the smart features: a standard array is

compared with the two LiM arrays described in the next chapter. Moreover, the

consumption of the standard array has a key role: they fixes the lower bound of the

array. In other words, it’s impossible to have less consumption than this array.

9.1 shows the performance of the three architecture in terms of area, total power

an interconnection at different memory depths. Moreover, the last subplot compares

the LiM arrays with the standard array: the smart features duplicate in average the

power consumption. Notice that increasing the number of row the gap enlarges

because of more smart rows. Indeed, the size of the smart section is an half of

the memory size: so, the number of smart rows increases with the memory depth.

94

9 – Impact of Smart Features

Figure 9.1: Impact of smart features.

However, it has sense considering the huge additional hardware of the LiM array.

9.3 LiM array vs standard array

Once the impact of smart features has been evaluated, the further overhead due

to the CUs must be evaluated: the LiM arrays with CUs are compared with a

LiM arrays without them(9.2). Again, the impact has been evaluated in terms of

area, total power an interconnection to vary the number of array rows, with the

smart section kept as an half of the whole memory. Two observations can be done.

First, the impact of control unit decreasing by increasing the memory size: the

ratio between the power consumption of architecture with and without CUs goes

toward 1. 9.3 demonstrates why it happens: the impact of the CU on the whole

LiM architecture decreases with higher number of rows. In other words, increasing

the number of rows the complexity of the array increases but the overhead of the

CU remains almost the same. So, the impact in percentage of the CUs decreases.

Second, notice that the impact of the CU is bigger for the V2 because of the CU

has to generate more signals. It underlines the power of templates: they drastically

reduces the number of signals generated by the CU.

95

9 – Impact of Smart Features

Figure 9.2: Impact of smart features.

Figure 9.3: Impact of smart features.

96

Chapter 10

Implementations

A LEGO LiM Unit can handle several operations in parallel(SIMD operations).

So, the applications better fit the nature of a LiM array are the ones with an

parallel-based computation core. Neural Networks(NNs) fully belong to this cat-

egory: hundred, thousand of input neurons are processing in parallel trough a NN.

As done in [6], among the several model of NN in literature, the Computation neu-

ral networks (CNNs) have been chosen. Specifically, one step of the computation is

implemented: the convolution operation. Three architectures have been compared

on this test-bench: a LiM array V1, a LiM array V2 and the DLX.

97

10 – Implementations

10.1 DLX: an overview

The DLX is a conceptual RISC microprocessor with a LOAD-STORE architecture

pipelined in 5 stages. There are four main units: the data memory, the instruction

memory, the pipelined datapath and the Control Unit (CU). The CU is an hardwired

control unit.

Figure 10.1: High level view of a DLX.

10.1.1 Stages

In the Instruction Fetch (IF) stage, the instruction memory is addressed for fetch-

ing the new instruction. Then, the new instruction is decoded and the register file

is addressed: this happens in the Instruction Decode (ID) stage. The Execu-

tion(EX) stage is the core: it’s where the ALU(Arithmetic Logic Unit) performs

operation on the input data. The ALU implements logic and arithmetic operations,

comparisons and shifts. The Memory Access (MEM) stage is focused on the ac-

cess to the data memory. The last stage is the Write Back(WB): the access in

writing to the Register File is performed.

10.1.2 ISA

10.2 INSTRUCTIONS

• FORMAT : fixed

98

10 – Implementations

• PARALLELISM : 32 bits

• FAMILIES : I-TYPE, J-TYPE, R-TYPE (10.2)

Figure 10.2: Instruction format of DLX.

10.3 REGISTERS

• TYPE :INTEGER GPRs (General Pourpose Register)

• PARALLELISM : 32 bits

• NUMBER :32

• DEDICATED REGISTER :

– R[0] must be always 0

– R[31] stores the return address of a Jump And Link instruction.

10.4 DATA MEMORY

• TYPE : alligned memory

• PARALLELISM : 32 bits (virtually, figure 1.3)

• Allignment :32

99

10 – Implementations

10.5 Neural Network: the model chosen

10.5.1 Introduction of NN

A neural network is a mathematical model inspired by the human brain. It’s de-

scribed by an algorithm that’s able to recognize paths on the input data for achieving

task like classification, clustering, prediction and so on. The core computational unit

is the artificial neuron(10.3): it receives a weighted signal from each dendrite and

the sum of all these signals is filtered by an activation function. The weights are the

implementation of the synapsis and the activation function models the axon. A NN

is made up by several layers of neurons interconnected in some way.

Figure 10.3: Neural Network’s neuron

Before using a NN, a training phase is required: the weights are updated by

feeding the NN with a set of labeled samples. Then, the accuracy is evaluated by

showing to the NN data never seen.

The Convolutional Neural Network(CNNs) are one of the most common used

structures of NN for immage recognition: they extract information from the input

immage in several steps, each one with a higher degree of details. The matrix of

pixels representing the input image is called Input Feature Map (IFMap). There

are three kind of layers:

• the convolutional layer performs the convolution operation between the

IFMAP and a matrix of weights called kernel. After that a convolution is

performed, the matrix is shifted of a value equal to the stride(10.4).

