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Chapter 1

Introduction

1.1 Introduction

Spur gear drives are widely applied for power transmission between parallel shafts. Their perfor-

mance is affected mainly by two types of failure. One is related with the pitting of the contacting

tooth surfaces. The other one is related with the tooth brake through bending. This Master Thesis

is directed to the improvement of the behavior of spur gear drives related with the second type of

failure, tooth brake through bending. For doing that, a study of the influence of the type of root

profile on tooth bending stresses in spur gear drives is presented.

Different types of root profiles will be applied through the use of the Integrated Gear Design

(IGD) software developed by the Research Group of Advanced Gear Transmissions of the Univer-

sidad Politécnica de Cartagena. Standardized ISO profiles will be implemented considering types

A, B, C and D of this Standard. The type of root profile that the Standard considers is a trochoid,

that is a curve generated by a rounded tip of the rack-cutter tooth. Then, this conventional root

profile will be substituted by three types of root profile considering elliptical, Hermite and Bezier

curves. Besides the type of the root profile, the effect of their dimensions on bending stresses are

also investigated by decreasing the root diameter, increasing the fillet-form diameter, or reducing

the root land.

Furthermore, with the same software, bending stresses will be analyzed on the root profiles,

through the finite element method. Using the finite element models that are exported from IGD

and using a general purpose software for finite element analysis (ABAQUS), bending stress will be

compared and the appropriate conclusions will be drawn.

1.2 Objectives

The objective of this thesis work is to investigate the influence of different types of root profiles on

bending stresses in spur gear drivers. The main objectives of this thesis work are:

1



1.3 Work structure 2

(1) Comparison of bending stresses at the base of the tooth considering different standardized

ISO profiles;

(2) Comparison of bending stresses at the base of the tooth with elliptical base profile and by

reducing the root radius, increasing the fillet-form radius, or reducing the root land;

(3) Comparison of bending stresses at the base of the tooth with Hermite base profile and by

reducing the root radius, increasing the fillet-form radius, or reducing the root land;

(4) Comparison of bending stresses at the base of the tooth with a third-degree Bezier base profile

and by reducing the root radius, increasing the fillet-form radius, or reducing the root land;

The type of stress that will be considered for comparison of bending stresses will be the maxi-

mum principal stress since it is the most representative stress in bending.

1.3 Work structure

The following thesis work is structured in the following chapters:

• Chapter 1. Introduction.

• Chapter 2. State of the Art.

• Chapter 3. Fundamentals.

• Chapter 4. Methodology.

• Chapter 5. Results.

• Chapter 6. Conclusions.

In Chapter 1, an introduction of the topic to be analyzed throughout the present thesis project

is presented and the objectives are outlined.

In Chapter 2, the state of the art related with the improvement of bending behavior in gear

drives is reported through the description of other publications on this subject.

In Chapter 3, the applied theory to carry out the following thesis project is reported. The

theoretical foundations are presented.

In Chapter 4, the methodology that have been applied during the course of the various tests is

reported.

In Chapter 5, the obtained results are reported and are compared with each other.

In Chapter 6, the appropriate conclusions are drawn.



Chapter 2

State of the Art

2.1 Introduction

In this chapter, the effects of fillet geometry on bending stresses of spur gears that have been

investigated in previous publications are presented. Reference [1] starts describing the main parts

of the gear tooth surface (see Figure 2.1.1). It consists of four parts:

• 1. Top land;

• 2. Active tooth surface;

• 3. Fillet tooth surface;

• 4. Root land.

The top land is the part of external surface that is located at the top of a gear tooth. The active

tooth surface is where the bearing contact between pinion and gear occurs. Contact patterns are

always developed and represented on the active tooth surface and it is where contact stresses are

obtained. The fillet is the portion of the gear tooth surfaces that joins the active tooth surface with

the root land. The geometry of the fillet gear tooth surface is obtained as a result of the process of

gear generation. This is where maximum bending stressed are obtained. Root land is the portion

of the surface that joins the fillets of two consecutive gear teeth.

In the following thesis work the curve that is used in the fillet is modified to try to decrease

bending stresses. The peculiar characteristics of each curve used in the modeling of the present

work will be described.

2.2 Hermite curve

The first curve that is described is the Hermite curve. The fillet geometry joins the lower boundary

of the active gear tooth surface with the root land and the initial and final tangent vectors can be

3
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Figure 2.1.1: Gear tooth parts (source in [1])

considered as known all over the upper and lower boundary of the fillet surface. Hermite curves

are very suitable for providing the fillet geometry [1] on those manufacturing processes where there

is not a cutting action (forging, 3D-printing).

Figure 2.2.2: Basic data of a Hermite curve (source in [1])

Hermite curves are defined by two points P0 and P1 and two tangent vectors T0 and T1 (see

Figure 2.2.2). The Hermite curve between those points is defined by:

r(t) = (2t3 − 3t2 + 1)P0 + (−2t3 + 3t2)P1 + (t3 − 2t2 + t)T0 + (t3 − t2)T1 (2.2.1)
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where 0 ≤ t ≤ 1. The blending functions are:

b1 = 2t3 − 3t2 + 1 (2.2.2)

b2 = −2t3 + 3t2 (2.2.3)

b3 = t3 − 2t2 + t (2.2.4)

b4 = t3 − t2 (2.2.5)

Figure 2.2.3: Blending functions for Hermite curves (source in [1])

Figure 2.2.3 shows a graph of the blending functions for Hermite curves where the influence

of each of the given points and vectors as a function of the parameter t along the curve can be

observed. These functions show the effect of the given initial and final points as well as the tangent

vectors. For modeling the fillet of a gear tooth, the coordinates of point P0, P1, T0 and T1 be

denoted as (xP0,yP0,zP0), (xP1,yP1,zP1), (xT0,yT0,zT0) and (xT1,yT1,zT1). The coordinated of a

point P of the fillet will be obtained:

xP (t) = b1xP0 + b2xP1 + b3xT0 + b4xT1 (2.2.6)

yP (t) = b1yP0 + b2yP1 + b3yT0 + b4yT1 (2.2.7)

zP (t) = b1zP0 + b2zP1 + b3zT0 + b4zT1 (2.2.8)

The modules of tangents T0 and T1 were kept equal. T0 has been obtained as the tangent at the

lower point of the active tooth profile, then normalized and multiplied by the corresponding tangent
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Figure 2.2.4: Different possible geometries for the fillet by using Hermite curves (source in [1])

weight t0 and the module m of the gear drive. T1 has been obtained as the tangent to the root circle

at P1, and normalized and multiplied by the corresponding tangent weight t1 and the module m

of the gear drive. The finite element method has been used to perform stress analysis for all cases

of design that are described in [1]. Finite element comprising five pairs of contacting teeth have

been employed to avoid influence of the boundary conditions on the results. Three-dimensional

solid element model of type C3D8I have been used, being hexahedral first order elements enhanced

by incompatible deformation modes in order to improve their being behavior. Pinion and gear

materials are steel defined with elastic modulus of 210 GPa and Poisson ration of 0.3.

