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Abstract
Thermal Energy Storage (TES) systems using Phase Change Material (PCM)
are gaining more and more importance to provide a higher heat storage
capacity.

This thesis models and studies the design optimization of a Latent Heat
TES system to rise the heat transfer developing an improved fin configura-
tion.

This work involves two tasks. First, the Shape Optimization (SO) of a fin
structure is examined. Then, the Topology Optimization (TO) of a TES unit
is analyzed. Finally, a comparison between shape and topology optimized
fins is carried out.
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Chapter 1

Theoretical Framework

1.1 Overview of optimization
The focus of this chapter is to highlight the main themes of engineering
design. The topics covered by this section are provided by Tobe (2015) [1],
Pluke (2020) [2], Verbart et al. (2015) [21], Rojas Labanda (2015) [22] and
lecture notes of Sarkar (2018) [3].

When the engineering community talks about optimization, it is typically
referring to design optimization. The power of this engineering tool is its
ability to discover through evaluation of a set of design alternatives the most
effective or functional possible design, which best meets prescribed design
requirements. Consequently, design optimization is a very important field,
because it helps design engineers to make better decisions.

From a mathematical standpoint, design optimization is the iterative pro-
cess of varying the parameters sk to find the maximum or minimum of some
attributes fi(sk) subjected to certain specified limitations cj(sk). These basic
elements are described below.

• Design variables sk are the parameters, that may be changed in
an optimization procedure for searching the optimal design. These
variables are generally unknown.

• Objective functions fi(sk) are the performance targets to meet. To
ensure good designs and achieve all the desired goals, correct modelling
and simulation of components, systems and devices is essential.

• Constraint functions cj(sk) are the design requirements to satisfy.

The design constraints can be:
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• Geometric such as restrictions on the width or height, perimeter or
surface.

• Performance like to minimize the average or maximum temperature.

Mathematically, a multi-objective optimization model can be easily stated
as 

max or min fi(sk), i, k = 1, ..., n
subject to cj(sk), j = 1, ..., n

sk ∈ S
(1.1)

Solving this problem the following solutions are found:s?k such thatfi(s?k) ≥ or ≤ fi(sk)
sk ∈ S

(1.2)

where

• sk is the vector of design variables.

• fi(sk) are the set of design objectives to optimize.

• cj(sk) are the design constraints of the model.

• s?k is the optimal set of values of independent variables.

• fi(s?k) are the optimum targets reached, which are known as optimal
Pareto front.

It should check the existence of a set of optimal solutions, since s?k cannot
even exist.

The biggest difference between single- and multi-objective optimization
comes from the fact that in the first case only one function will be maximized
or minimized, instead of in the second one design engineers wish to discover
the set of values of independent variables, which maximize or minimize all
the functions. An implication of this last type of problem is that these
functions may conflict with each other. Therefore, design engineers must
balance design objectives to find the best trade-off, because when a function
is optimized, others can worsen.

2



1.2 Single-Objective Convex Optimization
In this section, it will be described the mathematical formulation of a single-
objective convex optimization problem as discussed in Verbart et al. (2015)
[21] and Rojas Labanda (2015) [22].

Single-Objective Convex Optimization (SOCO) involves the mini-
mization of a convex function, which may or may not be subject to specific
requirements. Generally, CO plays one of the major roles in most engineering
applications, since aiming to minimize a convex function, over a convex set
of values, only one global minimum can exist.

If some restrictions are imposed, it is asked to solve a constrained SOCO.
This kind of problem can be written in general form as

min f(s)
subject to cj(s), j = 1, ..., n

s ∈ S
(1.3)

Here, cj(s) is the vector of specified design requirements Eq. 1.4, that might
be g(s) >,< or = 0, i.e. inequality or equality constraints.

g(s) = {g1(s), ..., gn(s)}T (1.4)

Moreover, the set of all feasible values Σ of the problem may be expressed in
the following form

Σ = {s ∈ S|cj(s) ≤ 0, j = 1, ..., n} (1.5)

thus Σ 6= ∅.
When no limitations are established, it is asked to solve an unconstrained

SOCO. Formulation of this type of problem is simplified{
min f(s) (1.6)

The basic difference between these two types of minimization problems
are the restrictions cj(s): in a constrained problem Σ ⊂ <n and conversely
in an unconstrained one Σ ≡ <n.

1.3 Three computational optimization tech-
niques

This section provides a general overview of three numerical methods used to
perform a design optimization. These contributions can be found in Tobe
(2015) [1] and Pluke (2020) [2].
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Engineers and scientists classify methods for design optimization into
three categories:

• Size Optimization consists in seeking the best tuning of size param-
eters varying them.

• Shape Optimization (SO) means to optimize the shape adjusting
the surface shape.

• Topology Optimization (TO) seeks to optimize material layout work-
ing on addition and subtraction of a fictitious material.

The purpose of these numerical methodologies is to generate a model
with better performance. To reach the best possible output an iterative
process addresses the solution towards a resulting layout meeting the defined
performance targets and satisfying all constraint requirements. Fig. 1.1
provides a block diagram of a generic design optimization procedure.

START

NODesign
converged?

YES

STOP

Perform
numerical
simulation

Improve
partial
design

Figure 1.1: Block diagram of a design optimization scheme.

Since this thesis focuses on single-objective S- and TO, the greatest dif-
ferences between these two types of mathematical approach are presented
below.

• In SO one or more design variables describe the user-created geometric
features. In contrast, TO uses only one fictitious density variable.
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• In SO a given initial shape is progressively modified not exceeding the
upper and lower bound of deformation allowed, i.e. the restrictions
imposed on the geometric structure. Conversely, in TO there are no
topological limitations on the resulting layout.

• As a consequence of the previous point, the final shape reached with SO
is not completely free and thus SO cannot explore all possible designs.
Instead of TO offers remarkable potential to identify new conceptual
designs, not being dependent on the initial geometric configuration.

1.4 Stopping criteria
In this section, it is provided an explanation of the necessity of two stopping
criteria to terminate an iterative process converging towards the desired goal.
The two termination conditions that will be implemented in the algorithms
as a stopping test are:

1. Control of the increment: the iterative process stops when the in-
equality 1.7 is satisfied:

|xn+1 − xn| < ε (1.7)

2. Control of the number of loop iterations: the iterative scheme
terminates as soon as the inequality 1.8 is fulfilled:

n > Nmax (1.8)

Here, xn is a variable updated in each iteration, ε is a fixed tolerance, Nmax

is the maximum allowed number of iterations the algorithm may perform.
The implementation of the stopping criteria ensures that

• When the calculated error becomes less than a tolerance defined a-priori
a satisfactory output is obtained.

• The loops cannot continue to indefinitely iterate and hence reach the
convergence within a finite number of steps.

In addition to checking of those conditions could be useful to check the
speed of convergence, generally called convergence rate. Evaluation of this
indicator is essential to quantify how much quickly the algorithm approaches
the global optimum and thus to estimate efficiency of the code. If the con-
vergence rate is not sufficiently fast some modifications of the script should
be considered.
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Chapter 2

Shape Optimization problem
formulation

2.1 Single-Objective Shape Optimization
SO is a mathematical approach that optimizes surface shape within a given
design space, for a prescribed set of boundary conditions such that the re-
sulting layout achieves a desired performance target. The design variables
can be chosen from shape parameters such as diameter of hole, rotation angle
about axis, thickness along component height or any other measure.

As mentioned in Sec. 1.1, SO is considered a success if it gradually
converges to the optimal shape, while fulfilling all the constraints prescribed
by design requirements.

2.2 Design of Experiments
In this section, it will be presented the design and analysis of experiments
referring to the lecture notes of Maiti (2017) [4] and Sarkar (2018) [3]. In
the following Subsec. 2.2.1 it will further extend this discussion.

Design engineers typically perform Design of Experiments (DoE) to
explore model performance with minimum simulation effort, to better un-
derstand the design space. Using this kind of approach many relevant design
information can be captured.

A generic DoE procedure consists in evaluating a process/system re-
sponse, i.e. output parameter, which is affected by many independent vari-
ables, i.e. input parameters.

An experiment is carried out to find out the functional relationship 2.1
between inputs and output, to know how much input variables x, z will in-
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fluence the value of output variable y.

y = f(x, z) (2.1)

This mathematical model may be a linear or non-linear equation.
Fig. 2.1 represents a generic representation of a process/system model to

simplify physical reality, which can be extremely complex.

Process/System

Uncontrollable
factor(s)/Variable(s)

Controllable
factor(s)/Variable(s)

In
pu

t(s
)

O
ut
pu

t(s
)

Figure 2.1: General model of a process/system.

Output is the key indicator that is computed to judge a process/system
performance. Controllable factors are those whose levels can be varied in each
experiment to seek the best possible settings that allow to get an output close
to the desired objective. Conversely, uncontrollable factors are those whose
values cannot be manipulated and hence their effect should be minimized.

To investigate the output response and well depict the process/system
behaviour, variations of the model inputs are accomplished by means of a
series of tests. The purpose of this way to proceed is to determine the most
influential input variables on the output response. These experiments are
the key factor that plays a dominant role in quantifying the effect of the
inputs changes on the desired outcome and finding out the region in which
the response is least sensitive to those variations. Mathematical achievement
of this region enables to decrease the variability of output.

Discovering a clear ranking of the inputs according to their influence
on the output response, it is possible to drop the number of independent
variables, set the most influential inputs and address simulations towards
shorter development time and guarantee the validity of numerical results.
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2.2.1 Engineering experiments
Experimentation is extremely important in several different engineering ac-
tivities for the following reasons:

• New products and/or processes design/development.

• Existing product and/or processes performances improvement.

• Alternative designs evaluation.

To satisfy product requirements and/or process specifications the following
procedure is used:

1. First of all, levels and ranges of the input(s) are chosen.

2. Next, it is necessary to select the output(s).

3. Then, experimental designs are implemented.

4. Subsequently, experimental outcomes are analyzed.

5. Finally, conclusions are drawn and then dominant factors are discov-
ered.

2.3 Golden Section Search
This section is concerned with the description of theGolden Section Search
(GSS) method provided in the book of Giordano et al. (2013) [5], lecture
slides of Andersson et al. (2014) [6] and Heath (2002) [7].

t t-1

0 1t

Figure 2.2: Representation of the golden ratio using a line segment.

Before starting to explain how to implement this algorithm, it should
be clarified what is meant when the expression golden ratio is used. If a
line segment, whose length is taken equal to 1, is divided into two unequal
subparts of length τ and 1 − τ , respectively, thus it is possible to write the
following equation:

1
τ

= τ

1− τ ⇒ τ 2 + τ − 1 = 0 (2.2)
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Eq. 2.2 yields the two roots

τ1 =
√

5− 1
2 ≈ 0.618 and τ2 = −

√
5− 1
2 ≈ 0.382 (2.3)

Only the positive root τ1 ∈ (0, 1). This constant is called golden ratio.
The GSS numerical method is only applied when

• It is known that a global maximum or minimum exists within a specified
interval.

• The real-valued objective function f(x) must be unimodal, i.e. it has
only one peak (maximum) or valley (minimum), on a closed interval
[a, b] of <. For a minimization problem exists a unique x? ∈ [a, b] such
that f(x?) is minimum of f on [a, b] and f is monotonically decreasing
for x ≤ x? and strictly increasing for x? ≥ x. It can be noted that
convex functions are always unimodal. One drawback of this kind of
function is that the convergence rate is slow, because it is linear.

• The algorithm provides an approximation of the global optimum rather
than the exact solution.

The search scheme is iterative:

1. Initialization: define the interval [a, b] and set a desired tolerance
level ε.

2. Calculation of the initial points: d = a + (1 − τ)(b − a) and c =
a+ τ(b− a).

3. Evaluation of the initial objective function values: f(d) and
f(c).

4. Comparison between f(d) and f(c):

(a) if f(d) < f(c) then discard (c, b), because the new interval of
search is (a, c). Update the new points: b becomes the previous
c, a does not change, c becomes the previous d and d is equal to
a+ (1− τ)(b− a).

(b) if f(d) > f(c) then discard (a, d), since the new interval of search
is (d, b). a becomes the previous d, d becomes the previous c, b
remains unchanged and the new c is equal to a− τ(b− a).

5. Convergence test: if the remaining interval length ∆ = |c− d| is less
than the required tolerance ε exit from the loop, otherwise go back to
step 4.
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It is shown that

• Unimodality of the objective function enables to discard fractions of a
given interval.

• The scalar quantity ε represents the maximum length of the remaining
interval and hence defines the accuracy of the approximate solution.

• To repeat the execution of the main loop it is necessary to compute
only one new function evaluation.

2.3.1 Pseudo-code of the GSS
The implementation of the GSS is yielded in Alg. 1. In the following pseudo-
code it is assumed that

• kIter is the iteration number.

• MaxIter is the maximum allowed number of iterations.

• StopTol is the termination tolerance.

• ψBEST is the approximated optimal value of the shape design variable.

• ϕBEST is the approximated minimum value of the objective function.

2.4 Quadratic Fit Search
This section is concerned with the presentation of theQuadratic Fit Search
(QFS) method described in the book of Giordano et al. (2013) [5], lecture
slides of Andersson et al. (2014) [6] and Heath (2002) [7].

The QFS is a technique for seeking the minimum of a unimodal function
by fitting a parabola through three points. The point at which the fitted
parabola is minimized represents the approximation of the optimal solution.
The search scheme is iterative:

1. Initialization: define the interval [a, b] and set a desired tolerance
level ε.

2. Definition of the three starting points: x1 = a, x2 = (b − a)/2
and x3 = b.

3. Evaluation of the initial objective function values: f(x1), f(x2)
and f(x3).
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Algorithm 1: Pseudo-code for the GSS implementation
Input: a, b
Output: ψ, ϕ
Data: kIter; MaxIter; StopTol

1 Compute: τ=(
√

(5)-1)/2; d=a+(1-τ)(b-a); c=a+τ(b-a);
2 f1 = f(d); f2 = f(c);
3 while kIter<MaxIter do
4 if Fd<Fc then
5 b=c; c=d; f2 = f1; d=a+(1-τ)(b-a); f1 = f(d);
6 else
7 a=d; d=c; f1 = f2; c=a-τ(b-a); f2 = f(c);
8 end
9 errGolden=abs(c-d);

10 if errGolden<StopTol then
11 return ψBEST & ϕBEST
12 end
13 kIter=kIter+1;
14 end

4. Estimation of the quadratic polynomial coefficients: c1, c2 and
c3 for the quadratic function p(x) that goes through (x1, y1), (x2, y2)
and (x3, y3).

p(x) = c1x
2 + c2x+ c3 (2.4)

5. Calculation of the minimum: once values of coefficients are known
it is possible to solve for finding the unique minimum where the deriva-
tive is zero.

x = − c2

2c1
(2.5)

6. Choice of a new set of points: x1, x2 and x3 are updated.

7. Convergence test: if the increment ∆ = |y − y2| is less than the
required tolerance ε exit from the loop, otherwise go back to step 4.