• the pooling layer records one single value for each portion of the input matrix

analyzed. There are several types of these layer, from the maximum layer to

the average one(10.4).

100

10 – Implementations

• the last layer is the NN itself. It receives as input the image processed trough

the convolutional and pooling layers

Figure 10.4: Neural Network’s neuron

Implementing a CNN in hardware would be very tough because of its complexity.

The idea is to introduce some approximations: the binarized NNs (BNNs) limits

the possible values of both weights and input pixels to logic ’0’ and logic ’1’. There

are several models in literature. [6] analyzes several of them: the best one is the

XOR-Net. There are two reasons: it has an high accuracy and the convolution

operation is very simple to be implemented in hardware. The model of the net is

10.1, where ~ is binary convolution.

Xnor − net ≈ (IFMAP ~Kernel) ·Kxa (10.1)

[13] proves that the binary convolution can be implemented as shown in 10.2,

where Xi is the portion of the IFMAP that is used for each convolution, L the

length of the word an W the kernel matrix. This is the operation implemented by

the architectures below.

2 · 1count(Xi ⊕W)− L i in[1,n] (10.2)

10.5.2 Implementation in LiM

The algorithm was implemented with both of the two templates in order to explore

the whole design space.

101

10 – Implementations

V1

8.4.4 explains the design flow for the construction of a LiM array V1 that is able to

manage six convolutions. However, a more generic approach it needs to be adopted.

Two variables have to be fixed: the size of the memory and how to map the input

matrices on the array. Indeed, 8.4.4 just explains in which rows storing the operands

but there is no mention about matrices. 10.5 shows how the matrices have to be

stored in the array: they are converted in vectors and then stored in the array. So,

the complexity is spread in depth.

Figure 10.5: algorithm to array mapping

About memory size,10.5 shows that : first, the parallelism depends on the area

102

10 – Implementations

of kernel, second, the number of smart rows depends on how many convolutions

have to be performed in parallel. That depends on both the number of IFMAPs to

analyzes in parallel and the size of each of them. 10.6 shows how the rows of the

LiM array looks like.

(a) (b)

Figure 10.6: Rows of the LiM array V1. (a) the standard row and (b) the smart
row.

V2

8.4.4 explains how template V2 is not optimal for this algorithm since just one kind

of operation has to be performed in parallel. However, just for figuring out the

difference between the two versions, the algorithm is mapped also in a template V2.

The design flow is the same:

1. Operations required are: xnor, difference, one counting and left shift.

2. W,L are share operands, so they have to be placed in the standard far rows

3. The Xi could be placed both either in the upper neighbourns, in the lower

neighbourns or in the smart row

4. The flow is : xnor −− > one counting −− > left shift −− >difference

In order to exploit the multi-row SIMD feature of V2, the idea is to split the oper-

ation in two steps as shown in figure 10.7:

103

10 – Implementations

• The smart row 1 performs the operation until the left shift. The partial result

is stored in the input buffer of standard row. The only external operand is the

W

• The smart row 2 performs the difference between the partial result stored in

the input buffer and the L.

Actually, before the second step a LOAD operation is required: it cannot be used to

external operands. So, the partial result is brought inside the input buffer of smart

row 2 before performing the difference. So, since the two rows have to be the same

buffer, an IO buffer must be used.

Figure 10.7: Schedule of the operations

?? shows how the row of the LiM array looks like. Notice that the adder is just

a RCA.

104

10 – Implementations

(a) (b)

Figure 10.8: Rows of the LiM array V2. (a) the smart row 1 and (b) the smart row
2.

10.5.3 Implementation in DLX

The DLX is a sequential processor: this algorithm requires a lot of steps to be

implemented. The most complicated section to implement is the one counting. The

pseudo code implementing it is shown below

Algorithm 1: one Count algorithm

begin
int oneN=0;
#check all the bits of the word trough the LSB;
for i ∈ [0,31] do

lastb=x and 1 #extracting the LSB;
oneN+=lastb #if 1 increment the number of 1s;
x=x>>1 #shift out the LSB just checked;

return oneN;

105

10 – Implementations

Only one convolution was implemented on the DLX since 126 instructions are

required just for it.

10.5.4 Results

The three architectures were synthesized with the same time constrains : clock with

a period of 7 ns, skew of 0.07 ns and both input and output delays of 0.5 ns. The

idea for having a fair comparison was to sweeps together the data memory of DLX

and the LiM array: if the the parallelism of the array is kept fixed at 32 bits, the

number of rows sweeps from 8 to 512. The performance before the place & route

are recorded following the approach described in appendix A. The comparison was

evaluated in terms of area, total power, execution time and bandwith, that is how

many instructions are performed(10.9 and 10.1).

