
POLITECNICO DI TORINO

Corso di Laurea Magistrale

in Ingegneria Aerospaziale

Tesi di Laurea Magistrale

Dragonflies Algorithm integration

as a prognostic method for EMA

 Relatori Candidato

 prof. Matteo Davide Lorenzo Dalla Vedova Carlo Dimby Mosa

 prof. Paolo Maggiore

Anno accademico 2019/2020

Abstract

The more-electric philosophy for aerospace technologies brought interest in the application of

electronics actuation systems which are able to replace the old hydraulic servomechanism. Such

conversion comes with different problems alongside, in fact it is absolutely mandatory the study

of the possible faults mode in order to preserve the reliability and safety of the overall aircraft

system. To do so, a model-based approach for prognostic applied to the electromechanical

servosystem, responsible for the movement of a generic flight control surface, has been studied

in my university and various works focused on the first phase of this process, called fault

detection & identification, were produced.

The EMA actuator presented is modeled with an high-fidelity and nonlinear model called

reference model (RM) which is capable of represent the physics of the system accurately and

provide a cheap and fast way to analyze the function of this actuator, but the computation cost is

very heavy.

In order to study the remaining useful life and eventually proceed with corrective action, a lighter

and linear model called monitor model (MM) was developed, it requires an optimization to

achieve the capability of simulate the faulty RM accurately. In this work the Dragonfly

Optimization is applied to the monitor and tested.

Thanks

Vorrei ringraziare innanzitutto l'ingegnere Dalla Vedova e il prof. Maggiore per avermi dato

l'oppurtinità di svolgere la tesi su un arogmento così interessante. Nonostante le difficoltà

affrontate, ho avuto modo di conoscere e di approfondire una disciplina a me già cara da cui ho

imparato molto, e per questo vi sono grato.

Ringrazio inoltre la mia famiglia, sempre presente al mio fianco.

Colgo l'occasione per salutare e ringraziare I miei cari amici e colleghi Gyca, Nicholas e Davide,

che durante il tragitto mi hanno supportato sempre.

Contents

1.Introduction...9

1.1 An introduction to prognostics..9

1.2 Flight controls...10

1.2.1 Primary Flight controls..11

1.2.2 Secondary flight controls...12

1.3 Actuation systems for control surfaces...13

1.3.1 Hydromechanical actuation system...13

1.3.2 Electrohydraulic actuation system...14

1.3.3 Electrohydrostatic actuation system..17

1.3.4 Electromechanical actuation system...18

2.BLDC Motor...19

2.1 Components...23

2.2 Working principle..25

2.3 BLDC efficiency and output...29

2.4Control ...30

3.EMA Models...35

3.1 Reference model..36

3.1.1 Com Block...37

3.1.2 BLDC Motor Controller Block...39

3.1.3 BLDC Motor Electromechanical Model Block...40

3.1.4 BLDC Motor Dynamic Model block..47

3.2 Monitor model...51

3.2.1 Control block ..52

3.2.2 Electromechanical model ...53

3.2.3 Mechanical part...54

 1

4.Faults ..55

4.1 Noise ..60

4.2 Friction ...62

4.3 Backlash ...63

4.4 Short circuit...65

4.5 Eccentricity ..68

4.6 Proportional gain...78

5.Dragonfly algorithm ...79

5.1 Introduction to optimization algorithms..79

5.2 Procedure for the application of a general optimization algorithm80

5.3 Introduction to the dragonflies algorithm...81

5.3.1 Primitive corrective patterns between individuals of a swarm....................................82

6.Simulation and results...88

6.1 Fault implementation..89

6.2 Fitness function...90

6.3 Parameters for the optimization..100

6.4 Performance..101

 6.5 Single fault detection..101

6.6 Multiple fault detection...110

6.7 Comparison and conclusion..111

 2

Bibliography

• S.Mirjalili, “Dragonfly algorithm: a new metha-heuristic optimization technique for

solving single-objective,discrete,and multi-objective problems”, The Natural Computing

Application Forum, 2015.

• S.Re, “Development and comparison of prognostic methodologies applied to

electromechanical servosystems (EMA) for aerospace purpouse”, DIMEAS, Politecnico

di Torino, 2018.

• P.C. Berri, “Genetic algorithms for prognostics of electromechanical actuators”,

DIMEAS, Politecnico di Torino, 2016.

• P.C. Berri, M.D.L Dalla Vedova, P. Maggiore, “On-board electromechanical

servomechanism affected by progressive faults: proposal of a smart GA model-based

prognostic method”, DIMEAS, Politecnioc di Torino.

• M.D.L. Dalla Vedova,P. Maggiore, L. Pace, S. Romeo, “ Proposal of a model based fault

identification neural technique for more-electric aircraft flight control EMA actuators”,

DIMEAS, Politecnico di Torino, 2016.

• T.Sutharssan, S. Stoyanov, C. Bailey, C. Yin, “ Prognostic and health management for

engeeniring systems: a review of data-driven approach and algorithms”, The Journal of

Engineering, 2015

 3

 4

1.Introduction

1.1 An introduction to prognostics

The aerospace industry has always demanded high levels of reliability and safety for its products

and proper techniques to meet such requirement in short times with low cost, the actuation

system, that will be presented after, it’s used to move a secondary control surface hence it

represent one critical component of the aircraft which durability must be conserved by avoiding

critical failures.

The Prognostics and health management is the discipline that links studies of failure mechanisms

to system actual life cycle. This work is focused only on the prognostics, used to predict the

remaining useful life (RUL) of a system (the amount of time left to the system in which it can

operate in nominal condition) and proceed with cost and maintenance planning.

The prognostics follow the next steps:

• DATA COLLECTION: the condition of the system is monitored with sensors that collect useful

data, in this case the dynamic response of the actuators is described by position, speed,

acceleration and currents. Failures of the detection capability of the sensors must be prevented to

avoid contamination of the database with error affected variables.

