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Chapter 1

Abstract

This work addresses the application of two di�erent methods in order to detect
faults in bearings operating within an electromechanical system, based on the
measurement of vibrations and stator currents. The electromechanical system
considered is a shaft connected to an electric induction motor. Two bearings are
mounted on the shaft; these bearings can be metallic or ceramic. The bearings
can be found in three di�erent conditions: healthy or with a inner race hole
of 1 mm or 2 mm. First of all the analisys of theorical fault frequencies was
explored. The goal of this method is to identify theorical fault frequencies,
depending on features of the bearing, in order to verify the presence of peaks in
the frequency signals obtained from laboratory measurements. The accuracy of
the theoretical frequency calculation was demonstrated by the actual presence
of these peaks in the frequency signals, however it was expected to be found
a proportion between the peak heights, and the severity of the fault, but this
didn't happened. That led to the development of the second method, based on
the building of a neural network able to classify the bearings with respect to
their conditions, starting from 15 di�erent statistical time domain features as
input. Two reduction technicques, LDA and PCA, were implemented in order
to reduce the number of input to the two most signi�cant features; after that
the neural network was built. The results obtained with this second method
are very satisfactory as they allow to classify with a good performance both
considering the di�erent scenarios of bearing material and measured signal taken
individually, but also considering all four di�erent scenarios at the same time.
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Chapter 2

Introduction

2.1 Topic

Elecritical motors are crucial devices in modern life, with lots of applications
in various �elds, such as industrial machinery, motor vehicles, aerospace, trans-
portations and other commercial applications. Of all these �elds, industrial ap-
plications are the most important ones, where they are widely used in pumps,
conveyor systems, compressor, fans and other industrial machineries. The global
elecrtic market size was $96.9 billions and is projected to reach $136.4 billions
in 2025 growing at an annual rate of 4.5% [1]. Electric motors can be founded in
di�ert con�gurations such as DC motors, brushed or brushless, or AC motors,
synchronous or at induction. As shown in �gure 2.1 all the electric motors are

Figure 2.1: Scheme of an electric motor [20]

characterized by the same main components that are:

� stator;
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� rotor;

� windings;

� shaft;

� bearings;

� power electronics.

2.2 Motivation

Linked to the di�erent components that charcterize an electric motor there are
many types of faults that can happen, such as : [5]

1. Stator faults including stator open phase, stator unbalance do to short
circuits or increased resistance.

2. Rotor elecrical faults such as rotor open phase, rotor unbalance due
to short circuits or increased resistance connections for wound rotor ma-
chines and broken bar or cracked end-ring for squirrel-cage machines, and
rotor magnetic faults as demagnetization .

3. Rotor mechanical faults that include bearing damage, eccentricity,
bent shaft and misalignment.

4. Power electronics failures .

This means that a lot of failures can happen, thus causing breakdown of machin-
ery, unproductive times, high maintenance costs and in some particular sectors,
such as hospitals, loss of life. The ability to detect these damages when they
are forming, so that targeted maintenance can be carried out in a timely man-
ner, can really make a di�erence within an industry. Fault detection has been
studied in great depth in the academic �eld, the most used techniques are listed
below [17] :

1. Signal-based fault diagnosis which use data collected by sensors mounted
on the system under examination, which provide information on particular
physical quantities, the evolution of which over time can provide informa-
tion on the state of health of the machine. Di�erent approaches can be
found:

� mechanical vibration analysis;

� schock pulse monitoring;

� stator current analysis;
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� acoustic noise analysis;

� temperature measurement.

2. Model-based fault diagnosis this approach involves the creation of a
mathematical model, de�ned by a series of parameters, the number of
which determine how sophisticated this model is and therefore able to
predict the real behavior of the system. Some typical techniques used are:

� neural network;

� fuzzy logic analysis;

� genetic algorithm;

� arti�cial intelligence.

3. Machine-theory-based fault analysis i.e. a series of models based on
the physical principles underlying the operation of the machine and which
make it possible to predict its change as certain physical properties change
as a result of the present damage. For example there are:

� winding function approach;

� modi�ed winding function approach;

� magnetic equivalent circuit.

4. Simulations-based fault analysis which use complex mathematical
models to generate data sets in case of damage and automatically evaluate
them. All this is then validated by comparing the data obtained from the
simulations, with measurements made in real cases. Some methods used
are:

� �nite-element analysis;

� time-step coupled �nite element state space analysis.

All this techniques can be used to detect all the di�erent faults seen before, but
not all the faults happen with the same probability. As shown in �gure 2.2 ,
bearings are the most critical components, with 69% of the total failures. This
is why in this work the two most important techniques used to detect bearing
faults were explored, that are:

1. Fault frequencies analysis
this method is based on the identi�cation of certain particular frequencies,
which can be identi�ed in the spectrum of a measured physical quantity
(e.g. bearing vibration). This frequency is a function of the geometric

9



characteristics of the bearing and in its correspondence it is possible to
detect peaks of the measured quantity, due to the presence of the damage.

2. Machine learning method this method, as it will be widely described
later in this work, exploits a neural network that, properly trained, is able
to recognize the presence of a damage by exploiting a series of quantities
given as input to the network.

69%

7%

21%

3%

Bearing
Rotor bars
Stator windings
Shaft

Figure 2.2: Distribution of the failures in an induction motor [17]

2.3 Objectives

The main objective of this work is the detection and classi�cation of ball bearing
faults within an electromechanical system, using vibration and stator current
measurements, taken in the laboratory. This measurements will be used to carry
out a fault frequency analysis and to build a classi�er neural network, with the
main goal to not only detect the presence of a fault in a rolling bearing, but also
understand the severity of this faults. The real challenge of this work is therefore
the realization of a system of recognition and classi�cation of damage that is
global, i.e. applicable in di�erent operating situations (in this case the two
power supply frequencies 25 Hz and 50 Hz will be analyzed) and considering
di�erent technologies for the realization of bearings, in particular both metal and
ceramic bearings will be studied here. The study of ceramic bearings, combined
with metal bearings, represents one of the main novelties of this study compared
to the current state of the art. The objective for the future is then to expand
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this model, making it adaptable to a number of operating cases that is as varied
and universal as possible, and therefore applicable to bearings of di�erent sizes,
materials, operating in various conditions and capable of recognizing damage of
di�erent shape, position and size.

2.4 Structure of the document

After a brief introduction about the topic studied, the problems connected and
the proposal of the work, in chapter 3 is described a state of the art study
about fault frequencies and machine learning methods of bearing fault detection.
Then in chapter 4 the case of study is described, with also all the experimental
apparatus, the signal measurement process and the whole electromechanical
system. In chapter 5 the fault frequencis analysis is described, then are reported
the vibration measurements and the results obtained. Finally in chapter 6 the
machine learning method is reported; this section contains the linear reduction
techniques, the results obtained and te optimization of the neural network.
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Chapter 3

State of the art

As said previously bearing fault detection is a crucial topic in modern industry
this is why a lot of acamedic research were carried out in order to develop
increasingly sophisticated techniques to address this issue. This detection can
be done by taking into account di�erent magnitudes, of witch the two most
important are:

1. vibrations ;

2. stator current .