(a) (b)

(c)

Figure 10.9: Comparison between DLX and LiM array pre P&R: area(a), power(b)
and bandwidth(c)

106

10 – Implementations

Table 10.1: EXECUTION TIMES DLX VS LIM

Execution Time
LiM V1 LiM V2 DLX

14 ns 21 ns 3.5 us

The result is clear. Since the algorithm is highly parallelizable, the advantage of

a SIMD ISA is huge: less power, less Area and much less time for managing a lot

more operations. More accurately, choosing the LiM units leads to an 85% reduction

of both the power consumption and area occupation for an 8 rows memory and a

reduction of 40% for the power consumption with a memory of 512 rows. Moreover,

on one hand, the LiM Units are able to implement a number of convolutions in

parallel that is proportional to the number of smart rows; on the other hand, the

DLX can implement just one convolution for each memory size. In other words,

it would be unfeasible to manage 128 convolutions with a DLX: almost sixteen

thousand operations were required. Moreover, the execution time of the LiM array

is independent from the number of convolutions to perform: how many operations

are executed in parallel just depends on the smart section size. On the other hand,

the execution time of the DLX strongly depends on both the number of operation

and on the word size because of its sequential nature.

About the instruction set, they are similar. Appendix D shows the three instruction

set. 10.10 shows comparison repeated after the P&R: it leads to the same conclusion.

A further step has been repeating the comparison with a more recent technology:

the 28nm. 10.11 underlines how the situation doesn’t change: there are no differences

with the results obtained with the 45nm based implementations. It happens because

what 10.11 analyzes is the ratio between the performance of two architectures, either

the DLX and the V1 or the DLX and the V2. In other words, the advantages lead

by the technology shrinking(which are underlined in 10.13) are canceled by the

ratio itself. However, 10.13 shows the benefits of a smaller technology: faster gates,

smaller power consumption and lighter area impact.

107

10 – Implementations

Figure 10.10: Comparison between DLX and LiM array after the P&R

(a) (b)

Figure 10.11: Comparison between DLX and LiM array pre P&R with 28nm: area(a)
and power(b)

108

10 – Implementations

Figure 10.12

Figure 10.13: Comparison between 45nm based implementations and ones based on
28nm technology

109

Chapter 11

Conclusion

The logic in memory is the approach explored to overcome the Von Neumann’s

bottleneck. Basically the idea is to spread the computation between the memory

and the CPU. In other words, the concept of the memory array has totally been

changed: from a storage unit, it has became a smart-unit able to perform operations

directly inside it. This thesis work thinks outside the box of the standard approaches

that can be find in literature. The LEGO LiM unit is a modular, programmable

device able to collaborate with the processor for executing data intensive algorithms.

It’s a unit able to perform SIMD operations. Once the designer has built its own

LEGO LiM Unit exploiting the LEGO LiM library, the smart array can be used

either as a standard memory array or for performing SIMD operations. The smart

features are totally transparent for the CPU. There are three building blocks in

common to all the smart array: the front-end, the back-end and the LiM array. The

former manages the interface with the world outside the LEGO LiM unit: both the

processor and the scheduler. The back-end translates the high-level instructions in

configuration signals for the LiM array. The LiM array is the smart array itself:

it has both smart and storage features. It’s made up by three families of LEGO

LiM acting at different levels of granularity: from the word down to the bit. The

handbook(chapter 8) guides the designer to build up his customized LEGO LiM

ecosystem.

The second portion of this thesis work evaluates the performance of the LEGO

LiM Units. This evolves in two directions: evaluating the overhead of the smart

features and comparing the LEGO LiM ecosystem with a standard sequential pro-

cessor(DLX).

The first step underlines the significant impact of the smart features on the perfor-

mance of the array: giving a huge instruction set to the memory array causes an

overhead on both the area occupation and the power consumption. An array able

110

11 – Conclusion

to handle complex SIMD operations can’t consume as an array that is just able to

store words. If the smart features almost duplicate the power consumption , the

impact of the CUs weakens itself increasing the memory size: it’s almost negligible

on array with more that 512 rows.

Now the question is if this overhead is worth it. The result obtained from the com-

parison with the DLX is clear: there is a huge advantage due to the parallel nature

of the test-bench used(a B-CNN). Choosing the LEGO LiM Unit allows to consume

much less power for performing simultaneously more than one hundred times the op-

erations performed by the RISC-like process. Moreover, the execution time required

by the DLX for performing one convolution is an order of magnitude bigger that

the times spent by the smart array for performing N convolution in parallel, where

N is the number of smart rows. Notice that if the execution time of the sequential

processor increases with the number of convolutions to perform, for the LiM array it

remains constant: this is the advantage of a parallel computation over a sequential

execution. The Landau’s Law([11]) allows to formalize this performance gap. It

helps to find out the speedup due to a an improvement of a certain unit of an ar-

chitecture: it’s the memory array in this case. With a memory size of 32x512 bits,

the speedup factor is over 99.

The future work could evolve in two directions: technological and architectural.

The library of components should be updated with new LEGO LiM. The library

characterization should be performed again with a more recent technology, since it

has been evaluated with a 45 nm CMOS technology, which is quite dated .

111

Appendix A

Run-time SIMD

A new interesting LiM arrays feature has been implemented: the run-time decision

of the SIMD’s degree. The smart section is divided in blocks(A.1), each one contain-

ing the same number of smart rows. Then, the user can decide which blocks enabling

for each instructions. The blocks not activated don’t perform any instructions. This

approach avoids unwanted operations, that means useless power consumption and

unwanted memory writings.

