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Abstract

During the last decades, there was an increase in the net efficiency and perfor-
mance of turbomachines, attained through minimization of component mass, size,
and dimensional tolerances, the use of cutting-edge materials with top-class me-
chanical and thermal properties, and the introduction of the newest cooling and
lubrication technologies. However, the higher performance came inevitably with a
trade-off in reliability, since new designs and technologies made the turbomachines
more vulnerable to malfunction. A breakdown during the operation can carry over
high economic loss or even human losses. Hence, the study and the development
of preventive maintenance programs that allow for early malfunction detection are
increasingly important in today’s industry.

The reduction in backlash between the stator and the rotor has made it possi-
ble to minimize flow losses inside the turbines. On the order side, this structural
improvement has made more likely the occurrence of contact between stator and ro-
tor. The rotor-casing rub is one of the most common failures in rotating machinery.
This phenomenon causes wear, overheating, and variation in machine performance,
and, when unnoticed, it can compromise the entire mechanical system. In most gas
and steam turbines, the rub is easily detected, thanks to the possibility to install dis-
placement sensors in the hydrodynamic shaft supports. However, in aeroderivative
gas turbines, due to different construction solutions, accelerometers on their casing
are the only means available for condition monitoring.

The aim of this Master Thesis is the development of a Machine Learning pro-
gram based on a “Deep Neural Network” architecture for the very early detection
of rotor-casing single-point rub in aeroderivative gas turbines with accelerometers
on the casing, most often the only means available for their monitoring of this en-
gine type. The net has been trained only with data generated by a Finite-Element
Numerical Model of a rotating machine. To carry out an optimized model, differ-
ent combinations of data processing and neural network architecture solutions have
been tested and compared to evaluate the prediction performances. Then, in order
to understand if the software is able to well generalize the information contained
into the acceleration signal, the best models have been proved with a database cre-
ated with an experimental rig reproducing of a gas turbine with flexible casing and
rotor-casing single-point rub.
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Chapter 1

INTRODUCTION

1.1 Framework of the project
The Mechanical Engineering Department of the Universidad Politecnica de Madrid
is carrying out a research n the field of mechanical systems monitoring, with the
aim of improving the prevention maintenance of Aeroderivative Gas Turbines. The
doctoral student Alejandro Silva Bernárdez is working on a procedure to detect
single-point rub in its very early stages. The aim of his Doctoral Thesis is the de-
velopment of a signal-processing methodology for the very early detection of rotor-
casing single-point rub in aeroderivative gas turbines. The signal used is generated
by only the accelerometers located on the outside of the turbine casing, being this
the only technological monitoring solution available with this type of engine. The
monitoring procedure is tested and different detection methods compared through
a Finite-Element mathematical model of an aeroderivative gas turbine, which al-
lows the generation of syntactic accelerometer data for operating conditions with
and without rub failure. The best procedure have to detect very weak rotor-stator
contact at very small time scales and be implementable in real time on a real ma-
chine.
This thesis project is plugged in this framework, and it has the objective to de-
veloping a new monitoring method that uses a Deep Neural Network to performs
an online classification prediction about the operating status of the machine, to
detect the possible presence of the rub malfunctioning. The correct operation of
the network will then be validated with the data of an experimental rotor rig with
flexible casing monitored with both accelerometers and proximity sensors.
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1.2 Turbine rub: an overview of the problem
One of the most important design’s parameters of a gas turbine is the clearance
between the rotor and stator. To maximize the efficiency and power output in mod-
ern aeroengines it is supposed to be kept as small as possible at specific positions of
the engine, for example between different stages or at the tip of bladed wheels. [1].
The coefficient ηv "volumetric efficiency" [12] is used to evaluate the leaks of the
flow, by multiplying this coefficient with the ideal power generated by the turbine.
It is not always possible to determine the exact value of ηv, due to the several parts
of the engine where gas leaks can occur. Others consider also different η(i)

v for each
stage of the turbine. ηv is defined as the flow rate of fluid that passes through the
blades and the total flow that passes from one stage to the subsequent.
As a consequence of the clearance reduction, the impact between the pales of the
rotor’s blades and stator’s seals is more likely to happen, which may cause the
variation of engine performance, undermine the safety of the turbine, and even
lead to catastrophic failures [2]. In 1973, the National Transportation Safety Board
(NTSB) reported a case that one of the engine fan assemblies was disintegrated
during the flight for the interaction between the fan blade tip and the fan casing.
In June 23, 2014, F-35A engine fired and leaded to a fleetwide grounding due to
the excessive rubbing between the turbine blades and the cowling occurred.

Figure 1.1: A schematic diagram of blade–casing clearance [2]

Some causes that can lead to this type of malfunction are: wear, overheating,
shaft thermal deformation, vibration instability with machine destruction (in the
most severe cases of continuous rub), etc. In this framework can occur two main
types of malfunctioning: [3]

The first one is characterized by a contact between the tip of the blades and the
casing that present a relatively low force levels. The consequence of this condition
can be different, based to the rotor’s speed of rotation, the load, the system’s
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geometry and physical parameters. These states may induce unstable phenomena
whose consequences can be disastrous.

The second configuration, associated with high unbalance levels, is generally
consecutive to an accidental blade loss. This problem is not of interest for this
project, because it is not a malfunction that generates a rub of low intensity that
gradually increase, allowing the code to detect the problem in time to plan a pre-
ventive maintenance of the system.

The different states associated with rubbing conditions can be classified as
damped (the contacts disappear through time), divergent (the amplitude of the
vibrations increases constantly) and self-maintained (the contacts do not disappear
through time). [3]

Figure 1.2: Model of a rotor rubbing against the casing [15]

The most common form of rub is the partial rub, which can also be called single-
point or fixed-point rub. It is a divergent type of rub, and it can also grow over
an extended period of time. Typical consequences of this problem are increased
vibration, noise, energy losses and overheating and wear of machine components.
Afterwards, due to a positive feedback loop, the intensity of the rub may increase
until the gas turbine is compromised.

For all these reasons, to guarantee the correct behavior of the rotating machine
is necessary a continuous control of working parameters. The best source of infor-
mation on the operating state of a gas turbine are the vibrations induced on the
shaft. In order to have a direct measurement of this physical quantity it is possible
to use two proximity type sensors, placed on the rotor supports and positioned on
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the same plane with a angular separation of 90°, so as to have a representation of
the 2D orbit of the axis. The proximity sensor, that is able to detect the presence
of nearby objects without any physical contact, measures the relative displacement
of the reciprocal surfaces. This solution can be applied in standard heavy gas
turbines, where hydrodynamic bearings are adopted as supports, allowing to mea-
sure the relative displacement between surfaces. On the other hand, in the case
of aeroderivative gas turbines, the use of simpler supports, such as ball bearings,
does not allow this type of detection to take place since the two elements (rotor
and supports) have a rigid connection. This limitation forces the user to look for
another type of technological solution of monitoring system condition, which can
be carried out by applying accelerometers to the outer casing. This solution leads
an indirect measurement of the vibrations of the rotor and the signal of the accel-
eration presents noise as a result of the turbulent gas flow. This is an important
complication to detect the rub when it is still of low intensity and localized in a
section of the rotation.

(a) Piezoelectric accelerometer sensor [4] (b) Proximity Sensor [44]

Figure 1.3: Proximity and Accelerometer Sensors Image
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1.3 Objectives

1.3.1 Main Objectives
The general objective of the master thesis project is to create a tool to detect the
present of a single-point rub into a gas turbine even when it is low intensity rub with
high background withe noise. The program will be a Machine Learning code based
on the deep neural network technology. The ML software code must be able to
run on a real machine even if the program will be trained with data from the finite
element numerical model that simulates the behavior of the turbine in question.
At application level, the code can be defined ad a preventive maintenance software
for aeroderivate gas turbine, which allows the company to save money and improve
the safety of the plant.

1.3.2 Specific Objectives
Analyzing the specific objectives of this thesis project in detail we can identify the
following tasks:

• Compare different signal processing methods and record which one and which
combination gives the best prediction results.

• Try different structures of the neural network and analyze which returns the
best classification.

• Analyze the best models and see when starts to detect the defect based on
the intensity of the vibrations induced by the rub phenomena.

• Try the best models on experimental data to understand witch network better
generalize the information of the finite element numerical model
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1.4 Industrial importance
To understand the Industrial relevance of this project it is important to analyze
the application areas of this technology. The main advantages that this asset can
bring are connected with the reduction of the maintenance time of the machine,
creating economic benefits to the various sectors.
Starting with an analysis of the energy sector, where gas turbines have countless
applications. Especially now, solutions with a combined cycle configuration or even
in cogeneration configurations are very important in the industry, due to their much
higher efficiency compared to a simple gas cycle. A very important feature that
makes them versatile in this economic sector is the possibility, within simple cycles
(gas turbine only), to be activated and shut down in a few minutes, allowing to
respond to peaks in energy demand. Especially in relation to the latter application,
the possibility of increasing the availability of the facility ensures a better capacity
to respond to unforeseen demand, guaranteeing a better economic return.
In addition, as we can see in the figure below, the whole energy sector will see
significant growth in demand in the coming years, particularly in non-OECD coun-
tries, making the ability to have reliable power generation an essential element. [?]

Figure 1.4: Non-OECD energy consumption prevision 2050 [14]

A large single-cycle gas turbine typically produces 100 to 400 megawatts of elec-
tric power and has 35-40% thermodynamic efficiency. [16].
The type of gas turbines that will be considered in this work are Aeroderivative Gas
Turbines: these turbines for power generation are engines for aeronautical applica-
tions converted for power generation. This technology thus guarantees an excellent
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power-to-weight ratio, however, requires a readjustment of the rotating machine
status monitoring technology, which must be adapted for this new technological
solution.
The other sector where gas turbines play a key role is the air transport sector,
where safety is a pivotal element. In this application, a technology that improves
the speed of diagnosis of a failure is a key asset. Currently the project is focused
on turbines for power generation, later it could be expanded to include this other
application.
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1.5 Structure of the project
The picture below shows the flow chart of the thesis project.

Figure 1.5: Flow chart of the project
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It is possible to divide into five phases in which this project has been carried
out.

1. The first one is composed of the acquisition of experimental data from the
model of a rotating machine

2. Simultaneously with the first phase, in the second phase the software ar-
chitecture of the machine learning has been built on the python scientific
environment Spyder program.

3. In the third phase the synthetic data of the numerical model were analyzed
and processed.

4. Subsequently the network was trained and probed only with the synthetic
data of the numerical model and then, comparing the results of various neural
network structures, those that gave the best results were saved.

5. In the last phase of the thesis project, the best trained networks were analyzed,
evaluating prediction and recall according to the threshold and testing the
final deep network prediction on the data generated with the real rotating
machine prototype.
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Chapter 2

THEORETICAL FRAMEWORK

2.1 Gas turbines

2.1.1 Main components

Figure 2.1: Gas Turbines Components [6]

A gas turbine, also called a combustion turbine, is a continuous and internal
combustion engine which can produce a thrust, in the case of an aircraft engine, or
a torque at the shaft for electricity generation.
The main elements common to all gas turbine engines are:
- An upstream rotating gas compressor
- A combustor
- A downstream turbine on the same shaft of the compressor
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The compressor is the engine component that increases the inlet fluid pressure
and reduces its volume. The working fluid (air in gas turbines) is sucked into the
system by the effect of the rotating blades of the compressor and compressed to
very high pressure up to 40 atmospheres. In gas turbines it can be of axial or
centrifugal type. The energy required for its operation is supplied by a turbine
to which it is connected by a crankshaft. Part of the air flow of the compressor
is tapped for the cooling of the engine (typically the turbine) or, in aeronautical
applications, by the air conditioning and pressurization system. The compressor,
unlike the turbine, operating in an adverse pressure gradient (the pressure increases
as the flow progresses). For this reason it has a much higher number of stages than
the turbine even though it operates on practically the same pressure jump, because
each stage can achieve a lower pressure jump than an expander stage. The vane
profiles are low curvature, to avoid the detachment of the fluid vein and each stage
allows a modest compression ratio. The first stages of the compressor have warped
vanes, with a variable shrinkage angle from the root to the end, to adjust the fluid
inlet direction to the different peripheral speed.

In the combustion chamber the chemical energy possessed by the fuel (usually
kerosene or methane) is released through its combustion process with the oxygen
present in the compressed, raising the temperature (and therefore the enthalpy) of
the flue gases. The flame temperature to achieve a stoichiometric relation for the
combustion is about 2200 °C, well above the temperature bearable by the materials
of the turbine. For this reason only a part (less than half) of the air participates
to the combustion, while the remaining part is used to decrease the temperature of
the flow that invests the turbine by diluting the flue hot gases.

Speaking of the turbine, it is important not to confuse the expander alone
(which we will call turboexpander) with the whole system. Due to the extreme
working conditions, the turboexpander is the critical element of the entire turbine.
The temperature of the gases coming from the combustion chamber can reach, in
the modern engines, even at 1600 °C. [21] The rapid rotation of the turbine, then,
induces additional mechanical stress to the vanes which, coupled with thermal
stress, can cause the creep problem.

In order to allow the expander to operate at such extreme temperatures, it is
necessary to cool the blading. There are two methods for cooling: the internal
cooling or the film cooling. In the first, the air tapped from the compressor slid
into the hollow vanes, thus cooling from the inside. In film cooling, the vane has
small holes, suitably oriented, by which the air tapped from a compression stage
with a higher pressure than the turbine stage that will be cooled is insert. The air
flow passes into the hollow vane cooling it from the inside, and then it comes out
and follows a direction that allows it to be adherent to the surface of the blade and
to create a film layer that acts as an insulator between the incandescent gases and
the metal surface of the blade.
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2.1.2 Principle of operation
The ideal cycle (Ideal thermodynamic transformations + ideal fluid) behind the gas
turbine system is the Bayton cycle. The working fluid is air. The cycle is composed
by:

• (1 -> 2) - Isoentropic Compression

• (2 -> 3) - Constant p = p2 heat assumption

• (3 -> 4) - Isoentropic Expansion

• (4 -> 1) - Constant p = p1 heat release

Figure 2.2: Brayton Ideal cycle [7]

The energy that enables the system to operate is supplied by the combustion
of the fuel. This, injected into the air flow in the combustor, igniting it allows to
achieve a high temperature pressurized flow. Then the glowing flow enters into the
turbine, producing a shaft work output which is also used to supply the compressor.

A real gas turbine uses an open cycle, where the fourth flow cooling transfor-
mation is not present. Exhaust gases can be recovered and reused, in the case of
aeronautical engines, for the generation of thrust, thanks to the law of conservation
of momentum and, in the case of electricity generation plants, to power a combined
steam cycle (with a heat recovery steam generator) or another downstream gas
turbine. In the design of a gas turbine it is essential to divide the energy output
between the torque at the shaft and the thrust generated at the output, according
to the industrial application of the engine. By analyzing the different applications,
in the case of industrial generation or helicopter rotor powering, the turbine design
must try to keep the outlet pressure close to the air inlet conditions and sufficient
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to overcome the pressure losses in the exhaust ducting, so as to reduce the losses
due to exhaust gases. In the case of turbojet engines, the energy extracted from
the shaft is sufficient to power the compressor and other components, and the re-
maining energy contained in the high-pressure gases is all used to accelerate the
flow in the nozzle to provide a get to propel an aircraft.
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2.1.3 Types
Turbojet and Turbofan

An airbreathing jet engine is a gas turbine optimized for thrust generation by
exhaust gas. These can be called turbojets if they produce the thrust directly from
the exhaust gases, or they can be called turbofans if they also use in addition a
ducted fan to increase the thrust. This fan is positioned in front of the engine,
and it accelerates the air before entering in the compressor. Part of the accelerated
air flow bypasses the core gas turbine engine, not entering in the compressor and
directly providing part of the thrust. Turbofan engines are currently highly used
on medium or long-range airliners, because they are more efficient than turbo jets
for subsonic speed travel applications. This solution is not optimal for travel at a
supersonic speed because their larger frontal area causes a significantly increase in
drug resistance overcoming the sound barrier. Turbofan turbines can be divided
into two category, low-bypass or high-bypass depending on the amount of flow
bypassing the core engine. Low-bypass turbofans have a bypass ratio around 2:1 or
less. Turbojet engines are widely used in the military, where efficiency does not play
a central role in the design, and other performance factors play a more important
role.

(a) Turbofan

(b) Turbojet

Figure 2.3: Jet turbines [8]

The element that converts the energy contained in the exhaust gas into airplane
thrust is the nozzle at the end of the turbine. Propelling nozzles are able to turn
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the internal and pressure energy into kinetic energy. The total pressure and tem-
perature do not change along the axis of the nozzle but their static values drop as
the gas speeds up. Nozzles can be designed for subsonic, transonic or supersonic
speeds, depending on inlet and outlet nozzle thermodynamics conditions and on
the turbine power output. In a convergent-divergent nozzle ("de Laval nozzle") the
converging section of the nozzle can accelerate the subsonic flow, while a diverging
part is necessary to accelerate the supersonic part of the flow. Turbofan engines
may have an additional and separate propelling nozzle which further accelerates
the bypass air.

Industrial gas turbines for power generation

Gas turbines for industrial plants can have very variable dimensions and powers.
In the energy sector, the power turbines of larger industrial machines operate at
3000 or 3600 rpm, depending on the electrical frequency of the grid, thus avoiding
the necessity of a gearbox. When gas turbines are inserted into combined cycle
plants, where exhaust gas’ energy is used in CHP (Combined Heat and Power)
configurations, economic (non-thermodynamic) efficiencies of more than 60% can
be achieved. For example the 605 MW General Electric 9HA achieves a 62.22%
efficiency rate with temperatures as high as 1,540°C.[22]. Simple gas turbines, on
the other hand, have a lower efficiency (about 40%), but they have a faster start-up
period.

