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Abstract

Scientists working with animals aim to improve the health of people by under-
standing what causes diseases and how they may be treated and prevented. This
leads animals under study to be commonly affected by experimental conditions.
Moreover, research often goes towards relatively invasive questions, which leads it
to adopt invasive methods. For instance, the vascular structure of the brain is a
popular topic in research. If we want to follow the blood flow in order to analyze
the brain activity, we are forced to adopt invasive techniques, such as the fMRI,
which require the animal to be restrained or anesthetized. It is well known that
anesthesia affects the acquisition of physiological data such as the heart rate, the
breath rate, and the gut movements, as well as restraining the animal.

Investigation into mice is further combined with the use of new imaging
techniques. Short-wavelength infrared region imaging (SWIR) is an innovative
technique for pre-clinical and clinical imaging. Currently, SWIR researchers are
working to produce new detection systems, and new contrast agents to perform
imaging of mice which are awake and unrestrained. For example, vascular contrast
agents can be used to visualize blood vessels through the skin of an animal, which
can allow us to follow the blood flow. Since the mouse is unrestrained during the
acquisition, we can obtain physiological parameters much more representative than
the animal under anaesthesia. Our goal is to track vascular networks in a mouse
over time without needing to perform invasive imaging at each time point. By
performing SWIR imaging, it may be possible to extract this information as a
mouse moving in its cage in which it may show us various parts of its body and we
may collect images over time. Is it possible though to correlate those images with
a known 3D model of what the mouse looks like?

In this thesis project, we focus on methods for extracting information about
the mouse movements over time. First, we investigate how photogrammetry works,
state-of-the-art of 3D reconstruction, and how far our research can go exploiting its
algorithm and computational geometry. We generate a surface mesh and texture
of a mouse, using photogrammetry and SWIR images of a mouse with a vascular



contrast agent. In this study, we found out that static scenes and non-deformable
objects were adequately reconstructed, but the results changed with objects in
motion. Therefore, we divide our efforts into two categories: rigid and deformable
bodies in motion.

The skull of a mouse is a rigid body that, even if it moves, the distance between
some selected points is fixed in 3D space. In a video, the points may appear closer
or further from each other depending on how the mouse rotates its head, since they
represent the projections of the 3D model in 2D. We perform motion tracking by
using a deep learning tool called DeepLabCut to estimate the skull movements over
time, a technique known as pose estimation. We found out that the orientation of
a rigid body can be easily extracted if we know the 2D projections of its points
and how they are related in 3D space.

If the object is a deformable body in motion, such as fingers in a moving hand,
the distance between its points may change over time. In order to compensate
for the body deformation, we perform stereo vision, a process of extracting 3D
information from multiple 2D views. We adopt a mirror to have a second view
of the object, we track selected points by using DeepLabCut, and we exploit the
relation between object and its reflection to triangulate those points. We finally
obtain a preliminary 3D deformable object, complete in all its parts.
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Chapter 1

Introduction

Thanks to the rapid growth of technological innovations over the last decades,
biomedical imaging has been making great advances. The introduction of computer
vision and artificial intelligence techniques in bio-imaging is speeding up the
development of new clinical applications, which until recently were just scientific
studies. For example, a great improvement is made on the detection of patterns in
images. Nowadays, the detection is faster achieved and supported by Computer
Aided Diagnosis (CAD) systems, which exploit new algorithms to analyze the
common features between images and classify them with respect to a supervisor,
such as an expert in the field, or even by automatically learning from data. In
fact, improvements are important also in data analysis. Just think of the huge
amount of healthcare data that are every day more difficult to interpret due to
their exponential increase, they can now be processed at higher speed with much
more accuracy by deep learning applications. Scientists are working to improve
the adoption of these new technologies in every field, and new challenges arise.
These new imaging techniques are often experimented on animals before being
adopted in the clinical use. However, animals under study are commonly affected by
experimental conditions. Moreover, research often goes toward relatively invasive
questions, which leads it to adopt invasive methods. For instance, the vascular
structure of the brain is a popular topic in research. If we want to follow the blood
flow in order to analyze the brain activity, we are forced to adopt invasive techniques,
such as the fMRI, which require the animal to be restrained or anesthetized. It
is well known that anesthesia affects the acquisition of physiological data such
as the heart rate, the breath rate, and the gut movements, as well as restraining
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Introduction

the animal. Studying animals that are not affected by stressed conditions and
anesthesia is the first challenge we want to face. If we are able to follow a mouse
in its natural behaviour, we can follow at the same time its physiological activity
more realistically. Moreover, we want to extend this study to a more complete
view: the 3D visualization of the subject. In addition to the study of the blood
flow in the vessels, we are also interested in studying the vascular structure of the
brain, and so how the network is organised and its properties. This may allow us
to answer some questions such as how a tumor affects and increases over time, or
more general questions as if there is symmetry between right and left sides, or find
relation within different animal species.

In this introduction, we discuss about the Short-wavelength infrared region
(SWIR) technology, an innovative technique for pre-clinical and clinical imaging.
We introduce the advantages of this technique and the researchers goals to improve
its applications in studying animals. Afterwards, we introduce the stat-of-the-art
of 3D reconstruction, and how its technology, combined with the new deep learning
methods, can be adopted for the purposes of our project.

1.1 Exploring imaging technologies: MRI, NRI,
and SWIR

Imaging techniques allow us to visualize biological processes taking place in living
organisms. Through these techniques we can see things below the skin of an animal,
but depending on which technique we are adopting and the problem we want to
face, we can have different properties and advantages. Magnetic Resonance Imaging
(MRI) is a non-invasive imaging technique that produces detailed anatomical images.
It allows us to achieve really high depth penetration and to analyze smaller parts
such as capillaries in the brain, but at the same time it requires the subject to be
totally still during the acquisition since it takes some time to acquire data. On the
contrary, Near-Infrared Region (NIR) fluorescence imaging is a fast, convenient
and non-invasive imaging technique for visualizing deep-tissue structures. Thanks
to its high speed acquisition, we can obtain no-blurred images even if the subject
is moving during the acquisition since commonly the imaging is faster than the
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motion. However, NIR does not achieve the same level of depth penetration typical
of MRI imaging. A good compromise between the two aforementioned techniques
is the Short-wavelength Infrared Region (SWIR) imaging. This technology is able
to obtain higher level of depth penetration than NIR, but keeping the high speed
not reached by MRI. Due to reduction of background signal and scattered light, the
SWIR imaging technology has higher contrast, penetration depths, and minimal
tissue autofluorescence. Therefore, for the purpose of our experiment, we can list
the main advantages:

1. Imaging at depth: SWIR achieves higher level of depth penetration, required
if we are interested in defining smaller elements, such as the smallest blood
vessels of the brain

2. Imaging at speed: SWIR is a fast imaging technique, in fact, if we want to
acquire non-blurred images, we need the imaging to be faster than the motion.

3. Natural condition: thanks to its high speed in acquisition, SWIR allows
scientists working with animal to avoid anaesthesia; animals can move freely
during the imaging, without losing resolution.

 

c 

a b 

Figure 1.1: SWIR intravital imaging in a mouse with a cranial window. Principal
component analysis used to distinguish the tumor (green), arteries (red), from veins
(blue) in the brain, information colour-coded to create a multicolour angiograph
(a); flow maps of microvascular networks (b-c). Figure adapted from [1]

In [1], these advantages are more explicit. In order to obtain an higher definition of
the capillaries, [1] performs intravital microscopy to investigate the brain vascular
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network. In Figure 1.1 (a-c), Bruns et al. [1] used the benefits of SWIR imaging
to image a glioblastoma multiform tumour growing in a mouse brain through
a transparent cranial window, and thanks to computational tools, it was also
possible to distinguish arteries from veins. The blood flow of the brain is of great
importance for metabolic activity. SWIR is an higher speed imaging compared to
other techniques such as fMRI and CT, which take few seconds per frame, or the
scan which takes minutes.

1.1.1 High speed imaging to study unrestrained and not
anaesthetized mice

The acquisition speed is one of the main reason why commonly the animal is
anesthetized or restrained during the acquisition. Moreover, imaging techniques
such as MRI, X-ray scan, and CT, force us to use anaesthesia in animal since the
quality of the acquisition depends also on the imaging geometry. For example, to
perform MRI imaging, the animal should be positioned within an MRI scanner
that forms a strong magnetic field around the area to be imaged. Or, the CT scan
can generate a three-dimensional image from a series of two-dimensional images
taken by rotation around a fixed axis, while the subject is placed inside the rotating
scan. NIR and SWIR have the great advantage of not requiring complex machinery.
They consist in simply illuminating the regions of interest and, thanks to excited
contrast agents, they receive the fluorescent signal back. Therefore, thanks to the
simplicity of the imaging geometry, we can avoid anesthetizing or restraining the
animal. This is decisive if we want to perform macroscopy to measure vital signals,
because anesthesia greatly affects the results.

In Figure 1.2, [1] shows how the heart and respiratory rate are profoundly
affected by anaesthesia. Current approaches for measuring the heart rate in awake
mouse adopt telemetric sensors which are surgically implanted. Thanks to SWIR,
we can detect signal coming from the heart and the liver, and avoid invasive
technique. In Figure 1.2(b,c,d) the mouse is anesthetized during the acquisition. [1]
selected two regions of interest to measure heart and liver intensity pixels. Based
on the change in intensity over time, it is possible to detect fluctuations which
represent heart and breath rate of the animal. Comparing the signals coming from
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Figure 1.2: High-speed SWIR imaging for contact-free monitoring of heart (red
ROI) and respiratory rate (blue ROI) in anaesthetized (b) and awake mice (e).
The respiratory rate of this anaesthetized mouse was 84 breaths min−1 (c) and the
heart rate was 130 beats min−1 (d). A respiratory rate of 300 breaths min−1 (f)
and a heart rate of 550 beats min−1 (g) was observed in this awake but resting
mouse. Figure adapted from [1]

the two states of the animal (anesthetized in Figure 1.2b and awake in Figure 1.2e),
the fluctuations have changed very clearly. In contrast to other techniques such
as MRI, CT and ultrasound, this approach allows study of awake mice, and avoid
anaesthesia.

We have seen how the interest in studying the brain vascular network leads
us to adopt invasive methods. With SWIR imaging we can achieve high level of
resolution, and detect even the smallest vessels of the brain, and some vital signals
can be easily detected if we look at defined region of the mice body. However,
anaesthesia can effect them. In this thesis, we will exploit the advantages of SWIR
macroscopy to detect the signal of a vascular dye, which yields relatively transparent
mice and allows us to identify blood vessels. The aforementioned mouse will be
totally free of anaesthesia or any sort of restraint. We will propose a solution to
track a region of interest while the mouse is freely moving, in order to follow, for
example, the vital signals we are interested in. Moreover, the tracking method can
be extended to a three-dimensional visualization of the interesting body part such
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as the skull, since it contains useful information of the brain vessels.

1.2 Region tracking and pose estimation

A mouse free of anaesthesia and unrestrained moves during the acquisition. If we
want to avoid any kind of restraint, and we want to detect signals that change over
time, we have to find a way to detect for each video frame our region of interest.
Of course, we do not want to manually select the ROI for each frame, or at least
avoid it as much as possible, and for this reason, we investigate new methods to
automatically do it.

Region tracking and pose estimation are widely studied problem in computer
vision. They are techniques that predict and track the position and orientation of
an object in images or videos. Recent developments in deep learning techniques
have brought significant progress and remarkable discoveries in this field. Being a
technique that concerns the study of humans, animals and objects, pose estimation
has applications in many fields such as human activity detection, augmented reality,
gaming and robotics. For example, in the field of animation and gaming, characters
animation begin to be simplified and automated in many ways, replacing the
traditional manual process that was based on expensive capture motion systems.
Therefore, character animation is no longer based on markers or specialized suits,
but on capturing human player movements and using them to make the actions
of virtual characters, making the game experience immersive. Other interesting

 

Figure 1.3: Azure Kinect DK sensor (left) and its health application to track and
monitor exercise movements and overall form (right). Figure adapted from [2]

applications are based on using computer vision to track and monitor exercise
movements and overall form, in order to have, for example, a virtual rehabilitation
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solution, or prevent and mitigate potential patient accidents (see Figure 1.3). This
kind of applications have become popular thanks to Microsoft Kinect depth camera
and advances in 3D pose estimation and gesture recognition [2].

In this section, we will provide an overview of real-world use cases for human
and animal pose estimation and we will give a general description of the most used
methods. We will dive a bit deeper for what concerns the existing tools for animals
tracking pose, reporting the 2D pose estimation procedures used by a distinctive
open-source toolbox called DeepLabCut [3].

 
 
 Figure 1.4: Example of pose estimation result obtained with DeeperCut model

on a Multi-Person dataset. Figure adapted from [4]

Human pose estimation has been used for human activity, gesture and gait
recognition. It is generally based on the generation of body part hypothesis, and
so by referring the prediction to a model of what the human body looks like,
commonly represented by a skeleton made of segments and nodes. Essentially, all
pose estimation methods have a component that detects and estimates the body
parts and their positions by using deep learning architectures. Moreover, pose
estimation of human activities has recently made strong progress extending the
prediction from a single individual to a multiple persons detection, as [4] shown
with Figure 1.4, by using their DeeperCut model. Furthermore, the estimated
pose are used to analyze variations over a period of time, in order to evaluate, for
example, postural issues (e.g scoliosis), or to train a machine to recognize which
activity the human is performing. However, these studies are feasible since the
subject cooperates with the researchers, and we can easily ask for performing a
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particular pose or simply for staying still. It is evident that with animals there are
some difficulties.