It is shown that

• f(x2) ≤ f(x1) and f(x2) ≤ f(x3).

• Once the main loop is completed, the approximated optimal value of
the shape design variable is estimated by x2.
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• QFS is typically faster than GSS, since its convergence rate is super-
linear.

2.4.1 Pseudo-code of the QFS
The implementation of the QFS is provided in Alg. 2. Inputs, outputs and
data are the same as Alg. 1.

Algorithm 2: Pseudo-code for the QFS implementation
Input: a, b
Output: ψ, ϕ
Data: kIter; MaxIter; StopTol

15 Compute: x(1)=a; x(2)=(b-a)/2; x(3)=b;
16 while kIter<MaxIter do
17 Compute: y(1) = g(x(1)), y(2) = g(x(2)); y(3) = g(x(3));
18 coeff=polyfit(x,y,2); f=polyval(coeff,x);
19 xOpt=-coeff(2)/(2*coeff(1)); yOpt=f(xOpt);
20 errParab=abs(yOpt-min(y));
21 if f is U-shaped: f(xOpt)<min(f(a), f(b)) then
22 if xOpt<xVal(2) then
23 x(3)=x(2); x(2)=xOpt;
24 else
25 x(1)=x(2); x(2)=xOpt;
26 end
27 else
28 if y(1)<yOpt then
29 xOpt=x(1);
30 else if y(3)<yOpt then
31 xOpt=x(3);
32 else
33 xOpt=x(3);
34 end
35 end
36 if errParab<StopTol then
37 return ψBEST & ϕBEST
38 end
39 kIter=kIter+1;
40 end
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Chapter 3

Thermal diffusive SO problem

3.1 PCM for LHTESS
This section reports why PCM are used for Thermal Energy Storage
(TES). This presentation is based on the works of Darzi et al. (2016) [13],
Lohrasbi et al. (2017) [14] and Sheikholeslami et al. (2016) [15].

A TES technology is generally defined as a temporary thermal energy
storage device, which quickly absorbs heat and releases it on demand.

PCM absorbs and releases large quantities of thermal energy as latent
heat during melting and solidification, i.e. phase transition. Therefore, the
main advantage of LHTESS is its ability to provide a high energy storage
density.

The primary drawback of PCM is associated with its low thermal con-
ductivity, which slows down the thermal transient response and thus deter-
mines a low thermal energy density absorbed or released during melting and
solidification process. One method to overcome this limitation consists in
implementing a heat transfer enhancement technique. This strategy involves
coupling of PCM with a Thermal Conductivity Enhancer (TCE), such
as aluminium fins embedded in a TES tank. Because of the addition of
the metal fins, either charging/discharging rate or maximum energy storage
capacity must be analyzed to find the best trade-off.

The total amount of energy released during discharging mode is expressed
as follows:

Ereleased =
∫ Tliq

T1
Cp,1dT + L+

∫ T2

Tsol

Cp,2dT (3.1)

where

• Cp,1 and Cp,2 are the specific heat capacity at constant pressure of liquid
and solid phase, respectively. Cp,1 can be equal to Cp,2.
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• L is the specific latent heat.

• Tliq and Tsol denote the liquidus and solidus states, respectively.

3.2 Simulation workflow
A Finite Element Method (FEM) based simulation software, for solving
various applied physics and engineering applications, consists of the following
five steps:

1. Geometric modelling: the geometric model is created or imported.

2. Materials and physics selection: materials are assigned to the sub-
domains of the geometry. Boundary and initial conditions, sources and
fluxes are imposed on the equations according to the physical fields.

3. Meshing: solution domain is discretized by using the finite elements.

4. Solving: numerical algorithm are used to solve the algebraic system
of equations.

5. Post-processing: numerical results are displayed to find the informa-
tion desired.

Fig. 3.2 provides a block diagram of a generic engineering design.

Physical problem

Mathematical problem
governed by differential

equations

Numerical model, i.e. finite
element model

Figure 3.1: Block diagram of an engineering design.
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3.3 Stationary heat conduction problem

3.3.1 Geometry and boundary conditions
The physical system studied in this thesis is a LHTESS, which is illustrated
in Fig. 3.2.

Figure 3.2: Thermal energy storage unit.

The design optimization is carried out using a simplified 2D model that
represents the behaviour of a real shell-and-tube heat exchanger.

When dealing with complex geometries, if the problem is axisymmetric it
is possible to exploit this geometric property to simplify the model geometry
and reduce the computational expense of the solver, i.e. the time needed
for running a numerical simulation. The 2D axisymmetric model created is
sketched in Fig. 3.3.

Figure 3.3: Solution domain.

The geometric model used to perform the simulation, based on discharg-
ing mode of PCM, consists of one-eighth 2D storage element, which has an
inner radius of 5[mm] and an outer one of 75[mm]. The metal fin, i.e. ther-
mal conductivity enhancer, is connected to the inner channel containing the
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Heat Transfer Fluid (HTF) in order to rise thermal penetration depth
into the PCM. The space between the fin and storage tank is filled with
PCM. In this simplified 2D horizontal cross section model, there is no HTF
flowing through the inner pipe. The geometry parameters and some of their
ranges that will be used in SO procedure are tabulated in Tab. 3.1.

Table 3.1: Geometry parameters

Description Symbol Value in SI units
Inner radius Rin 0.005[m]
Outer radius Rout 0.075[m]
Primary branch length L1 [0.02, 0.04][m]
Secondary branch length L2 [0.02, 0.04][m]
Inclination angle θ [0, π/4]

The boundary ∂Ω = Γ of the solution domain Ω consists of two disjoint
boundaries

∂Ω = ΓD ∪ ΓN (3.2)
Here, ΓD and ΓN are the Dirichlet and Neumann boundary, respectively. The
physical problem includes the following Boundary Conditions (BC):

T = TDir on ΓD
k∇T · n = 0 on ΓN
−k∇2T = QGEN in Ω

(3.3)

where

• TDir denotes the Dirichlet BC imposed on the inner wall ΓD exposed
to the HTF. This indicates that the temperature remains constant.

• k∇T ·n = 0 prescribes the Neumann BC set on the other walls. These
are adiabatic or thermally insulated walls that result in null heat fluxes.

• QGEN denotes the volumetric heat source term applied to the PCM
phase that can be written as:

QGEN = LPCM · ρPCM
∆t (3.4)

Here, LPCM is the latent heat capacity and ρPCM is the PCM mass
density. ∆t the expedient to reduce the transient-state problem to an
equivalent steady-state one.

The BC are shown in Fig. 3.4 and listed in Tab. 3.2.
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Figure 3.4: (a) Dirichlet BC (b) Neumann BC (c) Volumetric heat generation.

Table 3.2: Boundary conditions

Description Symbol Value in SI units
Dirichlet boundary condition TDir 37.5+273.15=310.65 [K]
Time duration of discharging mode ∆t 3600 [s]

3.3.2 Governing equation
The researches conducted by Lohrasbi et al. (2016) [11] and Yang et al.
(2019) [12] highlight that in solidification process, conduction heat transfer is
the dominant heat transfer mechanism, while natural convection is dominant
in melting process. This last heat transfer mechanism in solidification mode
has one order of magnitude lower than that in melting one. In fact, as
reported in the paper of Yang et al. (2019) [12], using natural convection
model is almost the same as using pure conduction model to analyze PCM
solidification processes. Therefore, in the simulation of discharging mode,
natural convection can be neglected.

In the present study, it is assumed that conduction is the only heat trans-
fer mechanism occurring inside the LHTESS. Consequently, the governing
equation, which models the steady-state thermal response of the system, is
formulated for the entire physical domain:

−k∇2T = QGEN (3.5)

Here, the first term accounts for the diffusive heat transfer driven by the
thermal conductivity.

The thermophysical properties of aluminium fin and PCM are summa-
rized in Tab. 3.3.

The Heat Transfer Interface of COMSOL®Multiphysics sets up and
solves the heat transfer in solids through heat diffusion based on Fourier’s
law of heat conduction. This law establishes a linear relationship between the
thermal heat flux q and gradient of the temperature field ∇T . The energy
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Table 3.3: Materials properties

Description Symbol Value in SI units
Thermal conductivity kAl 180[W/(m ·K)]
Thermal conductivity kPCM 0.15[W/(m ·K]
Latent heat of melting LPCM 200[kJ/kg]
Density ρPCM 800[kg/m3]

balance equation for stationary problems in solids is written as follows:

ρCputrans · ∇T +∇ · (q + qr) = Q+ q0 +Qted (3.6)

with
q = −k∇T (3.7)

where:

• ρ is the density measured in [kg/m3]

• Cp is the specific heat capacity measured in [J/(kg ·K)]

• T is the absolute temperature measured in [K]

• utrans is the velocity vector of translational motion measured in [m/s]

• q is the conductive heat flux measured in [W/m2]

• qr is the radiative heat flux measured in [W/m2]

• Q contains additional heat source and is measured in [W/m3]

• q0 is the inward heat flux measured in [W/m2]

• Qted is the thermo-elastic damping measured in [W/m3]

• k is the thermal conductivity measured in [W/(m ·K)]

The energy conservation equation describes the thermal energy transport
for predicting the temperature field distribution. Considering the Eq. 5.31,
the conductive heat flux depends only on the thermal conductivity and the
minus sign is due to the fact that positive heat transfer is directed towards
negative temperature gradient. This is true for isotropic material, i.e. mate-
rial with equal thermal conductivity in any direction. The knowledge of the
velocity field utrans is not required, since natural convection can be ignored.
The terms q0 and Qted disappear from Eq. 5.30 because the system is adi-
abatic and no coupling between the strain and temperature profile occurs.
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Furthermore, no radiation is transmitted as well as no additional heat source
are applied. Consequently, qr and Q are deleted from Eq. 5.30.

The solution domain is discretized into 5837 elements using an unstruc-
tured mesh consisting of triangular elements with a grid size of 1 [mm].

Figure 3.5: Geometric model with mesh details.

As shown in Fig. 3.5 the grid consists of triangular elements. If one needs
to conduct a more accurate analysis, could select three different mesh sizes.
The finest mesh is required in regions where greater gradients are expected,
while the coarsest mesh density is applied to areas where lower changes in
the numerical solution occur. Furthermore, to get an accurate solution from
fin base to fin tip, it is necessary to locate a high mesh density zone around
the fin tip.

3.3.3 Computational implementation
The study step and solver configuration are set-up in the Study branch of
COMSOL.

TheMUltifrontal Massively Parallel Sparse direct Solver (MUMPS)
algorithm is selected to obtain the temperature field distribution.

A constant (Newton) non-linear solver is implemented. Furthermore, for
favouring the convergence trend of a non-linear problem the Jacobian matrix
is updated at each iteration. The relative tolerance is set to 10−7.

3.4 Response Surface Method
Before conducting a SO, it is advisable to develop a Response Surface
Method (RSM), which considers the size and shape of the aluminium fin.
The implementation of this iterative process is necessary to acquire a better
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understanding about what to expect from a thermal viewpoint. Thanks to
several experiments the right insights will be extracted to link inputs to
output response.

The aim of the response surface tool is to combine many different inputs,
observe impact on the outcomes and search the design parameters having a
large effect on the objective function, accelerating the whole SO process.

To generate the response surface, target function and all constraint re-
quirements need to be selected. Moreover, based on the designer’s judgment,
it could be necessary to evaluate a wide number of design points, to get
an accurate response surface nearer the real solutions of the system. This
way to proceed provides a performance map to visualize the behaviour of
a process/system, analyzing specific sets of data. Scattering uniformly the
experiments in the design space, the overall performance trend can be cap-
tured. Fig. 3.6 illustrates the workflow scheme for the implementation of a
DoE procedure.

START

Select design
variables for DoE and

objective function

Set variables range

Run simulations

Create DoE matrix

Generate response
surface

STOP

Figure 3.6: Block diagram of the DoE methodology.
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The DoE strategy couples a model developed in COMSOL with a M-file
using the Livelink™for MATLAB®. This is a very useful tool when it is
necessary to integrate a COMSOL Finite Element Analysis (FEA) with
the numerical computation capability of MATLAB.

The M-file, i.e. MATLAB scripts, is executed for exploring the design
space and thus to evaluate a wide range of possible configurations of the fins.
With this type of workflow, a design engineer gets more detailed information
to address the subsequent SO. In fact, knowing what geometric configurations
yield a significant performance improvement, the design variables domain can
be reduced. Narrowing the domain of the allowable variations of independent
variables, the design optimization procedure can be accelerated. This is
particularly evident when developing a complex products and/or processes
with many different input parameters.

3.4.1 Implementation of the MATLAB program
The purpose of the MATLAB code is to investigate how the response of
interest changes varying values of the shape design variables. The M-file
helps speed-up the COMSOL simulations and collect all input and output
data of interest.

As a first step of the design optimization, 25 shape designs are evaluated
by modifying, in each iteration of the algorithm, the value assumed by two
input parameters:

• Fin branch inclination angle: θ.

• Fin branch length: L2.

q

L1

L2

Figure 3.7: Fin geometry parameters.
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The first section of the script used for creating the performance map, i.e.
a surface plot that describes overall average temperature depending on the
inclination angle θ and longitudinal length L2, is shown below.
%% Generate output Tavg
% R2 and theta are the independent v a r i a b l e s or degree s o f freedom

%−−−−−
% Input data
%−−−−−
i =1; j =1;k=1; %I t e r a t i o n counter s
R2Val =0 . 0 2 : 0 . 0 0 5 : 0 . 0 4 ; thetaVal =15 : 7 . 5 : 4 5 ; %Values o f the input

v a r i a b l e s

%−−−−−
% I t e r a t i o n loop over the f i r s t degree o f freedom , i . e . R2
%−−−−−
fo r i =1: l ength (R2Val )

%−−−−−
% I t e r a t i o n loop over the second degree o f freedom , i . e . theta
%−−−−−
fo r j =1: l ength ( thetaVal )

L2=R2Val ( i ) ;
L1=0.06−L2 ;
ang le=thetaVal ( j ) ;
model . param . s e t ( 'R1 ' ,L1)
model . param . s e t ( 'R2 ' ,L2)
model . param . s e t ( ' theta ' , ang le )
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
Tav=mphtable (model , ' t b l 1 ' )
%−−−−−
% Output
%−−−−−
TavgVal ( k )=Tav . data ; %Vector to s t o r e Tavg
k=k+1;

end
end

Throughout the iterative process, it has to take into account the pre-
scribed fin surface area to meet the design specification set. If the cross
section surface area occupied by the fins changes from one numerical simu-
lation to another, the value of energy storage capacity will be different, as
suggested in Sheikholeslami (2018) [8]. The area constraint condition can be
satisfied evaluating it at every iteration, verifying the following equality:

L1 = 0.06− L2 (3.8)

In Eq. 4.13, L2 is the independent variable and L1 is the dependent one.
Gathering values of independent variables employed and numerical re-

sults obtained together, the response surface may be generated. Once the
performance map is displayed, it is possible to understand what shape design
greatly minimizes the target function.