Figure 2.4: Heavy duty gas turbine GT26 [20]
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Aeroderivative gas turbines

Figure 2.5: Siemens SGT-A65 Aeroderivative gas turbines [19]

Aeroderivative gas turbines GTs are turbines used for power electricity gener-
ation. They are inspired by advanced technology and materials of aircraft engine.
They are currently a very popular choice in new gas turbine plants due to their
reliability, efficiency and flexibility. The main advantages over heavy industrial GT
turbines are lighter weight, faster response speed, better power-to-weight ratio and
superior thermodynamic efficiency.
They can have a secondary turbine (known as the Power Turbine or PT) which is
not directly connected to the gas turbine shaft but is, also, induced to rotate by the
expanding exhaust gases. The most important construction difference compared to
industrial heavy frame turbines is the presence of multiple independent shafts to
run at optimal speed with PT matched to generator speed, instead of a single shaft
fixed to generator speed with multiple variable compressor vanes to control airflow.
[24]
Another aspect that differentiates these two types of gas turbines are the types
of bearings used to support the shaft: while the heavy gas turbines use hydro-
dynamic bearings, aeroderivative gas turbines have the more classic ball bearings.
The consequence of this different construction solution is the impossibility in the
aeroderivatives to use proximity-type sensors to monitor the precession orbit of the
shaft, which is a crucial information to know the health state of the system.
The latter reaches efficiency values close to 45%, compared to 35 % of a Heavy
Gas Turbines. They are a excellent choice for small plants (up to 100 MW) and
they can work with combinations of natural gas and liquid fuel operation, ensuring
excellent fuel flexibility. [16]. They can also be run in a cogeneration configura-
tion: the exhaust gases are used for space or water heating, or drives an absorption
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chiller for cooling the inlet air and increase the power output, technology known as
"turbine inlet air cooling". Due to their fast start-up, stop and response times (the
LM6000 family for instance, is five-minute start capable) this sub-group of turbines
are perfect to compensate for peak load applications.
Base load operations for this category of engines are typically characterized by con-
tinuous operations with only two shutdowns a year for an inspections [23] Primary
concerns for base load operations are maintaining and enhancing turbine perfor-
mance, ensuring operational reliability and minimizing the associated costs of these
efforts. When aeroderivatives engines are applied to generate electricity to cover
the grid energy demand peak, this type of operation task can require more fre-
quent maintenance than base load operations. This is due to multiple starts and
shutdowns in a short timeframe. MTU Maintenance for instance has observed that
parts of turbines used for peak operation are likely to see more thermal distress
and material fatigue (thermal cycling). [23]
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2.1.4 Industrial applications of Aeroderivatives Gas Tur-
bines

The global aeroderivative GT market is expected to grow at an annual growth rate
of over 4% between 2016 and 2020 [17]. Asia, in particular, deploys many of these
machines in power trains for Liquefied Natural Gas (LNG) plants. In the U.S.,
aeroderivatives are mainly being used in peaker operations, or to compensate for
fluctuations in the grid caused by renewables or extreme weather conditions, which
do not guarantee a constant energy output. [16]. Thanks to their rapid start-up
period, plants using this type of turbine can be combined with other non-constant
energy sources (e.g. wind power) to ensure constant power output to the electricity
grid by compensating the other source when the latter should have a reduction in
generation. [18]. They are also used in the marine industry to reduce weight.

Figure 2.6: Mitsubishi Hitachi Power Systems’ aeroderivative gas turbine lineup.
Courtesy: MHPS [9]
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2.2 Vibration fundamentals
Vibration is a mechanical phenomenon whereby oscillations occur about an equilib-
rium point. An oscillation is the variation over time of a physical quantity such as,
for exampleF, the position of a pendulum at rest that is struck. The oscillations can
be periodic, assuming values that repeat exactly at regular intervals, or randomly,
without any signal periodicity. In mechanical systems, vibrations involve a periodic
conversion of potential energy into kinetic energy and the opposite. The vibration
of a rotor system involves the storage and release of energy in the deformation of
various spring-like elements. The potential energy can be temporarily stored in
shaft deflection, bearing deflection, stator and turbine structure deformation. A
shaft in a rotational machine describes a circular or elliptical orbit when subjected
to a single vibration frequency. A single vibration can be described by two sizes:
Frequency and Amplitude.

The unit of measurement of the frequency for periodic oscillations is the Hertz
[Hz], which corresponds to how many times the same configuration occurs again in
a second.

f(Hz) = 1
T

(cycles

s
)

In rotating machine applications, the frequency is often expressed in cycles per
minute, or cpm, so that it can be directly compared to the machine’s rotation
speed, measured in revolutions per minute, or rpm.

f(cdm) = 60
T

(cycles

min
)

The frequency can also be expressed in radians/seconds:

ω(rad/s) = 2π

T
(rad

s
)

The ω frequency is called the circular frequency. This frequency description is used
to represent the vibration frequency of the rotor system.

The amplitude expresses the magnitude of the vibration, and it can be defined
in many ways: for a displacement signal is used the double amplitude, or peak-to-
peak, and it consists in the measurement of the difference between the maximum
and minimum amplitude of the signal voltage.

Mechanical systems are subjected to vibrations due to internal and external
forces acting on it. These involve the periodic motion of all the parts that compose
it (rotor, casing, piping, foundation system, etc.). Normally the magnitude of the
vibrations is so small that it is necessary to use instrumentations to detect them.
To give an example, a vibration of 130 µm (about the diameter of a human hair)
is not acceptable in a gas turbine of the same length of a house [37]. Vibrations
generate fatigue loads on the components of a mechanical system. If the intensity
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is high enough, the oscillations can cause undesirable contacts between parts of the
rotating machine, resulting in wear and damage.

All system components (rotor, housing, supports, etc.) are subject to vibration
and they can move in many different directions. The radial (or lateral) vibrations
occur in the XY plane perpendicular to the shaft axis. The axial vibrations prop-
agate in a direction parallel to the rotor axis (Z axis). The various components
of the system may periodically change orientation, resulting in angular vibrations,
which have a radial component. Torsional vibrations may also be present, but they
do not have a lateral component.

Very important for this thesis work are vibrations of the casing: these are gen-
erated by the vibrations of the rotor transmitted by the bearings, the vibrations
of the piping system and the basic structure transmitted by the foundations, also
generated by another machine nearby. The intensity of the stator vibrations de-
pends on the inertia of the system, the stiffness and damping of the bearings and
the basic structure. Since it is not possible to have a completely stationary housing,
it is not possible to obtain an absolute measurement of the rotor vibration, and we
will refer to the relative shaft vibration, as illustrated in the figure 2.7.

Figure 2.7: Relative shaft vibration [37]

2.2.1 Rotation and Precession
It is important to distinguish the rotation movement from the precession movement
of the turbine shaft.
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Figure 2.8: Rotation and Precession [37]

Rotation is an angular movement of the shaft around its axis. The rotation can
theoretically take place without any lateral movement of the element, in a perfectly
balanced system without external forces with ideal components.

Precession is a lateral movement of the geometric center of the rotor in the XY
plane. When we talk about the vibration of the rotor, we refer to its precession
movement. The orbit is the trajectory that the geometric center of the shaft runs
through, and it can have a circular shape or it can take on different complex shapes
that contain several frequencies of vibration.

Precession and rotation are two independent phenomena that can also occur
individually. They usually occur simultaneously.

When precession and rotation have the same direction of rotation, the movement
is called forward precession. Instead, when they move in the opposite direction,
there is a reverse precession. [37]

2.2.2 Types of vibrations
Free Vibration

When an underdamped mechanical system is displaced from its equilibrium condi-
tion and subsequently released, it begins to oscillate, as shown in the picture 2.9,
at a frequency called the damped natural frequency ωd, defined as:

ωd = ωn

√︂
1 − ζ2

With ωn natural frequency , defined as:

ωn =
√︄

k

m
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where ζ is the damping ratio, and it describes the ability of a component to dampen
vibrations. The oscillation of the system continues until the system dissipates all
the energy or it is excited again. The energy that generates the free oscillation,
contained in the initial system deformation from the equilibrium condition, can be
supplied either with an impulse or with a step function.

Figure 2.9: SDOF UnderDamped Response [10]

Forced Vibration

The tendency of one object to force another adjoining or interconnected object to
vibrate is referred to as a forced vibration. Forced vibrations are generated by
periodic forces acting through a dynamic stiffness of the rotor system. Dynamic
stiffness is a combination of inertia, damping and static stiffness of an element. The
resulting vibration is the ratio of exciting force to dynamic stiffness. In contrast to
a free vibration, the oscillation frequency of a forced vibration depends solely on the
frequency of the input force of the system. In linear systems, the output frequency
is the same as the input one. In non-linear systems, however, the output contains
fundamental force frequency and also higher-order harmonics. Rotor system can
exhibit both linear and non-linear systems [37]. Another difference between the
two type of vibrations is that, at a given constant frequency and amplitude of the
excitation force, the oscillation amplitude of the system will not reduce over time.
The oscillation amplitude of the system varies according to the frequency of the
forcing force, even if the amplitude of the force is kept constant.

One of the most common causes of excitatory forcing is unbalance. Due to
the non-homogeneous distribution in the radial direction at each axial section of

23



THEORETICAL FRAMEWORK

mass in the rotating element, the displacement of the center of gravity with respect
to the geometric center generates a synchronous centrifugal force, or 1X, respect
the frequency of rotation of the shaft. The equation that describes the unbalance-
related inertia force is as follows:

FU(t)P = mrΩ2ej(Ωt+δ) (2.1)

where m is the mass unbalanve, r the displacement of the displacement of the rotor
mass centerline respect the axis of rotation, δ is the angular location and Ω is the
rotation speed of the system. As we can observe, the force magnitude and direc-
tion are functions of the axis rotation speed, generating a synchronous perturbation
force.
A vibrational torsional forcer can be generated by a change in gear geometry, pe-
riodic contact between rotor and stator, an irregularity in torque generated by the
electric motor, etc. These torsional vibrations can generate radial vibrations due
to the shaft deflection away from the spin axis, thus generating an increase in the
system’s moment of inertia. [37]

Figure 2.10: Resonance Transmissibility [11]

When the excitation force has a frequency similar to the natural frequency of the
mechanical system, the amplitude of the vibrations can increase to a critical value.
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This phenomenon is known as resonance. The resonance amplitude of oscillation,
expressed with the Synchronous Amplifier Factor (SAF), depends on the damping
capacity of the structure. In a rotating machine, the unbalance generates a 1X
frequency excitation, with the same frequency of the rotor rotation. As the rotor
speed approaches the natural frequency of the system, the oscillation amplitude
increase. The critical rotor speed is the value that generates a frequency excitation
equal to ωd, reaching the balance resonance. When a machine has an operating
point at a higher speed than the critical speed, the system will pass through this
risky value during startup or start down processes. Resonance is a dangerous
phenomenon for rotating machines, because it generates high mechanical stress,
stator-rotor contact and seal wear.

Self-excited Vibration

Self-excited vibrations involve the conversion between an energy source not related
to vibration, into vibration energy. The excitation forces that are generated have
the same frequency as the natural frequency of the system. This vibration phe-
nomenon is similar to resonance, only the energy source is not connected to the
vibration of the system. An example of self-induced vibration is the subsynchronous
vibration due to the rub. Under particular conditions, the periodic contact between
the rotor blades and the internal casting generates an excitatory pulse at the same
natural frequency as the rotor system. At the point of contact, the high tangent fric-
tion forces convert the kinetic rotational energy into radial vibration energy. With
each new contact, additional energy is released, and it compensates for the vibra-
tion energy losses. The self-excited vibration generated by the rub phenomenon
has a frequency equal to harmonic submultiples of running speed (ex. 1/3X, 1/2X
etc). [37]
One type of rub that presents a self-exited vibration is the "full angular rub", which
is one of the most dangerous types of rotor/stator contact. The single-point rub is
not a self-excited vibration, but if it is not detected in time, it can turn into a "full
angular rub".
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2.2.3 Rotating Machine Model Fundamental Steps
All models are always a simplified version of the machine that we want to simu-
late. It never represents all the features of the system, but it is designed instead
to describe specific characteristics of it. A numerical model can simulate certain
important features of the real rotor system, but its applications are limited by the
assumptions made at the design stage to simplify its structure. Simplifications in-
evitably lead to errors of approximation.
The modeling of a physical system normally follows the following steps:

• State of assumptions and consequent limits of application of the model

• Definition of the cord system to describe the movement of the system

• Definition of the forces acting on the system, according to the variables of the
model (displacements, speeds, acceleration and time)

• Development of the system of differential equations that describe the model
behavior, which can be obtained either through the free-body diagram, the
theory of virtual works or the theory of Bond Graph.

• Solving the system of equations, thus allowing the coordinates of the system
to be expressed as a function of time.

• Validation of the physical model against the real model and correction if the
approximation error is excessive

The forces acting on the model can be divided into two categories: Internal
and External Forces. The Internal Forces are generated by the interaction between
different machine’s internal parts. Some examples are the support force of the
bearing, forces resulting from shaft deflection, hydrodynamic forces generated by
the interaction with the fluid inside the machine. The External Forces are applied
to the system and generate a perturbation on it. Exist two types of perturbation:
static or dynamic perturbation. The static perturbation forces have a constant
magnitude and direction, and they produce static deflections or changes in rotor
position. Instead dynamic perturbations periodically change magnitude and/or
direction, and the rotor system react through vibrations.

An example could be the force generated by the contact between stator and
rotor, or the static radial load or any other arbitrary force imposed on the system.

The numerical model used is described in detail in chapter section 4.2.
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2.3 General information on preventive mainte-
nance

According to EFNMS (European Federation of National Maintenance Societies)
maintenance is defined as: "All actions which have the objective of retaining or
restoring an item in or to a state in which it can perform its required function.
These include the combination of all technical and corresponding administrative,
managerial, and supervision actions". Over time the term maintenance refers to
multiple wordings that describe various cost-effective practices to keep equipment
operational; these activities take place either before or after a failure.
The maintenance of industrial machinery is based on the following guidelines: [25]

1. Maintain the production equipment and plant utility systems equipment as
close to brand new condition as possible and have all equipment ready to
start up and run with no unplanned shutdowns.

2. Maintain the production equipment and plant utility systems equipment in
the best possible operating condition for the purpose of producing quality
manufactured goods while the machines are in service.

3. Complete all maintenance work on a regularly scheduled basis without exceed-
ing the “Point of Diminishing Returns on Investment” for the labor, tools and
materials required to perform the work.

The basic types of maintenance falling under MRO (maintenance, repair and over-
haul) include: [26]

• Preventive maintenance, also known as PM

• Corrective maintenance where equipment is repaired or replaced after wear,
malfunction or break down

• Predictive maintenance, which continuously monitors the system evaluating
it against historical trends, to predict failure before it occurs

• Reinforcement

Preventive maintenance (or preventative maintenance) is maintenance which,
by making continuous measurements, reduces the likelihood of component failure.
Measurements are made on the component while it is still working, so you can
intervene when the fault has not yet occurred. In terms of the complexity of this
maintenance strategy, it falls between reactive (or run-to-failure) maintenance and
predictive maintenance.

27



THEORETICAL FRAMEWORK

In turn, it is possible to identify different categories of PM preventive mainte-
nance:

• Planned preventive maintenance (PPM), more commonly referred to as sim-
ply planned maintenance (PM) or scheduled maintenance. This maintenance
is carried out at predetermined intervals, which can be either temporal or
based on a parameter that describes the use of the machine (e.g. kilometers
travelled by a car).

• Condition-based maintenance (CBM). It is maintenance when need arises.
CBM maintenance is performed after one or more indicators show that equip-
ment is going to fail or that equipment performance is deteriorating.

The program developed in this thesis project is a support tool for the CBM
maintenance of aeroderivative gas turbines. The objective is to prevent malfunc-
tioning from leading to system failure by monitoring engine operating conditions
and intervening when the machine is not yet compromised.

Figure 2.11: The Performance Failure curve [51]

If the gathered data indicates a high probability of reaching a failure, early cor-
rective action can be taken, thus saving lots of maintenance cost and preventing a
catastrophic failure. The aim is to optimize operation costs and to minimize down-
time times. The idea of CBM is to measure how machine health conditions change
in time, so that corrective action is taken before ever reaching a Functional failure
event (F). The deterioration of the machine becomes visible in the instrumentation
at the Potential Failure (P) 2.11. A predictive maintenance would be able, based
on the observation of the machine conditions, to predict when the P point will be
reached and how the curve of "Health Condition" will change over time, thus to
better optimizing the interventions on the system.
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2.3.1 Vibrations applied to maintenance

Figure 2.12: Experimental Scheme Rotating Machine

A malfunctioning machine is usually a system that, after a long period of accu-
mulating damage, reaches a breakdown. Most of the machines continue to operate
their intended tasks even with an active and developing problem. Proactive ma-
chinery management requires to detect the problem as early as possible, in order
to schedule the maintenance plan. There are two basic types of measurements to
reveal a problem into a mechanic system: [37]

• Direct Measurements - A direct control and revelation about the physical
propriety of the machine components (E.g.: Stator, rotor, Foundation, etc).
Several physical proprieties include vibration and position measurement, rotor
speed, and bearing temperature.

• Indirect Measurement - Control over the work output parameters of the sys-
tem. Indirect measurements include processing data, as power, working fluid
temperature, pressure, flow, and performance data, such as efficiency. That
information has to be correlated with the direct one to diagnose the malfunc-
tion.

One of the most important indicators of a malfunction are the vibration of the
system. A rotating machine can be considered as a "black box" [2.12] that receives
as input the dynamic forces and returns as output vibration of the system, acting
as an energy conversion mechanism. To understand how the black box works,
we need to understand the relation between the dynamic forces applied on the
system and the vibrations that follow them. This would also allow us to deduce, by
observing the vibrations of the machine, what forces generated this response, thus
understanding the causes of the phenomenon. This will allow us to detect, identify,
and correct the potential problem in the rotor system, since we can monitor the
vibration of the machine, no directly the dynamic forces than act on it. We can try
to guess the contents of the box by shaking it using a technique called perturbation
and observing the behavior of the system. The behavior of the black box can also
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be simulated by creating a mathematical model of the rotor system.
The vibration is a ratio between Forces and Dynamic Stiffness: a variation of the
oscillation of a mechanical system is generated after an alteration of one of those
two elements. Dynamic stiffness consists of Direct Dynamic stiffness and Quadrate
Dynamic stiffness. Dynamic stiffness is a function of parameters of mass M, spring
stiffness K, damping D, lambda λ, and rotor speed Ω. Lambda is a model of fluid
circulation between stator and rotor, that reduces the complexity of the viscous fluid
behaviour to a single parameter. A change of any one of these parameters changes
vibration behavior. The most common exciting vibration force is rotor unbalanced,
which can occur after erosion, loss of material, or accumulation of foreign material.
Most often, a change in vibration is caused by a change in dynamic stiffness. A
variation of mass is unlikely, and a change in lambda produces subtle effects. The
more significant vibration variations are caused by lambda and spring stiffness
alterations.

