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Introduction

This thesis aims to describe the physical and numerical aspects of the optimization of
missions that, starting from the Earth-Sun equilateral Lagrangian points L4 and L5, ren-
dezvous with Near-Earth Asteroids. An indirect method, based on the Optimal Control
Theory, is adopted to maximize the payload fraction, thus minimizing the propellant
consumption. The analyzed missions use electrical propulsion and leverage an Earth
gravity assist manoeuvre, to bring the satellite to the Near-Earth Asteroid orbit with
the smallest propellant throughput. The reference mission considers CubeSats that could
be left at the starting Lagrangian point as a piggyback of a larger primary spacecraft.
Leveraging the advantageous starting position and its inherent stability, the satellites
could wait for the optimal time to begin their mission.

The interest in space missions involving the equilateral Lagrangian points is expected
to grow in the near future. In fact, these points represent a strategic location both for
space observation and, as considered in this thesis, for missions towards Near-Earth
Asteroids departure. Among these small bodies there is a huge number of Potentially
Hazardous Objects —PHOs—, which may impact the Earth with serious consequences.
The study of such objects is the first crucial step for the risk mitigation of such an
undesired event. The rendezvous with a PHO is essential to study the properties of the
body and to monitor its orbit characteristics. Only with the aforementioned inspections
it is possible to evaluate the risk connected to the eventual impact of the object and
to define the necessity for an active intervention to modify its orbit. It comes without
saying that the optimization of trajectories towards Near-Earth Asteroids is of extreme
importance, given the considerations highlighted. In this thesis the absolute importance
of missions towards Near-Earth Asteroids has been combined with the trend of exploiting
the advantageous location of the equilateral Lagrangian points.

Firstly, an overview of the characteristics of Near-Earth Asteroids is carried out. In
second place, the essential elements of orbital mechanics and space propulsion, necessary
to fully understand the analyzed problem, are recalled. Then, the general characteristics
of indirect methods of space trajectories optimization, exploiting the Optimal Control
Theory, are described. Thus, it is possible to formulate the problem and how such theory
can be applied to its solution. In the end, the results are reported.
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Chapter 1

Near-Earth Asteroids

"We used to look up at the sky and wonder at our place in the stars, now we just look
down and worry about our place in the dirt"

— Interstellar

Since this work concerns the optimization of trajectories that rendezvous with Near-
Earth Asteroids, it is crucial to give an overview of such bodies. In this Chapter will
be introduced the characteristics of these small objects, from their physical and orbital
properties to the danger they represent, which is the main reason for the relevance of
missions towards them.

Near-Earth Asteroids, or NEAs, are particular asteroids whose orbit is relatively close
to the Earth’s one. Some of these asteroids represent a threat as their orbit intersects
the one of our planet, creating the risk for celestial impact. Most of these asteroids are
relatively small, with diameter inferior to one kilometer, but they are a huge number:
more than twenty thousands are the ones known up to now, as it can be inferred looking
at Fig. 1.1.

From a statistical point of view, these objects can exist in their near-Earth orbit only
for some tens of millions of years. As a matter of fact, sooner or later they either collide
with one of the inner planets or are drifted out of the solar system through gravitational
interaction — swing-by — with the same planets. Nonetheless, the number of NEAs
does not substantially change over time since it is continuously increased with a supply
of new asteroids coming from the main belt.

1.1 Classification
As already introduced, NEAs are asteroids drifted away from the main belt by gravitation
interactions with Jupiter. Four main categories of NEAs exist, and they are classified
on the basis of the characteristics of the orbit. The four classes are:

3



Figure 1.1: Cumulative discoveries of NEAs

• Atiras
Atiras are asteroids with orbit completely internal to the Earth’s one. In particular,
if a is the major semiaxis of the NEA’s orbit and rA is the aphelion distance, Atiras’
orbits are characterized by:

rA < 0.983 AU −→ a < 0.983 AU

• Atens
Atens are characterized by:

rA > 0.983 AU and a < 1 AU

Thus, their orbit is smaller than the Earth’s one and crosses it.

• Apollos
Apollos are characterized by:

rP < 1.017 AU and a > 1 AU

where rP is the perihelion distance. It is worth highlighting that 1.017 AU is the
Earth’s orbit aphelion distance.

• Amors
Amors are asteroids whose major semiaxis lies between the Earth’s one and the
Mars’s one. Mathematically:

1.017 AU < rP < 1.3 AU −→ a > 1.017 AU

4



thus, Amors’ orbits do not cross the Earth’s one. Since, Amors often cross Mars’s
orbit, Mars’s satellites —Demos and Foibos— may be Amor asteroids captured by
the red planet’s gravity field.

A graphical representation of typical orbits of Atens, Apollos and Amors is reported
in Fig. 1.2.

Since Atiras and Amors do not intersect Earth’s orbit, they do not represent a threat
for mankind. The biggest risk of impact comes from asteroids belonging to Aten and
Apollo categories. These could be Potentially Hazardous Objects since their orbit crosses
the Earth’s one. To be regarded as PHOs their Minimum Orbit Intersection Distance
—MOID— shall be lower than 0.05 AU and their diameter has to be greater than 140
m. Clearly, not all the PHOs have the same degree of dangerousness, thus it is necessary
to evaluate it, introducing a measuring scale.

Figure 1.2: Classification of NEAs
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1.2 Hazard

The attention to the possibility of a catastrophic impact with an asteroid, did rapidly
grow after the formulation of the hypothesis that a similar impact caused the mass
extinction of the Cretaceous-Paleogene. Such an event may find its cause in the impact
of a 10 km asteroid in the Yucatan peninsula, 66 millions years ago, thus resulting in
the extinction of dinosaurs, who had been dominating Earth for more than 180 millions
years.

Statistically, asteroids impacts are not such rare events, but fortunately they rarely
are catastrophic. In particular:

• Small impacts: impacts characterized by energy inferior to 1 kiloton happen almost
once a month. For comparison, the asteroid that probably caused the extinction
of dinosaurs had an energy equal to 190,000 gigatons.

• 1 km impacts: impacts with asteroids with diameter up to 1 km statistically happen
every million years.

• 5 km impacts: impacts with asteroids with diameter up to 5 km statistically happen
every 10 million years.

1.2.1 The Torino Scale

The Torino scale is a method for the classification of the impact danger related to
NEAs and near-Earth comets. It combines statistical probability with the entity of the
potential damage —connected to the kinetic energy of the object— , in order to convey
immediately the dangerousness of an eventual impact. Given its inherent qualitative
nature, the Torino scale is useful for conveying the concept to public opinion, but it is
not used by astronomers. As a matter of fact, in the scientific community it is largely
replaced by the Palermo scale, which is more complex and technical.

As can be inferred looking at Fig. 1.3, the Torino scale is based on values ranging
from 0 to 10: only natural numbers are used, thus no decimal appears in the levels of
hazard. A NEA designed with the level 0 has either too little associated kinetic energy
to create any sort of damage or too low probability to impact. On the other hand,
a 10 level NEA is certain to impact and the consequences would be catastrophic. In
particular:

• White: Level 0

No hazard: The likelihood of impact is zero, or the body is so small that it would
be burnt up in the atmosphere.

• Green: Level 1

Normal: Usual event corresponding to routine discoveries.

6



Figure 1.3: The Torino scale

• Yellow: Levels 2 3 4

Meriting astronomers’ attention: NEAs that shall be monitored and, if no
threat is highlighted, they may be de-classified as Level 1 objects.

• Orange: Level 5 6 7

Threatening: Close encounter with relatively big objects with still not certain
probability of impact.

• Red: Level 8 9 10

Certain collision: The impact is certain, and the consequences may range from
tsunamis — if close offshore— to a global catastrophe that may destroy civilization
and the world as we know it.

No object has ever been ranked with a Level higher than 4 and, up to now, there is
not a single object with a Level different from 0.

1.2.2 The Palermo Scale

The Palermo scale is a logarithmic scale that, as already introduced, is used by as-
tronomers to evaluate the threat deriving from an impact with a near-Earth object. In
fact, it is more quantitative and technical than the already described Torino scale.

The value connected to an asteroid is P and is derived as follows:

P = log pi
TfB
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where log is the logarithm with base 10, pi is the probability of collision, T is the time
in years and fB is the background impact risk defined as:

fB = 3
10E

− 4
5

where E is the energy related to the impact, measured in megatons.
Thus, a value P = 0 is related to a risk equivalent to the background risk, while

P = 1 indicates a risk ten times higher than the background one. Clearly, the Palermo
scale uses indexes in all the domain of Real numbers.

1.2.3 Projects to Minimize the Risk

The fact that an impact with a 1 km NEA would be a catastrophic event for mankind,
guided the scientific community to develop a possible system of defence against this
possibility.

The first step is the individuation of all the objects big enough to represent a serious
threat. Then, different means of defence have been identified, some more feasible than
others:

• Nuclear weapons
A nuclear bomb may be installed on the surface of the impacting NEA, hence
its explosion would deviate the asteroid on another orbit. As a matter of fact,
this method is a sort of non-canonic nuclear propulsion. Nevertheless, since some
asteroids are no more than an aggregate of several debris, such a method would
result in a division of the main asteroid in many meteoroids. Thus, the hazard
would only be changed from a single impact, to a rain of meteors —that may cause
even more damage to mankind—.

• Mass driver
These devices, installed on the surface of the NEA, would collect material from
the same in order to throw it away. Thus, the thrust provided by these sort of
catapults would drag the NEA away from its impact orbit.

• Solar sails
If solar sails are installed on the NEA, their interaction with the solar pressure
would change the asteroid’s orbit.

• Surface powder coating
If the NEA is covered with a powder, the orbit would be deviated leveraging
Yarkovsky effect.

• Rocket
Perhaps, this is the simplest solution in terms of concept. A rocket may intercept
the NEA and then drive it away.
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Chapter 2

Orbital Mechanics Elements

"Or perhaps we’ve just forgotten that we are still pioneers. And we’ve barely begun.
And that our greatest accomplishments cannot be behind us, because our destiny lies

above us"
— Interstellar

Before entering the core topic of the thesis, it is important to summarize some concepts
that will be the basis of the analyzed problem. In this Chapter, are presented the basic
knowledge and the physical aspects of the space flight mechanics, which further in this
work will be taken for granted. In particular, the principal concepts concerning the
Two-Body Problem and the Three-Body Circular Problem will be introduced. Then an
overview of interplanetary missions will be given, with a focus on the heliocentric phase
and the fly-by manoeuvre.

2.1 The Two-Body Problem

The Two-Body Problem is the starting point of every orbital mechanics problem. As
can be inferred from its definition, it describes the motion of two bodies due uniquely to
their mutual gravitational interaction. The nature of this interaction has been already
defined by Newton in its masterpiece: ‘Philosophiae Naturalis Principia Mathematica’,
back in 1687. The gravitational force is a central and attractive interaction, proportional
to the product of the two involved masses and indirectly proportional to the square of
the distances of the two bodies:

F = G
mM

r2
r

r
(2.1)

where G = 6.67 ·10−11 m3

kgs2 is the gravitational constant and r is the distance vector from
the mass M to the mass m.

This problem is here presented in its simplified form, based on the assumption that
the smaller body has a negligible mass if compared to the bigger one. Thus, the new

9



problem is often defined as the Restricted Two-Body Problem, and can be applied to sys-
tems such as Earth-Satellite or Sun-Earth. The R2BP’s hypothesis can be summarized
as follows:

• Spherical Symmetry of the mass distribution

• Homogeneity of the mass distribution

• Punctiform masses concentrated in the centers of the bodies

• Only gravitational forces

• M � m

These assumptions lead to the definition of the following equation of motion:

r̈ = − µ
r2
r

r
(2.2)

where µ = GM is the gravitational parameter of the principal body. This equation is
not solved here for brevity, but leads to the following expression for the distance between
the two bodies:

r =
h2

µ

1 + e cos ν (2.3)

The physical quantities in the expression above will be defined in the next paragraph.
It is important to highlight that the equation above generates trajectories which follow
the shape of conic sections. These are represented in Fig 2.1.

2.1.1 Constants of Motion

In the R2BP, it can be demonstrated that some physical quantities are constant through-
out all the motion, if no further interactions arise. In particular, the two constants of
motion are:

• Angular Momentum
h = r ∧ ṙ (2.4)

Since the angular momentum is constant both in module and orientation, the
motion followed by the smaller body around the primary one in the R2BP is a
planar trajectory.

• Mechanical Energy

E = v2

2 −
µ

r
(2.5)
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Figure 2.1: Conic sections

2.1.2 Orbital Elements

The orbit and the position of a body, in the R2BP, can be completely defined through
6 parameters, known as the Classical Orbital Elements. There are other means for the
representation of the trajectory of a body, but they fall outside the purposes of this
work. The orbital elements are the following:

• Eccentricity e
Which is connected to the form of the orbit. In particular, it can be demonstrated
through the analysis of the conic sections’ geometry, that the Tab. 2.1 describes
the families of trajectories divided by the value of their eccentricity.

• Major Semiaxis a
Which is connected to the dimension of the orbit. More precisely, the major
semiaxis is directly connected to the energy of the orbit. In particular, it can be
demonstrated, unifying the energetic analysis to the geometric one that:

E = − µ

2a (2.6)

Tab. 2.1 describes also the relation between a and the trajectory.
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Figure 2.2: Orbital elements

• Argument of Periapsis ω
Which defines the position of the periapsis, which is the closest point of the tra-
jectory to the principal body.

• Right Ascension of Ascending Node Ω
The RAAN gives the position of the ascending node of the trajectory: the point
where the secondary body enters the region of the positive values of the coordinate
z.

• Inclination i
It is obviously the inclination of the orbit’s perifocal plane, with respect to a fixed
direction.

• True Anomaly ν
It gives the angular position of the secondary body, along the orbit, from the
periapsis. In the R2BP, this is the only variable element, while all the others are
constant.

It is easier to understand the orbital elements looking at Fig. 2.2. In the figure the
orbital elements are defined for a satellite orbiting around Earth. Nonetheless, their
definition can be broadened to any secondary body in revolution around a primary one
much bigger.
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E a e Orbit

< 0 > 0 e = 0 Circle
< 0 > 0 0 < e < 1 Ellipsis
0 0 e = 1 Parabola
> 0 < 0 e > 1 Hyperbola

Table 2.1: Orbits shape

2.2 The Restricted Three-Body Circular Problem
Since the scope of this thesis is to analyze a trajectory which has the departure in a
Lagrangian Point, it is crucial to define such an entity. In order to explain what a
Lagrangian point is, the Restricted Three-Body Circular Problem has to be defined. The
hypothesis on which the described model relies are the following:

• Three Bodies: two of which are principal bodies, while the third is negligible,
in terms of mass. Thus, the third body does not affect the other two with its
gravitational interaction.

• Circularity: the principal bodies are characterized by circular orbits around the
center of mass of the system.

Systems that can be modeled under the hypothesis of the R3BCP are Earth-Moon-
Satellite or, as considered in this thesis, Sun-Earth-Satellite. The R3BCP scheme is
represented in Fig. 2.3. It is useful, to define two new constants:

M = m1 +m2

µ = m2
M

The positions of the principal bodies, with respect to the center of mass of the system,
can be easily derived:

m1 =

−µr12
0
0


m2 =

(1− µ)r12
0
0
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Figure 2.3: The three-body problem frame

Thus, the positions of the secondary body, with respect to the primary ones, can be
defined as follows:

r1 =

x+ µr12
y
z

 (2.7)

r2 =

x− (1− µ)r12
y
z

 (2.8)

The angular velocity of the system can be defined as well:

ω =
√
GM

r3
12

(2.9)

Since the reference frame is rotating, it is not inertial. Thus, to write down the
equations of motion, it is important to take into account the Coriolis acceleration and
the centripetal one. The vectorial form of the Equations of motion is:

r̈ + ω ∧ (ω ∧ r) + 2ω ∧ ṙ = 1
m

(F1 + F2) (2.10)

where:

F1 = −G(1− µ)Mm

r3
1

r1

F2 = −GµMm

r3
2
r2
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The equations of motion can be written in the scalar form, expliciting the components
on the three coordinates:

ẍ− ω2x− 2ωẏ = −GM 1− µ
r3

1
(x+ µr12)−GM µ

r3
2

[x− (1− µ) r12] (2.11)

ÿ − ω2y + 2ωẋ = −GM 1− µ
r3

1
y −GM µ

r3
2
y (2.12)

z̈ = −GM 1− µ
r3

1
z −GM µ

r3
2
z (2.13)

the equations of motion can be expressed in a dimensionless form, adopting the following
substitutions:

ρ = r

r12
−→ ξ = x

r12
η = y

r12
ζ = z

r12
(2.14)

τ = tω −→ d
dt = ω

d
dτ (2.15)

Thus, the dimensionless expression is:

ξ′′ − ξ − 2η′ = − (1− µ) ξ + µ

ρ3
1
− µξ − (1− µ)

ρ3
2

(2.16)

η′′ − η + 2ξ′ = − (1− µ) η
ρ3

1
− µ η

ρ3
2

(2.17)

ζ ′′ = − (1− µ) ζ

ρ3
1
− µ ζ

ρ3
2

(2.18)

In the Three-Body Problem, the gravitational potential function has the following for-
mulation:

U = G
m1
r1

+G
m2
r2

+ 1
2
(
x2 + y2

)
that can be expressed in the dimensionless form:

u = 1− µ
ρ1

+ µ

ρ2
+ 1

2
(
ξ2 + η2

)
(2.19)

Derivating the potential function with respect to the dimensionless coordinates, and
substituting the derivatives in the system of the equation of motion, a new form for the
equations themselves can be easily derived:

ξ′′ − 2η′ = ∂u

∂ξ
(2.20)

η′′ + 2ξ′ = ∂u

∂η
(2.21)

ζ ′′ = ∂u

∂ζ
(2.22)
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2.2.1 Lagrangian Points

The Lagrangian Points are particular positions in the space where gravitational interac-
tions and inertial forces are at equilibrium. Thus, they are characterized by the following
set of equalities:

ξ′ = 0 ξ′′ = 0
η′ = 0 η′′ = 0
ζ ′ = 0 ζ ′′ = 0

If a spacecraft is in a Lagrangian point, it rotates solidaly with the system. Since the
center of mass of the system Sun-Earth-Satellite lies underneath the surface of the Sun,
the Earth and the spacecraft — if it is in a Lagrangian point — have the same angular
velocity around the star, which is actually fixed.