• TRENDS CLEAN-UP: while operating, sensors measurement can be affected by different factors

like noise or vibration, resulting in an inaccurate output generation that doesn’t fit with the real

behaviour of the system. To avoid this, filters are installed to clean up the signal containing the

detected variable before it is collected.

• THRESHOLD: The value of the data must fit in a precise interval, this one determined by

requirement, specification or history.

• PREDICTION OF THE RUL: the most important phase, this can be achieved with different

techniques combining experience, mathematical expressions, statics and more to estimate the

future behaviour of the systems and enhance its reliability by planning maintenance.

 5

Two different type of prognostics exist: Data-driven and Model-based.

 In this thesis a model-based approach is presented, the RF model is well suited to describe the

real behaviour of the systems but is huge complexity prevent multiple operation of data

collections, in particular it is hard to perform multiple fault detection and so a monitor model,

faster and simplified, can be optimized with algorithms to achieve similar performance and

speed-up the whole prognostic process.

1.2 Flight controls

The Flight controls are divided in primary and secondary, they are regulated by the pilot and

used to control the aircraft. This is possible thanks to the aerodynamic forces and torques obtain

by the movement of the primary control surfaces while the secondary serves are responsible for

the attitude control and other functions.

 6

Fig 1.1: Primary and secondary flight controls

1.2.1 Primary Flight controls

 These are the most critical controls, for modern civil aircraft they are heavily controlled by a

dedicated system to achieve better performance than the pilot, even when the pilot is actually in

handing the aircraft the Flight control system is still active to provide aerodynamic compensation

and stabilization of the dynamic response of the surfaces. The controls are slit on 3 axis in this

way:

• Pitch control, performed by the parallel actuation of the elevators situated on the tail.

• Roll control, obtained by the antagonist movement of the ailerons, situated on the inboard

wing section.

• Yawn control, performed by the rudder situated on the tail.

Other kind of surfaces exist and architectures exists but are not presented here.

 7

Fig 1.2 Forces and rotations

1.2.2 Secondary flight controls

These are less important and also less critical than primary controls ,since they are not used to

directly control the aircraft, the secondary flight controls are mainly used for the regulation of

aerodynamics attitude during the various phases of the flight and can on or off, there are the

elements:

• Slat: placed overboard, it is used to achieve a greater maximum coefficient of lift,

so the wing can avoid the stall.

• Flap: the most common, it is placed in the inboard wing section and has the

purpose of increasing the lift while is active.

• Spoiler and airbrake: placed ahead of flaps, their function is to increase drag.

 8

Fig 1.3 Secondary control surfaces

1.3 Actuation systems for control surfaces

The servomechanisms utilized an input signal, which natures depend on the actuation system,

that moves the controlled surface to the required position. The input is generated and confronted

to the actual position of the surface that is feed-backed,so every actuation system behaves as a

closed-loop system. These feature is mandatory and add an high level of reliability to the flight

controls, further increased by the presences of redundancies.

1.3.1 Hydromechanical actuation system

The Hydro-mechanical actuation represents the first solution adopted to control the flight

controls. The input is given by the pilot and elaborated by a servo-valve which purpose is to

adjust the hydraulic pressure given by the oil in the actuator chambers, then the pressure

differential obtained moves the piston, which is connected by a hinge to the control surface in

order to achieve its rotation.

This servomechanism is classified by the controlled physical dimension, it can be:

• Position (linear or angular)

• Speed (linear or angular)

• Force (also momentum or pressure)

 9

Fig. 1.4 hydromechanical actuator

1.3.2 Electrohydraulic actuation system

This represent a modern and deeply used technology, the input is electric, carried by a fly-by-

wire structure on the servo-valve that can be one of the following types:

1) Direct drive valve

The electrical signal is commuted in a translation by a solenoid and a spool: this last element

have the control the level of oil served to the user with the opening of tiny lights . The power

level of the input signal must be high enough to move the mechanical part.

2) Flapper-nozzle

This valve require a low power input signal, its meaning is to move exert a little magnetic force

on the flapper, the movement from is normal position induces an asymmetry on the oil in the

valve chamber and this difference will move the spool. This kind of valve act like an amplifier of

signal in fact.

Feedback is achieved by a pin to the end of the flapper that redirect the flapper to its natural

position when the required position is meted.

 10

Fig.1.5 Direct drive valve

3) Jet-pipe

It works by the same principle of the flapper-nozzle but is regulated by an anchor that send the

fluid to the spool, the feedback comes from a feedback spring that doesn't affect the spool but

only the anchor. Without this, the valve can work only in on and off mode.

 11

Fig 1.6: Flapper-nozzle valve

Fig. 1.7 Jet-pipe valve

1.3.3 Electrohydrostatic actuation system

Another viable solution is the EHA. It is a valuable choice for its independence from the

hydraulic system, in fact, this is connected only to the electric system and has better performance

in terms of reliability compared to the various hydraulic acutiation technologies.

The surface is moved with an hydraulic piston, this is controlled by a pump that receive power

from a BLDC motor. The pressurize fluid is stored in a tank and controlled in pressure by

dedicated valves, this circuit is therefore independent by the hydraulic system.

There are 3 solutions for this type of actuator:

• Fixed pump displacement and variable motor speed

• Variable pump displacement and fixed motor speed

• Variable pump displacement and variable motor speed

The fly-by-wire impact slightly on the weight of the aircraft and is not suited for military

application due to the low frequency of it.

 12

Fig. 1.8 control loop for EHA

1.3.4 Electromechanical actuation system

The electromechanical solution is the actuation system studied in this paper, it works by

commuting electrical power with the BLDC motor, this motor is linked to a reducer to adjust the

rpm in favor of an higher torque output that will affect the ball screw, which converts the motion

form rotational to linear and so enable the movements of the surface.

This solution is new and its faulty behavor is hard to simulate in a fast and effective way,

therefore it is only used for secondary flight controls.

 13

Fig. 1.9 Electrohydraulic actuator

Fig. 1.10 Scheme of a EMA actuator

2.BLDC Motor

The brushless motor is a modern solution for electric-powered actuation systems.