Configuring the blocks is very easy. An additional field is included in the uInstruc-

tion : BlockEN. This signal is n-bits wide, where n is the number of blocks. Each

bit of this signal controls a block: if the n-th bit is asserted, the n-th will be activated

for that operation.

112

A – Run-time SIMD

Figure A.1: LiM array with 4 blocks, each one with 3 smart rows.

113

Appendix B

User Manuals

Building a LiM array from scratch could be very challenging and timing consuming

for someone different from me, who invented this approach. So, in order to make

the design flow of a LiM array much more user-friendly, the idea is to provide two

ready-to-use arrays with two manuals for each one of them:

• a ISA leading the user to write a uPrograms for the chosen array

• a guide allowing the user to customize the template according to the specifi-

cations. It guides step by step the user in the whole process, specifying which

files and which signals have to me modified. The degrees of freedom are: the

type of LiM Cell, the number of RIs and the type of RIs.

So, the user can either directly use one of the arrays or customize it’s own array

starting from one of the two templates. The key difference between the two provided

arrays is that the arrayLogic array has to be selected if the specifications require

LCells. On the other hand, the array to use is the arrayArithmetic , which contain

ACells.

The structure of both the smart feature is the same:

• RIs: 1s’ Counter and IN-OUT buffer;

• Blocks: 5 blocks;

• Memory size: n bits, n smart Rows, 7 standard far rows.

114

Appendix C

Performance evaluation

C.1 Simulation

The performance estimations are performed by combining three tools: Modelsim

(Altera), Design Vision (Synopsys) and innovus(Cadence).

A first step allows to record area occupation and power estimation after the syn-

thesis: both Modelsim and Design Vision perform that. The second step records

the area occupation, the interconnections length and the power estimation after the

place and route: both Modelsim and Innovus are required. Both the power estima-

tions are performed with the back-annotation approach.

All the steps are managed by bash scripts that are completely generic. The wrapper

is the main.sh(figure xx). It receives three information : the entity to analyze, the

clock to use and the parameter to swap. Indeed, also parametric simulation can be

performed: in each iteration, the wrapper

I adapts vhdl files to the value of the variable

II runs the first flow of simulations (modelsim & synopsys)

III runs the second flow of simulations (modelsim & innovus)

IV collects the results

The technology library used is the 45 nm.

C.2 Back Annotation

The key idea of the back annotation (BA) is to record the power consumption

including fair switching activities of netlist’s nodes. It means that the netlist is

115

C – Performance evaluation

Figure C.1: A figure with the maximum width you can use

stimulated with a testbench for recording the activity of the nodes first; then, the

power performance is estimated.

Two BA analysis are performed: one with the netlist of the synthesized architecture

and another one with the netlist obtained after the place and route. Notice that

they are very similar.

C.2.1 BA after synthesis

Three steps are required: static synthesis, switching activity annotation and power

estimation. The first step is managed by Design Vision. Two files are generated:

the netlist of the synthesized architecture and the file with the delay of the netlist

(.sdf).

During the second step, Modelsim stimulates the synthesized netlist with a proper

testbench. Then, the activities of the nodes are recorded in a file (.vcd). For

this step two files are required: the .sdf and the compiled model of the cells in the

technology library.

Then, Design Vision reads the performs again the power estimation but the real

switching activity are taken into account. Actually, since Design Vision can’t read

.vcd file, it has to convert in a .saif fail before.

116

C – Performance evaluation

Figure C.2: low of the operations required for the BA after synthesis . Arrows of
the same color belongs to the same step

C.2.2 BA after Place & Route

There are only two differences with the BA done after synthesis: the starting point

is the synthesized architecture, Innovus is used instead of Design Vision and Innovus

can read .vcd file.

Figure C.3: low of the operations required for the BA after P&R. Arrows of the
same color belongs to the same step

117

Appendix D

Characterization results

D.1 characterization

The Lego LiM have to be characterized in order to have useful data for the power

estimators. The results of the characterization were the Static power consumption,

the average dynamic power consumption, the Area occupation and the intercon-

nection length for each block. The performances were estimated through the back-

annotation after place&Route approach explained in the appendix A. All the blocks

of the same family are stimulated with the same clock frequency.

D.1.1 Average Dynamic Power

The dynamic power consumption is obtained as the average of the results obtained

with 4 different simulations: in each one of these the component is stimulated with a

different algorithm. The Idle0 (Idle1) algorithm forces the output to logic 0 keeping

in idle the storage unit for cells and the logic for RIs. The write01 (write01)

stimulates the blocks in order to switch the output from logic 0(1) to logic 1(0) in

the worst case. So, one hand the storing unit is written and its output is propagating

for cells; on the other hand, the logic unit of RI is fed in order to properly switch

the output. Moreover, each RI is analyzed four times, each time with a different

parallelism: 8, 16, 32 and 64 bits.

D.1.2 Storage Unit

Since a memory cell can’t be synthesised with Synopsys, it’s described as shown in

figure D.1. It’s a flip flop with read and write enable and it works like a standard

memory cell: no operation can be done with the word line not asserted.