In the article mentioned above, there is an experiment for investigation of the effect of fillet

geometry for the fillet tooth surface of spur gears. The procedure used to predict the root stresses

of the gears incorporates the geometry shown in Table2.2.1.

The stress analysis for the trochoidal gear tooth fillet, as generated by a rack cutter with an

edge radius coefficient of 0,38 has been studied. The maximum bending stress at the fillet surface

is 259 MPa, for this case where the fillet is a product of the generating process. A total of 25 cases

of design were considered in this study comprising 5 different values of the initial tangent weight

t0 from 0,7 to 1,1 with a step equal to 0,1 in combination with the same 5 values for the final

tangent weight t1 of the Hermite curve. The evolution of maximum contact and bending stresses is

obtained so that the maximum value of the stress along the cycle of meshing of the gear is always

obtained. In the Figure 2.2.6, the gear tooth fillets for three cases of design were t0 = t1 = 0, 7,

t0 = t1 = 0, 9 and t0 = t1 = 1, 1. The lower the tangent weight is, the more gentile connection from

the active tooth surface and the root surface is made (lower curvature at the middle of the root
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Figure 2.2.5: Finite element model with five pair of contacting teeth (source in [1])

profile).

In the Figure 2.2.7, the 3D surface plot of the bending stress at the gear tooth fillet for 25

different combinations of tangent weights, varying from 0,7 to 1,1, is shown. Notice that the

bending stress are reduced considerably for the lower values of tangent weights. We notice that

given a tangent weight t0 for lower stresses, the value of t1 should be as lower as possible. Tangent

weight t0 should be obtained mainly considering the avoidance of tip-fillet interference.

In the Figure 2.2.8, a contour plot of contact stresses as a function of the tangent weights is

shown.

A maximum bending stress of σb=313,36 MPa is obtained when considering t0 = t1 = 1, 1.

A maximum bending stress of σb=243,36 MPa is obtained when considering t0 = t1 = 0, 7. In
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Table 2.2.1: Data considered in [1]

Parameter Pinion Gear

Number of teeth 21 34

Module [mm] 2,5 2,5

Addendum coefficient 1,00 1,00

Dedendum coefficient 1,25 1,25

Profile shift coefficient 0,18292 -0,18292

Face width [mm] 19 19

Normal pressure angle [deg] 20 20

Center distance [mm] 68,75

Edge radius coefficient 0,38 0,38

Young’s Modulus [GPa] 210 210

Poisson’s ratio 0,3 0,3

Applied Torque [Nm] 175

Figure 2.2.6: Comparison of geometries of fillets for a pinion (source in [1])
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Figure 2.2.7: 3D surface plot of bending stresses as a function of tangent weights (source in [1])

Figure 2.2.8: 3D surface plot of contact stresses as a function of tangent weights (source in [1])
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conclusion, the fillet geometry has an important influence on bending stresses. Hermite curves

have been used as fillet geometry and by considering lower values of tangent weights, a reduction of

bending stress as high a 22,3% has been obtained with respect to the maximum value corresponding

to higher values of tangent weights. Contact stresses are influenced as well by the geometry of the

fillet although such influence can be neglected. Modeling of fillet geometry by Hermite curves is an

efficient way to provide gear geometric models with fillets when the surfaces are not designed to be

generated by a cutting or grinding tool.

2.3 Elliptical curve

Reference [2] presents an elliptical mathematical shape that allows one to specify the root radius as

well as the start of the ellipse along the profile. Once one has reached the gear pair design stage, it

will be necessary to check for the effect on the mating tooth of such a root because that is a major

danger. Reference [2] uses two user-defined parameters, the root circle radius Rr and the radius RA

at which the circular root profile is tangent to the involute profile, a requirement to define a root

shape that is elliptical. With point A at (xA,yA) representing the start of root geometry at radius

RA and point C at (xC ,yC) representing the root center, the following conditions are imposed to

fit a portion of an ellipse between points A and C:

• 1. The root fillet curve yf (x) and the involute profile yinv(xA) must intersect at point A at

radius RA such that

yinv(xA) = yf (xA) = yA (2.3.9)

• 2. The root fillet curve yf (x) and the involute profile yinv(x) must have the same slope at

point A such that:
dyinv(x)

dx
(xA) =

dyf (x)

dx
(xA) (2.3.10)

• 3. The root fillet curve yf (x) and the root circle yr(x) must intersect at the root center C at

radius Rr such that:

yf (xC) = yr(xC) = yC (2.3.11)

• 4. The root fillet curves yf (x) and the root circle yr(x) must have the same slope at the root

center C such that:
dyf (x)

dx
(xC) =

dyr(x)

dx
(xC) (2.3.12)

A portion of an ellipse is defined to meet these four conditions such that one of the principle

axes of the ellipse is on the y axis. Various shapes of ellipses can be fit by simply varying RA for a

given values of Rr [2].
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Figure 2.3.9: (a) Parameters defining an elliptical root geometry,(b) varius root geometries obtained

by varying with costant, and (c) various root geometries obtained varying with constant (source in

[2])

In the article mentioned above, there is an experiment for investigation of the effect of fillet

geometry for the fillet tooth surface of spur gears. The procedure used to predict the root stresses

of the gears incorporates the geometry below:

• Number of Teeth=34;

• Module=4,233 mm;

• Helix Angle=0 deg;

• Outside Diameter=152,40 mm;
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• Root Diameter=131,75 mm;

• Face Width=25,40 mm;

• Transverse Tooth Thickness=6,57 mm;

• Diameter at Thickness Measurement=143,93 mm;

• Young’s Modulus=210 GPa;

• Poisson’s Ratio=0,30;

Using the basic test gear design defined in this table, by generating different tooth root profile a

parametric study was performed by keeping the root radius constant at Rr=65,87 mm and varying

RA within a range below the start of the active profile.

Figure 2.3.10: Variation of the maximum root stress with RA of the example gear design with

Rr=65,87 mm (source in [2])

Figure 2.3.10 shows the variation of the maximum root stress σmax as a function of RA with the

tooth loaded by a unit load at a radius of 75,15 mm. In the experiment, it is seen that RA=67,85

mm corresponding to a full circular root profile does not result in the lowest σmax values. For four

of these root profiles under the same loading conditions, it is shown in Figure 2.3.11 a distribution

of root stress values as a function of the radial position R. It is seen that the maximum stress

values are decreased with increased RA values while, at the same time, the R at which σ(R) = σmax

is reduced.
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Figure 2.3.11: Root stress evolution along the root profile for four root profiles given a unit load

applied at a radius of 75,15 mm (source in [2])

While the RA=67,85 mm and unit load locations are kept constant, the value of root circle

radius Rr of the example gear is varied. Figure 2.3.12 shows the variation of the maximum root

stress σmax as a function of Rr. Rr=65,87 mm corresponds to a full circular root profile with

σmax=33,33 kPa/N. The elliptical profiles with Rr¡65,87 mm have lower values.