The diagnosis of malfunctions is based on the detection of variation in key signal
information. In this table is possible to find the most important one to describe
the rub phenomena.

Symptomus of the Rub [37] Data Plot

Direct Vibration Amplitude Orbit, timebase
nX amplitude and phase Bode, polar, APHT
Frequency Full spectrum, half spectrum
Position Average shaft centerline
Orbit and timebase shape Orbit, timebase

Table 2.1: Data Plot correlated with the relative information of the Rub phe-
nomenon

The effects generated by different malfunctions are very often similar and over-
lapping in certain aspects. It is, therefore, necessary, to execute a complete analysis,
to consider cross-validation with different data sources. Besides, experiments must
be performed under different operating conditions: steady state, transient, slow
roll, and stopped. [37]

• Steady State - It corresponds to a working condition with constant parameters
(e.g. rotation speed), and it gives us information about changes in overall
vibration levels, frequency content, nX amplitude and phase, position, orbit,
and timebase shape during slowing changing, or static, rotor dynamic process
conditions.

• Transient - It allows us to achieve more information on the dynamic behavior
of the rotating machine. Especially It permits to have a correlation of vibra-
tions parameters with the rotation velocity of the rotor. Transient data is
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especially important to have information about the variations in the balance
resonances speed Ωres.

• Slow Roll - This operating condition consists in using the machine at reduced
speeds so that the unbalance response can be considered negligible.

• Stopped - The system should not vibrate during a non-active condition, so
we can measure possible external sources of vibrations. It is also possible to
measure, in this state, the absolute coordinates of the system to which all the
following dynamic data can be referred.

Operating Conditions Description

Steady state Constant speed, load can vary
Transient Startup, shutdown (changing speed)
Slow roll Low speed, negligible unbalance response
Stopped Stopped

Table 2.2: Rotating Machine Operating Conditions [37]

The casing vibrations are generated by the transmission of dynamic loads on
the bearing supports, which are then transmitted then to the casing through the
stiffness and the damping of bearings. The case and the rotor can show different
modes of vibration, in-phase, or opposite. The oscillation of the casing is the
function of the mass of the structure, the stiffness of the bearings, and of the
casing.

A regenerative gas turbine has a low casing mass, compared to the rotor, and
relative flexible bearing supports and casing. They also usually have roller bearings
that, due to a rigid connection, transmit more vibrations to the casing structure.
As a result of the low stiffness, the case could have more vibration modes, and is
important to consider them to position the transductors.

2.3.2 Data plot type
To better understand the information on the rotor system contained into the vibra-
tion of the shaft is important to apply the best graphic representations correlated
to the malfunction that we want to detect.

Timebase Plot

The Timebase plot is the most fundamental graphic representation of the machinery
dynamic data. It is the representation plot of a unprocessed single parameter output
(e.g. displacement, speed, acceleration) from a single transducer on a very short
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time scale (few revolutions). An important use of a timebase plot is to identify
change in machine response if sudden event occur or if the machine is rapidly
changing speed.

Figure 2.13: Unfiltered timebase plot [37]

Orbit

The orbit is a 2D diagram that allows you to represent the displacement of the
center of the axis in a plane. To execute it, it is necessary to use at least 2 trans-
ducers, placed at a relative angle of 90°. This diagram can be used to measure the
amplitude and phase of the harmonic nX [37]. It is also possible to make several
diagrams in different positions to obtain a three-dimensional image of the axis and
its deformation [2.14].

Figure 2.14: Multi-orbit diagram along a steam turbine [37]
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Bode and Polar diagrams

The polar and Bode diagrams are mainly used to identify the resonance in the
transient periods of the rotating machine. To obtain those graphs it is necessary
to filter the information provided by the proximity sensor to its 1X synchronous
vibration harmonic component. Generally, the polar diagram is used to identify
the position of the point mass to balance the rotor and balance it [37], while the
bode diagram is used for the study of resonance. In the Bode diagram, it is possible
to observe how the amplitude and phase of the vibration change with the rotation
frequency and, with a peak (for amplitude) or a 90° change (for phase), it is possible
to notice the presence of a resonance. The polar diagram instead represents the
scale of vibration magnitude in the case of the start-up and shutdown of the rotating
machine.

Figure 2.15: Bode and Polar diagrams [37]

Half and Full Spectrum Plots

The machine vibrations can include different frequencies simultaneously. These
frequencies are related with the operating conditions of the system (running speed,
malfunctions, external vibrations etc.). Half and Full Spectrum plots are important
and powerful tool making use to determinate the frequency content of a vibration
signal, in order to realize an accurate diagnosis of the mechanical machine. They are
applied to identify the frequency components present into the vibration signal and
to trend changes on the amplitude of frequency components. The output generated
with the application of the Fourier transformation is equivalent to a series of band-
pass filters that have been set to integer multiples of the lowest frequency signal
f1. The final signal appears as a series of vertical lines where each one represents a
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single frequency and its height is the amplitude of the signal. In this way we lost
the phase information of the component signals. For this reason it is not possible
to reconstruct the original waveform from the half spectrum plot.

The amplitude scale of the plot can be either linear or logarithmic. With the
logarithmic scale can be easily compared amplitudes of very different dimensions,
but it is more difficult to quickly discriminate between significant and insignificant
vibration components. Instead, by applying the linear scale is easier to find the
most significant components.

The frequency scale can be display with hertz (Hz) or Cpm. The hertz scale is
useful when comparing machine vibration frequencies to line frequencies, such as
an induction motor or steam turbine generator diagnostics. With Cpm is easier to
compare frequencies with the running speed of the machine in rpm [37].

Figure 2.16: Half and Full Spectrum Plots [37]
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2.3.3 Maintenance sensors for a gas turbine
A vibration transducer is a device that converts mechanical motion into an electronic
signal. A displacement transducer can detect the displacement or position of an
object relative to the sensor location. These sensors are placed as close as possible
to the source of vibration information that we want to observe (in the case of a
rotating machine it is the rotor). In aeroderivative turbines the accelerometers are
positioned on the housing close to the bearings, while in the heavy gas turbines
they are positioned in the hydrodynamic bearings (as in the figure below 2.17).

Figure 2.17: The relationship of a displacement vibration signal to the motion of
an object [37]

Each sensor is generally able to detect one degree of freedom of the machine.
To obtain information of more than one degree of freedom of an object it will be
necessary to use more than one sensor.

The types of sensors used in this application are:

Proximity transducer

Also known as Eddy’s sensor. The sensor does not need direct contact with the
workpiece to perform the detection. It returns the proximity information of the
component to the sensor head. A proximity sensor emits an electromagnetic field
(Powering a coil at the end of the sensor) or a beam of electromagnetic radiation
(infrared, for instance), and looks for changes in the field or return signal [44].
The transducer converts the position of the object with respect to the axis of the
sensor into an output voltage, proportional to the gap between the two elements.
The variation of the voltage signal intensity represents the relative position of the
vibrating object in relation to time. A widespread application of this type of sensors
is the machine vibration monitoring to measure displacement between a shaft and
its support bearing. This is common in large steam turbines, compressors, and
motors that use sleeve-type bearings.
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Figure 2.18: Typical configuration of rotating machines with proximity sensors [38]

Speed sensor

Low-frequency sensors that are used to make absolute measurements of the velocity
of machine components when the machine is not operating. They are directly
inserted into the mechanical structure and they measure the motion of the structure
through the contact [45]. The output voltage signal is proportional to the speed
of the sensor motion into the magnetic field (Lenz law), generating an output that
is a function of the vibration speed of the structure. It is not advised for moving
parts or high-frequency vibrations.

Figure 2.19: Speed sensor [45]
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Accelerometer

An accelerometer is a measuring instrument capable of detecting and/or measuring
acceleration by calculating the force measured with respect to the mass of the
object (force per unit mass). The operation of this sensor can be approximated to
a system of 1 degree of freedom. In the design the accelerometer must be designed
with an internal natural frequency at least five times higher than the maximum
value of the application rank, in order to minimize the inertial effects that can alter
its operation and, consequently, the accuracy of the output signal. Knowing that
the amplitude of the accelerometer is proportional to the amplitude and frequency
of vibration with a quadratic relationship, these sensors are very sensitive to detect
vibrations of high frequency and small amplitude [46].

Figure 2.20: Accellerometer [46]
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2.4 Different types of Rotating Machine’s Mal-
functions

The correct behavior of a mechanical system can be altered by the presence of a
perturbation forces that alter its operation state. It is important to analyze the
different types of external forces to understand their causes, how they impact on
the rotating machine and how to prevent them.

2.4.1 Unbalance
The unbalance is the most common cause of vibration inside rotating machines.
Unbalance is defined as an uneven distribution of the rotor mass with respect to its
center of rotation. The system will respond sinusoidally with the same frequency
of rotor rotation. The intensity of the response will be proportional to the residual
unbalance of the rotor and the frequency squared.

Figure 2.21: Rotor Unbalance [54]

The exciting force generated by this defect has a frequency 1X synchronous to
the rotation of the shaft, because, as reported in the chapter on the dynamics of
rotating machines, the eccentricity generates a rotating centrifugal inertial force on
the center of gravity that rotates with the axis. The unbalanced 1X force acting
on the system generates a 1X vibration proportional to Dynamic Stiffness. A 1X
vibration generates fatigue loads on the components and, if the intensity of the
oscillation is high enough, it generates other secondary malfunctions such as rub or
wear in bearings. The unbalance is not the only defect that generates synchronous
vibration, so it is important to understand its effects to classify it.
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The rotating machine responds to this forcing with non-linear behavior if there
is a source of non-linearity in the system. Otherwise the response will be 1X linear.
Sources of non-linearity may be:

• The increased rigidity of the bearing fluid-film for an elected eccentricity ratio.

• The onset of secondary malfunction of the rub

• The looseness in the support system

The presence of non-linear behavior generates harmonic vibrations of nX vibra-
tion, with n=1,2,3.. etc.

2.4.2 Rub
The rub malfunction consist in the rotor contact with the stationary part of a ro-
tating machine, and the subsequent rubbing on the contact area. It is a serious
turbine malfunction that can also lead to a catastrophic machine’s failure. The
contact between stator and rotor changes the properties of the rotating machine,
varying the stiffness of the system, resulting in a variation of the machine’s motion.
The physical phenomena involved in this event are friction, impacting, variation
in system stiffness due to the physical coupling, and also the thermal effects due
to energy dissipation. The friction depends on the normal force and the condition
of the contact surface and generates a tangential force in the opposite direction to
the rotation speed. This force is also the main cause of surface wear, which varies
its properties. For this reason, this is a transient type phenomenon. Sometimes
it can occur a short-lasting adhesive rub contacts (with little or no relative move-
ment) transferring rotational energy in rebounding lateral and tangential impacting
motion. The rotor/stator contact also varies the stiffness property of the system,
increasing it, resulting in a non-predicted natural frequency and eigenmode mod-
ifications. The physical phenomena of friction and impact are not linear, making
the analysis and simulation of this malfunction complex. The problem of rubbing
contact is a secondary phenomenon generated, for example, by vibrations due to
unbalance, or also due to the displacement of the rotor centerline. Radial rubbing
occurs when the rotor displacement exceeds the available clearance [55].

The rub phenomenon can generate rotor bowing, severe wear, local melting or
welding of the contact surface, or plastic deformation of the shaft [34].

The rub can occur in the radial direction, axial direction, or both combined,
and it also can be a lubricated or not lubricated contact. Most often occurs with
an unlubricated one, resulting in a higher friction force and generate sufficient local
heating. The axial rub can be caused by a mismatch between the thermal growth
rate of the materials that composed the stator and the rotor. During a cold startup,
a steam turbine blades expand faster than the casting. [37] The two main common
types of the rub are: Partial Radial Rub and Full Angular Rub.
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The first one takes place when the rotor/stator contact happens over a small
fraction of the vibration cycle. Partial Rub is the most common type of rub. It can
also be divided into other two general categories: Normal-tight and Normal-loose.
The machine rotor normally operates in an unconstrained condition but, when the
blades bump against other internal parts of the turbine, it becames contrained, or
tight. Normal-tight is the most common form of partial rub and it increases the
rotor system spring stiffness. Instead Normal-loose is the manifestation of looseness
in the machine. Due to high vibrations, the rotor moves clear of the constrain. The
partial rub problem usually generates a temporary, sliding rotor/stator contact.
While the rotational speed of the stator is zero, the shaft surface has a high speed.
The dweel time is the period during which takes place the contact between the
casing and rotor. The Partial Rub has a dwell time less than the total vibration
period.

Figure 2.22: Partial Radial Rub [37]

During the period of contact, two forces act on the system: normal and tangent
friction force. The second one is proportional to the normal force and to the friction
coefficient at the interface. The direction of this force is opposite to the shaft surface
velocity. Usually, It is also opposite to the direction of the precession of the center
of the rotor. The rotor, during the precession orbit, eventually breaks the contact
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and continues in its orbit until the contact recurs. If the contact occurs once per
revolution of the rotor, the vibration is 1X. Less often, the rubbing phenomenon
one times on each several revolutions, producing subsynchronous vibration.

The Full Angular Rub has a dweel time equal to the vibration cycle period.
If the precession of the orbit, concentric with the rotor shaft, is large enough, it
will exceed the clearance between rotor and stator during all the vibration period,
generating the friction. The most common type of Full Angular Rub occurs in
Forward direction and, for this reason, the relative velocity of the shaft at the
contact point can be quite high. The rotor will lock into a rotor system natural
frequency, which has been influenced by the contact stiffness. Rub malfunction
introduces non-linear behavior into the rotor system. To prevent this problem, it
is important to observe the stationary and transient state. The symptoms of the
rub are then explained in detail:

Figure 2.23: Full Radial Rub [37]
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Symptomus of the Rub

Changes in 1X Vibration
Abnormal Orbit Shape
Reverse precession components
Harmonics in spectrum
Changes in average shaft centerline position
Wear, damage, loss of efficiency
Thermal bow

Table 2.3: Symptomus of the Rub Malfunction [37]

For a detailed decription of the listed symptoms please refer to chapter 21 of
"Fundalmentals of Rotating Machinery Diagnostics" [37]
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Chapter 3

MACHINE LEARNING:
PROPOSED METHODOLOGY

3.1 Introduction to Machine Learning

Artificial intelligence (AI) refers to all the tools that allow us to simulate human
behavior in machines that are programmed to think like humans and mimic our
actions. Principally, artificial intelligence programs make it possible to reproduce
the classic characteristics of the human mind, such as autonomous learning and
problem-solving. Computer science defines AI research as the study of "intelligent
agents": any device that perceives its environment and takes actions that maximize
its chance of successfully achieving its goals.[27] Another definition of artificial
intelligence is: "a system’s ability to correctly interpret external data, to learn from
such data, and to use those learnings to achieve specific goals and tasks through
flexible adaptation." [28]

A famous mathematician and scholar of the 20th century, Alan Turing, won-
dered if it is possible to define and how a computer intelligent and, consequently,
what intelligence is. To solve that problem, he changed its formulation: from
whether a machine was intelligent, to whether or not it is possible for machinery
to show intelligent behavior. [29] To respond to this dilemma, the mathematician
devised a test of a machines’ ability, to permit them to exhibit intelligent behavior
equivalent to, or indistinguishable from, humans’ one. [30] The game he invented
is called "imitation game", and is composed of three participants, two humans and
a computer. 3.1. One of the two people is the examiner, while the other person
and the computer must answer the questions. The examiner cannot see the other
two players and he can only communicate with them with written notes. The com-
puter will pass the test if the examiner, based only on the answers, is not able to
distinguish between the computer and the other human player.
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Figure 3.1: Turing test diagram [30]

3.1.1 Machine Learning Structure

Figure 3.2: AI Structure

Subset of artificial intelligence, Machine Learning is a tool that allows cre-
ating algorithms that simulate the human behavior. These tools are based on
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mathematical-statistical methods able to learn autonomously from data, updating
independently the hyperparameters of the numerical code to improve its perfor-
mance. In turn, within machine learning, there are different technique solutions
that can be adopt depending on the application. Some of these are the decision
trees, regression models, classification models, clustering, Support vector machines,
etc.

Programming a computer code with Machine Learning changed the program-
ming paradigm. Take for example one of the first machine learning programs de-
veloped in the 90s: a spam email filter. [34] Let’s imagine that we want to make
this program using the classic programming approach.

The first step is to note the patterns present in this type of email. For example,
many spam emails contain words like "4U", "free", "credit card" and "amazing". Or
other patterns could be the sender’s name, the email’s body, etc. Then we have to
write an algorithm for each of the models listed above to detect. Next, we must
test the spam filter and repeat the previous steps until the program is good enough.
The program will eventually result as a long list of difficult commands that will
have to be constantly updated to adapt the software to new types of spam. For
instance, now emails containing "4U" are blocked, but emails with "For U" are not,
making the filter ineffective. So, in a classic program, we write the rules with which
the program will subsequently process the data.

Figure 3.3: The traditional approach [34]

Therefore, we can note that, when the problem to be solved is not trivial, even
very complex problems can arise with traditional programming. Let us imagine now
to program a software to play Rock/Paper/Scissors recognizing the gesture of the
hand through a photo. The code should understand which of the three elements you
have chosen by recognizing the shape of the hand. Only each hand is different, with
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fingers of different shapes, lengths, different skin colors and also different gestures
for the same choice. We can see some sample images in the picture below. [?]

Figure 3.4: Rock paper scissors Photos [32]

Figure 3.5: The ML approach [34]

Now let’s try to solve the task of the spam email filter by imagining programming
an ML code. If we wanted to make a spam filter with ML software we would have
to provide the program with a large amount of emails with the label "SPAM" or
"NOT SPAM" and then, through a mathematical model, the code will be able to
automatically to detect the patters needed to classify the emails. So, in an ML
code, we do not write the algorithm rules but we provide the program with the
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answers, and it will "understand" how to solve it. On the other hand, tasks such as
image recognition necessary to solve the "Rock paper scissors problem" cannot be
performed effectively with classic programming technique, making machine learning
technology the only possible solution for this type of tasks.

