
POLITECNICO DI TORINO

DIPARTIMENTO DI INGEGNERIA MECCANICA E AEROSPAZIALE
(DIMEAS)

Master’s Degree in Biomedical Engineering

Assessing the robustness of the muscle
synergies decomposition algorithm.

Supervisors
Prof. Gabriella Olmo
Prof. Paolo Bonato

Candidate
Letizia Viscogliosi

TORINO, October 2020





Abstract

The theory of “Muscle Synergies” has been formulated in the last few decades to
have a better understanding of the optimization strategies applied by the Central
Nervous System (CNS) in the control of the activation and coordination of the many
muscles involved in any voluntary movement. The synergies can be considered as
patterns of co-activation corresponding to the activity of few muscles: having to
control a number of these modules lower than the actual number of muscles in-
volved, the computational cost of every task is significantly reduced.

The synergies are modeled as a time-invariant profile of activation across muscles,
activated by a time-varying coefficient. Summing the individual synergies, after
having scaled them by their coefficient, the profile of muscle activation should be
faithfully reconstructed. Different algorithms have been used in literature to extract
the synergies from the sEMG data, in this study the Non-Negative Matrix Factor-
ization (NNMF) decomposition algorithm was analyzed. The NNMF algorithm
operates a data projection from a n-dimensional space to a lower k-dimensional
space, where n is the number of channels considered and k the basis vectors, rep-
resenting the synergies.

The focus of this thesis is analyzing the changes in the final factorization per-
formed by the NNMF algorithm when one or more input channels are removed.
During real data collection loss of channels can occur frequently due to bad quality
of the recording. Having a different number of channels, it would not be possible
to compare synergies obtained from signals collected from the same muscles, both
for different subjects and for the same subject multiple times.

To approach the problem, sEMG data were synthesized, obtaining them from the
linear combination of a simulated set of synergies, and an increasing number of
channels was removed from the original signals. The performances of the NNMF
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algorithm were evaluated comparing its outputs, i.e. synergies weights W and tem-
poral coefficients H, for the starting signals where all the channels were still present
and the signals with a decreasing number of channels. The metrics used for the
comparison of the weights W and the temporal coefficients H were, respectively,
the Cosine Similarity (CS) and the Correlation Coefficient (CC).

The analysis of the results of the various simulation performed pointed out that
losing a limited number of channels does not compromise the ability of the NNMF
algorithm to detect the same synergies and to reconstruct in a satisfying way the
original signals, as long as not all the strategic channels or all the peculiar ones for
a certain synergy are lost.

To test the algorithm in conditions as close as possible to the physiological ones,
data from a gait analysis was simulated replicating the averaged EMG activity from
25 muscles during a single cycle of over-ground locomotion that could be found in
literature. Also with this set of data the performances of the algorithm were good
and the original synergies were preserved even when an high number of channels
was removed.
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Summary

The analysis of muscle synergies have a growing number of clinical application,
mostly in the field of rehabilitation and in the study of neurological pathologies.
The theory behind them provides a better understanding of the optimization strate-
gies applied by the Central Nervous System. Muscle Synergies can be defined as
patterns of co-activation of muscles, and can be modeled as time-invariant profile
of activation across muscles, activated by a time-varying coefficient.
The most common algorithm for the extraction of muscle synergies is the Non-
Negative Matrix Factorization Algorithm. This thesis focused on analyzing the
performances of this algorithm when one or more input channels are lost.

This thesis is composed by four chapters:

1. Muscular System Physiology and sEMG recording: The anatomy of
the muscular system, with a focus on the skeletal muscle, and the physiology
behind the mechanism of contraction is explained, to have a better under-
standing of the principles behind the generation and propagation of the EMG
signal. In the second part, the different ways to record EMG signal are ex-
plained, with a focus on the acquisition process and on the noise sources.

2. Muscle Synergies: the control theory behind the concept of muscle synergies
is explained. In the state of the art part, a short evolution of application of this
theory in experimental and clinical works is presented. Then, the process for
the extraction of synergies is explained, focusing on the Non-Negative Matrix
Factorization algorithm.

3. Material and methods: the practical steps to perform to extract muscle
synergies from sEMG signals are presented, and the methods needed to ana-
lyze the performances of the NNMF algorithm. Then, the plan and methods
applied in the four categories of simulations that were performed in the work
for this thesis are presented, with a focus on a method for the simulation of
sEMG signals.
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4. Simulations results and discussion: The results of the four simulations
are presented and analyzed.

5. Conclusions: An outline of the work done and the results obtained from this
thesis.
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Chapter 1

Muscular System Physiology
and sEMG recording

1.1 Basic principles of the Muscular System

The muscular system is an organ system whose main function is the body move-
ment, achieved in cooperation with the skeleton and the joints. The muscles com-
posing the muscular system are also responsible for stability and posture control,
production of heat, protection of the underlying organs and blood circulation.
Muscle cells are excitable, they respond to electrical stimuli, the Action Potential,
delivered through the nervous system with a contraction. Muscle tissue can be
classified into three types according to its function and to the structure of the cells
composing it [1]:

• Skeletal Muscle
The skeletal muscles are attached to the bones thanks to the tendons, therefore
with their contraction they can modify the orientation of the bones, keeping
the posture and allowing voluntary movements of the body. They also par-
ticipate in thermal homeostasis, because with their contraction they generate
heat as a by-product.
Looking at a skeletal muscle cell under a microscope, it will appear with promi-
nent striation, due to the alternation of the contractile proteins actine and
myosin; it is also possible to observe the presence of many nuclei squeezed
along the membranes, due to the fusion of the many cells composing each long
muscle fiber.
This type of muscle will be further described in section 1.1.1
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1 – Muscular System Physiology and sEMG recording

Figure 1.1: Skeletal muscle cells [1]

• Cardiac Muscle
The cardiac muscle cells, also called cardiomyocytes, form the contractile walls
of the heart. Their contraction is not linked to an external voluntary stimulus,
but follows their own intrinsic rhythms. This is possible thanks to a special-
ized excitatory and conductive system peculiar to the heart: the rhythmical
impulses are generated in the sinoatrial node and they are conducted through
specific pathways to the atrioventricular node. There the impulses from the
atria are delayed, before reaching the ventricles through the atrioventricular
bundle, and being finally conducted to all parts of them thanks to the Purkinje
fibers [15].
Cardiomyocytes also will appear striated under a microscope, but unlike skele-
tal muscle cells they are single cells and their nuclei are centrally located.

Figure 1.2: Cardiac muscle cells [1]

• Smooth Muscle
The smooth muscles form the contractile component of the digestive, urinary
and reproductive system, as well as the walls of the arteries, the airways and
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1 – Muscular System Physiology and sEMG recording

generically of every hollow visceral organ in the body, except from the heart.
Their contraction is responsible for involuntary movements in the internal
organs, in fact it is controlled by the autonomous nervous system.
Smooth muscle cells have a single nucleus and, true to their names, they don
not present visible striations.

Figure 1.3: Smooth muscle cells [1]

1.1.1 The Skeletal Muscle
This thesis will often deal with ElectroMyoGraphy (EMG), in particular with the
generation and the analysis of EMG signals. Most EMG signals represent the
electrical activity of the skeletal muscles, therefore it is important to focus on the
main physiological and anatomical aspects of such kind of muscles.
About 40 % of the body is made of skeletal muscles, and another 10% of smooth
and cardiac muscles. If we do not consider water, that is the primary constituent of
most tissues (in the case of the skeletal muscle it makes up the 75% of it), proteins
are the main component of the muscles. In fact, 20% of the muscles is made by
proteins, with the remaining 5% containing other substances like fat, carbohydrates,
inorganic salts and minerals. 50 - 75 % of all body proteins are contained in the
muscles [16].
As stated before, skeletal muscles are involved in numerous body functions. From
a mechanical point of view, their main goal is to convert chemical energy into
mechanical energy, that will be used to generate force and power. Another function
is maintaining posture an moving the different parts of the body by modifying the
orientation of the bones. From a metabolic point of view, skeletal muscles act as a
deposit for fundamental substrates as carbohydrates and amminoacids, contribute
to the basal metabolism, to the generation of heat for homeostasis and to the
consumption of oxygen and nutrient during physical activity [16].

5



1 – Muscular System Physiology and sEMG recording

Anatomical classification of the Skeletal Muscles

The skeletal muscles can be classified in different ways according to the parameter
that is analyzed. According to their shape, the muscles can be divided into long
muscles, flat muscles and short muscles: long muscles can be found in the limbs
and in some cases in the torso and head, where superficially flat muscles are more
present; short muscles instead are mostly in the torso, in a deep position.
According to their position, we have superficial and deep muscles. Superficial mus-
cles are located right under the skin, and they are attached with at least one of
their extremities to the lower face of the dermis; facial muscles and muscles of the
head and neck are the main superficial muscles. Deep muscles are located under the
hypodermis (the lowermost layer of the integumentary system): most of them (the
majority of the skeletal muscles) are attached directly or not to bones, cartilages or
ligaments; other deep muscles can be attached to sensory organs, like the muscles
of the eyes, or to mucous membranes of other systems, like the intrinsic tongue
muscles. [17]
Skeletal muscles are composed of numerous fibers, grouped in fascicles and made up
of successively smaller sub-units (this organization will be further described in the
following paragraphs). The muscle fibers are parallel with regard to the other fibers
composing the same fascicle, but the disposition of the fascicles within a muscle
and in relation to the direction of the pull varies from one muscles to another, and
allows to divide skeletal muscles in four categories [4]:

• Parallel Muscles: the fascicles are parallel to the longitudinal axis of the
muscle, and when the fibers contract together the entire muscle shortens by
the same amount. An example of parallel muscle is the biceps brachii.

• Convergent Muscles: the fibers are spread out over a broad area, but they
all come together at a common attachment site. They are quite versatile,
as they can change the direction of the pull by employing only one group of
muscle cells at a time. An example of convergent muscle is the prominent
pectoralis muscle of the chest.

• Pennate Muscles:the fibers are arranged like a feather, they sit at an angle
and attach to a tendon long as the whole muscle. A pennate muscle contains
more fibers than a parallel one of the same size, so its contraction produces
more tension. An example of pennate muscle is the rectus femoris.

• Circluar muscles, also called sphincters: the fibers are concentrically ar-
ranged around an opening; the contraction of the fibers decreases the diameter
of the opening. An example is the orbicularis oris of the mouth.
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Skeletal muscles can also be classified according to the primary action that derives
from their contraction [4]:

• An agonist is a muscle whose contraction is mostly responsible for producing
a particular movement.

• An antagonist is a muscle whose action opposes that of the agonist.

• A synergist , that with its contraction assists the agonist in performing the
action, stabilizing the origin or providing additional pull to the movement.

• Agonists and antagonist can contract simultaneously to stabilize a joint; in
that case they are acting as fixators.

Gross Anatomy of the Skeletal Muscle

Various integrated tissue are involved in the composition of a skeletal muscle, in-
cluding the skeletal muscle fibers, nerve fibers, blood vessels and connective tissue.
Three layers of connective tissue enclose every skeletal muscle, providing it structure
and compartmentalising the muscle fibers within it.