Given the definition of Lagrangian point, the equations of motion for these points
become:

∂u

∂ξ
= 0 (2.23)

∂u

∂η
= 0 (2.24)

∂u

∂ζ
= 0 (2.25)

thus, the Lagrangian points are the minimum of the potential function of the Three-Body
System.

The only condition that allows to satisfy equation (2.25) is:

ζ = 0

Thus, all the Lagrangian points lie in the same plane.

Collinear Points

These points are obtained under the following conditions:

ζ = 0 (2.26)
η = 0 (2.27)

As can be inferred from their name, these points lie on the same line, which corre-
sponds to the x axis. There are three collinear points:
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• Lagrangian Point L1

It is found imposing:

−µ < ξ < (1− µ)

and solving the system:

 ξ − (1− µ) ξ+µ
ρ3

1
− µ ξ−(1−µ)

ρ3
2

= 0
ρ1 + ρ2 = 1

It is characterized by:

ρ2 = 3

√
µ

3 (2.28)

• Lagrangian Point L2

It is found imposing:

ξ > (1− µ)

and solving the system:

 ξ − (1− µ) ξ+µ
ρ3

1
− µ ξ−(1−µ)

ρ3
2

= 0
ρ1 − ρ2 = 1

It is characterized by:

ρ2 = 3

√
µ

3 (2.29)

clearly in the other direction with respect to L1.

• Lagrangian Point L3

It is found imposing:

ξ > −µ

and solving the system:

 ξ − (1− µ) ξ+µ
ρ3

1
− µ ξ−(1−µ)

ρ3
2

= 0
ρ2 − ρ1 = 1

It is characterized by:
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ρ2 = 2 (2.30)
ρ1 = 1 (2.31)

The collinear points are spots of unstable equilibrium. Thus, if an external disturbance
displaces the satellite from one of these points, it continues to move away from the
Lagrangian point itself.

Equilateral Points

These points are obtained under the following conditions:

ζ = 0 (2.32)
ρ2 = ρ2 = 1 (2.33)

As can be deduced by their definition, these points have the same distance from the
two masses. They can be retrieved, solving the system:{

ξ − (1− µ) (ξ + µ)− µ [ξ − (1− µ)] = 0
η − (1− µ) η − ηµ = 0

Therefore, the equilateral points are:

• Lagrangian Point L4

ξ = 1
2 − µ (2.34)

η =
√

3
2 (2.35)

• Lagrangian Point L5

ξ = 1
2 − µ (2.36)

η = −
√

3
2 (2.37)

Thus, they form two equilateral triangles with the two principal masses. As a matter
of fact, L4 rotates around m1 on the same orbit as m2 but preceding it of 60◦. On the
other ends, L5 follows m2 of the same angular distance.

The equilateral points are spots of stable equilibrium. If a disturbance arises, the
spacecraft moves back to its position.
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The position of the Lagrangian points can be better understood looking at Fig.
2.4. In the reality of astrodynamics, if the real system is analyzed — without the
hypothesis adopted to simplify it — the Lagrangian points are not punctiform. In fact,
they represent an area in which the third body is at equilibrium.

Figure 2.4: Lagrangian points

Considering the three-body system Sun-Earth-Satellite:

• L1: Lies between the Sun and the Earth

• L2: Lies on an orbit external to the Earth’s one and is characterized by the same
distance as L1 from the blue marble.

• L3: Is the symmetrical position of Earth with respect to the Sun

• L4: Precedes Earth of 60◦ on its orbit

• L5: Chases Earth of 60◦ on its orbit

The advantages of starting the rendezvous mission from an equilateral Lagrangian
point, lie in the possibility of waiting for the most favourable moment for departure,
without the need of station-keeping and with the possibility to carry out deep space
observations in the meanwhile. Moreover, being already outside the sphere of influence
—a concept that will be defined right after— there is no need for an escape manoeuvre,
that would be necessary if the departure point was on an Earth orbit.
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2.3 Interplanetary Missions

In order to study missions towards Near-Earth Asteroids, it is necessary to introduce
some basic notions about interplanetary transferts. These are studied under the hy-
potheses of the patched conics method. The interplanetary mission is split into three
phases:

• Escape from the sphere of influence of the departure body

• Heliocentric trajectory

• Arrival in the sphere of influence of the target body

The sphere of influence of a body is the portion of space around it, in which the
spacecraft can be supposed to interact only with the body itself. Thus, when into the
sphere of influence of the Earth, the satellite can be studied under the hypothesis of the
R2BP, with the planet as the principal body. On the other hand, during the heliocentric
trajectory, the spacecraft is outside the sphere of influence of any planet. Thus, the Sun
is the principal body, and the spacecraft is subject only to its gravitational interaction.
The radius of the Earth’s sphere of influence can be calculated as follows:

r '
(
m♁
m�

) 2
5

r♁−� ' 106km

where r♁−� is the mean distance between the Sun and the Earth and m♁ and m� are
respectively the masses of the Earth and of the Sun.

This dimension, if compared to the extension of the solar system, is negligible. Thus,
the patched conics approximation is a relatively accurate model. The crucial aspect of
the study of interplanetary trajectories with the patched conics approximation is the
relation of the physical quantities at the interface of the three legs, thus when passing
out and in the spheres of influence.

The description of the departure phase lies outside the scope of this thesis. As a
matter of fact, since the mission’s departure point is one of the Lagrangian points, the
spacecraft’s initial position is already outside the Earth’s sphere of influence.

As far as the heliocentric trajectory is concerned, it is strongly affected by the ma-
noeuvre effectuated during its duration. Thus, it is impossible to describe it in a general
way. In many pieces of literature, the heliocentric phase is studied as a coasting arc —
thus with no propulsion — of a Hohmann Transfer between the two bodies. As a matter
of fact, this description only fits the approximation of impulsive manoeuvres, that are
not considered in this work.

The only point of interest is the phase of arrival at the target body. In fact, since
the mission studied in this thesis relies on the gravity assist manoeuvre, its definition is
crucial.
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2.3.1 Fly-by

When entering the sphere of influence of a planet, the spacecraft can follow two different
scenarios. These are defined by the impact parameter of the spacecraft. Its expression,
considering an arrival into the Earth’s sphere of influence, is:

B =
R♁
V∞

√
V 2
∞ + 2

µ♁
R♁

(2.38)

where R♁ and µ♁ are respectively the Earth’s radius and gravitational parameter, and
V∞ is the spacecraft’s hyperbolic excess velocity. This is the velocity of the spacecraft
at an infinite distance from the planet, thus when the gravitational potential energy is
null. Given the dimension of the Earth’s sphere of influence with respect to its radius,
such velocity is the velocity relative to the Earth, when entering its sphere of influence.

It is important to highlight that a spacecraft with an elliptic orbit around the Sun,
when entering the sphere of influence of a planet, has a high relative velocity with respect
to the planet itself. Thus, in the sphere of influence, it is characterized by a hyperbolic
orbit around the planet. Thus, if d is the minimum distance of the spacecraft’s hyperbolic
trajectory around the target body, the possible scenarios are:

• d < B

The trajectory leads the spacecraft to impact the target body.

• d > B

The spacecraft trajectory does not collide with the target body.

In the second case, the spacecraft can perform two main activities:

• Capture
The spacecraft operates a manoeuvre to decrease its velocity, in order to enter an
elliptic orbit around the planet.

• Fly-by
The spacecraft leverages the velocity of the planet to change its heliocentric veloc-
ity, therefore changing its orbit around the Sun. This manoeuvre can be operated
without the use of the propulsive system.

As far as the topic of this thesis is concerned, the interest is focused on the fly-by
manoeuvres. As a matter of fact, these missions are used to change the heliocentric
velocity of the satellite —both in module and direction—, at expense of the velocity of
the planet. However, since the satellite’s mass is negligible if compared to the mass of a
planet, the change of velocity in the planet is totally negligible.

Since NEAs are generally objects with an orbit at an higher energy than the Earth,
the focus of this work is on fly-bys connected to a velocity increase.
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Earth gravity assist

The mechanism of the gravity assist fly-by is easily understandable looking at Fig. 2.5.
Without going deep into the mathematical aspects, two main changes can be pointed
out:

• Flight path angle
The angle that the velocity forms with the horizon at the escape is different from
the one at the arrival. Thus, the gravity assist manoeuvre allows to change the
direction of the velocity, and therefore the inclination of the orbit. This is a crucial
aspect since inclination change manoeuvres are very expensive from a propulsive
point of view. Leveraging the fly-by of the planet, it is possible to reach the orbit
of the NEA —which, in general, is inclined with respect to the Earth’s orbit—
saving propellant.

• Velocity module
The heliocentric velocity at the escape is higher, allowing to get closer to the NEA’s
orbit, which have an higher energy than the Earth’s one.

Figure 2.5: Trailing side fly-by

As already said, gravity assist manoeuvres allow to increase and rotate the helio-
centric velocity of the spacecraft, and therefore the energy of its heliocentric orbit, with
little or no propellant throughput. Looking at Fig. 2.5, one can appreciate that the
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hyperbolic excess velocity across the fly-by is constant in the module: V∞1 = V∞2. In
fact, if the engine is not switched on, the fly-by only consists in a rotation of the hyper-
bolic excess velocity. Since this velocity is vectorially added to the planet’s heliocentric
velocity to form the heliocentric velocity of the spacecraft, the rotation of V∞ results in
a change in both verse and module of this last quantity across the fly-by. Thus: V1 6= V2,
as can be inferred from the figure.

It is important to highlight that, being the sphere of influence negligible if compared
to the heliocentric trajectory, the duration of a fly-by is negligible as well. As a matter
of fact, fly-bys will be treated as discontinuities in terms of velocity — but not in mass
and position —.
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Chapter 3

Space Propulsion Elements

"Newton’s Third Law. The only way humans have figured out how to move forward is
to leave something behind"

— Interstellar

In this Chapter are presented the basic concepts of space propulsion, which are essential
for the understanding of the missions analyzed. First a global overview of the principles
shared by all the propulsive systems is given, then an insight on electrical thrusters
—which are the ones considered for the analyzed missions— is carried out.

As it has been introduced in the preceding Chapter, if no external force is applied
to a body in the space, its trajectory is a conic section and is completely defined by the
position and velocity of the body itself at a certain time.

As a matter of fact, propulsion can be defined as the capability to generate a force to
change the velocity of the spacecraft, thus modifying — or maintaining — the trajectory.

3.1 Overview

Although they are based on different physical phenomena, to generate thrust all types
of propulsors leverage the Newton’s third law of motion:

"When one body exerts a force on a second body, the second body simultaneously exerts
a force equal in magnitude and opposite in direction on the first body"

also known as the action-reaction principle.
Thus, since the space is a vacuum, the only possibility to generate thrust — besides

concepts of advanced space propulsion, such as solar and magnetic sails — is to carry
onboard something to exchange momentum with: the propellant. Clearly, this strongly
hinders the capability of motion in space, since the spacecraft can carry only a limited
amount of propellant. Once it has run out there is no possibility for the spacecraft to
acquire different orbits.
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3.1.1 Classification

It is possible to categorize space propulsors following different criteria. The first type of
classification is based on the purpose of the propulsor itself:

• Primary propulsion: it is designed and used in order to change the trajectory of
the spacecraft.

• Auxiliary propulsion: it is designed and used in order to maintain the desired
trajectory, withstanding and contrasting external disturbance actions.

On the other hand, it is possible to classify propulsor on the basis of the energy
source used to accelerate the propellant. In particular, three different classes exist:

• Chemical propulsion: it exploits a chemical propellant or the reaction between two
propellants — a fuel and an oxidizer — to generate thrust.

• Electrical propulsion: it exploits electromagnetic phenomena to accelerate the pro-
pellant.

• Nuclear propulsion: it leverages nuclear power to generate thrust.

3.1.2 Relevant Entities

Since all the propulsors leverage the action-reaction principle, it is possible to describe
in a general way their behaviour and to introduce some particularly relevant quantities,
without specifying the class of the propulsor itself.

It is considered a body on which no external force is applied, thus its behaviour can
be studied as a closed system. If this hypothesis is respected, the global momentum
must be constant over time.

In a first moment, the body of mass m is moving with a velocity v. After an infinites-
imal interval of time, the body has expelled a part of its mass: the propellant mass dmP .
Thus, the body loses a part of its mass but increases its velocity. The increment in ve-
locity is related to the velocity with which the propellant infinitesimal mass is expelled:
c. This is the effective discharge velocity. It is worth highlighting that c is defined with
respect to the spacecraft, thus the global velocity of the propellant is c− v.The scheme
of the problem is shown in Fig. 3.1.

Figure 3.1: Momentum conservation scheme
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This said, it is possible to impose the conservation of the total momentum of the
system:

mv = (m− dmP )(v + dv)− dmP (c− v)

Carrying out the mathematical operations and neglecting the second degree infinites-
imal terms, it is possible to obtain:

m dv = dmP c

Taking into account that the propellant is expelled in a continuous and not discrete
way, it is possible to define the propellant flow:

ṁP = dmP

dt
(3.1)

The preceding considerations yield to:

m
dv

dt
= ṁP c

Since the term on the left is the product of mass and acceleration of the body, the
term on the right must be the force applied to the body itself, according to Newton’s
second law of motion. This force is nothing but the thrust:

T = ṁP c (3.2)

with which is possible to express the thrust power :

PT = 1
2Tc = 1

2ṁP c
2 (3.3)

which is the power necessary to accelerate the propellant at the velocity that generates
a thrust of intensity T .

It is worth highlighting that the exit velocity is not, in general, equal to the effective
discharge velocity. This is due to the fact that, when accelerated in the nozzle the
propellant is subjected also to pressure forces. In particular, the portion of propellant
that is still inside the nozzle — and therefore still belongs to m — exchanges a pressure
force with the propellant that is already outside. The entity of this force, referred to
as static thrust, depends on the difference between the exit pressure and the ambient
pressure. Thus, the thrust is divided in two terms: a dynamic one — depending on the
exhaust velocity — and a static one:

T = ṁPue +Ae(pe − p0)

where, ue is the exhaust velocity, Ae is the exit section of the nozzle, pe is the pressure in
the exit section and p0 is the ambient pressure — equal to null in space —. Anyway, from
the point of view of the mission analysis there is no interest in knowing how the thrust
is divided between dynamic and static. This is the reason why the effective discharge
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velocity is defined. As a matter of fact, it is c that is defined once that the thrust is
known — and not vice versa —.

In general, for space propulsors the exit velocity is almost equal to the effective
exhaust velocity:

c = T

ṁP
(3.4)

At this point it is worth introducing some other relevant quantities that describe the
performances of the propulsor. The first one is the total impulse:

It =
∫ tf

t0
T dt (3.5)

which indicates the total propulsive power of the system. The bigger the total impulse,
the higher is the propulsive cost of the mission that the spacecraft may carry out.

With the total impulse it is possible to define the specific impulse:

Is = It
mP g0

(3.6)

where mP is the total propellant mass onboard and g0 is the gravity acceleration on the
Earth’s surface. If the thrust is constant:

It = T∆t

where ∆t is the functioning time of the propulsor.
Considering that if T and c are constants, also the propellant flow is:

mP = ṁP∆t

Substituting these two expressions in equation (3.6), it is easy to obtain:

Is = c

g0
(3.7)

This equation means that, neglecting a constant, c and Is have the same value. As
a matter of fact, both the specific impulse and the effective discharge velocity are a
measure of the efficiency with which the propellant is used to generate thrust. The
higher the value, the more performant the thruster is.