These two quantities are signi�cant regarding the presence of a fault because
when the bearing rolls over a defect, then an impact is produced, generating a
vibration that is acquired with an accelerometer. The presence of this defect can
also produce torque ripples and eccentricity bewteen the rotor and the stator
causing asymmetries in the system, variations in the air gap and therefore in
the magnetic �ux through the motor and consequently in the current passing
through the stator. Vibrations and stator current are then analyzed into two
di�erent domains :

1. frequecy domain;

2. time domain.

The idea behind the �rst approach is to identify some peaks in the signals
acquired at certains characteristic fault frequencies provided from the literaure.
The presence of these peaks is related to the presence of a fault. On the other
hand the second approach uses the calculation of statistical quantities calculated
from vibration and current signals to de�ne clusters and classify them according
to di�erent damage conditions.

3.1 Fault frequencies approach

In [2] the �rst approach is used, by analyzing in the frequency-domain both
vibration and stator current signals, in order to compare the results obtained
with the two di�erent measurements. The elctromechanical system studied is
composed by a three-phase induction motor, supported by metalling bearings in

12



three di�erent conditions: healthy, simulated brinneling defect, and outer race
hole. The conclusions obtained are that vibration signal is a robust indicator
since peaks in the frequency spectre were e�ectively found around the charac-
teristic fault frequencies predicted. The problem with this solution is that the
equipment needed for measuring vibrations is more complicated and expensive
and moreover the accelerometers has to be mounted as nearest as possible to
the bearing in order to acquire the correct vibration. Measuring stator current
is easier and cheaper but the main issue is that the e�ects of the faults are
visible only in certain operative conditions, since they can be totally buried in
the present noise, this is why sophisticated �ltering techniques may be needed.
In [18] is also compared the detection of bearing faults using vibration and sta-
tor current analysis. The metallic bearings support a two pole-apirs induction
machine and can be founded into two di�erent con�gurations that are healthy
or with a 3 mm hole into the outher race. In this work too is stated that the
signal of vibration is a good indicator of faults since peaks where �nd in the
frequency spectrum around the frequencies predicted using the classic theory,
but accelerometers are expansive and more complex to use. On the other hand
the stator current signal is easier to get since often is already measured for con-
trol and detection purpose. A di�erent approach is used and consists in using
a fault detector de�ned by extracting energies on frequency ranges related to
the characteristic frequency of the fault. The di�erence between the healthy
and the fault scenario is performed for each one of these frequencies and then a
cumulative sum is calculated. This detector shows good results for the vibration
signal, but the e�ect on the current signal is lower. For amplifying that peaks on
the current signal the supply frequency of the motor is tuned in order that the
characteristic frequency of the fault is equal to the frequence of resonance of the
motor, that can be obtained from the datasheet supplied by the maufacturer.
In this way the energy spectre detector can recognize faulty coditions also with
the stator current signal.

3.2 Machine Learning

Machine learning is the method behind how machines learn from data, by a
continuous training. It's a subset of Arti�cial Intelligence (A.I.), that repre-
sents the science of training machines to perform human tasks. This technique
was invented during 1950's but now is widespreading because of the incredible
amount of data that can be collected with modern sensors and also because of
more powerful computers to process that data. The �elds of application are
various, such as:

� �nancial services in order to identify investments opportunities and to
prevent frauds;

� health care since sensors can use data to asses patients' health in real
time and can identify trends or red �ags that can diagnose a disease in
advance;

� oil and gas extraction in this �eld machine learning can help �nd new
energy sources, analyzing minerals in the soil and predicting failures of
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the equipment used;

� government and political administration for detecting frauds, public
safety and better administration of money ;

� retail for recommending items based on customers' previous researches,
and also to improve marketing compaignes and price-policy optimization;

� transporation in order to make routes more e�cient and to predict po-
tential problems linked with more pro�table routes.

Several methods can be used in order to train the neural network, of which the
two most important ones are:

1. Supervised learning in which the training is performed using labeled
examples where the desired output are known. It is used in applications
where historical data predict likely future events.

2. Unsupervised learning that uses with no historical labels with the goal
to explore that data and �nd patterns within. This method works better
on transactional data. Popular techniques used are :

� nearest-neighbour mapping;

� k-means clustering;

� singular value decomposition.

There are also semi-supervised methods in which both labeled and unlabeled
data are used, usually a small amount of labeled ones and a huge amount of
unlabeled ones. [19]
In this work is explored machine learning with the goal to detect faults in
ball bearings so the state of the art in this �eld is reported below. In the
work [15] vibration and stator current measurements are used to detect bearing
faults, using the machine learning approach. The two signals are anlyzed in
the time domain by exctracting 10 statistical features used for classifying four
di�erent conditions, that are: healthy, inner and outer race scraped, partial
demagnetization of the machine and static eccentricity. First of all the statistical
features are obtained, then using a linear reduction technique the number of
input variables is reduced to 2 and �nally, an algorithm of machine learning is
able to identify and classify a novel condition, with an accuracy near to 99%,
every times it shows up (incremental learning).
In the work [14] are also used vibrations and stator current measurements but
here the features are extracted from both time-domain and frequency-domain.
Two experimental test bench are considered: a pulley-belt system and a gearbox-
based system. Di�erent operating conditions (in terms of torque load and speed
of rotation) are considered and 5 fault conditions are taken into account: healthy,
shaft misaligned, shaft unbalanced, broken rotor bar and defected bearing. Once
obtained the features, then the number of input variables is reduced to 2 using
the LDA technique and then a Neural Network classi�er is used. The results in
the classi�cation are really good, with an accuracy up to 99% obtained thanks
to the hybrid extraction of features from both time and frequency domain .

14



Chapter 4

Case of study

This work deals with fault detection of bearings working within an electro-
mechanical system. This system is composed by an induction motor ABB
M2AA112M-2 (�gure 4.1), with a rotating shaft connected, supported by
bearings (�gure 4.2). The bearing can be of two types:

Metallic bearing model 6205-ETN9/C3
Ceramic bearing model 6205-CE-ZRO2-ZEN

Only one type of bearing, for both metallic and ceramic, has been studied
because considering bearings with di�erent internal and external diameters, or
with di�erent number of balls, would have excessively increased the variance of
the problem and would have considerably complicated the classi�cation.

Figure 4.1: Induction motor

The faults in the bearings were simulated by doing in laboratory a hole in the
inner race of the bearing, so that can be found in three di�erent conditions:

� healhty;

� 1 mm inner race fault;

� 2 mm inner race fault.
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Figure 4.2: Metallic and ceramic bearing mounted on the shaft

It is important to specify how the dimensions of the holes are much larger
than those that usually occur in reality and which particularly occur in case
of incipient damage. However, the choice to analyze damages of this size is
to identify more easily the presence of di�erences between di�erent damage
conditions, as well as patterns within the same type of damage. However, it
is proposed for the future to extend the study to di�erent types of damage in
terms of size, location and shape.