To accomplish this, one additional phase is required. In fact input and
output data of interest must be put in matrix form. The first column of the
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matrix will correspond to the vector of lengths R2,V al, the second column
to the vector of angles thetaV al and the last one to the vector of average
temperature over the whole computational domain Tavg,V al. Consequently,
matrix M becomes

M25,3 =


R2V al1,1 thetaV al1,2 TavgV al1,3
R2V al2,1 thetaV al2,2 TavgV al2,3

... ... ...
R2V al25,1 thetaV al25,2 TavgV al25,3


When data are well organized in matrix form, post-processing can be

carried out using the following code:
%% Post−process

X = M( : , 1 ) ;
Y = M( : , 2 ) ;
Z = M( : , 3 ) ;
%−−−−−
% Obtain g r id data
%−−−−−
[ xGrid , yGrid ] = meshgrid ( l i n s p a c e (min (X) ,max(X) ) , l i n s p a c e (min (Y) ,max(Y) ) ) ;
%−−−−−
% Evaluate i n t e r p o l a t ed su r f a c e with ' cubic ' opt ion
%−−−−−
zGrid = gr iddata (X( : ) ,Y( : ) ,Z ( : ) , xGrid ( : ) , yGrid ( : ) , ' cub ic ' ) ;
zGrid = reshape ( zGrid , s i z e ( xGrid ) ) ;
%−−−−−
% Plot contours
%−−−−−
f i g u r e
contour ( xGrid , yGrid , zGrid , ' ShowText ' , ' on ' , ' LineWidth ' , 1 )
hold on ; s c a t t e r (X,Y, 'om ' , ' Display ' , ' 100G OM4' ) %magenta
colormap ( ' j e t ' ) ; c o l o rba r ;
t i t l e ( ' (b ) Contours o f T_{avg} ' , ' f o n t s i z e ' ,12 , ' f ontwe ight ' , ' bold ' ) ;
x l ab e l ( 'R_2 [mm] ' , ' f o n t s i z e ' ,10 , ' f ontwe ight ' , ' bold ' ) ;
y l ab e l ( ' \ theta [ deg ] ' , ' f o n t s i z e ' ,10 , ' f ontwe ight ' , ' bold ' ) ;
z l a b e l ( 'T_{avg} [K] ' , ' f o n t s i z e ' ,10 , ' f ontwe ight ' , ' bold ' ) ;
g r i d on ; box o f f ;
%−−−−−
% Plot map
%−−−−−
f i g u r e
s u r f ( xGrid , yGrid , zGrid )
colormap ( ' j e t ' ) ; c o l o rba r ;
t i t l e ( ' ( a ) Map o f T_{avg} ' , ' f o n t s i z e ' ,12 , ' f ontwe ight ' , ' bold ' ) ;
x l ab e l ( 'R_2 [mm] ' , ' f o n t s i z e ' ,10 , ' f ontwe ight ' , ' bold ' ) ;
y l ab e l ( ' \ theta [ deg ] ' , ' f o n t s i z e ' ,10 , ' f ontwe ight ' , ' bold ' ) ;
z l a b e l ( 'T_{avg} [K] ' , ' f o n t s i z e ' ,10 , ' f ontwe ight ' , ' bold ' ) ;
g r i d on ; box o f f ;

Response surface and isolevel curves are displayed in Fig. (a) and (b) 3.8.
The graphical findings of the response surface analysis help get a good

visual of the performance map, which guides the design optimization strategy.
Indeed, it can be concluded that the fin branch length L2 has a significant
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Figure 3.8: (a) Response surface (b) Isolevel curves.

impact on the enhancement of thermal penetration depth into the PCM, i.e.
the conductive heat is transferred more rapidly.

The experimental design approach described above, has huge benefits, es-
pecially in terms of simulation time saved, which can be the bottle neck both
in purely academic study and industrial applications. This tool can shorten
simulation time of the design optimization procedure reducing the number
of degrees of freedom (DoF) below the initial set of inputs by discarding
factors having low impact on output response. Therefore, design engineers
may select the best set of input variables for achieving the desired goal.

3.5 Steady-state single-objective SO with one
DOF

The algorithm begins by initializing the upper and lower bounds of the design
variable and computing relations between golden ratio and initial points d
and c. The overall average temperature Tavg is selected as objective function
for thermal performance evaluation of the fin configuration.
t=2/(1+ sq r t (5 ) ) ;
c=a∗(1−t )+b∗ t ;
d=a∗ t+b∗(1−t ) ;
DOF=c ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
Tav=mphtable (model , ' t b l 1 ' )
Fc=Tav . data ;
DOF=d ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
Tav=mphtable (model , ' t b l 1 ' )
Fd=Tav . data ;
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Subsequently, the main loop of the algorithm is executed.
i f Fd<Fc

b=c ;
c=d ;
Fc=Fd ;
d=a+(1−t ) ∗(b−a ) ;
DOF=d ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
Tav=mphtable (model , ' t b l 1 ' )
Fd=Tav . data ;

e l s e
a=d ;
d=c ;
Fd=Fc ;
c=a+t ∗(b−a ) ;
DOF=c ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
Tav=mphtable (model , ' t b l 1 ' )
Fc=Tav . data ;

end

The above loop is iteratively evaluated in order to discover the optimal
design variable that minimizes the objective function, until the stopping cri-
teria are fulfilled.
%−−−−−

% Plot convergence h i s t o r y
%−−−−−
f i g u r e (2 )
x=0:k ;
y=tolGolden ;
l o g l o g (x , y∗ ones ( s i z e ( x ) ) , 'b−' , ' LineWidth ' , 2 ) ; hold on ;
l o g l o g (k , errGolden , ' rx ' , ' LineWidth ' , 2 ) ; g r i d on ; hold on ;
xlim ( [ 0 k ] ) ;
yl im ([10^−2 10^2 ] ) ;
t i t l e ( ' Convergence h i s t o r y o f the GSS ' ) ;
x l ab e l ( ' I t e r a t i o n k ' ) ;
y l ab e l ( ' Error ' ) ;
%−−−−−
% Check stopping c r i t e r i a
%−−−−−
i f errGolden<tolGolden

s t a tu s=' optimal ' ;
break ;

end
i f k>maxIter

s t a tu s=' stopped ' ;
break ;

end
%−−−−−
% Increment i t e r a t i o n counter
%−−−−−
k=k+1;

The numerical results obtained from this MATLAB code are displayed in
Fig. 3.9 and listed in Tab. 3.4.
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Figure 3.9: (a) GSS to minimize f(L, θ) (b) Convergence history of the solution.

Table 3.4: The best design solution

Description Symbol Value in SI units
Optimum shape design variable θBEST 37.339267[deg]
Maximum design objective f(θ)BEST 369.642466[K]
Number of iterations niter 29

Figure 3.10: (a) Temperature profile (b) Temperature contours.

3.6 Steady-state single-objective SO with two
DOF

The algorithm starts by pre-setting initial values and desired tolerance. Then,
the algorithm follows an initialization phase, which consists of two initial
vectors to store a set of three input points P , Q and R to determine a
parabola that passes through them.
%−−−−−
% Generate x−va lue s f o r p l o t i n g −−> s t a r t i n g va lue s o f R2 and theta
%−−−−−
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xVal (1 )=a ;
xVal (2 )=(b−a ) /2 ;
xVal (3 )=b ;
XVal (1 )=A;
XVal (2 )=(B−A) /2 ;
XVal (3 )=B;

Subsequently, the main loop of the algorithm, made up of two iterative steps,
is executed. The first step focuses on selecting an optimum value of L2, while
satisfying volume fraction constraint.

%−−−−−
% Loop over the f i r s t degree o f freedom , i . e . R2
%−−−−−
fo r i =1: l ength (XVal )

ang le=ThetaOpt ;
L2=XVal ( i ) ;
L1=0.06−L2 ;
model . param . s e t ( ' theta ' , ang le )
model . param . s e t ( 'R2 ' ,L2)
model . param . s e t ( 'R1 ' ,L1)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
Tav=mphtable (model , ' t b l 1 ' )
YVal ( i )=Tav . data ;

end
%−−−−−
% Po l y f i t −> compute the c o e f f i c i e n t s
%−−−−−
m=2;
Coe f f=p o l y f i t (XVal , YVal ,m) ;
%−−−−−
% Polyval −> eva luate the i n t e r p o l a t i n g polynomial
%−−−−−
F=po lyva l ( Coeff , XVal ) ;
%−−−−−
%Plot
%−−−−−
FF=@(Z) po lyva l ( Coeff , Z) ;
%−−−−−
% Find minimum of the parabola
%−−−−−
L2Opt=−Coef f (2 ) /(2∗ Coef f ( 1 ) ) ;
%l=L2Opt ;
%i f L2Opt<0
% L2Opt=−l ;

%end
Tavg1=FF(L2Opt) ;
%−−−−−
% Evaluate the r e s i due
%−−−−−
errParab1=abs (Tavg1−min (YVal ) )
%−−−−−
% f ( s ) ach i eve s n e i t h e r a minimum nor a maximum on (A,B)
%−−−−−
i f YVal (1 )<Tavg1

L2Opt=XVal (1 ) ;
e l s e i f YVal (3 )<Tavg1

L2Opt=XVal (3 ) ;
e l s e

L2Opt=XVal (3 ) ;
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end
R2Opt=L2Opt ;
R1Opt=0.06−R2Opt ;

Next, the second step focuses on selecting an optimum value of θ.
%−−−−−
% Loop over the second degree o f freedom , i . e . theta
%−−−−−
fo r i =1: l ength ( xVal )

L2=R2Opt ;
L1=R1Opt ;
ang le=xVal ( i ) ;
model . param . s e t ( ' theta ' , ang le )
model . param . s e t ( 'R2 ' ,L2)
model . param . s e t ( 'R1 ' ,L1)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
Tav=mphtable (model , ' t b l 1 ' )
yVal ( i )=Tav . data ;

end
%−−−−−
% Po l y f i t −> compute the c o e f f i c i e n t s
%−−−−−
m=2;
c o e f f=p o l y f i t ( xVal , yVal ,m) ;
%−−−−−
% Polyval −> eva luate the i n t e r p o l a t i n g polynomial
%−−−−−
f=po lyva l ( c o e f f , xVal ) ;
%−−−−−
% Plot
%−−−−−
f f=@(z ) po lyva l ( c o e f f , z ) ;
%−−−−−
% Check concav i ty o f the parabola
%−−−−−
i f c o e f f ( 1 )<0

s t a tu s='maximum ' ;
s p r i n t f ( ' Parabo l i c graph i s concave down ' ) ;

e l s e i f c o e f f ( 1 )>0
s t a tu s='minimum ' ;
s p r i n t f ( ' Parabo l i c graph i s concave up ' ) ;
cont inue

end
f i g u r e (1 ) ; hold on ;
z=a : 1 e−5:b ;
p l o t ( z , f f ( z ) , 'b−' , ' LineWidth ' , 1 ) ; g r i d on ;
t i t l e ( ' I n t e r p o l a t i n g polynomial ' ) ;
x l ab e l ( ' Design va r i ab l e theta [ deg ] ' ) ;
y l ab e l ( ' Average temperature [K] ' ) ;
%−−−−−
% Find minimum of the parabola
%−−−−−
AngleOpt=−c o e f f ( 2 ) /(2∗ c o e f f ( 1 ) ) ;
Tavg2=f f (AngleOpt ) ;
errParab2=abs (Tavg2−min ( yVal ) )
i f AngleOpt<xVal (2 )

xVal (3 )=xVal (2 ) ;
xVal (2 )=AngleOpt ;

e l s e
xVal (1 )=xVal (2 ) ;
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xVal (2 )=AngleOpt ;
end
ThetaOpt=AngleOpt ;

The above two loops are iteratively evaluated until the stopping criteria are
fulfilled.

%−−−−−
% Evaluate e r r o r
%−−−−−
errParab=min ( errParab1 , errParab2 ) ;
%−−−−−
% Plot convergence h i s t o r y
%−−−−−
f i g u r e (2 )
x=0:k ;
y=StopTol ;
l o g l o g (x , y∗ ones ( s i z e ( x ) ) , 'b−' , ' LineWidth ' , 1 ) ; hold on ;
l o g l o g (k , errParab , ' rx ' , ' LineWidth ' , 3 ) ; g r i d on ; hold on ;
xlim ( [ 0 k ] ) ;
yl im ([10^−4 10^2 ] ) ;
t i t l e ( ' Convergence h i s t o r y o f the QFS ' ) ;
x l ab e l ( ' I t e r a t i o n k ' ) ;
y l ab e l ( ' Error ' ) ;
%−−−−−
% Check stopping c r i t e r i a
%−−−−−
i f errParab<StopTol

s t a tu s=' optimal ' ;
d i sp ( ' So lu t i on converges ' ) ;
break ;

end
i f k>MaxIter

s t a tu s=' stopped ' ;
d i sp ( 'Maximum number o f i t e r a t i o n s exceeded ' ) ;
e r r o r ( 'No convergence ' ) ;
break ;

end
%−−−−−
% I t e r a t e the procedure
%−−−−−
k=k+1;

The numerical results obtained from this MATLAB code are depicted in Fig.
3.11 and listed in Tab. 3.5.

Table 3.5: The best design solution

Description Symbol Value in SI units
Optimum shape design variable θBEST 37.346642[deg]
Optimum shape design variable LBEST 40[mm]
Maximum design objective f(θ)BEST 369.642758[K]
Number of iterations niter 4
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Figure 3.11: (a) QFS to minimize f(L, θ) (b) Convergence history of the solution.

3.7 Time-dependent heat conduction problem

3.7.1 Geometry and boundary conditions
In this transient-state heat transfer analysis, the 2D axisymmetric geometry
remains the same as that sketched in Fig. 3.3. What changes is the addition
of one Initial Condition (IC) to specify:

T = TDir on ΓD
k∇T · n = 0 on ΓN
T = Tinit in Ω

(3.9)

where

• Tinit prescribes the domain temperature at the initial time. This tem-
perature is high for the discharging mode, due to stored energy. There-
fore, the PCM is at superheated liquid state.

The IC is illustrated in Fig. 3.12 and reported in Tab. 3.6.

Table 3.6: Boundary conditions

Description Symbol Value in SI units
Initial temperature Tinit 75+273.15=348.15 [K]

3.7.2 Governing equation
The additional materials data for aluminium fin and PCM are summarized
in Tab. 3.7.
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Figure 3.12: Initial temperature.

Table 3.7: Materials properties

Description Symbol Value in SI units
Specific heat capacity CpAl 880[J/(kg ·K]
Specific heat capacity CpPCM 840[J/(kg ·K]
Density ρAl 2750[kg/m3]

∆tmelt,PCM 8[K]
Tavgmelt,PCM 60 + 273.15 = 333.15[K]

The temperature field is controlled by the energy balance equation. To
simulate the behaviour under transient-state conditions the next equation
must be solved:

ρCp(
∂T

∂t
+ utrans · ∇T ) +∇ · (q + qr) = Q+ q0 +Qted (3.10)

with
q = −k∇T (3.11)

Here, the first term accounts for the thermal accumulation or release in the
system.