To measure animal behaviour, scientists have recently started adopting these
new deep learning tools to automatically track specific part positions of the animal
body. One of the main advantage is to avoid the use of physical markers on animals.
In fact, traditional techniques involve the combination of video recordings with
reflective markers applied in positions of interest that allow to easily track body
parts [5]. However, such systems can be expensive and potentially distracting to
animals, and markers need to be placed before the recording, and so it is necessary to
pre-establish which functions we want to track. Moreover, if we want to track body
parts that are under the skin such as blood vessels or organs, we should consider
further complications. DeepLabCut is an efficient method for markerless pose
estimation of animals, which can help us to evaluate the geometrical configuration
of an animal body part without knowing a priori the points locations we want to
track. Starting from a monocular video of the mouse, we can perform multiple
experiments without being constrained to follow a single solution. Moreover, deep
learning architectures commonly require large dataset (e.g ~25,000 extracted frames
from all collected videos) to achieve acceptable performances, while DeepLabCut
demonstrates that a small training set (~200 frames) can be sufficient to train
the network, and achieve high-level of labeling accuracy. This is one of the best
features of DeepLabCut, since we want to analyze the whole video, and avoid to
manually label a large number of frames, that may render the process infeasible.
Moreover, DeepLabCut is optimized to detect poses captured by one or multiple
cameras, a feature that is a great advantage for our project. In fact, with this
tool we can label points in videos, and we can extend the pose estimation to a
three-dimensional space in order to extract the rigid configuration of the body part.
DeepLabCut is a deep convolutional network combining pre-trained ResNets and
deconvolutional layers. In fact, it makes some changes on the ResNet model to
adapt it to the problem: the classification layer at the output of the ResNet is
replaced with deconvolutional layers. Further descriptions of deep learning and the
adopted network architecture are here provided.

In the end, DeepLabCut allows us to avoid markers to track a specific region of
interest in a mouse video. By giving some instructions, manually labeling a few
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frames, the neural network takes these information and the original video to learn
how to detect the correct location of each labeled body part in unknown frames.
As a result, we will have the original video and the coordinates positions of each
selected point for every frame, without physically interfering with the mouse.

1.2.1 Deep Learning and ResNet

Convolutional Neural Network (ConvNet) are a type of Neural Networks which
have been used in areas such as image recognition and classification.

Input layer Output layer

Hidden layers

Figure 1.5: A regular 3-layer Neural Network: the input layer receives the input
data, which are transformed through the network by the hidden layers, and the
output layer represents the final class scores

The typical structure of a regular neural network is shown in Figure 1.5, and it
consists of a collection of neurons that are organized into layers: input, hidden,
and output layers. The input data is transformed by the neural network, through a
certain number of hidden layers, in an output layer that represents the class score.
The hidden layers do not share connections between them, but each neuron of the
current layer is fully connected to all neurons of the previous one.

A Convolutional Neural Network has the same layers organization. The main
difference consists in having images as inputs. Therefore, the layers of a ConvNet
have neurons arranged in three dimensions: width, height, and depth. Furthermore,
the neurons in a layer are not fully connected with the neurons of the previous one
as in the traditional network, but they are connected only to a small region of the
previous layer. The full input image is transformed through the layers into a single
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vector whose sizes are the dimensions of the final output layer that, even in this
network, represents the class scores.

Convolution	
+ReLU

Convolution	
+ReLU

Fully
Connected

Fully
Connected

Output	
predictionPooling Pooling

...

...

......

Figure 1.6: Simple Convolutional Neural Network: convolution, ReLU, pooling
operations, and classification layer. For CNN the input is an image that is trans-
formed through the layers to a single vector that represents the final class score.
The neurons in a layer are connected only to a small region of the previous layer.

A ConvNet has three types of operations and a classification layer, as it is shown
in Figure 1.6. The operations are:

• Convolution: it has the purpose of extracting features from the input image.
We convolve a set of filters across the width and height of the input, producing
an output image, called feature map. The convolution operation detects type
of visual feature such as edges or patterns. The size of the feature map depends
on three parameters: depth (number of filters), stride (number of pixels by
which we slide out filter matrix), and zero-padding (pad the input matrix with
zeros around the border).

• Non Linearity (ReLU): it is used after every convolution operation. It
stands for Rectified Linear Unit, and it is a non-linear operation. It replaces all
negative pixel values in the feature map by zero. The purpose of ReLU is to
introduce non-linearity, since most of the real-world data would be non-linear.

• Pooling: it reduces the dimensionality of each feature map, retaining the
most important information. It performs a downsampling operation along
the spatial dimensions (width, height), reducing the size of the input. This
operation is necessary in order to reduce the amount of parameters, make
the input representations more manageable in the network, make the network
invariant to small transformations, and to also control the overfitting.
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• Classification (Fully-Connected Layer): It is called fully-connected be-
cause every neuron in this layer are connected to all the neurons in the previous
layer. The purpose of this layer is to use the features for classifying the input
image into various classes.

While convolution and pooling layers act as block of feature learning, the fully-
connected layer vests the role of classification block. Although, the network learns
thanks to its learning parameters (weight w and bias b). Each connection between
neurons has an associated weight. The learning process is called Back Propagation
of Errors, and it is like learning from mistakes. Initially the weights are randomly
assigned, and the output of each input is compared with the desired output, that
is known. The error made by the network is propagated back to the previous layer,
whose weights are adjusted accordingly to the calculated error, and the error is
propagated until the first layer. This process is repeated until the output error is
reduced. The weight updating is done by using an optimization method such as
the Gradient Descent, and this is why to reduce the error, we often compute the
gradient.

Most of the deep learning techniques are based on the use of pre-trained neural
networks using particularly numerous sets of data already classified. Hardly ever
people train an entire ConvNet from scratch with random initialization because it
is rare to have a dataset with a sufficient size. Rather, it is common to pre-train
a ConvNet on a large dataset and then use the trained network as initialization
for the task of interest. This is what transfer learning means. Transfer learning
allows to adapt a pre-trained model to a different problem and obtain good results
despite having a small amount of data available. However, it is necessary to adapt
the pre-trained model to the new classification problem. This could be done by
following three different ways:

• Remove the last fully-connected layer

• Continue the backpropagation and repeat the training for some higher-level
portion of the network

• Retrain the entire network

Mathis at al. in [3] have built DeepLabCut on transfer learning, since they use
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feature maps trained on extremely deep neural networks (ResNet), which were
pre-trained on ImageNet, a rich dataset for object recognition. They decided to
follow the first way of transfer learning that is to remove the last fully-connected
layer and replace it with deconvolutional layers.

Residual Neural Network

Residual Neural Network (ResNet) is a pre-trained model developed by Kaiming
He et al [6]. Traditional CNN models typically contain between sixteen to thirty
layers. Deeper network are more difficult to training because of the degradation
problems (e.g vanishing and exploding gradient). Since deep networks naturally
learn more complex features as depth increases, raising the number of stacked
layers is of crucial importance in the filed of object recognition from images. As
they empirically shows, ResNet models are able to have up to 152 layers, and this
is possible since it addresses the degradation problem introducing the Residual
Block.

Weight	layer

Weight	layer

x[l]

ReLU

ReLU

x[l+1]

x[l+2]

x[l]

Weight	layer

Weight	layer

x[l]

ReLU

ReLU

x[l+1]

x[l+2]

a b

Figure 1.7: Residual learning: comparison between plain network (a) and short-
cut (b) [6].

In the Figure 1.7 is shown a residual block, defined as:

y = F(x, {Wi}) + x (1.1)

where x and y are the input and the output (in Figure 1.7 y corresponds to x[l+2])
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vectors of the layers, and the function F(x, {Wi}) is the residual mapping. The
solid line carrying the layer input x to the addition operator is called shortcut
connection and it skips one or more layers, letting inputs to propagate faster across
layers. In this case, the shortcut connection simply performs identity mapping,
without adding neither extra parameter nor computational complexity to the plain
network. The paper of [6] provides empirical evidence that it is easier to optimize
the residual mapping than optimize the original one. In terms of computation, let’s
see what changes between a plain network and a residual one. Referring to Figure
1.7a, to obtain x[l+1], we apply a linear function and ReLU operation:

z[l+1] = w[l+1] · x[l] + b[l+1] → Linear (1.2)

x[l+1] = F(z[l+1])→ ReLU (1.3)

such that z is the output from the linear function, w, the weights, x is the input
to the function, and b the bias. In a plain network, to be able to yield x[l+2], we
would have to go through the process of Equation 1.3 twice. With a residual block
as in Figure 1.7b, the skip function reduces the number of times a linear function z
is used to achieve the result:

x[l+2] = F(z[l+1] + x[l]) (1.4)

The intuition behind the residual block is that if we do not have any additional
information from a layer, and so wi = bi = 0 since the residual mapping is optimal
z[l+1] = 0, thanks to the shortcut connection we have :

x[l+2] = F(x[l]) (1.5)

which is much more easier for residual block to learn. The gain of adding these short
connections between layers is that they do not hurt the performances of the plain
network, since we are adding an identity map. Of course our goal is not only to
not hurt the performances, but also to increase them. In fact, if these added layers
learn something useful, they may learn even better of the identity function, and
this may happen only if the plain network depth increases. We also know that skip
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connections help to eliminate vanishing and exploding gradients mentioned before.
The vanishing gradient problem occurs when the gradient becomes vary small, and
the updating weights will not affect the output as we desire. On the contrary, with
the exploding gradient problem, the gradient becomes exponentially big, and the
algorithm cannot train the model. Thanks to the short connections, the number of
epochs taken as the algorithm goes deeper are reduced, and the model takes longer
to vanish or explode. Therefore, we can resume the main advantages of using skip
connections as:

• The model learns an identity function which ensures that the performance
cannot get worse, but the following layer will perform at least as good as the
previous layer

• They delay the problem of vanishing and exploding gradient.

Figure 1.8: ResNet baseline architecture [7]. The Cfg[i] blocks differ from each
other for the size of the input and for the parameters of the used feature maps.
they are 4 convolutional layers containing 3 residual blocks each; depending on
how many layers we want to add each Cfg can be repeated multiple times (e.g, for
50 layers: Cfg[0]× 3,Cfg[1]× 4,Cfg[2]× 6,Cfg[3]× 3)

In Figure 1.8 is shown the baseline architecture of the ResNet models. The
dotted line shortcuts represent the dimensions increase from a residual block to
the other. The ResNet model consists of five stages: 1 convolutional layer, 4
convolutional layers which contain 3 residual blocks each, and a Fully Connected
layer that reduces its input to the number of classes (not in our interest). The
notation for each block

n× n conv,N
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is referred to the size of the filter (n×n), and how many filters are used, that is how
many feature maps are extracted (N). In the ResNet-50, the four convolutional-
residual blocks are repeated respectively 3, 4, 6, and 3 times to obtain 50 layers,
and it has over 23 million trainable parameters.

Deconvolutional layers

The Fully Connected layer at the output of the ResNet model is replaced with
deconvolutional layers in DeepLabCut. Deconvolution is the opposite operation of

Downsampled	
score-map	(2x2)

3x3	Filter

Filter	1 Filter	2

Filter	3 Filter	4

stride	2

stride	2

Result	(5x5)

low	probability high	probability

Perform	element-wise	
multiplication	of	every	
element	in	the	image	

with	a	filter

Figure 1.9: Example of how deconvolution works with a 3x3 kernel on input 2x2,
stride 2 to obtain the original size 5x5. The white pixels represent high probability
that a body part is there located, and dark pixels low probability. Notice that from
the down-sampled to the up-sampled image, there is consistency in probability
body part location

convolution. This is necessary since the output we are interested in is the spatial
probability densities of each pixel of our input image. In fact, deconvolutional
layers are used to up-sample the visual information, and assign to each body part
its probability densities, which represent the probability that a body part is placed
in a particular location of the image. Since during the training the input size of the
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image has been down-sampled by the pooling operation, we do want now up-sample
it to obtain the original size of the image. During the training the weights are
updated iteratively in order to assign for a given frame high probabilities (≈ 1) to
region of the original image in which the body part is located, and low probabilities
(≈ 0) elsewhere. The output layer of the network is a down-sampled score-maps,
that is shown in Figure 1.9, and so a down-sampled image that contains brighter
pixels if the right location is in nearby. The deconvolutional layers produce a scalar
field of activation values with different size with respect to the input score-map, but
that contains an expanded probability density corresponding to regions in original
image [3], for each body part (see Figure 1.10).

Figure 1.10: Final score-maps assigned for each body part on the original image.
The outcome of the deconvolutional layers is exactly the input image (with its
original size), and a score map associated to each label that suggests where the
label is located accordingly to the prediction.

1.3 3D reconstruction

Aiming to have a quantitative representation of the mouse brain vascular network,
we investigate how we can extend the 2D tracking to a 3D geometrical visualisation
of the region of interest. In computer graphics, controlling facial animation is a
well-known challenge. An interesting application of human pose estimation is for
a real-time facial capture method [8]. By tracking the variations of human face
pose, the rendered graphic naturally fits the facial expressions as they move and,
furthermore, modern techniques can deliver high-resolution facial geometry with
a reliable motion information (see Figure 1.11). Is it possible to render a mouse
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fluorescent surface as well?

 
 

Figure 1.11: Real-time facial tracking system that captures performances at high
fidelity. From a monocular input (left), the global shape as well as local details are
captured (center and right). Figure adapted from [8]

 

Figure 1.12: 3D scanner from [9]. This is a cameras structure organized in such
way to take in a single shot the higher number of details of the subject place in the
middle. The outcome is a 3D body scanning.

The most popular online search concerning 3D reconstruction technology nowa-
days is inevitably related with photogrammetry. Thanks to new image acquisition
technologies, the classic 3D model of an object or a body, represented as a skeleton
made of arcs and nodes, begins to disappear, thus giving ample space to a more real
and all-round construction of the reality. 3D scanner like the one in Figure 1.12 are
capable to capture the shape of an object in a single shot. It collects data about a
subject that can be an object, an environment or a person (procedure commonly
known as 3D body scanning) and acquires simultaneously shape and color data. 3D
scans start to be adopted in 3D printing for numerous fields and applications such
as video games, special effects, animation movies as well as automotive, aeronautic,
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dental. Photogrammetry is a 3D scan that reconstructs a subject from photographs
with computational geometry and computer vision algorithms. Reconstructing
a rigid object from photographs means to extract three-dimensional information
from two-dimensions. The main actor that can help us to perform it is the camera
calibration. Essentially, it is necessary to know the properties of a camera to
understand the geometrical properties of an object in a picture. An image is not
more than a projection of the object in a plane. By converting the object to an
image, we lose depth information, and for instance we may need to use further
methods to define if a pixel belongs to the object or to the background. Camera
calibration is the main actor of 3D reconstruction, both if we are talking about
photogrammetry and other 3D reconstruction techniques, since it allows us to
relate pictures coming from different cameras or views.

1.3.1 Camera calibration

Camera calibration is the first step to convert a 2D image into a 3D model. It
consists of estimating the parameters of a pinhole camera model which is used to
describe the image formation in a camera. In the next equations, the homogeneous
coordinates notation is adopted. They are used to solve the difference in appearance
of two plane objects viewed from different points of view. In our case, homography
is used to refer to the same plane the object and the camera, or the object views
from two cameras. In Figure 1.13 is shown how the homogeneous coordinates are
adopted to normalize a polynomial curve. In our case, it is like P1 and P3 are
the cameras, and the blue curve is the object. With the homogeneous notation
p̃ = [u, v, 1]T or P̃ = [X,Y,Z, 1]T, we are referring all the 2D or 3D elements to
the same plane W = 1.