Perhaps, it is easier to understand this crucial concept if the following example is
introduced. If a propulsor which generates a thrust of an entity equal to the weight
of its propellant mass on Earth is considered, its operative time is exactly the specific
impulse. In fact:

T = mP g0 −→ It = T∆t = mP g0∆t −→ Is = It
mP g0

= ∆t

This means that if two thrusters with the same propellant mass but different specific
impulses are compared, the one with the highest specific impulse may:
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• Function for the same time but with a higher thrust level

• Generate the same thrust but for a longer time

needless to say it is important to have a high specific impulse. This consideration is even
more important if the concepts introduced in the following paragraph are considered.

3.1.3 Tsiolkovsky Equation

The Tsiolkovsky equation is perhaps the most important and surely the most iconic
equation of space propulsion. As a matter of fact it is often referred to as the rocket
equation. It relates the ideal propulsive cost of a manoeuvre with the propellant mass it
needs to be carried out. The term ’ideal’ means that no losses or external disturbances
are taken into account.

The starting point is the definition of the propulsive cost, or more precisely the
characteristic velocity:

∆V =
∫ tf

t0

T

m
dt (3.8)

which is the variation of the velocity of the body across the manoeuvre. Using equation
(3.2), it is possible to express the characteristic velocity as:

∆V =
∫ tf

t0
c ṁP

dt

m

Considering that ṁP = −ṁ — the spacecraft’s mass decreases as the propellant is
expelled — and taking into account equation (3.1):

∆V = −
∫ tf

t0
cṁP

dm

m

the integral is easy to determinate, if the assumption of constant c is adopted. In general,
the effective discharge velocity is not constant, but an opportune average value is always
possible to estimate. Anyway, solving the integral, the Tsiolkovsky equation is retrieved
and expressed in its two forms:

∆V = c ln
m0
mf

⇐⇒ mf = m0e
−∆V

c (3.9)

Since the propellant consumption and the propulsive cost are connected through
an exponential relation, it is crucial to have an effective discharge velocity which is
at least comparable with the characteristic velocity. If the specific impulse is too low
the final mass is negligible if compared to the initial one, thus there is no possibility
of carrying any payload. The exponential relation highlights a crucial concept. When
accelerating a payload, the propulsor is not only accelerating the payload itself, but
it is also accelerating the propellant that is needed to accelerate that payload. Thus,
if the payload is increased, the propellant mass needed does not increase linearly but
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exponentially, since the propulsor does not only have to accelerate extra payload, but to
accelerate extra propellant.

Hence the need for a high specific impulse. The higher c, the less propellant is needed
to accomplish the manoeuvre: this strongly hinders the vicious cycle of mass increasing.

3.2 Electrical Propulsion
As far as unmanned space missions are concerned, electrical propulsion is the state of
the art. Electrical thrusters rely on electrical power —in general generated exploiting
solar arrays— in order to accelerate a propellant gas. Nonetheless, different categories
of electrical propulsors exist, on the basis of how this energy is used to create thrust:
that is to say on the basis of the physical principle they rely on. In particular:

• Electrothermal propulsion: uses electrical power to heat the propellant. Then the
same is accelerated in a nozzle where the thermal energy is converted —with losses
and non-ideal effects— in kinetic energy, thus generating thrust.

• Electrostatic propulsion: uses electrical power to ionize the propellant and accel-
erate it leveraging electrical forces. Thus, the gas is ionized —creating ions and
electrons—, the ions are accelerated through an electric field and then the exit
beam is neutralized.

• Electromagnetic propulsion: uses electrical power to create electric and magnetic
fields. These generate forces that accelerate the propellant, creating thrust. It
is worth highlighting that also electrostatic thrusters seldom use magnetic fields,
but the acceleration is only created by the electric field. On the other hand,
electromagnetic acceleration is created by both electric and magnetic forces.

Besides the classification on the physical principle there is a parallel categorization
on the basis of the characteristic power of the thruster. In particular:

• Microthrusters: used, in general, for precision attitude control.

• 1 kW : used for station keeping or orbit injection —or deorbit— of small satellites.

• 5-10 kW : used for GEO insertion or deorbit of big satellites.

• 100+ kW : are under development concepts that could be implemented in human
exploration missions.

3.2.1 Generalities

Independently on the physical principle they exploit to accelerate the propellant, all the
electrical thrusters share some common behaviours. As a matter of fact, in the end they
all convert an electrical power in the final useful effect, which is thrust. This conversion
process is not ideal: in fact it is characterized by a certain global efficiency. The value of

30



this performance index is much different depending on the thruster category, but for now
there is no interest in fixing the numbers. Therefore, in general, the important concept
is that it is not possible to neglect the global efficiency, independently of its value.

Mathematically, what has been said is:

ηPE = 1
2Tc (3.10)

where η is the global efficiency, PE is the electrical power consumption and the term on
the right —recalling equation (3.3)— is the thrust power.

It is therefore possible to invert the relation in equation (3.10), to express the effective
discharge velocity:

c = 2ηPE
T

This relation highlights a crucial concept. As far as electrical propulsion is concerned,
it is possible to increase c—in the limits imposed by the current technologies— accepting
a disadvantage in terms of thrust or power source’s mass.

As a matter of fact, if compared to chemical rockets, electrical thrusters are charac-
terized by higher specific impulse and lower thrust. The high values of specific impulse
come at the price of low thrusts — 10 µN - 1 N— or heavy power generation sys-
tems. With the current technology, electrical thrusters can not provide accelerations
higher than g

100 . Thus, there is no possibility for electrical propulsion to be applied to
launchers. On the other hand, the characteristics of electrical thrusters perfectly fit the
requirements of long and efficient missions, exactly as the ones analyzed in this thesis.

3.2.2 Electrostatic Propulsion

Electrical thrusters accelerate the propellant through electrostatic forces, thus exploiting
electrical fields. In general, also a magnetic field is generated, but it is used for other
purposes different from the propellant acceleration. Since they rely on electrical forces,
electrostatic thrusters operate with ionized propellants. As a matter of fact, ionization
is just the first of the three processes which make up electrostatic propulsion:

• Ionization
The ionization of a propellant is the process through which it is possible to separate
some atoms from one of their electrons, thus creating a ion —and the electron
itself—. Such a process requires energy. In particular, each atom of the periodic
table is characterized by a first ionization energy: εi. This can be provided in
different ways, but in general the following reaction happens:

A+ εi 
 A+ + e−

where A and A+ are respectively the propellant’s atom and ion and e− is the free
electron. It is crucial to highlight that not all the propellant’s atoms are ionized.
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As a matter of fact, only a fraction of atoms receives the energy sufficient to lose
an electron and become an ion. Therefore, the ionization ratio is not equal to 1.
Now that ions and electrons are created, it is necessary to separate them. In
fact, applying an electric field to both electrons and ions would generate a null
thrust. This happens because electrons and cations have the same charge in terms
of module, but different signs. Thus, recalling the basic equation of electrostatic
physics:

F = qE

electrons and ions are subject to equal opposite force, which mutually neutralize
themselves. In fact, F is the force on the considered particle, E is the electric field
and q is the elementary charge.
The phenomenology of what has been previously described is shown in a graphic
way in Fig. 3.2.

Figure 3.2: Electric forces acting on different species

The separation of the two species may be carried out exploiting different means,
depending on the thruster type. One of these methods is exploiting a magnetic
field that, without entering the particular description of the electromagnetic inter-
actions, confines the electrons in the propulsor and allows to accelerate only the
ions.

• Acceleration
As it has been already said, the acceleration is generated through the application
of an electric field that acts on the ions. In particular, being the electric field a
conservative field, it is connected to an electric potential. The potential connected
to the acceleration is referred to as the net accelerating potential, and indicated
with the symbol VN . With an analogy, if the electric field is compared to the grav-
itational one, the potential is a difference in altitude. Thus, as a ball accelerates
down a slope, the ions are accelerated by the net accelerating potential.

32



Mathematically, this means that the electrical potential energy is converted into
kinetic energy. Neglecting the efficiency of the conversion process, it is possible to
impose the conservation of the total energy. In the propulsor there is only electric
potential energy —the propellant is globally static, there is only the chaotic thermal
agitation velocity, which is globally null— and at the exit it only has kinetic energy:

qVN = 1
2m+u

2
+

where q and VN have been already defined, m+ is the atomic mass of the ion —
that, being electrons far more lighter than neutrons and protons, is equal to the
mass of the propellant atom itself— and u+ is the exit velocity. On the basis of
the considerations in paragraph 3.1.2, this is almost equal to the effective exhaust
velocity. Hence its expression is easily derivable:

u+ =
√

2qVN
m+

(3.11)

Clearly, the only modifiable parameters are the net potential and the atomic mass
of the propellant.

• Neutralization
The last but not least step is to neutralize the accelerated beam of ions. As a
matter of fact, it is crucial to maintain the global neutrality of the propulsor. If
the ions were just accelerated, the propulsor itself would grow an inner negative
charge, due to the expulsion of a positive flow of charges. To avoid the insurgence
of such an undesired event, the ion beam is neutralized with an equal current of
electrons. This neutralizing current is not accelerated, since it does not have to
concur in producing thrust. In general, a sort of electron cloud is created at a
certain distance from the thruster’s exit. The high speed ions pass through this
cloud and for electrostatic interaction tie to an electron and get neutralized. Each
ion takes an electron and in the end what exits is a neutral beam of atoms —as
the propellant was before ionization—.

Ion Thrusters

Ion thrusters are certainly the more diffused and established electrostatic propulsors. As
can be inferred from their name, they accelerate ions, created ionizing a propellant. In
general, this is a high atomic mass gas, such as Xenon. Being this a noble gas, it has
an extremely high first ionization energy, since its external electronic level is complete.
Thus, in order to have a propellant easier to ionize, the Xenon is mixed with other
elements. This process, called seeding, requires a little injection —1-5%— of an alkaline
metal —which only has one external electron, thus is easy to ionize—. This allows to
have a smaller ion production energy. In fact, the electrical power is not only used to
accelerate the propellant, but in the first place it is necessary to spend some energy to
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create the ions. This means that, even in the more ideal case, the process has not 100%
efficiency, but there is an ideal efficiency:

ηid =
1
2m+u

2
+

1
2m+u2

+ + εB

where εB is the production cost of one ion. The ionization process can be carried out
leveraging different physical principles:

• Electron Bombardment
An electron gun injects electrons at high energy —and therefore speed— in the
same chamber of the propellant. The electrons are subjected to both an electric
field —that accelerates them— and a magnetic field —that confines them to stay
in the chamber for the longest possible time—. Thus the electrons move between
the two electrodes at different potential —that generate the electric field— of the
ionization chamber and impact with the propellant atoms. These collisions lower
the velocity of the electrons and may ionize the atoms of propellant.

• Radiofrequency
A radiofrequency coil creates electromagnetic waves that provides the energy nec-
essary for the ionization.

Independently on the ionization method, the process is not ideal. Thus, not all the
propellant atoms are ionized.

The acceleration of the fraction of the propellant atoms that are ionized is, in general,
carried out in a limited region between two grids. This is why most ion thrusters are
defined as gridded. The ions are accelerated between a screen grid and an acceleration
grid, which are at different potential levels. These grids are nothing but curved plates
of molybdenum, with millimetric holes in them.

This solution is chosen, instead of one single bigger exit section, in order to have a
more focused beam. In fact, being all positively charged, the ions would tend to repulse
each other. This effect is magnified by a single beam with more ions, and is strongly
hindered by the gridded geometry that separates the ions in different beams. These, if
the grids are well designed, do not interact with one another.

The grids themselves are posed at a millimetric distance. Nonetheless, it is necessary
to not exceed in having too close grids with a high potential difference. In general, to
avoid the insurgence of sparks:

VG
d
< 2 kV

mm

is the limit, being VG the difference of potential between the grid and d their distance.
Grids are made in molybdenum because it is easy to manipulate. As a matter of fact,
grids are the critical components of ion thrusters, being expensive, complex and delicate.
In particular, the erosion of the grids —mainly the accelerating one— is the dimensioning
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factor of ion thrusters life. Moreover, grids need to be curved so that, when under thermal
loads, their buckling direction is known. If they were planar, it would be impossible to
forecast their behaviour when expanding due to temperature rise. Also their dimension
has to be limited, in general:

D

d
< 600

where D is the grids’ diameter.
Perhaps, it is easier to understand the functioning of an ion thruster looking at Fig.

3.3, where a gridded ion thrusters leveraging electron bombardment is shown.

Figure 3.3: Gridded ion thruster’s scheme

It is possible also to see the component used for the last action: neutralization.
This is carried out with a hollow cathode, that extracts electrons from a fraction of the
propellant flow. This process is necessary, but creates another loss in the propellant
fraction that is ionized. In particular, the propellant flow ṁP is made up of the flow
that is ionized ṁ+ and of two ’losses’: the non ionized fraction ṁA and the fraction that
goes to the hollow cathode ṁC . Thus:

ṁP = ṁ+ + ṁA + ṁC

It is therefore possible to define an efficiency of propellant utilization:

ηu = ṁ+
ṁP
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If there are no other losses of electrical power, thus in an almost ideal case, the global
efficiency is:

ηg = ηidηu

This allows to define the fraction of the supplied electrical power that actually is
converted in thrust power:

PT = 1
2Tc = ηgPE
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Chapter 4

Indirect Methods for Space
Trajectories Optimization

"The best is the enemy of the good"
— Voltaire

In this Chapter are described the global characteristics and the mathematical aspects
of the method adopted for the optimization of the trajectories considered in this work.
First the concepts of the Optimal Control Theory will be introduced in a general way,
then the aspects of the deriving Boundary Value Problem will be described.

In general, optimization problems consist of the research of a particular control law
which maximizes or minimizes a peculiar performance index. As far as space trajectories
are concerned, the optimization problem is usually related to the maximization of the
payload. Given the great importance of propellant consumption, which strongly affects
the mission’s cost, it is crucial to minimize it: minimizing consumption or maximizing
the payload are, as a matter of fact, the same requirement.

The analytical solution of such a complex problem can be derived only if strong
simplifications are adopted, which reduce the field to missions with little or no scien-
tific interest. Thus, significant solutions need to be achieved exploiting approximated
theories or numerical methods. Indirect methods belong to the latter category. These
optimization techniques are characterized by a high numerical precision and a robust
theoretical content. Furthermore, they rely on a limited amount of parameters, thus
requiring little computational time. On the other hand, these methods are not robust
and are usually characterized by a small convergence region, thus requiring a precise
attempt solution.

4.1 Optimal Control Theory

The Optimal Control Theory —OCT— is based on the principles of variational calculus.
It is used in different fields of expertise and is here summarized and described in the
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form that best suits the application to space trajectories optimization.
The generic system, which the Optimal Control Theory can be applied to, can be

described through the vector of the state variables x. The differential equations, de-
scribing the evolution of the system’s state between the initial and final time — external
boundary conditions —, are a function of:

• x: state variables vector

• u: controls vector

• t: time

Thus, they can be expressed in the following form:

dx
dt = f(x,u, t) (4.1)

It is convenient, for the analyzed case, to divide the trajectory in a number n of
subintervals, defined as arches. Within each arch the variables are continuous, but dis-
continuities can be present at the arches’ interfaces. In fact, the division in arches allows
to consider discontinuities — such as mass discontinuities connected to an impulsive ma-
noeuvre or time discontinuities related to a planet fly-by — in a relatively simple way.
If the j-th arch begins at time t(j−1)+ and ends at tj− , the state vectors at the interval’s
edges is represented as x(j−1)+ — beginning — and xj− — end —. In particular, the
signs − and + refer to the values assumed before and after the considered point. The
connection points of the arches are the internal boundary conditions. Following this
strategy, the function representing the differential equations of the system can assume
different expressions in each arch.

The boundary conditions are, in general, both mixed and non-linear. Thus, they
involve non-linear relations between the state and time variables at the external and
internal boundaries. In the generic form, they can be expressed as following:

χ(x(j−1)+ ,xj− , t(j−1)+ , tj−) = 0 j = 1, ..., n (4.2)

The optimization problem consists of the research of the extremal values — relative
maximum or minimum — of the functional:

J = ϕ(x(j−1)+ ,xj− , t(j−1)+ , tj−) +
∑
j

∫ tj−

t(j−1)+

Φ(x(t),u(t), t)dt j = 1, ..., n (4.3)

The functional J is made up of two components:

• ϕ: a function depending on the values of the variables vector and of the independent
variable at the boundaries

• Integral of the Φ function: which depends on the time and on the values assumed
by the state and the controls at each instant
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It is always possible, introducing particular auxiliary variables, to formulate the func-
tional’s expression in order to present:

• ϕ = 0: Lagrange’s formulation

• Φ = 0: Mayer’s formulation, which is the one adopted in this thesis

It is then useful to reformulate the functional. In particular, introducing:

• µ: adjoint constants, connected to the boundary conditions

• λ: adjoint variables, connected to the state equations

it is possible to write the expression of the modified functional:

J∗ = ϕ+ µTχ+
∑
j

∫ tj−

t(j−1)+

(Φ + λT (f − ẋ))dt j = 1, ..., n (4.4)

where the point ˙ means the derivative with respect to the time. Both functionals J
and J∗ depend on the time, the state vector and its derivative and the controls u. In
particular, the values of time and state variables which affect the functionals, are the
ones related to each arch’s edges. Needless to say, if the boundary conditions and the
state equations are satisfied, the two functionals — and therefore their extremal values
— coincide.