Figure 1.4: The three connective tissue layers in the skeletal muscles [2].
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Each muscle is wrapped in the epimysium, a sheat of dense, irregular connective
tissue that maintains the structural integrity of the muscle but still allows it to
contract and move. The epimysium also separates the muscle from the surrounding
tissues and organs, making so that its movement can be independent. Inside each
skeletal muscle, a second membrane called perimysium divides the muscle fibers
into individual bundles, called fascicles. This fascicular organization makes it
possible for the nervous system to activate separate subsets of muscle fibers within
a bundle, or of fascicles within a muscle: in this way the nervous system can trigger
specific movements. Inside each fascicle, the endomysium, a thin connective tissue
layer of reticular fibers and collagen, encloses each muscle fibers, and contains the
nutrients to support the muscle fibers. Every muscle fiber is linked to the axon
branch of a somatic motor neuron, which stimulates the contraction of the fiber.
Skeletal muscles are also supplied by blood vessels for oxygen delivery, nourishment
and waste removal [2].

Microanatomy of Skeletal Muscle Fibers: myofibrils and sarcomere or-
ganization

Muscle fibers range from 10 to 80 micrometers in diameter, they are usually long
as the whole muscles, so they can reach a length of 30 cm in the longest muscles
like the Sartorius of the leg. A single muscle fiber is enclosed by the Sarcolemma,
a thin membrane with an outer coat that contains numerous thin collagene fibrils.

Every muscle fiber is composed of several hundreds to several thousands my-
ofibrils. Each of them contains about 3000 actine filaments and 1500 myosin
filaments: actin and myosin are two protein responsible for the muscle contraction.
As we can see in figure 1.5, myosin is a thick filament, while actin is thin. Myosin
and actin filaments partially intersect with one another, therefore myofibrils have
alternate "light" and "dark" bands (figure 1.6). The light bands contain only actin
filaments, while the dark ones contain myosin filaments but also the ends of the
actin filaments, where they overlap the myosin. The bands are named according to
their reaction at polarized light: the light bands are called I bands because they are
isotropic to polarized light, while the dark bands are called A bands because they
are anisotropic to it. Small projections called cross-bridges expand from the side of
the myosin filament: their interaction with actin filaments causes contraction. The
extremities of the actin filaments are attached to a Z disk, which is composed of
other filamentous proteins and passes crosswise across the myofibril and from one
myofibril to the other, connecting them all the way across the muscle. The portion
of myofibril between two consecutive Z disks is called sarcomere. The sarcomere
shortens when the muscle is contracted and it can reach a length of about 2 µm :
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Figure 1.5: Organization of skeletal muscle, from the gross to the molecular level. [3]

in this situation actin and myosin filament are completely overlapped [3].
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Figure 1.6: A transmission electron microscope image of a sarcomere in the gastrocne-
mius of the calf, with a diagram illustrating its components [4].

The interaction between actin and myosin is regulated by a filamentous and springy
molecule called titin, that holds them in place so that the contraction can happen.
One extremity of the titin molecule is attached to the Z disk, and thanks to its

Figure 1.7: Organization of proteins in a sarcomere [3]

elasticity changes length as the sarcomere contracts and relaxes; the other end is
linked to the tick filament of myosin (figure 1.7). The space between the many
myofibrils in each muscle fiber is filled with the intracellular fluidi sarcoplasm: it
contains multiple protein enzimes and large quantities of phosphate, magnesium
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and potassium. It also contains a very high number of mitochondria, fundamental
for the supply of the large amount of energy needed for the contraction, that they
deliver through the production of adenosine triphosphate (ATP) [3].

General mechanism of muscle contraction

All cells are characterized by an electrical gradient across their membranes, also
called membrane potential: the difference of potential between the inside and the
outside of a cell is usually around -60 to -90 mV. Muscle cells and neurons take
advantage of this potential to generate electrical signals, by controlling the flow of
ions across their membranes. The movement of these charged particles is regulated
by opening and closing of specialized proteins in the membrane, the ion channels.
The capability of both skeletal muscle cells and neurons to generate action poten-
tials makes them electrically excitable. An action potential is a kind of electrical
signal that is able to be transmitted along a cell membrane in a wave-like pattern.
Thanks to them it’s possible to transmit a signal in a quick and faithful way also
over long distances. The contraction of a skeletal muscle fiber must be triggered by
an action potential, whose transmission along the sarcolemma generates a series of
events at the molecular level, that will be further described, that lead to the short-
ening of the muscle fiber. In the skeletal muscles, the action potential originating
the sequence of events leading to the contraction of the muscle is generated in the
somatic motor division of the nervous system, specifically in motor neurons that
are originated in the spinal cord (with the exception of a smaller number located
in the brainstem that control the activation of the muscles of the face, head and
neck). The transmission of the action potential across such long distances happens
thanks to the long axons of these neurons [2].
The action potential triggering the contraction travels along the motor nerve until

it reaches its endings, located on the muscle fiber. In correspondence of every of
these endings, the nerve secretes a small quantity of the neurotransmitter acetyl-
choline, that opens acetylcholine-gated cation channels located across the muscle
fiber membrane. Through these open gates, large quantities of sodium ions move
to the interior of the membrane. This leads to a local depolarization, that causes
to the opening of voltage-gated sodium channels, that will be responsible for the
initiation of an action potential. The action potential depolarized the muscle mem-
brane, and its electricity reaches the center of the muscle fiber. Reacting to this
flow of action potential, the sarcoplasmatic reticulum releases a large number of
calcium ions that were previously stored in it. The calcium ions generate the con-
tractile process of the actin and myosin filaments, causing them to slide one along
the other. After a fraction of second, a Ca2+ membrane pump brings back the
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Figure 1.8: Muscle contraction mechanism: from the motor neurons to the molecular
mechanism [5]

calcium ions in the sarcoplasmatic reticulum, where they will remain stored until
the next action potential. Because of the removal of the calcium ions from the
myofibrils the muscle contraction ends.[3]

Types of muscle fibers

Muscles can be composed of a mixture of three types of muscles fibers: the distri-
bution of these fibers will determine the action of the muscle. The main differences
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between the three types are in how they get their ATP supply.

• Fast fibers, or white fibers, are large in diameter, have densely packed my-
ofibrils, their concentration of mitochondria is relatively low, while glycogen
is highly present. They are named "fast fibers" because they react quickly
to stimulation with a contraction. The tension delivered by a muscle fiber
is directly proportional to the number of myofibrils, so this kind of muscles
deliver powerful contractions. However, their few mithocondria are not able to
provide the quantity of ATP needed, and anaerobic metabolism (glycolysis) is
necessary to guarantee the contractions. Glycolysis, without needing oxygen,
converts the glycogen supplies to lactic acid. The build up of lactic acid, that
interferes with the contraction mechanism because of its pH, makes so that
fast fibers reach fatigue rapidly.

• Slow fibers, or red fibers, have a smaller diameter, their contraction is much
slower, but longer. They contain a larger number of mithocondria, so they
continue to produce ATP during the contraction for a longer time, making so
that red fibers reach fatigue slowly and can therefore continue to contract for
a longer time. Mithocondria absorb oxygen, generating ATP with an aerobic
metabolism. The large amount of oxygen present comes from two main sources:
the oxygen bounded to the myoglobin proteins, that have a high concentration
in the red muscles; the oxygen delivered from the red blood cells, greater then
for the white fibers because muscles made of red fibers contain a larger network
of capillaries, and there is grater blood flow to the muscle.

• Intermediate fibers, that have properties between those of fast and slow
fibers. This makes them adaptable to different situations, but still able to
specialize in response to particular requested efforts. [4]

The majority of muscles contain a combination of all three fibers, but a bundle
of fibers within the same motor unit must be of the same type. For each muscle,
the percentage of fast versus slow fibers is genetically determined, with significant
differences among individuals.

Mechanics of contraction

The length and the strength generated by a muscle contraction can be very different
across different contractions. The mechanism involved in the control of the amount
of force generated by a single contraction is called summation, and it can occur in
two ways [3]:
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• Multiple fiber summation. Each motoneuron starts from the spinal cord
and reaches multiple muscle fibers: all the fibers innervated by a single neuron
make up a motor unit, together with the neuron itself and the neuromuscular
junctions involved. The number of fibers in a motor unit depends on the
dimension and function of the muscle. The recruitment of the motor units
to respond to a stimulus from the central nervous system follows the size
principle: at first the smaller motor neuron are stimulated, then as the strength
of the signal received increases, the motor neurons involved become larger and
larger. This phenomenon allows the gradation of muscle force to start in small
steps that become progressively larger when larger amount of force are needed.

• Frequency summation and tetanization When the frequency of stimula-
tion is low, individual twitch contractions (figure 1.9.1) are separated in time
by a latent period. Increasing the frequency, at some point it will happen
that each new contraction starts before the previous one is over: the sec-
ond contraction is partially added to the first and the total strength becomes
higher as the frequency increases. At a certain critical level of the frequency,
the successive contractions become so close that they fuse together, in a con-
traction that appears smooth and continuous (as shown in figure 1.9.4): this
phenomenon is called tetanization. The maximum strength of the contrac-
tion has been reached, and it cannot increase even if the frequency becomes
higher, therefore tetany corresponds to the maximum force that the muscle
can generate.

Figure 1.9: Muscle stimulation: frequency summation and tetanization [5]

1.2 Surface Electromyography (sEMG)

ElectroMyoGraphy is a diagnostic and investigation technique where the electrical
signal derived from the contraction of a skeletal muscle is recorded. Every EMG
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signal is generated by the propagation of an action potential (AP) from the neu-
romuscular junction to the tendon of the muscle. The smallest functional unit of
a muscle that can be subject of a voluntary contraction is the Motor Unit (MU),
that anatomically is composed by all the muscle fibers innervated by the same mo-
toneuron. The signal obtained summing all the APs that arrive to a motoneuron
is called Motor Unit Action Potential (MUAP). It has been proved that the EMG
signal derives from the combination of all the electrical contributes of each motor
unit that has been recruited for the contraction [18].
There are two different types of EMG:

• Intramuscolar ElectroMyoGraphy (iEMG)
This technique is the classic and oldest way in which EMG signals were
detected. The instrumentation involved are needle electrodes, that passing
through the skin are directly placed into the muscle to be analyzed. Since the
distance between the electrodes and the source of the signal is very short, this
technique is characterized by a high volume selectivity, and therefore is partic-
ularly suited for the recording of a single MUAP. From the signal extracted it

Figure 1.10: Intramuscolar ElectroMyoGraphy (iEMG) [6]

is possible to separate the contributions of the single units (figure 1.10), so it
is possible to identify both the morphology and the temporal activation of the
signal. Another advantage of this technique, due to the fact that the electrode
is in direct contact with the muscle, is the absence of any filtration or artefact
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caused by the surrounding tissue. However, iEMG presents several disadvan-
tages, such as the need to sterilize needles at every use, the high invasiveness
of the electrodes, and the fact that the techinque cannot be applied during
dynamic motor activity.