The pinhole camera model is shown in Figure 1.14. Considering a scene view
formed by the projections of 3D points into the image plane, the relation between
the world coordinates of a 3D point P̃ = [X, Y, Z, 1]T and its image plane coordinate
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Figure 1.13: Polynomial curve defined in homogeneous coordinates (blue)
and its projection on plane, rational curve (red). By Wojciech Muła
- Own work (Python script, final touches Inkscape), CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=1196334
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Figure 1.14: Illustration of the pinhole camera model: the point P in 3D is
projected into a plane with (u, v) coordinates, losing information about its third
dimension z
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ũ = [u, v,1]T is:
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ũ = p̃img = K [R|t] P̃ = K p̃cam (1.7)

K is the intrinsic matrix, and [R|t], rotation matrix and translation vector, re-
spectively, is the extrinsic matrix. Note that intrinsic parameters refer to the
optical, geometric and digital properties of the camera, and the matrix K does not
depend on the scene viewed. The extrinsic parameters describe the transformation
of the 3D point with respect to the camera view, so they are used to translate
coordinates of a point [X, Y, Z,1]T to a fixed coordinate system with respect to the
camera, obtaining new p̃cam = [x, y, z, 1]T coordinates. Through this model, we
can estimate the relation between the image plane and the real scene, since both of
them are dependent from the camera view. If we know the intrinsic parameters
of the camera, and how the image or the 3D scene is related to the camera, it is
possible to define each elements of the Equation 1.7. The coordinate system of the
camera is a decisive concept, since we can define two types of coordinate systems:
an absolute coordinate system, and a relative one. If we think of a rigid object, we
can always define how each of its points are related to each other based on a world
coordinates system, which means that those relations between points do not depend
on the viewer, since they are absolute. If we now take multiple viewers that look at
the object from different perspectives, each of them will see the object differently.
This is a relative coordinate system, and this is exactly what a pinhole camera
does: converting the world coordinates of the rigid object to a camera coordinates
system. Another important point is what happen if we have multiple cameras. As
it is shown in Figure 1.15 on the left, if we have two cameras that look at the same
scene, we can always relate a camera to the other, since the second camera can be
seen as an object that is translated and rotated with respect to the first camera.
Consequently, the same concept can be applied if we have the same camera that
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moves around the scene (see Figure 1.15 right). We have a initial time t0, in which
the camera had a position p0, and at different (t, p) the new view can always be
related with the original one, since it can be considered as a translated and rotated
view with respect to (t0, p0). These relation between views will be adopted and
described with examples directly in the experiments.

Left	image	plane	Il Right	image	plane	Ir

Translation	(t)

Rotation	(R)

Moving	camera

3D	object

Corresponding	
feature	points

Image	i

Image	i+1

Image	i+2

Image	i+3

Figure 1.15: Illustration of the pinhole camera model: second camera seen as
rotation and translation of a first camera (left), multiple views of the same camera
with respect to the first reference view (right)
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Chapter 2

Photogrammetry in static and non-static
objects

Photogrammetry methods are typically designed for reconstructing imaged surfaces
in static scenes. If this technique were applied to photographs or videos of an
animal with a fluorescent tracer, it would be possible to have a 3D object with a
surface that contains information of phenomena that takes place beyond the skin
of the animal. Moreover, the acquisition would be less expensive in comparison to
the most sophisticated tomography techniques, because with only high resolution
videos it would be possible to follow, for example, vessels through the skin. Based
on these intentions, the first pursued approach to the problem is to understand
how these methods work and if it is possible to use their computational geometry
for the aforementioned purposes. In order to have reliable information, camera
and object should respect some constraints: the object cannot move during the
acquisition.

In this section, the limits for non-static objects and data constraints of pho-
togrammetry are investigated, and the overall photogrammetry pipeline is described.
After, the reconstructing methods are tested to obtain 3D objects of three different
datasets:

1. Photographs of an horse hoof

2. Video of a rotating belly of an anesthetized mouse

3. Moving mouse injected with a fluorescent contrast agent
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Photogrammetry in static and non-static objects

The final models are obtained using a photogrammetry software called Meshroom
[10] which is an excellent mean to see how the pipeline is followed in a practical
fashion.

2.1 Photogrammetry pipeline

Starting from a set of photographs of an object, photogrammetry adopts images
algorithms to extract the most significant elements from pictures. These elements
are called descriptors or features, and allow the algorithm to find out what images
have in common. Through these extracted features, photogrammetry is able to
correlate images between them, and eventually estimate where the camera was
placed with respect to the object during the acquisition. Once the camera positions
are defined, the object points are matched between the views, and then triangulated.
After, the cloud of points are connected to each other to generate what is called a
mesh. Finally, the meshed body is "colored" with a texture coming from the pixels
properties of the original images. In order to better understand how we obtain a
textured 3D object from set of images, we follow the pipeline in Figure 2.1.

1

Feature	
Extraction

2

Feature	
Matching

3

Structure	
from	motion

4

Image	
Matching

5

Depth	Map	
Estimation

6 7

Meshing Texturing

Figure 2.1: A typical photogrammetry pipeline for extracting mesh and texture
information from a set of still images [10]

The first step is the Feature Extraction. The goal is to extract groups of
pixels that are invariant to changing camera viewpoints, or in other words, extract
patches that can be detected in different images irrespective of rotation, translation
and scale. In Figure 2.2, the extracted patches from the images are listed in the
middle of the figure. Otherwise, the yellow squares in the images on the sides
point out where those patches have been detected even if they have been rotated,
translated, or have been taken away from the camera. Hence, those patches contain
some properties, called feature descriptors, that are always detectable in all images.

The SIFT (Scale-invariant feature transform) algorithm is the most used features
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Figure 2.2: Scale-Invariant feature transform [11]: SIFT algorithm detects sig-
nificant patches of images, and it is able to detect those patches in any images
irrespective to the image transformations (translation, rotation, or scaling)

detection method, and the best algorithm to use to deal with image transforma-
tions during the acquisition. It is called "scale-invariant" since it is based on the
assumption that "a relevant detail only exists at a certain scale [10]".

Scale	1 Scale	2

Figure 2.3: Example of scale-dependent detector. At Scale-1, the window is well
detecting the arrow corner, but at Scale-2 the window is too small

If we think about a curved object at different scales as in Figure 2.3, and we want
to detect its corners, they are not easily detectable with the same window detector
in a larger scale, because we would need larger windows. Therefore, the method in
Figure 2.3 is scale-dependent. Although, what are the main features that allow us
to recognize the object regardless its scale? To make this analysis, SIFT computes
a pyramid downscaled images. By downsampling and blurring the image, SIFT
emulates this feature changing depending on the scale. SIFT generates what is
called a scale space, and it is a Laplacian of Gaussian function (LoG), obtained
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with the convolution of a Gaussian kernel G with the input image I as

LoG(x, y, σ) = G(x, y, σ) ∗ I(x, y) (2.1)

G(x, y, σ) = 1
2πσ2 e

−x
2+y2

2σ2 (2.2)

where σ is the standard deviation of the Gaussian distribution. LoG is a detector
of blob in different sizes thanks to the scaling parameter σ. Consequently, higher
value of σ gives a blob detector for larger corners, while lower value of σ gives
a blob detector for smaller corners. However, LoG is a costly function, for this
reason making the difference between two scales is more convenient. Therefore, the
Differences of Gaussians images (DoG) are computed. The result is a scale space
as in Figure 2.4. 
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Downsampling …. 

… 

LoG

LoG DoG

DoG

Figure 2.4: Pyramid downscaled images. The image is blurred with Gaussian
filter (LoG), and downsampled to emulate different scaling factor. By computing
the Difference of Gaussian (DoG), the research of local maxima is simplified.

Once the DoGs are created, we look for the local maxima across the scale to find a
list of (x, y, σ) values, which means to find the potential feature descriptors at (x, y),
and at σ scale. For example, a pixel of an image at a certain scale is compared
between the eight neighbour pixel in the same scale, and with the nine of the
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previous and the next scale as in Figure 2.5. These found maxima correspond to
the location of our points of interest, which are invariant to the scale.

Sc
al
e

Figure 2.5: Research of local maxima between DoG in different scales. The actual
pixel is compared with a neighbourhood of its scale, and other two of the nearby
scales

In order to achieve invariance also to image rotation, an orientation is assigned to
each point. Therefore, SIFT considers again a neighborhood around each point
location, and it computes the gradient magnitude and direction in that region as in
Figure 2.6. The goal is to find in which direction, the selected feature point has its
greater change. In fact, the gradient is a derivative filter which is commonly used
to detect object edges relatively to the background. Then, it creates an orientation
histogram with 36 bins (360 covered degrees spaced 10 degrees apart), which are
weighted based on the gradient magnitude. The gradient magnitude is a value
between 0 and 1 associated to each pixel. Brighter is the magnitude (≈ 1), stronger
is the pixel intensity variation, while in homogeneous region the magnitude is
smaller (≈ 0). The gradient direction associates to each pixel an angle value in
degrees (between (0,180) and (0,−180) degrees), and it represents the strongest
variation for the actual pixel. The combination between magnitude and direction
of a gradient is an arrow with the gradient direction and its length proportional to
the magnitude. If we look at Figure 2.7, the histogram represents the weighted
frequencies of the directions found in Figure 2.6 (after having converted the angles
values in (0,359) degrees). The highest bin represents the number of pixels whose
greater direction is between 190 and 199 degrees, it means that for the investigated
neighbour, the greater variation is between that range of angles. SIFT considers
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Gradient Magnitude Gradient Direction

-80 -159 -164 -165 -134 -154

-145 -153 -165 -165 -149 55

17 -140 -162 -162 -155 17

42 -14 -160 -163 -163 -104

24 10 -159 -166 -167 -147

Figure 2.6: Magnitude and direction of gradient. The above moon [12] is the
original image, while the moon below is its gradient. The homogeneous parts of
the image are dark, while the regions with high pixel values changes are brighter
(see the boarder between the background an the object). The gradient magnitude
represents how big is this change, while the gradient direction is in which direction
is the highest pixel variation. To the selected pixel in the original image, we can
associate an arrow directed to the highest variation, whose length is proportional
to the magnitude of this change.
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Figure 2.7: Orientation histogram referred to magnitude and direction gradient
of Figure 2.6: each bin represents how many pixels have their direction gradient
oriented in a certain range of degrees. Moreover, the frequency is weighted based
on the gradient magnitude.

each peak between 80% and 100% to calculate the orientation by creating keypoints
with the same location, but different directions.

At this point, SIFT has found the location, scale, and orientation of the keypoint.
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Now, it associates for each keypoint a descriptor in order to have a vector that
describes each of them, and to have a mean to make a comparison between them.
As in Figure 2.8, SIFT takes a 16x16 window around the keypoint, divided into 16
sub-blocks of 4x4 pixels. The region size is determined by the keypoint scale and
the orientation is determined by the dominant axis. Then, for each sub-block, 8
bin orientation histogram is created. Typically, the descriptor consists of 128 bin
values (8 bin × 16 sub-blocks).

16x16 window

Keypoint

Figure 2.8: 16x16 window oriented with respect to the keypoint orientation (left),
8 bin orientations for each 4x4 sub-block (descriptor vector of 128 elements) [13]

Once the descriptors are extracted for every keypoint of each image, we can go
further to the next steps. The Image Matching and Feature matching have
the goal to find images that are looking to the same areas of the object (or the
scene). Ideally, we should compare every keypoint of each image between them, but
in order to save computational time, Meshroom uses the image retrieval techniques,
in order to compare only images that really have something in common. Once
pairs of images are matched, it starts to compare all features and look for similar
descriptors (see Figure 2.9). For each feature in the first image, we obtain a list
of candidate features in a second one. However, not all features are correctly
matched. To remove bad candidates, we look for the second closest descriptors.
Once we have found the correspondences, we compute the camera model of section
1.3.1 to understand the geometric relationship between the views. This step is the
Structure from Motion (SfM). In order to estimate the rigid object structure,
based on the positions and the orientations of the camera, it computes an initial
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two views reconstruction that is iteratively extended by adding new views, as it
is shown in Figure 2.10. Each matched point is supposed to represent a point in

Figure 2.9: Example of pair of images with matched descriptors. The horse hoof
capsule was provided by Tjadina Klein, and imaged by Tjadina Klein and Thomas
Bischof

Moving	camera

3D	object

Corresponding	
feature	points

Image	i

Image	i+1

Image	i+2

Image	i+3

Figure 2.10: Iterative triangulation. From an initial two views reconstruction,
the estimation of the 3D position is iteratively corrected by the addition of multiple
views

space, visible from multiple views. During this iterative process, the incoherent
matched are removed, and the corresponding 2D points are triangulated into 3D
points. For the last steps, we are not going deepen into them, since they are not
useful yet for the purpose of this thesis project. However, they are here introduced,
since they will be subject of future research. The Depth Map Estimation has
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the objective of retrieving the depth value of each pixel for those cameras that have
been resolved by SfM, and many approaches are available. The one implemented
by AliceVision [10] is based on finding the best matches between the intersection
of the optical axis with the pixels of neighbour cameras. This generates a list of
many depth candidates, and so the similarity for all of them is estimated. After
the application of a series of filters to remove the noise, they look for a compromise
to remove bad candidates. The Meshing step fuses all the depth maps in order
to create a dense geometric surface representation of the object. The result is a
mesh, that consists in a cloud of vertices connected to form a tetrahedron structure.
For each triangle, the Texturing uses the visible information associated with each
vertex to retrieve the texture. In Figure 2.11 a visualization of these last three
steps is shown.

   

Depth points Mesh Texture 

Figure 2.11: Example of the depth map, mesh, and texture of an horse hoof. The
horse hoof capsule was provided by Tjadina Klein, and imaged by Tjadina Klein
and Thomas Bischof

The described pipeline is the general flow followed by Meshroom in order to
reconstruct an object from a set of images. In the next paragraphs, we are going
to see how the pipeline works with three different sets of data, underlying the
differences between their images, and analyzing the final 3D object.