Figure 4.3: Scheme of a radial bearing [2]

The most important mechanical features of the bearings are described in table
4.1.
The induction motor is subjected to two supply frequencies that are:{

fs,1 = 25 Hz

fs,2 = 50 Hz

16



Number of balls n = 9
Ball diameter Db = 7, 95 mm
Pitch diameter Dc = 39, 05 mm
Angle of contact β = 0°

Table 4.1: Mechanical features of the bearing

since the tests were carried out without any load on the shaft the slip is negli-
gible, so the frequency of rotation of the shaft can be considered equal to the
supply frequency (fr ' fs) . However, it is necessary to point out that the mea-
surements were not taken under completely stationary conditions because, due
to a series of tolerances due to the speed sensors, the inverter control and the
test bench itself, the power requirement �uctuates by a few Hz from the nominal
value. The fault detection is realized starting from vibration and stator current
signals. Vibration signals are taken by means of an accelerometer KS943B100
(�g. 4.6) and then acquired by the PXIe 1062 acquisition system, provided
by National Instrument. The sensitivity of the accelerometer is

Sacc = 100
mV
m
s2

The accelerometer provides the components of the vibrations in the three di-
rections of the space [ax, ay, az] but only the x and z directions are taken into
account since the y-direction is parallel to the angular speed one and that means
that vibrations in that direction don't load radially the bearing. An example of
the vibration time-signal for a metallic bearing is reported in �gure 4.4.
The current is measured with probe A622 by Farnell, whose sensitivity is

Sprobe = 100
mV

A

An example of the current time-signal for a metallic bearing is reported in �gure
4.5.
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Figure 4.4: Example of vibration signal in time, for metallic bearing at 25 Hz
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Figure 4.5: Example of current signal in time, for metallic bearing at 25 Hz
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The sampling frequency of the signal is

fsampl = 5000 Hz

This value allow to respect the Nyquist theroem

fsampl ≥ 2 · fmax

where fmax = 2500 Hz. In this way it is possible to obtain a good resolution
of the data, as the signal variations are intercepted well and there is no loss of
information. In the �rst part of the work, the one concerning fault frequencies,
only vibration measurements will be used. Subsequently, stator current mea-
surements will be added to these to implement the machine learning algorithm,
so as to have a larger sample of measurements with which to train the neural
network.

Figure 4.6: Accelerotemer KS943B100

Figure 4.7: Test bench used for the measurements
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Chapter 5

Theorycal fault frequencies

method

5.1 Introduction

A bearing operating within an electromechanical system, over time, due to var-
ious factors such as fatigue, overloading, poor lubrication or a contaminated
environment can become damaged. Whenever rolling elements pass through
the damaged area, impacts occur that can be detected by analyzing the vibra-
tion spectrum of the bearings. These impacts occur at particular characteristic
frequencies that depend on the frequency of shaft rotation and the mechanical
characteristics of the bearing.
The work in this section will follow the �ow chart in �gure 5.1 .

Laboratory measurement of vibration signal

FFT of the signal

Calculation of the characteristic frequencies for the �rst three fundamental harmonics

Comparison of peak values at characteristic frequencies for each of the three fault scenarios

Discussion of the results obtained

Figure 5.1: Steps followed in the development of this section.

For a single point defect, the literature [2] suggests the following expressions in
order to �nd the fault frequencies:
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

fC = fr
2

(
1− Db·cos β

Dc

)
fO = fr·n

2

(
1− Db·cos β

Dc

)
fI =

fr · n
2

(
1 +

Db · cosβ

Dc

)
fB = fr·DC

Db

(
1−

(
Db·cos β
Dc

)2)
where the meaning of the frequencies is listed in table 5.1 and the other variables
are the same listed in table 4.1 . Since the bearings considered are a�ected by

fC Cage fault frequency
fO Outer raceway fault frequency
fI Inner raceway fault frequency
fB Ball raceway fault frequency
fR Rotor mechanical frequency frequency

Table 5.1: Fault frequencies

inner race fault, the fault frequencies are:{
fI,1 = 135.4 Hz for fR = 25 Hz

fI,2 = 270.8 Hz for fR = 50 Hz
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5.2 Vibration measurements

Metallic bearings
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Figure 5.2: Spectrum of vibration signal for metallic bearings at 25 Hz
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Figure 5.3: Spectrum of vibration signal for metallic bearings at 50 Hz
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Ceramic bearings
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Figure 5.4: Spectrum of vibration signal for ceramic bearings at 25 Hz
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Figure 5.5: Spectrum of vibration signal for ceramic bearings at 50 Hz
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5.3 Results obtained

To obtain more information , the entire measurement period was divided into
small windows of 1 s each. Then the FFT was applied to each window in order
to analyze the frequency domain, and in particular to see the beahaviour of the
signal measured near the fault frequency. The harmonic considered were the
�rst three, obtained by the formula

fI = k · fr · n
2

(
1 +

Db · cosβ

Dc

)
with k = 1, 2, 3. A random window of the 100 available was taken into account;
the results are reported in the following plots.

Metallic Berings

25 Hz

Amplitude (×10−3) m
s2

Metallic 25 Hz x-axys I Harmonic II Harmonic III Harmonic
Healthy 0,6615 0,1903 0,2306

Fault 1mm 0,6652 2,2438 0.8535
Fault 2mm 1,8474 7,0743 8,3316

Amplitude (×10−3) m
s2

Metallic 25 Hz z-axys I Harmonic II Harmonic III Harmonic
Healthy 0,3296 0,3882 0

Fault 1mm 15,8632 4,5961 2,1104
Fault 2mm 4,3299 1,5746 10,9270

Table 5.2: Vibration amplitude at fault frequencies for metallic bearings at
25 Hz
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Figure 5.6: Vibrations around the fault frequencies at di�erent harmonics for
metallic bearing at 25 Hz
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Figure 5.7: Vibrations around the fault frequencies at di�erent harmonics for
metallic bearing at 50 Hz
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Amplitude (×10−3) m
s2

Metallic 50 Hz x-axys I Harmonic II Harmonic III Harmonic
Healthy 0,5759 5,5441 0,5856

Fault 1mm 11,5180 0,9604 7,1336
Fault 2mm 8,9836 8,5472 6,5724

Amplitude (×10−3) m
s2

Metallic 50 Hz z-axys I Harmonic II Harmonic III Harmonic
Healthy 2,0321 4,3708 2,1258

Fault 1mm 47,2832 11,7773 5,8382
Fault 2mm 1,8929 1,6624 1,4806

Table 5.3: Vibration amplitude at fault frequencies for metallic bearings at
50 Hz
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Figure 5.8: Vibrations around the fault frequencies at di�erent harmonics for
ceramic bearing at 25 Hz
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Amplitude (×10−3) m
s2