• Surface ElectroMyoGraphy (sEMG)
The electrodes for the recording of the EMG are placed directly on the surface
of the skin, above the interested muscle: this technique is less invasive and
suitable for superficial muscles. The number of electrodes used can vary from
the basic two needed to a complex array of electrodes. The positioning of the
electrode is crucial for the quality of the recorded signals: the skin must be
properly prepared, the stability of the interface with the skin must be as high
as possible and the electrode must be positioned in exact correspondence with
the muscle of interest. The recorded signal is an interference signal given by

Figure 1.11: Surface ElectroMyoGraphy (sEMG) [7]

the algebraic sum of all MUAPs of the involved motor units. It is possible to
trace back the action potential of the single motor unit through decomposition
techniques [7]: this allows to understand the recruiting method of the analyzed
muscle and so its specific functioning. The extraction of the single MUAPs is
less accurate than the one obtained from iEMG signals, but sEMG performs
better in recording the overall activity of a muscle or muscle group. The main
advantage of the sEMG over the iEMG is the possibility of performing dynamic
and long-lasting tests without distressing the subject with needle injection. For
these reasons, sEMG is widely used in clinical applications and rehabilitation.
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1.2.1 Acquisition of sEMG signals
The acquisition set-ups for the sEMG signals differ one from the other for both
the material and the dimensions of the electrodes, their configuration and their
positioning.
The most common surface electrodes are made of silver (Ag), silver cloride(AgCl),
silver/silver cloride (Ag/AgCl) or gold (Au). The most used are the Ag/AgCl:
since they are almost non-polarizable they make so that the surface potential is
less sensitive to sliding movements between the skin and the electrode surface. The
stability of the skin-electrode interface can be enhanced interposing a conductive
gel layer. The size of the electrode can vary from millimeters to a few centimeters in
diameter or length (depending on the shape) depending on the field of application.
The choice of the dimension of the electrodes must take into account the depth
and dimension of the muscle, its architecture and the desired spatial resolution. [8]
Two recording modes are possible: monopolar and bipolar. In the monopolar mode,

Figure 1.12: Electrodes configurations [8] On the left:mono-polar mode (block 1) and
bipolar mode (block 1 + 2 + 3). On the right: mono-polar signals 1 and 2: their
subtraction would give a bipolar signal

an active electrode is placed on the skin surface above the muscle and a reference
electrode is put above bony regions of the skin. A large volume of sampling is
guaranteed in this configuration, meaning that also more disturbances are collected
and spatial filtering is absent. In the bipolar mode, a second active electrode is
used above the same muscle, and the signal is given by the subtraction of the two
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monopolar signals. This reduces the volume of sampling, so this mode is less sub-
ject to disturbances, but is less selective and also some components of the signal
are lost. [8]

The sEMG signal is a stochastic signal that can be reasonably represented by a
Gaussian distribution function. Its amplitude can vary in a range from 0 to 1.5 mV
(RMS) or from 0 to 10 mV (peak-to-peak). The frequency content of the signal is
in the range from 0 to 500 Hz, but the spectral components with a higher power
are in the 50-150 Hz range [9]. An example of a frequency spectrum of an sEMG
signal is represented in figure 1.13.

Figure 1.13: Frequency spectrum of an sEMG signal [9]

The block diagram of a sEMG acquisition chain is shown in figure 1.14
The first block, the amplification, is a differential amplifier that multiplies by a

fixed gain the difference between the two collected signals. This step has the aim
of amplifying the sEMG signal in a way that its amplitude can match the range
of the A/D converter, so that is possible to digitize in a sensible way even small
fluctuations of the sEMG.
The second block, the filtering, is necessary to remove the aliasing disturb, due to
the presence of higher frequency components above the upper limit of the frequency
band of the sEMG. The filter used is usually a low-pass filter with a cut-off frequency
of 400 Hz.
The digitization of the signal is performed by the A/D Converter. The crucial
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Figure 1.14: sEMG signal acquisition chain [8]

parameter of the converter is its resolution, defined by the ratio between its dynamic
range and the number of levels; the resolution indicates the smaller variation that
the system is able to record. The A/D converter samples analogical data and
converts it to digital data, with a specific sampling frequency that must satisfy the
Nyquist theorem. Additional filtering operations that could be needed to remove
certain frequency components can be performed after the recording with digital
filters [8].

1.2.2 Noise sources in sEMG signals
The main sources of noise afflicting the recording of sEMG signals and decreasing
the fidelity of the signal are [9] [19]:

• Inherent Noise due to the electronic components: refers to the electrical
noise generated by the electronic instrument involved in the detection and
recording of the signal. The frequency of this noise ranges from 0 Hz to
several thousands Hz. This noise cannot be eliminated, but it can be reduced
designing the circuit in the most efficient possible way and using electronic
components with a quality as high as possible.

• Motion Artefacts: they can be due to the movement of the cables connecting
the electrodes to the circuit or to the sliding movement of the electrode on the
skin, caused to the change in muscle length during the contraction. The first
problem can be reduced designing a suitable circuit, the second by interposing
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a gel layer in the skin-electrode interface. The frequency of this noise is usually
low, below 15 Hz.

• Ambient noise: caused by the interference between the acquisition devise
and the elements in the external environment that produce electromagnetic
radiations (antennas, power supply, light bulbs, etc). These disturbs have an
amplitude about three times larger than the sEMG signal, so it is necessary to
reduce them in the post processing with filtering. The most peculiar ambient
noise is the Power-Line Interference (PLI) which has a frequency of 60 Hz in
the USA and of 50 HZ in the EU.

• Inherent instability of the signal: due to the naturally statistical be-
haviour of the amplitude of the EMG signal. The frequency components be-
tween 0 and 20 Hz are unstable because they are affected by the firing rate
of the motor units, which is almost random. It is advisable to remove these
components from the signal.

• Cross talk. More than one muscle is active during the same movement: cross
talk happens when, during the recording of an sEMG signal, the electrode
detects also the activation of a neighbour muscle. This causes a misinterpreta-
tion of the signal. At the moment there are no available methods to eliminate
cross talk after the signal recording, so it must be reduced while collecting the
signal, with precautions on the inter-electrode distance and on their size.

• ECG artifacts: the electrical activity is a strong source of noise, mainly for
sEMG signals taken from trunk level muscles. There is no way to eliminate
it completely after the recording, but it can be reduced using a high CMMR
acquisition channel.
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Chapter 2

Muscle Synergies

Every voluntary movement performed as a reaction of a stimulus by the Central
Nervous System (CNS) involves a large number of muscles, each of them contain-
ing thousands of motor units, whose contraction must be neatly modulated and
coordinated in order to achieve the planned action. The inverse dynamic problem
that must be solved by the CNS even only for the realization of a simple motion is
related to a high number of Degrees of Freedom (DoF), needed to control all the
kinematic and kinetic parameters. In fact, in the musculoskeletal system there are
more muscles then corresponding joints, and the same movement can be achieved
by a wide range of combinations of muscle patterns.

Understanding how the CNS deals with the redundancy of the musculoskeletal
system and reduces the complexity level behind every movement has been a pivotal
goal in neuroscience, and it has opened a novel clinical scenario in the treatment
of motor impairments caused by a malfunctioning of the CNS [10]. Starting with
Bernstein in 1967 [20], a lot of researchers have tried to understand how the CNS
is able to reduce the computational burden linked with the generation of a move-
ment, searching for physiological evidence of simplifying strategies. The concept of
Muscle Synergies has been introduced: they can be defined as a block of muscles
activated, to different levels, at the same time to reach a generic movement, thus
reducing the computational cost of the task performed by the CNS, since it has to
control a group of muscles instead of a single one [21].

In the last two decades, many experimental studies have supported the validity
of this modular approach, both in humans and in animals, and also its possible
alterations due to neural injuries, causing pathological behaviors and altered move-
ments. Therefore, the analysis of muscle synergies can be regarded as a useful
diagnostic tool in the assessment and rehabilitation of neuromotor diseases [10].
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2.1 Synergies and Motor Control

The synergistic hypothesis represents the synergies as direction of the motor con-
trol employed by the CNS, as modules combined together in order to rise complex
movements. The synergies reduce the volume of the space motor command that
the CNS needs to investigate, reducing the complexity of the problem. Intrinsic in
the definition of synergies is therefore the fact that the number of muscle synergies
must be lower than the number of muscles involved, otherwise their meaning would
be lost [10].
Muscle synergies give information about which muscles are grouped, because mus-
cles that appear to be co-activated at the same time are grouped under the same
synergy, but also on "how" these muscles work together. In fact, each synergy ex-
presses also the contribution that each muscles brings to the synergy it belongs
to, and this aspect is described by the "weights" aspect of a synergy [10]. This is
represented by the "weighted connections" in figure 2.1.

A valid theory for motor control is the hierarchic control theory, a complex
circuitry extending from motor cortex to spinal neurons. A voluntary movement
is realized as a consequence of the correct time activation of spinal inter neuronal
muscle synergies by the motor cortex, which handles the modules with specific time
activation patterns in order to achieve a precise motor task [10] (figure 2.1). Muscle
synergies can be extracted from EMG signals to observe in a tangible way the va-
lidity of the theory. Each synergy can be modeled as a synchronous, time-invariant
activation profile across the muscles, where each muscle could potentially be part
of more than one synergy. Each synergy is activated by a non-negative, time-
varying action coefficient: the final EMG signal can be reconstructed by linearly
combining the activation signals weighting them by the corresponding time-varying
coefficients. [22] A scheme of this model is displayed in figure 2.1.
This model can be represented analytically as:

M(t) ≃
N∑︂

i=0
c(i) × W(i) (2.1)

where M(t) is the muscular activity, c(i) the time activation pattern of the specific
muscle synergy, W(i) represents the i(th) synergy vector and N is the total number
of muscle synergies.
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Figure 2.1: Muscle synergies hypothesis: muscle activity result from a linear combina-
tion of time activation signals and muscle synergies weights [10]

2.2 State of the art
The first studies to understand the neural origin of the synergies, considered as
motor modules, involved studies on the spinal cord in several vertebral species,
applying different stimulation techniques [21]. It was possible to observe experi-
mentally the modular organization of the spinal cord circuitry in the frog [23] [24],
in the cat [25] and in the rat [26]. A growing number of studies have given ev-
idences for the synergistic hypothesis also in humans, showing that it is possible
to reconstruct muscle activation patterns with a number of synergies smaller in a
variety of behaviour and tasks [10]. Muscle synergies were observed in the activ-
ity of the muscles of the lower back and of the leg to guarantee human postural
control [27] . In [28] five muscle activity patterns were found in human physiolog-
ical gait, observing their invariance even in different conditions of walking speed
or body weight. Differences between these patterns in walking and running was
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analyzed in a successive study by the same group [29], while in [30] the activity
of cycling was considered, observing wether muscle synergies are constrained by
changes in the mechanics of pedaling. Several studies were performed also on the
upper limbs: the synergies controlling both movement and posture of the muscles
involved in natural reaching movements at different speeds were studied in [31];
synergies involved in postural control of the movements of the hand and its fingers
were observed in [32]; force control in isometric contractions was analyzed in [33].