118

D – Characterization results

Figure D.1: Storage Unit of LiM cells

119

D – Characterization results

D.1.3 Characterization File

An example of the characterization files obtained for some bricks of the LegoLiM is

shown below.

120

#-------------------------------#
#-- LiM Cells --#
#-------------------------------#

#CellName avStaticPow[uW] avDynamicPow[uW] avTotalPow[uW] Area[um^2] AreaNoPH[um^2] INTlenght[um] Critical Path[ns]
Acell_V1 0.295772 1.837352 2.133125 27.930000 15.428000 120.600000 0.24000
Acell_V1_F 0.365515 2.809953 3.175467 36.176000 19.684000 161.425000 0.26000
Acell_V1_M 0.334820 2.070215 2.405035 31.920000 17.822000 154.155000 0.30000
Lcell_V1and 0.229243 0.811222 1.040465 21.546000 11.438000 86.770000 0.11000
Lcell_V1and_B 0.305390 1.162578 1.467968 29.526000 16.226000 130.525000 0.17000
Lcell_V1and_F 0.267363 0.989843 1.257205 25.536000 13.832000 100.570000 0.12000
Lcell_V1and_F_B 0.337168 1.342868 1.680035 32.984000 18.088000 149.595000 0.18000
Lcell_V1and_M 0.254368 0.057572 0.311940 25.536000 13.832000 100.075000 0.19000
Lcell_V1and_M_B 0.346128 1.468922 1.815050 32.984000 18.620000 144.060000 0.25000
Lcell_V1and_nExt 0.252022 0.906197 1.158220 23.940000 13.034000 103.915000 0.13000
Lcell_V1and_nINs 0.305972 0.892530 1.198503 26.334000 14.364000 113.800000 0.17000
Lcell_V1and_nOUT 0.256215 0.989735 1.245950 23.142000 12.768000 101.415000 0.16000
Lcell_V1and_nSUout 0.252920 1.072512 1.325433 23.940000 13.034000 105.115000 0.18000
Lcell_V1or 0.221635 0.880370 1.102005 21.546000 11.438000 87.330000 0.12000
Lcell_V1or_B 0.298030 1.156595 1.454625 29.526000 16.226000 126.545000 0.19000
Lcell_V1or_F 0.264575 1.068540 1.333115 25.536000 13.832000 108.205000 0.13000
Lcell_V1or_F_B 0.313642 1.281278 1.594920 32.984000 17.024000 147.265000 0.19000
Lcell_V1or_M 0.266468 1.168832 1.435300 25.536000 13.832000 109.195000 0.21000
Lcell_V1or_M_B 0.342740 1.490660 1.833400 32.984000 18.620000 145.860000 0.27000
Lcell_V1or_nExt 0.248298 0.759340 1.007637 23.940000 13.034000 103.635000 0.15000
Lcell_V1or_nINs 0.291845 0.870450 1.162295 26.334000 14.364000 112.850000 0.16000
Lcell_V1or_nOUT 0.252978 1.013422 1.266400 23.142000 12.768000 100.655000 0.17000
Lcell_V1or_nSUout 0.247657 1.080893 1.328550 23.940000 13.034000 104.305000 0.19000
Mcell_V0 0.177255 0.723002 0.900257 15.428000 9.044000 64.960000 0.08000
Mcell_V1 0.199497 0.820213 1.019710 19.152000 10.374000 85.730000 0.08000