How it happens to Eq. 5.30, certain terms of the previous equation dis-
appear. To survive are only the first and third terms.

The PCM is modelled as solid material considering the latent heat as-
sociated with a melting/solidification process. The effective specific heat
capacity for the phase change modelling is a function of temperature and
can be written as

Ceff,PCM = Cp,PCM + LPCM
∆TSL

√
π
exp

−(T − Tavg melt)
2

∆T 2
SL

 (3.12)

where
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• ∆TSL is half of the phase change range.

• Tavg melt is the average phase change temperature.

The Gaussian curve of the specific heat capacity model for the considered
PCM is displayed in Fig. 3.13.

Figure 3.13: PCM specific heat capacity model.

As it is evident from the above figure, during the solidification process the
PCM releases latent heat of fusion. Therefore, the effective specific heat
capacity in the mushy region accounts for both sensible and latent heat.

The latent heat content of the PCM can change between 0 and LPCM ,
when the PCM is in the solid or liquid state, respectively. For the sake of
simplicity, it is assumed that the PCM liquid fraction σ, i.e. mass fraction
of the liquid phase, in the mushy zone is a linear function defined as:

Liquid : T > Tliq 1
Mushy : Tsol ≤ T ≤ Tliq

T−Tsol

Tliq−Tsol

Solid : T < Tsol 0
(3.13)

Here, Tliq and Tsol are the liquidus and solidus temperatures of PCM, respec-
tively. Tliq is the temperature at which the PCM starts to change from liquid
to solid phase and Tsol is the temperature at which the PCM completely
changes into solid phase. The linear variation of liquid fraction in the mushy
region is visualized in Fig. 3.14.
An example of an overall linear trajectory traced by the liquid fraction vari-
ation during solidification process is presented in the work of Lohrasbi et
al. [11]. As illustrated in that paper, the whole trend slightly deviates from
linearity only at the beginning and end of the discharging mode.
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Figure 3.14: Liquid mass fraction.

The PCM specific internal energy, which is the sum of latent and sensible
heat, can be calculated as

Utot,PCM = Cp,PCMT + σLPCM (3.14)

Here, Tinit and Tfin are the initial and final temperature of the discharging
process, respectively.

The volumetric energy density released by the PCM can be determined
from the following equation:

Etot = ρPCM(Cp,PCMT + σLPCM) (3.15)

Here, σ is the liquid fraction of the PCM ongoing phase change.
The design objective is to maximize the total heat transfer during the

discharging process. This goal is achieved by maximizing the Total Net
Heat Rate (TNHR). Selecting this dependent variable, the transient-state
thermal investigation can be carried out to discover the best fin shape design.
In fact, maximization of thermal diffusion corresponds to minimization of
average temperature over the whole solution domain and thus acceleration
of the solidification process. Moreover, using TNHR it is guaranteed that
the optimization problem is convex and hence there is one global optimum
solution. Reaching the lowest average temperature, the most efficient fin
geometry in rising thermal penetration depth into the PCM is found. This
approach is well explained in the work of Sheikholeslami (2018) [8].

Referring to the COMSOL User’s Guide [9], TNHR is the integral of
Total Heat Flux, i.e. convective plus conductive and radiative heat flux,
over all external boundaries:

TNHR =
∫
∂Ωext

(ρuEi − k∇T + qr) · ndω (3.16)

where
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• Ei is the internal energy defined as:

(a) Ei = H for solid domains
(b) Ei = H − p/ρ for fluid domains

Here, H is the enthalpy.

Eq. 3.16 represents the sum of incoming and outgoing total heat flux through
the system.

The grid mesh used to carry out the 2D simulation is the same as that
displayed in Fig. 3.5.

3.7.3 Computational implementation
Both of the numerical solvers chosen in Subsec. 3.3.3 are again used.

The absolute and relative tolerances are set to 0.001 and 0.01, respectively.
The tolerance factor, which multiplies the relative tolerance, is tuned to
0.0001.

The time-dependent SO problem is solved using a time integration of the
PDEs choosing the Backward Differentiation Formula (BDF) method.
This computational scheme is chosen with a minimum and maximum order of
1 and 5, respectively. Moreover, the Nonlinear controller is implemented
for an efficient time-step control.

3.8 Transient-state single-objective SO with
two DOF

To perform solid heat transfer simulations to discover the best possible shape
design, a transient-state heat conduction in solids analysis is performed.

To conduct optimization for searching the optimal shape design it is re-
quired to compute one derived value and then store one table cell value. As
mentioned in the previous section, the TNHR reached after 3600 seconds from
the beginning of the simulation is selected as the objective function f(θ) to be
maximized. This choice is due to the primary design goal, which consists in
improving the conductive heat transfer at the most possible. Therefore, con-
sidering that the low thermal conductivity of the PCM makes the discharging
mode slow during phase transition, it is required to seek the conducting path
that more quickly accelerates the solidification rate. This search corresponds
to find the maximum value of the target function.

After being evaluated, the heat transfer variable is stored in one table
consisting of two columns. Since the data type is struct it is necessary to
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work with structures and arrays. Using the dot operator it is possible to
refer to individual elements within the structure, which are known as fields.

s=struct(’field1’,value1,’field2’,value2)

where

• field1, field2 are the field names that correspond to Time[s] and
TNHR[W ], respectively.

• value1, value2 are the data assigned to those fields.

To access the elements of a struct is employed an array, whose elements are
numbers. Instructions to extract only the value of interest are

Delete Column(0) from the struct, i.e. the table
s(1).f=table.data
v=[];
v(1)=s(1).f

Here, the first instruction removes left column from table of results, then
value stored in that table is associated to a struct created. Next, an array is
declared, and the last instruction assigns the structure value to that array.

The algorithm starts by pre-setting initial values and desired tolerance.
%−−−−−
% I n i t i a l i z a t i o n
%−−−−−
DOF=c ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e t ( ' t ab l e ' , ' t b l 1 ' ) ;
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
model . r e s u l t . t ab l e ( ' tb l 1 ' ) . removeColumn (0) ;
TNHR=mphtable (model , ' t b l 1 ' )
F(1 ) . c=TNHR. data
Fc = [ ] ;
Fc (1 )=F(1) . c
DOF=d ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e t ( ' t ab l e ' , ' t b l 1 ' ) ;
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
model . r e s u l t . t ab l e ( ' tb l 1 ' ) . removeColumn (0) ;
TNHR=mphtable (model , ' t b l 1 ' )
F(1 ) . d=TNHR. data
Fd= [ ] ;
Fd(1)=F(1) . d

Then, the main loop of the algorithm continues until the stopping conditions
are fulfilled. At each code iteration, one design objective is recomputed.
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%−−−−−
% Main loop
%−−−−−
whi le t rue

i f Fd(1 )>Fc (1 )
b=c ;
c=d ;
Fc (1 )=Fd(1) ;
d=a+(1−t ) ∗(b−a ) ;
DOF=d ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e t ( ' t ab l e ' , ' t b l 1 ' ) ;
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
model . r e s u l t . t ab l e ( ' tb l 1 ' ) . removeColumn (0) ;
TNHR=mphtable (model , ' t b l 1 ' )
F(1 ) . d=TNHR. data
Fd= [ ] ;
Fd(1)=F(1) . d

e l s e
a=d ;
d=c ;
Fd(1)=Fc (1 ) ;
c=a+t ∗(b−a ) ;
DOF=c ;
model . param . s e t ( ' theta ' ,DOF)
model . study ( ' std1 ' ) . run
model . r e s u l t . numerica l ( ' av1 ' ) . s e t ( ' t ab l e ' , ' t b l 1 ' ) ;
model . r e s u l t . numerica l ( ' av1 ' ) . s e tRe su l t
model . r e s u l t . t ab l e ( ' tb l 1 ' ) . removeColumn (0) ;
TNHR=mphtable (model , ' t b l 1 ' )
F(1 ) . c=TNHR. data
Fc = [ ] ;
Fc (1 )=F(1) . c

end
f i g u r e (1 )
p l o t ( c , Fc (1 ) ,d , Fd(1) , ' rx ' , ' LineWidth ' , 2 ) ; g r i d on ; hold on ;

%−−−−−
% Plot convergence h i s t o r y
%−−−−−
errGolden=abs ( c−d) ;
f i g u r e (2 )
x=0:k ;
y=tolGolden ;
l o g l o g (x , y∗ ones ( s i z e ( x ) ) , 'b−' , ' LineWidth ' , 2 ) ; hold on ;
l o g l o g (k , errGolden , ' rx ' , ' LineWidth ' , 2 ) ; g r i d on ; hold on ;
xlim ( [ 0 k ] ) ;
yl im ([10^−3 10^2 ] ) ;
t i t l e ( ' Convergence h i s t o r y o f the GSS ' ) ;
x l ab e l ( ' I t e r a t i o n k ' ) ;
y l ab e l ( ' Error ' ) ;
%−−−−−
% Check stopping c r i t e r i a
%−−−−−
i f errGolden<tolGolden

s t a tu s=' optimal ' ;
break ;

end
i f k>maxIter

s t a tu s=' stopped ' ;
break ;

end
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%−−−−−
% Increment i t e r a t i o n counter
%−−−−−
k=k+1;

end

The numerical results obtained from this MATLAB script are depicted
in Fig. 3.15 and summarized in Tab. 3.8.
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Figure 3.15: (a) GSS to maximize f(θ) (b) Convergence history of the solution

Table 3.8: The best design solution

Description Symbol Value in SI units
Optimum shape design variable θtrans,BEST 42.5456[deg]
Maximum design objective f(θ)trans,BEST 28.02[W ]
Number of iterations niter 15

The temperature profiles over the computational domain and tempera-
ture contours of the optimal shape design are calculated in COMSOL and
illustrated in the figures below.

Figure 3.16: Temperature fields. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

The best shape design enables to reach an overall average temperature of
328.98 [K] after 3600 seconds.
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Figure 3.17: Temperature contours. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

The liquid fraction evolution during the solidification process is displayed
in the following figures.

Figure 3.18: Liquid fraction fields. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

The figures presented above clearly show that the solidification initially starts
around the metal fin and then solid phase gradually grows and spreads
throughout the storage tank.

The heat transfer variables are analyzed to map the thermal performance.
Average temperature history and thermal energy storage density are the most
significant performance indicators that must be controlled, since they provide
direct feedback on design fitness.

Figure 3.19: (a) Tavg evolution (b) Etot released
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It can be observed from Fig. (a) 6.19 that the average temperature profile
experiences a steep decline in the beginning of the discharging process and
then it continues following a steady downward trend. The discharging process
of the PCM can be divided into three steps. The first phase is characterized
by sensible heat release while temperature sharply falls. At the second step,
PCM releases latent heat and the temperature continues to decrease, but
more slowly. In the third phase, PCM releases sensible heat. As it is shown
in Fig. (b) 6.19 Etot follows a similar trajectory as that traced by Tavg. After
an initial sudden fall, the total energy released continuously drops along the
discharging mode.

In addition to the performance parameters described above, the overall
internal energy change and global energy release by the PCM, during its
discharging process, can be estimated as follows:

∆Utot,PCM =
∫ T

Tref

Cp,PCMdT + σLPCM (3.17)

∆Etot,PCM = ρPCM

(∫ T

Tref

Cp,PCMdT + σLPCM

)
(3.18)

The overall internal energy change is found to be 1.1546 · 105[J/kg], while
the global energy release is 0.9237 · 108[J/m3].
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Chapter 4

Topology Optimization
problem formulation

4.1 Topology optimization
The presentation in this section is based upon the works of Tobe (2015) [1]
and Deaton et al (2014) [19].

The analysis of several papers reveals that most of the efforts have been
directed to the deep investigation of stationary heat conduction inside a
rectangular design domain, while time-dependent TO has been less studied.

In the field of thermal engineering, TO is an iterative design approach
that seeks to find the best possible or optimal layout for a high conducting
path by properly changing material distribution inside a given physical design
space, so that the resulting design meets all the prescribed design require-
ments, such as those imposed by performance targets and manufacturability
conditions. Therefore, TO is usually performed for discovering innovative
and non-intuitive designs during the conceptual or preliminary design phase.

Density-based TO is the mathematical tool to find out where to place
solid or void at every point within a design domain to generate a black and
white tree-like structure.

To reach the main goal of the TO process, an artificial density field, which
takes values between 0 (empty space) and 1 (full material) is introduced for
distinguishing one material from another, as shown in Fig. 4.1. Consequently,
this pseudo-density field represents the design variable in the TO method.

A density-like variable can be mathematically defined as follows
s(Ω) ∈ [0, 1]
s(Ω) = 1 ⇐⇒ ∈ Ωmat

s(Ω) = 0 ⇐⇒ ∈ Ω \ Ωmat = Ωempty

(4.1)
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Figure 4.1: Pseudo-density variable.

where

• Ω is the design domain.

• Ωmat is the region containing material.

• Ωempty is the empty space.

• 0 and 1 are the lower and upper bounds of the artificial density variable.

4.2 Density-based approach
In this section, it will be described how to steer the design solution towards
black and white layout, or solid and void. This methodology focuses on the
works of Deaton et al. (2014) [20], Verbart et al. (2015) [21] and Rojas
Labanda (2015) [22], Koga et al. (2013) [23]. In the next Subsec. 4.2.1 it
will further extend this presentation.

The most common method used for solving TO problem is the Solid
Isotropic Material with Penalization (SIMP), which is classified as a
density-based approach. The primary goal of the SIMP scheme is to con-
verge to a binary design, where the pseudo-density variable may be equal to
0, representing the PCM with its low thermal conductivity, or to 1, repre-
senting the aluminium with its high thermal conductivity. It should be noted
that this artificial density variable does not correspond to the mass density
field measured in [kg/m3]. This density-like variable represents the design
variable for the optimization procedure.

When a topology design presents several elements with an intermediate
artificial density is not manufacturable. Therefore, to avoid gray intermedi-
ate regions in the resulting design it is necessary to implement a non-linear
relation, which pushes the gray transition zones to a discrete values 0 and 1.

The SIMP model is based on a power law equation:

ζ(s) = sp, p ≥ 1 (4.2)

where
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Figure 4.2: SIMP penalty functions

• s is the density-like variable

• p is the penalization coefficient

As can be seen in Fig. 4.2, the SIMP method introduces a monotonous
function in order to ensure the convexity of the design optimization process
and hence to limit the presence of local minima. In this manner a global
optimum solution can be reached.

4.2.1 SIMP model for TO
As explained in the previous section, one of the key themes of a TO approach
is the material interpolation model that describes how the physical properties
are influenced when a variation from one material to another occurs.