By integrating by parts, it is possible to eliminate the dependence of the functional
J∗ from the derivatives of the state vector:

J∗ = ϕ+ µTχ+
∑
j

(λT(j−1)+
x(j−1)+ − λ

T
j−xj−)+

+
∑
j

∫ tj−

t(j−1)+

(Φ + λTf − λ̇Tx)dt j = 1, ..., n
(4.5)

Furthermore, it is possible to differentiate the resulted expression in order to obtain the
differential of the functional itself:

δJ∗ =
(
−H(j−1)+ + ∂ϕ

∂t(j−1)+

+ µT ∂χ

∂t(j−1)+

)
δt(j−1)++

+
(
Hj− + ∂ϕ

∂tj−
+ µT ∂χ

∂tj−

)
δtj−+

+
(
λT(j−1)+

+ ∂ϕ

∂x(j−1)+

+ µT
[

∂χ

∂x(j−1)+

])
δx(j−1)++

+
(
−λTj− + ∂ϕ

∂xj−
+ µT

[
∂χ

∂xj−

])
δxj−+

+
∑
j

∫ tj−

t(j−1)+

((
∂H

∂x
+ λ̇T

)
δx+ ∂H

∂u
δu

)
dt j = 1, ..., n

(4.6)

39



where it has been introduced the Hamiltonian of the system:

H = Φ + λTf (4.7)

In order to infer the optimal condition, it is necessary to impose the stationariness
of the functional. Thus, the derivative of the functional with respect to any possible
variation — δx, δu, δx(j−1)+ , δxj− , δt(j−1)+ , δtj− — has to be null, as far as it is com-
patible with the differential equations and the boundary conditions. The introduction
of adjoint variables and constants allows, with a convenient choice, to contemporarily
cancel the coefficient of each variation in equation (4.6), thus assuring the stationariness
of the functional expressed by the condition δJ∗ = 0.

In particular, cancelling the coefficients of δx and δu in the integral term, two im-
portant relations can be derived:

• Euler-Lagrange differential equations for adjoint variables:

dλ
dt = −

(
∂H

∂x

)T
(4.8)

• Algebraic equations for controls: (
∂H

∂u

)T
= 0 (4.9)

An interesting property of the control laws is their formal independence from the sta-
tionary point searched. Seeking maximum or minimum of the functional J does not
affect the algebraic equations (4.9).

It is important to highlight the importance of dealing with constrained controls. As
a matter of fact, one or more controls could be limited to a particular admissible domain.
For instance, the thrust provided by a propulsor has to be positive and can not exceed a
value Tmax, defined by the thruster category. In this analysis, will not be considered con-
trols’ constraints variable with time or dependent from the state vector variables. Thus,
any boundary condition on the controls is constant and explicit. If such a constraint is
present, the optimal value of the bound control in any point of the trajectory is the one
that, belonging to the admissibility domain, maximizes — if maximum are seeked — or
viceversa minimizes the Hamiltonian in that point. This peculiarity is expressed by the
Pontryagin Maximum Principle, which leads to two possibilities:

• The optimal value for control is the one derived from equation (4.9) if it belongs to
the admissibility domain. In that point the constraint does not affect the system,
resulting in a locally non-constrained control

• The optimal value for control is at the domain extremes. Thus, if the optimal
control derived from equation (4.9) falls outside the domain, the control assumes
its maximum or minimum value. In this case, the control is constrained
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If the Hamiltonian is linear with respect to one of the constrained controls, the system
presents a peculiarity. As a matter of fact, in the related equation (4.9) the control does
not appear directly, therefore it can not be determined. In this case there are again two
possibilities:

• In equation (4.7) the constrained control coefficient is not null. This means that
the Hamiltonian is maximized assuming the maximum value for the control if it is
positive, or the minimum one if its negative. This is often referred to as bang-bang
control, and derives from the Pontryagin Maximum Principle

• In equation (4.7) the constrained control coefficient is null within a singular arch.
It is then necessary to impose the cancellation of every derivative of the coefficient
itself, with respect to the time, until one of them does not explicitly contain the
control. The optimal control is then determined by imposing the last derivative
equal to null. It is established that the derivative degree necessary is always even.
Naming the derivative’s degree n, the order of the singular arch is n/2

As far as the missing boundary conditions are concerned, it is convenient to refer to the
j-th extreme. It is possible to write down, for the considered boundary, the conditions
deriving from considering it as the final edge of the (j − 1)-th sub-interval or as the
initial point of the j-th sub-interval. By cancelling the coefficient of δxj− ,δxj+ , δtj− and
δtj+ in equation (4.6), the following conditions can be derived:

− λTj− + ∂ϕ

∂xj−
+ µT

[
∂χ

∂xj−

]
= 0 j = 1, .., n (4.10)

λTj+ + ∂ϕ

∂xj+
+ µT

[
∂χ

∂xj+

]
= 0 j = 0, .., n− 1 (4.11)

Hj− + ∂ϕ

∂tj−
+ µT ∂χ

∂tj−
= 0 j = 1, .., n (4.12)

−Hj+ + ∂ϕ

∂tj+
+ µT ∂χ

∂tj+
= 0 j = 0, .., n− 1 (4.13)

where j− and j+ are the values assumed right before and right after the point j. As
already introduced, it is crucial to distinguish the two instants, as a discontinuity could
happen at the arches’ conjunction points. Clearly, equations (4.10) and (4.12) can not
be considered for the starting point of the trajectory — j = 0 —, and equations (4.11)
and (4.13) are not significant at the end, where j = n. Eliminating the adjoint constants
µ from the set of equations above, the Optimum Boundary Conditions can be defined
as:

σ(x(j−1)+ ,xj− ,λ(j−1)+ ,λj− , t(j−1)+ , tj−) = 0 j = 1, ..., n (4.14)

The final system of differential equations is made up of equations: (4.1) (4.2) (4.8) (4.14).
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Considering the generic state variable x, if subjected to particular boundary condi-
tions, equations (4.10) and (4.11) give peculiar optimal values for the relative adjoint
variable λx. In particular:

• If the state variable x value is given at the initial instant — which means that the
imposed boundary conditions vector χ contains the equation x0 − a = 0, with a
explicit value —, on the corresponding adjoint variable λx there are no conditions.
Therefore, the adjoint variable’s initial value λx0 is free. The same property can be
inferred for the final instant, if a state variable is explicitly defined in that point.
Mathematically:

if x0 − a = 0 −→ λx0 is free

• If the initial value of the state variable x0 does appear neither in the function ϕ
nor in the boundary conditions, the relative adjoint variable is null at the initial
instant: λx0 = 0. Also in this case, the consideration can be extended to the final
instant. Mathematically:

if ϕ 6= f(x0) ∧ χ 6= f(x0) −→ λx0 = 0

• If a state variable is continuous but not explicitly defined at an internal point
j — which means that the vector χ contains the equality xj+ = xj− —, the
corresponding adjoint variable is continuous as well in that point: λxj+

= λxj−
.

Mathematically:

if xj+ = xj− −→ λxj+
= λxj−

• If a state variable is continuous and given at a defined internal interface — which
means that χ contains the equations xj− = a and xj+ = a —, the corresponding
adjoint variable in that point presents a free discontinuity. This means that its
value after the point j is independent from the value it assumed before, and has
to be determined through the optimization algorithm. Mathematically:

if xj+ = xj− = a −→ λxj+
6= f(λxj−

)

With the same considerations, can be inferred that if the Hamiltonian does not explicitly
depends on the time, also equations (4.12) and (4.13) give some peculiar boundary
conditions. In particular:

• If the initial time t0 does not explicitly appear in the boundary conditions or in
the function ϕ, the Hamiltonian of the system is null at the initial point: H0 = 0.
As always, the same conclusions can be inferred for the final time of the trajectory

• If the internal time tj does non explicitly appear in the function ϕ — which means
that the only condition in which it is involved is the continuity of the time at the
internal boundary tj+ = tj− —, the Hamltonian of the system is continuous in j:
Hj+ = Hj−
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• If the internal time tj is explicitly defined — which means that in χ appears the
equations tj− = a and tj+ = a —, the Hamiltonian of the system in that point has
a free discontinuity

4.2 Boundary Value Problem

The indirect method, used to optimize orbital transferts and space missions in general,
relies on the application of the Optimal Control Theory at the system of differential
equations. This is made up of the following systems:

dx
dt = f(x,u, t) State Differential Equations

dλ
dt = −

(
∂H

∂x

)T
Euler-Lagrange Equations

χ(x(j−1)+ ,xj− , t(j−1)+ , tj−) = 0 Imposed Boundary Conditions

σ(x(j−1)+ ,xj− ,λ(j−1)+ ,λj− , t(j−1)+ , tj−) = 0 Optimum BC

to which can be attached:(
∂H

∂u

)T
= 0 Controls Algebraic Equations

The OCT traduces this problem in a Boundary Values Problem — BVP —, where
some of the variables’ initial values are unknown. The solution of the BVP consists in
finding the initial values which satisfy contemporarily all the boundary conditions: both
imposed and optimal. Such a method relies on the numerical integration of the system
of differential equations.

The Optimal Control Theory, as explained in Section 4.1, formulates the optimization
problem as a mathematical problem subjected to both differential and algebraic bounds.
The described problem is characterized by some peculiarities:

• The integration domain is divided into subintervals called arches. Within each arch
the formulation of the the differential equations is constant, but may be different
from one arch to another

• The duration of each arch is, in general, unknown

• the boundary conditions may be non-linear, as well they can involve the values of
the variables both at the external boundaries and the external

• The variables may be discontinuous at the internal boundaries and their values
after such singularity might be unknown
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The main challenge, dealing with indirect optimization techniques, is the solution of the
Boundary Values Problems which derives from their application to physical systems.
Therefore, the method for the BVP solution is one of the most important instruments.
The solution is achieved by reducing the BVP to a sequence of sub-problems, which is
then taken to convergence exploiting the Newton method.

In order to solve the problem related to indefiniteness of the duration of the arches,
the independent variable t is replaced, only for the integration, with a new variable ε.
This new variable is defined in the j-th arch as follows:

ε = j − 1 + t− tj−1
tj − tj−1

= j − 1 + t− tj−1
τj

where τj is the duration — in general not known — of the subinterval. Thus, internal
and external boundaries are fixed. In fact, thanks to the introduction of the unknown
parameters τj , the interface points are represented by the natural values of the new
independent variable ε.

In order to describe the method, the differential equations are reformulated intro-
ducing the new variables vector which takes into account both the state variables and
the adjoint variables: y = (x,λ). Thus, the differential problem becomes:

dy
dt = f∗(y, t) (4.15)

It is worth highlighting the fact that, in the considered problem, some parameters
— such as the arches’ duration tau — are constant. Thus, it is convenient to introduce
another vector z = (y, c) which comprehends: state variables, adjoint variables and
constant parameters.

Considering this last change, and the change of the independent variable, the system
of differential equations can be expressed in the following form:

dz
dε = f(z, ε) (4.16)

It is then possible to express the second member of the equation. As far as the
state and adjoint variables vector is concerned, the derivative with respect to the new
independent variable is:

dy
dε = τj

dy
dt (4.17)

while for the constants’ vector can be easily derived:

dc
dε = 0 (4.18)

The boundary conditions can be merged in a single vector that takes into account
both the imposed ones and the optimal ones. They are usually expressed in the form:

Ψ(s) = 0 (4.19)
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where it has been introduced the vector s. This new vector includes the values that the
variables — both state and adjoint — assume at every boundary — external as well as
internal — and the unknown constant parameters:

s = (y0, ...,yn, c) (4.20)

The initial values of some variables are usually unknown, thus the research of the
solution coincides with the determination, through an iterative process, of which values
they have to assume to satisfy the boundary conditions in equation (4.19). The method-
ology is here described considering all of the initial values as unknown. If one or more
are explicitly defined, the method is simplified. Each iteration begins with the numerical
integration of equations (4.16). If the r-th iteration is running, the initial values pr are
the ones retrieved at the end of the previous iteration. This means that the following
equality is imposed:

z(0) = pr (4.21)

then, the differential equations are integrated throughout the whole trajectory, taking
into account the discontinuities at the internal boundaries. Needless to say, in order to
spark the process it is necessary to choose the values of the first attempt vector: p1. At
each internal boundary is determined the values of the state variables and, at the end
of the integration process, the error on the boundary conditions is computed. This is
referred to as: Ψr for the r-th iteration.

The variation ∆p, brings changes to the error on the boundary conditions. This
error ∆Ψ, considering only the first order terms, can be expressed as:

∆Ψ =
[
∂Ψ
∂p

]
∆p (4.22)

In order to fulfill the boundary conditions (4.19), such error has to be null. Thus,
it is necessary that ∆Ψ = −Ψr, resulting in a modification of the initial values at each
iteration of:

∆p = pr+1 − pr = −
[
∂Ψ
∂p

]−1
Ψr (4.23)

this correction is applied until the boundary conditions are respected, with the desired
accuracy. The matrix in the second term of equation (4.23), is calculated through the
product of two matrices: [

∂Ψ
∂p

]
=
[
∂Ψ
∂s

] [
∂s

∂p

]
(4.24)

where the first one can be easily obtained derivating the boundary conditions with
respect to the variables they depend on. The second matrix takes into account the
derivative of the variables at the boundaries with respect to their initial values. This
means that the second matrix represents the values assumed at the boundaries by the
matrix:
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[
∂z

∂p

]
= [g(ε)] (4.25)

which is obtained from the integration of the main system of differential equations (4.16)
with respect to each of the initial values:

[ġ] = d
dε

[
∂z

∂p

]
=
[
∂

∂p

(dz
dε

)]
=
[
∂f

∂p

]
(4.26)

where now the point ˙ represents the derivative with respect to the new independent
variable ε. The Jacobian of the principal system (4.16) can be expressed, finding the
following form for equation (4.26):

[ġ] =
[
∂f

∂z

] [
∂z

∂p

]
=
[
∂f

∂z

]
[g] (4.27)

One of the peculiarities of the described method, for the solution of indirect opti-
mization problems, is the symmetry of some terms of the Jacobian. Here such properties
are not described since they fall out from the scope of the thesis.

The initial values of the homogeneous system (4.27) can be retrieved through the
derivative of relation (4.22). This way, the identity matrix can be found:

[g(0)] =
[
∂z(0)
∂p

]
= [I] (4.28)

It is worth underlining that this method allows to deal also with discontinuities in
the variables. As a matter of fact, in order to take into account a discontinuity at point
i, it is sufficient to update both the vector of variable z and the matrix g. This operation
can be realized through the relation h which connects the values of the variables before
and after the discontinuity:

zi+ = h (zi−) (4.29)
[
gi+

]
=
[
∂h

∂z

] [
gi−

]
(4.30)

This explains why the vector s has been defined without a clear distinction between yi+
and yi−. In fact, one is a known function of the other and of the vector c, through the
relation h.

As already introduced, if some of the initial values are known, the problem is simpler.
In fact, the vector p is reduced to the estimate only of the unknown components of the
vector z(0) and the vector Ψ consists only of the boundary conditions which are unknown
at the initial instant.

The matrix in the left term of equation (4.23) can be calculated numerically instead
than analytically. In fact, its i-th row can be obtained slightly changing the i-th compo-
nent of the vector p, through the addiction of a certain ∆p. It is important to keep the
other components fixed when proceeding with the integration. Thus, it is possible to
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calculate the related change in the boundary conditions ∆Ψ(∆p) and, through lineariza-
tion, to obtain the corresponding row with the expression: ∆Ψ/∆p. This method allows
to cut down the computational time in some cases. On the other hand, the convergence
of such a procedure is not granted. As a matter of fact, the numerical determination of
the matrix in equation (4.23) is way less precise than its calculation through the solution
of the system (4.27). Considering the sensibility of the problem, even adopting the most
suitable value of ∆p — that, relying on empirical knowledge, lies usually between 10−7

and 10−6 — the introduced numerical approximation can compromise the convergence
of the solution.