The high potential of the use of Muscle Synergies as an assessment tool for neuro-
logical pathologies was soon explored. In disorders of the CNS caused by strokes
or spinal cord injuries (SCI), several motor deficits are present because of inappro-
priate muscle activity and coordination. Muscle synergies may be used to evaluate
the modification in the physiological muscle activity and to provide a better under-
standing of these deficits. [10].
Ivanenko et al [34] analyzed lower limb muscle synergies obtained from 11 SCI pa-
tients, with different levels of sensory and motor impairments. EMG signals were
collected during treadmill walking aimed at the reproduction of a foot kinematics
as similar as possible to the physiological ones, at different speeds and different
levels of body weights support. Comparing the obtained synergies with the ones
of healthy subjects, it was found that the structure of the muscle synergies was
altered, but the temporal activations were preserved; in particular, in less impaired
subjects the similarity with the synergies of the healthy subjects was higher than in
the most affected patients. In another study [35], it was suggested that SCI patients
may learn new motor patterns with training rather than re-activate physiological
motor patterns, thanks to a reorganization of the connections of the interneuronal
networks. These compensatory solutions lead to new muscle synergies, but in gen-
eral the temporal patterns of the activation coefficients are preserved.
Muscle synergies in post-stroke subject have also been investigated. Gizzi et al
([36]) analyzed the locomotion of 10 patients recently affected by strokes (at most
20 weeks before), collecting EMG signals from 32 muscles of the trunk, upper and
lower limb during walking overground at comfortable speed. In the muscle synergies
extracted it was observed that the temporal activations were mostly preserved, but
the synergies extracted from the muscles of the affected side, even if similar across
the different patients, were different from the ones of the healthy patients and of
the muscles of the side unaffected by the stroke. The authors speculated that these
changes may be the result of compensatory strategies carried out by the trunk and
upper limbs musculature to preserve a locomotion as functional as possible.
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Cheung et al [11] investigated the changes in the motor control behaviours in-
ducted by cortical damage evaluating upper limb muscle synergies in 31 stroke
patients with a wide range of unilateral motor impairment, recording the activity
in both arms while executing reaching movements. They found out that, for less
impaired subjects, the muscle synergies were similar for the affected and unaffected
arms, but the muscle activation patterns were different. The synergies extracted

Figure 2.2: Merging and fractionation of muscle synergies. a) A Paretic side synergy
may be explained as the merging of healthy synergies. For example, healthy synergies H3
and H4 can form P2R (paretic synergy reconstructed) by merging. b) Paretic synergies
P1 and P2 can be derived from a fractionation of healthy synergy H1. [10] adapted from
[11]

from the affected arms of severly impaired subjects showed three distinct behaviour:
the preservation, the merging or the fractionation with respect to the synergies of
the unaffected (healthy) arm. In the merging of muscle synergies, two groups of
muscles normally independent become grouped. (figure 2.2a) The fractionation of
muscle synergies happens when a group of muscles belonging to the same synergy
is divided in two groups, with different modulation signals. (figure 2.2b)

25



2 – Muscle Synergies

2.3 Muscle Synergies Extraction

Muscle synergies are generally identified using several algorithms belonging to the
class of Matrix Factorization Algorithms. From a mathematical point of view, the
"matrix factorization" consists in the decomposition of a matrix into two matrices
with lower dimensions whose product gives back the original matrix: it is basically
a data projection from a n-dimensional space to a lower k-dimensional space. Con-
sidering n as the number of detection channels and k as the number of basis vectors,
this approach can be applied to extract synergies: in fact, with this formulation it
is possible to represent a complex motor task through a reduced number of mus-
cle synergies. Several matrix factorization algorithms have been used to extract
muscle synergies, such as the Principal Component Analysis (PCA), the Factor
Analysis (FA), the Non-Negative Matrix Factorization (NNMF), the Independent
Component Analysis (ICA) and the Probabilistic Independent Component Anal-
ysis (pICA). In a study by Tresch et al [37] the performances of those algorithm
applied both on simulated and experimental data sets were compared, focusing on
the ability of identifying sets of synergies from data sets with different features. It
was observed that the performances of the five algorithms were similar and that
they were all able to identify the correct synergies and activation coefficients in
simulated data, as well as being consistent in the physiological data sets. This
suggests that the muscle synergies found do not depend from the algorithm that
was used, but they reflect the motor control patterns correctly.
A general model of any matrix factorization algorithm can be expressed as:

x⃗ ≃
K∑︂

i=1
ci

−→wi + ε⃗ (2.2)

where x⃗ is a matrix of M-dimensional data vector, −→wi is the ith out of K basis
vectors, ci is the scalar activation coefficient for the corresponding basis vector and
ε⃗ models the noise contribute. Applying this model to the physiological context,
x⃗ corresponds to the M muscles sEMG recorded activities and −→wi are the muscle
synergies activated by the temporal coefficients ci. In this thesis, the algorithm
that was used and analyzed is the Non-Negative Matrix Factorization (NNMF).

2.3.1 The Non-Negative Matrix Factorization algorithm

The Non-Negative Matrix Factorization is the most common algorithm used for the
extraction of muscle synergies. [37] It is an algorithm that decomposes a matrix
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into two non-negative matrices: one containing column vectors that are basis eigen-
vectors in the data space, one containing row vectors [38]. Due to the non-negative

Figure 2.3: Factorization of Matrix M into two smaller matrices W and H [12]

constraint, the results of the NNMF algorithm are always positive and therefore
easily suitable for practical applications.

A brief overview of the mathematical aspects of the algorithm is provided [39].
Given a data matrix V = [v1,...vj,... vm] of dimensions n x m (where vi are non-
negative column vectors), the NNMF algorithm models the data as a linear com-
bination of k basis column vectors of size n (k ≤ n) such that:

vj =
n∑︂

i=1
hijwi + εi (2.3)

where wi is the basis vector, hij the non-negative coefficient for the i-th basis vector
corresponding to the data point j, and ε is a parameter that keeps into account the
noise. Considering a matrix W = [w1,...wi,... wk], the NNMF can be explained as
the problem of finding the factorization of V in W and H [38].

V ≈ WH (2.4)

with H = [h1,...hj,... hm] k x m matrix.
If ε is a Gaussian noise of constant variance [40], to determine the matrices W and
H the follow multiplicative update rules are used [41] [42]:

HS+1
ij = HS

ij

[(W S)T V ]ij
[(W S)T W SHS]ij

(2.5)

W S+1
ai = W S

ai

[V (HS+1)T ]ai

[W SHS+1(HS+1)T ]ai

, a = 1, ...n, (2.6)
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where the superscript T denotes the transpose of the matrix, and the superscript S
the number of current iteration of the updating. These are the traditional update
rules for the NNMF algorithm.
To implement the algorithm, the number of basis vector k, that are the column
vectors of the matrix W, needs to be known a priori. When applying the algorithm
to extract muscle synergies, a criterion needs to be established to select the correct
number of synergies. The trend of some parameters, like the Variance Accounted
For (VAF) and R2, the reconstruction error between the original EMG matrix V
and the reconstructed EMG matrix WH (see chapter 3.1 for the mathematical
definition of these parameters), can be used to define some criteria. Two common
approaches are finding the smallest number of weight vectors such that R2 is greater
than a predefined threshold [11], or finding the model order for which R2 reaches a
plateau, so where a clear decrease of slope is observed [43]. A big limitation of both
approaches is that these methods resulted to be very robust for simulated data sets
[37], but not for real data sets.

Figure 2.4: Example of factorization of matrix M into smaller matrices W and H, whose
product gives back the original M matrix [10]

To concretely apply NNMF to real sEMG signals, it is necessary to obtain
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their envelopes (see chapter 3.1) adapting them in a matrix M with m rows and t
columns, with each row corresponding to the activity of the muscle during t time
samples. The m-by-t matrix M is factorized into non-negative matrices W (m-by-
n) and H (n-by-t), where n is the number of muscle synergies. The rows of matrix
W represent the muscle synergies vectors that express the contribute activity of
each muscle. Matrix H reports the temporal patterns of activation of every specific
synergy. The process can be summarized in figure 2.4.
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Chapter 3

Material and methods

3.1 Muscle Synergies Analysis

The procedure for the extraction of muscle synergies from EMG signals is outlined in
figure 3.1. The first step is the recording of the muscle activity as EMG signals: the
signals must then be processed so that they can be given as input to an algorithm,
which will be responsible for the extraction of the synergies and their activations.

Figure 3.1: Block chain of the procedure for Muscle Synergies Extraction and Analysis
[10]

Recording ElectroMyoGraphic signal

The procedure for the recording of sEMG signals has been previously explained in
1.2. It is necessary to record the sEMG signals with the highest quality possible,
because the quality of the signals will influence the one of the extracted synergies.
In this thesis, instead of collecting EMG signals or using previously recorded signals,
sEMG signals have often been synthesized with procedures that will be explained
in the following sections.
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Processing the EMG

The sEMG signal needs to be prepared to be used as a input in the algorithms for
the extraction of the muscle synergies. This process includes the cleaning of the
signal from anything not related to the EMG activations, included all the different
disturbs explained in section 1.2.2. To remove the noise and the disturbances,
several successive operations of filtering are performed, with the final aim being
the extraction of the envelope of the signal. Figure 3.2 shows an example of a
sEMG signal acquired from the vastus lateralis muscle of a healthy subject during
a cycling task going through the principal phases of processing.

Figure 3.2: Processing of a sEMG signal to extract the envelope [10]. a) Raw EMG
signal; b) Signal after band-pass filtering c)Blue: Rectified signal, Red: Envelope obtained
after low-pass filtering

The graph in figure 3.2(a) shows the raw EMG signal, that is band pass filtered.
The filter used in the thesis for this purpose is a Chebyshev Type I band pass-filter
of the 5th order, with cutoff frequencies of 30Hz and 280 Hz and a band-pass ripple
of 1dB. The low frequency cutoff frequency removes disturbs like motion artefacts
and DC offset. On the filtered signal (figure 3.2(b)) is then applied a full wave
rectification (figure 3.2(c), blue signal) and then a low pass filtering at 9 Hz, with
a Chebyshev Type I filter of the 7th order and a band-pass ripple of 0.2 dB [44].
The final result of these operation is the envelope of the signal (figure 3.2(c), red
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signal), a smooth curve that outlines the trend of the EMG signal. In some of
the simulations performed in this thesis, instead of extracting the envelopes from
EMG signals, they were directly synthesized to analyze the extraction of synergies
independently from the influence of the noise of the signal on the extraction of the
synergies, which is not completely removed when computing an envelope from a
real EMG signal.

Extraction of Muscle Synergies

The basic functioning of the algorithms for the extraction of the synergies starting
from the EMG signals, especially of the Non-Negative Matrix Factorization algo-
rithm, has been detailed in section 2.3.1. To extract muscle synergies from the
envelopes of the sEMG signals, the in-built function of Matlab® nnmf has been
used. The inputs required by the function are [45]:

• sEMg envelope: a matrix c x l, where c is the number of EMG channels
analyzed and l is the length of every envelope.

• k: number of synergies to be extracted.

The outputs of the function are:

• W: a c x k matrix containing the extracted weights vectors for each synergy.