This technology has replaced the old electric motor, which was provided with brushes paired

with a collector, this kind of solution is able to provides current in the conductors of the rotor

with the friction applied between brushes and coils. Such friction causes a fast deterioration of

the components alongside noise and heat production, with another issue dependent of the

production of conductive particles that may generate electric arcs.

The BLDC provides a cheaper, both for production and maintenance needs, and is also a more

reliable solution.

 14

Fig. 2.1 BLDC motor

2.1 Components

The BLDC motor is composed by a rotor and a stator, there are different solutions for the

position of those based on the application, in this work is considered an outer rotor type were the

magnets are positioned on the rotor while the winding are placed on the stator.

The number of winding defines the phases, for a three-phases motor the configuration is chosen

between the star (Y) and the delta, the first provides a voltage equal to the line while the second

has it (inserisci V diviso 3). The Y pattern is chosen for the studied application since the

windings can be powered individually while the others are shut down.

 15

Fig. 2.2 type of BLDC motors

Fig 2.3 Star and Delta configuartion

The number of magnets defines the pair-pole, increasing such number lead to better

performances, with the same currents its torque will be stronger, and also higher cost. The

material used for the magnets is also important in term of performances and is often an expensive

rare earth alloy, for example the Samarium Cobalt.

2.2 Working principle

The motor is driven by a torque generated from the repulsive forces between magnets, this is

achieved with the sequential powering of each winding that generate a magnetic field by

interacting with the magnets on the rotor.

The power applied on a three phase motor is positive on the powered winding , while one is shut

down and neutral, and the last one is negative (because the current is leaving). The whole process

is regulated and controlled, to solve this issues Hall sensors are mounted on the motors and

provides the correct position of the rotor, thanks to the Hall law which state that a conductor that

is pervaded by currents and immersed in a magnetic fields applies a traverse force to the passing

charges, generating a tension on the conductor.

Three Hall sensors are placed on the stator with a 120° displacement.

The Hall tension provides a positive or negative currents depending on the state of the passing

phase and so it is possible to locate the position of the rotor.

 16

Fig.2.4 different magnet positioning in BLDC motors

Here is a scheme that shows how the phases moves the rotor;

 17

Fig. 2.6 Hall effect

Tab. 2.1 Switching sequencing

 18

Fig. 2.7 Commutation sequencing in a BLDC motor

2.3 BLDC efficiency and output

The performances of the BLDC motor can be easily viewed on the characteristic graphics that

shows how they are linked:

The following relation shows how the torque depends on angular speed:

C=
V⋅ Kc

R
+

Kc
2

R
ω

where Kc is the torque electric constant.

 19

Fig. 2.8 Torque and power as function of the angular speed

The power output is:

P=C⋅ω=
V⋅ Kc

R
+

Kc
2

R
ω2

The torque is linear and decreases with the angular speed, while the power has a quadratic

dependence.

It is now clear that the highest torque is given by the motor when the angular speed is 0, also the

maximum speed is reached when the torque is equal to 0.

The power input is Pi=Vi , so the efficiency is calculated as:

E=
Pout

P i

=
k c⋅ω

V

In reality, both torque and speed are limited by physical issues such as heat degradation and

mechanical limits of the rotor, the final characteristic graphics are below:

2.4Control

There are different types of control logic that can be selected, for BLDC motors the most widely

used is the speed control which is employed in system that receive on/off commands.

 20

Fig 2.9 Real trend of performance of a BLDC motor

A PID controlled gets the calculated speed error from the Halls sensors and checks if it lays on a

limited zone, if this error is greater or smaller of respectively the upper a and the lower values of

the acceptable values, the PID will generates a step command that will increase variate the

tension on the windings according to the needs of the motor. In fact, uch variation will produce

an acceleration that is driven by pulse width modulation signal, equivalent to 1 or to 0. This

control logic is always active, resulting in a frequency of the signal generation as the graphics

shows below:

Another control logic that is often applied as an inner loop to the speed control is the torque

control, instead of acting on voltage this logic variates the currents on the windings.

 21

Fig 2.10 PWM control logic

 22

Fig. 2.11 Speed control loop

Fig 2.12 torque control loop

3.EMA Models

The reference model and the monitor model are widely described in this chapter, these models

were developed in MATLAB simulink and improved during the years.

 23

Tab. 3.1 parameters of the models

3.1 Reference model

This model provide a fast and cheap way for the simulation of the EMA, the simulation runs for

0.5 of actual system works by using an integration step equal to 10-6 s.

From the com block comes the input signal,which is an angular position, to the BLDC Motor

Controller that closes the loop with by comparing the obtained angular position and speed. The

generated error will provided a reference current in input to the BLDC Motor EMA that returns

the torque applied by the actuators, than the torque enters the BLDC Motor Dynamic Model

where its compared with the resistant torque and the actual speed and position are calculated,

these values will be given as the system outputs while also being feedbacked to the controller

block.

 24

Fig 3.1 Reference model

3.1.1 Com Block

This is the block that generates the command,which can be selected between step,ramp, sine,

chirp and a custom one.

The chirp command has two different modes implemented that can be switched in the small

green square, the first uses the parameters coming from the dialogue window of Simulink, the

second is hand-made fucntion that decreases from 1 to 0.

 25

Fig 3.2 Com block

Fig 3.2 Chirp command selection

3.1.2 BLDC Motor Controller Block

This block simulates the controller behavior, an error is generated by the comparison of the

command and the feedback. This error is than transformed by the proportional gain in a speed

value that is limited by the saturation block(to 8000 rpm) and then compared to the second

feedback. The new error enters in the PID block and is transformed into the reference torque,

finally the the reference current is obtained by dividing the torque with torque constant. This

current, that mustn't be confused with the phases currents, it is just a variable needed to control

the motion of the actuation system and is regulated by a saturation block(to 22.5 A). On the last

part of the model there is a white noise block block which is not adopted in this work.