The basic test gear geometry is a symmetric tooth design with 20 degree pressure angle on each

flank. Asymmetric tooth geometries are introduced and compared to the symmetric designs with

both circular and elliptical root profiles. A set of asymmetric tooth designs is obtained by fixing

the pressure angle of one flank to observe the influence of varying the pressure angle of the coast

side. The second group of analysis loads the flank where pressure angle is varied. Figure 2.3.13

shows several tooth profiles with 20 pressure angle on the right hand side of tooth and various

pressure angle on the left hand side of the tooth. The minimum pressure angle used for the coast

side was 15 degrees. The maximum pressure angle used for the coast side was 28,8 degrees. All

design variation have full circular profiles on both drive and coast side.

Figure 2.3.14 shows a comparison of σR distributions for these asymmetric tooth designs with

the input load applied at a radius of 75,15 mm. The figure shows that the peak stress increases

when the pressure angle is reduced and decreases for increasing coast side pressure angle.

The combination of an optimal root shape for the drive side and a larger coast side pressure

angle was shown to deliver a root stress reduction greater than with either of two concepts used

separately. The boundary element root stress prediction procedure was shown to predict stresses

at the gage location accurately for both symmetric and asymmetric tooth profiles with various fillet
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Figure 2.3.12: Variation of the maximum root stress with Rr of the example gear design with

RA = 67, 85 mm (source in [2])

Figure 2.3.13: Samples of asymmetric teeth (source in [2])
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Figure 2.3.14: Root stress for a series of asymmetric designs (source in [2])

geometries. In conclusions, prediction and experiment presented confirm that the fillet geometry

is a primary factor impacting the bending stress of a gear tooth. An elliptical root shape can be

used to create larger fillet curvatures that can yield lower stresses than the corresponding best

design practice using the largest possible circular root fillet. Each gear size will have a unique,

optimum elliptical shape, however one must check for possible tooth interference prior to applying

the elliptical shape. There exists a unique circular fillet profile that has the maximum radius, based

on the values of the root circle radius and the radius at which the root fillet starts. The predictions

and measurements from this study indicate that elliptical geometries with lower stresses usually

exist, while this geometry represents the best of circular root geometries.

2.4 Bezier curve

The Bezier curves was developed by the French engineer Pier Bezier in 1960 [3]. The definition of

a cubic Bezier curve occurs by the four control points P0, P1, P2 and P3, where P0 is the starting

point and P3 is the end point. The curve is created by connecting the points and repeatedly linking

the ensuing distances at equal length conditions (see Figure 2.4.15.

The mathematical description of the cubic Bezier curve is:

−→
B (t) =

3∑
t=0

(3, i)ti(1− t)3−i
−→
P i (2.4.13)

In this context, the control variable t depicts the progression of the Bezier curve within its
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Figure 2.4.15: Creation of a cubic Bezier curve (source in [3])

definition range t ∈ [0, 1]. Pi is the direction vector of the support point. The point P0 and P3

mark the start and the end of the Bezier curve and consequently the transition into the gear root,

and this has influence on the root geometry and thus on the load capacity. The points P0 and P3

must be situated on the tangents of the starting and the end point. The risk of possible meshing

interferences by a collision of the tooth tip with the root of the opposing gear must not be ignored.

The localization of these points has been described as transition diameter du, which has to be

selected in such a way that the optimized root contour allows the trace of the counter gear tip

to have clearance. The parametrization of a Bezier root fillet requires only one quantity which is

called Bezier factor Be (see Figure 2.4.16). The distance of point P1 and P2 to the intersection of

the tangents is used with the orthogonal cathetus of the first tension triangle. This distance is the

product of the Bezier factor Be and the length of the cathetus of the deepest triangle. By moving

the control points P1 and P2 along the tangent in the direction of the gear tip or downwards to the

wheel axle, or by varying the Bezier factors Be, the gear root contour is correspondingly compressed

or stretched [3].

Figure 2.4.17 shows the comparison depicted of a classic root fillet with a bionic one and the

newly defined Bezier root contour between the two newer gear root geometries. The difference

to the classic gear root contour is evident. The shape of the new geometry suggests a distinctly
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Figure 2.4.16: Figure of gear tooth (source in [3])

Figure 2.4.17: Comparison of different gear root geometries (source in [3])

smoother deflection of the power flow. This promises a lot of potential for the Bezier root fillet.

Figure 2.4.18 shows the diagram of the dependence of the gear root safety on the Bezier factor Be

for a given gear tooth.

The clearly visible optimum shows a Bezier factor of approximately 0,57. The root load capacity

is theoretically increased by 24% compared to conventional values. Figure 2.4.19 shows the shape

of the root geometries in dependence on the Bezier factor.

Figure 2.4.20 shows a comparison of the stress and safety distribution of a classic toothing

profile with is root optimized variation. The spur gear drive has a module of 6.5 mm as well as
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Figure 2.4.18: Influence of the Bezier factor on the gear root safety (source in [3])

Figure 2.4.19: Shapes of the root fillet depending on the Bezier factor (source in [3])

a pressure angle of 20 degrees. The optimized pinion has 25 teeth and a profile shift coefficient

of 0.75. The safety distribution along the tooth space has become significantly smoother in this

scenario [3]. The gear root safety is nearly constant for the optimized variation in the large area

around the minimum.

The location of the minimum gear root safety has not changed as a result of the new root

geometry. The load increment generated by the Bezier root fillet is thus comparable whit that of

a bionic root contour. Calculations have demonstrated that there is no difference between the two

root optimization options.
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Figure 2.4.20: Load distribution for a classic toothing profile (above) and a Bezier-optimized version

(below) (source in [3])



Chapter 3

Fundamentals

3.1 Introduction

The generation of the tooth surfaces of gears according to the modern theory of gearing allows to

simulate real cutting processes from the relative movements between the tool and the gear. The

conventional profile of the tooth root or trochoid is obtained in this way as an envelope to the

family of circular profiles located at the head of the teeth of the tool. However, the use of form

processes instead of generating processes provide more freedom to the root profiles. The modeling

of three types of curve to be used as root profiles are presented in this chapter. The three curves

are an ellipse, a Hermite curve and a Bezier curve. All of them are defined considering as variables

the root radius, the root form radius and the root land width. The equations for each curve are

defined as well.

3.2 Modeling of an elliptical curve

Figure 3.2.1 shows the variables that control the portion of an ellipse to be used in the tooth root.

The active profile is already defined from the cutting process and after applying the modern theory

of gearing. The positions of points P0 and P1, initial and final points of the ellipse portion, are

controlled through the radii ρP0 and ρP1 and the width of the root land f . The point R serves

as a boundary between the angular sectors corresponding to each tooth and defined by the angle

2π/Ng, where Ng is the number of teeth of the gear. This point R has the same radius as point P1.