The general form of the SIMP penalization scheme for scaling the material
properties is given by

αSIMP (s) = αvoid + (αsolid − αvoid)sp, p > 1 (4.3)

where

• αSIMP (s) represents a base property of a given isotropic material.

• αvoid and αsolid are the material properties of the solid and empty
phases, respectively.

• s is the fictitious density variable.

• p is the penalty exponent
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From the standpoint of thermophysical material properties modelling, α may
be a thermal conductivity, a specific heat capacity or a mass density.

As it is highlighted in Eq. 4.3, one will choose to use p > 1 to expo-
nentially penalize isotropic material in terms of pseudo-density variable. For
problems where the volume constraint is prescribed, if a value of p much
greater than 1 is set, the gray transition zones are highly penalized. Con-
sequently, it can be noted that the penalization coefficient impacts on the
quality of the solution.

Design engineers wish to obtain a pure or close to 0 and 1 material layout.
Rojas (2016) [26] underlines that the SIMP method does not regularize the
TO problem, because the resulting layout is not completely clear of gray-
scale. Therefore, to achieve a fully black and white layout, i.e. a 0 and
1 topology, the material model must be well-conditioned specifying an ad-
ditional design constraint on the perimeter for 2D structure or surfaces for
3D structure or sequentially applying filter and projection technique. These
themes will be analyzed in the next section.

4.3 Regularization
Even though the SIMP model heavily penalizes the intermediate values of the
density-like variable s, it does not suppress the numerical instabilities, such
as the formation of checkerboard material distribution patterns and small-
scale changes of the tree-like configuration. As reported by Soprani et al.
(2016) [29] when implementing the SIMP methodology, it cannot be ensured
the convergence to a global optimum solution.

As explained by Zhang et al. (2020) [27] and Soprani et al. (2016) [29],
in order to regularize the pseudo-density field and obtain sharper interface
boundaries between material and void, it is introduced the following Partial
Differential Equation (PDE) with a homogeneous Neumann BC:−r2

fil∇2sf + sf = s in Ω
∇sf · n = 0 on ∂Ω

(4.4)

where

• rfil denotes the filter radius, which determines the minimum length
scale of the design features that may appear in the final layout. This
parameter is defined as 0.5 times the actual mesh size. Therefore, a
value of 0.5 · hgrid means that the artificial density of an element is
projected over all the neighbouring elements whose physical distance
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between the centroids of i − th and j − th elements is lower than or
equal to half of the element size.

• sf is the filtered design variable.

The first equation written above is known as Helmholtz Filter Method to
filter small-scale topology design features and thus to smooth the interfaces
between material and void, i.e. empty space.

Since density-like filtering produces large fuzzy regions, i.e. a band of
intermediate density-like values, which are difficult to interpret and from
an optimization standpoint are undesirable, the Helmholtz PDE needs to
cooperate with the hyperbolic tangent projection method proposed by Wang
et al. (2011) [28]:

sp = tanh(βη) + tanh(β(sf − η))
tanh(βη) + tanh(β(1− η)) (4.5)

where

• sp is the projected design variable.

• η denotes the projection threshold.

• β is the projection slope, which controls the projection steepness.

This Heaviside step function transforms a filtered variable into a projected
one, alleviating the problem associated with the gray transition zones. In-
deed, this scheme projects every pseudo-density variable above and below a
certain threshold value towards 0 and 1, respectively.

It can be noticed from Fig. (a) 4.3 that values of sf greater or lower,
respectively, than η are projected to 1 or 0, with a speed depending on β:

0 if sf < η

η if sf = η

1 if sf > η

(4.6)

4.4 Discrete TO problem formulation
This section argues the general mathematical formulation of a density-based
TO problems related to the researches of Deaton et al. (2014) [20] and Koga
et al. (2013) [23] and studies of Verbart et al. (2015) [21] and Rojas Labanda
(2015) [22].
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Figure 4.3: Heaviside step function.

A generalized TO problem addresses the engineering goal of placing a
certain material within a given design domain, maximizing or minimizing
an objective function f(s) and considering a set of constraint functions c(s).
This mathematical problem can be formulated as follows:

find s(Ω)
min f(s)
subject to c(s) ≤ 0
where VΩ =

∫
Ω sdΩ = VfVmat

0 ≤ s ≤ 1

(4.7)

or equivalently the discrete optimization problem can be written in matrix
form 

find s(Ω)
min f(s) = UT [K(s)]U = UTF
subject to [K(s)]U = F
where VΩ =

∫
Ω sdΩ = VfVmat

0 ≤ s ≤ 1

(4.8)

where

• f(s) is the design objective, which has to be minimized.

• U is the nodal unknown vector, i.e. the design solution.

• K(s) is the global stiffness matrix.

• F is the nodal load vector.

• s is the density-like field vector.

45



• VΩ is the design domain volume.

• Vmat is the volume occupied by the material.

• Vf is the prescribed maximum volume fraction requirement.

[K(s)]U(s) = F is the discrete PDE version of the TO problem.

4.4.1 TO of heat conduction problem
In this subsection, it will be discussed how to express a general formulation
of the thermal diffusive TO problem. This topic is based on the papers of
Ikonen et al. (2018) [18] and Manuel et al. (2017) [19].

Many studies have investigated TO for the design optimization of thermal
system using heat conduction. This is because the heat transfer enhancement
is very important in both research and industrial practice.

A summary of benefits includes:

• An increase in heat transfer performance for a given quantity of metal
material.

• A cost savings thanks to a decrease in size.

Selecting the optimal topology of a certain thermal system, it will be deter-
mined the heat transfer enhancement, because this performance characteris-
tic depends on the geometry and conducting path configuration.

Applying a discretized optimization model, TO of steady-state heat con-
duction problem can be mathematically stated in finite element formulation
as follows: 

find s(Ω)
min f(s) = T T [K(s)]T = T TQ
subject to [K(s)]T = Q
where V(s) =

∫
Ω sdΩ = VfVΩ

0 ≤ s ≤ 1

(4.9)

where

• f(s) is the objective function to be minimized.

• T is the nodal temperature vector.

• K(s) is the global thermal conductivity matrix of heat transfer equa-
tion.
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• Q is the nodal applied thermal load vector.

It is important to point out that, since temperature is a scalar quantity, there
is only one DOF per node.

U(s)=[K(s)]−1Q and [K(s)] formed by the assembly of all element ther-
mal conductivity matrices expressed as

[K(s)] =
E∑
e=1

ke = kSIMP (se)k0 (4.10)

where

• ke denotes the stiffness matrix in element e, numbered as e = 1, ..., E.

• se refers to element artificial density variable representing the volume
fraction occupied by the metallic material.

The governing equation of heat transfer by conduction, for any solid do-
main, is:

k∇2T +QGEN = 0 (4.11)
The TO model becomes

find s(Ω)
min f(s)
subject to k(s)∇2T +QGEN = 0 inΩ

T = TDir onΓD
k(s)∇T · n = 0 onΓN

where V(s) =
∫

Ω sdΩ = VfVΩ

0 ≤ s ≤ 1

(4.12)

The weak formulation of the steady-state heat conduction problem can
be written as follows: ∫

Ω
q(s)∇T −QGENdΩ = 0 (4.13)

Here, q(s) = −k(s)∇T is the conductive heat flux.
Therefore, the general optimization objective is stated as

Minimize f(s) =
∫

Ω
k(s)∇T · ∇TdΩ =

∫
Ω
k(s)

(∂T
∂x

)2

+
(
∂T

∂y

)2
 dΩ

(4.14)
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or equivalently one can consider an alternative form for the design objective.
This second option does not explicitly comprise the effect of the loading
condition and is defined as follows

Minimize g(s) = 1
AΩ

∫
Ω
TdΩ (4.15)

Here, it is interesting to observe that the first target function may be rep-
resented by the dot product (or scalar product) between the transpose of
the nodal temperature vector and nodal applied thermal load vector, i.e.
f(s) = T TQ.

4.5 How to solve the TO problem
This section focuses on how to solve the TO problem. This presentation
is based upon the book of Christensen et al. (2009) [24], study of Rojas
Labanda (2015) [22] and paper of Burger et al. (2013) [25].

TO problem is solved using the Globally Convergent version of the
Method of Moving Asymptotes (GCMMA) that is implemented in
COMSOL with the solver name MMA. This mathematical programming
scheme has been developed by Svanberg in 1995 to solve structural optimiza-
tion problems.

The properties of GCMMA are:

• Convexity, which is helpful in solving design optimization problems
involving non-monotonous functions.

• Sequentially, which is expressed by successive convex approximate sub-
problems, even though the starting problem is non-convex. The solu-
tion of each sub-problem is used for a new approximation.

This algorithm creates convex approximations of both the design objective
and constraint functions, even though the starting problem is non-convex. In
this way the problem functions present a U shape with a minimum between
two vertical asymptotes.

For iteration index k = (0; 1), i.e. when no information about the previous
iterations may be exploited, the moving asymptotes for design variable si are
updated according to the following rule:

Lki = ski − (UBi − LBi) Uk
i = ski + (UBi − LBi) for (4.16)

Here, Uk
i and Lki are the current upper and lower bounds of design variable,

respectively, which are changed during iterations.
for k ≥ 2
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• If (ski −sk−1
i ) and (sk−1

i −sk−2
i ) have opposite signs, implying oscillation,

the asymptotes are restricted, forcing them nearer to si:

Lki = ski − δ(sk−1
i − Lk−1

i ) Uk
i = ski + δ(Uk−1

i − sk−1
i ) (4.17)

• If (ski − sk−1
i ) and (sk−1

i − sk−2
i ) have equal signs, implying convergence

slowdown, the asymptotes are relaxed, pushing them away from si to
speed up the convergence:

Lki = ski − (sk−1
i − Lk−1

i )/δ Uk
i = ski + (Uk−1

i − sk−1
i )/δ (4.18)

Here, δ is a fixed real number less than 1.
In each iteration, the design variable must satisfy the following condition:

Lki < ski < Uk
i (4.19)

The solution procedure of the GCMMA algorithm for obtaining the op-
timal material distribution is illustrated in Fig. 4.4.
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Figure 4.4: Block diagram of the GCMMA scheme.
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Chapter 5

Thermal diffusive TO model

5.1 Simulation workflow
To implement the model for thermal TO of steady-state heat conduction in
a LHTESS is used COMSOL. For solving a heat diffusion TO problem in
response to a volumetric heat source the following COMSOL modules are
required:

• Heat Transfer (ht) to solve the thermal diffusion problem and hence
compute the temperature field distribution.

• Optimization (opt) to solve the constrained TO problem and thus
estimate the density-like field.

• Coefficient Form PDE (c) to solve the Helmholtz PDE and therefore
calculate the filtered density field.

TO process is looped over a series of design updates, each of which based
on the design obtained in the previous iteration step. The computational
workflow of a density-based TO approach is depicted in Fig. 5.1 and consists
of the next phases:

1. First, the design objective, constraints and bounds are selected and the
pseudo-density variable s is initialized. The initial solution consists of
a uniform material distribution of the design variable over all elements
in the design domain.

2. Second, the governing equations are solved to obtain the artificial den-
sity field.
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3. Third, the density-like field just calculated is regularized by means of
density filter and hyperbolic tangent projection to get the filtered sf
and projected sp density field.

4. Fourth, the target function f(s) and design constraints c(s) are evalu-
ated.

5. Fifth, if the topology design converges, the procedure is stopped, other-
wise the iterative process continues updating the pseudo density vari-
able, using the GCMMA. The optimization procedure is terminated
when variation of target function, between two consecutive numerical
outcomes, falls below a certain threshold defined a-priori.

Before proceeding with the pre-processing phase of the numerical sim-
ulation, it is pointed out that the TO strategy, which will be presented in
the following sections of this chapter, is a tailored approach developed for
the LHTESS under investigation. The major goal of this methodology is to
propose a guideline for the settings of the optimization parameters to obtain
successful designs.

5.2 Stationary heat conduction TO problem

5.2.1 Geometry and boundary conditions
Due to the symmetry nature of the system, the problem is solved as 2D
axisymmetric to simplify geometry and boundary conditions and decrease
the burden of computational complexity.

Fig. 5.2 sketches the geometry model consisting of a quarter circle.
The geometric parameters that are used to build the geometry model are

reported below.

Table 5.1: Geometric parameters

Description Symbol Value in SI units
Inner radius Rin 0.005[m]
Outer radius Rout 0.075[m]

The boundary conditions imposed are:
−k∇2T = QGEN in Ω
k∇T · n = 0 on ΓN
T = TDir on ΓD

(5.1)
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Figure 5.1: Flowchart of the TO.

where the volumetric heat source is defined as follows

QGEN = LPCM · ρPCM
∆t (5.2)

These BCs are reported in Tab. 5.2 and shown in the next figures.

5.2.2 Modified governing equations
The primary goal of this work is to implement a stationary thermal diffusive
TO model to search the best high conducting path, which minimizes the
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Figure 5.2: Quarter circle design domain.

Table 5.2: Boundary conditions

Description Symbol Value in SI units
Dirichlet boundary condition TDir 37.5+273.15=310.65 [K]
Time duration of discharging process ∆t 3600 [s]

Figure 5.3: (a) Dirichlet BC (b) Neumann BC (c) Volumetric heat generation.

mean temperature over the whole computational domain.
The material properties that are necessary to describe the steady-state

behaviour of the thermal system under investigation are tabulated in the
following table.

Table 5.3: Thermophysical properties

Description Symbol Value in SI units
Thermal conductivity kAl 180[W/(m ·K)]
Thermal conductivity kPCM 0.15[W/(m ·K]
Latent heat of melting LPCM 200[kJ/kg]
Density ρPCM 800[kg/m3]

The Heat Transfer module of COMSOL sets up and solves the heat trans-
fer in solids through pure heat conduction. The energy balance equation for
stationary problems in solids is written as follows:

ρCputrans · ∇T +∇ · (q(s) + qr) = Q+ q0 +Qted (5.3)
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with
q(s) = −k(s)∇T (5.4)

where:
• ρ is the density measured in [kg/m3]

• Cp is the specific heat capacity measured in [J/(kg ·K)]

• T is the absolute temperature measured in [K]

• utrans is the velocity vector of translational motion measured in [m/s]

• q(s) is the conductive heat flux measured in [W/m2]

• qr is the radiative heat flux measured in [W/m2]

• Q contains additional heat source and is measured in [W/m3]

• q0 is the inward heat flux measured in [W/m2]

• Qted is the thermo-elastic damping measured in [W/m3]

• k is the thermal conductivity measured in [W/(m ·K)]

5.2.3 Mesh independence study
A grid independence test is carried out to quantify how much the quality of
the mesh impacts on the simulation results. In fact, it is well known that the
mesh density and element shape affect both the solution accuracy and speed
of the solver. This is because a finer mesh can better capture local effects
than a coarser one.

This procedure of investigating accuracy is conducted to guarantee that
the used grid resolution is fine enough to capture all the physics involved in
the optimization problem. To reach a good balance between precision of the
numerical solution and available computing resources, a percentage change
in the objective function less than 1% between two successive simulations
results is established as termination criterion. If this condition is satisfied,
the mesh refinement is stopped, because the numerical solution is not more
influenced by the number of grid elements.