(a) Traditional program logic (b) ML program logic

Figure 3.6: Traditional and ML logics

Summarizing the advantages of a Machine Learning program:

• Automatically recognize patters by analyzing the database

• Ability to update the program rules automatically by analyzing new data

• Solve complex problems that cannot be approached using a classic program-
ming logic such as voice and image recognition, for example.

3.1.2 Learning Types
A machine learning program to work needs of a large database of data concerning
the problem to be solved. But, according to the structure of the database and based
on the task that we have to solve,the most suitable training method can change.

The different learning approaches are:

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

Supervised Learning

In supervised learning, the data which we use to feed the program contain also the
information of the correct solution, called labels. A common task for ML software
that uses this type of training is classification. The example of the email filter
described above is a type of classification supervised learning code: the users tell
the program whether an email is a spam or not and the code trains with this
information that contains the correct label.

47



MACHINE LEARNING: PROPOSED METHODOLOGY

Figure 3.7: Supervised Learning [34]

Some common tasks that need this learning approach are those that have a
numerical value as output, called regression. An example could be a program that
has to predict the real estate evaluations of a house based on a database composed
by other property evaluations, correlated with all the useful data (square meters,
number of rooms, floors, but also the distance from the sea, proximity to the city
center, etc.).

Below there are some examples of supervised learning algorithms:

• Linear Regression

• Logistic Regression

• Support Vector Machines (SVMs)

• Decision Trees and Random Forest

• Neural Network

Unsupervised Learning

The data of a unsupervised learning machine learning code does not have the correct
label associated to each instance. Instead the software will learn how to use the
data finding autonomously the various categories of the classification, thanks to
a mathematical statistical model suitable to solve that problem. Below there are
some examples of unsupervised learning algorithms:

• Clustering (K-means, DBSCAN, HCA)

• Visualization and dimensionality reduction (PCA, Kernel PCA, Locally-Linear
Embedding LLE)

• Anomaly detection and novelty detection (One-class SVM, Isolation Forest)

Some architectures of the Neural Network type can be unsupervised, for example
autoencoders and restricted Boltzmann machines. [34]
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Reinforcement Learning

The reinforcement learning adopts a different approach to train a neural network
respect the other learning models. In this case the learning system, called the agent,
observes "the environment", choose consequently the action, and then, according to
the result and consequence of it, it gets a positive (reward) or negative (penalty)
feedback. Thanks to that feedback the code will update the hyperparameters to
better optimize the network to solve the task. Hence, the next action of the software
will consider the feedback obtained previously. The algorithm will have to look
for the best strategy, called policy, that allows it to obtain the highest number
of rewards. A common application of this type of machine learning software is
robotics and related handling. An example of reinforcement learning is the Google
AlphaZero algorithm, able to learn the game of chess, shōgi, and go, overcoming
the playing power of world champion programs in their respective disciplines, with
only a few hours’ training. [35]

Figure 3.8: Reinforcement Learning [34]
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3.1.3 Main Challenges of Machine Learning
The successful design of a Machine Learning algorithm depends on a delicate bal-
ance between the mathematical structure of the algorithm and the amount and
quality of data that feeds it. The difficulties in building an ML software can come
either from the database or from the chosen architecture.

A typical problem is the insufficient dimension of the training database: to
correctly learn to solve the task the ML code needs a large amount of data about
the problem, which is not always available. To be able to generalize well, it is also
crucial that the training dataset is representative of all the cases we want to learn.
Obviously, if the training data is full of errors, outliers, and noise it will be more
difficult to find the patterns to generalize. It is therefore very important to pay
attention to the training database.

Overfitting

A concrete risk of a ML algorithm is to overgeneralize the patterns found by the
numerical model. This problem is called overfitting: in this scenario the model
performs well with training data, while it encounters problems working with val-
idation data, not being able to correctly generalize the problem. In the case of
Neural network ML algorithms, the causes that can lead to this problem are:

• Noise in the training database

• A database too small (Which introduces sampling noise [34])

• A network structure not suitable for the problem in question (number of
layers, neurons, activation functions)

• Excessive training (e.g. too many epochs)

The possible solutions to solve this problem are therefore:

• The simplification of the model, reducing the parameters

• To gather more training data

• Reduce the noise, e.g. by eliminating outlier instances.

• Increase the Dropout of the layers

The Dropout is a simple technique of regularization for deep neural networks. Its
operation principle consists in randomly "shutting down" different neurons for each
training step (including the input neurons, but always excluding the output one).
Dropped out neurons are totally ignored during the respective training step, but
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they may be active during the next one, while others, who previously contributed
to the prediction, will be turned off in subsequent turns. The idea behind this
algorithm is that the neural network, forced to work each time with a different part
of all its neurons, should better generalize the learning information, making the
neurons’ hyperparameters then more versatile. The parameter that regulates this
optimization is the probability p that the single neuron is temporarily dropped out,
called "Dropout Rate". A typical dropout value is 50% [34].

Underfitting

An opposite problem to overfitting is underfitting. It shows up when the algorithm
is too simple compared to the complexity of the problem, and is not able to detect
all the patterns useful to solve the task present in the training dataset. The possible
solutions are [34]:

• Select a more powerful model, with more parameters

• Feeding better features to the learning algorithm (feature engineering)

• Reducing the constraints on the model
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3.2 Deep Neural Networks
One of the most famous technique of machine learning is the Neural Network. The
neural network is a programming algorithm developed to simulate the human brain
system for Machine learning applications. The ultimate vision of this technology is
to create an artificial intelligence capable of simulating the human mind. Behind
the Neural Network mathematics theory there is the Rosenblatt’s perceptron algo-
rithm, proposed by Frank Rosenblatt in 1958 [31], which laid the foundation for
the subsequent development of this technology. At that time it was not possible
to development this programming technique, because it requires a large amount of
data and considerable computational capabilities, not yet available in the 50th.

Deep learning (also known as deep structured learning) is a class of machine
learning algorithms based on artificial neural networks with representation learning,
that uses multiple layers to progressively extract higher level features from the raw
input. Deep learning is a modern variation which is concerned with an unbounded
number of layers of bounded size, which permits practical application and optimized
implementation, while retaining theoretical universality.

A Deep Neural Network (DNN) is an deep learning artificial neural network
composed by multiple layers between the input and output layers. [?]. The Rosen-
blatt’s linear perceptron cannot be a universal classifier, while a network with a
non-polynomial activation function with only one unbounded width hidden layer
can on the other hand so be. Hence, a Deep Neural Networks is theoretically ca-
pable of learning any mathematical function with enough data, and some types
of neural networks can be defined "Turing Complete". Turing completeness refers
to the ability of an algorithm to simulate any other possible algorithm (or Turing
machine).

3.2.1 Introduction Neural Networks
The neural network algorithm is inspired by the functioning principles of the neu-
rons in our brain. Neurons are the cells that make up our nervous system. Neurons
are interconnected by axons and dendrites, and the region of connection between
axons and dendrites is called synapses. The strength of the synapses connections
changes in response to different external stimuli. This variation is the basis for the
functioning of learning in living beings.

To simulate the biological system, the artificial neural network presents basic
computational units, called neurons, interconnected through weights. Each given
input of a neuron is transmitted to the next interconnected one scaled according to
the weight’s coefficient presents on that link. An artificial neural network works by
propagating the input information through the neurons, elaborating them according
to the weight coefficients, until reaching the output neurons, where the information
will be the result of the algorithm. The network learning is based on the variation
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Figure 3.9: Biological Neural Network [33]

of the weight coefficients that process the information.
The database reserved for training allows you to generate positive or negative

feedback based on the predictions made by the code and, consequently, improve
the interconnections between neurons, increasing or decreasing the weight of these.
These corrections on those coefficients aim to minimize the loss function, which
will evaluate the goodness of the algorithm result by comparing it with the label
information.

The most important skill of this statistical mathematical method of machine
learning is the possibility, once trained the network with the training data, to make
predictions on other different data that previously the neural network has not seen
before. Let us imagine that we want to create a software able to classify images
of dogs and cats. After training the code with a large number of figures of these
animals, the program will be able to find patterns that will allow him to identify
and distinguish a new cat that the code has never seen before. This ability to
accurately execute functions on unseen input by training it with a finished database
of information is referred to as model generalization. Thanks to it the ML software
is able to generalize its learning from seen training data to unseen examples.

Deep learning is the best machine learning algorithm solution when is available a
large amount of data and high computational capacity , as shown in the figure3.10.

3.2.2 Deep Neural Network Applications
Since the 2010s, advances in both machine learning algorithms and computer hard-
ware have led to more efficient methods for training deep neural networks that
contain many layers of non-linear hidden units and a very large output layer. [53]
The areas of application are therefore boundless, and that make this tool of incred-
ible interest in various areas of scientific research.

The ability of these software to automatically recognize patterns within the
database and learn how to use them allows to use neural networks in recognition
applications such as Image Recognition or Automatic speech recognition.
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Figure 3.10: Illustrative comparison of typical ML with a DL code [34]

Target marketing is a clustering task that involves market segmentation, where
we divide the market into distinct groups of customers with different behavior[56].

In the financial world neural networks have been applied successfully to predict
financial indicators, like derivative securities pricing and hedging, futures price fore-
casting, exchange rate forecasting, and stock performance. Traditionally, statistical
techniques have driven the software. These days, however, neural networks are the
underlying technologies driving decision making.
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3.2.3 Single Computational Layer: The Perceptron
To clearly understand the structure on the neural network it useful to start with
the easiest possible version: the Perceptron 3.11 [40]. A neural network can have
multiple layers where each one presents many neurons. Different units of the various
layers can present many types of interconnection: for example, all the neurons of
two consecutive layers can be totally interconnected, or each neuron can present a
link with only one group of the elements of the next row. In the simplest scenario,
we have only two-layer: the input and the output layer. The input layer is not
included in a neural network layer count. If a neural network has more than one
layer, with others between the input and the output one called hidden layers, it is
called Deep Learning Neural Network.

Figure 3.11: The basic architecture of Perceptron with bias [39]

ŷ = sign(W · X + b) = sign(
d∑︂

j=1
wj · xj + b) (3.1)

The Perceptron is composed by a single input layer, with multiple neurons,
and a single neuron output layer. Each train instance has the form (X, y), where
the input layer contains d nodes that transmit the d features X = [x1...xd] through
edges of weight W = [w1...wd] to an output node. The y contain the observed
value y ∈ {−1, +1} of the binary value class, while ŷ is the value predicted by the
network respect to the instance input X. The observed value is the correct label
value associated with each instance, and the goal of the program is to correctly
predict it with new data. The activation of the output neuron is the result of the
sign activation function applied to the result of the linear system W · X + b =∑︁d

j=1 wj · xj + b. The error of the prediction is E(X) = y − ŷ, and it can assume
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the discreet values {−2,0, +2}. If the E error does not turn out to be 0 for a
given instance, so the prediction made by the net will turn out to be wrong, it
will be necessary to tune, through the decreasing gradient, the value of the weight
coefficients, or the bias, to improve the algorithm.
When there is an invariant part into the prediction, it is necessary to use bias neuron
b in the network. The bias allows you to shift the activation function by adding a
constant to the input. Bias in Neural Networks can be thought of as analogous to
the role of a constant in a linear function, whereby the line is effectively transposed
by the constant value.
The goal of the perceptron algorithm is to minimize the error in prediction, even
if a formal optimization formulation was not presented at that time. The basic
perceptron algorithm can be considered as a stochastic gradient-descent method,
which implicitly minimizes the square error of the prediction.

Figure 3.12: Linearly separable data and non-linearly separable data [39]

The perceptron is a linear model, where it defines a linear hyperplane W ·X = 0.
This algorithm can classify linearly separable data, while it is not guaranteed that
the solution converges when the data is not linearly separable. This shows a big
limitation of this first neural network solution and can be solved by using more
complex networks architectures.

3.2.4 Description of Deep Learning Neural Network Struc-
ture

Deep learning is a class of machine learning algorithms that is composed by mul-
tiple layers to progressively extract higher level features from the input data. The
adjective "deep" in deep learning comes from the use of multiple layers in the net-
work. Early work showed that a linear perceptron cannot be a universal classifier,
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and then that a network with a nonpolynomial activation function with one hidden
layer of unbounded width can on the other hand so be. Deep learning is a modern
variation which is concerned with an unbounded number of layers of bounded size,
which permits practical application and optimized implementation, while retaining
theoretical universality under mild conditions.

When all the neurons in a layer are connected to every neuron in the previous
layer, it is called a fully connected layer or a dense layer.

Figure 3.13: Pre-activation and Post-activation values within a neuron [39]

Each neuron compute two different functions in the single node 3.13: the first
one is the linear system W ·X + b, which allows you to cast the pre-activation value
ah . Then the appropriate activation function Φ is applied to ah , which allows to
calculate the output of the neuron, the post-activation value.

3.2.5 Activation Function
The choice of the activation function of the various layers that make up the network
is one of the most critical parts of the ML code architecture design. One of the
main factors to take into account is the type of target you want to predict: if
the nameplate is the probability that the instance falls into one of two different
options of a binary class, a suitable activation function could be sigmoid. Instead,
if the target is a real variable, you can opt for the simplest activation function on
the last layer, the identity. The choice of the appropriate activation also allows
the network to solve problems of a non-linear nature. Some types of non-linear
activation functions are sign, sigmoid, or hyperbolic tangent. We use the symbol
Φ as a notation to refer to activation functions. It is possible to notice that most
activation functions saturate beyond a certain abscissae value, so the activation does
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not grow over a high absolute value. These functions are suitable for classification
problems, and the last layer must adopt one of them.

The non-linear activation functions, combined with a multilayer network archi-
tecture, allows to create more powerful combinations of different activation func-
tions. In the last layer that generates the output, squashing functions are typically
used, as they map the result value from an arbitrary range to bounded one. If the
network only uses linear activation functions, even if it has more than one hidden
layer, it is not able to solve nonlinear problems, and it has the same capacity of a
single linear network layer.

Identity Function

The simplest activation function is the identity, which allow you to solve only linear
problems, making the output simply a linear combination of the activation values
of the previous layer.

Φ(v) = v (3.2)

Can also be used when the target is discreet, and a smoothed surrogate loss
function needs to be set up.

Sign Function

Φ(v) = sign(v) =

⎧⎪⎨⎪⎩
−1 if v < 0
0 if v = 0
+1 if v > 0

(3.3)

The sign is a non-differentiable function, with step-like discontinuity point in the
origin. Furthermore, the sign function takes on constant values over the totally of
the domain (except in 0, where there is the jump), and therefore the exact gradient
takes on zero at all differentiable points. The results in a staircase-like loss function,
which is not suitable for a gradient-descent.

Sigmoid Function

Φ(v) = 1
1 + e−v

(3.4)

The output of the sigmoid activation function is between 0 and 1, which is
helpful in performing computations that should be interpreted as probabilities.
Furthermore, it is also helpful for probabilistic outputs and constructing loss func-
tions derived from maximum-likelihood models. [39] It is a function that can solve
problems that present a non-linearity.
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Tanh Function

Φ(v) = e2v − 1
e2v + 1 (3.5)

The hyperbolic tangent has a form like the sigmoid activation function; in par-
ticular, the two functions are related to the subsequent relationship:

tanh(v) = 2 · sigmoid(2v) − 1 (3.6)

Since it has a output values between [-1;1], it is preferable to sigmoid when the
output you want to obtain can also take negative values. Furthermore, its mean-
centering and its wider gradient also make it easier to train than sigmoid. It is a
function that can solve problems that present a non-linearity.

ReLU

Φ(v) = max {v,0} (3.7)

The ReLU function is a piecewise linear activation function. This activation
function has replaced, in modern architectures, the sigmoid and soft tanh activa-
tion function, thanks to their better training predisposition in multi-layer neural
networks. [39]

Figure 3.14: Activation functions and derivatives [34]

3.2.6 Back propagation learning and Gradient descent
The basis of neural network learning is the minimization of the cost function C, or
loss function, defined, for this problem, with the least-squares function:

Minimze W C =
∑︂

(X,y)∈D

(y − ŷ)2 (3.8)
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With D representing the dataset.

Figure 3.15: Cost calculation of instance relative at a image of "3" [42]

To achieve this, it is necessary to fine-tune the activation values of the output
of the last layer of the network. However, this cannot be done directly. The
variables that we can adjust to improve our code are all the weight coefficients
and all the biases present in our neural network architecture. In the case of a
multilayer network, the problem of loss is a complex function of all the weight
coefficients and bias present in the previous layers. The backpropagation algorithm
is used to calculate the gradient of the composition function. The backpropagation
algorithm takes advantage of the chain rule of differential calculus, and it calculates
the gradient by adding the local gradients of the error function generated over the
various paths from a node to the output. [39] The algorithm consists of two parts:

• Forward Phase - In this phase the network processes, with the current weight
coefficients and biases, the input data through all layers until it obtains the
prediction. Subsequently the result is compared with the label of the rela-
tive instance to calculate the cost function value. The derivative of the loss
function will now be used by tracing the network in the opposite direction to
adjust and tone all the algorithm parameters 3.15.

• Backward Phase - In this phase the algorithm adjusts all the parameters
of the network by using the chain rule of differential calculus, updating the
coefficients with the C gradient. In this case the algorithm starts from the
last layer, the output.

During the training, the network is fed several times with the whole training
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database: each iteration is called epoch. The number of epochs chosen is an im-
portant parameter of the construction of the neural network: a small number of
iterations can lead to a state of underfitting, while an excessive number of epochs
can instead lead to the problem of overfitting. Let us now analyze in detail the
mathematics that allows the learning of the network. The following explanation is
inspired by the Youtube video "Backpropagation calculus | Deep learning, chapter
4" by Grant Sanderson [42], from which the following images are taken.

Let us imagine analyzing the last layer of a neural network that allows to rec-
ognize handwritten numbers. The images are composed by 748 pixels, so the first
layer has the same number of neurons, while the last output layer is composed by 10
units, equal to the number of possible classifications (from 0 to 9). In the following
figure 3.16 we observe the results of one instance, that is the "two" handwritten
present in the upper left corner. We can observe that, with this instance, we want
to improve the activation result of the output neuron corresponding to the number
2 prediction value, while bringing the others activations values to 0.