The major axis of the ellipse passes through point P1. The ellipse is univocally defined with the

condition that it passes through the points P0 and P1 and that the unit tangent t0 to the active

profile at point P0 is also tangent to the ellipse. These conditions allow us to define two equations

20
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Figure 3.2.1: Modeling of an elliptical curve as tooth root profile

that allow obtaining the lengths of the main semi-axes of the ellipse, a and b. These equations are:

1− x
(P0)
e

b2
− y

(P0)
e

a2
= 0 (3.2.1)

t0ex
t0ey

+
(a
b

)2 x(P0)
e

y
(P0)
e

= 0 (3.2.2)

Here, (x
(P0)
e , y

(P0)
e ) are the coordinates of the point P0 in the system Se, and (t0ex, t0ey) are the

components of the vector t0 in the system Se. The vector position of the point P0 and the unit

tangent t0 can be determined initially in a local coordinate system, Sg, rigidly connected to the

gear. Indeed, if the modern gear theory allows defining the active profile of the tooth as rg(u) =

(xg(u), yg(u)) in the system Sg, where u is the parameter of the profile, the following condition

allows determining the parameter u corresponding to point P0√
(xg(u(P0)))2 + (yg(u(P0)))2 − ρP0 = 0 (3.2.3)

and the following expression allows to obtain the unit tangent in P0

t0g =

∂rg
∂u
|u=u(P0)∣∣∣∣∂rg∂u |u=u(P0)

∣∣∣∣ (3.2.4)
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Applying then a transformation of coordinate systems from system Sg to system Se, it is possible

to obtain the coordinates of P0 and the unit tangent t0 in the system Se

r(P0)
e = Megrg(u

(P0)) (3.2.5)

t0e = Legt0g(u
(P0)) (3.2.6)

Meg =


cos( π

Ng
− f

ρP1
) sen( π

Ng
− f

ρP1
) 0 0

− sen( π
Ng
− f

ρP1
) cos( π

Ng
− f

ρP1
) 0 −(ρP1 + a)

0 0 1 0

0 0 0 1

 (3.2.7)

where Leg is a 3x3 matrix that results from removing the last row and the last column of matrix

Meg. Once the semi-axes a and b of the ellipse have been determined, the definition of the elliptical

profile would be given in the system Se

xe = x(P0)
e cos(πt/2) (3.2.8)

ye = −
√
b2 − x2e

a

b
(3.2.9)

The elliptical profile in the system Sg requires the transformation rg(t) = Mgere(t) = M−1eg re(t)

3.3 Modeling of a Hermite curve

The modeling of the tooth root as a Hermite curve has been proposed in [1] and its formulation here

follows the same guidelines. However, with respect to the model presented in [1] some variations

are introduced. Figure 3.3.2 shows the tooth root profile with a Hermite curve. This is defined

from the position of its initial and final points, P0 and P1, and of the tangents T0 and T1, where

T0 = w0t0 and T1 = w1t1. Here, w0 and w1 are the weights (or modules) of both tangents.

The difference with respect to the model presented in [1] consists in being able to vary the radial

position of the points P0 and P1 through the radii ρP0 and ρP1 and of the variable f .

The Hermite profile in the Sg system would be given as

rg(t) = (2t3 − 3t2 + 1)r(P0)
g + (−2t3 + 3t2)r(P1)

g + (t3 − 2t2 + t)T0g + (t3 − t2)T1g (3.3.10)

t ∈ [0, 1]

The vector position r
(P0)
g can be obtained from the value of the profile parameter u(P0) that

satisfies the relation (3.2.3). The vector position r
(P1)
g is obtained as

r(P1)
g =


−ρP1 sen( π

Ng
− f

ρP1
)

ρP1 cos( π
Ng
− f

ρP1
)

0

 (3.3.11)
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Figure 3.3.2: Modeling of an elliptical curve as tooth root profile.

The tangent T0g can be obtained as

T0g = w0

∂rg
∂u
|u=u(P0)∣∣∣∣∂rg∂u |u=u(P0)

∣∣∣∣ (3.3.12)

while the tangent T1g is obtained as

T1g = w1


− cos( π

Ng
− f

ρP1
)

− sen( π
Ng
− f

ρP1
)

0

 (3.3.13)

3.4 Modeling of a Bezier curve

The modeling of the tooth root with a third-degree Bezier curve is presented in Figure 3.4.3.

Four points P0, P
′
1, P2 and P3 are required to define a third-degree Bezier curve. The position

of these four points allow to define the curve as

rg(t) = (1− t)3r(P0)
g + 3(1− t)2tr(P

′
1)

g + 3(1− t)t2r(P2)
g + t3r(P3)

g (3.4.14)
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Figure 3.4.3: Figure of Bezier curve

with t ∈ [0, 0, 5] to define the curve section from point P0 to point P1, which occupies the interme-

diate position of the curve.

The positions of the points are defined as follows. The vector position r
(P0)
g can be obtained

from the value of the profile parameter u(P0) that satisfies the relation (3.2.3). The vector position

r
(P1)
g is obtained as

r(P1)
g =


−ρP1 sen( π

Ng
− f

ρP1
)

ρP1 cos( π
Ng
− f

ρP1
)

0

 (3.4.15)

The unitary tangent in P0 will be given as

t0g =

∂rg
∂u
|u=u(P0)∣∣∣∣∂rg∂u |u=u(P0)

∣∣∣∣ (3.4.16)

Next, a coordinate system Sb with origin in P1 is defined with axis yb along the radial direction.

A coordinate transformation from system Sg to system Sb allows to define the position of the points

P0 and P1, as well as the tangent t0 in the system Sb.
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r
(P0)
b = Mbgrg(u

(P0)) (3.4.17)

r
(P1)
b = Mbgr

(P1)
g (3.4.18)

t0b = Lbgt0g (3.4.19)

Here,

Mbg =


cos( π

Ng
− f

ρP1
) sen( π

Ng
− f

ρP1
) 0 0

− sen( π
Ng
− f

ρP1
) cos( π

Ng
− f

ρP1
) 0 −ρP1

0 0 1 0

0 0 0 1

 (3.4.20)

and Lbg is a 3x3 matrix that results from removing the last row and the last column of the Mbg

matrix. The determination of the point P
′
1 in the Sg system requires solving a system of two

equations to obtain the two unknowns r
(P

′
1)

g = (x
(P

′
1)

g , y
(P

′
1)

g , 0, 1)T . A coordinate transformation

from the Sg system to the Sb system allows defining such vector in system Sb

r
(P

′
1)

b = Mbgr
(P

′
1)

g (3.4.21)

Taking into account also that the points P2 and P3 occupy positions symmetrical with respect

to the axis yb to the points P ′1 and P0, respectively,

x
(P2)
b = −x(P

′
1)

b (3.4.22)

y
(P2)
b = y

(P
′
1)

b (3.4.23)

x
(P3)
b = −x(P0)

b (3.4.24)

y
(P3)
b = y

(P0)
b (3.4.25)

the Bezier curve can then be obtained in the system Sb as a function of these two unknowns (x
(P ′

1)
g ,

y
(P ′1)
g )

rb(t) = (1− t)3r(P0)
b + 3(1− t)2tr(P

′
1)

b + 3(1− t)t2r(P2)
b + t3r

(P3)
b (3.4.26)

As the tangent to the Bezier curve at t = 0 is given by

∂rb
∂t
|t=0 = −3r

(P0)
b + 3r

(P
′
1)

b (3.4.27)

and must be parallel to t0b, the two conditions that must satisfy the two unknowns are

rby(t = 0, 5) = 0 (3.4.28)

x
P

′
1
b − x

P0
b

y
P

′
1

b − y
P0
b

=
t0bx
t0by

(3.4.29)



Chapter 4

Methodology

4.1 Procedure for the analyses

This chapter describes the methodology used to carry out the analyses proposed in the following

study. The program used to perform the analyses is IGD. The initial screen of this program is

shown in the Figure 4.1.1.