Anyway, in spite of the higher precision of the analytical method, the numerical
procedure is adopted in this work in order to calculate the Jacobian of the system and
the matrix

[
∂Ψ
∂s

]
to reduce the computational times.

The linearization, introduced in order to calculate the correction ∆p — given by
equation (4.23) — of the first attempt initial values, brings to errors that can invalidate
the method’s convergence. In fact, the linearization can bring the error on the boundary
conditions to grow instead then decreasing. In order to solve this problem, the following
strategy is carried out:

• In order to prevent the method from dinstancing too much from the solution of
the problem, the correction applied is only a fraction of the one determined using
equation (4.23). In particular:

pr+1 = pr +K1∆p (4.31)

where K1 ∈ [0.1, 1]. These values are determined empirically during the first
implementations of the codes, and depend on the distance of the first solution
from the one searched

• Each iteration follows the same logic operations:

1. The new vector of the attempt initial values pr+1 is determined through
equation (4.31)

2. The motion differential equations are integrated
3. The error on the boundary conditions Er+1

max is compared to the one retrieved
from the previous iteration step Ermax. Then if:

Er+1
max < K2E

r
max

the next iteration can be carried out. It is worth highlighting that, in order
to converge to the solution, the error on the boundary conditions may grow
in the first iterations. Thus, the value of K2 shall be greater than one. In
particular, a value K2 ∈ [2, 3] brings satisfying results.

• If the error connected to the latest iteration is too high with respect to the previous,
the method proceeds with the bisection of the correction. That is to say that half
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of the determined change is brought to the vector p for the integration of the
motion equations. Mathematically:

pr+1 = pr +K1∆p/2 (4.32)

The new error is then compared to the one of the previous iteration step. If
necessary, the bisection can be applied to the correction value up to 5 times. If
even after such a procedure the new iteration determines an error greater than the
previous one, the computation is stopped. This means that the chosen attempt
solution is not compatible with the convergence of the method and has to be
modified.
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Chapter 5

Problem Definition

"This world’s a treasure, but it’s telling us to leave for a while now"
— Interstellar

In this Chapter will be presented the equations describing the analyzed problem, to which
the Optimal Control Theory is applied, thus specifying the notions and general equations
introduced in the preceding Chapter to the missions considered in this work. In the end,
the strategy for the identification of the most suitable targets will be introduced, as well
as the characteristics of the reference spacecraft for the mission.

The optimal trajectories that will be studied are defined in a heliocentric reference
system. Thus, given the considerations highlighted in Chapter 2, it is possible to study
the problem adopting the approximation of the Two-Body Problem. The vectorial dif-
ferential equations describing the motion of the satellite are:

dr
dt = V (5.1)

dV
dt = −

µ�
r2
r

r
+ T

m
(5.2)

dm
dt = −T

c
(5.3)

where r is the position vector of the satellite with respect to the Sun, V is the velocity
vector of the spacecraft and T is the thrust vector. Clearly, µ� is the Sun’s gravitational
parameter.

From the Theory of Optimal Control it is known that:

H = Φ + λTf

that, combined with the vectorial expression of the State Equations brings to:

H = λr
TV + λV T (−

µ�
r2
r

r
+ T

m
)− λm

T

c
(5.4)
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Such expression can be reformulated introducing the Switching Function:

SF = λV
TT

mT
− λm

c
(5.5)

that brings to the following expression for the Hamiltonian:

H = λr
TV + λV Tg + TSF (5.6)

where g = −
µ�
r2

r
r .

The optimal control imposes the maximization of the Hamiltonian, thus the thrust
to be parallel to the primer vector : λV . This consideration brings to the definition of:

SF = λV
m
− λm

c
(5.7)

Thus, the switching function, and in particular its sign, define the strategy to maxi-
mize the Hamiltonian:

SF < 0 −→ T = 0 (5.8)
SF > 0 −→ T = Tmax (5.9)

5.1 Spherical Coordinates

The trajectory of the spacecraft that performs the mission is described by a set of vecto-
rial equations, that shall be projected on a convenient reference system of coordinates.

Figure 5.1: Spherical coordinates
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The optimal choice is an inertial reference frame, given the absence of Coriolis and
inertial accelerations. Thus, a spherical set of coordinates is adopted to describe the
satellite position and velocity vectors, in the inertial frame based on the equatorial
plane of the central body — in this case, the Sun—.

The position vector of the spacecraft is:

r =

rϑ
φ

 (5.10)

where r is the distance from the Sun, ϑ is the longitude and φ is the latitude. A graphical
representation of the entities described above is presented in Fig. 5.1.

The velocity vector of the spacecraft is made up of the following components:

V =

uv
w

 (5.11)

being u, v and w respectively the radial, tangential and normal components.
Perhaps, it is easier to understand the physical orientation of the velocity components

looking at their graphical representation in the horizon plane, reported in Fig. 5.2.

Figure 5.2: Velocity components in the horizon plane
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5.2 State and Adjoint Variables
Projecting the State Equations in the chosen reference frame, being the state vector
x = [r ϑ φ u v w m], the following expressions are obtained:

dr
dt = u (5.12)

dϑ
dt = v

r cosφ (5.13)

dφ
dt = w

r
(5.14)

du
dt = − 1

r2 + v2

r
+ w2

r
+ T

m
sin γT (5.15)

dv
dt = −uv

r
+ wv

r
tanφ+ T

m
cos γT cosψT (5.16)

dw
dt = −uw

r
− v2

r
tanφ+ T

m
cos γT sinψT (5.17)

dm
dt = −T

c
(5.18)

where γT and ψT are the flight path angle and the heading angle of the thrust respectively.
Their physical meaning can be easily inferred looking again at Fig. 5.2, where the same
angles referred to the velocity vector are displayed.

It is then possible to formulate the expression of the Hamiltonian:

H = λru+ λϑ
v

r cosφ + λφ
w

r
+

+ λu

(
− µ
r2 + v2

r
+ w2

r
+ T

m
sin γT

)
+

+ λv

(
−uv
r

+ vw

r
tanφ+ T

m
cos γT cosψT

)
+

+ λw

(
−uw

r
− v2

r
tanφ+ T

m
cos γT sinψT

)
− λm

T

c
(5.19)

The thrust flight path angle and heading angle are, as a matter of fact, the controls
that define the direction of the thrust itself. Relying on what has been said in the
Chapter 4, it is possible to derive the optimal values of γT and ψT , imposing equal to
null the partial derivatives of the Hamiltonian. Mathematically:(

∂H

∂u

)T
= 0

being u = [γT ψT ] the Controls.
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This yields to the Algebraic Equations of Control:

sin γT = λu
λV

(5.20)

cos γT cosψT = λv
λV

(5.21)

cos γT sinψT = λw
λV

(5.22)

where:
λV =

√
λ2
u + λ2

v + λ2
w (5.23)

is the primer vector’s module. As mentioned before, the primer vector is parallel to the
optimal direction of the thrust.

The only set of equations left to be defined are the differential equations for the ad-
joint variables: λ = [λr λϑ λφ λu λv λw λm]. These are the Euler-Lagrange Equations:

dλ
dt = −

(
∂H

∂x

)T
that for the analyzed problem becomes:

λ̇r = 1
r2

[
λϑ

v

cosφ + λφw + λu

(
−2
r

+ v2 + w2
)

+

+ λv (−uv + vw tanφ) + λw
(
−uw − v2 tanφ

)] (5.24)

λ̇ϑ = 0 (5.25)

λ̇φ = 1
r cos2 φ

(
−λϑv sinφ− λvvw + λwv

2
)

(5.26)

λ̇u = 1
r

(−λrr + λvv + λww) (5.27)

λ̇v = 1
r

[
−λϑ

1
cosφ − 2λuv + λv (u− w tanφ) + 2λwv tanφ

]
(5.28)

λ̇w = 1
r

(−λφ − 2λuw − λvv tanφ+ λwu) (5.29)

λ̇m = T

m2λV (5.30)
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5.3 Dimensionless Quantities

Before entering the core of the problem definition and of the adopted methodology it is
useful to describe some reference quantities. In particular, these are used to formulate
the problem in a dimensionless, and therefore more general, form.

5.3.1 Dimensionless Distance

Instead of using distances in kilometers to define spatial variables —such as r—, all the
distances are defined as a multiple of the astronomical unit:

1 AU = 149597870.7 km

which is roughly the distance between the Earth and the Sun. The adoption of astro-
nomical units as the measure of distance allows to operate with numbers which are of
the order of units, instead of several millions. As a matter of fact, studying missions
towards NEAs, rarely the distance of the spacecraft from the Sun exceeds 3 AU or falls
under 0.7 AU . Thus, the reference distance is exactly:

rconv = 1 AU

5.3.2 Dimensionless Time

Also the time is expressed in a dimensionless form. In particular, time is related to the
revolution of the Earth around the Sun. Thus, instead of using years, radians are used to
measure time. This means that one year, being the equivalent of a complete revolution
of Earth, corresponds to a turn:

1 year = 2π rad

On the basis of the preceding considerations, the reference time is:

tconv = 365 days
2π = 58.13244088 days

It is then necessary to define a starting date from which time is measured. As in
most space mission analysis J2000 is used as the reference date. Thus:

if t = 125.66 −→ date = J2000 + t

2π = 1/1/2020

5.3.3 Dimensionless Velocity

On the basis of what has been said concerning the dimensionless form of distances, it is
easy to guess that also the velocities will be referred to a characteristic velocity of the
Earth’s orbit. As a matter of fact, all the velocities are expressed as a multiple of the
circular velocity of the Earth:
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Vconv =
√

µ�
rconv

= 29.78469183 km/s

The motivation that brings to express velocities in a dimensionless form is the same
that drives the use of dimensionless distances. With this operation all the velocities are
near 1, beside being the dimensionless approach more general.

5.3.4 Dimensionless Acceleration and Mass

Again, it is possible to refer to the Earth’s orbit to find the reference acceleration. This
is:

aconv =
µ�
r2
conv

= 5.930083517 106 km/s2

As far as mass is concerned, the reference one is the initial mass of the spacecraft.
Thus, at the beginning of the mission the mass will be equal to 1, while the final mass
will be equal to the ratio of the final and initial masses.

5.4 Boundary Conditions
After the definition of the set of differential equations and the dimensionless parame-
ters, it is necessary to introduce the boundary conditions of the problem. As it has
already been introduced, the mission considered has a departure from one between the
Lagrangian points L4 and L5, leverages an Earth gravity assist and then reaches the
target asteroid. Thus, it is possible to set some boundary conditions in the relevant
moments of the mission. In particular, the following numeration is adopted to indicate
the various points of the mission:

• Departure: −→ 0

• Before fly-by: −→ 1

• After fly-by: −→ 2

• Arrival: −→ 3

5.4.1 Departure

At the moment of the departure, the spacecraft is either in L4 or in L5, thus:

• If the departure is from L4:

r(t0) = rEarth(t0 + π

3 )

V (t0) = V Earth(t0 + π

3 )
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• If the departure is from L5:

r(t0) = rEarth(t0 −
π

3 )

V (t0) = V Earth(t0 −
π

3 )

Clearly, at the beginning of the mission:

m(t0) = 1

5.4.2 Fly-By

In order to perform an Earth fly-by, to leverage the gravity assist, the spacecraft and
the Earth must be in the same position at the same time.

r(t1) = rEarth(t1)

Since the fly-by manoeuvre is negligible, both in terms of space and time, if com-
pared to the characteristic distances and durations of the heliocentric phases, there is
no difference in position and time before and after the gravity assist. Mathematically:

t1 = t2 −→ r(t1) = r(t2)

Needless to say, the spacecraft shall have a non-null velocity with respect to Earth
to perform the gravity assist —V∞ 6= 0—. Furthermore, on the basis of what has been
said in Chapter 2, the fly-by is a discontinuity in velocity. As a matter of fact, it is used
to change the velocity direction and module.

On the other hand, the module of the hyperbolic excess velocity shall not change
across the fly-by. Thus, it is necessary to formulate the following boundary condition:

[V 1 − V Earth(t1)]2 = [V 2 − V Earth(t1)]2 = V 2
∞

This means that the fly-by can be seen as an instant rotation of the hyperbolic excess
velocity —while the heliocentric velocity changes both in module and direction—.

Moreover, as will be further explained, the fly-by must be effectuated near the inter-
section between the orbit of the NEA and the Earth. This is not a boundary condition
properly said, but has been a crucial driving aspect of the mission design.

The minimum height of the fly-by manoeuvre is fixed at h = 500 km above the
Earth’s surface. Nonetheless, it may happen that the optimal trajectory leverages a
gravity assist with a lower altitude. In such cases, it is necessary to bound the fly-by
altitude at the imposed minimum, hence changing the free fly-by in a constrained one.
Constrained fly-by rely on the following additional condition:

[V 1 − V Earth(t1)] [V 2 − V Earth(t1)] = 2 cos δV 2
∞

where δ is the rotation of the hyperbolic excess velocity, and is defined as:
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sin
(
δ

2

)
=

µ♁(
R♁+h

)
V 2
∞ +

µ♁(
R♁+h

)
5.4.3 Arrival

At the arrival the spacecraft shall have the same orbit as the target asteroid, thus the
same position and velocity vectors. Mathematically:

r(t3) = rNEA(t0)

V (t3) = V NEA(t0)

5.5 Initial Conditions

Once the boundary conditions are defined it is necessary to carry out one last step. As
a matter of fact, the adopted indirect method needs an initial guess of some conditions
to carry out the analysis. Such initial conditions are contained in the already described
vector p, which for the analyzed case is:

p =



t0 t1 λϑ0
t3 λϑ2 t∗

u2 v2 w2
λr2 λφ2 λu2
λv2 λw2 V∞0
r0 ϑ0 φ0
u0 v0 w0
λr0 λφ0 λu0
λv0 λw0 m0


(5.31)

where:

• [t0 t1 t3 t∗]: are respectively the departure time, the time of fly-by, the arrival time
and the ’optimal’ duration of the fly-by. As a matter of fact, the influence of this
last quantity is almost negligible, as far as it is very low: for example 10−20.

• [λϑ0 λϑ2]: are the value of λϑ at the departure and after the fly-by. Equation (5.23)
highlights that in each arch this adjoint variable is constant, thus:

λϑ0 = λϑ1

λϑ2 = λϑ3
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• [r0 ϑ0 φ0 u0 v0 w0 λr0 λφ0 λu0 λv0 λw0]: are the state and adjoint variables at the
departure.

• [u2 v2 w2 λr2 λφ2 λu2 λv2 λw2]: are the state and adjoint variables after the gravity
assist.

• [V∞0 m0]: are the departure hyperbolic excess velocity, which is null being the
satellite in a Lagrangian point and therefore outside the Earth’s sphere of influence,
and the initial mass, which is m0 = 1.

The vector p is the starting point for the integration of the differential equations. In
order to attain the desired solution, the initial attempt of p shall be built up with care
and attemption. As a matter of fact, the numerical method is sensible to the variation
of initial conditions.

At each iteration the conditions in p are updated on the basis of the distance of
the obtained solution from the boundary conditions imposed. Once that the desired
accuracy — i.e. an error equal to 10−7 on the boundary conditions — is obtained the
iterations stop, since the optimal solution has been found.

If the initial guess is not precise enough, the numerical method does not converge
and the error constantly grows: thus the iteration chain is stopped.

Since the mission leverages a gravity assist, on the basis of what has been said in
Paragraph 2.3.1, also the height of the fly-by must be monitored. If the optimal solution
found needs a too low fly-by to be carried out, for obvious reasons it is not considered.
Nonetheless, it is possible to find a solution with a constrained fly-by. In the numerical
code is imposed the height of the fly-by, and the optimal mission with this adjoint
constraint is seeked. Perhaps, the so found solution is not as good as the one with
free fly-by in terms of payload fraction, but it is feasible —which of course is the most
important aspect—.

5.5.1 Tentative Solution Definition

As mentioned, the definition of the initial guess is crucial for the convergence of the
method. Fortunately, the strategy of the mission allows to define most of the variables
of the vector p.

Given the considerations in Section 5.4, it is possible to define the position and the
velocity of the spacecraft at the departure, once that the initial time t0 has been fixed.
The initial time itself is defined with respect to the fly-by time t1−2. In fact, the fly-by
is carried out when the Earth passes at the point of MOID. If, ideally, both the Earth
and the NEA passed in this point at the same time, the rendezvous could be carried
out instantaneously, attaining after the gravity assist the same velocity of the NEA.
Actually, a phase between the Earth and the asteroid always exists, thus the fly-by time
and the arrival time t3 do not coincide.

Anyway, once the fly-by time is fixed, it is possible to define the initial time, and
therefore the initial position and velocity vectors. As will be further described, the
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initial time is imposed to be one year —departure from L5— or one and a half years
—departure from L4— before the fly-by date.