#-------------------------------#
#-- Row Interfaces --#
#-------------------------------#
#CellName avStaticPow[uW] avDynamicPow[uW] avTotalPow[uW] Area[um^2] AreaNoPH[um^2] INTlenght[um] CPath[ns]
InOut_Buffer_8 2.657220 24.228920 26.886140 254.562000 151.620000 1382.820000 0.23000
InOut_Buffer_16 5.289045 48.824382 54.113428 502.740000 300.580000 2804.150000 0.29000
InOut_Buffer_32 10.540553 98.920995 109.461548 1058.414000 597.170000 7451.930000 0.35000
InOut_Buffer_64 20.826780 201.265217 222.091997 2110.976000 1187.690000 18174.510000 0.44000
In_Buffer_8 1.204980 10.874345 12.079325 113.582000 68.096000 673.530000 0.17000
In_Buffer_16 2.397848 22.194063 24.591910 226.100000 135.128000 1781.800000 0.23000
In_Buffer_32 4.722145 45.289753 50.011898 470.820000 267.862000 4393.650000 0.29000
In_Buffer_64 9.380290 91.905637 101.285927 938.448000 533.330000 10982.200000 0.38000
L_shifter_8 0.399757 6.674415 7.074172 51.870000 29.792000 435.810000 0.17000
L_shifter_16 0.802720 13.635145 14.437865 102.410000 60.648000 1034.970000 0.23000
L_shifter_32 1.597985 28.713675 30.311660 234.080000 120.232000 2700.810000 0.29000
L_shifter_64 3.202865 60.353450 63.556315 470.820000 239.932000 6655.520000 0.38000
L_shifter_B_8 0.609090 9.415815 10.024905 78.204000 45.220000 742.630000 0.24000
L_shifter_B_16 1.208022 19.860748 21.068770 153.216000 90.972000 1749.840000 0.30000
L_shifter_B_32 2.403353 41.390210 43.793563 352.716000 180.082000 4528.600000 0.36000
L_shifter_B_64 4.826995 86.696580 91.523575 703.836000 360.962000 11128.990000 0.45000
Out_Buffer_8 1.193623 11.129252 12.322875 113.582000 68.096000 684.340000 0.17000
Out_Buffer_16 2.378625 22.541200 24.919825 226.100000 135.128000 1748.630000 0.23000
Out_Buffer_32 4.712710 45.822905 50.535615 470.820000 268.128000 4174.220000 0.29000
Out_Buffer_64 9.322398 92.933380 102.255777 938.448000 533.330000 10184.130000 0.38000
RCA1_8 0.430925 7.532617 7.963542 48.944000 29.260000 561.605000 0.21000
RCA1_16 0.829252 15.389275 16.218528 95.760000 56.924000 1418.505000 0.27000
RCA1_32 1.661202 32.903170 34.564373 210.140000 112.784000 3650.795000 0.29000
RCA1_64 3.326283 68.292348 71.618630 417.088000 225.036000 9451.895000 0.38000
RCA1_B_8 0.430925 7.717767 8.148692 48.944000 29.260000 702.855000 0.21000
RCA1_B_16 0.829252 16.075582 16.904835 95.760000 56.924000 1724.915000 0.27000
RCA1_B_32 1.661202 32.535297 34.196500 210.140000 112.784000 4300.495000 0.29000
RCA1_B_64 3.326283 73.407250 76.733533 417.088000 225.036000 11577.455000 0.38000
RCAandLogic_8 0.626132 9.845115 10.471248 78.204000 42.826000 709.190000 0.21000
RCAandLogic_16 1.238895 21.136340 22.375235 155.344000 85.386000 1603.090000 0.28000
RCAandLogic_32 2.507147 45.369980 47.877128 342.342000 171.304000 4705.320000 0.37000
RCAandLogic_64 5.028742 92.105257 97.134000 684.684000 343.672000 9989.140000 0.38000
RCAandLogic_B_8 0.626132 10.178513 10.804645 78.204000 42.826000 923.790000 0.21000
RCAandLogic_B_16 1.238895 20.977430 22.216325 155.344000 85.386000 2097.240000 0.28000
RCAandLogic_B_32 2.507147 44.461280 46.968428 342.342000 171.304000 5524.415000 0.37000
RCAandLogic_B_64 5.028742 93.432685 98.461428 684.684000 343.672000 13739.480000 0.38000
R_A_shifter_8 0.411693 6.872212 7.283905 51.870000 30.590000 449.860000 0.17000
R_A_shifter_16 0.802918 13.933972 14.736890 102.410000 60.648000 1047.830000 0.23000
R_A_shifter_32 1.604052 28.998312 30.602365 234.080000 120.498000 2691.980000 0.29000
R_A_shifter_64 3.215145 60.967955 64.183100 470.820000 240.996000 6680.300000 0.38000
R_A_shifter_B_8 0.620730 9.809023 10.429753 78.204000 46.284000 751.130000 0.25000
R_A_shifter_B_16 1.208220 20.227002 21.435222 153.216000 90.972000 1751.020000 0.31000
R_A_shifter_B_32 2.415633 41.993125 44.408758 352.716000 181.146000 4480.480000 0.37000
R_A_shifter_B_64 4.830468 87.197438 92.027905 703.836000 361.494000 11101.300000 0.45000
oneCounter_8 0.920508 14.582517 15.503025 98.686000 56.392000 642.700000 0.71000
oneCounter_16 1.982077 27.644578 29.626655 212.800000 122.094000 1561.830000 1.21000
oneCounter_32 4.127763 52.983272 57.111035 494.760000 263.340000 3399.850000 1.93000
oneCounter_64 9.310655 143.664775 152.975430 1064.532000 576.422000 11749.560000 2.74000
oneCounter_B_8 1.001475 13.160255 14.161730 124.754000 70.224000 902.560000 0.86000
oneCounter_B_16 2.150650 27.796688 29.947337 263.340000 151.886000 2301.570000 1.42000
oneCounter_B_32 4.760580 58.486400 63.246980 633.080000 326.382000 5977.640000 1.92000
oneCounter_B_64 11.100487 161.615178 172.715665 1283.450000 701.974000 14536.050000 2.77000

Appendix E

Instruction Set

Portion of vhdl sources are reported below for comparing the instruction sets of the

three architectures analyzed: DLX, V1 and V2.