To better understand the influence of grid resolution over the resulting
layout, the mesh dependency analysis is conducted by performing the same
TO process with three different mesh sizes that are listed in the next table.

The entire computational domain is discretized using a mapped quadri-
lateral mesh for better control of the elements shape and size as displayed in
the figures below.
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Table 5.4: Mesh parameters

Description Symbol Value in SI units
Maximum mesh size hmax 0.002 [m]
Intermediate mesh size hint 0.001 [m]
Minimum mesh size hmin 0.0005 [m]

Figure 5.4: Mesh scheme. (a) hmax (b) hint (c) hmin

5.2.4 TO model
In this section, it will be presented how to set-up the constrained design
optimization problem.

A vast amount of papers on TO formulation for heat transfer enhancement
have been published. Consultation of several studies, such as You et al.
(2019) [16] and Haertel et al. (2018) [17], reveals that many efforts have
been directed towards the investigation of LHTESS. This is due to its high
volumetric energy density that drops the energy storage cost.

A proper tuning of the opt module is necessary to develop an accurate
numerical solution and hence to reach a well-designed fin pattern. To achieve
the best possible design, control variable field, integral objective and inequal-
ity constraints need to be set-up. The next steps are particularly critical, be-
cause the optimization process depends on the physics of the problem under
investigation.

The aim of this TO analysis is to efficiently distribute a fixed percentage of
highly conducting solid material throughout the design domain to determine
the optimum coral-like structure for improving the heat transfer performance.

The optimization strategy is implemented in the Optimization Module
of COMSOL using a quadratic discretization. Firstly, the optimization goal
has to be identified. In the opt interface the design objective is expressed as
Integral Objective function:

f(T, s) = 1
AΩ

∫
Ω
T (s)dΩ (5.5)

where:

56



• AΩ is the surface area of the solution domain

• T (s) is the temperature depending on the pseudo-density variable

The Eq. 5.32 represents the average temperature criterion. In fact, the TO
task is to minimize the mean temperature over the whole solution domain.
Additionally, it should be observed that for selecting the variable T as design
target an integration operator must be defined.

Secondly, the Control Variable Field defines the artificial density vari-
able s = s(x, y) as a scalar field. The Control Variable Bounds sets lower
and upper bounds corresponding to inequality constraints of the form

0 ≤ s(x, y) ≤ 1 (5.6)

Moreover, it is necessary to set initial value of the control variable equal to
γmax that is the ratio between the fin cross-sectional area and design domain
area

γmax = Afins
AΩ

(5.7)

The conductive material fraction is prescribed a-priori.

0 ≤
∫

Ω
s(x, y)dΩ ≤ γmaxAΩ (5.8)

This constrained quantity of high conductivity material is initially scattered
in a homogeneous manner within the problem domain and then through a
design optimization process the material distribution is changed to achieve
the optimal thermal conductive pattern.

Thirdly, the optimization problem is subject to two design requirements,
i.e. surface area and perimeter inequality constraints:

s

AΩ · γmax
= 1
AΩ · γmax

∫
Ω
s(x, y)dΩ (5.9)

Γ · (d(s, x)2 + d(s, y)2) = Γ ·
∫

Ω
|∇s(x, y)|2dΩ (5.10)

Here, Γ denotes a scaling factor, which is computed as follows:

Γ = h
′
h

′′

Afins
(5.11)

where

• h
′ is the current mesh size.
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• h
′′ is the parameter governing the size of details in the resulting layout.

The design restrictions introduce two regularization techniques that are nor-
malized with respect to the domain area and mesh scale, respectively. In
the opt module these limitations on the design variable are formulated as
Integral Inequality Constraints functions.

As previously mentioned in Sec. 5.2.2, the heat conduction under steady-
state conditions can be analyzed using the Fourier’s law

−k(s)∇2T = QGEN(s) (5.12)

Here, k(s) is the design-dependent thermal conductivity changing with the
density-like variable that can be calculated by means of the SIMP non-linear
interpolation method:

kSIMP (s) = kPCM + (kAl − kPCM)sp (5.13)

where

• kSIMP (s) is the effective thermal conductivity.

• p is the penalization coefficient, chosen to be 3.

The power-law interpolation scheme of the volumetric heat generation is the
same as that formulated in Eq. 5.13:

QSIMP (s) = (1− sp)QGEN (5.14)

As can be seen from the previous two equations, when s equals 1 a certain
element i has the highest thermal conductivity kAl and no volumetric heat
generation. Conversely, when s equals 0 a certain element i has the lowest
thermal conductivity kPCM and contributes to volumetric heat source.

These two mathematical models are shown in the next figures.

5.2.5 Triple regularization strategy
In this section it will be discussed how the triple regularization strategy works
to achieve a more regularized and convex optimization problem.

The triple filtering approach consists in applying the Helmholtz PDE and
hyperbolic tangent projection together three times. This technique is derived
from the double filter approach described by Christiansen et al. (2015) [30].
As explained in this paper, density filtering and projection are sequentially
implemented a second time on the already filtered and projected design vari-
able. The primary goal pursued is to avoid the formation of thin geometric
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Figure 5.5: SIMP interpolation model. (a) kSIMP (s) (b) QSIMP (s)

irregularities and hence appearance of uncontrolled variations in the resulting
optimized design.

The study conducted by Christiansen et al. (2015) [30] found out that
issues related to unpredictable changes in the fuzzy zones are overcome. In
fact, along each edge of the final optimized design no intermediate design
variable values appear. The difference between optimal topologies and those
that are obtained without applying the double regularization approach con-
sists in the fact that using this approach the existence of local minima is
deleted.

In this work will be used the triple filter approach. Therefore, the tech-
nique developed by Christiansen et al. (2015) [30] is applied one more time.
To implement this procedure six additional parameters are required

• rfil,2 is a second filter radius

• β2 is a second steepness parameter

• η2 is a second threshold factor

• rfil,3 is a third filter radius

• β3 is a third steepness parameter

• η3 is a third threshold factor

The selection of these parameters is a very crucial step in the design optimiza-
tion process. It is argued by Christiansen et al. (2015) [30] the additional
parameters have to be defined with respect to the first filtering phase. The
second set of values must be assigned in the following way:

• rfil,2 = 1
2rfil,1
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• β2 = 1
2β1

• η2 = η1

• rfil,3 = 1
2rfil,2

• β3 = 1
2β2

• η3 = η2

Christiansen et al. (2015) [30] explain that if rfil,2 is chosen to be too high in
comparison with rfil,1 unpredictable changes in the final layout may occur.
Consequently, the double filter approach has a null effect. Selecting rfil,2
lower than rfil,1 it is ensured to achieve a refined version of the first projected
design variable sp. Also the assignment of β2 plays a critical role, because the
optimization procedure might converge to local minima instead of the global
one. Choosing β2 greater than β1 topology is instantly driven towards black
and white layout and hence can result in a sub-optimal design. The projection
threshold is chosen to remain constant throughout the study, because it is
demonstrated that this choice has well worked for all the investigated cases.

The regularization strategy described in Sec. 4.3 is implemented in the
Coefficient Form PDE Module of COMSOL using a quadratic discretization.
The governing equation to be solved, i.e. the Helmholtz PDE, assumes the
next form

−c∇2sf + asf = f (5.15)
where

• c = (0.5×h)2 is the diffusion coefficient and h is the current mesh size.

• sf is the independent variable.

• a = 1 is the absorption coefficient.

• f = s is the source term and s is the density-like variable.
Once the values of sf are computed, the dependent variable sp can be eval-
uated by means of the Variables feature

sp = tanh(βη) + tanh(β(sf − η))
tanh(βη) + tanh(β(1− η)) (5.16)

The tuning of TO model parameters is shown in the following tables.
The steepness parameter β for the projection step has a starting value of
32 and then it is halved after each simulation until a final value of 8 is
reached. The filter radius rfil for the projection level takes an initial value of
1[mm]. Next, it is halved in the same manner as β to achieve a final value
of 0.25[mm].
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Table 5.5: Model parameters

Description Symbol Value in SI units
SIMP exponent p 3
Volume fraction γmax 0.054567
Scale factor Γ 0.0083
Threshold parameter η 0.25

Table 5.6: Simulation (a) First (b) Second (c) Third

Symbol Value
rfil 0.5 ×hmax
β 32

Symbol Value
rfil 0.5 ×hint
β 16

Symbol Value
rfil 0.5 ×hmin
β 8

5.2.6 Resulting TO model
Considering all implementations described in the previous sections, the re-
sulting TO model becomes

find s(Ω)
min f(T, s)
subject to k(s)∇2T +QGEN = 0 in Ω

T = TDir on ΓD
k(s)∇T · n = 0 on ΓN
-r2
fil∇2sf + sf = s in Ω
∇sf · n = 0 on ∂Ω

where A(s) =
∫

Ω sdΩ = γmaxAΩ

0 ≤ s ≤ 1

(5.17)

5.2.7 Computational implementation
In this section, it is will be described how to run a simulation.

The optimization problem is computed using the Globally Convergent
version of the Method of Moving Asymptotes (GCMMA). An Opti-
mality tolerance, i.e. change between two consecutive density-like variable,
of 0.02 is specified for the first simulation. Subsequently, this parameter is
halved after each simulation until a final value of 0.005 is obtained. At the
end of each iteration, the numerical solution reached must be checked to see
if the error due to the discretization satisfies the desired tolerance. If the
error estimated is less than the threshold specified the optimization itera-
tion stops, because the termination condition is satisfied. Furthermore, it is
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added a second stopping criterion. This condition consists in assigning the
maximum number of model evaluations.

The MUMPS algorithm is chosen to calculate the numerical solution of
the sparse linear system of discretized finite element equations of the form

Au = b (5.18)

where

• A is the M ×M sparse coefficient matrix.

• u is the M × 1 vector of unknowns.

• b is the M × 1 vector of known quantities.

A constant (Newton) non-linear solver is implemented. Moreover, to
encourage the convergence trajectory of a non-linear problem the Jacobian
matrix is updated on every iteration.

The information extracted from theUtility feature are listed in the tables
below.

Table 5.7: Simulation (a) First (b) Second (c) Third

Symbol Value
N. of MEs 2065
N. of T DOFs 2160
N. of s DOFs 8449
εopt,1 0.02
MaxIter1 1000

Symbol Value
N. of MEs 8260
N. of T DOFs 8449
N. of s DOFs 33417
εopt,2 0.01
MaxIter2 500

Symbol Value
N. of MEs 33040
N. of T DOFs 33417
N. of s DOFs 132913
εopt,3 0.005
MaxIter3 250

where

• N. of MEs is the number of mesh elements.

• N. of DOFs is the number of degrees of freedom.

• εopt is the optimality tolerance.

5.3 Simulation results
The simulation results using COMSOL have helped understand the solution
process of the design optimization problem.

The numerical results obtained from the simulation are tabulated in the
next tables.
where
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Table 5.8: Simulation (a) First (b) Second (c) Third

Parameters Value
NIter 201
f(s)fin 1.637595
Tavg 372.33 [K]
savg = sf,avg 0.054568
Savg 0.087312
sp,avg 0.085808

Parameters Value
NIter 88
f(s)fin 1.595627
Tavg 362.79 [K]
savg = sf,avg 0.054569
Savg 0.087715
sp,avg 0.089468

Parameters Value
NIter 41
f(s)fin 1.592987
Tavg 362.19 [K]
savg = sf,avg 0.054566
Savg 0.087252
sp,avg 0.088963

• NIter is the number of GCMMA iterations.

• ·avg is the subscript denoting the Average operator (aveop).

• ·int is the subscript referring to the Integration operator (intop).

As listed in the tables above, both overall mean temperature Tavg and
objective function f(s) drop with decreasing mesh size. Conversely, the pro-
jected design variable sp increases with reducing grid size.

To fully achieve a desired level of accuracy of the numerical solution and
demonstrate that the topology optimized designs are mesh-independent, a
grid convergence study is performed. This analysis is carried out by refining
the mesh size after each simulation.

As stated in Sec. 5.2.3, the grid convergence study is considered to be
completed when a difference in values of the final objective function f(s)final
and overall average temperature Tavg between two consecutive computational
solutions less than 1% is reached. The accuracy χ can be evaluated as

%change,f(s) = |f(s)final,3 − f(s)final,2
f(s)final,2

|100% = 0.002%⇒ χf(s) = 99.998%

(5.19)

%change,Tavg = |Tavg,final,3 − Tavg,final,2
Tavg,final,2

|100% = 0.002%⇒ χTavg = 99.998%

(5.20)
As a result of the grid sensitivity analysis implemented, it is found that

the most suitable size of the mesh is 1[mm] to provide a grid-independent
numerical solution. Consequently, if the grid size was further declined the
mesh quality would rise, but computational expense required to solve the
optimization problem would not produce more accurate computational re-
sults. Therefore, it can be observed that the accuracy of the TO approach is
verified.
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Figure 5.6: Mesh independence analysis. (a) f(s)final (b) Tavg

The convergence trend of the mesh sensitivity study for the three grid
levels employed is displayed in Fig. (a) and (b) 5.6.
The figures above show that the design objective becomes insensitive to fur-
ther mesh refinement after three simulations, i.e. when an asymptotic con-
vergence to a plateau is achieved.

After solving the optimization problem, the optimal designs can be visu-
alized.

Figure 5.7: First simulation. (a) Design variable (b) Temperature field (c) Temperature contour

Figure 5.8: First simulation. (a) Projected variable (b) Sequential coupling of filtering and projection (c)
Target function
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Figure 5.9: Second simulation. (a) Design variable (b) Temperature field (c) Temperature contour

Figure 5.10: Second simulation. (a) Projected variable (b) Sequential coupling of filtering and projection
(c) Target function

Figure 5.11: Third simulation. (a) Design variable (b) Temperature field (c) Temperature contour

Figure 5.12: Third simulation. (a) Projected variable (b) Sequential coupling of filtering and projection
(c) Target function

As can be seen in the previous figures the pseudo-density field, i.e. the con-
trol variable field s, is illustrated through a black and white design, where
black zones correspond to high conductivity material distribution. These
figures clearly show that the quality of the topologies improves by applying
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the techniques argued in the previous sections. Indeed, both fuzzy zones and
geometric irregularities, which makes the manufacturing process impossible
or at least very difficult, gradually disappear.

The tree-like topologies are constituted of one main trunk with two sec-
ondary branches, which form a Y configuration. Each of these branches have
two further branches with various thin bulges. Additionally, it is important to
point out that between the second and third optimized design no significant
changes may be detected. In fact, only very small details enable to distin-
guish one layout from another. These small features are due to reduction of
the filter radius.

As expected, the temperature profile experiences lower values in the re-
gions close to the edge where the Dirichlet boundary condition is imposed.