The velocity components after the fly-by can be imposed to be equal to the asteroid’s
velocity components at the close encounter. As a matter of fact, even if a phase exists
between the Earth and the NEA, the fly-by is used to reach a heliocentric velocity close
to the asteroid’s one, so that only minor adjustments are necessary afterwards. It is
possible to refine such a first initial guess considering the phase between the two bodies.
In particular, it is necessary to change the in plane component v that defines the major
semiaxis of the spacecraft’s orbit after the fly-by. In general, little changes are sufficient.

As far as the final time is concerned, it is possible to impose it to be roughly one year
after the fly-by. Thus, it is possible for the spacecraft to phase with the target asteroid.
Needless to say, this variable strongly depends on the phase between the Earth and the
asteroid at the close encounter. If this is little, a shorter time is sufficient to perform the
phasing. On the other hand, it may be necessary to extend the second leg if the phase
is not favourable.

Concerning the adjoint variables, these are imposed to be small, but are not precisely
defined. Nonetheless, the sign of the primer vector’s components have to be properly
defined at the departure. As a matter of fact, the direction of λV defines the direction of
the thrust at the beginning. As will be broadly described in the next Chapter, depending
on the departure point the strategy changes, and the satellite needs either to accelerate
—L4 departure— or decrease its velocity —L5 departure— at the beginning.

5.6 Choice of the Target Asteroids
In order to carry out the mission it is crucial to define the target. On the basis of what
has been said in Chapter 1, it is clear that the number of possible targets is huge. Thus,
it is necessary to narrow the field to the asteroids which present characteristics suitable
and convenient for the conceived mission.

First of all, the target asteroids shall have at least one intersection point with the
Earth’s orbit. This is necessary for two main reasons:

• The first is related again to the considerations in Chapter 1. Only the asteroids
that cross the orbit of Earth represent a threat and are therefore interesting for
studies and analysis.

• The second is related to orbital mechanics considerations. In order to pass from
one orbit to another, these have to be at least one common point. Now, it is not
necessary for the intersection to be precise, but the orbit of Earth and NEA must
get very close in at least one point. From the point of view of the strategy of the
mission, in this point the gravity assist manoeuvre will be effectuated. This way,
it is possible to inject the spacecraft in an orbit close to the NEA’s one, leveraging
the fly-by manoeuvre, and not relying on thrust: thus saving propellant.

Since the considered database of NEAs —retrieved from the JPL Small Body Objects
Database— presents asteroids with major semiaxis greater than the one of the Earth’s
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orbit, the common point of the two orbits will be the NEA’s perihelion. Moreover, if the
NEA’s perihelion was precisely 1 AU , it would be possible for the spacecraft to acquire
after the fly-by a hyperbolic excess velocity which lies in the horizon plane, to perform
the rendezvous. Thus, since no radial component would be needed, the spacecraft would
have to reach a lower module of V∞, saving propellant in the first leg.

Hence, the first condition imposed is that the NEA’s orbit shall be near 1 AU . Such
a condition is not binding, but missions towards NEAs with this orbital property are
more convenient. At first, the possibility to narrow the field to asteroids which have
the perihelion between 0.9 AU and 1.1 AU was sought. However, this condition was
too broad and too many asteroids resulted adequate.Thus it was necessary to impose a
tighter requirement, that in the end resulted in the following statement:

0.98 AU < rP < 1.02 AU (5.32)

where rP is the perihelion of the NEA.
In the second place, NEAs do not only have different major semiaxis if compared to

Earth, they also have different inclination. Thus, the gravity assist shall not only bring
the heliocentric velocity module —and therefore the orbit’s mechanical energy, which is
connected to the major semiaxis as stated in equation (2.6)— of the satellite close to
the NEA’s one, but it also have to bring the inclination of the spacecraft’s orbit near
the one of the target, rotating the heliocentric velocity. As a matter of fact, this last
consideration is even more important than the first. In fact, the manoeuvres that change
the orbital plane are the most expensive from a propulsive point of view.

Without entering the detail of these manoeuvres, their maximum effectiveness is
reached if the velocity direction —heading angle— is changed at the nodes of the orbit.
In fact, if the velocity is rotated in the ascending or descending node, all the propulsive
effort of the thruster is used to change inclination, because the heading change is exactly
equal to the inclination change. On the other hand, if the velocity is rotated in another
point of the trajectory, the propulsive effort is shared between two effects: a change in
inclination and a change in RAAN — since ∆i 6= ∆ψ—. Since, in the analyzed mission,
there is no will to change Ω, the fly-by has to be performed near a node of the asteroid’s
orbit. Clearly, the fly-by happens on the Earth’s orbit. Thus, one node of the NEA’s
orbit shall be in the nearby of 1 AU . Mathematically, the second constraint is:

0.98 AU < rAN < 1.02 AU or 0.98 AU < rDN < 1.02 AU (5.33)

where rAN and rDN respectively are the distance of the ascending node and of the
descending node of the asteroid’s orbit from the Sun.

Imposing the previously described conditions, the field is narrowed to 62 asteroids.
Clearly, not all will be analyzed, but it is a far more manageable number than the initial
one that included several thousands of NEAs.
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5.7 Spacecraft Characteristics
As mentioned, the analysis has been carried out relying on dimensionless quantities.
Nonetheless, for sake of consistency, the general characteristics of the spacecraft have to
be defined. As a matter of fact, it is crucial for the properties of the satellite that carries
out the mission to match with the characteristics of the mission itself, and of course to
be realistic. The satellites shall be CubeSats, that are left at the departure Lagrangian
points as piggyback of a bigger primary spacecraft. Indeed, CubeSats characteristics
perfectly fit the requirements of NEA’s orbit and physical properties analysis. As a
matter of fact, there is no need to use bigger satellites that would result in not justified
excessive costs.

Since, as mentioned, the equilateral Lagrangian points are characterized by stable
equilibrium, the CubeSats may be left in these sweet spots, with no need of station-
keeping manoeuvres to maintain the position. There they could wait the most favourable
moment for departure, maybe using the waiting time to carry out space observation
activities.

The reference satellite is the Lunar IceCube. It is a 6U CubeSat characterized by a
14 kg global mass and a 3.5 kg payload capacity. It is propelled by a BIT-3 — Busek
Ion Thruster - 3 cm grid—: a gridded radiofrequency ion thruster. In spite of most
ion thrusters using Xenon as a propellant, the BIT-3 is regarded as the first gridded
ion thruster using iodine —I2— propellant. The advantage of an iodine-fueled thruster
relies on the storage characteristics of this propellant. The main advantage is due to the
capability of iodine to be stored as a solid. Thus, there is no need for the heavy and
expensive high pressure tanks used to store Xenon. This allows great savings in terms of
weight, and therefore cost. The propulsive characteristics of iodine are not far from the
ones of Xenon. As a matter of fact, further development in the technology may allow I2
to overcome the performances of Xe. BIT-3 is characterized by a total wet mass of 3 kg,
that includes 1.5 kg of propellant. As far as the propulsive performance are concerned:

Is = 2100 s T = 1.24 mN P = 70 W

As mentioned, the Lunar IceCube is used as a reference model to study feasible
and realistic trajectories. Nonetheless, the results obtained and showed in the next
Chapter are obtained with slightly different propulsive performances. In particular, the
characteristic acceleration, defined as the ratio of thrust and mass, has been considered
a bit higher than the one of the Lunar IceCube. For such satellite:

T

m
= 0.08857 mm

s2

For the analyzed case, it has been considered:

T

m
= 0.09967 mm

s2

This means that if the same mass as the Lunar IceCube —14 kg— is considered, the
thrust has to be 1.4 mN. As far as the current technology is concerned, these values are
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not feasible yet, but further improvement can make them real. Viceversa, if the same
thrust as the one produced by BIT-3 is implemented, the total mass has to be 12.44 kg.
This solution may be feasible, if a payload of 2 kg —instead of the nominal 3.5 kg— is
implemented and can still fulfill the mission requirements and activities.
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Chapter 6

Results

"Eureka!"

In this Chapter will be presented the results obtained from the trajectory optimization
towards seven asteroids, chosen following the criteria explained above. The designated
target asteroids are:

Asteroid a (AU) e i (deg) ω (deg) Ω (deg)

2014 FZ 1.3699 0.2652 2.4157 176.1851 18.2759
2004 FN8 1.1689 0.1447 5.2588 159.7901 4.0793
2012 UE34 1.1054 0.0993 9.6576 18.3640 198.4632
2008 TS10 1.2584 0.2026 1.4684 345.3689 5.6386
2015 XA379 1.2876 0.2183 1.3460 349.4535 148.5370
2016 YE 1.1296 0.1082 8.4836 7.4413 83.6439

2017 BN93 1.0445 0.0514 2.1204 23.3681 315.7962

Table 6.1: Chosen asteroids

Before entering the particulars of the solutions, it is necessary to describe some
aspects of the methodology followed.

Given the inherent cyclical nature of orbital mechanics phenomena, it is clear that
does not exist only one single optimal mission. As a matter of fact, fixed the strategy —
mission with gravity assist— and the target, there are several windows that correspond
to one —or more— optimal trajectory.

It goes without saying that each of these missions will be the optimal one for its
launch window, but among them there will be one which is better than the others.
The superiority of the best mission is due to the phasing of the bodies involved, in this
case: the Earth and the target NEA. In fact, the phasing between these two celestial
bodies changes from one moment to the other, thus there is one particular phasing that
minimizes the mission’s cost, thus maximizing the payload fraction.
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In order to find the optimal trajectory, different periods in times are explored for the
starting of the mission. One example, referred to the mission towards 2012 UE34 with
departure from L5, is reported in Tab. 6.2.

Mission 1 Mission 2 Mission 3 Mission 4

mf

mi
0.8828 0.8563 0.8748 0.8606

Duration (days) 968 926 1308 1399
Departure date 1/ 4/2026 31/ 3/2027 2/ 4/2027 31/ 3/2028
Fly-by date 12/ 4/2027 11/ 4/2028 12/ 4/2028 11/ 4/2029
Arrival date 24/11/2028 12/10/2029 30/10/2030 30/ 1/2032
Fly-by type Constrained Constrained Constrained Constrained
Phase* (deg) 13 69 69 117

Mission 5 Mission 6 Mission 7 Mission 8

mf

mi
0.9169 0.8852 0.8841 0.8617

Duration (days) 1391 1028 619 906
Departure date 1/ 4/2032 31/ 3/2033 28/ 3/2033 31/ 3/2034
Fly-by date 12/ 4/2034 12/ 4/2034 9/ 4/2034 12/ 4/2035
Arrival date 22/ 1/2036 23/ 1/2036 7/12/2034 22/ 9/2036
Fly-by type Constrained Constrained Constrained Constrained
Phase* (deg) 3 3 3 60

Table 6.2: Missions towards 2012 UE34, departure from L5

* between the Earth and the asteroid at the fly-by

As it can be seen, the same mission can be carried out in different periods, resulting
in different durations and payload fractions.

Mission 1 and Mission 2 have almost the same duration, but are characterized by
different payload fractions. Being the ratio mf

mi
higher for Mission 1, it is clear that this

is characterized by a more favourable phasing of the bodies.
Furthermore, Tab. 6.2 allows to introduce other concepts that have been crucial for

the definition of the best trajectory.
Comparing Mission 2 and Mission 3, it is possible to note that these have almost the

same departure and fly-by dates, but the arrival is shifted by roughly one year. Mission 3
is longer, but it is also characterized by a higher mf

mi
ratio. This highlights the fact that,

for any mission, there is a longer version and a shorter one. The first is connected to a
smaller propellant output, since relying on much time to be carried out, there is a lower
use of thrust. The second, on the other hand, has to be carried out in a shorter time,
thus is connected to a broader use of thrust, resulting in a higher need of propellant.

At a first glance, it may seem that the same concept may motivate the difference
between Mission 5 and Mission 6. But at a more careful analysis, it is possible to see
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that the arrival date of these two missions, which effectuate the fly-by in the very same
moment, is the same as well. The difference is indeed in the first leg, the one between
departure and fly-by. While Mission 6 takes one year roughly to carry out this phase,
Mission 5 needs double the time. Again, the longer mission is connected to a lower
propulsive cost.

The presence of such similar, but anyway different, missions is due to the characteris-
tics of the method used for the analysis. The numerical code maximizes the payload, but
it is left to the analyst to optimize the initial and final times. As a matter of fact, even if
the longer missions are more efficient, their duration is not justified by the advantages in
terms of payload fraction. Indeed, between the couple of missions which have the same
fly-by date but different departure or arrival time, the shortest is chosen.

Besides this optimization of final and initial times, which translates the dates of
roughly one year, there is another, more technical and subtle refinement to carry out.

Sometimes the solution found, presents one —or both— of these two flaws:

• SF (t0) < 0: thus meaning that, at the found departure time, the spacecraft is not
thrusting. Clearly this means that the first part of the trajectory is useless: the
optimal trajectory starts when the spacecraft begins to use thrust.

• SF (tf ) < 0: thus meaning that, at the found final time, the spacecraft is not
thrusting. This means that the last part of the trajectory is a simple coasting arch
that has no utility. Thus, the final time has to be refined.

These two aspects are considered and the solutions found are refined, smoothing the
initial and final times to find the optimal —that is to say minimum— duration. Clearly,
these changes are connected to minimal or null changes in the payload fraction, since
they simply imply the elimination of useless segments of the trajectory.

Mathematically, the conditions searched are:

• Departure: SF = 0 and t ↑ −→ SF > 0
The mission starts with a null switching function, but as the time increases the
switching function becomes positive. Thus, the mission begins exactly when the
satellite begins to use thrust.

• Arrival: SF = 0 and for t = tf − dt −→ SF (t) > 0
The mission ends exactly when the satellite stops thrusting.

On the basis of the criteria described above, the optimal solution is Mission 7. Al-
though it is not the one with the higher payload fraction, it is the shorter —Mission 6
has a longer second leg and Mission 5 has both first and second phases of the mission
longer— among the ones with the most favourable phasing. As will be further described,
for favourable phasing is implied a small —or ideally null— phase shift between the two
bodies at the close encounter, i.e. the fly-by position.
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6.1 Asteroid 2014 FZ
Asteroid 2014 FZ has been the first one, in chronological order, to be analyzed. There-
fore, it is described as a case study: as a matter of fact, many characteristics of the
optimal missions towards this NEA are common to the others. This means that, while
describing the missions designed to reach 2014 FZ, will be described the common fea-
tures that are shared with all the other missions. Clearly, some asteroids present some
peculiarities that will be highlighted at the proper moment. Nonetheless, for sake of
brevity, the considerations that are explained in this Section will not be repeated for
each asteroid.

The characteristics of the optimal missions towards 2014 FZ are summarized in the
synoptic Tab. 6.3. In this table it is possible to appreciate an immediate comparison
between the mission with departure from L4 and the one that has L5 as starting point.

Departure from L4 Departure from L5
mf

mi
0.9209 0.9106

Duration (days) 1207 974
Departure date 8/ 8/2028 26/ 3/2029
Fly-by date 9/ 4/2030 9/ 4/2030
Arrival date 28/11/2031 25/11/2031
Fly-by type Free Constrained
V∞ at fly-by 0.1372 0.1373

Table 6.3: Asteroid 2014 FZ, optimal mission characteristics

First of all it is possible to note the difference in terms of duration between the two
missions. This is due to the difference, in terms of strategy, imposed by the starting
point of the trajectory.

The Lagrangian point L4 is 60◦ before the Earth while L5 occupies the symmetrical
position with respect to the blue planet. This implies a different strategy for the first
phase of the mission: the one between the departure and the fly-by. When the departure
is from L4 the satellite is injected on an orbit characterized by higher energy —thus
higher major semiaxis— and, therefore, slower. Following this strategy, the satellite
waits for the Earth, which is faster, to arrive in the correct position for the fly-by. On
the other hand, when the departure is from L5, the spacecraft must chase the Earth,
which is ahead its position on the same orbit. Thus, the spacecraft is injected on a faster
orbit, characterized by lower energy. This way is the spacecraft to chase the planet in
order to reach it in the right position for the gravity assist.
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Figure 6.1: Asteroid 2014 FZ, major semiaxis evolution:
SX departure from L4, DX departure from L5

Figure 6.2: Asteroid 2014 FZ, eccentricity evolution:
SX departure from L4, DX departure from L5
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What has been described above can be inferred looking at Fig. 6.1 and 6.2, that
show the evolution of the major semiaxis of the satellite’s orbit throughout the whole
mission.

This difference in strategy, results in a difference in duration of the first leg of the
trajectory. As a matter of fact, while the phase between the gravity assist and the
arrival has almost the same length, both for the departure from L4 and L5, the first one
strongly depends on the starting point. In particular, missions with departure from L4
needs 18-20 months to reach the right position for the fly-by, while the one starting from
L5 only takes roughly one year. This is why the missions with departure from L5 are,
in general, more than 200 days shorter than their counterpart that set-off from L4.