Figure 3.16: Improved output activation [42]

Let us now focus on the variables that influence the activation of neuron "2", with
the aim of increasing the score to one: to improve the output of the program we can
either increase the weight of the links, increase the bias or increase the activation
of the neurons that make up the previous layer. To carry out this last operation, in
turn, it is necessary to act on the coefficients that regulate the activations of each
single neuron connected to our output unit.

Let’s see how the effect obtained by increasing the wj weight is closely related
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Figure 3.17: Improved output activation [42]

to the ai activation value of the corresponding neuron and vice versa, since the two
numbers are multiplied before being used by the activation function. So wi must be
increased proportionally to aj, and the same for activation. We can already see the
close correlation between the activation of the previous neuron and the strength
of the link connecting it to the neuron of the next layer. Weight coefficients can
also take on negative values (red link) leading to act in the opposite direction of
activation value.

Specifically considering to adjust ai activation value of the relative neuron 3.18.
This is not only connected to the output of the 2, but also to all the other neurons
that regulate the classification of the other numbers. Going backwards trying to
improve the predictions of these other outputs, there will be many corrections to
the activation values, and the back-propagation algorithm has to consider all of
them to act next on the previous layer. In the end, by summing all the variations
calculated on each neural network coefficient, using all the training data in the D
dataset, we will get the value of the C cost function gradient that will improve
the network prediction 3.19. For computational reasons each step of the gradient
will not include the entire database, but only a reduced part of training data called
minibatch, whose size is a parameter to choose in the construction of the architecture
of the net.
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Figure 3.18: Improved output activation [42]

Figure 3.19: Loss function gradient calculation [42]

Analyzing now the equations that regulate and control the algorithm, let’s con-
sider the connection between only 2 neurons aL and aL−1 (L indicates the layer, it
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Figure 3.20: Loss function gradient calculation [42]

is not an exponent). The layer L is the network output, and y is the correct label
associated with the instance. The value of cost function related is:

C0(w1, b1, ..., wL, bL) = (a(L) − y)2 (3.9)

z(L) = w(L)a(L−1) + b(L)

a(L) = σ(z(L))
(3.10)

Where σ is a generic activation function and z(L) is the pre-activation value.
Let’s study the dependency of C0 output on its variables, analyzing the partial

derivatives with w(L), b(L) and a(L−1).

∂C0

∂w(L) = ∂z(L)

∂w(L)
∂a(L)

∂z(L)
∂C0

∂a(L)
(3.11)

The partial derivative of the least-squares cost function from the activation applies:

∂C0

∂a(L) = 2(a(L) − y) (3.12)

The derivative relationship between a and z depends on the activation function
chosen. We can here observe here the importance of the activation function in
the learning process the neural network: choosing the sign function, the derivative
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is worth 0 in all the differentiable domain, canceling the product and then the
backpropagation.

∂a(L)

∂z(L) = σ′(z(L)) (3.13)

Let us now analyze the last partial derivative that relates the pre-activation value
to the weight of the link.

∂z(L)

∂w(L) = a(L−1) (3.14)

The last derivate shows that the correlation between a small nudge of the weight
and the influences on the last layer pre-activation depends on how strong the link
with the previous neuron is. This derivate shows the idea that "neurons that fire
together wire together", that is the connection with the biological theory of neuron.

The end result is:

∂C0

∂w(L) = a(L−1) · 2(a(L) − y) · σ′(z(L)) (3.15)

Figure 3.21: Loss function gradient calculation [42]

The derivative of the cost function calculated in this way refers only to a specific
training example, since the full cost function involve requires averaging the results
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with all training database.

∂C0

∂w(L) = 1
n

n∑︂
k=0

∂Ck

∂w(L) (3.16)

∇C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂C

∂w(1)

∂C

∂b(1)
·
·

∂C

∂w(L)

∂C

∂b(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.17)

With n number of training examples in the D dataset, and ∂Ck result of the loss
function related to the k instance.

In the same way we can calculate the partial derivative of the cost function with
respect to the bias variable.

∂C0

∂b(L) = ∂z(L)

∂b(L)
∂a(L)

∂z(L)
∂C0

∂a(L)
(3.18)

With:
∂z(L)

∂b(L) = 1 (3.19)

The end result is:

∂C0

∂w(L) = 1 · 2(a(L) − y) · σ′(z(L)) (3.20)
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To understand the backpropagation idea we have to analyze how sensitive is the
cost function to the activation of the previous layer

∂C0

∂a(L−1) = ∂z(L)

∂a(L−1)
∂a(L)

∂z(L)
∂C0

∂a(L) =

= w(L) · 2(a(L) − y) · σ′(z(L))

(3.21)

With:
∂z(L)

∂a(L−1) = w(L) (3.22)

Although we can not directly affect the L − 1 neuron activation, we can iterate
the same chain rule backward again, until to reach the initial layer.

Generalizing now the model just built in case there are more neurons on the
layers that make up the architecture of the network.

Let’s see how the previously written formulas remain almost unchanged, simply
with a different notation. Let’s refer with k to a specific neuron of previous layer
and with j to the next layer 3.22.

Figure 3.22: Generalization of the Model when there are more neurons [42]

C0 =
nL−1∑︂
j=0

(a(L)
j − yj)2 (3.23)

z
(L)
j = ... + w

(L)
jk a

(L−1)
k + ... + b

(L)
jk (3.24)
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a
(L)
j = σ(z(L)

j ) (3.25)

∂C0

∂w
(L)
jk

=
∂z

(L)
j

∂w(L) jk

∂a
(L)
j

∂z
(L)
j

∂C0

∂a
(L)
j

(3.26)

What changes is the partial derivative with respect to the activation 3.27 of a
neuron of the previous layer, which is found to influence the cost function by acting
on more neurons of the next layer to which it is connected.

∂C0

∂a
(L−1)
k

=
nL−1∑︂
j=0

∂z
(L)
j

∂a
(L−1)
k

∂a
(L)
j

∂z
(L)
j

∂C0

∂a
(L)
j

(3.27)

68



3.2 – Deep Neural Networks

3.2.7 Data Structure - Trial, Test and Validation Dataset,
mini-batches

The organization of the databases used to feed and evaluate the training of the
architecture of a neural network is of crucial importance in the design of the machine
learning software. The original Dataset has to be divided into three subgroups:
Training, Test, and Validation Dataset. The data of those three groups have to
be homogeneous and it has to contain an adequate and representative number of
each type of data to well generalize the problem. It is important to distinguish
the database needed for the realization of the network from the one used for the
prediction and evaluation of the final neural network code. The latter database
may also contain data selected in different ways with different information. Let us
analyse the function of each individual group. [50]

Figure 3.23: Trial, Test and Validation Dataset proportions [50]

The Training Dataset is the actual dataset that we use to train the model
(weights and biases in the case of a Neural Network). The model sees and learns
from this data.

The Validation Dataset is the sample of data used to provide an unbiased eval-
uation of a model fit on the training dataset while tuning model hyperparameters.
The evaluation becomes more biased as skill on the validation dataset is incorpo-
rated into the model configuration. The validation set is used to evaluate a given
model, but this is for frequent evaluation. Instead in the design of the neural net-
work validation data are used to fine-tune the model hyperparameters. Hence the
validation set results are applied to update higher level hyperparameters. So, the
validation set affects a model, but only indirectly. The validation set is also known
as the Dev set or the Development set. This makes sense since this dataset helps
during the “development” stage of the model. It is common to get slightly lower
performance on the test set than on the validation ser, because the hyperparameters
are tuned on the validation set, not the test set.

The Test Dataset is the sample of data used to provide an unbiased evaluation
of a final model fit on the training dataset. The Test dataset provides the gold
standard used to evaluate the model. It is only used once a model is completely
trained (using the train and validation sets). The test set is generally what is used
to evaluate competing models. The validation set is released initially along with
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the training set and the test set result of the model decides the best architecture.
Many times the validation set is used as the test set, but it is not good practice.
The test set is generally well curated. It contains carefully sampled data that spans
the various classes that the model would face.

The proportion between the dimensions of these three datasets depends, first, on
the total number of samples in your data and second, on the actual model you are
training. For example, models with few hyperparameters need a small validation
dataset, while large neural networks need a lot of validation data.

The use of the validation dataset is optional, but it allows us to identify possible
problems while learning the code. The learning curve represents the accuracy and
the loss of both the training set and the validation set with the corresponding
Epoque in abscissa. With this plot it is possible to identify if the program is
generalizing too much training data, leading to the problem of overfitting. To have
a correct training of the network, the results of the validation data have to follow
the same trend as the training data, with slightly lower values.
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3.3 Classification
As mentioned above, the most common task of supervised learning is regression
(predict a value) and classification (predict a class). Analyzing the classification in
detail, let us focus on a type of binary classifier, which can then be used together
with others for the realization of more complex algorithms.

3.3.1 Confusion Matrix
To build a ranking algorithm it is of fundamental importance to measure its per-
formance. One of the most important tools in this regard is the Matrix confusion
3.24. This matrix allows to measure the performance of a binary classifier. It is
used after achieving the prediction results with the neural network trained.

The rows of the matrix represent the actual class contained in the label, while
the columns represent the predicted class. Let’s consider the deep learning program
object of this thesis: the code has to predict whether the instance corresponds to
one where the rub is present, or where it is not.

Figure 3.24: Confusion Matrix

If the neural network reveals, through the information contained in the sample,
that there is the rub but in reality it is not present, we are faced with a False Positive
FP. While when it detects that there is no rub, but actually in the gas turbine there
is contact between stator and rotor, we are faced with a False Negative FN. Both
FP and FN are wrong classifications, but they can have different relevances: in an
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application where a possible malfunction is very dangerous, detecting a not present
risk is much less serious than ignoring it when it is present. We can therefore see
this other utility of the confusion matrix in the design of the program itself, in the
calibration of the prediction. The True Positives and the True Negatives are both
situations when the ML algorithm guesses the correct instance classification.

3.3.2 Precision and Recall
Once the matrix is complete, we need to analyze the results to understand how the
algorithm is working. the two most important parameters to calculate are Precision
and Recall.

The Precision parameter allows you to highlight the accuracy of the prediction.
Once the positive classification has been made, the accuracy allows to know the
probability to have a correct prediction, namely if it corresponds to the current
positive labeling.

Precision = TP

TP + FP
(3.28)

Precision alone, however, is not enough to understand the efficacy of machine
learning code. It may be that this parameter has a very high score, even close to
100%, but we cannot know how many positive data the program is ignoring.

Recall = TP

TP + FN
(3.29)

With Total Positive Data = TP + FN

The Recall is a is a parameter that allows to know the percentage of correct samples
have been "seen" by the program and how many have not. In fact, the sum of True
Positive and Fake Negative returns the total number of positive elements contained
in the database,

However, these two parameters are related: if you want to improve the accuracy,
the percentage of recall will drop. This also applies backwards. When designing an
algorithm, you may prefer recall or precision. Let’s take an example of a software,
a children’s video filter. We want the program to block as many dangerous videos
(high precision) as possible, even if this means rejecting videos that did not pose a
risk to children (low recall).

The parameter that allows these two coefficients to be correlated is the threshold.
Analyzing the situation of the neural network for a binary classification, on the last
layer there will be a neuron, which will produce as output the score related to the
classification of that instance. The threshold allows to determine the limit beyond
which the prediction will be positive.
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Figure 3.25: Threshold VS Precision/Recall [34]

The dependence of precision and recall on the threshold is the basis of the
automatic optimization algorithm present in the program of this master thesis
project. This code varies the threshold per step, increasing it by one step when
Recall > Precision and decreasing it when Recall < Precision. This cycle is
repeated until the relative error falls below an arbitrary threshold. It is necessary
to optimize the step and the output threshold according to the model in question.

Another way to select a good precision/recall tradeoff is to represent the two
coefficients in a graph and see how they are related.

Figure 3.26: Precision/Recall Curve [34]
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Chapter 4

EXPERIMENTAL VALIDATION

4.1 Laboratory experiment

4.1.1 Rotating experimental Machine

Figure 4.1: Aeroderivative Turbine Model

The experimental model 4.1, designed and built by the mechanical engineering
division of ETSII-UPM, presents a 0.55 kW asynchronous electric motor, model
Siemens 1LA7073-2AA10. Two metal discs are mounted on the shaft with studs to
simulate the rotor of the aeroderivative gas turbine. The maximum shaft rotation
speed is 96 Hz, reached with a linear variation of the speed. The axle is made
of AISI 4140 steel while the two discs are perforated because 10mm screws will
be used to balance the rotating system and then simulate the unbalance. The
shaft is supported by two SKF 6000 ball bearings which, in turn, are connected
to the crankcase with flanges. The stator element is made of two carbon fiber
half-cylinders connected with bolts. Accelerometers located on the outside part
of the casing are used to measure the vibrations induced on the structure by the
oscillation of the metal axis. The model also has 2 proximity sensors offset by an
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angle of 60??ř degrees to draw the precession trajectory of the geometric center,
whose signal, however, will not be used in the machine learning program.

The electrical voltage signal generated by the accelerometers passes through a
"Bruel & Kjaer 2692C" signal conditioner before being processed by the "GL7000"
data acquisition system.

Figure 4.2: Accelerometers Bruel & Kjare (Left) and accelerometer positions in the
test (Right)

The accelerometers used are two piezoelectric sensors of the brand "Bruel Kjaer".
4.2. The first is the 4371 with a frequency range from 0.1 to 12600 Hz and a sensi-
tivity of 100 mV/ms−2, while the second is the 4397 with a frequency range from
0.1 to 25000Hz and a sensitivity of 10 mV/ms−2. The installation is carried out
by means of washers connected to the casing, The two accelerometers are used
together in each pair of positions P1-P2, P3-P4 and P5-P6.

In the table below there are the main data related to the experimental rotating
machine
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Length of shaft 0.5 m
Radius of shaft 5 · 10−3 m
External radius of each disk 40 · 10−3 m
Thickness of each disk 25 · 10−3 m
Weight of each disk 0.94 kg
Weight of coupling 0.14 kg
Weight of each bearing and bearing support 0.4 kg
Length of casing 0.37 m
Midplane radius of casing shell 65 · 10−3 m
Thickness of casing shell 2.4 · 10−3 m
Distance between coupling and first bearing 0.12 m
Distance between coupling and second bearing 0.47 m
Distance between coupling and first disk 0.31 m
Distance between coupling and second disk 0.34 m

Table 4.1: Weights and dimensions of rotor rig

4.2 Numerical Model of the Rotation Machine

4.2.1 Model description
The synthetic data to train the machine learning algorithm have been generated
through a finite element numerical model (developed by engineer Alejandro Silva
[47]), that allows to simulate the behavior of a rotating machine in the presence of
a rub-type defect. This allows to create data to train the neural network describing
the gas turbine rub malfunction, without compromising system integrity conducting
destructive experiments.

Figure 4.3: The Rotor-flexible casing model [47] (a) perspective view, (b) radial
view

The physical elements underlying the numerical model of a rotor-casing system
are:

• A flexible, homogeneous, isotropic, linear elastic shaft (S, blue)
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• Cylindrical rigid solid disks (D, red) connected rigidly to the shaft

• A flexible, homogeneous, isotropic, linearly elastic cylindrical shell around the
rotor: the model casing (C, black).

• Linearly elastic bearings (violet). Casing supports to ground, shaft couplings
(CF and Coupl, black). Bearing links to casing (BC, yellow)

The shaft and the two discs form the machine rotor, which spins at a constant
rotation speed Ω. The rotor is supported by two bearings, B1 and B2, that are
radially connected to the machine casing (C, black) modeled as a cylindrical shell.
In an areoderivative gas turbine, the casing is attached to solid elements called
frames, which also house the rotor bearings. The connection between the bearings
and the housing is simulated with very stiff bar trusses between bearings and a
finite number of homogeneously distributed points in the casing (BCi, yellow).
The sources of excitation of the model can be either the rub or the unbalance: the
vibrations generated are then measured by the accelerometers on the stator part
(green), which yield casing acceleration versus time. If the basic assumptions hold,
the model can be adapted for any material properties, size and number of disks,
bearings and supports. The model used to feed the network consists of two disks,
two rotor bearing supports on both sides of the casing, an elastic coupling at one
end of the shaft and four ground casing supports. The shaft and discs are made
of steel, while the housing is made of carbon fiber, and their respective properties
have been incorporated into the model.

The model data has been chosen to best simulate the real rotating machine
model shown above.

The model has been discretized with the finite element method, considering the
tree as an Euler-Bernulli beam and the casing as a Mindlin-Reissner curved shell.
The resulting system of differential equations is:

Mu′′ + (C + ΩG)u′ + Ku = FU(t) + FR(u, u′) (4.1)
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Rotor Bearing
Young Modulus 2 · 1011 N/m2 Radial stiffness 2 · 105 N/m
Density 7.85 · 103 kg/m3 Bending stiffness 0 N/m
Shaft length 0.6 m Mass 0.02 kg
Distance bearings 0.4 m
Diameter 0.01 m

Casing Coupling
Young Modulus 3.6 · 1010 N/m2 Radial stiffness 0 N/m
Density 1.11 · 103 kg/m3 Bending stiffness 0 N/m
Poisson’s ratio 0.24
Radio strain/energies 5/6
Midplane diameter 0.134 m
Length 0.4 m
Thickness 0.003 m

Foundation Damping
Support stiffness in x 2 · 106 N/m Damping ratio 43.1Hz 0.02
Support stiffness in y 5 · 105 N/m Damping ratio 78.4Hz 0.0133

Rub spindle Disk
Stiffness coefficient 2 · 105 N/m Mass 1.5 kg
Damping coefficient 1 · 102 Ns/m Thickness 0.025 m
Friction coefficient 0.3 Diameter 0.1 m
Rotor-casing clearances 24 · 10−6

15 · 10−6

With:

M Mass Matrix
C Viscuous Damping Matrix
G Gyroscopic Matrix
K Stiffness Matrix
Ω Rotational Speed
u MDOF Vector displacements

FU Rotor Unbalance Force
FM Shaft misalignment
FR Rub Force

Table 4.2: 2nd order SODE Elements

The vector FR, which describes the action of the external force generated by
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the rub, is obtained through the sequential equation:

FR(u, u′) = (kR dR + cR d ′
R) · H(dR − ϵ) (4.2)

dR Relative deformation between rotor and casing
H Heavisize function
ϵ Clearance between rotor and stator

Table 4.3: FR Elements

For numerical integration over time the implicit method Newmark-β [48] has
been chosen. This method calculates the speed and displacement of the i + 1 step
using an implicit finite-element expression.