 26

Fig. 3.3 BLDEC Motor Controller Block

3.1.3 BLDC Motor Electromechanical Model Block

This block describes the effects of the control electronics on the phases of the motors and how

the the torque is generated.

 27

Fig. 3.4 BLDC Motor Electromechanical Model Block

Fig 3.5 Reference current block

First, the reference current is served as an input alongside with the rotor angle to the Reference

Current Block.

Inside this subsystem the angle is divided in 3 function that simulates the behavior of the phases

of a trapezoidal BLDC motor, those functions gives 1 in case of a positively powered phase

(current in), 0 for a turned off phase and -1 for a negatively powered phase (current out). The

output is multiplied with the reference current and gives back another reference current that take

in account the time trend of the three phases currents.

This value enters in the PWM block where it is compared to the actual currents applied to the

windings, the error generated is passed on the hysterics blocks that returns a bolean positive

value, 0 if it's lower than -0.5 A or 1 if it's higher than 0.5 A.

 28

Fig 3.6 PWM block

The bouleans values enters in the Inverter block and are negated. After that, the original values

and the new negated ones reach the H-bridge, this will return the 3 phases voltage as output.

Alongside of the described branch there there is another section of the model where the

normalized counter electric force is calculated. The block is called ei_n fcem normalized.

This part will be later discussed in the implementation of the eccentricity fault.

The outputs of the inverter (tensions of the three phases) and the outputs from the fcem norm.

block multiplied with the angular speed of the actuators (gives the true Ke) are served as input to

the Phase Current calculation block.

 29

Fig 3.7 Inverter block

Fig 3.8 normalized CEMF computation block

In order to simulate the star circuit with floating center a SIM power system is added.

This subsystem returns the 3 currents of the phases and a current called I3equiv that is the

equivalent single-phase current carrying the same sing of the generated torque and serves as a

comparison value for the monitor model output, which is a single current.

In the Torque Computation block the torque value is calculated with the normalize kfcem.

 30

Fig 3.9 current phase calculation subsystem

3.10 Torque computation block

3.1.4 BLDC Motor Dynamic Model block

This subsystem take care of the dynamics of the nut-screw actuator linked to the user, a flight

command.

First of all, the BLDC Motor + USER block receives in input the calculated torque TM and the

resistant torque, the difference of this two parameters is the net value of the torque, this value

enters a saturation block that is needed to simulate the mechanical hard-stops of the

 31

Fig 3.11 BLDC motor dynamic model block

Fig 3.12 Second order dynamic block

servomechanism. This wil give a value that can be 0, if the the end effector is not at one of the

limts, +1 or -1 if it is at one limit, depending on the following logic that take in account the

direction of the force.

After the saturation, the signal is divided by the the total inertia of the mechanical system and

integrated to find speed, then another integration will provide the position. Note that the second

integration return a value to the saturation port of the the first integration, this si required to

denied further iteration of speed while the system meet a condition of stop and the position is 0.

This is regulated by the OR that will gives a +/-1 value if one of the end effectors is reached,

switching form 0 to 1 the integration port will cease its action. It takes also in account the

friction, which is simulated with the Borello method that is implemented in the block called

Borello Friction Model, it is able to simulate both static and dynamic friction by regulating the

transition between this two phase of friction, which is a non linear phenomena.

 32

Fig. 3.13 Limit control block

After the USER block, the signals are processed by tacking account of the backlash. The outputs

are the real position and speed of user and motor.

3.2 Monitor model

The simplest model, it simulates a single-phase actuator and is suited for application that requires

faster computational time. This model, paired with an optimization algorithm, should be able to

help in the fault detection of the real actuator.

 33

Fig 3.13 Borello friction

The command block is the same as the RF.

3.2.1 Control block

The control block has a similar structure to the RF counterpart, it is simplified by the substitution

of the PID with another gain. Also, the white noise block is absent.

 34

Fig 3.14 Monitor model

Fig. 3.15 control block for MM

3.2.2 Electromechanical model

The error between currents enters the sign block; being a single-phase actuator the tension can be

only positive or negative, the sign block will take care of this behavior by returning +1,0 or -1 for

output that is multiplied with the with the nominal inverter tension (48 V) to calculated the true

value of voltage applied to the rotor. This voltage is subjected to loses that will be illustrated in

the next chapter, than it is commuted with the first order transfer function:

T f =

(
1

Rm

)

(τRLm+1)

where Rm is the resistance of the winding and τRLm is the ratio between resistance and inductance

After, the current is multiplied with the torque gain to calculates the actuators torque.

 35

3.16 single-phase BLDC subsystem

3.2.3 Mechanical part

The mechanical parts is equivalent to the RF model one.

 36

Fig. 3.17 Mechanical part of the MM

4.Faults

As mentioned before, the EMA actuator has been introduced in the aeronautics field recently and

it is applied to secondary flight controls for reliability issues, in particular lack of knowledge

about it's faulty modes that can be quite unpredictable if combined in a multi-modal fault

situation. Still, each fault is well know and the 4 main categories are listed here:

• Sensor faults: an error in the process of feedback signal acquisition from sensors, this can

modify the dynamic response of the systems driving by a modification of the control laws

that are governing the actuator. They are divide in bias,scaling and drift faults.

• Electrical or electronics faults: these faults are similar for all the electrical systems

onboard, the are different type of factors that can produce this kind of faults, for example:

problems of electromagnetic compatibility, particles that can produce electrical arcs,

overheating of the devices.

• Mechanical and structural faults: the most important category, these faults interests the

reducer and the ball screw actuator, they can be caused by excessive load, corrosion,

manufactory defects or lack of lubrification.

• Motor faults: the BLDC motor works at high angular speed, this can stress the entire

motor structure and the friction causes frequent overheating.