The drawback of having a shorter duration, is a smaller payload fraction. This
difference is not so pronounced —usually limited to few percentile points— but still
exists. Thus, in general, missions with departure from L4 are longer but also more
efficient from a propulsive point of view. This difference is again shown in Tab. 6.3.

Looking at Fig 6.1-6.2, 6.3-6.4 and 6.5-6.6, it is possible to see the discontinuity
corresponding to the fly-by manoeuvre. As a matter of fact, the fly-by is characterized
by great changes in the orbital elements of the satellite’s orbit in a short time —negligible
if compared to the duration of the heliocentric phases—. The gravity assist is used to
modify the velocity and therefore the orbital elements, taking the spacecraft’s orbit close
to the asteroid’s one. It is possible to appreciate that the greatest change in the orbital
elements happens at the fly-by: this allows great saves in terms of propellant throughput.
In particular, this is true if referring to inclination. In fact, on the basis of what has
been said, the major semiaxis is changed also leveraging thrust in the first phase of the
mission, to take the satellite in the right position for the fly-by.

As forecastable, the fly-by date is the same for both the missions. Indeed, the
optimal fly-by is leveraged at the MOID point, so there is no reason for the missions to
effectuate such manoeuvre at different times, since one of the two would be sub-optimal.
Nonetheless, some exceptions still exist, and will be highlighted at the proper moment.
Anyway, the difference in time is always limited to few days. The perfect —and therefore
ideal— fly-by is carried out when the Earth and the NEA are in the very same position,
and the target orbit is obtained simply relying on the instant rotation of V∞ provided
by the gravity assist, with no need for further thrusting arches.
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Figure 6.3: Asteroid 2014 FZ, inclination evolution:
SX departure from L4, DX departure from L5

Figure 6.4: Asteroid 2014 FZ, switching function evolution:
SX departure from L4, DX departure from L5
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As far as inclination is concerned, it is not changed until the fly-by. As a matter of
fact, inclination changing manoeuvres are the most expensive from a propulsive point
of view. Although the considered asteroids have relatively limited inclination, it would
be anyway inefficient to change this parameter using thrust. Therefore, the first phase
is carried out on the Earth’s orbital plane, and the velocity is rotated only at the fly-
by. Clearly, it is not possible to precisely reach the values of the asteroid’s orbital
elements just leveraging the fly-by. Thus, as can be inferred from the figures, some little
adjustment firings are necessary, to take the value of the orbital elements to the desired
value in the right moment, thus performing the approach to the NEA.

The considerations introduced above, have the same validity both for the mission
from L4 and L5. Moreover, the two missions share other common points.

The first, as it has already been introduced, is the phase between the fly-by and
the arrival. On the basis of what has been said, it is crucial to have the fly-by near the
intersection of the orbits of the Earth and the asteroid. Thus, the fly-by date is the same
—or almost the same— for the two missions. Also the V∞ is pretty much the same: this
results in an arrival date which is almost equal.

Furthermore, there is a similarity concerning the first leg of the trajectory. In spite
of being different in terms of strategy and duration between the trajectory starting from
L4 and the one with departure from L5, this phase presents a common point shared by
the two missions. As a matter of fact, the trajectory segment from the departure to the
fly-by is almost always —with some asteroids representing an anomaly— characterized
by two arches leveraging thrust, independently on the starting point. It is possible to
appreciate this aspect from Fig. 6.9 and 6.10.

When the switching function is greater than zero, the spacecraft is thrusting, while
it is not when the same parameter is negative.

Thus, at the departure the satellite starts thrusting —clearly in a different direction
depending on the starting point— in order to change its phase with respect to the Earth.
As it has been broadly explained, this manoeuvre implicates the injection on a slower
orbit for departure from L4 and viceversa for the dual mission.

Then the satellite stops thrusting for a relatively short period. After that, there
is the second thrusting arch which is used in order to meet the Earth at the proper
moment for the gravity assist. It is worth highlighting that, in order to perform the
gravity assist, it is not sufficient to acquire the right position. In fact, the satellite must
enter the Earth’s sphere of influence with a suitable V∞ in order to carry out an effective
gravity assist to reach —or almost reach— the asteroid’s orbit.

In the end, it is possible to summarize all these aspects in Fig. 6.11 and 6.12, which
represent the optimal trajectories’ projections on the Earth’s orbital plane. The orbits
are described by the legend, while the highlighted points represent:

• Departure −→ ©

• Fly-by −→ 4

• Arrival −→ �
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It is possible to appreciate the difference in strategy and the contemporaneity of
the fly-by between the two missions , while clearly all the aspects related to the thrust
utilization are hidden.

Figure 6.5: Asteroid 2014 FZ, trajectory: Departure from L4

Figure 6.6: Asteroid 2014 FZ, trajectory: Departure from L5
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It is possible to highlight another aspect common to almost all the missions. To
introduce such a concept, it is necessary to plot the evolution of the aphelion distance
of the satellite’s orbit and to compare it with the aphelion of the asteroid —as shown in
Fig. 6.11 and 6.12—.

As can be inferred from the previous considerations, the bigger the orbit the slower
it is. Thus, a higher aphelion distance is connected to an orbit with smaller circular
velocity. This aspect is crucial when referring to the fly-by. If, at the close encounter
—thus near the fly-by, which is in correspondence of the two orbits intersection— the
asteroid is ahead with respect to the Earth —thus it passes from the conjunction point
before the blue planet—, the satellite has to chase it. In fact, the satellite is in the same
position as the Earth, since it is performing the fly-by manoeuvre. This means that after
the fly-by the spacecraft will inject on a faster orbit than the asteroid’s one: thus, with
a smaller aphelion distance.

On the other hand, if the asteroid is behind the Earth, the satellite has to inject
on a slower orbit after the fly-by. Thus, it waits for the asteroid to perform the final
approach. This is related to an aphelion distance greater than the asteroid’s one, after
the fly-by. Summing up:

• If the asteroid is before the Earth at the close encounter, the satellite shall chase
the NEA:

rSCA < rNEAA

where rSCA and rNEAA are respectively the aphelion distances of the spacecraft’s
orbit and of the asteroid’s one.

• If the asteroid is behind the Earth at the close encounter, the satellite shall wait
for the NEA:

rSCA > rNEAA

It happens that, for almost all the optimal missions, the second scenario occurs.
Thus, for this and the other asteroids, it can be appreciated a higher aphelion distance
of the satellite’s orbit, after the fly-by, if compared to the asteroid’s one.

For completeness, also the evolution of the perihelion distance is shown — Fig. 6.13
and 6.14—. Clearly, the considerations on the behaviour of this parameter are not that
important. In fact, to choose the asteroids the constraint in equation (1.2) has been
imposed on the perihelion distance. Thus, after the fly-by, the satellite’s orbit rP goes
near the value of the Earth or directly the one of the NEA.

The characteristics described above have almost general validity. Thus, they refer
also to the following missions and not only to the one toward 2014 FZ.

It is now possible to introduce a peculiarity of this particular asteroid. Chronologi-
cally speaking, the mission with departure from L4 has been analyzed first. It relies on
a free fly-by and presents all the aspects described.
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Figure 6.7: Asteroid 2014 FZ, aphelion distance evolution:
SX departure from L4, DX departure from L5

Figure 6.8: Asteroid 2014 FZ, perihelion distance evolution:
SX departure from L4, DX departure from L5
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However, a peculiarity occurred while searching the optimal mission starting from
L5. As a matter of fact, this presented all the typical aspects of the missions of its kind
but, in order to be carried out, it leveraged a too low fly-by. This means that the free
fly-by was characterized from an altitude lower than the imposed limit of 500 km.

Therefore, it has been necessary to implement a constrained fly-by to find an admis-
sible mission. This is the only case for which the two missions towards the same asteroid
require a different fly-by approach.
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6.2 Asteroid 2004 FN8
Asteroid 2004 FN8 has a smaller orbit than 2014 FZ, but its inclination is roughly the
double. This difference results in a global cost of the mission, in terms of propellant
throughput, which is almost the same for the two missions. The relevant aspects of the
optimal mission are summarized in Tab. 6.4.

Departure from L4 Departure from L5
mf

mi
0.9290 0.9166

Duration (days) 1104 876
Departure date 28/ 7/2026 6/ 3/2027
Fly-by date 23/ 3/2028 24/ 3/2028
Arrival date 5/ 8/2029 30/ 7/2029
Fly-by type Free Free
V∞ at fly-by 0.1170 0.1191

Table 6.4: Asteroid 2004 FN8, optimal mission characteristics

It can be appreciated that the missions towards 2004 FN8 present all the general char-
acteristics common to almost all the asteroids —without anomalies and peculiarities—
highlighted in the preceding section, and here shortly summarized:

• The strategy for the first leg is imposed by the departure point. Looking at Fig.
6.15-6.16 it is possible to see that starting from L4 the spacecraft injects an orbit
with a higher major semiaxis to wait for the Earth to gain the right position.
viceversa, starting from L5 the satellite enters an orbit with a lower major semiaxis
to reach the blue planet at the fly-by position.

• The mission with departure from L5 is roughly 200 days shorter than the one
starting from L4. The diversity is due to the difference in the first phase of the
trajectory. The fly-by and arrival dates are almost the same for the two missions.

• The mission with departure from L4 is slightly more efficient, in terms of propellant
consumption, than the dual one.

• Looking at Fig. 6.21-6.22 it is possible to appreciate the two thrusted arches in
the first phase.

• The evolution of eccentricity, inclination and major semiaxis prove that the fly-by
is used to acquire the orbital elements of the target asteroid. After the gravity
assist, only minor adjustments are effectuated.

• In Fig. 6.23-6.24 it is possible to behold the effects of the phasing —between the
Earth and the asteroid— at the fly-by. The asteroid is behind the Earth, thus
after the fly-by the satellite enters a slower orbit than the asteroid one. This is
proved by the higher aphelion distance.
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Figure 6.9: Asteroid 2004 FN8, major semiaxis evolution:
SX departure from L4, DX departure from L5

Figure 6.10: Asteroid 2004 FN8, eccentricity evolution:
SX departure from L4, DX departure from L5
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Figure 6.11: Asteroid 2004 FN8, inclination evolution:
SX departure from L4, DX departure from L5

Figure 6.12: Asteroid 2004 FN8, switching function evolution:
SX departure from L4, DX departure from L5
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Figure 6.13: Asteroid 2004 FN8, aphelion distance evolution:
SX departure from L4, DX departure from L5

Figure 6.14: Asteroid 2004 FN8, perihelion distance evolution:
SX departure from L4, DX departure from L5
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In the end, the optimal trajectory and the bodies orbits are displayed.

Figure 6.15: Asteroid 2004 FN8, trajectory: Departure from L4

Figure 6.16: Asteroid 2004 FN8, trajectory: Departure from L5
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6.3 Asteroid 2012 UE34
Asteroid 2012 UE34 is the one with the most inclined orbit among the ones studied.
This results in some peculiar behaviours.

First of all, as can be retrieved from Tab. 6.5, the missions are characterized by a
relatively low payload fraction. This is due to the necessity to use thrust also in the first
phase, that is to say before the fly-by.

Departure from L4 Departure from L5
mf

mi
0.8960 0.8841

Duration (days) 858 618
Departure date 7/ 8/2032 28/ 3/2033
Fly-by date 10/ 4/2034 9/ 4/2034
Arrival date 13/ 12/2034 7/ 12/2034
Fly-by type Constrained Constrained
V∞ at fly-by 0.1550 0.1470

Table 6.5: Asteroid 2012 UE34, optimal mission characteristics

As a matter of fact, the solution found is characterized by a favorable phasing of
the two bodies —Earth and asteroid— that results in a relatively short second leg. In
general, a good phasing also results in a high payload fraction. This is not true in this
case, because of the first phase. The peculiarity of this leg can be inferred looking at
the inclination evolution.

While the evolutions of eccentricity and major semiaxis respect the global trend of
the missions, the inclination presents an anomaly. In fact, while the missions towards the
other asteroids effectuate the first leg in the Earth’s orbital plane —thus not changing
inclination—, this is not true for 2012 UE34.

To reach the asteroid’s inclination, the satellite can not rely only on the fly-by ma-
noeuvre, but needs to change inclination also using thrust. This clearly results in a
higher propellant consumption.

Thus, the first phase is completely thrusted: there are not two separated thrusted
phases. This characteristic is clear looking at the switching function evolution.

These peculiarities may be all due to the implementation of the constrained altitude
of the fly-by. This results in a limit on the inclination change acquirable with the
gravity assist manoeuvre, since the rotation of V∞ across the EGA is limited as well.
Nonetheless, it is necessary to bound the fly-by, since a mission with a free gravity assist
would have resulted in a too low fly-by, and would have been not realizable.

Another peculiarity of the missions towards 2012 UE34, is the phasing of the asteroid
and the Earth. For this asteroid, the optimal mission is related to a position of the
asteroid, at the fly-by, which is ahead with respect to the Earth. Thus, the orbit of
the spacecraft after the gravity assist has a lower aphelion distance, if compared to the
asteroid’s one.
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Figure 6.17: Asteroid 2012 UE34, major semiaxis evolution:
SX departure from L4, DX departure from L5

Figure 6.18: Asteroid 2012 UE34, eccentricity evolution:
SX departure from L4, DX departure from L5
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Figure 6.19: Asteroid 2012 UE34, inclination evolution:
SX departure from L4, DX departure from L5

Figure 6.20: Asteroid 2012 UE34, switching function evolution:
SX departure from L4, DX departure from L5
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Figure 6.21: Asteroid 2012 UE34, aphelion distance evolution:
SX departure from L4, DX departure from L5

Figure 6.22: Asteroid 2012 UE34, perihelion distance evolution:
SX departure from L4, DX departure from L5
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As far as the other aspects are concerned, the missions towards 2012 UE34 follow
the global trends highlighted above.

Figure 6.23: Asteroid 2012 UE34, trajectory: Departure from L4

Figure 6.24: Asteroid 2012 UE34, trajectory: Departure from L5
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6.4 Asteroid 2008 TS10
Asteroid 2008 TS10 does not present any peculiarity: all the considerations reported for
2004 FZ apply also to this NEA. The global characteristics of the optimal missions are
reported in Tab. 6.6.

Departure from L4 Departure from L5
mf

mi
0.9339 0.9237

Duration (days) 1007 798
Departure date 21/ 1/2031 27/ 8/2031
Fly-by date 14/ 9/2032 19/ 9/2032
Arrival date 24/10/2033 2/11/2033
Fly-by type Free Free
V∞ at fly-by 0.1040 0.1075

Table 6.6: Asteroid 2008 TS10, optimal mission characteristics

It is anyway possible to highlight some aspects concerning the missions towards this
asteroid.

In first place, it is possible to appreciate that the payload fractions connected to
both the missions towards 2008 TS10 are higher than the ones corresponding to the
preceding asteroids. As a matter of fact, although the orbit of 2008 TS10 is relatively
big —its major semiaxis is the third among the considered asteroids—, its inclination
is limited. This results in a lower propellant throughput. But there is another aspect
that concurs in reducing the propellant consumption. It is possible to appreciate that,
after the fly-by, the spacecraft almost perfectly acquires the asteroid’s eccentricity and
major semiaxis. Thus, only minimal secondary adjustments are needed to fix the value
of these two orbital elements to the desired values.

Secondarily, while for almost all the other asteroids the fly-by occurs in the same date
—or with one day of difference— for the two missions with different departure, for 2008
TS10 the fly-by for the mission starting from L5 occurs five days after the one leveraged
by the mission with departure from L4. Given the low inclination of the NEA’s orbit
this characteristic does not create any difference, but it was anyway worth highlighting.

Moreover, the evolution of the aphelion distance shows the good phasing also for this
mission. As a matter of fact, at the fly-by the asteroid is roughly 1◦ behind the Earth.

The evolution of the orbital parameters is shown.
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Figure 6.25: Asteroid 2008 TS10, major semiaxis evolution:
SX departure from L4, DX departure from L5

Figure 6.26: Asteroid 2008 TS10, eccentricity evolution:
SX departure from L4, DX departure from L5

86



Figure 6.27: Asteroid 2008 TS10, inclination evolution:
SX departure from L4, DX departure from L5

Figure 6.28: Asteroid 2008 TS10, switching function evolution:
SX departure from L4, DX departure from L5
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Figure 6.29: Asteroid 2008 TS10, aphelion distance evolution:
SX departure from L4, DX departure from L5

Figure 6.30: Asteroid 2008 TS10, perihelion distance evolution:
SX departure from L4, DX departure from L5
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Finally, it is possible to show the optimal trajectories.

Figure 6.31: Asteroid 2008 TS10, trajectory: Departure from L4

Figure 6.32: Asteroid 2008 TS10, trajectory: Departure from L5
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6.5 Asteroid 2015 XA379
Asteroid 2015 XA379 is characterized by an orbit similar to 2008 TS10. As a matter of
fact, their orbital elements —eccentricity, inclination and major semiaxis— are pretty
much the same. This motivates the similarities in the optimal missions towards these
two asteroids.