4.2.2 Numerical Model Simulation
The numerical model is able to simulate the contact between stator and rotor.
A rub condition between the rotor and an element attached to the casing affects
a shaft node close to one of the disks and one of the casing nodes in the same
radial plane, with kR = 2.25 · 106 N · m−1, cR = 0 being no impact damping and
µ = 0.2 being steel-to-steel rub. During the simulation aimed at creating data for
the machine learning software, the intensity of the contact increases linearly. The
force of the Rub increases as the gap between the stator and the rotor decreases,
from an initial value of ϵ = 50·10−6m to a final value of ϵ = 0·10−6m, corresponding
to the maximum contact intensity.

4.2.3 Organization and structure of the CSV numerical model’s
data achieved

The results of the experiments saved in CSV format. In the file each line corresponds
to a single instance, which contains the acceleration data generated by 8 machine
rotations. For each simulation there are 3 CSV files: two generated respectively by
each of the two accelerometers, while a third one contains the correct classification
of the data package ( 0 = "No Rub", 1 = "Rub").
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4.3 Pre-processing of data for neural networks

4.3.1 Synchronous Resampling

An Synchronous Resampling is performed on the data signal to obtain a homo-
geneous number of samples for each turn of the rotor. To achieve this result we
have to generate a Hall signal, in order to obtain the sample frequency, the syn-
chronous resampling period and then the change of the domain assuming that the
rotating speed is constant. The signal captured by the sensors, in the case below an
accelerometer, is a time-dependent voltage signal (time-base plot), with a sample
frequency of 5kHz.

Figure 4.4: Matlab timebase plot of the accelerometer 1 signal of 60s registration

In order to generate a Hall type signal, a Keyphasor sensor is placed into the
experimental engine to perform the synchronous resampling operation. The sensor
will generate a output of 24 V when it detects a small landmark hole present on
the shaft, while the signal will be 0 V for the rest of the round. So, the inverse
of the time interval ∆t = t2 − t1 between two revelations will be the number of
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revolutions per second that the rotor performs.

Ts = 2π radiants

32 samples
(4.3)

T ′
s = t2 − t1

32 samples

2π · T ′
s ≈ ∆θcycle

(4.4)

With T ′
s corresponding to the period between two consecutive angularly equidis-

tant measurements of two Keyphasor sensor pulses, while Ts is the angular period
between two consecutive samples of synchronous data obtained. It is assumed that
the speed remains constant within a single round.

With a Synchronous Resampling of 32 samples (16 harmonics) per instance,
with a rotation speed of 96 HZ, the output signal will have a frequency of around
1500 Hz.

4.3.2 Feature Scaling

Machine learning algorithms do not work well when they are fed with different
types of data with different scales. Having features on a similar scale can help the
gradient descent converge more quickly towards the minimum, [43]. The difference
in ranges of features will cause different step sizes for each feature. Hence, It is
necessary to apply a scaling feature to the database. Two are the most common
techniques to match the scales of different information sources: min-max Scaling
and Standardization the values are centered around the mean with a unit stan-
dard deviation. This means that the mean of the attribute becomes zero and the
resultant distribution has a unit standard deviation.

Min-max Scaling, also called normalization, consists of translating and scaling
the numerical values of the data so that they are within a range from 0 to 1.

x′
i = xi − min(X)

Max(X) − min(X) (4.5)

With X the set of data of the same nature on which we want to make the
min-max Scaling.

Standardization is a feature scaling process, where data is centered and then
scaled according to the standard deviation. Unlike min-max scaling, standardiza-
tion does not have on-board limit values, which can be a problem because many
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neural networks expect input values between 0 and 1. However, the biggest advan-
tage of standardization is that it is less affected by outlier data, which in normal-
ization causes a rescaling of the whole dataset.

x′
i = xi − µ

σ
(4.6)

Where sigma is the standard deviation of the X dataset, while µ is the mean of
the feature values.

4.3.3 PCA Dimensionality Reduction

Figure 4.5: Dimensionality Reduction from tesseract to a point[34]

In many Machine learning problems each instance can be composed by a big
amount of data features that, in addition to slowing down the learning algorithm,
can also create difficulties to achieving the optimal solution. This problem is also
called curse of dimensionality. To overcome this problem, there are many algo-
rithms to greatly reduce the number of features of each data packet, all this corre-
lated only with a reduced loss of information. Apart of speeding up training, the
dimensionality reduction is also extremely useful for data visualization.

Principal Component Analysis (PCA) is the most popular dimensionality reduc-
tion algorithm. This mathematical method allows you to find a hyperplane, with
a smaller dimension than the number of features of the dataset, that lies closest to
the database, and project the data onto it.

The selection of the best subspace is essential to reduce the loss of information
that this step brings with it. It is therefore necessary to choose the axis that
maximizes the residual variance of the reduced database. The unit vector that
defines the ith axis is called the ith principal component (PC). The direction of the
axes that define the PCs are not stable against a perturbation of the data, but the
plane they define will generally remain the same. To find the PCs of the dataset we
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Figure 4.6: PCA reduction [34]

use a standard matrix factorization technique called Singular Value Decomposition
(SVD), which decomposes the X database matrix into three matrices U Σ V T , where
V contains the main components of the hyperplan. The PCA needs the database
to be centered around the origin: it is therefore recommended to perform the
standardization first, in order to have the dataset ready for the reduction. In order
to choose the best compromise between instance dimension size and information,
it may be useful to represent the Variance according to the number of reduced
features, as in the figure 4.7.

Figure 4.7: Dimensionality Reduction and Explained Variance [34]

The fraction of variance explained by a principal component is the ratio between
the variance of that principal component and the total variance.
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4.3.4 Mathematical transformations applied to the signal

The transformation is a mathematical operator, generally linear, operating on one
function space on another function space. It must be an invertible function. Typi-
cally, this type of operator is used to simplify the resolution of a problem.

Let’s imagine we want to solve a generic type A problem (e.g. an arithmetic
calculation or a differential equation). In order to make the resolution easier to
resolve, a transformation can be involved:

• Transform the problem A into B, which is easier to solve

• Solve the problem B

• Subsequently, with the use of the antitransformed, the solution of B is recon-
verted into the solution of A.

Discrete Fourier Transform (DFT)

The frequency spectrum is used to identify the frequency components (phase and
amplitude) present in a complex vibration signal, which amplitude varies for ev-
ery component of nX (subsynchronous and supersynchronous). When both the
function and its Fourier transform are replaced with discretized counterparts, it is
called the Discrete Fourier Transformation (DFT). A possible tool that to transfer
signal information from the time domain to the frequency domain is the FFT (Fast
Fourier Transformation), that is a very fast algorithm for computing the DFT. The
vibration signal can contain the information about the running speed and multi-
ples, line frequency electrical noise, gear mesh frequencies, gear defect frequencies,
rolling element bearing frequencies, and vane and blade pass frequencies [37]. In
the signal there are also data of excited rotor system natural frequency and also,
at certain nX subsynchronous or supersynchronous, information about any mal-
function of our interest (rub, flued-inducted instability, compressor rotating stall
etc.).

The Fourier transform is an integral mathematical operator, and is a tool, sim-
ilar to the Fourier series, to carry a signal from the time domain to the frequency
domain. While the Fourier series needs the x(t) signal to be periodic over time, the
Fourier transform allows you to study any signal, even a non-periodic one.

If x(t) : R → C is a function.

If
∫︁ +∞

−∞ x(t)eiωt dt exists for every ω ∈ R
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hence the function x(t) is transformable according to Fourier. In this case,
the Fourier Transformation Function is:

F [x(t)](ω) = X(ω) :=
∫︂ +∞

−∞
x(t)eiωt dt, ω ∈ R (4.7)

The fourier transform is applied in order to draw the half spectrum plot. Since we
cannot install 2 proximity sensors at the supports in the aeroderivative gas turbine,
we cannot obtain the full spectrum plot, which contains much more information
about the vibration of the shaft.

The vibration signal is formed by a series of harmonics: the lowest frequency
harmonic is called Fundamental, while the others have a multiple frequency of the
fundamental (the second harmonic has a double frequency, the third triple, etc.).
In a typical series, the amplitude decreases rapidly for the highest frequencies. The
fundamental frequency of a rotating machine is usually 1X, but it is not excluded
that it can also be a subsynchronous or supersynchronous.

Figure 4.8: Time and Frequency domain display of a complex signal [34]

Let us consider a machine that works at a constant speed. The signal generated
by the transducers is complex if it is simply represented with a timebase plot (in red).
A filtered signal will consist of sine waves with different amplitudes and phases.
Fourier allows us to calculate the sine wave components (frequency, amplitude and
phase). By representing only, the amplitude and frequency of the components we
will obtain a two-dimensional discontinuous plot with a series of vertical bands,
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where the length represents the peak to peak amplitude 4.8. The phase for each
signal is measured with respect to the trigger signal that starts the sampling process
at time t0.

Synchrosqueezed Wavelet transform (CWT)

As the Continuous Fourier Transformation, the CWT Continuous Wavelet Trans-
formation is a integral correlation in the time domain of a function x(t) with some
basic function. While In Fourier the basic function is eiωt, in Wavelet transform the
basic function is the dilated and translated version of the Ψ function, also called
mother wavelet

W (a, s) = 1√︂
|s|

·
∫︂ +∞

−∞
x(t) · Ψ∗(t − a

s
) dt (4.8)

where a and s are, respectively, translation and scaling factors.
The wavelet transformation is another source of information for the neural net-

work, only it was not possible to implement it in the Neural Network code of the
program, due to the size of the generated database with this transformation. It
will be later implemented in future versions of the program.
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Chapter 5

Deep Learning Program and
Results Analysis

5.1 Python’s Tool for Deep Learning Neural Net-
work

The Python programming language has been chosen for the cre-
ation of the neural network ML code. This is an interpreted, high-
level, general-purpose programming language. Python is an excellent
choice to deal with machine learning problems, thanks to very pow-
erful packages present on it to solve this type of problem, as shown
later. The language’s core philosophy is summarized in the document

The Zen of Python (PEP 20), which lists some aphorisms such as:[49]

• Beautiful is better than ugly.

• Explicit is better than implicit.

• Simple is better than complex.

• Complex is better than complicated.

• Readability counts.

The Python distribution used is Anaconda. It is a free and open-
source distribution of the Python language optimized for scientific
computing (data science, machine learning applications, large-scale
data processing, predictive analytics, etc.), that aims to simplify
package management and deployment.
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Spider has been chosen as anaconda’s environment. Spyder is an
open source cross-platform integrated development environment (IDE) for scientific
programming with the Python language. Spyder integrates with several prominent
packages in the scientific Python stack. The packages used in the software are:

• NumPy for all the mathematical operations

• Panda for data extraction and management

• TensorFlow’s Keras API for the construction of the neural network architec-
ture

• Sklearn library for all the evaluation tools for the results and networks created
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5.2 Data Organization
The key objective of the neural network code is the creation of a
tool that allows to detect as soon as possible the malfunction of the
single-point partial rub inside a rotating machine, to build a powerful
preventive maintenance apparatus for aeroderivative gas turbines.
Hence, the results of the prediction early in the problem, under the
most difficult classification working conditions (when the intensity of

the rub minimal and the signal disturbed by high background white noise) will be
crucial for the performance evaluation of the various network architectures.

The program is a Binary Classifier that will evaluate, for each instance (8
rotations), whether or not it has the rub phenomenon.

There are two databases used for construction and evaluation of the neural
network architecture: the first one is composed by data created with the finite
element numerical model [4.1.1] and the second one from the experimental model
data of the rotary machine [4.2]. Both databases have normal operating data
(No Rub - Label=0) and rub malfunction data (Rub - Label=1). The program
will be trained only with the data of the numerical model and then evaluate the
classification performance on the experimental model data.

The simulation of the numerical model presents a rub that grows linearly up to
a maximum value, and simultaneously a increasing white background noise. The
added noise makes possible to obtain distinct synthetic vibration data with different
simulations because, otherwise, they would be the same since the parameters that
define the simulation do not change.

The data generated by the numerical model will be divided into test, trial and
validation, according to the intensity of the rub.

The rub intensity level is calculated based on the absolute value of the average
amplitude of the system oscillation Am0P i

, recorded by the Pi sensor in a working
condition without rub and without background withe noise, where i = 1,2, ..,6. is
the position index for each individual sensor.

Am0P i
=

∑︁N
j=1

⃓⃓⃓
x

(P i)
j0

⃓⃓⃓
N (P i) (5.1)

Where x
(P i)
j0 is the acceleration value [g] measured by the Pi sensor in the case

without Rub and White Noise, and N (P i) is the number of samples present in
an instance. Hence, with the same procedure, we can obtain the average oscillation
amplitude AmiP i

of each instance i for both P1 and P2 sensors of the numerical
model database.

AmiP i
=

∑︁N
j=1

⃓⃓⃓
x

(P i)
j

⃓⃓⃓
N (P i) (5.2)
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Subsequently, the level of Rub LoRiP i
can thus be calculated as:

LoRiP i
= AmiP i

Am0P i

(5.3)

Figure 5.1: Average Acceleration Sensor P1 AmiP 1

Figure 5.2: Average Acceleration Sensor P2 AmiP 2
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The following graphs (5.1 and 5.2) show the average values of the accelerations
simulated at sensors P1 and P2. As we can see, the two sensors detect different
acceleration intensities because they are located in two different points of the ex-
ternal casing. To use both sources of information it will therefore be necessary to
standardize the data. The blue line indicates the label information, whether that
instance refers to a case with rub (1) or without rub (0).

The database is built by attaching the results of different simulations: in the
first simulation there is no white background noise and the experiment is performed
with an increasing rub level. Then the other four simulations are composed by a
first part without rub and with increasing white noise, and the other section with
increasing rub with the same growth scale of the first simulation without rub, and
variable white noise. These four simulations are identical and are differentiated by
the white background noise applied to the signal.

For training the net, only the first three sections with withe noise will be used,
while the last experiment will be required to assess at what intensity the code starts
to detect the rub, keeping this data hidden from the algorithm.

Subsequently, after setting the two tresholds, one for data with rub and another
for data without rub, we can split the data for training and performance calcula-
tion. Data Without Rub with a vibration intensity lower than the corresponding
threshold and data With Rub above the corresponding threshold will form the
training dataset. The remaining data (without rub with high background noise,
and with rub with a low contact intensity) will be used for the prediction.

The idea behind this choice is that, by training the program with rub and no
rub data easily distinguishable for us, the neural network can find other patterns,
different from the ones we used (in our case intensity of oscillation). Thanks to
this result the software will be able to execute a correct classification also when
the difference is not very noticeable for us. Therefore, the prediction samples
will be used to evaluate and compare the performance of different neural network
architectures, to choose the best one.

The values of thresholds chosen are:

TresholdNo Rub 120% of Am0P i

TresholdRub 150% of Am0P i

Table 5.1: Thresholds for Rub and No Rub Data division

The overall size of the database composed of the data provided by the Numerical
Model is: 7791 instances with 256 elements each line (32 samples for each shaft
rotation cycle). Of these, 3990 instances are of Rub and 3801 of No Rub. It is
important to verify, when generating a subset of data, that it has a sufficiently
representative sample of elements of each type.
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With the previously chosen thresholds, we get a Training Database of 4497
instances (2262 of Rub, 2235 of No Rub) and a database for the Prediction Database
of 1484 (778 of Rub, 706 of No Rub). Only test data with white noise shall be used
and noise-free data (the first simulation) shall be excluded. The Training Database
is the sample of data used to fit the model’s hyperparameters (weights and biases
of the Neural Network). The model sees and learns from this data.

In turn, the training database will be divided into three parts: Test, Train, and
Validation. All needed for the training and tuning of hyperparameters of the neural
network. The database is divided into 70% Train, 20% Test, 10% Validation, since
this is a widely used size ratio [34]. The subdivision is random, and it is important
that each subset presents a sufficient number of data for each of the two categories.

% Total Data Rub Instances No Rub Instances
Total Training Data 100 4497 2262 2235
Train Dataset 70 3147 1583 1564
Test Dataset 20 945 467 478
Validation Dataset 10 405 212 193

Table 5.2: Train, Test and Validation Data Distribution

The Fourier Transformation generates complex numbers and, due to the fact
that an imaginary number cannot be normalized, the DFT data has to be divided
into real and imaginary parts, doubling the number of neurons needed for DFT and
increasing the size of the first layer of the network accordingly.

Since the input signal has 256 samples, the Fourier transformation generates 256
harmonics + 1 constants; but these 256 harmonics have 128 symmetrical elements
that do not apport any other additional information to the code. To avoid to
unnecessarily increasing the size of the first layer, only the first 128 harmonics are
considered.

Once the input layer has been built with the appropriate data sources (accel-
eration and/or DFT), a PCA reduction has been applied in order to reduce the
size of the input layer and, consequently, of the entire network, lowering the total
number of variables. The resulting size of the reduced PCA samples are different
and the dimension is shown later in the description of each model type [5.5].
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5.3 Data analysis
A preliminary analysis of the data is essential to the development of a Machine
Learning Code to better understand and analyze the information contained in the
database.

Let’s represent the complete set of all data to see how it behaves between failure
and no failure.

Figure 5.3: Acceleration signal of P1 containing 8 revolutions, with and without
rub

Figure 5.4: Acceleration signal of P2 compared to 8 revolutions, with and without
rub
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Figure 5.5: Acceleration signal of P1 compared with the P2 signal, without rub

Figure 5.6: Acceleration signal of P1 compared with the P2 signal, with rub

From this representation we can notice that:

• The vibration frequency, in the case without rub, is 1X, with one precession
complete rotation for each turn of the machine. Coherently since the exciting
force is centrifugal and acts with a frequency equal to the rotation of the
shaft.

• The precession vibration, in the case with rub, has a higher frequency, between
2X and 3X.