Ceramic 25 Hz x-axys I Harmonic II Harmonic III Harmonic
Healthy 0,9786 0,3594 0,7027

Fault 1mm 0,2972 0,4407 1,1812
Fault 2mm 0,4250 0,7386 1,4263

Amplitude m
s2

Ceramic 25 Hz z-axys I Harmonic II Harmonic III Harmonic
Healthy 0,3229 0,0065 0,0069

Fault 1mm 0,2205 0,3173 0,1746
Fault 2mm 0,1484 0,0064 0,1530

Table 5.4: Vibration amplitude at fault frequencies for ceramic bearings at
25 Hz
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Figure 5.9: Vibrations around the fault frequencies at di�erent harmonics for
ceramic bearing at 25 Hz
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Amplitude (×10−3) m
s2

Ceramic 50 Hz x-axys I Harmonic II Harmonic III Harmonic
Healthy 0,8410 0,3761 3,0465

Fault 1mm 1,6382 1,5410 10,4760
Fault 2mm 2,0749 0,3534 2,4038

Amplitude m
s2

Ceramic 50 Hz z-axys I Harmonic II Harmonic III Harmonic
Healthy 0 0 0

Fault 1mm 6,8841 3,4388 3,2867
Fault 2mm 0,4706 0 0

Table 5.5: Vibration amplitude at fault frequencies for ceramic bearings at
50 Hz
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5.4 Conclusions

The aim of this section was �rstly to verify the validity of the formulas of the
classical literature by detecting peaks in the vibration spectrum near the char-
acteristic fault frequencies and secondly to look for a correlation between these
peaks and the severity of the damage. The values reported in the tables prove
the accuracy of theoretical formula, since are e�ectively shown peaks around the
fault frequencies predicted, however there is no proportionality between the size
of the failure and the magnitude of the peaks, as it could have been expected.
In fact, overall in the three di�erent harmonics analyzed, the 1mm damage most
often has the highest vibration amplitude, both for metal and ceramic bearings
and with both supply frequencies. In conclusion this method can be useful for
detecting the presence of a fault, but has no e�ectiveness in classifying the fault
according to its severity.
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Chapter 6

Machine Learning Method

6.1 Introduction

The use of neural networks is in continuous di�usion in modern industry, espe-
cially in the �eld of real-time diagnostics, where it will be used in this work. The
idea behind the neural network is to provide as input a series of data character-
izing a phenomenon, obtained experimentally. Such data will then be used to
train the neural network in such a way as to recognize within this phenomenon a
series of categories, thus allowing to classify these categories. Once trained, this
neural network will be able to make this classi�cation starting from input data
collected real-time. In the case of this work, the neural network will therefore
be able not only to recognize if the bearing in operation is fully functional or
has defects, but also to classify the defect into two di�erent categories (1 mm or
2 mm inner race fault). A neural network is an ensamble of neurons, just as the
human brain (�gure 6.1). The most simple type of neuron is called perceptron

Figure 6.1: Scheme of a Neural Network [9]

(�gure 6.2). A perceptron is characterized by di�erent inputs xi, a weight wi for
each input, a single output, that can be either 0 o 1 and a bias bi that represents
the threshold that determines if the perceptron is activated or not.

output =

{
0 if

∑
(xi · wi) + b ≤ 0

1 if
∑

(xi · wi) + b > 0
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Figure 6.2: Scheme of a perceptron [9]

The problem with perceptrons is that a small change in the weights or bias of
any single perceptron in the network can sometimes cause the output of that
perceptron to completely �ip, say from 0 to 1, thus completly a�ecting the
accuracy of the classi�cation [9]. This is why another type of neurons, called
sigmoids were introduced. The scheme of the neuron is basically the same,
with inputs, biases and weights, the only di�erence is that the output σ(z) of
the neuron can be any value between 0 and 1 (�g. 6.3).

σ(z) =
1

1 + e−z

where
z =

∑
(xi · wi) + b

As already said, a set of neurons form a network. Within the network, the
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Figure 6.3: Comparison between sigmoid and perceptron output

neurons are grouped in layers. The �rst one (leftside of the network), is called
input layer; the last one (rightside of the network), is called output layer. In the
middle, between the input and the output layers there are the so called hidden
layers.
This part of the work will be organized according to the steps of �g. 6.4 .
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Creation of the data set

Normalization of the data

Linear reduction

PCA

Design of the neural network

Optimization of the Neural Network

LDA

Design of the neural network

Optimization of the Neural Network

Discussion of the results

Figure 6.4: Steps followed in the development of this section.
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6.2 Creation of the data base

The �rst step for building a neural network is to de�ne a data set that will be
used for training and the testing. In that sense is necessary to charachterize the
data obtained in the laboratory through a series of features that would allow
to classify the bearings into the di�erent categories. For this application were
chosen 15 time domain features that are listed below.

1. Mean

x̄ =

∑N
i=1 xi
N

2. Maximum Value

xmax = max(xi)

3. Root Mean Square

xRMS =

√∑N
i=1 x

2
i

N

That feature is the root value of the mean squared. In vibration measure-
ment applications, RMS gives an indication of system energy.

4. Square Root Mean

xSRM =

(∑N
i=1

√
xi

N

)2

The SRM represent the square of the root value of the mean.

5. Standard Deviation

σ =

√∑N
i=1(xi − x̄)2

N − 1

In statistics, the standard deviation is a measure of the amount of variation
or dispersion of a set of values. A low standard deviation indicates that
the values tend to be close to the mean of the set, while a high standard
deviation indicates that the values are spread out over a wider range.

6. Variance

σ2 =

∑N
i=1(xi − x̄)2

N − 1

Variance in statistics is a measurement of the spread between numbers in
a data set. That is, it measures how far each number in the set is from
the mean and therefore from every other number in the set.
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7. Shape Factor RMS

SFRMS =
xRMS∑
|xi|
N

RMS divided by the mean of the absolute value. Shape factor is dependent
on the signal shape while being independent of the signal dimensions.

8. Shape Factor MRS

SFMRS =
xMRS∑
|xi|
N

This value represents MRS divided by the mean of the absolute value.

9. Crest Factor
CF =

xmax
xRMS

Peak value divided by the RMS. Faults often �rst manifest themselves in
changes in the peakiness of a signal before they manifest in the energy
represented by the signal root mean squared. The crest factor can provide
an early warning for faults when they �rst develop.

10. Latitude Factor
LF =

xmax
xMRS

Compare the height of a peak to MRS value of the signal.

11. Impulse Factor

IF =
xmax∑
|xi|
N

Compare the height of a peak to the mean level of the signal.

12. Skewness

Sk =

∑N
i=1(xi − x̄)3

(N − 1) · σ3

Asymmetry of a signal distribution. Faults can impact distribution sym-
metry and therefore increase the level of skewness.