Figure 4.1.1: Initial screen of IGD software

The variables of the pinion are defined in the Figure 4.1.2:

Furthermore, it is also possible to define later some additional conditions. Figure 4.1.3 shows

the screen of the program where it is possible to modify the design of the tooth surfaces.
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Figure 4.1.2: Main data of the pinion

Figure 4.1.3: Freeform design
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A circular longitudinal crowing and a linear tip relief was selected in the pinion. Furthermore,

you can view and edit the definition of standard reference blade profile (see Figure 4.1.4).

Figure 4.1.4: Definition of standard reference blade profile

Subsequently, the same definition of the gear is made as it is done for the pinion. Figure 4.1.5

shows the screen where it is possible to make this change.

Figure 4.1.5: Definition of external spur gear set
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After defining the two basic geometries of the pinion and the gear, the geometry of the pinion

just created is copied, in order to be able to make changes and perform different analyses, based

on the type of curve used in the fillet of the gear tooth. Figure 4.1.6 shows the screen where these

changes can be made.

Figure 4.1.6: Definition of the Hermite fillet geometry

In the case of the Hermite curve, the parameters related to this curve, are visualized in Fig-

ure 4.1.7.

The parameters that can be changed are:

• Fillet from radius deviation coefficient: this value can only vary between -0.2 and +0.2 times

the module.

• Root radius deviation coefficient: this value can only vary between -0.2 and +0.2 times the

module.

• Percentage of pitch angle for root land: this value can only vary between 0 and 10% of the

pitch angle.

In the specific case of Hermite, the values of the tangent weights are the values obtained from

the basic Hermite curve.

A similar procedure is performed for the Elliptical curve in Figure 4.1.8.

As it shown in Figure 4.1.8, the parameters that can be modified are:

• Fillet from radius deviation coefficient: this value can only vary between -0.2 and +0.2 times

the module.
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Figure 4.1.7: Definition of the optimized Hermite fillet geometry

Figure 4.1.8: Definition of the elliptical fillet geometry
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• Root radius deviation coefficient: this value can only vary between -0.2 and +0.2 times the

module.

• Percentage of pitch angle for root land: this value can only vary between 0 and 10% of the

pitch angle.

Once the parameters required by the analysis have been modified, click on the button ”Calculate

Semilengths of Principal Axes”. it is important to leave the box ”Keep independent parametrization

along the face width” checked, so that the values of the semi-lengths of principal axes are calculated

along the face-width.

A similar procedure is performed for Bezier curve (see Figure 4.1.9).

Figure 4.1.9: Definition of the Bezier fillet geometry

Figure 4.1.9 shows the parameters that can be modified:

• Fillet from radius deviation coefficient: this value can only vary between -0.2 and +0.2 times

the module.

• Root radius deviation coefficient: this value can only vary between -0.2 and +0.2 times the

module.

• Percentage of pitch angle for root land: this value can only vary between 0 and 10% of the

pitch angle.

Once the parameters required by the analysis have been modified, click on the button ”Calculate

Intermediate Point Coordinates”. It is important to leave the box ”Keep independent parametriza-

tion along the face width” checked, so this calculation is made along the face width.
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Once the geometries of the gear and pinion have been defined, with the changes in the fillet

curve, it is possible to proceed with the analyses. Go down the list of operations on the left of the

screen, and click on ”Analyses” and after a click with the right button of the mouse, choose the

”TCA− FEMAnalysis” function. (see Figure 4.1.10)

Figure 4.1.10: Analysis selection screen

Once this is done, the type of analysis chosen appears, and the proposed parameters can be

modified (see Figure 4.1.11).

In this screen, it is shown which geometry of the pinion and the gear is used for the analysis.

In addition, changes can be made to the absolute and relative position of pinion and gear. Once

you clicked on ”OK”, in the screen shown in the Figure 4.1.12 appears:

Here, it is possible to modify different parameters including:

• Number of contact positions;

• Number of pairs of contacting teeth;

• Cycle of meshing;

• Virtual marking compound thickness, expressed in mm;

• Number of point in longitudinal direction;

• Number of points in profile direction;
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Figure 4.1.11: TCA and FEM analysis definition

Figure 4.1.12: Tooth contact analysis definition
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• Contact position at which the transmission is shown;

• Initial position for the pinion

In the analyses reported in this master thesis work, no changes were made to the system settings.

Subsequently, the geometry of the newly defined pinion is processed by clicking on ”Pinion CCW

(Z+) rotation TCA”. After that, it is possible to define the finite element model (see Figure 4.1.13).

Figure 4.1.13: Finite element model definition

Here, it is possible to modify different parameters for pinion and wheel:

• Pinion mesh definition;

• Wheel mesh definition;

• Pinion material properties;

• Contact position to analyst;

• Number of pairs of contacting teeth;

• Contact pair type;

• Torque applied to the pinion, expressed in Nm;

• Initial angle of rotation in ABAQUS;

• Torsional deformation of gears;
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In this way, it is possible to process the finite element model and export it to the software

Abaqus. Once the analysis done, lines of code are used to post-process the results as it is shown in

Figure 4.1.14.

Figure 4.1.14: Lines of code used to post-process results

Once the analysis on Abaqus has been completed, the results are incorporated in IGD and can

be visualized. In this way it is possible to observe the trend of the stress developed in the area of

fillet, for pinion and gear. In the following master thesis work the settings shown in the images

above have been set.



Chapter 5

Results

5.1 Numerical examples

The comparison of an elliptical profile, a Hermite curve and a Bezier curve has been made in a

transmission of spur gears, whose basic data are shown in a Table 5.1.1. Figure 5.1.1 shows this

transmission.

Figure 5.1.1: Example of transmission of spur gears
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Table 5.1.1: Table of basic data

Parameter Pinion Gear

Number of teeth 29 70

Distance between centers [mm] 357

Module [mm] 7 7

Face width [mm] 70 70

Normal pressure angle [deg] 20 20

Young’s Modulus [GPa] 210 210

Poisson’s ratio 0,3 0,3

Applied Torque [Nm] 3100

Profile Shift Coefficient 0.217 -0.217

Table 5.1.2: Table of the values of the different profiles

Parameter Profile A Profile B Profile C Profile D

Dedendum 1.25 1.25 1.25 1.40

Root radius coeficient 0.38 0.30 0.25 0.39

Addendum 1.0 1.0 1.0 1.0

We distinguish 4 profiles, A, B, C and D, based on the values of: dedendum, root radius

coeficient and adendum, according to the profile ISO 53:1998. (see Table 5.1.2).

Both the surfaces of the teeth of the pinion and those of the gear have profile deviations to

reduce the head of the tooth by 25 µm in a length of 3.5 mm from the tip of the tooth and in

this way avoid severe contacts on them and reduce contact stress in that area. On the other hand,

the surfaces of the teeth of the pinion have flank deviations to center the contact pattern. Lead

flank deviation consists of a circular crowning with 20 µm at the front and back edges of the tooth.