 37

The following tables shows the various failures for each component:

 38

Tab. 4.1 Mechanical and structural fault modes

 39

Tab. 4.2 motor fault modes

4.1 Noise

As seen before, this fault is implemented in form of white noise in the BLDC motor controller

block on the reference model while it is absent on the monitor model. This choice was made by

considering the fact that a monitor model should provides information on the faulty system even

if noise occur.

Noise is a disturbance that affects signals acquisition, it can be acoustic,

electromagnetic,electrostatic, channel or processing noise. It can be also classified by frequency,

there is white noise, limited-band white noise,color noise, narrow band noise,impulsive noise and

transient noise.

 40

Tab 4.3 Electrical fault modes

The white noise blocks generates random normal distributed numbers that are multiples of the

integration steps and thus can affect the signals.

For this work it is not considered in the simulation of reference model.

4.2 Friction

The friction is always present and can increase for various factors. This increment will cause a

loss in efficiency caused by the added power needed to move the components, it will also create

an excessive structural and thermal stress to the mechanical parts, therefore is very important to

detect and correct in time.

 41

Fig 4.1 Noise implementation in RM

The Coulomb model, already showed in the Borello block, approximates both static and dynamic

friction, it also regulates the transition from the first to the second that follows a non linear

behaviour by adopting the following process:

• Identification of the rotation with the selection of the right sign of the friction

torque.

• Computing the torque, taking care of the load applied .

• Selection of the condition,static or dynamic.

• Verified of eventual mechanical stops.

• Computing the break away from a former standstill mechanical part.

Fact is the load on the system, Fsj is the static friction , Fdj is the dynamic friction,Ff is the

computed friction force.

 42

Fig 4.2 Borello friction

4.3 Backlash

The motion transmission is achieved with contact between mechanical parts and the system is

subjected to degradation caused by friction, stress and other issues. To prevent the insurgency of

these problem, a tiny gap between transmission components for the lubricant oil is always

present.

This gap will eventually grow during the operating life of the actuator, causing power loss to the

the transmission and reactivity problems to the user rotation. In the EMA models, the backlash is

modelled for the ball screw tacking in account the relative motion between the ball-nut and the

screw.

The implementation of the backlash is simply made with the Backlash block from the Simulink

library, it is positioned after the modeled mechanical part in each model.

 43

Fig 4.3 Backlash

Fig 4.4 backlash implementation in RM

4.4 Short circuit

Usually this fault starts with a coil to coil short circuit, generated between the winding of the

same phase that came in contacts due to the degradations of the insulating material between them

caused by overheating during the operative life of the motor. This phenomena brings to a

reduction of both resistance and inductance that will increase the current with the same tension,

creating more stress and overheat.

Eventually, the short circuit will propagates between windings of different phases or between

winding and the stator steel, causing the failure of the entire actuation system.

The coil to coil mode is the most important, hence it is the only implemented in the model.

On the reference model it is possible to change the percentage of short circuit DIRECTLY on

each one of the phases, as the inductance decreases the force will decrease too:

K ei=K e⋅ N i

where Kei is the counter electromotive coefficient.

 44

Fig 4.5 Backlash implementation in MM

Rij=
R s

(2⋅ (N i+N j))

Lij=
L s

(2⋅(Li

2+L j

2))

where Rs and Ls are the phase to phase resistance and inductance while Rij and Lij are the

faulty ones.

Ri=
Rs

(2⋅ N i)

 Li=
L s

(2⋅ Li

2)

where Ri and Li are the coil to coil resistance and inductance on faulty conditions.

The implementation on the reference model follows the same principle of the calculated current

I3equiv , hence the short circuit is calculated as an avergae of the three coefficients:

 N equi=
(N a+N b+N c)

3

This is mandatory since it is impossible to locate the faulty phase with the monitor model.

 45

Fig 4.5 three-phase current

implemented in the RM

The other parameters are calculated as:

 Requi=Requi1⋅ N equi

 Lequi=Lequi1⋅ N equi

2

 k fecem=k fecem1⋅ N equi

 GMequi1=GMequi1⋅ N equi

where the equiv1 stands for the nominal condition.

The rotor angular position is used to modulate the characteristic of the motor, to avoid issues

related to the carrier frequency of short circuit and eccentricity.

Since this modulation takes care of only two phases, a correction is implemented as followed:

 46

Fig 4.6 modulating function

4.5 Eccentricity

An eccentricity is a fault that happens when the air gap between the rotor and the stator changes

due to a difference in the center of symmetry of one, or both, of those components. The air gap is

then dissimilar for each angular position, with a different distance from each point of the stator

and rotor that will gradually damage the motor.

This fault is always present, since it is not possible to create a perfect air gap, and increases

during the working life of the motor thanks to vibration and usury of the bearings.

There are illustrated three cases of eccentricity:

Only the static eccentricity is studied in this work, with reference to the figure below :

 47

Fig. 4.7 Types of eccentricities

Fig 4.8 Reference system for

air gap definition

Assuming both rotor and stator as rigid bodies it is possible to obtain the air gap with the

following passages:

x
2+ y

2=Rr

2

is the equation of the rotor circumference.

(x− x0)
2+ y

2=R s

2

is the equation of the stator circumference.

With the polar coordinates:

ρ=Rr

ρ2
− 2ρ⋅ x0 cos(θr)− Rs

2+ x0

2=0

by approximating it with a Taylor series of a second order, the air gap is:

g=g0(1+ζ⋅ cos(θr))

with g0=Rs− Rr as the air gap in non faulty condition and ζ=
x0

g0

as the ratio between the

misalignment and the nominal air gap.

The magnetic flux is affected and the difference between forces modules creates an imbalance in

the system:

F mm=Φ⋅ R is the magnetomotive force,where R=
l

(µr µs S)
is the reluctance, S is the

surface of the rotor permeated by the magnetic flux.

The magnetic flux can be rewritten as a function of the air gap:

Φ=
(F mmµ0 S)

(g⋅ (θ1+g (θ1+
π
P

)))

 48

For the reference model it is implemented in the computation of the Kfcem:

in this way, both torque gain and counter electromotive force gain depends on the angular

position of the rotor.