13. Kurtosis

Kur = N ·
∑N
i=1(xi − x̄)4∑N
i=1(xi − x̄2)2

Length of the tails of a signal distribution, or equivalently, how outlier
prone the signal is. Developing faults can increase the number of outliers,
and therefore increase the value of the kurtosis metric. The kurtosis has
a value of 3 for a normal distribution.

14. Normalized 5th Center of Mass

CM5th =
E[(xi − x̄)5]

σ5
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Just like skewness, the �fth center of mass measures symmetry of the data,
but it is more impacted by outliers in the tails than the third moment
(skewness).

15. Normalized 6th Center of Mass

CM6th =
E[(xi − x̄)6]

σ6

The sixth center of mass measures similarly to the second moment (vari-
ance) but with an even heavier focus on outliers than the fourth moment
(kurtosis).

This features were calculated for both of the signi�cant axys, that are x-axys
and z-axys and for both of the supply frequencies of 25 Hz and 50 Hz . In
this way the features in input at the neural network are 30. In order to obtain
a big enough amount of signi�cant data from total measurement time (equal
to 100 s), both the vibration and stator current spectres were divided into 200
windows, each one of 0.5 s; the matrix of input data is so obtained. That matrix
is composed by 200 samples for each one of the three conditions of the 30 time
domain features.
Once obtained the data, the next step is to normalize them with respect to the
healthy ones, since the healthy condition is supposed to be the one of reference
for the bearings during their operative condition. The normalization was made
using the z-score method, according to which each feature yj of the i − th
sample is obtained by subtracting it for the mean value of that feature in the
healthy condition and divided for the standard deviation of the same condition:

yj,i =
yi,j − ȳH
σH

In addition to the data set in input, it needs to be provided to the neural
network, the targets vector . This vector contains the classi�cation of each
sample of the data set to his own condition and is used during the training part
to calculate the weights and the biases of the neural network and, during the
testing part to obtain the performance of the netwotk by comparing the targets
with the results predicted by the network. The target vector has the following
shape

t =



1 0 0
...

0 1 0
...

0 0 1


These steps were made for each one of the cases analyzed that are

Metallic Bearings

{
Vibration measures

Stator Current measures

Ceramic Bearings

{
Vibration measures

Stator Current measures
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6.3 PCA technique

6.3.1 Introduction

PCA is a linear reduction technique de�ned as an unsupervised algorithm,
meaning that uses input that are neither classi�ed nor labeled for the training
of the network [12]. The idea behind PCA is to �nd a low-dimension set of axes
that summarize data, looking for some properties that strongly di�er across the
classes [8]. This task is achieved by solving an eigenvalue problem that allows to
�nd the principal components of the inital data, that are the directions along
wich the data set has the maximum variance and, consequently, the highest class
separability. Once found these principal components, the original data will be
projected into that subspace, through a linear combination of them.

Figure 6.5: Visualization of how PCA works. [4]

The linear reduction is obtained starting from the matrix of normalized data
set [Z] . The covariance matrix is obtained by performing [Z]T [Z]. Then the
eigenvalues and eigenvectors of the covariance matrix are obtained by solving
the eigen problem

[Z]T [Z] · [V ] = [V ] · [D]

where [V ] is the matrix with the eigenvectors as columns, and [D] is a matrix
with the eingevelues λi on the diagonal. The principal component are obtained
by sorting the eigenvelues and the corrispondent eigenvectors in descending
order. It was chosen to take into account only the two most signi�cant features,
that means that from the eigenvector matrix sorted, only the �rst two column
were extracted, thus obtaining the matrix [V ∗] . The projection of the original
dataset along the principal axys is then obtained by computing the dot product

[Z∗] = [Z] · [V ∗]

All this procedure is obtained on Matlab by using the function pca().

1 [coeff,scoreTrain,∼,∼,explained,mu] = pca(XTrain,'Centered',0);

2 idx = 2 ;

3 scoreTrain95 = scoreTrain(:,1:idx);

4 scoreTest95 = (XTest-mu)*coeff(:,1:idx);

The last step of this analysis consist in a focus on the weight coe�cients of
each features with which the �nal two features projected are obtained. Once
known the three most important ones for each condition, the main goal of this
step is trying to �gure it out if the feature is e�ectively related to the fault

39



in exam. This means that maybe a feature can be characterized by an higher
class separability, but not dued to his ability to describe the particular fault
condition, but because it is a�ected from elements of error characterising the
measurement, such as noise or o�set. For this reason in the following section
will be reported for each condition the three most important features with their
weight coe�cients.

40



6.3.2 Results obtained

Metallic bearings

Vibration measurements

-200 0 200 400 600 800 1000 1200 1400 1600 1800
Feature 1

-200

0

200

400

600

800

1000

1200

1400

1600

1800

Fe
at

ur
e 

2

PCA Metallic Vibration

2 mm
1 mm
Healthy

Figure 6.6: Scatter plot PCA, for vibration measurements of metallic bearings

Time Feature Coe�cient

Variance x 9, 71 · 10−1

Root Mean Square x 1, 93 · 10−1

Standard Deviation x 1, 39 · 10−1

Table 6.1: Most important time domain features for vibration measurements of
metallic bearings, with PCA reduction

41



Current measurements
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Figure 6.7: Scatter plot PCA, for stator current measurements of metallic bear-
ings

Time Feature Coe�cient

Mean z 8, 85 · 10−1

Mean x −4, 42 · 10−1

Skewness z −7, 86 · 10−2

Table 6.2: Most important time domain features for current measurements of
metallic bearings, with PCA reduction,
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Ceramic Bearings

Vibration measurements
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Figure 6.8: Scatter plot PCA, for vibration measurements of ceramic bearings

Time Feature Coe�cient

Normalized 6th CM z 9, 83 · 10−1

Normalized 5th CM z 1, 70 · 10−1

Normalized 6th CM x 4, 31 · 10−2

Table 6.3: Most important time domain features for vibration measurements of
ceramic bearings, with PCA reduction
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Current measurements
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Figure 6.9: Sctter plot PCA, for stator current measurements of ceramic bear-
ings

Time Feature Coe�cient

Mean z 4, 92 · 10−1

Mean x 3, 48 · 10−1

Latitude Factor x 2, 84 · 10−1

Table 6.4: Most important time domain features for current measurements of
ceramic bearings, with PCA reduction
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General classi�cation
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Figure 6.10: Scatter plot PCA, for all the scenarios considered

Time Feature Coe�cient

Variance x 9, 69 · 10−1

Root Mean Square x 1, 43 · 10−1

Standard Deviation x 1, 43 · 10−1

Table 6.5: Most important time domain features for all the scenarios, with PCA
reduction

The goal of analyzing the most important time features is to understand if
a correlation can be founded between the statistical de�nition of the feature
and the physics of the phenomenon. This can be crucial to understand if the
class-separation provided from that feature is e�ectively related to the e�ect of
di�erent conditions on the bearing, or maybe is dued to other reasons that are
not related to the physics of the problem, such as noise or o�set. As it can be
seen, for each case taken individually, there are di�erent time domain features
that separates the most the classes. In general one can notice the following
features show a good class separability:

� mean;
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� root mean square;

� variance.