--

2 ------------- INSTRUCTIONS DLX ------

--

4 ----------------

--------OP codes

6

constant RTYPE : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"000000" ; -- RTYPE

8 constant JTYPE_J : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"000010" ; -- X02 J

constant JTYPE_JAL : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"000011"; -- X03 Jal

10 constant ITYPE_BEQ : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"000100" ; -- X04 beqz

constant ITYPE_BNEQ : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"000101" ; -- X05 benqz

12 constant ITYPE_ADD : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"001000" ; -- X08 addi

constant ITYPE_SUB : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"001010" ; -- X0a subi

14 constant ITYPE_AND : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"001100" ; -- X0c andi

constant ITYPE_OR : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"001101" ; -- X0d ori

16 constant ITYPE_XOR : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"001110" ; -- X0e xori

constant ITYPE_SL : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"010100" ; -- X14 slli

18 constant NOP : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"010101" ; -- X15 nop

constant ITYPE_SR : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"010110" ; -- X16 srli

20 constant ITYPE_NE : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"011001"; -- X19 snei

constant ITYPE_LE : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"011100" ; -- X1c slei

122

E – Instruction Set

22 constant ITYPE_GE : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"011101" ; -- X1d sgei

constant ITYPE_LW : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"100011" ; -- X23 lw

24 constant ITYPE_SW : std_logic_vector(OP_CODE_SIZE - 1 downto 0) :=

"101011" ; -- X2b sw

26 --------------------------------

--------FUNC(for RTYPE)

28 constant funcSL : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000000100" ;

-- x04 sll

constant funcSR : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000000110" ;

-- x06 srl

30 constant funcADD : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000100000" ;

-- x20 add

constant funcSUB : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000100010" ;

-- x22 sub

32 constant funcAND : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000100100" ;

-- x24 and

constant funcOR : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000100101" ;

-- x25 or

34 constant funcXOR : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000100110" ;

-- x26 xor

constant funcNE : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000101001" ;

-- x29 sne

36 constant funcLE : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000101100" ;

-- x2c sle

constant funcGE : std_logic_vector(FUNC_SIZE - 1 downto 0) := "00000101101" ;

-- x2d sge

38

--

40 ------------- INSTRUCTIONS V1 ------

--

42 ----------------

--------OP codes

44 constant logicArith : std_logic_vector (2 downto 0):= "000";

constant shift : std_logic_vector (2 downto 0):= "001";

46 constant count1 : std_logic_vector (2 downto 0):= "010";

constant count1_shift : std_logic_vector (2 downto 0):= "011";

48 constant logicArith_shift : std_logic_vector (2 downto 0):= "100";

constant logicArith_count1 : std_logic_vector (2 downto 0):= "101";

50 constant logicArith_count1_shift : std_logic_vector (2 downto 0):= "110";

constant store : std_logic_vector (2 downto 0):=

"111";

52

54 --------------------------------

--------FUNC(for logicArith)

56 constant SUM : std_logic_vector(3 downto 0):= "0001";

constant SUB1 : std_logic_vector(3 downto 0):= "0010";

123

E – Instruction Set

58 constant SUB2 : std_logic_vector(3 downto 0):= "0011";

constant SUB3 : std_logic_vector(3 downto 0):= "0100";

60 constant XOR1 : std_logic_vector(3 downto 0):= "0101";

constant AND1 : std_logic_vector(3 downto 0):= "0110";

62 constant OR1 : std_logic_vector(3 downto 0):= "0111";

constant OR2 : std_logic_vector(3 downto 0):= "1000";

64 constant OR3 : std_logic_vector(3 downto 0):= "1001";

constant OR4 : std_logic_vector(3 downto 0):= "1010";

66 constant XNOR1 : std_logic_vector(3 downto 0):= "1011";

constant XNOR2 : std_logic_vector(3 downto 0):= "1100";

68 constant XNOR3 : std_logic_vector(3 downto 0):= "1101";

constant XNOR4 : std_logic_vector(3 downto 0):= "1110";

70 constant nullOP : std_logic_vector(3 downto 0):= "0000";

72

74 --

------------- INSTRUCTIONS V2 ------

76 --

78 --------OP codes

--mode 1row

80 constant Arith : std_logic_vector (4 downto 0):=

"00001";

constant XNOR1 : std_logic_vector (4 downto 0):=

"00010";

82 constant shift : std_logic_vector (4 downto 0):=

"00011";

constant count1 : std_logic_vector (4 downto 0):=

"00100";

84 constant count1_shift : std_logic_vector (4 downto 0):=

"00101";

constant XNOR1_shift : std_logic_vector (4 downto 0):=

"00110";

86 constant XNOR1_count1 : std_logic_vector (4 downto 0):=

"00111";

constant XNOR1_count1_shift : std_logic_vector (4 downto 0):=

"01000";

88 --mode 2row

constant Arith_&_XNOR1 : std_logic_vector (4 downto 0):=

"01101";

90 constant Arith_&_shift : std_logic_vector (4 downto 0):=

"01110";

constant Arith_&_count1 : std_logic_vector (4 downto 0):=

"01111";

92 constant Arith_&_count1_shift : std_logic_vector (4 downto 0):= "10000";

constant Arith_&_XNOR1_1count : std_logic_vector (4 downto 0):= "10011";

94 constant Arith_&_XNOR1_shift : std_logic_vector (4 downto 0):= "10011";

constant Arith_&_XNOR1_1count_shift : std_logic_vector (4 downto 0):= "10100";

124

E – Instruction Set

96 constant Store1 : std_logic_vector (4 downto 0):=

"01010";

constant Store2 : std_logic_vector (4

downto 0):= "01011";

98 constant Store1_2 : std_logic_vector (4 downto 0):=

"01100";

constant Load1 : std_logic_vector (4

downto 0):= "10101";