In the monitor model ζ is normalized in a interval from 0 to 0.42, the new variable is called Z.

 49

Fig. 4.9 Magnetic circuit through the air gap

Fig 4.10 CEM F computation on Simulink

The calculation of the effect on the Kfecm is effectuated by the dedicated block.

The computed equation is:

K fcem

' =K fcem⋅ (1− Z⋅ (cos (Pθm− ϕ)+sawthoot cos(6Pθm− π)⋅ sin (Pθm− π)))

 50

Fig 4.11 Eccentricity modification block

Fig. 4.12 Effect of eccentricity implement on MM

4.6 Proportional gain

There are many electronic faults that can be occurs during the working life of the actuators,

caused by different issues such as overheating, loss of power in the line and possibles short

circuit on critical elements. Most of these failures follows a ''cascade'' behaviour , starting with a

failures that eventually propagates and generates other failures in the system until it completely

breaks.

For these reason, a generic and progressive electronic fault is studied in this work and its faulty

behaviour is simulated in the controller block.

 This fault is implemented in both models with a simple multiplication of the proportional gain

with a parameter G that is limited between 0.5 and 1.5, to simulates both loss and increases of

gain from nominal conditions.

 51

Fig. 4.13 Gain implemented

on RM Fig. 4.14 gain implemented on

MM

5.Dragonfly algorithm

5.1 Introduction to optimization algorithms

The optimization algorithm in literature are divided in two main classes:

• Deterministic: this kind of algorithm are also defined exact methods that, by using

equations searches the space of solutions and reach the global minimum by following

logical and well defined steps. These methods requires a huge computational time, paired

with growing complexity of the problems on which they are applied, are no longer

suitable for all engineer applications.

• Stochastic and heuristics: these methods are based on a random search lead by a group of

agents or a single solution, in every iterations the algorithm tries to improve the state of

the solutions and bring them to convergence. Running multiple optimization will lead to

different results, the better methods should be able to run multiple times and achieve

similar good results.

Stochastic and meta-heuristic methods can be also divided in:

• Evolutionary: the most developed algorithm so far, these are nature based methods that

reproduces the life cycle of a population starting from birth, development, grown,

reproduction and selection, this last one is often applied to the fittest members of the

population and a limited random part. The initialization starts with a few agents that in

the course of the optimization evolves in order to find the better solution. In the previous

works, which this one is the continuation, the Genetic Algorithm and the Differential

Evolution belongs to this particular type.

• Swarm intelligence: a more recent class f optimization methods that mimic the behaviour

of a certain class of organisms performing a particular task. The search agents moves in

the domain of possible solutions and compute the fitness function multiple times, the

result of the function is then confronted and its value triggers the equations that regulates

 52

the motion of the swarm,the whole processes is than repeat form iteration to iteration

until convergence or other requirements are meets. These methods are often utilized with

parallelization so the computational time is better than the evolutionary class,also , the

reliability is higher because they depends on less parameters. In other works, Particles

Swarm optimization and Grey Wolves optimization are an example of such methods, and

the DA algorithm belong to this class too.

The No Free Lunch theorem states that if an algorithm works well with a particular class of

problems, it will perform poorly on another kind of class. There aren't perfect methods, each one

should be applied in order to find the reliable.

5.2 Procedure for the application of a general optimization algorithm

As mentioned before, the aim of this work is to test a particular optimization algorithm applied to

the linear and simplest model of the EMA.

This application is divided in multiplied steps:

• The reference models parameters are initialized.

• The faulty behavior is chosen by the user, it can be a single-fault or multi-faults case.

• The simulation of the EMA reference starts performing the behavior of the system for

0.5 second.

• An input from the user will select the algorithm and its main variables.

• The monitor model starts and run for multiple times, from each iterations the algorithm

will run.

 53

5.3 Introduction to the dragonflies algorithm

The inspiration for DA comes from the hunting behavior of a dragonflies swarms in nature,

which is divided in a dynamic and a static phase. This is modeled and recreated by the

exploration and exploitation phases of the optimizations, in this two blocks the minimal value of

the fitness function is searched with equations that mimicking different pattern of the hunts, such

as food attraction, cohesion in navigation and others. In particular, this kind of operations are

regulated to transition from the exploration phase to the exploitation phases. This transition is

crucial , in the dynamic swarming multiple groups of solutions are subdued to these corrective

patterns in order to find a local minimum, than the static swarming has to reach the global

minimum with precision.

5.3.1 Primitive corrective patterns between individuals of a swarm

The algorithm has five primitive corrective, each one of these is applied to a limited sets of

solutions circumscribed in a radius, that changes with the number of iterations by following the

equation:

r=(
ub− lb

4
)+((ub− lb)⋅ (

iteration

MaxNumber
)⋅ 2)

where ub and lb are respectively the upper and lower boundary, in this work they are set to 1 and

0 and so the equation becomes:

 r=0.25+(
iteration

MaxNumber
)⋅ 2

The radius is a property of each single dragonfly that is increased during the optimization to

adjust the transition between dynamic and static swarming.

The corrective patterns are:

• Separation, which defines the static collision avoidance behavior of an individual from

each other individuals in the selected neighborhood.

 54

The separation is calculated as:

 S i=− ∑
j=1

N

X− X j

Where X is the position of current individual, Xj shows the positions of neighboring individuals

and N is the number of neighboring individuals.

• Alignment, it represents the individual tendency of matching the velocity with the

neighboring individuals.

 55

Fig 5.1 Alignment pattern

Fig 5.1 Separation pattern

This is calculated as:

 Ai=
∑
j=1

N

V j

N

Where Vj is the velocity of the j-th neighboring individual.

• Cohesion, which refers to the trend of individuals in moving themselves towards the

center of mass of the whole neighborhood.

The coheiosion is calulated with:

 C i=
∑
j=1

N

X j

N
− X

Where X is the position of current individual, Xj shows the positions of neighboring individuals

and N is the number of neighboring individuals.