According to the line graphs, which traces variations of the objective
functions against GCMMA iterations, it is possible to state that the target
functions monotonically decrease and thus the downward trajectories ap-
proach a horizontal asymptote. Therefore, the design optimization process
converges to a stable value.

Since the topology optimized designs are not easy to understand, due to
the fact that only a quarter of the design domain is analyzed, it is helpful
to use the Sector Data Set feature. Using this functionality the entire
solution domain can be visualized.

Figure 5.13: Projected design field. (a) First simulation (b) Second simulation (c) Third simulation

5.4 Presentation of the case studies
In this section, it will be discussed the numerical tests conducted by varying
combination of input parameters.

The first phase of this analysis will be concerned with investigating how
changes in scale factor Γ would affect system performance. The next step will
consider the understanding of how variations in volume fraction γmax would
impact overall performance. All these studies are carried out by maintaining
constant projection threshold η.

66



5.4.1 γmax sensitivity study
To discover the influence of γmax over design target, two different maximum
fin surface area fractions are numerically studied as listed below.

Table 5.9: Fin cross-sectional area requirement

γmax,2 = γmax,1 × 2 0.10913
γmax,3 = γmax,1 × 3 0.1637

The optimized designs and temperature fields obtained after the opti-
mization process are depicted in the following figures.

Figure 5.14: First simulation at constant γmax,2. (a) Design variable (b) Temperature field (c) Tempera-
ture contour

Figure 5.15: First simulation at constant γmax,2. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Comparison among pseudo-density fields obtained conducting γmax sen-
sitivity analysis and those of the reference case study provided in Sec. 5.3
reveals that the coral-like topologies show a growing number of branches with
increasing value of γmax. This is because raising amount of highly conducting
solid material the optimal designs become more complex.

It is useful for estimating the sensitivity of TO model to changes in the
maximum fin volume fraction to display the computational outcomes.
It is evident from the figures above that both the mean temperature over the
entire solution domain and final objective function f(s)final decline with a
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Figure 5.16: Second simulation at constant γmax,2. (a) Design variable (b) Temperature field (c) Tem-
perature contour

Figure 5.17: Second simulation at constant γmax,2. (a) Projected variable (b) Sequential coupling of
filtering and projection (c) Target function

Figure 5.18: Third simulation at constant γmax,2. (a) Design variable (b) Temperature field (c) Temper-
ature contour

Figure 5.19: Third simulation at constant γmax,2. (a) Projected variable (b) Sequential coupling of
filtering and projection (c) Target function

steady rise of the volume fraction constraint. Consequently, an increase of the
amount of high conductive material can be operated if a strong enhancement
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Figure 5.20: First simulation at constant γmax,3. (a) Design variable (b) Temperature field (c) Tempera-
ture contour

Figure 5.21: First simulation at constant γmax,3. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Figure 5.22: Second simulation at constant γmax,3. (a) Design variable (b) Temperature field (c) Tem-
perature contour

Figure 5.23: Second simulation at constant γmax,3. (a) Projected variable (b) Sequential coupling of
filtering and projection (c) Target function

of the thermal penetration depth into the PCM is required. The percentage
of performance improvement due to the solid material usage is quantified in
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Figure 5.24: Third simulation at constant γmax,3. (a) Design variable (b) Temperature field (c) Temper-
ature contour

Figure 5.25: Third simulation at constant γmax,3. (a) Projected variable (b) Sequential coupling of
filtering and projection (c) Target function

Table 5.10: Tavg varying values of γmax

Tavg,1 for γmax = 0.054567 362.19[K]
Tavg,2 for γmax = 0.10913 327.76[K]
Tavg,3 for γmax = 0.1637 320.18[K]
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Figure 5.26: (a) f(s)final (b) Tavg

the following way:

∆Tavg,1→2 = Tavg,1 − Tavg,2 = 34.43[K] (5.21)
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%change,Tavg,1→2 =
∆Tavg,1→2

Tavg,1
· 100% = 9.506% (5.22)

∆Tavg,2→3 = Tavg,2 − Tavg,3 = 7.58[K] (5.23)

%change,Tavg,2→3 =
∆Tavg,2→3

Tavg,2
· 100% = 2.313% (5.24)

5.4.2 Γ sensitivity study
To find out the influence of Γ on design objective, two different scaling param-
eters are examined in this sensitivity study. These two factors are tabulated
in the next table.

Table 5.11: Scale factors

Γ2 = hInt · hInt/F inSurf 0.0042
Γ3 = hMax · hMax/F inSurf 0.0167

The optimum topologies and temperature profiles obtained after the op-
timization procedure are illustrated in the figures below.

Figure 5.27: First simulation at constant Γ2. (a) Design variable (b) Temperature field (c) Temperature
contour

It can be noticed that the resulting topologies maintain two branches in a Y
configuration as well as the reference case study. It is clear that a reduction
of Γ leads to appearance of two narrow and long additional branches. Con-
versely, an increase of the scaling factor conducts to disappearance of these
two branches. Moreover, the coral-like structure resulting from the assign-
ment of Γ2 is much more well-defined with respect to the other one. Indeed,
the tree-like topology related to Γ3 exhibits various fuzzy transition regions
and thus it is worse-defined. The last thing to underline is that even though
the optimization problem is carried out at constant γmax, the final layouts
achieved by changing values of Γ are quite divergent.
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Figure 5.28: First simulation at constant Γ2. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Figure 5.29: Second simulation at constant Γ2. (a) Design variable (b) Temperature field (c) Temperature
contour

Figure 5.30: Second simulation at constant Γ2. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Figure 5.31: Third simulation at constant Γ2. (a) Design variable (b) Temperature field (c) Temperature
contour

It is useful for estimating the sensitivity of TO model to variations in the
scale factor to visualize the numerical findings.
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Figure 5.32: Third simulation at constant Γ2. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Figure 5.33: First simulation at constant Γ3. (a) Design variable (b) Temperature field (c) Temperature
contour

Figure 5.34: First simulation at constant Γ3. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Figure 5.35: Second simulation at constant Γ3. (a) Design variable (b) Temperature field (c) Temperature
contour

It can be clearly observed from the above figures that both the overall mean
temperature and final target function f(s)final experiences a downward trend
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Figure 5.36: Second simulation at constant Γ3. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Figure 5.37: Third simulation at constant Γ3. (a) Design variable (b) Temperature field (c) Temperature
contour

Figure 5.38: Third simulation at constant Γ3. (a) Projected variable (b) Sequential coupling of filtering
and projection (c) Target function

Table 5.12: Tavg varying values of Γ

Tavg,2 for Γ = 0.0042 344.22[K]
Tavg,1 for Γ = 0.0083 362.19[K]
Tavg,3 for Γ = 0.0167 376.72[K]

with sharp fall of the scale factor. Therefore, a decline of this input parameter
can be operated for exploring new concept designs that may better meet the
design specifications. When a conceptual design is identified, it must be
verified if its topology is manufacturable.
The percentage of performance improvement due to the scaling factor chosen
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Figure 5.39: (a) f(s)final (b) Tavg

is calculated in the following manner:

∆Tavg,Γ3→Γ1
= Tavg,Γ3 − Tavg,Γ1 = 14.53[K] (5.25)

%change,Tavg,Γ3→Γ1
=

∆Tavg,Γ3→Γ1

Tavg,Γ3

· 100% = 3.857% (5.26)

∆Tavg,Γ1→Γ2
= Tavg,Γ1 − Tavg,Γ2 = 17.97[K] (5.27)

%change,Tavg,Γ1→Γ2
=

∆Tavg,Γ1→Γ2

Tavg,Γ1

· 100% = 4.961% (5.28)

5.5 Time-dependent heat conduction TO prob-
lem

5.5.1 Modified governing equations
The primary goal of this work is to implement a transient-state thermal
diffusive TO model to search the best high conducting path, which minimizes
the mean temperature over the whole computational domain.

In this time-dependent analysis the 2D geometric model remains the same
as that illustrated in Fig. 5.2. What varies is the addition of one IC to impose:

T = TDir on ΓD
k∇T · n = 0 on ΓN
T = Tinit in Ω

(5.29)
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The time-dependent temperature field is modelled using the thermal bal-
ance equation:

ρ(s)Cp(s)utrans · ∇T +∇ · (q(s) + qr) = Q+ q0 +Qted (5.30)

with
q(s) = −k(s)∇T (5.31)

5.5.2 TO model
In this section, it will be proposed how to set-up the constrained TO of the
transient-state heat conduction problem.

The optimization strategy is implemented in the Optimization Module of
COMSOL using a quadratic discretization. Firstly, the optimization target
must be selected. In the opt interface the design objective is formulated as
Integral Objective function:

f(T, s, t) = 1
AΩ

∫
Ω
T (s, t)dΩ (5.32)

Secondly, the Control Variable Field defines the pseudo-density variable
s = s(x, y) as a scalar field. The Control Variable Bounds introduce lower
and upper limits corresponding to inequality constraints of the form

0 ≤ s(x, y) ≤ 1 (5.33)

Furthermore, it is necessary to initialize the control variable to γmax.
Thirdly, the optimization problem is subject to two inequality constraints:

s

AΩ · γmax
= 1
AΩ · γmax

∫
Ω
s(x, y)dΩ (5.34)

Γ · (d(s, x)2 + d(s, y)2) = Γ ·
∫

Ω
|∇s(x, y)|2dΩ (5.35)

In this analysis, the parameters γmax and Γ are tuned equal to 1.55·γmax,1 and
0.0042, respectively. The volume constraint imposed is higher than γmax,1,
because if a lesser value was specified the optimization solver fails to generate
topology changes. Moreover, it can be noticed that 0.0042 is the best value
among those considered for the Γ sensitivity study.

As previously mentioned in Sec. 5.5.1, the heat conduction under time-
dependent conditions can be studied using the next thermal balance equation:

ρ(s)Cp(T, s)
∂T

∂t
− k(s)∇2T = 0 (5.36)
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Here, ρ(s) and Cp(T, s) are the design-dependent mass density and effec-
tive specific heat capacity, respectively. These two material properties are
formulated using the SIMP interpolation model as shown below:

ρSIMP (s) = ρPCM + (ρAl − ρPCM)sp (5.37)

Cp,SIMP (T, s) = Cp,PCM + (Cp,Al − Cp,PCM)s (5.38)
To lighten the computational burden, this last thermophysical property is
mathematically expressed employing a linear interpolation. These two math-
ematical models are displayed in the following figures.

Figure 5.40: SIMP interpolation model. (a) ρSIMP (s) (b) Cp,SIMP (s)

5.5.3 Double regularization strategy
In this section, it will be presented how the double regularization strategy
must be implemented.

The parameters setting to employ this type of approach in reported in
the next tables.

Table 5.13: Model parameters

Description Symbol Value in SI units
SIMP exponent p 3
Volume fraction γmax 0.081851
Scale factor Γ 0.0042
Threshold parameter η 0.5
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Table 5.14: Simulation (a) First (b) Second

Symbol Value
rfil 0.5 ×hmax
β 32

Symbol Value
rfil 0.5 ×hint
β 16

5.5.4 Computational implementation
In this section, it is will be discussed how to set-up the solver configuration.

The optimization problem is solved using the GCMMA. An Optimality
tolerance of 0.02 and 0.01 is chosen for the first and second simulation, re-
spectively. Moreover, a maximum allowed number of iterations is specified
as second termination condition.

The MUMPS algorithm is chosen to calculate the numerical solution of
the sparse linear system of discretized finite element equations.

A constant (Newton) non-linear solver is implemented. Furthermore, to
promote the convergence trend of a non-linear problem the Jacobian matrix
is updated at each iteration.

The time-dependent TO problem is solved using a time integration of
the PDEs selecting a BDF method. This numerical scheme is chosen with
a minimum and maximum order of 1 and 5, respectively. Moreover, the
Nonlinear controller is implemented for an efficient time-step control.

5.6 Simulation results
Distributions of control variable, temperature and projected variable are pre-
sented in the next figures.

Figure 5.41: First simulation. (a) Design variable (b) Temperature field (c) Temperature contour

78



Figure 5.42: First simulation. (a) Projected variable (b) Whole layout (c) Target function

Figure 5.43: Second simulation. (a) Design variable (b) Temperature field (c) Temperature contour

Figure 5.44: Second simulation. (a) Projected variable (b) Whole layout (c) Target function

5.7 Conclusion
The major results of the whole design process carried out can be summarized
as follows:

• The values of the artificial density variable s are updated by using
GCMMA.

• The SIMP method is used to model the thermophysical properties in-
volved both in the steady-state and transient-state heat conduction
study.

• The application of the triple regularization strategy allows to transform
a topology with gray transition regions into a binary black and white
optimal design, overcoming issues posed by the SIMP technique.
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• The grid refinement during the TO process leads to greater resolution
of the final high conductivity material distribution over the design do-
main.

• The TO problem results in performance enhancement due to minimiza-
tion of the design target.

• A validation phase to guarantee the coral-like structure fitness is re-
quired. This further analysis will be performed in the next chapter.

• To better understand how variation of both the prescribed fin cross-
sectional area fraction and scaling factor may affect the design objective
a sensitivity study is conducted.

• At the end of the optimization procedure, a design engineer can find
the optimum balance of performance targets to reach the desired goal
in the best possible way.

Considering all points discussed above, it is possible to conclude that the
stationary thermal diffusive TO model can be effectively used for running a
topological design optimization and obtaining a numerical solution within a
reasonable calculation time.

It is also important to remember that the discharging phase of a LHT-
ESS is time-dependent. Therefore, the transient-state study that can deeply
capture further details of the physics under investigation is carried out.
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Chapter 6

Topology optimized design
validation

6.1 Stationary validation protocol

6.1.1 Finned geometry generation
In this section, it will be analyzed the validation of steady-state TO model
used for obtaining the optimal tree-like topology.

It is necessary to establish if the numerical solution ensures that the
topological modelling is accurate, considering all design constraints. For this
reason, it is built a 2D geometric model of a LHTESS that includes:

• A high conductive metal path obtained from TO process.

• A storage tank filled with PCM, which generates a volumetric heat.

To build the fin geometry a Filter Data Set is applied to both the
density-like field s and projected design field sp, as shown below.
This tool works setting a lower bound equal to the projection threshold η.
The amounts of solid materials make up around 5, 46% and approximately
8, 90% of the total cross-sectional area, respectively.

As can be seen in Fig. (a) and (b) 6.1, the primary difference between
SIMP approach and triple regularization technique involves manufactura-
bility of the topologically optimized structures obtained. In fact, the fin
geometry corresponding to artificial density field is impossible to fabricate,
because of empty space. Consequently, although this geometric configuration
is cleaned and smoothed, may not be chosen for the subsequent validation
phase. In contrast, when the Helmholtz filter and projection are sequentially
applied three times, the resulting optimized topology is not constituted by
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Figure 6.1: Filter applied to (a) s (b) sp

voids and significant geometric irregularities. Therefore, the validation study
is conducted using this last coral-like structure.

After the application of the Filter Data Set aMesh Partmay be created.