• H: a k x l matrix containing the temporal activations

The factors W and H are chosen by the algorithm to minimize the root-mean-
squared residual between the input matrix and the reconstruction given by W*H.
The factorization uses an iterative method starting from random initial values of W
and H. The maximum number of iteration to perform can be set in the additional
parameter MaxIter, which indicates the iteration where to stop if convergence has
not been reached yet. In this thesis this parameter was set at 500.
Since the root-mean-squared may reach a local minimum, repeating the factor-
ization could give different results. Sometimes the algorithm may converge to a
solution with a rank lower than k. To get more stable results, the additional pa-
rameter replicates, which indicates the number of times to repeat the factorization
using new random starting values for W and H, was set to 5000.
A crucial parameter to be given to the function is the number of synergies k. In
section 2.3.1 some criteria for the choice of k have already been explained. During
the different simulation performed in this thesis k has been chosen in different ways,
so it will be explained in later sections for the corresponding simulations.
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Analysis of the results

A first high level analysis of the synergies extracted can be performed by visual
inspection. This can be carried out starting from the envelopes and checking some
features like the presence of activation peaks, their number and their position, and
the deviations from the average trend. When working with signals collected from a
particular motor task, for instance the gait, the obtained synergies can be analyzed
integrating them with physiological or biomechanics knowledge. For example, is
very important to identify the muscles mainly activated for each synergy and their
correspondent time activations, to contextualize the movement and observe its cor-
respondence to the physiological movements.
To perform a qualitative and quantitative analysis of the performances of the algo-
rithm extracting the synergies, various mathematical parameters can be computed:

• Coefficient of Determination (R2)
The coefficient of determination quantifies the linear correlation between the
variability of the input data and the quality of the statistical model used to
reconstruct it. In the case of the computation of muscle synergies, the input
data is the matrix of envelopes of the signal, and the result of the model is the
reconstructed envelopes with the results of the nnmf algorithm W × H. This
coefficient is calculated with the following formula [46]:

R2 = 1 − SSres

SStot

(3.1)

where SSres is the residual sum of squares (the sum of squares of the residuals)
and SStot is the total sum of squares that is proportional to the variance of
data.

SSres =
n∑︂

i=1
(yi − ŷi)2 (3.2)

SStot =
n∑︂

i=1
(yi − ȳ)2 (3.3)

yi are the original data, ȳ is the mean of yi, and ŷi is the model estimation
data. The maximum value that R2 can assume is 1, meaning that the model
has perfectly reconstructed the data.

• Variance Accounted For (VAF)
It’s a similarity metric used to quantify exact matches between two patterns,
taking into account both shape and magnitude of the measured and recon-
structed curves. [47] The VAF is often used to verify the correctness of a
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model, by comparing the real output (original envelopes of the signal) with
the estimated output of the model (envelopes reconstructed with nnmf). The
formula used for the computation of the VAF between two signals is [48]:

V AFi = 1 − var(yi − ŷi)
var(yi)

(3.4)

where var represent the variance of the data, yi is the measured output (orig-
inal envelopes of the signal) and ŷi is the estimated output (envelopes recon-
structed with nnmf). The maximum possible value for VAF is 1, meaning that
the two signals are the same, the curves are perfectly matched.

• Cosine Similarity
The Cosine similarity is a measure of similarity between two non-zero vectors.
This index varies in the range between -1 and 1, but is generally used only
in the positive range [0;1] respectively for absence of similarity and maximum
similarity. The cosine similarity is used to compare the values of the weights of
the synergies [49]. The cosine similarity was computed following the formula:

CS = Wi ∗ W ′
i

||Wi|| ∗ ||W ′
i||

(3.5)

• Correlation Coefficient
The correlation coefficient, or cross-correlation, measures the similarity of two
signals as a function of the displacement of one relative to the other, displace-
ment that can be interpreted as a temporal shift. Zero-lag cross-correlation is
a particular type of correlation in which the signals are compared with a zero
delay. The correlation coefficient is used to compare the temporal activation
vectors of the synergies. The formula for the cross correlation is [49]:

CC = Rxy[0]√︂
Rxx[0] ∗ Ryy[0]

(3.6)

There is an in-built Matlab® function, xcorr, that compares the signals re-
gardless of their amplitude. The zero-lag cross-correlation verifies if when one
signal increases (or decreases) also the other increases (or decreases). The
index varies in the range from 0 to 1, respectively for absence of similarity or
total similarity.
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Merging and fractionation analysis

As already discussed in 2.2, Cheung and others [11] studied muscle activation after
lesions of the motor cortical area collecting EMG signals from upper-limb muscles
in subjects with cortical lesions. Analyzing muscles synergies for the unaffected and
the affected arm, three distinct patterns of muscle coordination in response to cor-
tical damage were identified: preservation, merging and fractionation. This model
can be adapted to the problem analyzed in this thesis, considering as unaffected-
arm synergies the original generated synergies, in short original synergies and as
affected-arm synergies the synergies obtained after the removal of one or more chan-
nels, in short removed synergies.
Model of Synergy Merging: each removed synergy is modeled as a linear com-
bination of the original synergies:

−→
wr

i ≈
No∑︂
k=1

mi
k

−→
wo

k, mi
k ≥ 0, i = 1...N r (3.7)

where −→
wr

i is the ith removed synergy, −→
wo

k the kth original synergies, N r the number
of removed synergies, N o the number of original synergies and mi

k represents the
contribution of the kth original synergy to the ith. For every removed synergy, an
original synergy is defined to contribute to the merging if the associated coefficient is
in the interval [0.3, 0.7] (a smaller interval than the original [0.2, 1] was considered).
The merging coefficients are identified with nonnegative least square, implemented
through the Matlab® function lsqnonneg.
Model of Synergy Fractionation: each original synergy is modeled as a linear
combination of the removed synergies:

−→
wo

k ≈
Nr∑︂
i=1

fk
i

−→
wi

r, fk
i ≥ 0, i = 1...N o (3.8)

where the coefficients
−→
fk = [fk

1 , fk
2 , ...fk

Na ] indicate how the kth original synergy may
be fractionated into multiple removed synergies. As a first step, the fractionation
coefficients

−→
fk are identified without constraints applying the function lsqnonneg.

For every removed synergy, the original synergy with the highest associated frac-
tionation coefficient is identified, and it will be assigned to it as the only original
one that may be reconstructed by that removed synergy. A second projection is
performed, for every original synergy only onto the removed synergies assigned to
it. A removed synergy is defined a fractionation only if the newly computed

−→
fk in-

dicated that it could be combined with another removed synergy to reconstruct one
of the original synergies. The corresponding fractionation coefficient must verify
the condition

−→
fk

i > 0.2.
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3.2 sEMG envelopes simulations starting from
synergies

The aim of this thesis was to evaluate the performances of the NNMF algorithm
in extracting muscle synergies when one or more channels of the original signal are
lost. Different simulation synthesizing the sEMG data to be used as input of the
algorithm were performed.

In the first simulation, instead of generating a simulate version of a sEMG sig-
nal, extracting its envelope and performing the non-negative matrix factorization,
it was decided to simulate directly the envelopes of a sEMG signal. This was done
to avoid the influence of the typical noise in the sEMG signal, difficult to remove
completely, on the reconstruction of the signal from the extracted synergies, and
to focus only on the performances of the algorithm when channels are lost. To
make so that the NNMF algorithm is faced with an exact factorization, the matrix
containing the envelopes is generated starting from the muscle synergies, by mul-
tiplying two vectors, one representing the synergy weights and one the temporal
activations: it is as if the envelopes computed were the envelopes reconstructed
after the extraction of the synergies. For this reason, when muscle synergies are
extracted from the generated envelopes it is expected that they would be equal to
the original synergies that were generated
Indications on how to generate sets of vectors that could be assimilated as the
synergy weight vectors or the temporal activations extracted from the sEMG were
searched in literature. It was found that in [37] signals with characteristics similar
to the one needed in this simulation were generated, and that the amplitude of
those that can be considered the weight vectors was picked from the values of an
exponential distribution with mean 10. From [50] it was taken the idea of dominant
muscles (or dominant channels), defined as "muscles whose weight is within twenty
percent of the maximum weight for each synergy": they represent channels that are
particularly relevant in a synergy weight, since the amplitude of their correspond-
ing weights it is significantly bigger than the amplitude of the weights for the rest
of the channels. Starting from these two ideas, some criteria for the simulation of
weight vectors and temporal activations, with the aim of generating a final envelope
matrix of 12 channels starting from 4 synergies, were defined.

Weight vectors generation

• The amplitude of the single contribution: taken from an exponential distri-
bution with average 10, in a different range for every categories of channels
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(figure 3.4).

• In each synergies, 3 categories of channels were defined: dominant semidom-
inant and non dominant. The dominant channels, inspired by the definition
in [50], are the most relevant channels, and in every weight generated there
must be between 2 and 5 of them. Two is set as minimum so that it is possible
to see what happens in the algorithm when "important" channels are lost but
at least one remains; five as maximum so that the four weight vectors gen-
erated are not too similar with each other. The amplitude of the dominant
channels is selected randomly in the red range of the exponential distribution
in figure 3.4. The non dominant channels are the channels that give only a
small, almost null, contribution to the magnitude of the weight vector. Their
number in a weight vector depends on the number of the channels belonging
to the other categories, and their amplitude is taken from the green range in
figure 3.4. The semidominant channels are a middle way between the other
two categories, and their amplitude is picked from the yellow range in figure
3.4. They were introduced to have final weight vectors more similar to real
possible weight vectors. Their number must be between 0 and 3.

Figure 3.3: Range of values of an exponential distribution from where the amplitude
of the three categories of channels is taken. Red zone: dominant channels. Yellow:
semidominant channels. Green: non dominant channels.

• The minimum total number of dominant channels must be 15. The position
of the dominant channels are assigned to every of the four synergies starting
from a random distribution with no repetition of the values from one to twelve
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and considering that for every channel there must be from 2 to 5 of them.
When reaching the 13 dominant channel to assign, a new random distribution
of the number from 1 to 12 is considered. In this way after the 12th channel
it is possible to have a channel dominant for more than one synergy. The
minimum number of dominant channels to be present in the set of 4 weight
vectors was set at 3, so it is certain that at least 3 channels are dominant for
more than one synergy. The maximum is set at 20 to not have synergies too
similar between each other.

Figure 3.4: Example of a set of weight vectors. The dominant channels are highlighted
in red, the semidominant in yellow and the non dominant in green.
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• To avoid too similar synergies, that would make a successive factorization
pointless, the cosine similarity between all the vectors was set to be lower
than 0.7

Temporal activations generation

• 4 Gaussian functions, 1000 samples long

Figure 3.5: Example of a set of temporal activations

• To avoid having four overlapping functions, intervals for the σ, the standard
deviation of the Gaussian distribution, and for the µ, the mean value, are
selected. The interval for σ is the same for the four activations: 20 < σ < 100.
The average values of the four gaussians were selected from four adjacent
intervals: 0 < µ1 < 250, 251 < µ2 < 500, 501 < µ3 < 750 and 750 < µ4 < 1000
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After generating a 12x4 matrix containing the four weight vectors (W) and a 4x1000
matrix containing the four temporal activations (H), the simulated envelope is ob-
tained from their product, and it will have dimensions 12x1000.
From the generated envelope, we start the simulation, removing channels as ex-
plained in figure 3.6. At the beginning, the envelope has 12 channels. One channel

Figure 3.6: Block diagram describing the main loop of the performed simulation

is removed, choosing it randomly but making sure that it satisfies the condition
that even after its removal there is still at least one dominant channel for every syn-
ergy. Then, new synergies are extracted from the envelope with the new number of
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channels, and they are compared with the original generated synergies computing
the Cosine Similarity between the weight vectors and the Correlation Coefficient
between the temporal activations. In this simulation, the number of synergies ex-
tracted has been kept fixed to 4, as the original synergies that were generated.
Since, in this case, an exact factorization is performed by the algorithm, to better
evaluate its performances it is necessary to keep the number of synergies fixed, to
see how its performances change as more channels are lost. The removal of the
channels and the consequent computation of synergies and metrics continues until
the number of channels reaches five: the stopping point is set here because the loss
of another additional channel would lead to the loss of one synergy.