100 constant Load2 : std_logic_vector (4

downto 0):= "10110";

constant nop : std_logic_vector (4 downto 0):=

"00000";

102

104 --------FUNCN(for Arith)

constant SUM : std_logic_vector(2

downto 0):= "001";

106 constant SUB1 : std_logic_vector(2

downto 0):= "010";

constant SUB2 :

std_logic_vector(2 downto 0):= "011";

108 constant SUB3 :

std_logic_vector(2 downto 0):= "100";

constant nullOP :

std_logic_vector(2 downto 0):= "000";

125

Bibliography

[1] Shaahin Angizi. “PIMA-Logic: A Novel Processing-in-Memory Architecture

for Highly Flexible and Energy-Efficient Logic Computation”. In: ().

[2] JOHN BACKUS. “Can Programming Be Liberated from the von Neumann

Style? A Functional Style and Its Algebra of Programs”. In: (1977).

[3] Ping Chi. “PRIME: A Novel Processing-in-memory Architecture for Neural

Network Computation in ReRAM-based Main Memory”. In: ().

[4] Woong Choi. “Content Addressable Memory Based Binarized Neural Network

Accelerator Using Time-Domain Signal Processing”. In: ().

[5] M. Cofano. “Logic-In-Memory: A NanoMagnet Logic Implementation”. In:

(2015).

[6] Andrea Coluccio. “Logic-in-Memory: is it worth it? A Binary Neural Network

case of study”. 2019.

[7] Wenqin Huangfu. “RADAR: A 3D-ReRAM based DNA Alignment Accelerator

Architecture”. In: ().

[8] Mohsen Imani. “Efficient Query Processing in Crossbar Memory”. In: ().

[9] Joe Jeddeloh. “Hybrid memory cube new DRAM architecture increases density

and performance”. In: (2012).

[10] D.A. Patterson J.L. Hennessy. Computer architecture: a quantitative approach,

6th edition. Morgan Kaufmann, 2019. Chap. 2.

[11] D.A. Patterson J.L. Hennessy. Computer architecture: a quantitative approach,

6th edition. Morgan Kaufmann, 2019, pp. 49–51.

[12] Dae Hyun Kim. “Design and Analysis of 3D-MAPS (3D Massively Parallel

Processor with Stacked Memory”. In: (2015).

[13] Rastegari M. Xnor-net: Imagenet classification using binary convolutional neu-

ral networks.

126

BIBLIOGRAPHY

[14] Giulia Santoro. “Exploring New Computing Paradigms for Data-Intensive Ap-

plications”. 2019.

[15] Vivek Seshadri. “Ambit: In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology”. In: ().

[16] William Simon. “A Fast, Reliable and Wide-Voltage-Range In-Memory Com-

puting Architecture”. In: ().

[17] Kai Yang. “Interleaved Logic-in-Memory Architecture for Energy-Efficient Fine-

Grained Data Processing”. In: ().

[18] Leonid Yavits. “Resistive Associative Processor”. In: ().

127

	Acknowledgments
	Summary

	Introduction
	State of the art
	Von Neumann paradigm
	Limitations

	 Breaking down the Memory Wall
	Memory hierarchy
	Prefetching
	Beyond the Von Neumann architecture

	A new LiM approach: Lego-LiM architectures
	Motivations

	 Lego-LiM architecture: an HL overview
	The high level architecture
	The control units
	Handshakes

	Lego LiM library
	Lego LiM
	LiM Cells
	Row Interfaces
	Lego LiM array : templates
	Memory Interfaces
	Standard Interfaces
	How to deal with a buffer

	Lego-LiM library
	LiM Cells
	Standard versions
	Buffer versions
	Row interfaces
	Adders
	Buffers
	Memory interfaces
	Cache-like MI
	Definitive Version

	The front-end
	Overview
	Architecture
	Timing

	The back-end
	Overview
	Execution of a nano Instruction
	Decoder Unit
	Generation of Configuration signals
	Reading and Writing rows

	Memory Interface Unit
	Cache Miss

	Hazards
	Cache Coherence

	Operating Instructions
	How to write the uROM
	Nano ISA
	Types of LiM instructions
	Instruction Format
	Addressing modes
	Destination
	OPCODE

	How to write the instruction decoders
	OpCODE decoder for V1
	OpCODE decoder fo V2
	Fixed Decoders

	How to build a Lego LiM array
	Template: V1 or V2 ?
	Template: sizes
	LEGO LiM: which ones? in which order?
	Example

	Impact of Smart Features
	Introduction
	LiM array vs standard array
	LiM array vs standard array (1)

	Implementations
	DLX: an overview
	Stages
	ISA

	INSTRUCTIONS
	REGISTERS
	DATA MEMORY
	Neural Network: the model chosen
	Introduction of NN
	Implementation in LiM
	Implementation in DLX
	Results

	Conclusion
	Run-time SIMD
	User Manuals
	Performance evaluation
	Simulation
	Back Annotation
	BA after synthesis
	BA after Place & Route

	Characterization results
	characterization
	Average Dynamic Power
	Storage Unit
	Characterization File

	Instruction Set