2.2 3D reconstruction of an horse hoof, mouse
belly, and a mouse in motion

Each tested dataset in this section is chosen based on the acquisition mode. Pho-
togrammetry is generally designed to reconstruct static-objects or scenes. In fact,
the user typically takes photographs of the subject from different angles and collects
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them to grasp the greatest number of details, since some parts of the object may
be hidden depending on the view. Thus, this is a common set-up in which the
camera is in motion and the object is totally held still. This kind of acquisition is
inevitable if the object to reconstruct is the interior of an apartment or the wall of
a building, but if the subject is small and freely manipulable in space and the user
can easily move, rotate, and control it, is it possible to invert the camera-object
roles? As this is just a matter of relative viewpoints, it is legitimate to say that
if you can rotate the subject at will, then the camera can be held still while it
is taking pictures of the rotating object. This is what will be tested in this part,
exploiting two sets of data that differ precisely in this acquisition mode.

2.2.1 Still horse hoof and camera in motion

This first set of data consists of 38 photographs of an horse hoof taken with SONY
ILCE-6400 in RGB color space, and size of 4240x2832 pixels. The horse hoof is
held still in the middle of the scene while the camera takes pictures in order to
cover the points of view at 360 degrees. The resolution of the camera allows us to
obtain images with an high level of details, strong suit of this dataset.

Figure 2.12: Horse hoof: cameras position estimation and depth map. The horse
hoof capsule was provided by Tjadina Klein, and imaged by Tjadina Klein and
Thomas Bischof

In Figure 2.12, a typical visualization of the Meshroom GUI is shown. From the
left to the right, we have the set of images, a particular frame with the sift points
detected, and the estimated camera positions. As the circle of cameras suggests,
the camera positions are well estimated, and in the middle the depth map of the
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horse hoof is already visible. This kind of acquisition (rigid object and camera
in motion), is perfectly consistent with the use of the photogrammetry pipeline.
The object is non-deformable, the pictures have high resolution, and the amount of
data are enough to make an efficient reconstruction.

2.2.2 Still camera moving around a mouse belly

The second dataset is a good example of acquiring images of a rotating object
while the camera is held still. The mouse is restrained to ensure minimal movement
during acquisition. It rotates 360 degrees while being pointed at by a near-infrared
camera that captures laser signals (see Figure 2.13). The output is a video that
shows a rotation imaging of a tumor of a mouse subjected to an intravenously
injection of PbS-aCD8 and ErNPs-aPDL1. This dataset is interesting because we

Figure 2.13: Acquisition method: rotating mouse (left), rotation imaging of a
tumor (right). Figure adapted from [14]

can assert that we do not need the camera need in motion, but even the object can
show different sides of itself. As it is shown in Figure 2.14, it is read as the scenario
is reversed: camera in motion and still object. Moreover, thanks to the texture,
we can now really understand what we are looking for. This 3D reconstruction of
the injected mouse allows us to have a 3D visualization of the vascular network on
the surface of the object. However, starting from this 3D object, we may focus the
research on tracking the vessels on the surface and estimate what is their depth
through the body. Nevertheless, the animal is restrained during the acquisition,
not irrelevant for the purpose of our experiment. For that, we proceed with the
next dataset, in which the animal is free of anesthesia and restraints.
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Figure 2.14: Camera positions around the object, as the object is still and the
camera in motion. From the left to the right: set of images, detection of sift points,
reconstructed object with estimation of camera positions

2.2.3 Still camera and mouse in motion

The last dataset is acquired with a still camera that records a mouse freely to
move. The mouse was injected with a fluorescent contrast agent through its vessels,
and more details about the experiment will be presented in section 3.1. In Figure
2.15, once again, even if the object is moving and the camera held still, the camera
positions are estimated. The photogrammetry algorithm has detected a sort of
change in motion of the mouse, since the camera positions follow an irregular shape
through the 3D space. It is correctly predicted that the camera could only have
been above the mouse, and never from below since the mouse is always facing
the floor. The mouse is moving inside the imaging chamber, and it goes around
often changing its position through the scene. What Meshroom does is to select
only those frames which are coherent between them, and in this case frames are
consistent if they show a similar mouse pose. This is why every frame in which the
mouse strongly changes its pose with respect to the one in Figure 2.15 (head on
top, and tail below) are discarded.

This discard has a series of effects on the reconstruction. First, the animal is
not correctly reconstructed, since photogrammetry reconstructs multiple pieces
(see the two tails in Figure 2.16). Moreover, the background fuses with the object,
probably because from some views the dark parts of the mouse body are confused
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Figure 2.15: Camera positions around the object, as the object is still and the
camera in motion. From the left to the right: set of images, detection of sift points,
reconstructed object with estimation of camera positions

with the background and vice versa. However, this reconstruction suggests that is
possible to obtain a texture of the fluorescent skin of the mouse. What we want to
investigate at this point is if the errors may be corrected if we give to the algorithm
further information of the orientations that the mouse has over time.

Figure 2.16: Reconstructed mouse. Visible errors of reconstruction: double tail
and background fused with the mouse
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2.3 Results and discussion

Photogrammetry is commonly used to extract three-dimensional measurements
from two-dimensional data (i.e images and videos), which allow the generation of a
3D digital model of the object or scene. We have found out that static scenes and
non-deformable objects are adequately reconstructed. Of great interest was the
reconstruction of an animal body injected with fluorescent molecules, which allows
us to have a 3D visualization through the skin of a mouse organs and vessels. With
this 3D model, we may follow the vessels on the surface and extract a preliminary
geometrical configuration of what the vascular network looks like, but this dataset
consists of a rotating restrained mouse. If we want to leave the animal to freely
move, the results change. In fact, we were able to extract an interesting texture
of the moving mouse, since it was injected with a fluorescent contrast agent. Our
investigation moves forward to find how the motion effects may be solved. Since
the reconstruction had parts multiply reconstructed, and the animal were fused to
the background, is it possible to define the orientations that the object is taken
over time and "suggest" how handle the reconstruction?
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Chapter 3

3D pose estimation of a mouse skull
from a monocular video

In Chapter 2, we investigated the use of photogrammetry algorithms to reconstruct
different objects. We have found that Meshroom is an easy and excellent tool for
reconstructing non-deformable objects. The result changes when the object is in
motion. With photogrammetry, we are able to extract an interesting texture of the
moving mouse. However, the reconstruction has parts multiply reconstructed, and
the animal is fused to the background. Our investigation moves forward to find
how the motion effects may be solved. If it would be possible to know in which
direction the mouse is looking in, would it be possible to detect which part of the
body the object is showing to the camera? If so, we may use external measurements
of orientation to improve reconstruction?

Here, we turn our attention to pose estimation as a method for motion compen-
sation. We propose a first approach to extract the skull orientation of a mouse
with a vascular contrast agent through its vessels. We show how deep learning
technology works on DeepLabCut, a tool extremely useful to estimate the pose of a
moving object over time. We investigate the mouse skull as rigid object in motion.
Based on the assumption that the 2D tracked points are the projections of a rigid
3D model, we use the pinhole camera model described in section 1.3.1 to estimate
the skull orientations over time.
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3.1 SWIR imaging of a mouse with vascular con-
trast agent

SWIR technology is a non-invasive fluorescence imaging technique that allows us
to visualize biological processes taking place in living organisms. The fluorescence
mechanism consists of a molecule, called dye, that absorbs light. After, the dye
releases energy, commonly defined as the emitted fluorescent light, it can be detected
at a certain wavelength λemission. In order to detect light production, the measuring
device has to know what wavelength to be set at. This wavelength is inside the
SWIR window of the electromagnetic spectrum, typically between 1000 and 2000
nm, and the primary sensors used to detect the signal are the indium gallium
arsenide (InGaAs) sensors, since they cover the SWIR range (see Figure 3.1).

Figure 3.1: Electromagnetic Spectrum Illustrating SWIR wavelength range.
Figure adapted from [15]

The mouse we are going to track is freely moving during the acquisition. The
dataset we use for this experiment is the video of a mouse with a vascular contrast
agent flowing through its vessels. Since it is necessary to inject the dye into the
mouse vessels, the animal is anesthetized before imaging. After the injection, the
mouse is placed inside an imaging chamber of size 10× 10 cm. Depending on the
type of anaesthesia, the effects disappear after a certain period of time from the
injection, and the mouse starts to wake up. Once enough time has passed, the
mouse is totally awake, and it starts to exploring the chamber. Our goal is to
follow the mouse when it is awake, going around the chamber and changing its
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positions over time.
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Figure 3.2: Acquisition method and camera setting of SWIR imaging. Detection
system composed by the InGaAs camera, and the illumination system composed by
the laser, the square engineer diffuser. With the adoption of filter where required.

The camera setting for SWIR imaging is shown in Figure 3.2, and it consists of:

1. Detection system

2. Illumination system

The detection system consists of an InGaAs camera Goldeye 033 of ALLIED-vision
that acquires at 300 fps, with exposure time of 3 ms. The aforementioned camera
is capable of detecting the emitted signal of a fluorescent probe, excited by a
laser. The probe used for this experiment is Chrome7 dye with an absorption and
emission spectra shown in Figure 3.3.

The illumination system consists of a laser that excites the probe with at
λlaser = 962 nm, and an engineered square diffuser Thorlabs ED1-S20-MD diffuses
the light with an angle of 20 degrees. The laser with a λlaser = 962 nm is chosen in
order to excite the probe at a wavelength of the Chrome7 -absorption curve (blue
curve in Figure 3.3). The probe absorbs the light and emits the signal. The InGaAs
camera detects this signal, and a long-pass-filter (LPF) allows the transmission
of only wavelengths λem > 1150 nm. With this filter, we can assert that only the
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Figure 3.3: Absorption (blue) and emission (orange) spectra of Chrome7 dye.
The main peak of absorption is 962 nm, while the light emitted is detected from
1150 nm.

signals with wavelengths of the emission spectra (orange curve in Figure 3.3) are
detected. The final result is a video of 1500 frames of 512x640 pixels (see Figure
3.4).
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Figure 3.4: Example of frames acquired with SWIR technology. The mouse is
awake and it is moving around the chamber. This dataset was acquired by Bernardo
Arús and Emily Cosco
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3.2 DeepLabCut to track 2D points in a mouse
skull

The goal of this experiment is to estimate the skull orientation of a mouse in a
3D space. The skull is a rigid body part that does not change its shape over time,
and the 2D video is the projections of this rigid model into a plane. In the video,
the mouse can freely move, and based on its orientation some skull points may be
hidden. DeepLabCut [3] is a useful toolbox to track animals over time and quantify
their behavior. Since it is a markerless technique, it requires a certain amount
of time to virtually label the target, but it allows us to avoid physical markers.
Moreover, DeepLabCut provides a user-friendly toolbox that generally follows the
workflow in Figure 3.5.

Extract frames 
(K-means method)

Label frames
manually

Create training set

Train network

Good 
results?

Analyze video and
Stop

Yes

Need more 
training data? Analyze video

Extract outlier
frames

Refine labels and
merge dataset

YesNo

No

Figure 3.5: DeepLabCut workflow: after the frames extraction, it is necessary to
label the body part we want to track. Some of those frames will be used to create
a training set and to train the network. At the end of the training, the Neural
Network will have learned to correctly label all the remaining frames. If the results
are not satisfactory, we can refine the training set and re-train the network.
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The input of the workflow is the video, and the first step is to create a training
and test set. We are not going to use the whole video to train the network, since
an efficient feature of DeepLabCut is to achieve excellent results with minimal
training data. Therefore, we extract frames as different as possible from each other.
In order to achieve the best performances of the prediction, we provide the largest
number of features of the input data, through the minimum number of frames. In
fact, we do not want use frames which do not provide any additional information,
and which can only slow down the training. Consequently, 40 frames are extracted
with a k-means algorithm. This is a cluster method that takes the entire set of
frames, and splits it into clusters. Each of this cluster contains frames with similar
features. So, the extraction consists of selecting frames from different clusters.

The second step is to manually label the extracted frames. Through a specific
GUI (see Figure 3.6), we process each extracted frame labeling similar spots and
skipping occluded points. For the skull of the mouse six points are selected: nose
(Nose), right (EyeR) and left eye (EyeL), right (Right) and left ear (Left) and a
fixed point on the back of the skull (Back).

Figure 3.6: GUI of DLC toolbox to label each frame [3]

Once all frames are labeled, we shuffle the dataset and split it in training and
test sets. We use a training fraction of 0.5, this means that 50% of the extracted
frames will be used to train the network, whereas the remaining dataset will be
used during evaluation to test the network.
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3.2.1 Network architecture

Once the training set is created, the network starts the training. DeepLabCut is
based on transfer learning and it exploits ResNet models (see section 1.2.1) to train
the network. However, it makes some changes to adapt the pre-trained model to
the problem (Figure 3.7):

1. The weights are trained on labeled data which consists of the object image
and the annotated body part locations.

2. During training, the network assigns high probabilities to the labeled locations
and low probabilities to the rest of the image.

3. The classification layer at the output of the ResNet is replaced with deconvo-
lutional layers in order to produce spatial probability densities to each body
part.

Train Deep Neural
Network

ResNet-50 
(pre-trained in

ImageNet)

Deconvolutional
layers

Spatial probability
densities

Figure 3.7: DLC architecture to predict the body-part locations. The training
set is used to train a ResNet-50 whose Classification layer is replaced with decon-
volutional layers, in order to obtain spatial probability densities for each body
part.

The network is trained for 500’000 iterations until the loss plateaus and its
weights are initialized using the pre-trained ResNet model with 50 layers. The
network parameters are summarized in Table 3.1.
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Pre-trained
model

Extracted
frames

Training
fraction

Iterations

ResNet-50 40 0.5 500’000

Table 3.1: Network parameters. The ResNet-50 model is trained on 20 frames for
500’000 iterations, and tested on other 20.

If the training results are not satisfactory, an additional functionality provided
by DeepLabCut is the extraction of the outlier frames and the consequent network
refinement. The output of the training step is a list of frames which contains the
following information for each body part:

1. (x, y) label position in pixels

2. The likelihood (value between 0 and 1, implying the level of confidence of the
prediction)

In the refinement step, images with low labeling performance are extracted and
manually corrected. The frames selected to be refined are those in which one or
more body parts jumped more then ε = 17 pixels from the last frame. The frame
refined are merged with the previous training set and the network is trained again.