Figure 5.1.2 shows the profile and flank deviations in pinion and gear.

The tooth root profiles in the geometric models shown in Figure 5.1.1 and Figure 5.1.2 implement

Hermite curves where the weights have been determined to reduce the distances between these

profiles and those of conventional geometry. Such weights are shown in Table 5.1.3.

Figure 5.1.3 shows the results of a contact analysis in which the pinion and gear tooth surfaces

are considered rigid surfaces. The contact pattern is obtained, for each angular position of the

pinion, from the approximation of the surfaces of the teeth of the gear to those of the pinion until

the distance is minimized, obtaining those points of the gear tooth surface that are at a distance

of 0.0065 mm from the pinion tooth surfaces, as contour points of each of the contact patterns
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Figure 5.1.2: Comparison of deviations in (a) pinion and (b) gear with respect to a standard

geometry

Table 5.1.3: Weights of the unit tangents of the Hermite curve in the tooth root of the geometries

with profile and flank deviations

Weights Pinion Gear

w0 0.891 0.956

w1 0.545 0.487
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between pinion and gear. The transmission errors obtained in this gear drive are null, as the tip

relief does not exceed the highest single tooth contact point. The actual size of the contact pattern

will be obtained after an analysis by the finite element method.

Figure 5.1.3: Contact path and contact patterns on the pinion tooth surfaces

Finite element models are created on the geometric model shown in Figure 5.1.1 and considering

the results of the contact analysis shown in Figure 5.1.3. Figure 5.1.4 shows a finite element model

of five pairs of teeth. The material considered is steel with an elastic modulus E = 207000 MPa

and a Poisson coefficient of ν = 0.3. The characteristics of this finite element model are explained

in detail in [4]. The torque applied to the pinion through its reference node was 3100 Nm. While

the torque remains applied to the pinion, the gear rotates to the different angular positions to

complete more than one meshing cycle of a pair of teeth.

The evolution of the contact pressures is observed in Figure 5.1.5 where the load distribution

can be shown between the three central couples of the finite element model (pairs 2, 3 and 4 shown

in Figure 5.1.4). For this, a general-purpose program was used to solve the stress analysis [?].

The interest of this work lies, however, in the evolution of the bending stresses (maximum

principal stress) in the tooth root along the meshing cycle. Figure 5.1.6 shows the evolution of the

bending stresses in the central tooth of the pinion model throughout the meshing cycle when 16

finite elements along the root profile are considered.

Next, the different cases analyzed for the different profiles A, B, C and D are reported.
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Figure 5.1.4: Finite element model with fire pairs of teeth

Figure 5.1.5: Evolution of contact pressures throughout a meshing cycle.
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Figure 5.1.6: Evolution of the maximum principal stress in the the central tooth of the pinion

during the meshing cycle

5.2 ISO profile A

Models considering the ISO profile A with a different number of elements along the root profile of

8, 10, 12, 14, 16 have been considered. Figure 5.2.7 shows the evolution of the maximum value of

the maximum principal stress on the fillet of the central tooth of the model when the number of

elements is increased. Convergency is observed.

We consider different configurations for all the curves that have been studied: Hermite, Elliptical

and Bezier. For all curves, we consider these different cases:

• Configuration 1: Normal configuration, which means that the root land, the fillet form radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-curve with the corresponding ISO profile A;

• Configuration 2: Reduction of the root land equal to 1% of the pitch angle;

• Configuration 3: Reduction of the root land equal to 1% of the pitch angle and a fillet form

radius deviation coefficient equal to +0.10;

• Configuration 4: Reduction of the root land equal to 1% of the pitch angle and a fillet form

radius deviation coefficient equal to +0.20;

Three types of curve, Hermite, Elliptical and Bezier, have been considered in the configurations

described above.
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Figure 5.2.7: Maximum principal stress on the fillet for different number of elements

Table 5.2.4: Weights of the unit tangents of the Hermite curve in the tooth root of the geometries

with profile and flank deviations

Configuration f [%] ρP0[mm] ρP1 [mm]

1 4.1 97.195 94.272

2 1 97.195 94.272

3 1 97.195+0.1m 94.272

4 1 97.195+0.2m 94.272

The analyzed cases for the three types of profile are shown in Table 5.2.4. The width of the

root land f is indicated as a percentage of the pitch angle, being

f =
ρP1

2

Percentage

100

2π

Ng
(5.2.1)

Table 5.2.5 shows the maximum value reached along the cycle of meshing for the maximum

principal stress in the fillet for the three types of curve. Figure 5.2.8 shows a decrement in the

maximum value reached in the gear cycle of the maximum main voltage by reducing the width of

the bottom of the tooth f and by increasing the radius ρP0.

As can be seen from the graph shown, the stress always decreases. The minimum stress obtained

is for the condition of a fillet form radius deviation coefficient equal to 0.2 and a percentage of pitch

angle for root land equal to 1%. It is observed that this decrease is markedly greater with the
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Figure 5.2.8: Principal stress on fillet

Table 5.2.5: Maximum principal stress on the fillet [MPa] for the profile A

Configuration Hermite Elliptical Bezier

1 170.54 166.65 168.68

2 165.43 164.75 166.24

3 146.51 155.08 154.6

4 145.51 154.57 155.27

Hermite curve than with the ellipse and the Bezier curve. Figure 5.2.8 shows a decrease in the

maximum value reached in the meshing cycle of the maximum principal stress by reducing the width

f of the root land and by increasing the radius ρP0. The increase in ρP0 is limited by the lowest

contact point on the surface of the pinion that contacts the gear tooth surface. This limitation

has been taken into account (since the value of ρP0 must not exceed the maximum value of 98,962

mm obtained from the contact analysis) as well as the evolution of the contact pressures shown in

Figure 5.1.5 is not modified in the designs that have been analyzed.

However, the decreases observed for configuration 3 and 4 in Figure 5.2.8 have been made with-

out considering the tooth fillet as a potential contact surface, so they are not real when interference

is observed between the tooth fillet of the pinion and the head tip of the gear tooth. The contact

pressures shown in Figure 5.1.5 are altered for configuration 3 and 4 if the contact surface is defined

not only as the active part of the profile but also with the tooth fillet. It is necessary in these cases

and in order to avoid interference to be able to change the direction of the tangent of the tooth

fillet at the junction point with the active surface.
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Table 5.2.6: Cases analyzed by varying f and ρP1 - Profile A

Configuration f [%] ρP0[mm] ρP1 [mm]

1 4.1 97.193 94.269

2 1 97.193 94.269

3 1 97.193 94.269-0.1m

4 1 97.193 94.269-0.2m

Table 5.2.7: Maximum principal stress on the fillet [MPa]-Profile A

Configuration Hermite Elliptical Bezier

1 170.54 166.65 168.68

2 165.43 164.75 166.24

3 153.06 161.83 163.42

4 158.06 166.87 166.71

Other analyses with the three types of curve, Hermite, elliptical and Bezier, are launched

considering:

• Configuration 1: Normal configuration, which means that the root land, the fillet form radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-cutter with the corresponding ISO profile;

• Configuration 2: Reduction of the root land equal to 1% of the pitch angle;

• Configuration 3: Reduction of the root land equal to 1% of the pitch angle and a root radius

deviation coefficient equal to -0.10;

• Configuration 4: Reduction of the root land equal to 1% of the pitch angle and a root radius

deviation coefficient equal to -0.20.