3.3 sEMG signal simulations

In the second set of simulations, the signal considered was no longer only the enve-
lope of an sEMG, but it was a simulated sEMG signal. Signals with different noise
contribution were generated, to observe the effect of the noise on the performances
of the algorithm. To generate a sEMG signal it was used a procedure illustrated in
[12].

Figure 3.7: sEMG generation process: starting from the colored noise in the top left,
in the bottom left it is plotted the generated white noise, in the top right is shown the
"pure" signal obtained by multiplying the colored noise by the activation. Finally, in the
bottom right the sum of these two last signals gives the final simulated sEMG signal
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The first step is the creation of a white noise signal with a certain power. This
signal is then filtered with a band-pass filter to leave only the frequency components
in the range of interest.

Figure 3.8: First Step: extraction of a Colored Noise Signal by filtering of a White
Gaussian Noise

The lower boundary of the frequency interval that has been considered is 40 Hz,
and the upper boundary is 80 Hz: according to [51] this is the most informative
band of the power of the sEMG signal.
The second step consists in the generation of a new white noise signal that will
represent the noise part of the final sEMG. Starting from the power content of the
colored noise previously obtained, this new white noise is generated according to a
desired SNR value. The power of the noise to be created is obtained inverting the

Figure 3.9: Second Step: Noise and Signal components generation

formula for the signal-to-noise ratio:
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SNRdB = 10 log Ps

Pn

(3.9)

In the simulation, five different values of SNR were tested to observe the perfor-
mances of the algorithm with its variation. The values are 0 dB, 5 dB, 10 dB,
15 dB and 20 dB. In the same step, the colored noise is multiplied by a function
that delineates the profile of the activity of the muscle. The envelopes obtained
from the product of the sets of weights and temporal activations have been used as
activation function for the modulation of the sEMG.
The final step consists in the sum of the white noise of a certain SNR and the result
of the product of the colored noise with the activation.

Figure 3.10: Final Step: Generation of a sEMG signal with a noise of 10 dB by sum
the Noise and the Signal components

Once the signals are generated, in order to be used for the extraction of the
sEMG signal they must be processed for the extraction of their envelopes. This
happens following the steps indicated in 3.1. From this point on the simulation
follows the same main loop of the previous one, removing one channel at a time
pseudo-randomly and evaluating the performances of the algorithm by comparing
the synergies after the removal of channels with the synergies that are obtained from
the sEMG signals generated. Also, in these simulation the number of synergies was
kept fixed to k=4.
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3.4 sEMG envelopes simulations starting from
the synergies: shifting of the original envelopes

In this bunch of simulations, the starting point was again the envelopes of the
sEMG signal rather than the complete signal. However, to have some variability,
a new parameter in the generation of the temporal activations was introduced.
The coefficient δ is added to the Gaussian parameters σ and µ to shift the profile
of the Gaussian: δ is randomly picked in the interval [-15,15] and it is different
for every simulated Gaussian. In the simulation in section 3.2 the envelopes were
all generated in the same step using the same temporal activations, resulting in a
12x1000 matrix obtained by the multiplication of the 12x4 weight matrix with the
4x1000 temporal activations. In these simulations, the envelope of each channel is
computed individually, considering the contribution of the channel to the weight
matrix (a column of the matrix, so a 1x4 vector) and multiplying it for a set of 4
temporal activations (a 4x1000 matrix). The temporal activations will be slightly
different for every channel, because for every channels different values of δ are added
to the σ and µ of the set of 4 Gaussians originally generated and set as a reference.
An example of a set of envelopes generated in this way, compared with the original
envelopes that would have been obtained if the parameter δ was not introduced, is
reported in figure 3.11.

Figure 3.11: Comparison between the original envelopes (blue) and the envelope ob-
tained shifting the temporal activations (red)
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It is important to select the range in which δ can vary in a way that the "shifted"
envelopes will not be too different from the original ones so that the NNMF algo-
rithm would still be able to reconstruct them with results not too different from
the original set of synergies (with the reference temporal activations). To verify
that [-15,15] was a good enough interval for δ, the correlation coefficient between
the original envelopes and the shifted envelopes was computed (figure 3.12).

Figure 3.12: Distribution of the correlation coefficient between the original and the
shifted envelopes

The main loop of the simulation (figure 3.13) is slightly different from the one of
the initial simulation presented in section 3.2. In that case, since the envelopes were
given exactly by the product of the W and the H used as reference, the algorithm
was performing an exact factorization, so the number of synergies to be extracted
was set as 4 and kept constant across all the channel removals to compare the
synergies extracted after the loss of channels with the original generated synergies.
In this simulation, shifting the envelopes introduces variability, so reconstructing
the signal through the NNMF algorithm is no longer an exact factorization, but
a pseudo factorization. For this reason, it was decided not to keep the number
of synergies k a priori fixed to 4, but to choose it extracting the synergies at the
beginning from the shifted envelopes (when having all the 12 channels) and to keep
it constant across the removal of channels. The criteria for the selection of k were
chosen from literature [11]: the synergies were extracted with different values of
increasing k, the coefficient of determination R2 was computed between the original
envelopes and the reconstructed envelope for every possible k, and it was picked
the first value of k for which the average R2 was higher than 0.85, and the R2 for
every channel was higher than 0.70.
Once the optimal value of k was picked, it was kept fixed across the consecutive
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Figure 3.13: Block diagram describing the main loop of the performed simulation

removals of channels. The ending point of the simulation was also different from
the one of the previous one: the simulation was stopped when the algorithm was
no longer able to reconstruct the signals of the remaining channels with the same
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number of k initially picked.

3.5 sEMG simulations starting from physiologi-
cal activations

To test the algorithm in conditions as similar as possible to physiological ones, a
simulation was performed focusing on data from the gait analysis. The gait is a
highly repeatable task, and the study of EMG signals collected from the muscles
involved allows to evaluate pathological conditions by studying the activations of
the muscles and the synergies patterns.
In literature, gait analysis is a theme widely explored, as it is the application of
muscle synergies to it, so it was possible to find some activity patterns of muscles
during gait and replicate it. In particular, it was considered the averaged EMG
activity collected from 25 muscles from 18 subjects during a cycle of over-ground
locomotion (reported in [14]).

Figure 3.14: Anterior and Posterior view of the muscular system: some of the muscles
considered in the analysis are highlighted (adapted from [13])

The position of most of those muscles in the human body is shown in figure 3.14.
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Channel Muscle
1 Adductor longus ADDL
2 Adductor magnus ADDM
3 Biceps femoris BF
4 Extensor digitorum longus EDL
5 Erector spinae lumbar ES(L4)
6 Erector spinae thoracic ES(T9)
7 Gastrocnemius lateralis LG
8 Gastrocnemius medialis MG
9 Gluteus maximus GM
10 Gluteus medium Gmed
11 External oblique lateralis OEL
12 External oblique medialis OEM
13 Peroneus brevis PERB
14 Peroneus longus PERL
15 Rectus abdominus RA
16 Rectus femoris RF
17 Sartoriys SART
18 Semitendinosus ST
19 Soleus Sol
20 Splenius SPLEN
21 Tibialis anterior TA
22 Tensor fascia latae TLF
23 Trapezius TRAP
24 Vastus lateralis VL
25 Fifth metatarso-phalangeal joint VM

Table 3.1: List of the 25 muscles whose EMG was replicated

The data were manually digitized from the graphs in figure 3.15, selecting around
30 points per graph, interpolating and then re-sampling to have signals 1000 samples
long. The result is reported in figure 3.16.

Considering those activations as EMG envelopes, muscle synergies were ex-
tracted from the digitized data (figure 3.17). The number of synergies obtained
was 5, the same as the one that was obtained in [28] in a study analyzing the mus-
cle synergies obtained from gait.
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Figure 3.15: Activity patterns during a single locomotion step cycle ([14])

Figure 3.16: Activity patterns during a single locomotion step cycle - digitized data
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Figure 3.17: Initial synergies extracted

The main loop of the simulation (figure 3.18) is slightly different from the one
of previous simulations. Also in this simulation as in the first one, the number
of synergies was kept fixed to 5, that has been observed many times as the ideal
number of synergies for signals from the gait analysis.
Every time a channel had to be removed, at first the removal of all the remaining
channels was tested, computing every time the new synergies and the metrics for
comparison with the original synergies (Cosine Similarity for the weights and Cross
Correlation for the temporal activations). The choice of the channels to be removed
followed two parallel patterns. In the first one, the channel that was removed was
the one whose removal would less affect the performances of the algorithm,i.e. the
channel for whom the synergies after its removal were more similar to the original
synergies. In the second pattern, the channel that was removed was the one whose
loss would most reduce the performances of the algorithm (while still satisfying the
criterion that for every synergy at least a dominant channel must remain, to avoid
losing that synergy). Every time a channel had to be removed, the same logic was
applied. The simulation stopped when the number of channels left was 6, one more
of the computed 5 synergies.
Following this approach, it was possible to analyze the best and the worst case
scenarios for the loss of channels in this physiological signals, and it can be assumed
that all the behaviours in between are possible.
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Figure 3.18: Block diagram describing the main loop of the performed simulation
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Chapter 4

Simulations results and
discussion

4.1 sEMG envelopes simulations starting from
synergies

The simulation of the sEMG envelopes starting from the original synergies was
performed 1000 times, 1000 different set of synergies were generated and were used
as starting point for the successive removal of channels as described in figure 3.6.
To observe how the algorithm reacts to the loss of the channels, the cosine similarity
and the correlation coefficient are computed after every removal between the new
extracted synergies and the original generated synergies. The distribution of the

Figure 4.1: Distribution of the cosine similarity (left) and the correlation coefficient
(right) between the synergies after the removal of channels and the original synergies as
the number of removed channels increases
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cosine similarity and the correlation coefficient as the number of channels decreases
is reported in figures 4.1 and 4.2. The x axis reports the number of channels that

Figure 4.2: Distribution of the cosine similarity (up) and the correlation coefficient
(down) between the synergies after the removal of channels and the original synergies as
the number of removed channels increases.

have been lost, the y axis the values of the two parameters.
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From the two graphs it is possible to observe that the average values for both cosine
similarity and correlation coefficient are really high, greater than 0.98. A similar
result is expected, since in this simulation the algorithm is faced with an exact
factorization. The performances of the algorithm are influenced by the redundancy
of the channels: there may be channels whose contribution to the weight vectors
are really similar. The removal of a redundant channel would not affect the amount
of information, and this may lead the algorithm to a different reconstruction with
respect to the original reconstruction, and thus to lower values for the metrics of
comparison.

Analysis of the outliers

It can be observed from the previous boxplots that there is a consistent number of
outliers, spread out over a large interval of values. In looking for an explanation
for their behaviour, three categories with common patterns in their behaviour were
found.