When during its rotation a bearing passes through a point where the single
defect is present, an impact is generated which, as already seen, manifests itself
within the vibration spectrum with a peak at a given characteristic presence.
However, this peak does not seem to be representative, at least as far as the
vibration signal is concerned. However there is another feature that changes
according to the fault severity and it is the RMS. That feature is related to the
mean energy of the vibratory signal. This mean energy changes very slowly in
the early stages of damage formation, since the vibrations related are not wide,
but increases dramatically with the size of the fault [13], this is why RMS can
be considered a good class separator.
The mean value is a good class-separator for stator current measurements. It's
known that the presence of the fault produces an air-gap that changes the mag-
netic �ux through the motor, and this, in addition to the disturbance torques
generated by the presence of the damage, a�ect the stator current signal. Thus
the severity of the fault a�ect in di�erent ways the air-gap and the disturbance
torque so that stator current with di�erent mean values are obtained.
The variance rapresents by de�ni�tion the dispersion of samples with respect
to the mean value. For a healthy bearing the vibration signal is expected to
be more regular thus with very grouped values. But when a fault shows up
then impacts happen, so that periodically some peaks are shown in the spec-
tre. Moreover when the size of the fault become higher and higher, then the
vibration signals became more random [13] and values are more dispersed, thus
increasing the variance.
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6.4 LDA technique

6.4.1 Introduction

The other reduction technique explored in this work is Linear Discriminant
Analysis (LDA). As in PCA the idead behind this technique is the projection
of the original dataset onto a lower dimensional space of features [16]. Instead
of PCA, LDA is a supervised algorithm, because in LDA the goal is to �nd
starting from the originale axes, the ones the show the higher class separability,
thus keeping the original features, instead of what happened for PCA.

Figure 6.11: Schematization of LDA

As �rst step, starting from the original dataset, the within-class matrix (SW )
and the between-class matrix (SB) were obtained.

SW =

c∑
j=1

ni∑
i=1

(xi,j −mj) · (xi,j −mj)
T

where c is the number of di�erent conditions, ni is the number of samples for
each condition, xi,j is the i-th sample of the j-th condition, and mj is the mean
of the features of the j-th condition.

SB =

c∑
j=1

(mj − m̄) · (mj − m̄)T

where m̄ is the overall mean of the features. Then was solved the eigenvalues
problem

[S−1W · SB ] · [V ] = [V ] · [D]

where [V ] is the matrix with the eigenvectors as columns, and [D] is a matrix
with the eingevelues λi on the diagonal. At this point the eigenvactors are sorted
in descending order according to the corresponding eigenvalues. Then only the
�rst two eigenvectors are taken, obtaining the matrix [W ]. The new dataset is
then obtained with performing the dot product

[Y ] = [X] · [W ]
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1 c = max(Targets3C);

2 m = mean(x,2);

3 for i = 1:1:c

4 tar = (Targets3C==i) ;

5 xi = x (:,tar);

6 mi = mean(xi,2)';

7 for j = 1:size(xi,2)

8 Sw = Sw +(xi(:,j)-mi)*(xi(:,j)-mi)';

9 end

10 end

11

12 for i = 1:1:c

13 tar = (Targets3C==i) ;

14 xi = x(:,tar);

15 mi = mean(xi,2)';

16 Sb = Sb+size(xi,2)*((m-mi)*(m-mi)');

17

18 end

19 [v,l] = eig(inv(Sw)*Sb,'vector') ;

20 [l,ind1] = sort(l,'descend');% sorting the eigenvectors

21 v = v(:,ind1);

22 W = v(:,1:2) ;

23 Y = x'*W ;
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6.4.2 Results obtained

Metallic Bearings
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Figure 6.12: Scatter plot LDA, for vibration measurements of metallic bearings

Time Feature Coe�cient

Root Mean Square x 7, 07 · 10−1

Standard Deviation x −7, 05 · 10−1

Impulse Factor x −3, 96 · 10−1

Table 6.6: Most important time domain features for vibration measurements of
metallic bearings, with LDA reduction
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Current measurements
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Figure 6.13: Scatter plot LDA, for stator current measurements of metallic
bearings

Time Feature Coe�cient

Standard Deviation z −5, 38 · 10−1

Impulse Factor x −3, 62 · 10−1

Impulse Factor z −3, 54 · 10−1

Table 6.7: Most important time domain features for current measurements of
metallic bearings, with LDA reduction
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Ceramic Bearings
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Figure 6.14: Scatter plot LDA, for vibration measurements of ceramic bearings

Time Feature Coe�cient

Impulse Factor x 8, 13 · 10−1

Latitude Factor x −4, 51 · 10−1

Crest Factor x −3, 64 · 10−2

Table 6.8: Most important time domain features for vibration measurements of
ceramic bearings, with LDA reduction
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Current measurements
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Figure 6.15: Scatter plot LDA, for stator current measurements of ceramic
bearings

Time Feature Coe�cient

Standard Deviation x 6, 76 · 10−1

Root Mean Square x −6, 01 · 10−1

Root Mean Square z −2, 61 · 10−1

Table 6.9: Most important time domain features for current measurements of
ceramic bearings, with LDA reduction

The same analysis about the time domain features is then carried out also for the
LDA reduction. As it can be seen from the tables reported in this case, RMS

and Standard deviation shows again a very good class separability, moreover
other feature related with the "shape" of the signal can be founded, such as:

� crest factor;

� impulse factor;

� latitude factor.
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Figure 6.16: Evolution of Kurtosis, Shape factor, Crest factor and Impulse factor
with respect to the size of the fault [13]

As it can be seen in �gure 6.16 all these features show more or less the same
behaviour. In the �rst part of growth of the failure, they increase (with di�erent
slopes), because basically the peak values increase but on the other hand the
RMS and the mean value of the signals change less. But when the size of
the fault grows over a certain treshold, then the RMS rises dramatically so
the value of the features decreases. This means that these factors are no more
good classi�ers over a certain treshold, but as it can be seen from �gure 6.16
they reach their peaks around 2 mm of fault, this is why in this case are good
classi�ers.
Finally the general classi�cation con�rms again, as previously for the PCA, that
variance and standard deviation are the best classi�ers.

General classi�cation

Time Feature Coe�cient

Standard Deviation x 5, 19 · 10−1

Variance x −5, 17 · 10−1

Standard Deviation z −4, 80 · 10−1

Table 6.10: Most important time domain features for all the scenarios, with
LDA reduction
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Figure 6.17: Scatter plot LDA, for all the scenarios considered
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6.5 Design of the Neural Network

Once obtained the normalized data set of input and the target vector, the design
of the neural netwotk can be started. For this step theDeep Learning Toolbox
of Matlab was used.