These configurations are shown in Table 5.2.6.

Figure 5.2.9 shows a minimum in the maximum value of the maximum principal stress when

decreasing ρP1 . This decrease becomes more pronounced in the Hermite curve than in the elliptical

and Bezier curves.

The minimum stress obtained is for the condition of root land equal to 1% of the pitch angle

and a root radius deviation coefficient equal to -0.10. Comparing the results, a greater reduction

in bending stresses is observed by increasing ρP0 than by decreasing ρP1 . The increase in ρP0 is
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Figure 5.2.9: Principal stress on fillet

limited by the highest contact point on the gear tooth. This limitation has been taken into account

(since it has not been possible to increase the value of ρP0 any more) as well as the evolution of

the contact pressures is not altered in the designs that have been analyzed. The decrease of ρP1 is

limited by the minimum value reached.

5.3 ISO profile B

Figure 5.3.10 shows the maximum value of maximum principal stress on the fillet of the central

tooth of the model when the number of elements in the fillet is increased from 8 to 16. Here, the

standard geometry with profile B is considered. Similar values of stresses are observed.

Several configurations for all the curves studied, Hermite, elliptical and Bezier curves, are

considered:

• Configuration 1: Normal configuration, which means that the root land, the fillet form radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-curve with the corresponding ISO profile;

• Configuration 2: Reduction of the root land equal to 1% of the pitch angle;

• Configuration 3: Reduction of the root land equal to 1% of the pitch angle and a fillet form

radius deviation coefficient equal to +0.10;
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Figure 5.3.10: Principal stress on fillet for number of element on fillet

Table 5.3.8: Cases analyzed by varying f and ρP0 - Profile B

Configuration f [%] ρP0[mm] ρP1[mm]

1 7.663 96.993 94.272

2 1 96.993 94.272

3 1 96.993+0.1m 94.272

4 1 96.993+0.2m 94.272

• Configuration 4: Reduction of the root land equal to 1% of the pitch angle and a fillet form

radius deviation coefficient equal to +0.20.

The analyzed cases for the three types of root profile are shown in Table 5.3.8. The width of

the root land f is indicated as a percentage of the pitch angle and is calculated as indicated in

relation (5.2.1).

The results are shown below in a graph and in Table 5.3.9. Figure 5.3.11 shows a decrease in

the maximum value reached in the meshing cycle of the maximum principal stress by reducing the

width f of the root land and by increasing the radius ρP0.

As can be seen from the graph shown, the stress always decreases, being the behavior similar

to profile A. The same problem of interference has been detected for configurations 3 and 4, so

modification of the tangent to the fillet at the junction point with the active surface is required to

avoid interference.
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Figure 5.3.11: Principal stress on fillet

Table 5.3.9: Maximum principal stress on the fillet [MPa] - Profile B

Configuration Hermite Elliptical Bezier

1 179.96 174.54 176.80

2 168.95 166.90 169.60

3 146.54 155.64 157.45

4 143.38 154.02 155.74

Some other analyses with the three type of curves, Hermite, elliptical and Bezier, are considered:

• Configuration 1: Normal configuration, which means that the root land, the fillet from radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-curve with the corresponding ISO profile;

• Configuration 2: Reduction of the root land equal to 1% of the pitch angle;

• Configuration 3: Reduction of the root land equal to 1% of the pitch angle and a root radius

deviation coefficient equal to -0.10;

• Configuration 4: Reduction of the root land equal to 1% of the pitch angle and a root radius

deviation coefficient equal to -0.20.

These configurations are illustrated in Table 5.3.10. Table 5.3.11 shows the maximum value of

the maximum principal stress reached along the cycle of meshing for each configuration and type of
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Table 5.3.10: Cases analyzed by varying f and ρP1 - Profile B

Configuration f [%] ρP0[mm] ρP1 [mm]

1 7.663 96.993 94.272

2 1 96.993 94.272

3 1 96.993 94.272-0.1m

4 1 96.993 94.272-0.2m

curve. Figure 5.3.12 shows graphically these results. A similar behavior is observed than in profile

A, reaching a minimum value for a root radius deviation coefficient equal to -0.1.

Figure 5.3.12: Principal stress on fillet

5.4 ISO profile C

Figure 5.4.13 shows the maximum value, reached along the cycle of meshing, of the maximum

principal stress presented on the fillet of the central tooth, for a pinion model with ISO profile C,

and when the number of elements in the root profile is increased from 8 to 16. Similar values are

observed.

Different configurations for all the curves that have been studied, Hermite, elliptical and Bezier,
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Table 5.3.11: Maximum principal stress on the fillet [MPa] - Profile B

Configuration Hermite Elliptical Bezier

1 179.96 174.54 176.80

2 168.95 166.90 169.60

3 154.55 164.35 166.62

4 154.76 168.80 168.28

Figure 5.4.13: Principal stress on fillet for number of element on fillet

are considered:

• Configuration 1: Normal configuration, which means that the root land, the fillet form radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-curve with the corresponding ISO profile;

• Configuration 2: Reduction of the root land equal to 1% of the pitch angle;

• Configuration 3: Reduction of the root land equal to 1% of the pitch angle and a fillet form

radius deviation coefficient equal to +0.10;

• Configuration 4: Reduction of the root land equal to 1% of the pitch angle and a fillet form

radius deviation coefficient equal to +0.20;

The cases analyzed for the three types of profile are summarized in Table 5.4.12. The width
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Table 5.4.12: Cases analyzed by varying f and ρP0 - Profile C

Configuration f [%] ρP0[mm] ρP1 [mm]

1 9.893 96.873 94.272

2 1 96.873 94.272

3 1 96.873+0.1m 94.272

4 1 96.873+0.2m 94.272

of the root land f is indicated as a percentage of the pitch angle and is calculated according to

relation (5.2.1).

The results of the maximum value of the maximum principal stress are shown below in a graph

and in Table 5.4.13. Figure 5.4.14 shows a decrease in the maximum value reached in the meshing

cycle of the maximum principal stress by reducing the width of the root land f and by increasing

the radius ρP0, as it occurs with ISO profiles A and B.

Figure 5.4.14: Principal stress on fillet

Other analyzes with the three types of curve, Hermite, elliptical and Bezier, are based on the

following configurations:

• Configuration 1: Normal configuration, which means that the root land, the fillet form radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-curve with the corresponding ISO profile;

• Configuration 2: Reduction of the root land equal to 1% of the pitch angle;
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Table 5.4.13: Maximum principal stress on the fillet [MPa] - Profile C

Configuration Hermite Elliptical Bezier

1 188.00 182.30 184.10

2 172.69 170.16 173.07

3 149.13 157.25 158.85

4 142.80 155.52 156.81

Table 5.4.14: Cases analyzed by varying f and ρP1 - Profile C

Configuration f [%] ρP0[mm] ρP1 [mm]

1 9.892 96.873 94.272

2 1 96.873 94.272

3 1 96.873 94.272-0.1m

4 1 96.873 94.272-0.2m

• Configuration 3: Reduction of the root land equal to 1% of the pitch angle and a root radius

deviation coefficient equal to -0.10;

• Configuration 4: Reduction of the root land equal to 1% of the pitch angle and a root radius

deviation coefficient equal to -0.20.