• Outliers with one of the synergies that is almost empty
These outliers were identified by computing the norms of the weight vectors
and selecting the tests where one of the weights had a norm minor than 0.5.
An example of an outlier in this group is represented in figure 4.3. In the upper
part of the figure there are the original generated synergies with 12 channels,
in the bottom part of the figure the synergies obtained after the removal of
7 channels. The dominant channels for the various synergies are colored in
red, while the blu channels are semidominant or non dominant channels. It
catches soon the eye that the third synergy has norm almost null: the synergy
is almost void, also the last visible channel, that being a dominant channel
and the only dominant channel left in the synergy was supposed to be remain
sufficiently high, is almost null.
It was observed that these outliers are linked to the fact that the number
of synergies was kept fixed to k=4. To compensate this, in situations where
k=3 would have been an appropriate number of synergies, the algorithm was
oriented toward that optimal factorization, and, to get a result as close as
possible to it, then one of the synergies was left empty so that its influence
is null in the reconstruction of the envelopes. This has been proven true
computing the R2 coefficient of these outliers for a k=3 : the value was still
very high (average of 0.99), so it would have been possible to reconstruct the
signals also with k=3.
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Figure 4.3: Synergies obtained from the original 12 channels (up) and from 5 channels
(down): the test is an outlier and one of the synergies disappears. The channels high-
lighted in red are those who were dominant channels at the beginning of the simulation.
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• Outliers where one of the synergies after the removal of channel is
given from a merging of two or more original synergies

These outliers were identified performing the merging analysis explained in
section 3.1. Because of the presence of merging, one of the synergies obtained

Figure 4.4: Example of an outlier where one of the synergies after removing channels
could be considered as the merging of two of the original synergies. In the upper figure
there are the original synergies, while in the lower the reconstructed synergies. The red
channels are the ones that the 4th removed synergies has taken from the 4th original
synergy, while the green are those taken by the 1st original synergy.
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after the removal of channels can be obtained by merging two of the origi-
nal synergies (considering for the comparison only the correspondent channels
that are left). In this way, the new synergies result to be different from the
corresponding original ones, that’s why the tests where merging was detected
were almost all part of the outliers. In figure 4.4 a possible example of merg-
ing is reported. In this case the 4th synergy obtained after the removal of 7
channels could be interpreted as the merging of the 4th original synergy (from
which it has taken the channels 1, 3 and 4) and of the 1st original synergy
(from which it has taken the channels 2 and 5).

• Outliers where two or more of the synergies after the removal of
channels are given from a fractionation of an original synergy
These outliers were identified performing the fractionation analysis explained
in section 3.1. The idea is the same as the merging, but in the opposite
direction: the original synergies are broken up and generate the reconstructed
synergies. The individuation of a fractionation is more difficult than the one
of the merging, because an additional constraint must be introduced: each
removed synergy can contribute to the reconstruction of at most one original
synergy, therefore the optimization algorithm must be implemented twice.
Because of this difficulty, the number of outliers belonging to this category is
low, lower than the number of elements belonging to the other categories. In
figure 4.5 we can see an example of fractionation. The 3rd and 4th synergies
after the removal of 7 channels derive from the fractionation of the 3rd original
synergies.

A big chunk of the outliers of the test are part of one of the three categories,
though not all of them.

A point that needs to be highlighted is the fact that the synergies provided by
the NNMF in case of the outliers are, in most cases, still valid synergies and they
provide a good reconstruction of the original signal, it is just that they are different
from the originally generated synergies. Since the number of synergies is fixed to 4,
it may happen that the algorithm has too much freedom in exploring the solution
space and ends up computing synergies different from the original ones.
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Figure 4.5: Example of an outlier where two of the synergies after removing channels
are given by the fractionation of one of the original synergies. In the upper figure there
are the original synergies, while in the lower the reconstructed synergies. The highlighted
channels are the one involved in the fractionation: the 3rd original synergy is split in the
3rd removed (the contribute of the original synergy is channel 3) and the 4th removed
synergy (the contribute consists in channels 1, 3 and 4)
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4.2 sEMG signal simulations

The simulations with a sEMG signal as starting point were performed for 5 different
values of the SNR: 0 dB, 5 dB, 10 dB, 15 dB and 20 dB.
To observe the influence of the SNR in the reconstruction of the original signal
through the NNMF as the number of channels decreases, the results for the cosine
similarity and the correlation coefficient were compared across the five intensities
of the noise (figures 4.6 and 4.7).

The x axis indicates the number of channels that have been lost. The starting

Figure 4.6: Distribution of the cosine similarity (left) and the correlation coefficient
(right) between the synergies after the removal of channels and the original synergies as
the number of removed channels increases: comparison for the different values of the SNR

point is 0 because the extraction of the synergies is performed from the original
signal also before starting with the removal of channels: since the signal is affected
by noise, it will not be reconstructed exactly, but, as reported in the graph, the
synergies that are extracted are still very similar to the original generated synergies.
In every column of the boxplot it is possible to observe the distribution of the
analyzed parameters across the different values of SNR, starting from the left with
the lightest blue from the signals with less noise/higher SNR (20 dB), from left to
right the SNR decreases/the noise increases until the maximum value of 0 dB. As
the noise increases, the capability of the algorithm to reconstruct synergies similar
to the original ones decreases. Regarding the cosine similarity, the values are still
high (average above 0.97), but the correlation coefficient has lower values. This
is because, being the correlation coefficient related to the temporal activations, it
is more affected by the SNR ratio than the weight vectors, since also the noise is
time-dependant. Although in this simulation some outliers are present, they have
values of cosine similarity and cross correlation which are still quite high (mostly
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Figure 4.7: Distribution of the cosine similarity (up) and the correlation coefficient
(down) between the synergies after the removal of channels and the original synergies
as the number of removed channels increases: comparison for the different values of the
SNR.

for the similarity) and not that far from the lower whiskers of the boxplots.
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4.3 sEMG envelopes simulations starting from
the synergies: shifting of the original envelopes

To observe how the algorithm reacts to the loss of channels, the cosine similarity
and the correlation coefficient are computed after every removal between the new
extracted synergies and the synergies that are reconstructed after having performed
the shifting of the envelopes.

Figure 4.8: Distribution of the cosine similarity (left) and the correlation coefficient
(right) between the synergies after the removal of channels and the original synergies as
the number of removed channels increases - simulation with the shifted envelopes.

To observe how the shifting introduced in the envelopes affects reconstruction
of the original signal through the NNMF as the number of channels decreases, the
results for the cosine similarity and the correlation coefficient were computed (fig-
ures 4.8 and 4.9). In this simulation the number of synergies k is not fixed, but it
is chosen (with the criteria described in section 3.4) in the first extraction of the
synergies (from the original envelopes that have been shifted with the introduction
of the parameter δ) and then it is kept for the following removal of the channels
happening in that test. The natural ending of the simulation would be when the
number of channels left is k+1 simulation is stopped when one synergy is lost, so
when the synergies are computed with k-1 synergies. In the boxplots in the figures
4.8 and 4.9 the results are reported for the tests with the different k, so, for exam-
ple, the last column reports the results when the channels lost are 8, but such a
situation is possible only when the initial number of synergies is 3.
The performances of the algorithm are compared for the tests with different values
of K in figure 4.11. The histogram in figure 4.10 reports the distribution of the
number of simulations with a certain k (on the y axis there is the number of in-
stances with respect to the total number of instances: this means that more or less
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Figure 4.9: Distribution of the cosine similarity (up) and the correlation coefficient
(down) between the synergies after the removal of channels and the original synergies as
the number of removed channels increases - simulation with the shifted envelopes.

the 80% of tests has k=4 as initial number of synergies, the 15% of tests has k=3
and less than the 5% has k>4.
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Figure 4.10: Distribution of the number of tests with a certain value of the starting
number of synergies k.

In this simulation, if for the removal of one channel the number of synergies
extracted (chosen according to the specific thresholds reported in 3.4) was smaller
than the initial number of synergies, the test would stop, otherwise it would nat-
urally end where the number of channels left would be equal to k+1. It is worth
observing in how many instances the test is stopped before its ending and at what
iteration. Observing the distributions of cosine similarity and cross correlation, it
is noticeable that for k>4 the test is soon stopped, since only for 1 channel re-
moved we have more than one instance, and from 4 channels removed on we do not
have results. It was observed from the results that the tests with k=3 are never
forcibly stopped, but the simulation is always performed until the end. For tests
with k=4, in around 30% of the cases the simulation was performed until the end,
in the remaining cases it stopped at the removal of a previous channel, with a even
distribution of the instances that stopped at a certain number of channels.
Observing the comparison of the performances of the algorithm with k=4 and k=3
in figure 4.11 it is possible to notice that up until the 6th channel is removed the
performances are really similar, only slightly better for k=3. The main difference
is what happens when 7 channels are lost. This may be due to the fact that, if
the NNMF has k=4 even with less channels, it will have more degree of freedom to
explore to find the best reconstruction than the ones that it would have if k was
equal to 3. Having more degrees of freedom, the algorithm, using k=4, might reach
a solution for the extraction of synergies quite different from the original synergies
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Figure 4.11: Distribution of the cosine similarity (up) and the correlation coefficient
(down) between the synergies after the removal of channels and the original syner-
gies:simulation with the shifted envelope, comparison of the results with the different
values of k.

more easily than an algorithm with k=3 could. This is why, when the number of
synergies is lower than the synergies obtained, they are often more similar to the
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original synergies than when the number of synergies is higher. It is important
to remember that, in most cases, the synergies obtained with an higher k are still
valid and provide a good reconstruction of the signal, they are just different from
the original ones.

4.4 sEMG simulations starting from physiologi-
cal activations

The two simulations starting from physiological activations are performed (follow-
ing the block diagram in figure 3.18) in a parallel way with two different constraints:
in one, the channel that is removed is the best possible one, the channel for which
the synergies extracted provided the best metrics for comparison with the orig-
inal 5 synergies, the channel whose removal would less afflict the functioning of
the algorithm. To simplify, this simulation will be called "Best" simulation. In
the parallel simulation, the channel removed is the worst possible, the channel for
which the synergies extracted provided the worst metrics for comparison with the
original synergies, the channel whose removal would cause the performances of the
algorithm to decrease the most. This simulation will be called "Worst" simulation.
The results for these two simulations are presented at the same time.
In figure 4.12 is represented the variation of the Cosine Similarity (in red) and of
the Correlation Coefficient (in blue) as the number of channels that are removed
increases. The upper boundary of the coloured area represents the maximum value
assumed by the parameter, the lower boundary the minimum value of assumed by
the parameter and the center line represents the average value.

In the "Best" simulation, the values of Cosine Similarity and Correlation Coeffi-
cient remain more or less constant, and very close to 1, until we reach the removed
channel number 10. At that point they start decreasing, but not so steeply, and
even the minimum value that they reach (around 0.92 for the correlation and around
0.96) is still a really high value. The Correlation Coefficient is always slightly lower
than the Cosine Similarity.
In the "Worst" simulation, the Correlation Coefficient decreases more rapidly than
the Cosine Similarity until the removal of the 9th channel, then it is more or less
stable with an average around 0.8. The Cosine Similarity is more or less stable
until the same point, then oscillates, with its average oscillating in a range between
0.9 and 1, to reach the final value of 0.8. The average value of the Cosine Simi-
larity is always greater than 0.8, but its minimum is highly variable and. in some
instances, reaches values as low as 0.5, even 0.2 in the last step. On the other side,
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Figure 4.12: Trend of cosine similarity and correlation coefficient across the increasing
of number of channels removed. Upper part of the figure: "Best" simulation. Lower
part of the figure: "Worst" simulation. The center line represents the average of the
parameter, while the lower and upper boundary of the colored area the minimum and
maximum values.
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the Correlation Coefficient is more stable and does not reach values as low.