 56

Fig. 5.3 Cohesion pattern

• Attraction to food, the fist operator that mimic survival the survival behaviour that lead

the swarm towards the aviable food source

Is calculated as:

F i=X
f
− X

Where X is the position of the current individual and Xf is the position of the food.

• Distraction form enemy, which lead the swarm away from dangers in order to survives.

 57

Fig 5.5 Distraction from enemy

Fig 5.4 Attraction to food

The distraction is calculated as:

E i=X
e
− X

Where X is the position of the current individual and Xe is the position of the enemy.

The first three operators are weighed in a proper way that will help the transition between

exploration to exploitation, the dragonflies tend to move with high alignment while maintaining

proper separation and a low level of cohesion during the static phase, instead, by moving in

dynamic hunt phase the swarm will gain high level of cohesion and low levels of separation and

alignment.

The food attraction increases during the optimization to mimic the final stage of the hunt and

lead the solutions to the global minimum, while the enemy distraction operator is able to avoid

the worst solutions that are increased multiple times to get them out of the radius range of the

rest of the swarm.

All this parameter works together to hunt the best solution and are exploited in these equations:

 ∆ X t+1=sS i+aAi+cC i+ fF i+eE i+w∆ X t

 hence, X t +1= X t+∆ X t+1

 58

Fig 5.6 exploration and exploitation

If the choosen dragonfly doesn't have any neighbouring individuals it is required to randmly fly

in the search space by following the equation of the Lévy flight:

Lévy (x)=
0.01⋅ r 1⋅σ

∣r 2

1
β∣

where r1 and r2 are random numbers from [0,1] , β is a constant (for this work is set to 1.5) and σ

is calculated with:

σ=
Γ(1+β)⋅ sin (

πβ
2

)

Γ(
1+β

2
)⋅β⋅ (2

β− 1

2)

where Γ(x) =(x-1)!

this possibility increases the stochastic behavior of the algorithm.

 59

Fig 5.7 Swarming behaviour of artificial dragonflies

The pseudo-code of the DA is:

 60

Fig. 5.8 pseudo-code of DA

6.Simulation and results

6.1 Fault implementation

To increase the convergence speed of the optimization the monitor model is simulated with

normalized faults parameters which values are limited in a interval [0,1]. A vector of faults is

formed with these parameters:

k=[k (1) , k (2) , k (3) , k (4) , k (5) , k (6) , k (7) , k (8)]

where:

• k(1) is the normalized friction fault, at 0 it represents the nominal condition and at 1 it is

three time the nominal condition.

• k(2) is the normalized backlash fault, at 0 it represents the nominal condition equal to a

backlash of 0.29° and at 1 it is ten time the nominal condition, 29°.

• k(3 to 5) are the shot circuit parameters that range form a nominal condition 0 that is

equal to the 100% current passing through the phases A, B or C, to 1 which represent the

short circuit.

• k(6) the normalized rotor eccentricity ratio, ranges from the nominal condition that

represents the ideal absence of static eccentricity , to 1 which is equal to g=0 (no air gap

between rotor and stator)

• k(7) is the second parameters related to the eccentricity, it is the phase of eccentricity

normalized with 0=-π to 1= π, while the nominal condition is set at 0.5. This parameters

is not considered when k(6)=0.

• K(8) is the normalized gain fault, it's nimal condition are set at 0.5, while 0 represents a

reduction 50% and 1 is equal to an increase of 50% in gain.

 61

In nominal condition the vector of faults is eqaul to:

k=[0,0 ,0,0 ,0 ,0 ,0.5 ,0.5]

After the simulation of the reference model, the faulty parameters are normalized and then the

monitor model is launched with the current vector of fault and compute the error between the

equivalent currents of both models with a dedicated fitness function, that must be minimized.

All this processes is iterated multiple times during one optimization, the algorithm will try to find

the best vector of faults between an initial random pool of solution while also improving this

pool. For this reason the selection of a proper fitness function is crucial.

6.2 Fitness function

A proper fitness function has been used for the previous algorithms implemented on the

software, it is obtained with the total least square method in order detect the smallest difference

between the two models:

err=
∑ (I 3equiv(t 0)− I m(t 0))

2

√(
(I 3equiv(t 0)

2)

dt
+1)

where I3equiv and Im are the reference equivalent current and the monitor current.

Some simulations without the optimization algorithm are showed below in order to check the

reliability of the fitness function. For each fault there are three different results, the first for

nominal condition, the second for a low faulty condition and the third for a high faulty condition.

Good results should show a very low error.

 62

FRICTION

F=1 k(1)=0 err=3.9⋅10
− 5

F=1.5 k(1)= 0.25 err=8.7⋅10
− 4

 63

Fig 6.1 Nominal friction

Fig 6.2 Low friction

 F= 2.5 k(1)= 0.75 err=2.9⋅ 10
− 3

Nominal conditions are the bests, the errors increase of 10 times for the low faulty case and 100

times for the high faulty one. The results are acceptable.

B=0 k(2)=0 err=3.9⋅10
− 5

 64

Fig 6.3 High friction

Fig 6.4 Nominal Backlash

B=25 k(2)=0.25 err=2.2⋅ 10
− 4

B=75 k(2)=0.75 err=2.2⋅ 10
− 4

For the backlash the final results are also good, as always there is a lack of precision between

nominal condition and both high and low fault that shows an error ten times greater.

 65

Fig. 6.5 Low backlash

Fig. 6.6 high backlash

SHORT CIRCUIT

Na=1 k(3)=0 err=4.8⋅ 10
− 4

Na=0.8 k(3)=0.2 err=6.8⋅10
− 4

 66

Fig 6.7 Nominal shot circuit

Fig 6.8 Low short circuit

Na=0.3 k(3)=0.7 err=2.1⋅ 10
− 3

The error of the low fault case is just two time greater then the nominal one, while the high fault

is ten times but still acceptable.