3.2.2 Network performances

In order to evaluate the performance of DeepLabCut predictions, we analyze
the ability of the model to correctly identify the body parts. A useful way of
visualizing the performance of a prediction model is using Confusion Matrix
and its validation metrics to have quantified values. Each cell of this table denotes
the number of predictions of the model where it classified correctly or incorrectly
the classes. Since this is not a binary classification problem, the confusion matrix
here below works on multi-class problems. Each label represents a class, for a
total amount of six classes: Nose, EyeR, EyeL, Right, Left, Back. Since we have
the coordinates for both manual and predicted labels, the distance between each
predicted label and all six manual labels is computed. The manual label with which
the current predicted label has the shortest distance represents its region-based
prediction. In Figure 3.8, the predicted label represented by a + is classified as
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EyeR, because it has the shortest distance with EyeR. The confusion matrix is
built based on these allocations.

 

Prediction

Distance

Prediction

Distance

min(distances)

EyeREyeR

Manual

Figure 3.8: Region-based classification with minimum distance between predicted
and manual label. The cross is a prediction of the network. We define a criteria of
minimum distance to collocate each prediction to a class. The manual label with
whom the prediction has the minimum distance is the outcome class. The cross
prediction is classified as EyeR because it is the nearest manual label.

If we look at the first row of the left table in Figure 3.9, the predicted Nose label
has the shortest distance with the manual EyeR label twice, this means that it
happens in two frames. However, the label Nose is 27 times well predicted, 2 times
is predicted as EyeR and 3 times as EyeL and so on. This is how a confusion
matrix looks like: the number of times that a prediction is correctly or incorrectly
made. Confusion matrix it is useful also because it gives efficient performance
measures for the model. The values of the confusion matrix in Figure 3.9 take on
the following meanings:

• True Positive (TP): number of predictions where the classifier correctly
predicts a label for the body part it really belongs to.

• True Negative (TN): number of predictions where the classifier does not
have to predict the current body part and it really does not predict it.

• False Positive (FP): number of predictions where the classifier incorrectly
predicts other labels as the current body part.
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Figure 3.9: Confusion matrix example. Multi-class problem reduced to a binary
classification problem.

• False Negative (FN): number of predictions where the classifier incorrectly
predicts the current body part as belonging to other labels.

From these values, the following validation metrics are calculated for each frame:

• Precision: overall the label predictions, the precision represents how many of
those predictions predicted the body part correctly.

Precision = TP
TP + FP

• Recall (or True Positive Rate, TPR): overall the human label samples, how
many of those were correctly predicted by the classifier.

Recall = TP
TP + FN

• F1-score: It combines precision and recall into a single measure.

F1 = 2× Precision× Recall
Precision + Recall

If we now want to compute these metrics for our confusion matrix, we have to define
which class in our multi-class problem is "positive" and which one is "negative". In
a multi-class model, it is a common practice to reduce the problem in a binary
classification problem. Let’s take a specific class, such as the EyeR highlighted
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in Figure 3.9. This class is for a moment considered as the "positive" class while
the rest of the table as the "negative". This assumption makes easier to compute
the performances metrics, because now the problem has just two classes and the
same formulations can be applied. This simplification can be repeated for all the
classes. What really matters in this simplification is the effect of reducing the whole
matrix in a double class. Everything that is not EyeR becomes a unique class and,
depending on how many classes are joined in one, the amount of True Negative of
the confusion matrix can be really high. This causes an unbalance of the confusion
matrix that can misrepresent the model (see Figure 3.9 and TNEyeR = 30 against
TNAll = 113 ). To avoid this unbalance, we choose F1-score as the most convenient
metric in order to evaluate the model. Since it is a combination of Recall and
Precision, it has a lesser dependence on the True Negative. Therefore, F1-score
gives more relevant information about the variation of the other two values, False
Negative and False Positive, much more significant in this context. F1-score of
each class can be combined to have a single measure for the whole model:

• Micro F1 (micro-averaged F1-score): It does not consider each class individu-
ally, but it calculates the metrics globally.

MicroF1 = TPTotal

TPTotal + FPTotal
= TPTotal

TPTotal + FNTotal

• Macro F1 : it calculates F1-score for each class individually and takes the
mean of the measures.

MacroF1 = 1
N

N∑
i=1

(F1)i

In Figure 3.10, it is shown the confusion matrix and its performances calculated
for the test set. The overall performances are quite excellent, and the network
predicts mostly ever the correct label location. However, the network makes a
double mistake in predicting the EyeR label as EyeL. If we now look at the frames
in which this mistake is made (see Figure 3.11), we can assert that the error is
not made by the prediction, but the minimum distance criteria as region-based
classification is wrong-classifying the predicted label. During the manual labeling
step, we tried to not label hidden body parts such as the EyeR in this frame.
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Consequently, by computing the distance of EyeR predicted with each manual
label, necessarily the shortest distance of EyeR is with EyeL, while the predicted
location is correct.

Confusion matrix
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Skull_ResNet50_500k_shuffle1

Precision    Recall  F1-score  

  Nose       1.00      0.95      0.97  

  EyeR       0.87      1.00      0.93  

  EyeL       0.95      0.90      0.92  

 Right       0.95      1.00      0.98  

  Left       1.00      0.95      0.97  

  Back       1.00      0.95      0.97  

Precision Recall F1-score
Micro 0.96 0.96 0.96
Macro 0.96 0.96 0.96
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Figure 3.10: Test set confusion matrix and performances for the ResNet50 with
500’000 iterations

  
 

Frame 925 

Manual label 
EyeR is missing 

Figure 3.11: Wrong classification but correct predicted location. The EyeR
manual label is missing, and EyeR prediction is classified as EyeL because of the
minimum distance

Therefore, we can assert that the network achieves excellent results with these
set of parameters. The training is performed by using a NVIDIA GeForce RTX
2070 GPU, and for 500’000 iterations it requires a little bit more than 8 hours.
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3.3 Detection of mouse skull orientation

In the previous section, we have trained the network and for each frame the
2D coordinates have been provided. So, it becomes possible to predict the 2D
skull labels for the entire video by using the trained weights. From this analysis,
DeepLabCut provides a file that contains the predicted x and y pixel coordinates
of each labels. It is a .csv file easy to be manipulated.
These two-dimensional coordinates can now be used to extract the overall 3D
movement of the skull over time. In fact, the 3D skull is considered as a rigid body
whose movements in the space are possible to be estimated through Equation 1.7.
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Figure 3.12: Mouse skull world coordinates. The x and y coordinates of each
label, with respect to the Nose, is physically measured by using Fiji-ImageJ on
two frames: one in which the skull is aligned with yz plane, another in which it is
aligned with the xz plane. Existing sketch adapted to the context.

The 3D skull world coordinates need to be defined. In Figure 3.12 is shown the
adopted reference system: the arbitrary origin point is the Nose, so the location of
each label is determined with respect to this one. Thus, we take two frames: the
first in which the skull is approximately aligned with the plane yz, and the second
in which the skull shows only one side aligned with the xz plane. Through Fiji
Image-J, we measure the (x, y, z) coordinates of each label.

Starting from the 2D labels location p̃img and the 3D skull coordinate P̃, we can
estimate the 3D skull direction in each frame by using an OpenCV function called
SolvePnP. This function reverse the Equation 1.7 to obtain the projection matrix
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M , and eventually [R], which will then inform us about the 3D skull orientation.
Thus,

p̃img = M P̃ (3.1)

where the projection matrix M is

M = K[R|t] (3.2)

K, [R|t] (see section 1.3.1 and Equation 1.6 to the explicit notation) are respectively
the intrinsic matrix (specific parameters depending on the camera model), and
extrinsic matrix (it describes how the object and the camera are rotated and
translated with respect to each other). For the intrinsic matrix, we are assuming
that the camera is pointing exactly to the center of the image and that there is not
distortion. Therefore, we can approximate

K =


fx 0 cx

0 fy cy

0 0 1

 (3.3)

with
f = fx = fy,

(cx, cy) =
(

Iweight

2 ,
Iheight

2

)

where fx and fy are the focal lengths of the camera, and Iweight and Iheight are the
sizes of whether frame. Assuming that the intrinsic matrix never changes during
the video because we are not changing the optics or zooming, we must handle
only the extrinsic camera matrix. On the other hand, the extrinsic parameters
can change, for instance, if we rotate the camera (consequently, the matrix R will
change) or we change its location (the vector t will change). We can reverse this
scenario if we now move the object pose rather than the camera, and the approach
does not change. Since we have the rigid model of the skull in 3D space and its
2D projections on the image plane (output of DeepLabCut), we can easily solve
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the Equation 3.1 by replacing these coordinates respectively with p̃img and P̃, and
compute R and t. These two parameters tell us how the skull is oriented in the 3D
space. In Figure 3.13, examples of the estimated directions based on the predicted
labels.

    

Figure 3.13: Mouse skull direction over time. The red dot are the predicted label,
the blue line is a visualization of the predicted orientation of the mouse skull.

3.3.1 Validation results of skull orientation

In order to analyze the results of the predictions, we evaluate the relative error of
the skull orientation between predicted and manual measurements. We calculate
the rotation matrix of the 2D projections coming from both manual and predicted
labels. To evaluate the accuracy of the skull orientation, we calculate the Rotation
Matrix Relative Error, and the angle between the two estimated directions in a 3D
space.

Since the estimation of the skull orientation is strictly related to the 2D location
of the skull labels, we calculate the rotation matrix by using the Equation 3.1 with
both manual and predicted labels. For each frame we have:

[R]man =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (3.4)

[R]pred =


r′11 r′12 r′13

r′21 r′22 r′23

r′31 r′32 r′33

 (3.5)
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where [R]man is obtained by using the manual labels and [R]pred by using the
predicted ones. To make a comparison between the two matrices, we consider a
numerical and a geometric point of view. To numerically evaluate the accuracy, we
compute the Matrix Rotation Relative Error as

Errrel = || [R]man − [R]pred ||2
|| [R]man ||2

(3.6)

where ||A||2 is the L2 norm, that is equal to

||A||2 =
∑

ij
|aij|2

1/2

(3.7)

and aij is the element of the matrix A. We refer to LAPACK documentation for
the computation of the relative error between matrices [16]. The matrix norm helps
us to correlate a matrix to a real number in order to have a numerical comparison
between matrices. The norm gives us information about the matrix magnitude,
and by using it in an relative error, we can say if the difference between two vectors
is large or small with respect to the correct measure. For small difference, we have
small error. From the Equation 3.6, we evaluate the accuracy of the predicted
orientation compared with the manual one.

Geometrically, the distance between two 3D rotation matrices is often evaluated
by measuring the θ angle between the two rotations. In this analysis we look
only at the rotation matrices. This means that, since we are not considering the
translation, the predicted and manual skull segmented models have the same origin.
Therefore, the angle θ between our two skull represents the difference between the
relative rotation matrices. The orientation of the skull can be represented by a
vector whose direction is defined by the relative rotation matrix. The angle θ in
Figure 3.14 between two 3D vectors is calculated as:

−→u · −→v = ||−→u || ||−→v || cosθ (3.8)
−→u · −→v = uxvx + uyvy + uzvz (3.9)

cosθ =
−→u · −→v
||−→u || ||−→v ||

(3.10)
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Figure 3.14: Angle between two vectors oriented accordingly to their rotation
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Figure 3.15: Comparison between numerical an geometric analysis of skull
orientation in some test frames

In Figure 3.15, both numerical and geometric point of views are visualized. From
the metrics, we can assess that to a smaller angle corresponds a smaller relative
error of the rotation matrices. We can also observe that in the last frames the error
is smaller than the initial frames. While in the first few frames, the classifier is less
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accurate in predicting. If we look up at the frames, we can understand the reason
of these inaccuracies. In Figure 3.16, both 2D and 3D skull orientations for some of

    

  

 

  
 

 

Figure 3.16: Predicted and manual skull orientation in 2D and 3D for different
frames. The first frames are less illuminated then the last ones, this may cause
errors in the prediction.

those test frames are shown. It is evident that in frame 62 and 104 the 2D predicted
labels are less accurate than the other two frames, and this outcome is evident in
the orientation predictions. This may be caused by the lack of light during the
acquisition. In fact, the predicted points are trying to guess between dark pixels.
While in the last frames, pixels are clearer thanks to the good illumination.

With this experiment, we have shown that it is feasible to extract 3D information
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from a monocular video. The predicted skull orientations are consistence with the
expectations, since there is an evident correspondence between the real video and
the 3D skeleton. Moreover, the overall angle error in a 3D space is acceptable. We
may even evaluate the actions performed by the mouse in each frame, by visualizing
its orientations. Certainly, we can say just looking at the 3D skeleton if the mouse
is looking up or down, while is moving around the chamber. Further researches
may include, for example, the next steps of the photogrammetry pipeline. Once
the main points of the object are well-located in a 3D space, as the Structure From
Motion does in Meshroom (see section 2.1), would be possible to generate a dense
surface and compute the pixel depths around the newly skeleton? If yes, we may
go ahead with creating a Mesh, and a final Texture of the skull. We will look for
answering these question in further researches. For now, we focus on understand
how this three dimensional information may be extracted, not only for a rigid body
part of the mouse, but for the entire body, including deformable parts.
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Chapter 4

3D pose estimation of an hand in motion
with camera-mirror stereo vision

In the previous chapter, the third dimension of an object in a 2D video was predicted
by making a convenient choice: tracking a rigid body part. The aforementioned
object was the skull of a mouse whose six fixed points were selected, and their
relative positions were measured. The projection matrix and the 2D tracked labels
allowed us to estimate the skull orientation over time, and to obtain a first 3D
model in motion. The above method was useful for monitoring a specific and rigid
body part, the skull, and to extract general information of that, the gaze direction.
How about those body parts that break the rule of being rigid? Is it possible
to track their movements and extract more complex information? For instance,
knowing how and in which direction the ventral region changes its shape would be
useful to understand if the mouse is standing up, crouching or having other similar
behaviours like those represented in Figure 4.1.

Figure 4.1: Individual behaviours of a mouse [17]

Here, we focus on tracking a non-rigid body in motion. First, tracking movements
in three dimensions without knowing a prior model of the object requires multiple
views of the same scene. Therefore, a stereo vision system is proposed, which
consists in recording the object from two camera views. However, we use only a
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camera combined with a mirror, in order to use its reflection as second view to
avoid multiple cameras.

Dataset		
acquisition

DeepLabCut	for	
2D	pose
estimation

Calibration

Triangulation

Real	camera

Virtual	
camera

P

P'

Mirror

... ...