• From the graph comparing the signals of the two sensors P1 and P2 we
can notice that the information contained in the two sensor signals are not
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Figure 5.7: DFT transformation of the P1 signal compared with the P2 DFT signal,
without rub

Figure 5.8: DFT transformation of the P1 signal compared with the P2 DFT signal,
with rub

superimposable, and both should be used at the same time to generalize
the problem. Especially the harmonic information contained into the DFT
transformation present different values at the same frequencies.

97



Deep Learning Program and Results Analysis

5.4 Pipeline of the program
To build the best possible neural network software, three different approach of data
elaboration to feed the code have been tried:

• Time Domain Acceleration data of P1 and P2

• Frequency Domain Acceleration signal of P1 and P2

• Acceleration and DFT transformation of P1 and P2

For each one of that three solutions many net architectures have been tested
to optimize the program to the size of the input data. For future works Wavelet
coefficients should be considered as input data and then analyze the prediction
performances of the model. That solution required an "online learning approach"
for the higher dimension of the Wavelet signal.

Below there is the pipeline of operations performed by the python program

1. Import modules and packages (keras, sklearn, pickle, pandas, numpy, scipy)

2. Uploading all data in the database

(a) Import Sensor Label data
(b) Import Acceleration data
(c) Creation and saving DFT data

3. Representation and data Analysis

(a) Representation the total P1 Failure and No Failure Acceleration Signal
(b) Representation the total P2 Failure and No Failure Acceleration Signal
(c) Representation the comparison of the total P1 and P2 Failure Accelera-

tion Signal
(d) Representation the comparison of the total P1 and P2 No Failure Accel-

eration Signal
(e) Representation the comparison of some samples of P1 and P2 No Failure

and Failure DFT Samples

4. Dataset Organization and Division

(a) Measurement of the level of rub of all data
(b) Saving training and prediction data sample positions based on the level

of the rub
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5. Preprocessing of data

(a) Dividing DFT data into absolute value and phase
(b) Data Standardization

6. Creation of the dataset for training

(a) Creation of the dataset training matrix
(b) PCA Reduction fit on the training matrix data
(c) Application of the PCA Reduction on each sample
(d) Division into train, test and validation dataset

7. Deep Neural Network model architecture design

(a) Deep Learning Neural Network Structure
(b) Model Compilation (Optimizer, loss and metrics)
(c) Training of the model
(d) Learning graph of the training
(e) Model Save

8. Prediction Analysis

(a) Creation of the dataset prediction matrix
(b) Application of the same PCA Reduction of training data on the predic-

tion matrix
(c) Prediction execution with the Model Saved
(d) Threshold automatic optimization
(e) Plot the comparison of the prediction result score with the labels
(f) Evaluation of the classification with the Confusion Matrix

9. Final Model Evaluation

(a) Prediction VS Recall plot
(b) Detection Threshold Limit Analysis
(c) Prediction on Real Data with the best model of each achieved

with each approach
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5.5 Analysis of different Models

5.5.1 Time Domain Acceleration Model
The model is powered only with accelerometer [g] data, without the application of
any transformations to the signal. All the layers that composed the network are
“Dense" type, which means that the order of the input neuron does not affect the
network, as long as the sequence does not vary with different samples. Each sample
is composed of 512 data (256 of P1 + 256 of P2).

To evaluate the performance of the network during training, accuracy metrics
[5.4] were chosen. This parameter consists of the ratio between all correctly classi-
fied samples (TP+TN) and the total number of samples in the database.

Accuracy = TP + TN

Total number of samples
(5.4)

The cost function chosen is the Mean Square Error [5.5], which is compatible with
the learning technique based on the Stochastic Gradient Descendent (sgd).

MSA =
∑︁n

i=1(yi − ˆ︁yi)2

n
(5.5)

Optimizer Stochastic Gradient Descendent (sgd)
Loss Function Mean Squared Error
Metrics Accuracy

Table 5.3: Model Compiler General Setting

The applied PCA transformation presents an explained variance of 0.97, reduc-
ing the sample size to 386 data, with a consequent 25% reduction of the number of
neurons on the first layer of the net. This allows to reduce the number of variables
(weights and bias) present in the network, reducing the computational burden to
train the algorithm. To choose the value of the explained variance it is appropriate
to represent the graph 5.9, where it is possible to observe the relationship between
the value of the variance and the result dimension of the PCA sample.

In the following graph 5.9 we can observe that, up to a size of 350, corresponds
approximately to an E.V. of 95 %, we do not lose a significant amount of information
while, for smaller sizes of the PCA sample, the slope of the curve increases with a
consequent greater loss.
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Figure 5.9: Variance Curve PCA reduction- "Time Domain Acceleration"
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Model 1 "Time Domain Acceleration"

Network Architecture

The architecture of the Model 1 "Time Domain Acceleration" neural network presents
the "sigmoid" function as the activation function of the last layer. Sigmoid and Tanh
are also continuous and derivable functions, which makes them perfect for the net-
work learning process. The sigmoid is a suitable solution for the classification
task because it saturates for both positive and negative values. The intermediate
layers have a reduced number of neurons compared to the size of the input size,
and "tanh" as an activation function. The number of epochs has been chosen to
guarantee network training, avoiding the problem of overfitting.

Even though the data are homogeneous, each sample has been standardized in
all 3 "Time Domain Acceleration" models in order to make it possible to use later
also other sources of information.

The dropout rate value selected is 50%, which is a value widely used in neural
networks to prevent the problem of overfitting.

N° Neurons Activation Dropout Rate
Layer Input 386 X 0.5
Layer 1 32 tanh 0.5
Layer 2 32 tanh 0.5
Layer 3 32 tanh 0.5
Layer Output 1 sigmoid X

Number of Epochs 10
Batch Size 20
Total Parameters 18561

Table 5.4: Network Architecture - "Time Domain Acceleration" - Model 1

Training Results

The learning curve 5.10 is useful to assess whether the network is encountering any
problems during the training. For example, if the validation curves are not close
and do not follow the training curves, it may be that the network is overfitting the
training data.
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Figure 5.10: Learning Curves - "Time Domain Acceleration" - Model 1

By observing that the results show good accuracy and loss values (over 99% for
the accuracy and below the 1% for the loss function), the network has been fully
trained.

Loss Accuracy
Train 0.0142 0.9876
Validation 0.0066 0.9924
Test 0.0054 0.9924

Table 5.5: Training Results - "Time Domain Acceleration" - Model 1

Prediction Results

We can observe in the next two graphs a comparison between the prediction results
and the labeled data samples. Let us remember that the prediction database is
composed of samples with less clearly distinguishable data ("Rub" instances with a
low level of rub and "No Rub" instances with high white noise), in order to evaluate
the performance of the model in the most difficult conditions. As we can notice in
the plot 5.11, the average intensity of the acceleration recorded by the two sensors
is similar for both "No Rub" and "Rub" samples.

The label of the samples is represented with a light blue line (the upper one for
samples with Rub and the lower one for samples without Rub), while the prediction
scores are light blue points ranging from 0 to 10. It is clearly distinguishable that,
beyond a certain rub intensity oscillation, this deep neural network starts to notice
the malfunction occurring into the rotating machine.
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(a) Prediction Results

(b) Labeled Classifications

Figure 5.11: Prediction and Labeled Classification comparison - "Time Domain
Acceleration" - Model 1

In the table below are the results of the classification matrix of this model. With
the following attempts we will try to improve these values, modifying the network
architecture or acting on the input data. We can already see from the first model
that a deep neural network is capable to detect the problem of the rub, showing
that this is a feasible option for the maintenance of an areoderivative gas turbine.
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Predicted NO Rub Predicted Rub
Label NO Rub 562 144
Label Rub 132 586

Precision 78.21 %
Recall 78.97 %
Accuracy 78.30 %
Especificity 77.62 %

Table 5.6: Confusion Matrix and Results - "Time Domain Acceleration" - Model 1

Model Evaluation

We can understand how sensitive Precision and Recall are to the variation of the
threshold observing the plot below 5.12. We will see how each architecture presents
different sensitivity and optimal value of threshold that maximize both precision
and recall. Accordingly we will evaluate this aspect for each model solution.

(a) Relation between the Threshold and
the Precision/Recall

(b) Precision VS Recall

Figure 5.12: Relation between Threshold/Precision/Recall - "Time Domain Accel-
eration" - Model 1

To better understand when the network starts to see the rub malfunction, the
picture below 5.13 (a) is a zoom on the acceleration signal prediction values with
both results and label information. We can therefore note that, when the rub
starts, the network is not immediately able to detect it. Subsequently, as the
intensity increases beyond a threshold value, the network is able to detect it. In
the second plot 5.13 (b) the prediction score is correlated to the average oscillation
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intensity.

(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.13: Level of Rub Prediction Analysis - "Time Domain Acceleration" -
Model 1
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Model 2 "Time Domain Acceleration"

Network Architecture

The general infrastructure of the model is the same as the previous one, only the
number of neurons of the hidden layers has increased. We want to see if, having
more parameters, the network is able to better generalize the data by extracting
more information.

N° Neurons Activation Dropout Rate
Layer Input 386 X 0.5
Layer 1 300 tanh 0.5
Layer 2 300 tanh 0.5
Layer 3 300 tanh 0.5
Layer Output 1 sigmoid X

Number of Epochs 20
Batch Size 20
Total Parameters 142.001

Table 5.7: Confusion Matrix and Results - "Time Domain Acceleration" - Model 2

Training Results

Figure 5.14: Learning Curves - "Time Domain Acceleration" - Model 2
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Loss Accuracy
Train 0.0036 0.9964
Validation 0.0025 0.9975
Test 0.0022 0.9967

Table 5.8: Training Results - "Time Domain Acceleration" - Model 2

Prediction Results

(a) Prediction Results

(b) Labeled Classifications

Figure 5.15: Prediction and Labeled Classification comparison - "Time Domain
Acceleration" - Model 2
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Predicted NO Rub Predicted Rub
Label NO Rub 598 108
Label Rub 116 602

Precision 84.78 %
Recall 83.84 %
Accuracy 84.27 %
Especificity 84.70 %

Table 5.9: Confusion Matrix and Results - "Time Domain Acceleration" - Model 2

Looking at the results 5.16, we can see an improvement by a few percentage
points, compared to the previous model. Hence, the model 1 does not present
enough parameters to describe the model.

Model Evaluation

(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.16: Relation between Threshold/Precision/Recall - "Time Domain Accel-
eration" - Model 2
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.17: Level of Rub Prediction Analysis - "Time Domain Acceleration" -
Model 2
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Model 3 "Time Domain Acceleration"

Network Architecture

In this model 3 we start from the architecture chosen for model 2, only that we use
only the "sigmoid" function as activation function, even for the hidden layers.

N° Neurons Activation Dropout Rate
Layer Input 386 X 0.5
Layer 1 300 sigmoid 0.5
Layer 2 300 sigmoid 0.5
Layer 3 300 sigmoid 0.5
Layer Output 1 sigmoid X

Number of Epochs 20
Batch Size 20
Total Parameters 142.001

Table 5.10: Confusion Matrix and Results - "Time Domain Acceleration" - Model
3

Training Results

Figure 5.18: Learning Curves - "Time Domain Acceleration" - Model 3

From the learning curves we can clearly observe that this solution leads to less
hanging learning curves, as the possibility of saturation can lead to the inactivation
of neurons, slowing down the Stochastic Gradient Descendent process. On the other
hand neuron saturation reduces the model’s sensitivity to small variations in input
data,
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Loss Accuracy
Train 0.0372 0.9604
Validation 0.0209 0.9669
Test 0.0193 0.9760

Table 5.11: Training Results - "Time Domain Acceleration" - Model 3

Prediction Results

(a) Prediction Results

(b) Labeled Classifications

Figure 5.19: Prediction and Labeled Classification comparison - "Time Domain
Acceleration" - Model 3
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Predicted NO Rub Predicted Rub
Label NO Rub 615 91
Label Rub 84 634

Precision 87.44 %
Recall 88.30 %
Accuracy 87.71 %
Especificity 87.11 %

Table 5.12: Confusion Matrix and Results - "Time Domain Acceleration" - Model
3

Model Evaluation

(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.20: Relation between Threshold/Precision/Recall - "Time Domain Accel-
eration" - Model 3
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.21: Level of Rub Prediction Analysis - "Time Domain Acceleration" -
Model 3

The application of the sigmoid activation function allows the creation of a pro-
gram that gradually detects the important patters of the signal, resulting in a
smoother prediction curve 5.21.
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5.5.2 Frequency Domain Acceleration Model
The following models have been developed using only the accelerometer signal pro-
cessed with the Discrete Fourier Transform (DFT). All the layers that composed
the network are “Dense" type. Each sample is composed of 516 data (129 for the
module of P1, 129 for the phase of P1, and the same for P2). The order of the array
that composed each sample is P2 Phase + P1 Phase + P2 module + P1 module. It
is important to maintain the order of information in the various databases prepared
to feed the network.

Optimizer Stochastic Gradient Descendent (sgd)
Loss Function Mean Squared Error
Metrics Accuracy

Table 5.13: Model Compiler General Setting

The applied PCA transformation presents an explained variance of 0.99, reduc-
ing the sample size to 439 data. I this case a slightly higher of E.V. value was chosen
because the results were more affected by the loss of information. The following
models also differ in the standardization techniques used, which have given diverse
results.

Figure 5.22: Variance Curve PCA reduction- "Frequency Domain Acceleration"
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Model 1 "Frequency Domain Acceleration"

Network Architecture

The model 1 "Frequency Domain Acceleration" uses the same architecture as for
model 3 "Time Domain Acceleration", which has returned the best results until
now.

All the samples in the database are standardised.

N° Neurons Activation Dropout Rate
Layer Input 439 X 0.5
Layer 1 300 sigmoid 0.5
Layer 2 300 sigmoid 0.5
Layer 3 300 sigmoid 0.5
Layer Output 1 sigmoid X

Number of Epochs 10
Batch Size 50
Total Parameters 310201

Table 5.14: Network Architecture - "Frequency Domain Acceleration" - Model 1

Training Results

Figure 5.23: Learning Curves - "Frequency Domain Acceleration" - Model 1
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Loss Accuracy
Train 0.0594 0.9241
Validation 0.0334 0.9517
Test 0.0346 0.9531

Table 5.15: Training Results - "Frequency Domain Acceleration" - Model 1

Prediction Results

(a) Prediction Results

(b) Labeled Classifications

Figure 5.24: Prediction and Labeled Classification comparison - "Frequency Domain
Acceleration" - Model 1
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Predicted NO Rub Predicted Rub
Label NO Rub 145 561
Label Rub 533 185

Precision 24.79 %
Recall 25.76 %
Accuracy 23.17 %
Especificity 20.53 %

Table 5.16: Confusion Matrix and Results - "Frequency Domain Acceleration" -
Model 1

At the moment it is evident from the results of the table 5.16 and the graphs
5.25 that this network is not generalizing the information in the database.

Model Evaluation

(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.25: Relation between Threshold/Precision/Recall - "Frequency Domain
Acceleration" - Model 1
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.26: Level of Rub Prediction Analysis - "Frequency Domain Acceleration"
- Model 1
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Although the results of this model are rather disappointing and the prediction
is very confusing and uncertain, I would focus to analyze the following graph 5.27,
which shows the prediction with respect to the entire dataset for the evaluation of
the rub level sensitivity of the model. In fact, here we can observe very clearly how
the code is able to detect the different intensities of white noise, unlike model 3
"Time Domain Accelerations". This model, although it returns much better general
results, is not able to clearly distinguish the various white noise intensities in the
dataset without rub. It is therefore possible to imagine in the future to build a
second neural network downstream that, by analyzing the results of several samples
in a row, can understand whether the rub is occurring in the turbine, using the
prediction results of the first network to filter out the white noise.

(a) Level of Rub Prediction on the total dataset - "Frequency
Domain Acceleration" - Model 1

(b) Level of Rub Prediction on the total dataset - "Time
Domain Acceleration" - Model 3

Figure 5.27: Comparison between the Level of Rub Prediction on the total dataset
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Model 2 "Frequency Domain Acceleration"

Network Architecture

These new model presents an optimize number of neurons on the hidden layers
according to the new size of the input. The activation funcions of the hidden layers
are again the "tanh".

But the substantial difference between the first and the second "Frequency Do-
main Acceleration" model is the diverse feature scaling process. In model 2 are
performed two featuring scale operation on the database: the first one is a stan-
dardization applied to all the data in the database at that frequency range. So
all the harmonics at the same frequency are compared, allowing to understand the
relative importance of each harmonic. Then a normalization is applied on each
sample. The normalization has returned better results than standardization in this
case, so we opted for this solution of featuring scales.

N° Neurons Activation Dropout Rate
Layer Input 439 X 0.5
Layer 1 500 tanh 0.5
Layer 2 500 tanh 0.5
Layer 3 500 tanh 0.5
Layer Output 1 sigmoid X

Number of Epochs 4
Batch Size 20
Total Parameters 310201

Table 5.17: Network Architecture - "Frequency Domain Acceleration" - Model 2
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Training Results

Figure 5.28: Learning Curves - "Frequency Domain Acceleration" - Model 2

Loss Accuracy
Train 0.0110 0.9984
Validation 0.0071 0.9975
Test 0.0071 0.9956

Table 5.18: Training Results - "Frequency Domain Acceleration" - Model 2
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Prediction Results

(a) Prediction Results

(b) Labeled Classifications

Figure 5.29: Prediction and Labeled Classification comparison - "Frequency Domain
Acceleration" - Model 2

We can see that the results obtained by applying this architecture are clearly
superior to the previous model. The values obtained are comparable to the best
model of the "Time Domain Acceleration" type. Subsequently it will be necessary
to compare the best networks with the experimental data, in order to know which
model is the one that best generalises the information of the numerical model data.
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Predicted NO Rub Predicted Rub
Label NO Rub 595 111
Label Rub 103 615

Precision 84.71 %
Recall 85.65 %
Accuracy 84.97 %
Especificity 84.27 %

Table 5.19: Confusion Matrix and Results - "Frequency Domain Acceleration" -
Model 2

Model Evaluation

(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.30: Relation between Threshold/Precision/Recall - "Frequency Domain
Acceleration" - Model 2
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.31: Level of Rub Prediction Analysis - "Frequency Domain Acceleration"
- Model 2
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Model 3 "Frequency Domain Acceleration"

Network Architecture

The architecture of model 3 is identical to model 2, except for the hidden layers
activation functions. Instead of the "tanh" there is the "elu". It is an activation
function similar to the "Relu" without the not-derivability in the 0. Since the
derivative of "elu" is more pendant than "tanh", it should improve network learning.