We shall now analyze more in details what happens to the synergies as more
and more channels are lost, and what can be observed on the channels lost. In
figure 4.13 the synergies extracted when 5 channels had already been removed (the
channels removed are indicated by a grey box) are reported. The channels that
were lost, different for both simulations because of the opposite criterion by which
they are selected, are:

BEST SIM. WORST SIM.
Ch. Muscle Ch. Muscle

3 Biceps femoris BF 1 Adductor longus ADDL
4 Extensor digitorum

longus
EDL 2 Adductor magnus ADDM

11 External oblique later-
alis

OEL 12 External oblique medi-
alis

OEM

14 Peroneus longus PERL 15 Rectus abdominus RA
22 Tensor fascia latae TFL 14 Splenius SPLEN

Table 4.1: List of the first 5 muscles to be removed - best and worst simulation

The muscles lost in the "Best" simulation are muscles that are redundant for the
extraction of the synergies, because some other muscle can give their same con-
tribution to the computation of the synergies. For example, the External oblique
lateralis OEL (channel 11) can be replaced by the External oblique medialis OEM
(channel 12) and the Peroneus longus PERL (channel 14) can be replaced by the
Peroneus brevis PERB (channel 13).
The muscles lost in the "Worst" simulation were probably muscles that have a pecu-
liar activation that is not similar to other muscles, or that are very active in one or
more synergies. This happens, for example, for the Adductor longus ADDL (chan-
nel 1), the External oblique medialis OEM (channel 12) and the Splenius SPLEN
(channel 14): looking at their contribution to the original synergies obtained from
the envelopes with all the channels (figure 3.17) it is possible to notice how the
corresponding weight vectors for those muscles had an high value across multiple
channels. Their loss is more problematic than the loss of the muscles from the
"Best" simulation, since it may lead to the loss of some significant information that
cannot be recovered. As it can be observed both visually comparing the synergies
with the original ones and looking at the values of the metrics previously discussed,
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Figure 4.13: Synergies obtained when 5 channels have been removed compared with the
original synergies with 25 channels. Upper part of the figure: "Best" simulation. Lower
part of the figure: "Worst" simulation. In blue are represented the original synergies, in
red the synergies after the removal of channels.
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the reconstruction of the signal is still very good also with 5 channels less, and the
extracted synergies are really similar to the original ones.

Figure 4.14 reports the synergies extracted when other 5 channels have been
removed (total number of channels lost is 10). The channels that were lost, different
for both simulations because of the opposite criterion by which they are selected,
are:

BEST SIM. WORST SIM.
Ch. Muscle Ch. Muscle

1 Adductor longus ADDL 5 Erector spinae lumbar ES(L4)
7 Gastrocnemius later-

alis
LG 6 Erector spinae tho-

racic
ES(L4)

9 Gluteus maximus GM 11 External oblique later-
alis

OEL

12 External oblique medi-
alis

OEM 17 Sartorius SART

24 Vastus lateralis VL 23 Trapezius TRAP

Table 4.2: List of the second group of 5 muscles to be removed - best and worst
simulation

Also in this case, some of the muscles lost in the "Best" simulation are still
redundant muscles (for example the Peroneus longus PERL (channel 14) could
be replaced by the Peroneus brevis PERB (channel 13) whose activation is really
similar. For the worst simulation in this group of lost channels there are two that
are redundant (Adductor longus ADDL and Adductor brevis ADDM, channels 1
and 2), but since they are lost almost at the same time the information linked to
them cannot be recovered. Also at this point the reconstruction of the signal is still
very good also with 5 channels less, and the extracted synergies are similar to the
original ones.
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Figure 4.14: Synergies obtained when 10 channels have been removed compared with
the original synergies with 25 channels. Upper part of the figure: "Best" simulation. Lower
part of the figure: "Worst" simulation. In blue are represented the original synergies, in
red the synergies after the removal of channels.
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Figure 4.15: Synergies obtained when 15 channels have been removed compared with
the original synergies with 25 channels. Upper part of the figure: "Best" simulation. Lower
part of the figure: "Worst" simulation. In blue are represented the original synergies, in
red the synergies after the removal of channels.
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Figure 4.15 reports the synergies extracted when other 5 channels have been
removed (total number of channels lost is 15). The channels that were lost are:

BEST SIM. WORST SIM.
Ch. Muscle Ch. Muscle

5 Erector spinae lumbar ES(L4) 9 Gluteus maximus GM
13 Peroneus brevis PERB 10 Gluteus Medius Gmed
16 Rectus femoris RF 16 Rectus femoris RF
20 Splenius SPLEN 24 Vastus lateralis VL
21 Tibialis anterior TA 25 Fifth metatarso-

phalangeal joint
VM

Table 4.3: List of the third group of 5 muscles to be removed - best and worst simulation

At this point, with so many channels removed,it is difficult to make considera-
tions on the channels that have been removed within this group. Looking at the
previous graph, it can be noticed that this is the moment when the Cosine Simi-
larity and Correlation Coefficient start dropping, but their absolute values are still
good.
The last bunch of channels removed in figure 4.16 consisted of:

BEST SIM. WORST SIM.
Ch. Muscle Ch. Muscle

2 Adductor magnus ADDM 4 Extensor digitorum
longus

ES(L4)

19 Soleus Sol 18 Semitendinosus ST
23 Trapezius TRAP 19 Soleus Sol
25 Fifth metatarso-

phalangeal joint
VM 22 Tensor fascia latae TFL

Table 4.4: List of the last group of 4 muscles to be removed - best and worst simulation
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Since this is the last group of channels that was removed, it makes more sense
to look directly at the 6 channels that remain both for the "Best" and "Worst"
simulation.

BEST SIM. WORST SIM.
Ch Muscle Ch Muscle
6 Erector spinae thoracic ES(T9) 3 Biceps femoris BF
8 Gastrocnemius medi-

alis
MG 7 Gastrocnemius lateralis LG

10 Gluteus medius Gmed 8 Gastrocnemius medi-
alis

MG

15 Rectus abdominus RA 13 Peroneus brevis PERB
17 Sartorius SART 14 Peroneus longus PERL
18 Semitendinosus ST 21 Tibialis anterior TA

Table 4.5: List of the 6 muscles that are left after 19 channels are removed - best and
worst simulation

As far as the "Best" simulation is concerned, it is not appropriate to assume
that the channels left behind are the absolute best, able to perfectly reconstruct
the synergies. This process of choice of the best channels often discriminates be-
tween values of the metrics that are really close, so at any point another channel
could have been picked and still be valid and the final solution could have been com-
pletely different. It would be necessary to perform the same test many times and
individuate the channels that were left as last channels more frequently. Moreover,
it is reasonable to think that the channels left are simply channels whose temporal
activation is similar to the temporal activation of the original synergies.
For what concerns the "Worst" simulation, it is remarkable how 4 out of the 6
channels left consist of two couples of redundant channels (Gastrocnemius lateralis
and Gastrocnemius medialis; Peroneus brevis and Peroneus anterior): it is pointless
to keep both channels from these couples because they give the same information
and other channels potentially more informative could have been more useful, so it
makes sense that they were picked as worst channels.
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Figure 4.16: Synergies obtained when 19 channels have been removed compared with
the original synergies with 25 channels. Upper part of the figure: "Best" simulation. Lower
part of the figure: "Worst" simulation. In blue are represented the original synergies, in
red the synergies after the removal of channels.
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Chapter 5

Conclusions

The aim of this thesis was analyzing the changes in the final factorization performed
by the NNMF algorithm when one or more input channels are removed, evaluating
the performances by computing metrics on the synergies. The first set of simulation
performed had as starting point four generated activations: keeping the number of
synergies fixed to k=4, a very good reconstruction was obtained even when many
channels were removed. In some cases there was a drastic decrease in the similarity
of the new synergies with respect to the initial ones. This indicates the presence of
outliers, than can be divided into three categories:

• one of the synergies is almost lost (the corresponding weight vector has a norm
close to 0)

• one of the synergies after the removal of channels can be considered as merging
of some of the original synergies

• two or more of the synergies after the removal of channels can be explained as
a fractionation of one of the original synergies

These three categories cover a good part of all the outliers.

The previous condition was not realistic one, because the algorithm had to perform
a perfect factorization, while in real applications the algorithm is always faced with
a pseudo factorization. Some variability in the signals was then induced.

In a second simulation the Signal to Noise ratio was added to the picture, ana-
lyzing how the NNMF performs when dealing with sEMG signals. It has been
observed that an increase of the SNR leads to a decrease of the similarity.
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In the third simulation, a parameter acting as a jitter was added to the simulated
activations, to introduce some variability. To take into account this variability the
number of synergies to be extracted was no longer fixed to k=4, but it was left free
to change only considering some constraints on the quality of the reconstruction.

The introduction of the jitter reduces the number of the outliers. In fact, the
fact that the algorithm is now performing a pseudo factorization and not an exact
one makes it harder to reconstruct the same synergies in different ways. Leaving
to the algorithm the choice of the number of synergies to compute also leads to the
absence of merging and fractionation.

In this simulation, a stop condition was set for the algorithm when one synergy
was lost before reaching the ideal ending of the simulation, that should happen
when the number of channels is equal to k+1. In the tests where k was equal to 3,
k remained always the same and the ideal ending was always reached, while in the
tests with k=4 the simulation was stopped before the ending because the number
of synergies had decreased in the 65% of the cases.

This simulation had a really low number of outliers: this suggests that the reason
for the outliers in the first simulation might have been the fact that the algorithm
was left with too many degrees of freedom, so it was more probable for it to con-
verge to a solution in a different portion of the space of the solutions and so different
from the original one.

As a final step, simulations with signals taken from a real application were per-
formed. The data were obtained digitizing some activations of muscles involved in
gait, presented by Ivanenko [28]. Starting from 25 channels, two parallel simula-
tions were performed: in the first one the channel that is removed was the one from
whose synergies the highest metrics of comparison with the original synergies were
obtained ("best simulation"), in the second one the channel with the lowest metrics
is removed ("worst simulation"). The number of synergies was fixed to k=5 and the
removal of channels continued until 6 channels were left.

The algorithm could reconstruct well the signals even when losing a lot of channels
in both cases. This approach could be used to identify subsets of channels that
could easily be removed without affecting much the reconstruction, or on the other
end subsets of channels whose loss could badly affect the reconstruction.
Considering the last channels that are left after all the removals, in the "worst"
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simulation they were redundant channels as it was expected. Considering only this
simulation it would be wrong to infer that the channels that remained at the end
of the "best" simulation were perfectly able to reconstruct the initial signal, it is
more probable that the channels left have simply an high correlation with the tem-
poral activation of the initial synergies. With a longer and more robust simulation
it could be possible to identify an ideal set of muscles that could reconstruct the
original synergies to use them to reconstruct the signal of a missing channel.
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Acronyms

Acronyms

AP Action Potential.

CNS Central Nervous System.

DoF Degrees of Freedom.

EMG ElectroMyoGraphy.

FA Factor Analysis.

ICA Independent Component Analysis.

iEMG Intramuscular ElectroMyoGraphy.

MU Motor Unit.

MUAP Motor Unit Action Potential.

NNMF Non-Negative Matrix Factorization.

PCA Principal Component Analysis.

PLI Power Line Interference.

SCI Spinal Cord Injuries.

sEMG Surface ElectroMyoGraphy.

VAF Variance Accounted For.
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