Pre-processing	
object	videos

Roi	coordinates Roi	coordinates

Hand1-camA

Hand1-camB

Hand1

Pre-processing
calibrato	videos

Figure 4.2: Total pipeline for monocular stereo vision experiment using DeepLab-
Cut and Anipose

The pipeline of this experiment is shown in Figure 4.2, and each step will be
explained in detail in the next sections. In such a system, we use a camera to
film an object and its reflection at once. After, it needs to be cropped to obtain
two different videos in order to emulate two different cameras: the real and the
virtual one. This cropping is repeated for two different subjects: a calibration
board chess and an hand in motion. Then, the two hand videos are used to train a
neural network in DeepLabCut, while the calibration videos are used as a starting
point for the usage of Anipose. This latter is a toolkit for markerless 3D pose
estimation, and consists of a series of filters to resolve 2D tracking errors coming
from DeepLabCut, and a 3D calibration module to extract the third dimension by
performing triangulation [18].
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4.1 Datasets: calibration and hand skeleton

The new camera setting proposed represents a preliminary experiment that is
conducted on a generic object in motion: an hand in motion. This is a preliminary
dataset useful to check the mirror-camera setting before applying it to a dataset
acquired through SWIR technology. Once this part will be validated, the same
procedure should be adopted to track and evaluate different deformable body parts
of a mouse such as its ventral region, the tail and/or the fluorescent vessels.

First, this third experiment requires the acquisition of two distinct videos
recorded with the identical mirror-camera system:

• A calibration video: to automatize the calibration of both cameras, a
particular board chess is recorded while is moving and showing to the camera
different inclinations of its squares.

• An hand in motion video: an object capable of moving, rotating and
changing its shape to record various poses over time.

The videos are recorded in 50fps with a SONY ILCE-6400 in RGB color space, and
frame size of 1920x1080 pixels. The farthest point of the mirror has a distance of
≈ 40 cm from the camera lens to include both the subject and its reflection into
the field of view. In the following two paragraphs, the calibration and the moving
hand videos are described in detail.

4.1.1 Calibration video: ChArUco board

An important step for 3D reconstruction is to correct the typical distortions
introduced by the pinhole camera (see section 1.3.1). The distortion essentially
makes straight lines appear curved within an image and it depends on many factors
such as the optical design of lenses or the relative position of the camera to the
subject. However, in applications that use stereo images, the distortions need to
be corrected. The distortion D is modeled with three parameters k1, k2, k3 as

D([x, y]) =
x+ x(k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)4)
y + y(k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)4)

 (4.1)
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where x and y are the 2D coordinates of the object within the image. To dis-
cover these parameters, the easiest way is to provide a well defined object whose
dimensions are known, and by using its coordinates in the 2D plane matched
with its dimensions in 3D space, the distortion coefficients can be calculated. The
above-mentioned object is the ChArUco board in Figure 4.3.

Figure 4.3: Charuco board definition [19]: it is a combination between Chessboard
and ArUco, in order to detect markers with more accuracy

A ChArUco board tries to combine the benefits of two other calibration objects:
a common chessboard and the ArUco markers. The latter are useful because their
versatility and its easily detection. In fact, they can be detected even if they are
occluded or not completely visible, but the accuracy of their corner positions is low.
Thus, in ChArUco board, ArUco is combined with a common chessboard whose
patterns can be easily refined because they are surrounded by black squares. In
Figure 4.4 is shown the ChArUco board adopted for this experiment. Its pattern
has 7× 5 squares, with 4 bit markers. The size of each marker is 15 mm, the size
of each square is 26 mm, and the length separation between marker and the square
board is 1 mm. In the calibration video, the ChArUco board and its reflection
are filmed for less than one minute while we manually rotate the board to show
different angles to the two field of view of the cameras (real and virtual).

In section 4.4.1, an overall explanation of how the distortion parameters are
calculated will be explained.
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Figure 4.4: Charuco board used for calibrating cameras in our experiment

4.1.2 Object in motion: hand skeleton

The object we are going to reconstruct is an hand in motion. The hand moves,
rotates, and shows to the camera different poses in some of which itself occludes or
completely hides other parts (see Figure 4.5). Fingers sometimes overlap and the
palm rotation causes a reversal of the position from the thumb to the little finger,
which could confuse the detection, and the correct hand pose.

Figure 4.5: Frames of moving hand with camera-mirror setting. Real object on
the left, and its reflection on the right of each figure. From different frames, not
always all fingers are visible

At this point, the mechanical goal is to estimate the three-dimensional pose
of the hand skeleton, and see if there is eventually a coherence in the movement
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between the 3D estimated pose and the 2D videos. Furthermore, what is worth
evaluating in terms of classification and regression validation is:

• The accuracy in finger detection even when two of them overlap

• The level of resemblance to reality

To answer to these questions, simple geometric procedures are adopted, exploiting
results that are obtained from the DeepLabCut and Anipose tools. Based on its
duration and the acquisition rate of the camera, the hand video consists of 1435
frames.

4.2 Pre-processing data

In the course of the video recording, the adoption of a second camera might
introduce a synchronization problem (e.g. double acquisition not exactly in phase,
interoperability issues between different cameras, etc.). This phenomenon is totally
avoided if a mirror is used. However, in order to obtain two different views from a
single one, a pre-processing step is required.

4.2.1 Extracting real and virtual views from a single cam-
era system

In our video, we have two distinct regions of interest. One is the direct view of the
object, and the other is its reflection. The pre-processing of the videos consists in
cropping the original video to emulate a double camera system. These steps are
shown in Figure 4.6.

We primarily process the raw calibration video by manually selecting the regions
of the two views to be cropped. The "direct" view (camA) of the object is taken
by cropping it, while the "virtual" view (camB) is taken by cropping and flipping
it. Since both calibration and object video are recorded by the same system, it
is necessary to have a coherence between them. Therefore, the software asks the
user for selecting a Region Of Interest (ROI) and afterwards it uses the same
ROI coordinates to crop the object in the identical fashion. With this purpose, a
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Figure 4.6: Pre-processing calibration video. The input on the left is the original
video (green square indicate real object, blue square the reflection). We first select
and crop the real view, then the reflection is selected, cropped and flipped. The
coordinates of the manual selection are saved.

setting.json file is created that contains the real and the virtual camera coordinates
information ([x, y, width, height] of a rectangle). The outputs of this pre-processing
step are two videos and a json file.

Hand1-camA

Hand1-camB

Hand1

CamBCamA

Figure 4.7: Pre-processing object video. On the left, the original input of the
moving object (green square indicates the real view, and the blue square the
reflection). Without manually selecting, the software automatically crops and flips
the video by using the coordinates saved from the pre-processing of the calibration
video.

Once the calibration videos are extracted, we proceed with the extraction of the
object videos (see Figure 4.7). This time, the two videos are automatically created
by using the coordinates saved in the setting.json. This is necessary because the
calibration videos need to be coherent in terms of frame sizes to the object ones,
and by using the saved coordinates, it is legitimate to say that the dimension
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constraints are satisfied.

4.3 DeepLabCut to track 2D points in an hand
skeleton

The two videos extracted in the previous section (Hand1-camA and Hand1-camB)
are the next step inputs: train a Convolutional Neural Network exploiting DeepLab-
Cut (see section 3.2.1 and Figure 4.8).

Based on the same workflow in Figure 3.5, from both camA and camB, 80 frames
are extracted using k-means method, for a total amount of 160 frames. The object
is labeled with an amount of 21 labels that follow the skeleton shape, whether the
palm is facing up or down. The notations adopted are reported in Figure 4.8, the
same user interface of Figure 3.6 and the same criteria in labeling are respected.

... ...

Hand1-camA Hand1-camB

Figure 4.8: General network architecture pipeline (left), Hand model with 21
keypoint labels (right)

Once each frame is labeled, DeepLabCut shuffles the two 80-datasets and splits
them in training and test set with a training fraction of 0.5. Then, it joins the
training sets coming from the two views to generate a unique training set, and the
same procedure is done for the test set (see Table 4.1).

The weights of the network are again trained on labeled data which consists of
the object images (this time recorded from two views) and their annotated body
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CAM A CAM B TOTAL
Training set 40 frames 40 frames 80 frames
Test set 40 frames 40 frames 80 frames

Validation set 1355 frames 1355 frames 2710 frames
Total dataset 1435 frames 1435 frames 2870 frames

Table 4.1: Dataset split in training and test set. The remaining frames are the
validation set

part locations. Due to the large amount of labels and frames extracted, two different
Residual Neural Networks are tested. Investigating multiple neural networks aims
to exploit a neural network more efficiently in terms of results and time. These
neural networks are trained to account for a wide variety of changes in the studied
frames, it is worth though exploring if deeper networks achieve better results even
if they spend more time or if the final result does not meet the expectations.

The network is trained for 700’000 iterations and its weights are initialized using
two pre-trained ResNet models with 50 layers and 101 layers (see Table 4.2).

Pre-trained
model

Training set
size

Test set size Training
fraction

Iterations

ResNet-50 80 80 0.5 700’000
ResNet-101 80 80 0.5 700’000

Table 4.2: Networks parameters. We train two neural network (ResNet-50 and
ResNet-101) by using the same parameters (training and test size, iterations)

4.3.1 Networks comparison

In order to evaluate the performance of DeepLabCut predictions, we consider
classification and regression separately. To measure classification, we analyze the
ability of the models to correctly identify the body parts. Moreover, two different
deep network architectures are tested to evaluate the advantage of using a deeper
network rather than a shallower. To measure regression, we evaluate the pixel error
between paired observations (real and predicted).

Once the network is trained, videos are analyzed using the trained weights.
From this automatic analysis, DeepLabCut provides files that contain the predicted
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x and y pixel coordinates of each labeled body part and the network likelihood,
per frame. To make comparisons between the networks, two main .csv files are
used which contain a list of:

• labels manually defined by human (ground truth)

• labels predicted by the network.

To have a qualitative visualization of human labels against the network predic-
tions, a useful image is given as in Figure 4.9. The human labels are indicated with
a colored dot, while the predictions are divided in:

• points labeled with an high level of confidence (+)

• points labeled with a low level of confidence (×)

where the level of confidence depends on the likelihood calculated by the network.

Figure 4.9: Human and predicted labels with level of confidence

For instance, as it is clear from the Figure 4.9, the yellow and orange labels are
almost correctly predicted (+), while the blue label is a cross (×) because it should
be placed on the thumb instead of on the little finger. This type of error is a region-
based misclassification, in the sense of misdetecting one finger rather than another.
However, even if the yellow and orange labels are correctly placed, inaccuracies
are detectable, and we can consider this analysis as a pixel-based misclassification,
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and thus how large is the network error in terms of the pixel distance between the
predicted label and the ground truth. The region-based validation is carried out on
test set by using Confusion Matrix. For the pixel-based validation we use the Mean
Absolute Error (MAE) on the test and training set to evaluate the similarity and
accuracy between the predicted and manual labels. Moreover, further evaluations
are accomplished to also take into account the duration of the training and how
the prediction errors vary when some parameters change.

Classification validation

A useful way of visualizing the performance of a prediction model is using a
Confusion Matrix, already described in section 3.2.2. Even in this experiment,
we deal with a multi-class problems. Each label represents a class, for a total
amount of 21 classes (base, bbP1, MCP1 ... tip5 ), and the criteria of the minimum
distance is adopted to evaluate if a prediction is correct or incorrect. Since we are
dealing with 21 classes, the unbalance of the multi-class model is more evident.
For this reason, considering the F1-score is again the most convenient choice to
evaluate the network performances.

ResNet50-iter0-shuffle1 - TEST

precision recall f1-score support

base 0,71 0,84 0,77 80,00
bbP1 0,79 0,73 0,76 80,00
MCP1 0,73 0,70 0,71 80,00
PIP1 0,71 0,65 0,68 80,00
tip1 0,81 0,76 0,79 80,00

MCP2 0,82 0,75 0,78 80,00
PIP2 0,72 0,66 0,69 80,00
DIP2 0,80 0,60 0,69 80,00
tip2 0,77 0,70 0,73 80,00

MCP3 0,73 0,86 0,79 80,00
PIP3 0,69 0,79 0,74 80,00
DIP3 0,63 0,71 0,67 80,00
tip3 0,61 0,71 0,66 80,00

MCP4 0,73 0,58 0,64 80,00
PIP4 0,81 0,93 0,87 80,00
DIP4 0,87 0,83 0,85 80,00
tip4 0,78 0,86 0,82 80,00

MCP5 0,68 0,81 0,74 80,00
PIP5 0,68 0,66 0,67 80,00
DIP5 0,69 0,65 0,67 80,00
tip5 0,76 0,69 0,72 80,00

precision recall f1-score

Micro 0,74 0,74 0,74
Macro 0,74 0,74 0,73

1

Figure 4.10: Test set confusion matrix and validation metrics of ResNet-50

The confusion matrix obtained for the test set with both ResNets are shown in
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Figure 4.10 and in Figure 4.14. Because of the number of classes in the model, they
are 21x21 arrays. The performances detailed in section 3.2.2 have been calculated
for each label and then a global measures (micro and macro metrics) have been
determined. As we can immediately see in Figure 4.10, the overall classification
performance of the network looks valuable due to the high number of True Positives
(values on the matrix diagonals) with an Micro and Macro F1-score of 0.74 and 0.73.
However, some metrics values in the performances table deviate from the others.
If we look up to the matrix, we can finally see where the performances decrease.
For instance, if we consider the ResNet-50 table in Figure 4.10, the lowest F1-score
values belong to those classes between DIP3 and MCP4. If we now investigate
those labels on the confusion matrix (Figure 4.10 region surrounded in purple), we
can clearly see that around those labels are located the highest number of False
Positives and False Negatives. As the purple diagonal suggests, there is a sort of
"shifted" misdetection, as if the common error of the network is to mix-up a finger
with the one that precedes it or follow it (e.g, tip3 predicted as tip2, tip4 as tip3,
tip5 as tip4 ). Let’s consider now the tip3 class. It has an F1-score of 0.66, since it
is effected by the row and column values of the confusion matrix squared in dashed
red line. The column represents the False Positive, and tip4 label is predicted as
tip3 for an amount of 15 predictions. To understand why this happens, we look up
at the frames in which this error was made. We have found that the main errors
made by the network can be summarized in four groups:

1. Despite the body part is well seen, the network makes the wrong prediction.
In Figure 4.11a, tip4 is predicted as tip2.

2. The real body part is completely hidden by the body part that was in its place
predicted and this confuses the network. In Figure 4.11b), the little finger is
completely hidden, and its labels are confused with those of the ring finger.