Figure 6.2: (a) Mesh part (b) Geometric configuration

This mesh part is imported in the Geometry Interface to generate the
overall fin layout, as sketched in Fig. (b) 6.2.

6.1.2 Thermal field modelling
The mathematical modelling consists in using the energy balance equation for
steady-state problem, imposing boundary conditions and assigning material
properties. The reader can consult Sec. 3.3 to review how to implement a
stationary heat conduction analysis.

The boundary conditions that must be set up are reported below.
−k∇2T = QGEN in Ω
T = TDir on ΓD
k∇T · n = 0 on ΓN

(6.1)
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Figure 6.3: (a) Dirichlet BC (b) Neumann BC (c) Volumetric heat source

The solution domain is meshed with free triangular elements. For the
finned region a mesh size of 0.5[mm] is used. Conversely, for the storage
space an element size of 1[mm] is applied. Since in the main trunk of the
tree-like structure greater temperature gradients are expected, a higher grid
density is required. The meshing of the whole 2D computational domain is
illustrated in the next figure.

Figure 6.4: Mesh scheme

6.2 Simulation results
The validation study is carried out for benchmarking performance and hence
to provide a measure of improvement in enhancing the heat transfer.

As a result of the TO process, the finned region produces a thermal
performance improvement with respect to the SO procedure. The numerical
results are compared in the table below.
The temperature profile and isothermal contours obtained from the validation
analysis are depicted in the following figures.
The percent drop in mean temperature over the entire computational domain
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Table 6.1: Numerical solutions

Tavg,TO 362.19 [K]
Tavg,val 350.85 [K]
Tavg,SO 369.64[K]

Figure 6.5: (a) Temperature distribution (b) Isotherms

can be estimated using the next formulas:

%change,Tavg = |Tavg,TO − Tavg,val
Tavg,val

|100% = 3.23%⇒ χTavg = 96, 77% (6.2)

Therefore, it can be concluded that the optimal layout structure deter-
mined by TO method is more thermally efficient than the optimum shape
discovered performing the SO procedure. If the fin cross-sectional area ob-
tained from the TO approach is greater than that maximum prescribed a
further design optimization step will be necessary.

6.3 Sequential coupling of Topology and Shape
Optimization

One major design challenge impacting on the performance target is the pre-
scribed surface area that should be occupied by the metal fins. If it is not
possible to satisfy the volume fraction constraint, a sequential coupling of
Topology and Shape Optimization (TSO) is required. To evaluate this
specific requirement, surface integral of the metal fins area is calculated. The
numerical outcomes are tabulated in the table below.
Since finned zone area, extracted from TO, is jumped beyond the target vol-
ume of material γmax by more than 150%, a strong reduction of this surface
area, while conserving validity of the geometric model, is required.
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Table 6.2: Fins surface area

Description Symbol Value
Design value FinSurfdesign 2.4[cm2]
Surface area computed Afin,TO 3.8472[cm2]

This integrated procedure allows to increase the domain region filled with
PCM decreasing the domain area occupied by the resulting fin geometry
obtained from TO to meet all the design requirements set.

6.3.1 Stationary heat conduction SO problem
The scope of SO is to adjust the geometric configuration of the final optimized
topology derived from the combination of Filter Data Set, Mesh part and
Import Geometry feature. The SO approach is based upon the COMSOL
User’s Guide [10].

To accomplish the purposes of the SO process, the following two features
are required:

• Free Shape Domain to solve an equation that smoothly deforms the
finned domain. The Yeoh model is selected as smoothing technique
due to its numerical stability, even when large deformations occur.

• Free Shape Boundary to define a control variable for modifying the
fins shape. Using this feature, it is possible to specify the finned region
boundary and impose upper bounds of the optimization variables.

The prescribed volume fraction constraint can be fulfilled simply by tun-
ing parameters. Meeting or exceeding the design specifications set depends
on two factors. These include the maximum displacement dmax and filter
radius Rmin. These two parameters severely impact on success or failure of
a numerical simulation. If they overcome certain values an error message
appears, because dmax is too high and Rmin is too low. Consequently, the
TSO procedure helps find the best design, but it is necessary to consider the
effects of influencing factors.

The features needed for implementing the SO approach are displayed in
the figures below and simulation parameters tuned are tabulated in Tab. 6.3.

Since the current optimization problem aims to minimize the average
temperature over the entire solution domain Tavg by declining surface area
of metal fins, the integral objective is the same as that used for the TO
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Figure 6.6: (a) Free Shape Domain (b) Free Shape Boundary

Table 6.3: Optimization factors

Symbol Value
dmax 0.001 [m]
Rmin 0.015 [m]

approach. To reach an amount of aluminium less than or equal to the pre-
scribed volume fraction, which comprises about 5, 46% of the total design
domain, the following inequality constraint must be satisfied:

comp2.intop2(1)
FinSurf

≤ 1 (6.3)

Here, comp2.intop2(1) equals the resulting surface of the finned region ob-
tained from SO.

Fig. (a) and (b) 6.7 depict the shape optimized design and objective
function, respectively.

Figure 6.7: (a) Optimized shape (b) Target function

Once the SO process is completed, the surface integral over finned zone
can be computed. Numerical result obtained is listed in the following table.
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Table 6.4: Fins surface area

Description Symbol Value
Previous fins area Afin,TO 3.8472[cm2]
Surface area calculated Afin,TSO 2.3431[cm2]

As a result of the SO procedure, the surface area Afin experiences a sharp
fall. The percent decrease is estimated as follows

∆Afin
= Afin,TO − Afin,TSO = 1.5041[cm2] (6.4)

%change,Afin
=

∆Afin

Afin,TO
· 100% = 39.096% (6.5)

Undergoing reduction just over 39%, it may be concluded that adjusting
optimization variables settings Afin,TSO completely fulfills the volume frac-
tion requirement. Therefore, the thermal system behaves as intended, while
satisfying all the design constraints.

At this design phase, comparison of performance target achieved by im-
plementing only SO or combining TO with SO is necessary to highlight the
solution fitness. The design objectives obtained at the end of both the whole
design procedure are compared in Tab. 6.5 .

Table 6.5: TSO versus SO

Symbol Value
Tavg,TSO 355.35[K]
Tavg,SO 369.64[K]

The overall average temperature Tavg,TSO is dropped of nearly 3.87% with
respect to Tavg,SO. The percent reduction is calculated using before Eq. 6.16
and after Eq. 6.11.

∆Tavg = Tavg,SO − Tavg,TSO = 14.29[K] (6.6)

%change,Tavg = ∆Tavg

Tavg,SO
· 100% = 3.866% (6.7)

It is verified that the thermal system is well-designed, because it provides
significant performance improvements when it is benchmarked with that op-
timized following SO approach, even though it uses a lower amount of alu-
minium.
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6.4 Time-dependent validation protocol

6.4.1 Finned geometry generation
In this section, it will be investigated the validation of transient-state TO
model used for obtaining the optimum coral-like topology.

As indicated in Sec. 6.1.1, to create the fin configuration a Filter Data
Set is applied to both the pseudo density field s and projected design field
sp, as depicted below.

Figure 6.8: Filter applied to (a) s (b) sp

This tool works setting a lower bound equal to the projection threshold η.
The amounts of solid materials constitute about 8, 46% and nearly 8, 51% of
the total cross-sectional area, respectively.

The following validation analysis will be carried out employing the second
finned layout.

After the application of the Filter Data Set a Mesh Part can be gener-
ated. This mesh part is imported in the Geometry Interface to build the
overall fin geometry and then geometric irregularities are deleted using the
Collapse Edges feature as illustrated in the following figures.

Figure 6.9: (a) Mesh part (b) Collapse Edges (c) Geometric configuration
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6.4.2 Thermal field modelling
The mathematical modelling employed in studying temperature distribution
involves the thermal energy balance for transient-state problem, application
of boundary conditions and assignment of material properties. The Sec. 3.7.2
provides implementation of a time-dependent heat conduction analysis.

The boundary conditions that must be imposed are indicated below.
T = TDir on ΓD
k∇T · n = 0 on ΓN
T = Tinit in Ω

(6.8)

Figure 6.10: (a) Dirichlet BC (b) Neumann BC (c) Initial temperature

The solution domain is meshed with 4609 triangular elements. The grid
sizes in the finned structure and storage tank are 0.5[mm] and 1[mm], re-
spectively. The mesh generated for the entire numerical domain is shown in
the figure below.

Figure 6.11: Mesh scheme
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6.5 Simulation results
The primary aim of the whole validation study is to come up with a compu-
tational model, which is validated in terms of both the thermal response and
total amount of material available.

The validation analysis confirms that the TO approach, compared to the
SO process, achieves a thermal performance improvement. The computa-
tional outcomes are reported in the next table.

Table 6.6: Numerical solutions

Tavg,TO 323.79 [K]
Tavg,val 326.89 [K]
Tavg,SO 328.98[K]

The resulting temperature field distribution and isothermal contours are dis-
played in the following figures.

Figure 6.12: Temperature fields. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

Figure 6.13: Temperature contours. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

The percent rise in mean temperature over the whole solution domain can
be evaluated as follows:

%change,Tavg = |Tavg,val − Tavg,TO
Tavg,TO

|100% = 0.948%⇒ χTavg = 99, 052% (6.9)
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In conclusion, simulation results show that the finned geometry corre-
sponding to the optimum topology obtained following the workflow described
in Sec. 6.4.1 provides an enhanced thermal penetration with respect to the
optimal shape design reached at the end of the SO procedure. If the cross-
sectional area covered by fins is higher than the maximum area fraction
constraint a subsequent design optimization phase will be necessary.

6.5.1 Time-dependent heat conduction TSO problem
As discussed in Sec. 6.3.1, both the Free Shape Domain and Free Shape
Boundary features are used to investigate design modification through SO.

To meet the fin cross-sectional area specified, it is necessary to set-up
both the maximum displacement dmax and filter radius Rmin.

The features required for employing the SO process are visualized in the
next figures and simulation parameters tuned are listed in Tab. 6.7.

Figure 6.14: (a) Free Shape Domain (b) Free Shape Boundary

Table 6.7: Optimization factors

Symbol Value
dmax 0.0015 [m]
Rmin 0.035 [m]

Both the integral objective and inequality constraint selected for this SO
problem are the same as those indicated in Sec. 6.3.1.

Fig. (a) and (b) 6.7 illustrate the shape optimized design and design
objective, respectively.

The SO procedure completed reveals that the surface integral of the finned
region fulfills the volume fraction constraint, as tabulated in the following
table.
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Figure 6.15: (a) Optimized shape (b) Target function

Table 6.8: Fins surface area

Description Symbol Value
Previous fins area Afin,TO 3.6583[cm2]
Surface area calculated Afin,TSO 2.3918[cm2]

As a result of the SO procedure, the surface area Afin experiences a
significant drop. The percent decrease is calculated using the next formulas

∆Afin
= Afin,TO − Afin,TSO = 1.2583[cm2] (6.10)

%change,Afin
=

∆Afin

Afin,TO
· 100% = 34.396% (6.11)

Undergoing reduction just above 34%, the maximum area fraction constraint
is fully satisfied.

The comparison between SO and TSO demonstrates that the integrated
T- and SO technique ensures to obtain the best possible outcome. The
design objectives achieved at the end of both the entire design procedure are
compared in Tab. 6.9.

Table 6.9: TSO versus SO

Symbol Value
Tavg,TSO 328.79[K]
Tavg,SO 328.98[K]

The temperature field distributions and isothermal contours are depicted
in the following figures. The mean temperature over the whole numerical

92



Figure 6.16: Temperature fields. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

Figure 6.17: Temperature contours. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

domain is found to be 328.79 [K] after 3600 seconds from the beginning of
the discharging mode.

The liquid fraction evolution during the solidification process is illustrated
in the next figures.

Figure 6.18: Liquid fraction fields. (a) t = 600[s] (b) t = 1800[s] (c) t = 3600[s]

The heat transfer variables are investigated to map the thermal perfor-
mance. Average temperature history and thermal energy storage density are
chosen as key performance characteristics as observed in Sec. 3.8.

Additionally, to the previous performance indicators evaluated, the over-
all internal energy change and global energy release by the PCM, during its
discharging mode, may be calculated as follows:

∆Utot,PCM =
∫ T

Tref

Cp,PCMdT + σLPCM (6.12)
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Figure 6.19: (a) Tavg evolution (b) Etot released

∆Etot,PCM = ρPCM

(∫ T

Tref

Cp,PCMdT + σLPCM

)
(6.13)

The overall internal energy change is equal to 1.2238 · 105[J/kg], while the
global energy release is 0.979 · 108[J/m3].

As a result of the TSO approach, both the overall internal energy change
and global energy release show a growth. The percent increases are computed
in the following manner

∆Utot,P CM
= Utot,PCM,TSO−Utot,PCM,SO = 1.2238·105−1.1866·105 = 0.0372[J/kg]

(6.14)

%change,Utot,P CM
=

∆Utot,P CM

Utot,PCM,SO

· 100% = 3.135% (6.15)

∆Etot,P CM
= Etot,PCM,TSO−Etot,PCM,SO = 0.979·108−0.9493·108 = 0.0297[J/m3]

(6.16)

%change,Etot,P CM
=

∆Etot,P CM

Etot,PCM,SO

· 100% = 3.129% (6.17)

The reason of the differences in the numerical results with respect to those
presented in Sec. 3.8 is caused by the use of one-quarter storage element.

6.6 Robustness of the TSO technique
Robustness is a very crucial attribute of a computational model under per-
turbations that must be guaranteed. In the context of design optimization,
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robustness means that changing a certain input data the output variation is
minimal or within a specified bound.

The TSO strategy developed ensures that both the stationary and time-
dependent analyses are insensitive to changes of the maximum volume frac-
tion specified and hence the study is robust. In fact, varying parameter γmax
the final fin cross-sectional area covered by fins is always less than the pre-
scribed area fraction. This constraint is only overcome, but remaining within
an error margin of +1%, in the case of γmax,3.

The shapes of the other two resulting optimized designs are visualized
below.

Figure 6.20: (a) Optimized shape for γmax,2 (b) Optimized shape for γmax,3

Surfaces areas of the previous finned configurations are listed in the next
table.

Table 6.10: Fin surface area

γmax,2 = ATSO,2 = 4.6838cm2

γmax,3 = ATSO,3 = 7.2333cm2

6.7 Conclusion
Considering the computational outcomes of the TSO technique it can be
concluded that the most important phenomena involved in the operation of
the TES systems are captured. Therefore, this strategy developed may be
used to conduct simulations of the operating modes of a LHTESS monitoring
the evolution of the main energy indicators.

The whole strategy developed leads to an optimized topology, which is
coherent with all the design specifications and thus with the study aims.
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Indeed, if a TO process produces topologically optimized fins that exceed
the volume fraction requirement, the subsequent SO fixes this problem in a
satisfactory way. Consequently, this approach represents a helpful tool for
design optimization of thermal systems with conductive fins, such as TES
unit.
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