1 net = patternnet(hiddenLayerSize);

2

3 net.divideParam.trainRatio = 0.7; %70/100;

4 net.divideParam.valRatio = 0.15; %15/100;

5 net.divideParam.testRatio = 0.15; % 15/100;

6

7 % Train the Network

8 net.trainFcn = 'trainscg';

9 net.trainParam.epochs=epochs;

10 net.trainParam.max_fail=1500;

11 net.trainParam.min_grad=1e-10;

12

13 [net,tr] = train(net,x,t);

14

15 % Test the Network

16 y = net(x);

With this lines of code the neural network was generated starting from two
input parameters that are:

1. hidden layer size;

2. number of epochs.

The hidden layer size, as said previously, is the number of layer between the
input and the output ones, while the number of epochs are the iterations made
by the network to calculate and re�ne the weights and biases in order to obtain
the best performance. Subsequently, an analysis will be conducted on the e�ect
of the variation of these two parameters in the network's ability to classify. The
set of data is randomly divided as follows. Another important parameter to set

Training data 75%
Validation data 15%
Testing data 15%

is the training function that the network will use to update his coe�cients. The
one chosen is the gradiend descendent function. The training of the network
infact is made by minimizing the so called cost function

C(w, b) =
1

2n
·
∑
||y(x)− σ(z)||2

where y(x) is the output of the target vector, sigma(z) is the output of the
sigmoid neuron and n is the number of samples. So basically the cost function
calculates the di�erence between the results expected and the ones predicted
by the network. Since C is function of the weights and the biases the training
of the network consists in changing these coe�cients in order to minimize the
cost function. The C can be seen as a surface in the 3D-space (�gure 6.18), so
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minimizing this function means literally "descending" that surface, this is what
is made by the gradient descendent algorithm. Let's call

∆v = [∆w ; ∆b]

then from calculus it's known that

∆C(w, b) ' ∇C ·∆v

if the ∆v is chosen as follows [9]

∆v = η · ∇C

where η is a positive parameter, called learning rate , then is obtained

∆C(w, b) ' −η||∇C||2

in this way the ∆C(w, b) is always negative so that the "descending of the valley"
is always guaranteed. The learning rate weigths the steps of the gradient for
each iteration, if too small then a lot of iteration will be needed to �nd the
minimum, if too big, then there will be the risk of never �nding with precision
the minimum. However in this work it won't be used the cost function de�ned
before, but a more perfoming one, called cross-enthropy cost function, that
is de�ned as follows

C ′ = − 1

n

∑
[(y · lnσ(z) + (1− y) · ln 1− σ(z))]

it can be proved that, as the one de�ned before, the cross-enthropy function is
always non negative and tends to zero when σ(z)→ y(x) , so has the properties
of a cost function. The most important property of the cross-enthropy is that
with some algebra it can be proved that

∂C ′

∂vj
=

1

x

∑
xi · (σ(z)− y)

thus meaning that the gradient of this function is directly proportional to the
error, so that the learning rate is higher at the beginning of the iterations,
when the di�erence between the targets and the outputs are higher, and then it
slows down during the training [9]. Once �nished the setup, then the network is
created, trained and tested. As example the data about vibration measurements
of metallic bearings without linear reduction (30 parameters in input).
As it can be seen from �gure 6.19 the neural network of this example has 30
neurons in the input layer, 3 neurons in the output and 10 neurons in the hidden
layer. Figure 6.20 shows that the network reaches its best performance after
27 epochs. Finally in the confusion matrix (�gure 6.21) the results predicted
are compared with the ones expected, and since there are no values outside the
principle diagonal, then the classi�cation has an accuracy of 100% .
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Figure 6.18: Example of a cost function

Figure 6.19: Scheme of the Neural Network

57



0 5 10 15 20 25
27 Epochs

10-6

10-4

10-2

100
C

ro
ss

-E
nt

ro
py

  (
cr

os
se

nt
ro

py
)

Best Validation Performance is 7.7189e-07 at epoch 27

Train
Validation
Test
Best

Figure 6.20: Performance of the network

1 2 3
Target Class

1

2

3

O
ut

pu
t C

la
ss

PCA Confusion Matrix Ceramic Current

200
33.3%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

200
33.3%

0
0.0%

100%
0.0%

0
0.0%

0
0.0%

200
33.3%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

100%
0.0%

Figure 6.21: Confusion Matrix
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6.6 Results Obtained

The neural network described above has therefore been applied to the data set
obtained as a result of both reduction techniques, LDA and PCA. As a �rst
attempt the following parameters were chosen:

Hidden layer size = 1

Neurons in each hidden layer = 5

Number of epochs = 500

The results of the classi�cation obtained for both metallic and ceramic bearings
are then reported.

6.6.1 PCA reduction

Metallic bearings
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Figure 6.22: Confusion Matrix PCA, for vibration measurements of metallic
bearings
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� Current measurement
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Figure 6.23: Confusion Matrix PCA, for stator current measurements of metallic
bearings
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Ceramic Bearings
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Figure 6.24: Confusion Matrix PCA, for vibration measurements of ceramic
bearings
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Figure 6.25: Confusion Matrix PCA, for stator current measurements of ceramic
bearings
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6.6.2 LDA reduction
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Figure 6.26: Confusion Matrix LDA, for vibration measurements of metallic
bearings
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Figure 6.27: Confusion Matrix LDA, for stator current measurements of metallic
bearings
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Ceramic Bearings

� Vibration measurement

1 2 3
Target Class

1

2

3

O
ut

pu
t C

la
ss

Confusion Matrix LDA Ceramic Vibration

200
33.3%

0
0.0%

0
0.0%

100%
0.0%

0
0.0%

184
30.7%

16
2.7%

92.0%
8.0%

0
0.0%

10
1.7%

190
31.7%

95.0%
5.0%

100%
0.0%

94.8%
5.2%

92.2%
7.8%

95.7%
4.3%

Figure 6.28: Confusion Matrix LDA, for vibration measurements of ceramic
bearings
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Figure 6.29: Confusion Matrix LDA, for stator current measurements of ceramic
bearings
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6.7 Optimization of the Neural Network

The �nal step of this work is the the optimization of the neural network. That,
was carried out empirically by changing two hyperparameters that are the hid-
den layer size and the number of epochs. First of all the e�ect of the number
of epochs was explored by considering a single hidden layer with 5 neurons and
5, 10, 100 and 500 epochs. Then the e�ect of the hidden layer size was studied,
considering 5000 epochs and di�erent networks with 1, 2 , 5 and 15 hidden layers
each one with 5 neurons. In the second case the number of epochs increases a
lot because, since are used to train the totality of the neurons of the all hidden
layers, so as the number of hidden layers increases a lot then a lot of iteration
are needed to train e�ciently the network. The evolution of the performances
of the classi�er with respect to the hyperparameters was shown only for the �rst
case, that is vibration measurement of metallic bearing, for the others only the
optimized con�guration was reported.