Departure from L4 Departure from L5
mf

mi
0.9234 0.9119

Duration (days) 1196 972
Departure date 20/ 6/2030 26/1/2031
Fly-by date 12/ 2/2032 13/ 2/2032
Arrival date 28/ 9/2033 24/ 9/2033
Fly-by type Free Free
V∞ at fly-by 0.1152 0.1159

Table 6.7: Asteroid 2015 XA379, optimal mission characteristics

Asteroid 2015 XA379 presents the same peculiarity as 2008 TS10, as far as the fly-by
date is concerned.

On the other hand, the payload fractions for the missions towards 2015 XA379 are
lower than their counterparts connected to the trajectories towards 2008 TS10. In fact,
in spite of being both characterized by a low inclination, there is a crucial difference. As
far as asteroid 2015 XA379 is concerned, after the fly-by the spacecraft does not reach
the values of eccentricity and major semiaxis of the NEA itself. Thus, with respect to
the missions towards 2008 TS10, greater secondary adjustments are needed. This clearly
results in a higher propellant consumption.

The evolution of the orbital parameters is shown.
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Figure 6.33: Asteroid 2015 XA379, major semiaxis evolution:
SX departure from L4, DX departure from L5

Figure 6.34: Asteroid 2015 XA379, eccentricity evolution:
SX departure from L4, DX departure from L5
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Figure 6.35: Asteroid 2015 XA379, inclination evolution:
SX departure from L4, DX departure from L5

Figure 6.36: Asteroid 2015 XA379, switching function evolution:
SX departure from L4, DX departure from L5
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Figure 6.37: Asteroid 2015 XA379, aphelion distance evolution:
SX departure from L4, DX departure from L5

Figure 6.38: Asteroid 2015 XA379, perihelion distance evolution:
SX departure from L4, DX departure from L5
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Finally, it is possible to show the optimal trajectories.

Figure 6.39: Asteroid 2015 XA379, trajectory: Departure from L4

Figure 6.40: Asteroid 2015 XA379, trajectory: Departure from L5
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6.6 Asteroid 2016 YE
The global properties of the missions towards 2016 YE are, as always, summarized in
the following table.

Departure from L4 Departure from L5
mf

mi
0.9204 0.9005

Duration (days) 889 816
Departure date 30/9/2027 11/12/2027
Fly-by date 16/12/2028 16/12/2028
Arrival date 6/ 3/2030 6/ 3/2030
Fly-by type Free Free
V∞ at fly-by 0.1519 0.1512

Table 6.8: Asteroid 2016 YE, optimal mission characteristics

The missions to reach this particular asteroid are characterized by some peculiarities:

• The first leg, for both the missions, is completely thrusted. Thus, there are not
two different thrusted arches. The thrust is applied in the orbital plane, as it is
used to change only a and e, without varying the inclination. This results in a not
excessive penalization in terms of propellant consumption.

• The mission with departure from L5 is only 73 days shorter —instead of the typical
200 days difference— that the one starting from L4. This happens because the
mission with departure from L4 only takes 13 months, and not 18-20, from the
start to the fly-by.

• The trajectory presents two minima, relatively close to one another. Thus, it has
been necessary to carry out a more careful analysis to find the global minimum,
that is to say the real optimum.

• The orbit of the asteroid has a relatively high inclination: the second among the
ones considered. Nonetheless, it has not been necessary to implement a constrained
fly-by —as for 2012 UE34—, as the optimal missions do not result in too low
altitude of the gravity assist manoeuvre. This results in a higher payload fraction,
if compared to 2012 UE34.

The evolution of the orbital parameters is shown.
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Figure 6.41: Asteroid 2016 YE, major semiaxis evolution:
SX departure from L4, DX departure from L5

Figure 6.42: Asteroid 2016 YE, eccentricity evolution:
SX departure from L4, DX departure from L5
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Figure 6.43: Asteroid 2016 YE, inclination evolution:
SX departure from L4, DX departure from L5

Figure 6.44: Asteroid 2016 YE, switching function evolution:
SX departure from L4, DX departure from L5
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Figure 6.45: Asteroid 2016 YE, aphelion distance evolution:
SX departure from L4, DX departure from L5

Figure 6.46: Asteroid 2016 YE, perihelion distance evolution:
SX departure from L4, DX departure from L5
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Finally, it is possible to show the optimal trajectories.

Figure 6.47: Asteroid 2016 YE, trajectory: Departure from L4

Figure 6.48: Asteroid 2016 YE, trajectory: Departure from L5

99



6.7 Asteroid 2017 BN93
Asteroid 2017 BN93 has an orbit which is really close to the Earth’s one. Thus it is
forecastable that the missions toward this NEA will be the less expensive —from a
propulsive point of view— and the shortest among the ones studied. Looking at Tab.
6.9 it is possible to appreciate that this is exactly what occurs.

Departure from L4 Departure from L5
mf

mi
0.9456 0.9256

Duration (days) 618 538
Departure date 13/ 3/2031 1/ 6/2031
Fly-by date 23/7/2032 23/ 7/2032
Arrival date 21/ 11/2032 20/ 11/2032
Fly-by type Free Free
V∞ at fly-by 0.0629 0.0629

Table 6.9: Asteroid 2017 BN93, optimal mission characteristics

The missions towards 2017 BN93 take less than two years to be accomplished. As a
matter of fact, while the first leg is almost the same as the other missions, the second
one is only 4 months long. This is due to the favorable phase between the Earth and
the asteroid, that at the fly-by il less than 1◦ behind the blue planet.

It is worth highlighting that, as for asteroid 2016 YE, the difference of duration
between the two missions is relatively low. Again, this is due to the fact that the first
leg for the mission with departure from L4 only takes roughly 16 months.

Being the orbit of the asteroid close to the one of the Earth, the value of V∞ after
the fly-by is way lower than the other missions.

As far as all the other aspects are concerned, the missions towards 2017 BN93 share
the common characteristics of the other trajectories.

The evolution of the orbital parameters is shown.
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Figure 6.49: Asteroid 2017 BN93, major semiaxis evolution:
SX departure from L4, DX departure from L5

Figure 6.50: Asteroid 2017 BN93, eccentricity evolution:
SX departure from L4, DX departure from L5
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Figure 6.51: Asteroid 2017 BN93, inclination evolution:
SX departure from L4, DX departure from L5

Figure 6.52: Asteroid 2017 BN93, switching function evolution:
SX departure from L4, DX departure from L5
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Figure 6.53: Asteroid 2017 BN93, aphelion distance evolution:
SX departure from L4, DX departure from L5

Figure 6.54: Asteroid 2017 BN93, perihelion distance evolution:
SX departure from L4, DX departure from L5
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Finally, it is possible to show the optimal trajectories.

Figure 6.55: Asteroid 2017 BN93, trajectory: Departure from L4

Figure 6.56: Asteroid 2017 BN93, trajectory: Departure from L5
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6.8 Final Assessment
It is possible to summarize the results obtained in synoptic diagrams, showing the final
mass of the missions, with respect to some particular quantities. In Fig. 6.57, are
shown the final masses of the various missions with respect to the two asteroid’s orbital
parameters that mainly affect their value: major semiaxis and inclination. In Fig. 6.58,
the same masses are reported as a function of the mission’s duration and of the hyperbolic
excess velocity at the fly-by.

If no Earth-gravity-assist —EGA — manoeuvre was leveraged, it would have been
logic to forecast a smaller final mass for the shorter missions that rendezvous with the
most inclined asteroids. As mentioned, inclination changing manoeuvre are propulsively
inefficient — and therefore expensive — and longer durations result in a more limited use
of thrust, thus reducing propellant consumption. A similar reasoning could have been
carried out considering the dimension of the asteroid’s orbit, thus the major semiaxis.
It goes without saying that, the greater is the gap in mechanical energy between the
departure orbit and the arrival one, the greater is the propulsive cost of the transfer.
Nonetheless, such an argument presents two flaws.

Firstly, it does not take into account that the transfer is not between two orbits,
but between two points on those orbits: thus the phasing is a crucial issue. The more
favourable is the attainable phasing, the smaller is the propellant consumption used for
minor phasing adjustment after the fly-by. This means that, if the asteroid and the
Earth are near at the close encounter, the mission is less expensive. The bigger the
distance in phase, the less favourable is the mission to be carried out. If the phase is
unacceptable —e.g. the fly-by is effectuated at the asteroid perihelion where occurs the
MOID, but at the fly-by time the asteroid is at its aphelion— the mission can not be
carried out.

Second, but more important, the EGA changes the considerations. The cost of the
manoeuvre is not defined by the target orbit characteristics, but by the effectiveness of
the fly-by manoeuvre: the capacity of obtaining, just leveraging the EGA, the target’s
orbital elements. This is the reason why there is no significant dependence of the final
mass from the asteroids’ orbital elements and from the duration of the mission.

As a matter of fact what strongly affects the mission’s efficiency is the attainable
V∞ at fly-by. If the phasing between the Earth and the target asteroid would be perfect
—i.e. with Earth and asteroid in the same position at fly-by time— it would be possible
to instantaneously rendezvous with the NEA, if a suitable hyperbolic excess velocity
was gained before the fly-by. Indeed, the fly-by could be used to obtain the same
heliocentric velocity as the target, which would be in the same position of the satellite.
Same position and same velocity at a certain time mean same orbital elements, including
the true anomaly. However, beside a perfect phasing which is practically infeasible, it is
necessary for the spacecraft to obtain a suitable V∞.

The V∞ necessary for the ideal instantaneous rendezvous after the fly-by is fixed,
and defined by the target orbital elements.
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Figure 6.57: Final mass of the missions as a function of:
SX major semiaxis, DX inclination

Figure 6.58: Final mass of the missions as a function of:
SX V∞ at fly-by, DX duration
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The effectiveness of the EGA manoeuvre is defined by the capability of gaining a
V∞ as close as possible to the ideal one, both in terms of inclination and module. As
mentioned, the hyperbolic excess velocity’s modulus is constant across the fly-by, that
can be seen as an instantaneous rotation of such an entity. Thus, the second burn before
the fly-by, used to intercept the Earth with the necessary V∞, is crucial. The higher
the ideal V∞, the more expensive the first leg is to obtain an hyperbolic excess velocity
which is close to that value. This explains the dependence of the final mass from the
value of V∞.

Clearly, the EGA is not effectuated at the ideal value of V∞, also because the perfect
phasing is never obtained. Nonetheless, some missions perform effective EGAs —i.e.
2008 TS10 and 2017 BN93— resulting in almost null secondary adjustments and high
final masses. On the other hand, other missions can not obtain a V∞ close to the desired
value or direction, and are characterized by a small payload fraction. The clearer example
is 2012 UE34. The optimal rotation of the hyperbolic excess velocity is neither reached
nor even approached by the spacecraft. Indeed, to gain a suitable rotation of V∞, it would
have been necessary —as mentioned— a fly-by with too low altitude. Constraining the
fly-by, the attained V∞ is lower —although it remains the highest among the considered
asteroids— and not inclined enough: hence the spacecraft needs to broadly use thrust
both before and after the fly-by to perform the rendezvous. This motivates the anomaly,
represented by 2012 UE34 in Fig. 6.57-6.58, where it is characterized by huge drops in
final mass, with respect to similar asteroids.

In the end, the dimensional performances of the optimal missions can be shown in
Tab. 6.10. It is possible to appreciate the conformity of the V∞ gained at the fly-by
between the missions with different departure points. As a matter of fact, since the last
leg is similar for both the departure points it could not have been otherwise.

Two cases —introduced in Section 5.7— to which the dimensionless analysis effectu-
ated can be applied, are considered. These are indicated with the apex:

• I: case with global mass mtot = 14 kg and thrust T = 1.4 mN . This case is not
realizable with the current technology.

• II: case with global mass mtot = 12.44 kg and thrust T = 1 mN .

As mentioned, BIT-3 can store up to 1.5 kg of propellant. Thus, if it was implemented
in a 12.44 kg spacecraft —obtainable sacrificing 1.56 kg of payload from the Lunar
IceCube—, all the asteroids could be reached with the projected missions. On the other
hand, if the weight of the spacecraft was not changed and a hypothetical thruster with
1.4 mN-thrust and same propellant mass was used, asteroid 2012 UE34 could not be
reached starting from L5. Of course, this is a hypothetical consideration, since such a
thruster does not exist, and guessing its characteristics makes little sense.
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Asteroid Departure mI
P (kg) mII

P (kg) Duration (days) V∞ (km/s)

2014 FZ L4 1.107 0.984 1207 4.09
2014 FZ L5* 1.252 1.112 974 4.09

2004 FN8 L4 0.995 0.884 1104 3.48
2004 FN8 L5 1.168 1.038 876 3.55

2012 UE34 L4* 1.457 1.294 858 4.62
2012 UE34 L5* 1.622 1.441 618 4.38

2008 TS10 L4 0.926 0.823 1007 3.10
2008 TS10 L5 1.068 0.949 798 3.20

2015 XA397 L4 1.073 0.953 1196 3.43
2015 XA397 L5 1.234 1.096 972 3.45

2016 YE L4 1.115 0.990 889 4.53
2016 YE L5 1.392 1.237 816 4.50

2017 BN93 L4 0.762 0.677 618 1.87
2017 BN93 L5 1.042 0.926 538 1.87

Table 6.10: Missions performance summary

* denotes a constrained fly-by
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Conclusion

The methodology and the results of an indirect method of optimization for missions with
departure from the Sun-Earth equilateral Lagrangian points to rendezvous with near-
Earth asteroids have been presented and discussed. The missions refer to CubeSats left
as piggyback of a primary larger spacecraft in either L4 or L5, being the Lunar IceCube
the reference model. Being L4 and L5 stable equilibrium points the spacecraft can wait,
without the need for station-keeping manoeuvres, at the starting point, effectuating
secondary operations and activities while waiting for the most favourable departure time.
The missions leverage an Earth-gravity-assist manoeuvre, performed in the nearby of the
minimum orbit intersection distance of Earth and asteroid, to perform the rendezvous
with the target with the smallest propellant consumption. Thus, the spacecraft performs,
in general, two thrusted arches in the first leg —i.e. L4-Earth or L5-Earth— to properly
phase with the blue planet and to gain a sufficient hyperbolic excess velocity for the fly-
by. This is used to obtain, or almost obtain, the orbital elements of the target asteroid
and can be seen as an instantaneous rotation of V∞. The second leg —i.e. Earth-NEA—
is used for minor corrections and adjustment manoeuvres, necessary to effectuate the
rendezvous. First, free height fly-by is sought, then if the optimal mission results in a
not admissible altitude the option of a minimum eight fly-by is explored.

The geometry of the mission allows a relatively easy definition of the first guess
of the tentative solution, necessary to provide the convergence of the method. This,
being an indirect method based on the Optimal Control Theory, provides precise and
reliable solutions, but is sensitive to the precision of the first guess solution. A set of
possible favourable targets has been defined, taking into account the MOID. Asteroids
with a MOID inferior to 0.02 AU have been considered for the alysis, given their inherent
compatibility with the EGAmanoeuvre and due to the impact threat they may represent.

Different solutions, in time, have been found for seven asteroids among the ones se-
lected, for missions with departure from either L4 and L5. These missions have been
optimized in terms of final and initial time, and then only the most favourable in terms
of phasing has been considered. The orbital properties of the target, as forecastable,
strongly affect both the duration and the efficiency of the mission. In general, mis-
sions starting from L4 are slightly more efficient and roughly 200 days longer than their
counterparts departing from L5. The phasing between Earth and asteroids affects both
duration and final mass as well: closer the two bodies are at the close encounter the
globally better is the mission. The results show the feasibility of the missions with the
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current technology, accepting the disadvantage of a reduced payload or —but this option
has not been considered in the present work— an increase in duration. Further devel-
opments in the considered technology may allow the fulfillment of the missions without
constraints, and perhaps improving their efficiency or duration.

Possible future developments and refinements of the present work may include:

• Analysis of missions with the real characteristics of the Lunar IceCube, thus con-
sidering a longer initial leg. This would be necessary to provide the phasing and
the gaining of the suitable V∞ for the fly-by, with a lower T/m ratio than the one
considered.

• Analysis of missions towards the targets not yet studied. As mentioned, only seven
asteroids out of the sixty designated have been analysed, for clear time reasons.
Moreover, future developments in the reference technology may make attainable
targets now too demanding. Such broadening of the analysis is dynamic, since the
number of discovered NEAs is constantly updated with new discoveries.

• Analysis of the proximity operations. Once the rendezvous has been carried out,
it could be possible to study the evolution of the spacecraft orbit near the aster-
oid, analyzing its stability. Moreover, it could be interesting the analysis of close
operations necessary to study the characteristics of the body, or even to deflect its
trajectory.
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