N° Neurons Activation Dropout Rate
Layer Input 439 X 0.5
Layer 1 500 elu 0.5
Layer 2 500 elu 0.5
Layer 3 500 elu 0.5
Layer Output 1 sigmoid X

Number of Epochs 10
Batch Size 50
Total Parameters 721.501

Table 5.20: Network Architecture - "Frequency Domain Acceleration" - Model 3

Training Results

Figure 5.32: Learning Curves - "Frequency Domain Acceleration" - Model 3
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Loss Accuracy
Train 0.0119 0.9974
Validation 0.0086 0.9975
Test 0.0082 0.9956

Table 5.21: Training Results - "Frequency Domain Acceleration" - Model 3

Prediction Results

(a) Prediction Results

(b) Labeled Classifications

Figure 5.33: Prediction and Labeled Classification comparison - "Frequency Domain
Acceleration" - Model 3
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Predicted NO Rub Predicted Rub
Label NO Rub 591 115
Label Rub 110 608

Precision 84.09 %
Recall 84.67 %
Accuracy 84.19 %
Especificity 83.71 %

Table 5.22: Confusion Matrix and Results - "Frequency Domain Acceleration" -
Model 3

The results of the model 3 confusion matrix are slightly worse than model 2,
but also this model returns excellent prediction and recall values.

Model Evaluation

(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.34: Relation between Threshold/Precision/Recall - "Frequency Domain
Acceleration" - Model 3
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.35: Level of Rub Prediction Analysis - "Frequency Domain Acceleration"
- Model 3
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5.5.3 Acceleration and DFT Model
Subsequent models are powered by both DFT and accelerometer signal simultane-
ously. Each instance is composed by both sources, with 1028 data (516 for the DFT
and 512 for the accelerometer signal, for P1 and P2). All the layers that composed
the network are “Dense" type.

The goal of this type of models is to find a solution that uses both sources of
information simultaneously to improve neural network performance by extracting
more data from each sample.

Optimizer Stochastic Gradient Descendent (sgd)
Loss Function Mean Squared Error
Metrics Accuracy

Table 5.23: Model Compiler General Setting - "Time and Frequency Domain Ac-
celeration"

The applied PCA transformation presents an explained variance of 0.99, re-
ducing the sample size to 861 data. All models present a standardization of the
DFT generated data with the same frequency range and then the scaling feature is
performed with the normalization over all the samples.

Figure 5.36: Variance Curve PCA reduction- "Time and Frequency Domain Accel-
eration"
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Model 1 "Time and Frequency Domain Acceleration"

Network Architecture

The architecture of the Model 1 "Time and Frequency Domain Acceleration" presents
layers optimized respect to the number of neurons of the input layer. The activa-
tion function is "tanh" for the hidden layers and "sigmoid" for the last layer, which
are the combination that has returned the best results so far.

N° Neurons Activation Dropout Rate
Layer Input 861 X 0.5
Layer 1 1000 tanh 0.5
Layer 2 1000 tanh 0.5
Layer 3 1000 tanh 0.5
Layer 4 1000 tanh 0.5
Layer Output 1 sigmoid X

Number of Epochs 10
Batch Size 50
Total Parameters 3.866.001

Table 5.24: Network Architecture - "Time and Frequency Domain Acceleration" -
Model 1

Training Results

Figure 5.37: Learning Curves - "Time and Frequency Domain Acceleration" - Model
1
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Loss Accuracy
Train 0.0043 0.9987
Validation 0.0037 0.9975
Test 0.0030 0.9989

Table 5.25: Training Results - "Acceleration and DFT" - Model 1

Prediction Results

(a) Prediction Results

(b) Labeled Classifications

Figure 5.38: Prediction and Labeled Classification comparison - "Time and Fre-
quency Domain Acceleration" - Model 1
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5.5 – Analysis of different Models

Predicted NO Rub Predicted Rub
Label NO Rub 612 94
Label Rub 86 632

Precision 84.96 %
Recall 85.79 %
Accuracy 85.18 %
Especificity 84.56 %

Table 5.26: Confusion Matrix and Results - "Time and Frequency Domain Accel-
eration" - Model 1

The results obtained with this first model are good but do not exceed the results
obtained by models that use the accelerometer signal alone.

Model Evaluation

(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.39: Relation between Threshold/Precision/Recall - "Time and Frequency
Domain Acceleration" - Model 1

We can note that the trend of the prediction score 5.40 is similar to that obtained
for the "Frequency Domain Acceleration" models and not like the "Time Domain
Acceleration" models [5.31].
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.40: Level of Rub Prediction Analysis - "Time and Frequency Domain
Acceleration" - Model 1
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Model 2 "Time and Frequency Domain Acceleration"

Network Architecture

This new model presents more neurons in each layer in order to extract as much
information as possible from the database. The activation functions used are "Relu"
and "Tanh" for the hidden layers and "sigmoid" for the last layer. The "Relu" should
improve the training of the network thanks to a higher slope of the derived function.

N° Neurons Activation Dropout Rate
Layer Input 861 X 0.5
Layer 1 1200 relu 0.5
Layer 2 1200 relu 0.5
Layer 3 1200 relu 0.5
Layer 4 1200 tanh 0.5
Layer Output 1 sigmoid X

Number of Epochs 5
Batch Size 20
Total Parameters 5.359.201

Table 5.27: Network Architecture - "Time and Frequency Domain Acceleration" -
Model 2

Training Results

Figure 5.41: Learning Curves - "Time and Frequency Domain Acceleration" - Model
2
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Loss Accuracy
Train 0.1636 0.9751
Validation 0.1043 0.9924
Test 0.1039 0.9945

Table 5.28: Training Results - "Acceleration and DFT" - Model 2

Prediction Results

(a) Prediction Results

(b) Labeled Classifications
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5.5 – Analysis of different Models

Predicted NO Rub Predicted Rub
Label NO Rub 553 153
Label Rub 127 591

Precision 79.43 %
Recall 82.31 %
Accuracy 80.34 %
Especificity 78.32 %

Table 5.29: Confusion Matrix and Results - "Time and Frequency Domain Accel-
eration" - Model 2

The model works, only it presents slightly lower results compare to the other
one. The Prediction/Recall curve 5.42 (a) shows an excessive sensitivity to the
threshold value that makes difficult to obtain repeatable results by re-training the
network.

Model Evaluation

5
(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.42: Relation between Threshold/Precision/Recall - "Time and Frequency
Domain Acceleration" - Model 2
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.43: Level of Rub Prediction Analysis - "Time and Frequency Domain
Acceleration" - Model 2

138



5.5 – Analysis of different Models

Model 3 "Time and Frequency Domain Acceleration"

Network Architecture

In this latest model we tried to create a network that does not use functions that
present saturation. All the layers have the "elu" activation function, also the last
one. The number of layer and neurons is the same one of the Model 2 "Time and
Frequency Domain Acceleration".

N° Neurons Activation Dropout Rate
Layer Input 861 X 0.5
Layer 1 1200 elu 0.5
Layer 2 1200 elu 0.5
Layer 3 1200 elu 0.5
Layer 4 1200 elu 0.5
Layer Output 1 elu X

Number of Epochs 5
Batch Size 20
Total Parameters 5.359.201

Table 5.30: Network Architecture - "Time and Frequency Domain Acceleration" -
Model 3

Training Results

Figure 5.44: Learning Curves - "Time and Frequency Domain Acceleration" - Model
3
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Loss Accuracy
Train 0.0380 0.9882
Validation 0.0063 0.9975
Test 0.0054 0.9989

Table 5.31: Training Results - "Acceleration and DFT" - Model 3

Prediction Results

(a) Prediction Results

(b) Labeled Classifications

Figure 5.45: Prediction and Labeled Classification comparison - "Time and Fre-
quency Domain Acceleration" - Model 3
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5.5 – Analysis of different Models

Predicted NO Rub Predicted Rub
Label NO Rub 612 94
Label Rub 86 632

Precision 87.05 %
Recall 88.02 %
Accuracy 87.35 %
Especificity 86.68 %

Table 5.32: Confusion Matrix and Results - "Time and Frequency Domain Accel-
eration" - Model 3

The results of this last model are the highest of all.
This model also starts to predict the rub before everyone else, as we can see in

the figure 5.47.
Precision and Recall are not very sensible to the variation of the threshold 5.46.

Model Evaluation

(a) Relation between the Threshold and the Pre-
cision/Recall

(b) Precision VS Recall

Figure 5.46: Relation between Threshold/Precision/Recall - "Time and Frequency
Domain Acceleration" - Model 3
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(a) Minimum Rub Level Detection

(b) Relation between Prediction Results and Level of Rub

Figure 5.47: Level of Rub Prediction Analysis - "Time and Frequency Domain
Acceleration" - Model 3

142



5.6 – Result Comparisons

5.6 Result Comparisons
We compare Accuracy and Recall of all models designed to compare their classifi-
cation performance.

Time Dom Acc Freq Dom Acc Tim Freq Dom Acc
M 1 M 2 M 3 M 1 M 2 M 3 M 1 M 2 M 3

Precision [%] 78.21 84.78 87.44 24.79 84.71 84.09 84.96 79.43 87.05
Recall [%] 78.97 83.84 88.30 25.76 85.65 84.67 85.79 82.31 88.02

Table 5.33: Comparison Model Results

As we can see, the three strategies may seem, at first glance, to lead back to
similar results, except for some models which, at present, yield much worse results.
Going to analyze the minimum detectable rub intensity, we can immediately observe
that models trained only with the unprocessed accelerometer data need higher
oscillation level before labeling the rotation as rub affected (5.13, 5.17), with only
the third model that presents better performance 5.21. It is possible to notice that
models trained with the Fourier transform detect the intensity of white noise added
in the background. We can observe it in these images (5.26, 5.27, 5.29 and 5.33),
where the "Frequency Domain Acceleration" neural networks give scores to the
samples also in relation to the intensity of background noise. We can imagine that
these results can be subsequently reworked by a second neural network that allows
us to distinguish more precisely whether the signal is disturbed by background noise
or by the stator/rotor contact.
Analyzing the graphs that relate the precision and the Recall (for example 5.47) we
can considerate how these are very sensitive to the variation of the threshold value.
Currently, to perform the classification, a threshold value of the prediction score is
used while another possibility could be to build a second network downstream that
analyzes the scores of several consecutive instances.
The models built with both data sources do not present significant improvements in
the neural network prediction accuracy and recall. Another possible solution could
be to realize a second network that would accommodate the results of two networks
optimized specifically to work with acceleration data or with Fourier transform data.
Presently, a network working with both data sources has not yielded significant
benefits.
We can also note that the choice of the activation function is one of the parameters
that most influences the behavior of the network, altering its learning behavior. It
is possible to observe how the functions that present saturation of the activation
value for positive values (e.g. sigmoid) allow the network to have a more gradual
prediction correlated with the variation of the oscillation intensity, as we can see
by comparing models 2 and 3 "only Acc" [5.17 and 5.21]. Subsequent studies must
be carried out to find the best combination of activation functions.
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Then we will test the best neural networks trained of each category, with data from
the experimental rotary machine model.
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5.7 – Test with Experimental Data

5.7 Test with Experimental Data
Now we try the prediction classification with the best neural networks trained with
synthetic data on the experimental model data.

(a) P2 real sensor signal - 8 revolutions - with and
without rub

(b) P1 real sensor signal - 8 revolutions - with and
without rub

(c) P1 and P2 real sensor signal - 8 revolutions - with
rub

(d) P1 and P2 real sensor signal - 8 revolutions - with-
out rub

(e) P1 and P2 real DFT Sample n°500 - 8 revolutions
- without rub

(f) P1 and P2 real DFT Sample n°500 - 8 revolutions
- with rub

Figure 5.48: Experimental Data Plots
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5.7.1 Prediction on Experimental Data - Neural Network
"Time Domain Acceleration" Model 3

In order to compare the results obtained using the neural network on the experi-
mental data with the data of the numerical model, the instances have been divided
into rub and no rub, and then sorted according to the intensity of the oscillation.
It is thus possible to observe the model results when the stator/rotor contact is
present or when the vibration intensity increases.

As we can notice in observing table 5.34 and figure 5.49, the "Time Domain
Acceleration" Model 3 does not generalized well the information. Hence, the results
of the prediction are confused and they do not present a correlation between the
average intensity of the oscillation and the prediction score. Especially, the figure
5.49 shows how the increase of oscillation is only correlated with an increment in
the dispersion of result predictions symmetrically with respect to the threshold.

Predicted NO Rub Predicted Rub
Label NO Rub 2003 2341
Label Rub 2088 2513

Precision 51.77 %
Recall 54.61 %
Accuracy 50.48 %
Especificity 46.11 %

Table 5.34: Experimental data prediction Confusion Matrix and Results - Neural
Network "Time Domain Acceleration" Model 3
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5.7 – Test with Experimental Data

(a) Experimental data sorted according to the oscillation intensity

(b) Relation between Average Oscillation Intensity and the Predic-
tion Results

Figure 5.49: Prediction on experimental data - Neural Network "Time Domain
Acceleration" Model 3
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5.7.2 Prediction on Experimental Data - Neural Network
"Frequency Domain Acceleration" Model 2

The "Frequency Domain Acceleration" model is capable to better generalize the
information contained in the training database. The results of the prediction on
the experimental model data are slightly worse than the values achieved on the
data of the numerical model. Despite all, we have shown that is possible to create
a deep neural network capable of works on a real machine even if the algorithm has
been trained with synthetic data.

Compared to the results of the previous model, in this case the network is
considerably more capable of classifying instances. Hence, we can see in the figure
5.51 (b) that the prediction values for samples with rub have an average value
higher than the threshold, and in graph 5.51 (a) it is also possible to observe a
clear division between the two types of data

Predicted NO Rub Predicted Rub
Label NO Rub 3403 941
Label Rub 1062 3539

Precision 79.00 %
Recall 76.92 %
Accuracy 77.61 %
Especificity 78.34 %

Table 5.35: Experimental data prediction Confusion Matrix and Results - Neural
Network "Time Domain Acceleration" Model 3
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5.7 – Test with Experimental Data

(a) Experimental data sorted according to the oscillation intensity

(b) Relation between Average Oscillation Intensity and the Predic-
tion Results

Figure 5.50: Prediction on experimental data - Neural Network "Frequency Domain
Acceleration" Model 3
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5.7.3 Prediction on Experimental Data - Neural Network
"Time and Frequency Domain Acceleration" Model 3

The results of the "Time and Frequency Domain Acceleration" Model 3 are similar
to the "Frequency Domain Acceleration" model 2. However, the latter reaches
slightly better values of prediction and recall. Both are able to fulfill the objective
of this thesis project.

Predicted NO Rub Predicted Rub
Label NO Rub 3303 1041
Label Rub 1140 3461

Precision 76.87 %
Recall 75.22 %
Accuracy 75.62 %
Especificity 76.03 %

Table 5.36: Experimental data prediction Confusion Matrix and Results - Neural
Network "Time and Frequency Domain Acceleration" Model 3

M3 Time Dom M2 Freq Dom M3 Time and Freq Dom
Precision 51.77 79.00 76.87 %
Recall 54.61 76.92 75.22 %

Table 5.37: Comparison Model Results - Experimental Data

150



5.7 – Test with Experimental Data

(a) Experimental data sorted according to the oscillation intensity

(b) Relation between Average Oscillation Intensity and the Predic-
tion Results

Figure 5.51: Prediction on experimental data - Neural Network "Frequency Domain
Acceleration" Model 3
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5.8 Conclusion and Future Works
As can be seen, although the results on the synthetic data are similar in the three
different solutions, feed the network with DFT data allows the neural network to
better generalize the patterns present in the accelerometers signal, giving back much
higher prediction results in the classification of the real experimental machine data.
Neural networks trained only with acceleration data have not shown satisfactory
results when it came to detecting the rub within the experimental model.

In addition, the models that have as input only DFT-generated data present
one more processing step than the time domain signal. It is therefore important
to look for other forms of data pre-processing to see if it is possible to improve the
prediction of the "Only time domain" models on experimental data.

The most important result of this thesis project has been to demonstrate that
it is possible to build a preventive maintenance software capable of detecting the
malfunction of the rub on rotary machines using the signal of the accelerometers
located on the external stator part. Hence, this is a possible solution for detecting
malfunctions inside an aeroderivative gas turbine.

Above all, the possibility of training the network with data generated by a
numerical model similar to the real model saves time and resources for the training
of the algorithm, also solving the problem of the shortcoming of a large amount of
data of the malfunction.

It is important to underline that the signal processing, so the study and the
elaboration of the input data, is one of the crucial factors for a successful design of
the architecture of a numerical deep learning neural network model. In our case,
thanks to the Fourier transform it has been possible to generalize the data contained
in the database and allow the model to work even with real data. Hence, it will be
important, in order to advance the project, to study new methods of accelerometers
signal processing and implement them in the code to improve the performance of
the network.

Moreover, currently the use of both types of information (DFT and acceleration)
has not led to a tangible improvement of the results. In the future it will be
important to find new solutions to extract more information from the database
using both of these information sources.

Although this work is able only to detect one typology of rotating machine
malfunction, a new software based on a machine learning algorithm will be able to
detect other types of problems, as long as they generate a variation in the operating
conditions of the system, which will result in an alteration of the vibrations of the
machine.
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5.8 – Conclusion and Future Works

So, in summary, the next important steps for the project are:

• Optimize network hyperparameters of each model with respect to the type of
data used to feed them

• Improve the models that use both data sources (Acceleration and DFT),
allowing to extract as much information from each one as possible

• Improve the compatibility of the numerical model with respect to the exper-
imental model, to improve network performance

• Implement the "Wavelet Transform" and see if it can extract more information
to improve network prediction

• Optimize network architectures to improve prediction with data generated by
the experimental model

• Build a neural network that allows to classify also other types of malfunctions
in a aeroderivative gas turbine, such as misalignment
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