6.7.1 PCA reduction

As it can be seen from �gure 6.30 the separation improves a lot increasing the
number of iterations until 100 beyond which the increase in iterations until
500 epochs further improves performance, but less so. The neural network has
therefore reached its maximum e�ciency and a further increase in iterations
over 500 epochs would only a�ect computational costs, improving e�ciency
negligibly. On the other hand �gure 6.31 shows that since a single condition
is considered, then a single hidden layer is more than su�cient, infact with
more layers some over�tting problems appear and the boundaries show strange
shapes. So the �nal optimized con�guration for a single scenario is:{

Hidden layer size = 1

Number of epochs = 500
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Figure 6.30: E�ect of the number of epochs on the classi�cation of the Neural
Network with PCA reduction
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Figure 6.31: E�ect of the hidden layer size on the classi�cation of the Neural
Network with PCA reduction
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Figure 6.32: Optimized solution for PCA of metallic bearings with vibration
measurement
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Figure 6.33: Optimized solution for PCA of metallic bearings with current mea-
surement
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Ceramic bearings
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Figure 6.34: Optimized solution for PCA of ceramic bearings with vibration
measurement
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Figure 6.35: Optimized solution for PCA of ceramic bearings with current mea-
surement.
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General classi�cation

Finally, in order to create a more global approach, all the scenarios concerning
technology of the bearings and operating conditions, were taken into account
at the same time, by using the features related to the vibration measurement.
When all the four scenarios are considered at the same the complexity of the
study rises and a more sophisticated neural network is needed. Infact as it can
be seen from �gure 6.36 with only one hidden layer the performance is still
low. By analizing the confusion matrix for each case, the optimized solution is
obtained for {

Hidden layer size = 2

Number of epochs = 5000
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Figure 6.36: E�ect of the number of epochs on the classi�cation of the Neural
Network with PCA reduction, considering alle the scenarios
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Figure 6.37: E�ect of the hidden layer size on the classi�cation of the Neural
Network with PCA reduction, considering all the scenarios
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Figure 6.38: Optimized solution for PCA considering all the scenarios
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6.7.2 LDA reduction

The same analysis made for the PCA reduction is here reported. The hyper-
parameter values considered are 1 hidden layer with 5, 10, 100 and 500 epochs
and then 5000 epochs with 1, 2, 5 and 15 hidden layers, each one with 5 neu-
rons. The whole analysis is reported only for the vibrations measurement of the
metallic bearing with vibration measurement, then only the optimized solutions
are reported.
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Figure 6.39: E�ect of the number of epochs on the classi�cation of the Neural
Network with LDA reduction

For this case the same conclusions of the PCA can be drawn, which are that
with only 1 hidden layer the best performance is reached between 100 and 500
epochs (�g. 6.39) and since the scenario is simple 1 hidden layer is more then
succi�cient (�g. 6.40). Thus the optimized solution for a single scenario is{

Hidden layer size = 1

Number of epochs = 500
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Figure 6.40: E�ect of the hidden layer size on the classi�cation of the Neural
Network with LDA reduction
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Figure 6.41: Optimized solution for LDA of metallic bearings with vibration
measurement
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Figure 6.42: Optimized solution for LDA of metallic bearings with current mea-
surement
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Ceramic bearings
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Figure 6.43: Optimized solution for LDA of ceramic bearings with vibration
measurement
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Figure 6.44: Optimized solution for LDA of ceramic bearings with current mea-
surement
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General classi�cation

When all the four scenarios are considered at the same time, then more then
one hidden layer is needed (�gure 6.45 and 6.46). The confusion matrix of each
combination of the hyperparameters show that the best forformance is obtained
for {

Hidden layer size = 2

Number of epochs = 5000

Figure 6.45: E�ect of the number of epochs on the classi�cation of the Neural
Network, comsidering all the scenarios
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Figure 6.46: E�ect of the hidden layer size on the classi�cation of the Neural
Network, considering all the scenarios

81



1 2 3
Target Class

1

2

3

O
ut

pu
t C

la
ss

Confusion Matrix LDA Optimized General classification

363
30.3%

34
2.8%

3
0.3%

90.8%
9.3%

29
2.4%

366
30.5%

5
0.4%

91.5%
8.5%

0
0.0%

0
0.0%

400
33.3%

100%
0.0%

92.6%
7.4%

91.5%
8.5%

98.0%
2.0%

94.1%
5.9%

Figure 6.47: Optimized solution for LDA of ceramic bearings with vibration
measurement
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Chapter 7

Final conclusions

In this work, two techniques have been developed for the detection of damage on
bearings operating within an electromechanical system. The two techniques pre-
sented concern the identi�cation of characteristic frequencies of damage within
the frequency spectrum of bearing vibration measured in the laboratory and the
design of a neural network from previous vibration measurements, with added
measurements of the induction motor stator current. The bearings are made of
metal or ceramic material and may be in a healthy condition, or have a 1 mm
or 2 mm bore hole at the inner raceway, specially made in the laboratory. The
development of the �rst method made it possible to verify the validity of the
classical theory concerning fault frequencies. The vibration spectra actually
show peaks near these frequencies, which is why bearing vibrations can be con-
sidered a solid indicator of whether or not there are such defects in the bearing.
However, this work aims not only to detect the presence of damage, but also
to identify and classify it. The latter objective is not achieved with this �rst
method because the amplitude of the peaks is not related to the severity of
the damage. For this reason, a machine learning algorithm has been developed
that is actually capable of implementing this classi�cation. The designed neural
network receives in input 15 di�erent time domain features calculated from the
measurements made and returns in output the damaged condition of the bearing
considered. Given the number of inputs to the neural network, two reduction
techniques have been developed: PCA and LDA. In this way the number of
input elements has been reduced to only two, allowing a greater e�ciency of the
neural network and an easier visualization of the hope between classes carried
out, representing the input features on a 2-D plane, for each of the studied sce-
narios. The results obtained with this second technique are excellent because
the e�ciency in the classi�cation, considering all the di�erent scenarios taken
individually, is between 94% and 100%. As a last step of the work, the opti-
mization of the neural network has been empirically carried out by acting on
two characteristic parameters: the number of hidden layers and the number of
epochs. The optimized neural network thus obtained made it possible to carry
out a classi�cation of all scenarios at the same time, with e�ciencies of 94, 1%
for LDA and 98, 5% fot PCA reduction.
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Future developments

As has already been explained above, this work was limited to developing a
classi�er referring to a single bearing model, albeit of two di�erent materials,
under quasi-stationary conditions with two di�erent supply frequencies and with
only one type of damage, i.e. a bore of di�erent sizes in the inner bearing
race. The goal for the future is to extend the designed neural network to an
increasing number of cases, i.e. bearings of di�erent sizes and number of balls
and extending it to more and more di�erent damage conditions, which di�er in
shape, size and position. In this way it will be possible to create a single tool
to detect faults, instead of many di�erent models, each intended for a single
operating condition. Another goal for the future is the use of more sophisticated
techniques for the optimization of the neural network, such as genetic algorithm,
in order to �nd the values of the hyper parameters that guarantee the best
e�ciency for the neural network.
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