These configurations are illustrated in Table 5.4.14.

Figure 5.4.15 shows a minimum in the maximum value of the maximum principal stress when

decreasing ρP1 . This decrease becomes more pronounced in the Hermite curve than in the elliptical

and Bezier curve. The tendency of the evolution of the stresses is similar to those tendencies

that were observed with ISO profiles A and B, although now the minimum value is reached for

configuration 4 when the Hermite curve is considered.

Table 5.4.15: Maximum principal stress on the fillet [MPa]-Profile C

Configuration Hermite Elliptical Bezier

1 188.00 182.30 184.10

2 172.69 170.16 173.07

3 157.33 166.05 168.59

4 154.18 169.89 169.71
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Figure 5.4.15: Principal stress on fillet

5.5 ISO profile D

Figure 5.5.16 shows the evolution of the maximum value of the maximum principal stress on the

fillet of the central tooth of the model with ISO profile D when the number of elements is increased

from 8 to 16. Convergency is observed.

Different configurations for the curves that have been studied, Hermite, elliptical and Bezier,

are considered:

• Configuration 1: Normal configuration, which means that the root land, the fillet form radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-curve with the corresponding ISO profile D;

• Configuration 2: Fillet form radius deviation coefficient equal to +0.10;

• Configuration 3: Fillet form radius deviation coefficient equal to +0.20;

The cases analyzed for the three types of profile are summarized in Table 5.5.16. The width

of the root land f is indicated as a percentage of the pitch angle and is calculated according to

relation (5.2.1).

The results are shown below in a graph and in Table 5.5.17. Figure 5.5.17 shows a decrease in

the maximum value reached in the meshing cycle of the maximum principal stress by by increasing

the radius ρP0 .

The graph shows that the stress always decreases although the root land is increased from

0.176% to 1%. The minimum stress obtained is for the condition of fillet form radius deviation



5.5 ISO profile D 53

Figure 5.5.16: Principal stress on fillet for number of element on fillet

Table 5.5.16: Cases analyzed by varying f and ρP0 - Profile D

Configuration f [%] ρP0[mm] ρP1 [mm]

1 0.176 96.673 94.272

2 1 96.673+0.1m 94.272

3 1 96.673+0.2m 94.272

Figure 5.5.17: Principal stress on fillet
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Table 5.5.17: Maximum principal stress on the fillet [MPa] - Profile D

Configuration Hermite Elliptical Bezier

1 172.85 167.66 170.30

2 157.01 161.06 161.03

3 155.92 159.22 158.92

Table 5.5.18: Cases analyzed by varying f and ρP1 - Profile D

Configuration f [%] ρP0[mm] ρP1 [mm]

1 0.176 96.673 94.272

2 0.176 96.673 94.272-0.1m

3 0.176 96.673 94.272-0.2m

coefficient equal to +0.2 and a percentage of pitch angle for the root land equal to 1%. It is

observed that this decrease is markedly greater with the Hermite curve than with the ellipse and

Bezier. The same problem of interference is observed than in the previous ISO profiles. This means

that is necessary to change the direction of the tangent to the fillet surface at the junction point

with the active tooth surface.

Some other analyzes with the three types of curve, Hermite, Elliptical and Bezier, are considered:

• Configuration 1: Normal configuration, which means that the root land, the fillet form radius

and the root radius are not modified respect to their values when the fillet geometry is

obtained from a standard rack-curve with the corresponding ISO profile D;

• Configuration 2: A root radius deviation coefficient equal to -0.10;

• Configuration 3: A root radius deviation coefficient equal to -0.20.

These cases are summarized in Table 5.5.18.

Figure 5.5.18 shows a minimum in the maximum value of the maximum principal stress when

decreasing ρP1 just for the Hermite curve. In an elliptical and a Bezier curve, the stresses always

increase. In this case, the increment of the root land from 0.176% of the pitch angle to 1% has a

negative effect when decreasing ρP1 for elliptical and Bezier root profiles.
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Figure 5.5.18: Principal stress on fillet

Table 5.5.19: Maximum principal stress on the fillet [MPa] - Profile D

Configuration Hermite Elliptical Bezier

1 172.85 167.66 170.30

2 167.69 171.55 171.42

3 172.92 175.45 176.08



Chapter 6

Conclusions

The research carried out has led to the following conclusions:

(1) The use of non-conventional tooth root profiles, based on elliptical profiles, Hermite curve and

Bezier curves, allows the maximum value (throughout the meshing cycle) of the maximum

principal stress presented in the fillet to be reduced in spur gear drives.

(2) The use of Hermite curves allows higher reductions than the use of elliptical profiles and

Bezier curves, both by increasing the radius of the junction point with the active profile (or

fillet form radius), or by decreasing the root radius.

(3) Both, the increase of the form radius deviation coefficient and the decrease of the root radius

deviation coefficient have some limitations that have been taken into account in the present

work.

(4) For the design presented in the present work a maximum reduction of the maximum principal

stress has been reached, by increasing the fillet form radius with Hermite curve, in comparison

with the reduction when using the ellipse or the Bezier curve. This reduction is different for

the four types of considered ISO profiles. Table 6.0.1 shows the reductions obtained for the

different analyzed curves and used profiles. The reference geometry for each ISO profile is

always the configuration 1 (see Chapter 5).

(5) Furthermore, a reduction in the case where the root radius decreases has been reached. The

reduction is different for the various used profiles. In particular Table 6.0.2 shows the values of

the reductions obtained using the different analyzed curves and for the different used profiles.

(6) The profile with the maximum reduction is certainly the ISO Profile C with Hermite curve

when decreasing the root radius and reducing the root land.

56
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Table 6.0.1: Maximum reduction of maximum principal stress when increasing the fillet form radius

Profile type Hermite Elliptical Bezier

Profile A 14.68% 9.36% 9.35%

Profile B 20.33% 14.41% 13.46%

Profile C 24.04% 17.28% 16.59%

Profile D 9.79% 7.88% 8.06%

Table 6.0.2: Maximum reduction of maximum principal stress when decreasing the root radius

Profile type Hermite Elliptical Bezier

Profile A 10.25% 5.11% 4.17%

Profile B 14.12% 8.67% 7.41%

Profile C 17.99% 11.67% 10.32%

Profile D 2.98% 0.75% 0.83%

(7) The minimum value of maximum principal stress is reached in ISO Profile A with Hermite

curve when reducing the root radius.

(8) These reductions are not extendable to other designs of spur gear drivers since variables such

as the number of teeth or the coefficient of displacement of the tool, which affect the shape

of the active profile of the teeth, can affect significantly.

(9) The reductions that have been reached when increasing the fillet form radius require a deep

analysis due to the existence of interference between the tip of the gear and the root of the

pinion for some configurations.
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