3. The real body part is completely hidden, but the prediction seems to be
well located. However, the human label is missing and the nearest label
is the output of the final prediction. In Figure 4.11c, PIP5 and DIP5 are
well-located, but their manual labels are missing.

4. The predicted region is almost correct, but the criteria of the minimum distance
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does not allow a correct evaluation of the result. In Figure 4.11d, MCP5 has
the shortest distance with MCP4.

Figure 4.11: a) Wrong prediction even if all the body parts are well visible (tip4
predicted as tip5), b) Due to the overlap between the two fingers, the network
has misdetected the position of labels DIP5 and TIP5, c) PIP5 and DIP5 are
well predicted, but because the human labels are missing, the minimum distance
is automatically measured with PIP4 and DIP4, d) both MCP4 and MCP5 are
shifted of a bunch of pixels from their real position, but while MCP4 has the
minimum distance with the real itself, MCP5 has its minimum distance with MCP4,
otherwise it might have been considered correct.

If we now think how these errors can be solved, we realize that some of them are
strictly related to the training of the network and some others are caused by our
choices. For the errors coming from the group 1 and 2, they are clearly networks
misclassification and they can be solved in different ways. For instance, one could
be to act directly on the network and exploit the opportunity that DeepLabCut
gives us to refine some frames and re-train the network. In this case, DeepLabCut
asks for randomly selecting frames or specifying which one we want to refine. The
best choice can be to select and add to the training set directly those frames in
which we already know that the network makes mistakes. Another could be to
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improve the minimum distance criteria by using a greedy algorithm, proposal useful
also to solve the error coming from group 4. In Figure 4.11d, MCP5 is classified as
MCP4 because of the distance, and at the same time MCP4 is correctly classified
as itself. This means that two predicted labels are assigned to the same MCP4
class. By using the greedy algorithm this double assignment can be avoided. This
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Figure 4.12: Greedy algorithm. In order to resolve the mis-classification caused
by the minimum criteria, we propose a greedy algorithm to assign each predicted
label to a single class, avoiding multiple assignations

algorithm looks for the locally optimal choice at each stage, and it assigns each
prediction to a single output class. In order to see how this algorithm may operate,
we copy the configuration of Figure 4.11d, and analyze it in Figure 4.12. Once the
network returns these labels coordinates, the algorithm would creates two lists:
real and predicted class. Then, it calculates the distance that each + has from
each ·, and it searches for the minimum distance. It now sorts the distances and,
starting from the shortest, it assigns each predicted label to each class. However,
at the end of each iteration, it removes from the real list the last assigned class in
order to avoid a multiple assignment. The greedy algorithm and the refinement of
the network are potential solutions that will be performed in future works.

Although slightly worse, the same consideration can be made for the ResNet-101
test set. The initial hypothesis of the inspection between ResNet-50 and ResNet-101
was that a deeper network might achieve better results then a shallower. Moreover,
we have seen that during the training, the deeper network ResNet-101 plateaus
faster and to a lower loss value than ResNet-50 (see Figure 4.13). However, it is
worth taking into account the duration of the training. The training is performed

68



3D pose estimation of an hand in motion with camera-mirror stereo vision

0 100000 200000 300000 400000 500000 600000 700000
Iteration

0.000

0.002

0.004

0.006

0.008

0.010

Lo
ss

Loss comparison between ResNet-50 and ResNet-101
ResNet-101
ResNet-50

Figure 4.13: Loss function for ResNet-50 and ResNet-101. ResNet-101 plateaus
faster than ResNet-50.

ResNet101-iter0-shuffle1 TEST
precision recall f1-score support

base 0,79 0,70 0,74 80,00
bbP1 0,76 0,75 0,75 80,00
MCP1 0,85 0,65 0,74 80,00
PIP1 0,67 0,70 0,68 80,00
tip1 0,69 0,76 0,73 80,00

MCP2 0,71 0,75 0,73 80,00
PIP2 0,64 0,66 0,65 80,00
DIP2 0,81 0,65 0,72 80,00
tip2 0,78 0,63 0,69 80,00

MCP3 0,71 0,84 0,77 80,00
PIP3 0,70 0,74 0,72 80,00
DIP3 0,70 0,70 0,70 80,00
tip3 0,68 0,73 0,70 80,00

MCP4 0,68 0,63 0,65 80,00
PIP4 0,87 0,84 0,85 80,00
DIP4 0,78 0,78 0,78 80,00
tip4 0,71 0,90 0,79 80,00

MCP5 0,80 0,79 0,79 80,00
PIP5 0,67 0,79 0,72 80,00
DIP5 0,81 0,68 0,73 80,00
tip5 0,70 0,75 0,72 80,00

precision recall f1-score

Micro 0,73 0,73 0,73
Macro 0,74 0,73 0,73

1

Figure 4.14: Test set confusion matrix and validation metrics of ResNet-101.

using a NVIDIA GeForce RTX 2070 GPU and for 700’000 iterations it requires
1 day to train the ResNet-50, and 1 day and 16 hours to train the ResNet-101.
From the performances table (Figure 4.14), the classes with the worst values are in
some case the same of the ResNet-50. If we look at the same classes of ResNet-50
analysis, DIP2, tip3, MCP4 seem to be improved, but the overall change cannot
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be considered a worthy gain. Therefore, if we look at the confusion matrix (see
Figure 4.14), the overall behavior is comparable to the previous one. The displaced
diagonal is re-identified even it is longer. The first impression may be that exploiting
a deeper network is not improving the research result. However, this comparison
needs to be further investigated.

In order to asses if the achieved performances are stable, the dataset is shuffled
three times before being split into training and test sets, and the networks are
trained on each division. In order to measure whether the average score differs
significantly across samples, a t-test is performed. This test help us to compare
two averages. It tells if they are different from each other and how significant the
differences are. The t statistic score is calculated as

t = Xd

sD/
√
n

where Xd and sD are the average and standard deviation of the differences between
all pairs, and n is the number of pairs [20]. In other words, larger is the t-score,
more difference there is between samples. The t-test is performed for each metric
(Precision, Recall, and F1-score). Since we have shuffled the networks three times,
we have three samples for each metric (e.g, the Precision values of ResNet50 are
[p501, p502,p503], which are paired with [p1011, p1012,p1013] of ResNet101). Every
t-value is paired with a p-value, that is the probability that the results from our
sample occurred by chance. If we observe a p-value greater than 0.05 or 0.1 then we
cannot reject the null hypothesis of identical average scores. The values obtained
are in Table 4.15.

T-test table for three shuffles of ResNet-50 and ResNet-101

ResNet-50 ResNet-101 t-value p-value

Macro_Precision 0,733±0,009 0,717±0,025 1,722 0,227

Macro_Recall 0,727±0,01 0,711±0,026 1,769 0,219

Macro_F1-score 0,727±0,01 0,711±0,026 1,762 0,22

1

Figure 4.15: T-test of three samples for each ResNet, repeated for the Macro-
Precision, Macro-Recall and Macro-F1-score
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From the t-values, we cannot say that the networks are significantly different. A
t-value of 1.7 means that the groups are 1.7 times different from each other, but to
understand if this difference is big enough we look at the p-values. The p-values
are remarkably high to reject the hypothesis that the networks are similar, since
we cannot say that the results are occurred by chance. This may be caused by the
limited number of samples used for the analysis, and so we should increase the
amount of shuffles and train the networks more times. Based on the collected data,
we agreed that the benefit of adopting a deeper network is not relevant for our goal
to the extent of spending a huge amount of days to train other shuffled data.

Regression validation

In order to evaluate the pixel-based errors of the networks, we make a comparison
between test and training set. In Figure 4.16, we show how the ResNet-50 has
predicted the hand pose in a training, test, and validation frame. The validation is
a set of frame that is neither included in the training set nor in the test set, this
is why the manual labels are missing. However, verifying how the model behaves
with the validation set is what really matters to understand if the model was well
trained. Even if we cannot perform any automatic analysis, from both validation
frames (camA and camB) we can only assess that the model has correctly predicted
the region labels.

On the contrary, from test and training frame we can measure the accuracy level
because we can physically compare predicted and manual labels. To evaluate this
accuracy, the Mean Absolute Error is calculated pairwise per body part. In
statistics, it is a measure of errors between paired observations expressing the same
phenomenon or, as in this case, a comparisons of predicted versus observed. To
calculate the difference between prediction and observation, we use the Euclidean
distance since the data are points in two dimensions. Thus,

MAE = 1
n

n−1∑
i=0

√
(xi − x′i)2 + (yi − y′i)2 (4.2)

where n is the amount of total labels (21 × number of frames of the test set), (xi, yi)
are the manual coordinates, and (x′i, y′i) the predicted coordinates (not a number
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Figure 4.16: Comparison between predictions of training frames and test frames:
CAM-A (above), CAM-B (below)

NaN values are not considered). The MAE is calculated for the three shuffles of
the dataset, and in Table 4.3 it is shown their averaged values. Accordingly with
Figure 4.16, the pixel-error is more evident in the test set rather than the training
set, which demonstrates the efficiency of the model in well-detecting labels used for
training the network. Moreover, the standard deviation suggests that the error is
more stable in the training set, since it is < 1, rather than in the test set, in which
it is > 5. Comparing the two networks, ResNet-101 achieves pixel-error comparable
with the ResNet-50 in the training set, even if it is less stable through the shuffles
(its standard deviation is equal to 0,22 against the 0,05 of ResNet-50). At the same
time, the averaged pixel-error in the test set is greater for the ResNet-101.

ResNet-50 ResNet-101
Training Set 0,90 ± 0,05 0,90 ± 0,22
Test Set 36,11 ± 5,41 42,75 ± 5,51

Table 4.3: MAE averaged on three shuffles for training an test set for ResNet-50
and ResNet-101
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We can conclude that, based on classification and regression validation, the
overall predictions in terms of region and pixel positions are similar for both
networks. However, for our purpose, ResNet-50 achieves acceptable results in less
time and with more precision than ResNet-101. For these reasons, further research
will be carried out exploiting this architecture.

4.4 Extracting 3D pose by triangulating points
with Anipose

The final step of this experiment is to extract the 3D model of the hand skeleton
exploiting the 2D predictions coming from DeepLabCut. The 3D tracking toolkit
implemented by the authors of Anipose [18] helps us to reconstruct the skeleton,
and it consists in the following steps:

1. Estimation of calibration parameters

2. Detection and refinement of the 2D predictions coming from DeepLabCut
(both for the real and virtual camera videos)

3. Triangulation and refinement of keypoints to obtain 3D pose estimation.

The advantages of using this toolkit consist in having a good refinement of bad
predictions coming from DeepLabCut, and a suitable visualization of the final 3D
reconstruction.

Since [18] deals with experiments that require the adoption of more than two
cameras, Anipose proposes an initial optimization by performing the calibration
of multiple cameras. Furthermore, in our single-camera case, we would have to
calibrate only a real and a virtual camera. Then, two approaches might be adopted:

1. calibration based on geometrical features of the mirror

2. calibration proposed by [18].

After having analyzed both calibration approaches, the second one has been
chosen. Nevertheless, the first approach might be an interesting evolution for future
researches.
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4.4.1 Calibration of multiple cameras

In order to perform a 3D reconstruction starting from 2D points detected from
different cameras, calibration is a crucial step to matched points between different
views. This becomes even more difficult if we use multiple cameras which can affect
images with different distortions and optical properties. Therefore, the estimation
of the point position in a 3D space may be more accurate if these camera effects are
handled and corrected. Calibrate cameras exactly means to determine the intrinsic
and the structural parameters of a camera. The model defined in section 1.3.1 is
described as

p̃img =


fx γ cx

0 fy cy

0 0 1



r11 r12 r13 t1

r21 r22 r23 t2

r31 r32 r33 t3

 P̃

p̃img = K [R|t] P̃ = K p̃cam

where K is the intrinsic matrix and consists in five parameters: fx and fy focal
length terms, γ is the skew parameter, and cx and cy are the offset terms. At this
time, we cannot easily approximate these parameters, since we have a multiple
camera system, and each camera requires to be well considered. In this paragraph,
we analyze the properties of our camera-mirror stereo vision system, and how its
reflection properties can help us to relate the two cameras. Afterwards, we describe
in a general way how Anipose estimates these parameters, and how they are used
to reconstruct the 3D hand.

Calibration in camera-mirror stereo vision system

A traditional stereo vision system is composed by two cameras taking images of a
3D object from different angles. Essentially, the pixels from the right image are
matched with pixels of the left one, and the epipolar geometry is used to calculate
where the object is located in a 3D space.

As it is shown in Figure 4.17, the right camera in a pinhole camera model (see
section 1.3.1) can be described as an object that is translated and rotated with
respect to the left camera.
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Figure 4.17: Translation and rotation of the right camera with respect to the left
camera
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Figure 4.18: Epipolar geometry of two cameras

The resulting system is shown in Figure 4.18. It is called epipolar geometry
model, and it determines the geometric relation between two images in a stereo
vision system. The 3D point P has pl and pr as its 2D projections onto image Il and
image Ir, Cl and Cr are the optical centers of left and right cameras, respectively.
The projection of the 3D point P̃ onto a 2D image in homogeneous coordinates is

p̃img = K [R|t] P̃ = K p̃cam (4.3)

p̃cam = K−1 p̃img (4.4)
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where p̃cam is the product between [R| t] and P̃, and it represents the transformation
of the world coordinates of P̃ into camera coordinates. Then, if we multiply p̃cam

to the intrinsic matrix K we can get the points description in the image plane in
terms of pixel, that is p̃img. However, Equation 4.3 is referred to a single camera
system. Based on this model, we want to obtain an equation which describes the
relation between the two cameras.

If we go back to the Figure 4.18, P, Cl and Cr define the epipolar plane π. Since
they are on the same plane, Clpl, Crpr and ClCr are three coplanar vectors. To
geometrically ensure that three vectors are coplanar, they must satisfy the scalar
triple product

Clpl · (ClCr ×Crpr) = 0 (4.5)

Considering that pl and pr are on the same line of the vectors Clpl and Crpr, we
can reformulate the Equation 4.5 as

p̃l · (t×R p̃r) = 0 (4.6)

where p̃l = (xl, yl, 1)Tand p̃r = (xr, yr, 1)T are the homogeneous coordinates of
the projection of P̃ with respect to camera Cl and Cr, t is the translation of camera
r with respect to camera l, and R p̃r is the rotation of camera r with respect to
camera l. Moreover, we can reduce the Equation 4.6 in a more compact formula as

p̃T
l [t]x R p̃r = 0 (4.7)

[t]x =


0 −t3 t2

t3 0 −t1
−t2 t1 0



p̃T
l E p̃r = 0 (4.8)

where [t]x is called the skew symmetric matrix. The equation 4.8 defines the
relation between two image planes and so the relation between the image of a point
in one camera to the image of the same point in the other camera. [t]xR is also
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called essential matrix E.
Another and more important relation can be obtained if we go back to Equation

4.7. We can assert that p̃l and p̃r are the 2D projections of point P̃ to each camera
(p̃l = p̃caml

and p̃r = p̃camr). Thus,

p̃L = Kl p̃l ⇒ p̃l = K−1
l p̃L

p̃R = Kr p̃r ⇒ p̃r = K−1
r p̃R

where p̃L and p̃R are the p̃img of Equation 4.3. If we replace these two terms in
Equation 4.8,

(K−1
l p̃L)T E (K−1

r p̃R) = 0

p̃T
L K−T

l E K−1
r p̃R = 0

p̃T
L F p̃R = 0 (4.9)

where F is the fundamental matrix of the two cameras. F prescribes that for the
point pR, the analogous point in the left image is located on the corresponding
epipolar line. Geometrically, F p̃R defines the epipolar line of point p̃L on the
right image. The intersection between the epipolar line and the base line gives
an epipole e. Finally, determining the fundamental matrix F means defining the
intrinsic parameters K of the two cameras and their structural parameters [R|t].
Therefore, given F we can always relate between each other the two cameras.

According to [21], the epipolar constraint model is also applicable for mirror
images. However, compared to traditional stereo camera system with two real
cameras, the model has different properties since the target point is taken from
different fields of view by a single camera. In a general case, the fundamental matrix
F has 7 degrees of freedom, but as [22] shows, in a camera-mirror system can be
reduced to 6. Since the real camera and the virtual camera are symmetric, epipolar
lines and epipoles are identical in the real and virtual images. Consequently, the
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Figure 4.19: Camera-mirror setting

fundamental matrix F can be described as

F =


0 −e3 e2

e3 0 −e1

−e2 e1 0

 (4.10)

where [e1, e2, e3]T = e is an epipole between a real and virtual cameras. Therefore,
the epipolar points el and er coincide in the real image at point e (see Figure 4.19),
due to the existence of only a real camera and the symmetry between the real
camera and its reflection.

This geometrical analysis of the camera-mirror system is a potential solution to
improve the current calibration method. We have found that with Equation 4.9,
we can relate two matched points from the cameras. Since the camera-mirror is
a compact and flexible system rather than a multiple real cameras one, we may
further investigate these properties, and lighten the calibration.

78



3D pose estimation of an hand in motion with camera-mirror stereo vision

Calibration performed by Anipose

Anipose performs an automatic calibration of every camera is used for the experi-
ment. This is a great beneficial if we want to perform a reconstruction with more
than a mirror. In order to calibrate, the camera model used by [18] introduces the
distortion function D, presented in Equation 4.1, and make the full model equal to

p̃ = D(K [R|t] P̃) (4.11)

The Equation 4.11 is a model proposed by [23]. Essentially, [18] reduces the number
of parameters setting f = fx = fy , γ = 0, and set the camera in order to have
(cx, cy) at the center of the image. Similarly, they found that in Equation 4.1, that
is

D([x, y]) =
x + x(k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)4)
y + y(k1(x2 + y2) + k2(x2 + y2)2 + k3(x2 + y2)4)


the terms k2 and k3 are always small for modern cameras. Therefore, they estimate
only 8 parameters per camera: 6 for the extrinsic matrices, 1 for the intrinsic
matrices and 1 for the distortion function.

The intrinsic parameter is estimated by using the ChArUco board of paragraph
4.1.1. OpenCV automatically detects the keypoints of the calibration board
simultaneously captured from the two cameras and the intrinsic parameter are set
based on the board’s geometric regularities. Then, to make a valuable calibration
they estimate these 8 parameters by implementing a bundle adjustment to minimize
the reprojection error. In other words, they take a keypoint of the board, detected
by both views, and estimate its 3D position. Then, this 3D point is 2D-projected
in both cameras planes and they quantify how closely this re-projections match the
respective keypoints of the board. The calculated error is iterated until a minimum
error is obtained (for details, see [18] p.13-14).

4.4.2 3D skeleton

We finally triangulate the 2D predictions to obtain a preliminary 3D model of the
moving hand (see Figure 4.20).

Triangulation is the process of determining the position of a point in a 3D space
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Figure 4.20: Frames of the 3D reconstruction of the moving hand in time sequence

by generating a triangle to it from two known points. Thanks to the filtering
operation of Anipose [18], the hand movements are smoothed in each frame and
the overall poses are most of the times coherent with the 2D videos. However,
this filtering causes some poses not to be very accurate especially when the hand
changes its shape rapidly.

In order to evaluate how good is the 3D prediction, we physically measured
the distances between points while the hand is completely fully supported by a
flat surface. Through Fiji - ImageJ we physically measure the distance between
each label previously shown in Figure 4.8. In order to have a comparable unit,
the obtained distances are normalized with respect to the longest segment of the
skeleton. After, we calculate the segment length reconstructed by the 3D predictions
for each frame, and we normalize each row with respect to the same length measured.
At this point, we generate two complementary graphs. In Figure 4.21 is shown
the averaged length of each segment compared to the ground truth. The overall
predictions suggest that the 3D model follows the ground truth behaviour. The
inaccuracy seems to occur regularly:

• The predicted segments MCPx-PIPx are longer than the real one
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Figure 4.21: Lengths of the skeleton, comparison between ground truth and
averaged predicions

• The predicted segments DIPx-tipx are shorter than the real one.

As well as, the length of PPIx-DIPx is predicted more accurately with the same
regularity. What can really affects the length of the skeleton segments is manually
labeling both views. Since the reflection appears far from the camera with respect
to the real view, the points are difficult to be labeled with high accuracy, therefore
they are to be considered as approximated positions. An interesting test to do
would be to automatically label the second view points by exploiting the SIFT
algorithm described in section 2.1, and see to what extent can we match points
with similar descriptors. However, if we look at Figure 4.22, the MAE (see section
4.3.1) is constantly < 0.1 for every segments. Therefore, the overall error is low
enough to say that the pose estimation is consistence.

Even this is a preliminary result, the camera-mirror stereo system can be
considered a potential solution to perform total body pose estimation. The 3D
model reflects the reality, predicts the geometrical relation between components,
and if the body rotates, it correctly suggests which part is in front and which
one is behind, missing information in a monocular video. We want to repeat this
experiment for the whole mouse, and obtain a 3D skeleton of every part, deformable
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Figure 4.22: Men absolute Error calculated for each segment of the skeleton

and non-deformable. It may be a starting point to a total body reconstruction, and
through photogrammetry steps we may correct the results obtained in section 2.2.3,
get a dense reconstruction, and a texture with the vascular structure. Otherwise,
we may start again and directly label precise vessels that we can see through SWIR
imaging. Obtaining a 3D structure of the vessels network may allow us to first
see how deep and accurate can be their tracking (e.g, can we track capillaries,
or only larger vessels can be detected?), we may try to evaluate the symmetry
between right and left side, or compare it between different mice. Nevertheless, we
deem worth investigating how the algorithm works if applied to a dataset acquired
through SWIR technology.
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Chapter 5

Conclusion and future experiment

Examining animals without affecting their natural physiology has always been of
great interest in the field of laboratory research. Since animals hardly cooperate,
scientists are often led to restrain or anaesthetize them, causing the acquisition of
data often being compromised by their doped and stressed state. In order to bypass
these conditions, we investigate how to obtain a 3D reconstruction of the examined
mouse while it is moving freely in its environment. Moreover, the acquisition is
made by using a new imaging technique, called SWIR, which allows us to see
through the mouse skin.

The purpose of the first experiment was to investigate the existing reconstruction
technique: photogrammetry. We have tried to figure out how its algorithm might
help us to image the mouse fluorescent body. Since the SWIR technology allows us
to see the mouse vessels, we have looked for a 3D object with a SWIR texture. We
wanted to obtain a mouse surface in three-dimensions which we would use to follow
the vascular network. We have found that photogrammetry easily reconstructs
rigid objects, but the results change when the subject is moving or changing its
shape. Regarding static objects, we have reconstructed a mouse video, in which
vessels and a tumor where well-visible thanks to an NIR imaging. So, we definitely
can obtain a texture with vessels information in three-dimensions which may be
tracked and analyzed. Moreover, what we have learnt from this experiment is that
we can reconstruct whether the camera rotates around the object, or the object
rotates around itself as the camera takes photographs. This has been helpful since
we really start to understand how camera calibration works. Regarding moving
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objects, we have obtained a preliminary texture of the fluorescent body of a mouse
freely to move, but during the reconstruction some errors occurred. One was the
multiple reconstruction of the same part of the body, since the movement might
confuse the algorithm.

As a motion compensation, a second experiment has been conducted. We wanted
to understand if by tracking a specific and rigid body part, we would have been
capable of extracting its orientation in 3D space over time. We have used a deep
learning technique to track in each frame of the video the 2D direction of the mouse
skull. After, we have used the camera information combined with the absolute
coordinates of the skull to estimate the third dimension. We have found that, based
on the 2D predictions, we can obtain a 3D skeleton of the skull while is taking
different orientations on the whole video with minimum error. We have learnt how
to manipulate the camera calibration to follow the object we are recording, and
to extract three dimensional information from that. Moreover, we analyzed the
architecture of the neural network and its performances in estimating the 2D skull
positions. We have used DeepLabCut tool whose predicted labels were excellent if
compared with the manual ones, and this is decisive since they certainly affect the
3D predictions. We were excited with this experiment, as the results supported our
expectations, and excellent outcomes have been obtained using only a monocular
video. For this reason, we have decided to extend the reconstruction to the whole
body, since until now we have been focused on tracking just the skull.

In the third and last experiment, our goal was to find a way to track the whole
body of an object, whether it was rigid or deformed. In order to extract the third
dimension of the body without knowing a prior 3D model, we had to perform a
stereo vision system which consists in recording the object from two different points
of view. This has been necessary in order to triangulate corresponding points of
two images and estimating their positions in a 3D space. This has been feasible also
because we have already learnt how to calibrate one camera, even if the concept
may appear different with two cameras. The first thing that we have learnt from
this experiment is that we can calibrate two cameras, since one could be considered
as rotated and translated with respect to the first one. The second important thing
has been the adoption of a mirror to avoid a second camera. In fact, we wanted
the system to be as simple as possible, keeping a monocular system. The adoption
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of a mirror has allowed us to record an object, a moving hand, from to different
points of view: the real object and its reflection. We have used again DeepLabCut
to estimate the points positions in both views, but this time we have analyzed two
different neural network architectures. This comparison has been done in order to
understand if a deeper network could have provided more accurate results. Since a
deeper network did not improve the initial performances, after a careful analysis we
have agreed that a simpler system was convenient for the purposes of our research.
After obtaining the same labeled points for both real and virtual cameras, we have
triangulated each matched points to obtain a 3D skeleton of the hand in motion.
The result was consistent and reflected the reality, since the hand skeleton followed
the movements recorded in the monocular video.

Therefore, fundamental findings arise from each experiment, and each of these
approaches can bring something useful to the others. Future research may follow
in order to improve some features:

1. Automatic labeling: since the accuracy of the predictions strongly depends
on the number of labeled frames used in the training set, we want to find a way
to automatize this process, and make it faster. One could be using particular
filters to pre-process the image. For example, if we are interested in labeling
points of vessels, we can filter in order to obtain only those white pixels that
for sure belongs to the vessels. This kind of image-processing would require
the adoption of strict constraints in the algorithm, since we cannot accept
ambiguous points.

2. Finding matched points: instead of manually labeling the second camera,
we may investigate other ways to find the matched points in the second view.
One could be applying what we have learnt with the photogrammetry pipeline,
and so using the SIFT algorithm to match points in the two views. If the
match is correct, it would be definitely more consistent than the manual one,
since in the SIFT algorithm we use statistical descriptors to find matches.
Another way would be to exploit the properties of the mirror: we know that
each point in the real view has its symmetrical correspondent point in the
reflection.

3. Simplify the calibration: as introduced in section 4.4.1, the adoption of
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a mirror may simplify the calibration method. We already know how the
two cameras are related to each other, since one is the reflection of the other,
therefore a point in the real image has its correspondence exactly in symmetry.

4. Combining tracking and photogrammetry: thanks to the tracking method
described in our experiments, what we can obtain is a skeleton of the object
of interest. Since we are interested in studying things such as the changes
of the vessels over time, it could be worth having information about the
vessel sizes (e.g, diameters). We want to investigate if we can obtain a dense
reconstruction, and so a texture, around our skeleton segments whose posi-
tions in a 3D space are already known. In other words, we want to exploit
photogrammetry algorithm to physically build pieces of texture around our
3D skeleton. Otherwise, we can think to quantify vessels sizes by associating
a proportional weight to each arch of the skeleton.

These are only a few things that we have listed while performing the experiments,
and of course there are many solutions to be tested. If the improvement is
well-addressed, we can think of performing the mirror-camera system applied on
SWIR imaging, and then see what kind of images we are capable of acquiring by
introducing a mirror.

SWIR 
(InGaAs) 
Camera
+ Lens

Lasers
962nm

SWIR Emitting Probes

Filters  
(>1100nm)

Mirror

Figure 5.1: Camera-mirror setting combined with SWIR imaging.
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The camera system we are referring to will be something similar to the one in
Figure 5.1. Exciting the probes with a laser, as described in section 1.1, the InGaAs
camera will acquire a monocular video whit both real and reflection views of the
mouse. We will try to repeat the process of the third experiment by tracking selected
points from both views and triangulate them for the whole body reconstruction.
Moreover, we will look for alternative technologies, in order to understand if we
are using the right methods for reconstructing. For example, we may try to use
a marker technology that can solve the tracking of a body part, and see how the
reconstruction changes. Or we can totally change the reconstruction method, and
look for other techniques. Another one could be using the illumination to detect
the 3D shape of an object by detecting the curvatures of the structured light [24], or
improving the stereo system by performing a stereo sensing system and exploiting
neural depth refinement [25] on SWIR imaging.

In conclusion, the results obtained in this thesis are potential starting points to
achieve an efficient and innovative reconstruction of animals body, without being
forced to anaesthetize them.
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