GAIN

G=1 k(8)=0.5 err=6.2⋅10
− 5

 67

Fig 6.9 High short circuit

Fig. 6.10 Nominal gain

G=0.5 k(8)=0.25 err=7.9⋅10
− 2

G=1.5 k(8)=0.75 err=3.4⋅ 10
− 3

In this case, the low fault generates a greater error than anything considered before, therefore I

could be an issue for the simulation, while the others are similar to the other faults.

 68

Fig. 6.11 Low gain

Fig. 6.12 high gain

ECCENTRICITY

Z=0. k(6)=0 err=3.9⋅10
− 5

Z=0.105 k(6)=0.25 err=2.7⋅ 10
− 4

 69

Fig. 6.13 Nominal eccentricity ratio

Fig 6.14 Low eccentricity ratio

Z=0.315 k(6)=0.75 err=1.9⋅10
− 2

For the eccentricity ratio, the high faulty case generates a big error while the others shows good

results.

phi=0° k(7)=0.5 err=2.6⋅ 10
− 4

 70

Fig. 6.15 High eccentricity ratio

Fig. 6.16 nominal eccentricity phase

phi=-180° k(7)=0.25 err=7.1⋅10
− 4

phi=+180° k(7)=0.75 err=8.1⋅10
− 4

The phases of the eccentricity, which is simulated with a k(6)=0.105, shows good results for all

the faults with each errors belonging to the same order.

 71

Fig. 6.17 Low eccentricity phase

Fig. 6.18 High eccentricity phase

6.3 Parameters for the optimization

Here is a list for the parameters that can be selected for the optimization:

• Population number/number of search agents: is the number of individual in a

population/swarm, it represents the number of possible solution, each one of them is a

possible vector of fault. The higher is this number, the better is the precision but also the

expansive is the computational cost.

• Iterations/generation: is the number that regulates how many times the operation of the

algorithm are executed. Like the number of search agent, it should be chosen considering

that after a certain threshold the precision increment is little, while the computation time

is too high.

• Parallelization: it can be set ON or OFF, it's a tool that enable the simulation of the model

on multiple cores of the processor. It is always set OFF.

• MyC parameter: this is a special parameter for the dragonflies algorithm, it consist in a

general weight parameters that affect all the values obtained by the primitive corrective

patterns equation. After different trials, it is defined as:

• MyC=0.01−
(0.02⋅ iter)

MaxIter

where iter is the number of the current iteration and MaxIter is the number of the last iteration.

6.4 Performance

To evaluate the algorithm two coefficients are used:

• Error: this equation takes in account of every fault error and computes a total error:

Err=√(∑
i=1

5

(K i− k i)
2+k 6⋅ (K7− k 7)+(K 8− k 8)

2)

where K are the nominal values and k are the faulty ones.

As the equation shows, the error of the eccentricity is equal to 0 if the ratio is in nominal

condition, that is to avoid a physically meaningless results if just the phase fault is present.

 72

• Reliability coefficient: this parameters takes compute a reliability value to have an

indicator of the efficiency of the utilized algorithm, so it can be compared to the other

optimization methods. A 100% RC represent the best method possible.

RC=1−
(t i⋅ err i)

(∑
i=1

N

ti⋅ erri)

• where erri is the mean of the total errors of all the optimizations carried by the i-esim

algorithm, N is the number of algorithms, ti is the mean computational time of the i-esim

algorithm.

 6.5 Single fault detection

The simulations were carried with a number of search agents equal to 50 and a number of

iterations equal to 100. Both numbers were selected after many trials, it is important to know that

increasing both parameters will only generates an higher computational time, while the precision

does not change in a significant way.

For each fault one high faulty case and one low faulty case are simulated, in the table below the

vector of faults used is listed. Also, every case has been executed for a total of 1o optimizations.

F-k(1) 0,25 0 0 0 0 0 0,5 0,5

B-k(2) 0 0,25 0 0 0 0 0,5 0,5

Na-k(3) 0 0 0,2 0 0 0 0,5 0,5

Z-k(6) 0 0 0 0 0 0,25 0,5 0,5

G-k(8) 0 0 0 0 0 0 0,5 0,25

 Low faults vectors

 73

F-k(1) 0,75 0 0 0 0 0 0,5 0,5

B-k(2) 0 0,75 0 0 0 0 0,5 0,5

Na-k(3) 0 0 0,8 0 0 0 0,5 0,5

Z-k(6) 0 0 0 0 0 0,75 0,5 0,5

G-k(8) 0 0 0 0 0 0 0,5 0,75

High fault vectors

Friction

Optimi

zation

 Low F error time

1 0,2479 0 0 0 0 0 0 0,4912 0,9 946

2 0,2482 0 0 0 0 0 0,5938 0,4875 1,26 952

3 0,2481 0 0 0 0 0 0,1748 0,4911 0,9 1.014

4 0,2489 0 0 0 0 0 1 0,4950 0,88 1.039

5 0,2485 0,0019 0 0 0 0 1 0,4912 0,91 1.025

6 0,2484 0 0 0 0 0 0 0,4826 1,74 1.005

7 0,2479 0 0 0 0 0 0,6158 0,4902 1,01 1.019

8 0,2372 0 0 0 0 0 0,1938 0,4808 2,3 1.026

9 0,2480 0 0 0 0 0 0,0219 0,4908 0,92 1.069

10 0,2488 0 0 0 0 0 0 0,4941 0,61 1.078

avg

error

1,14 avg

time

1.017

 Low F fault

 74

Optimi

zation

High F time

1 0,8006 0 0 0 0 0 0 0,4786 5,49 915

2 0,7378 0 0 0 0 0,0024 0 0,4758 2,72 932

3 0,7401 0 0 0 0 0 1 0,4776 2,44 948

4 0,7394 0 0 0 0 0 0 0,4827 1,99 963

5 0,7351 0 0 0 0 0 0,3782 0,4776 2,32 979

6 0,7391 0 0 0 0 0 0 0,4786 1,98 997

7 0,7377 0 0 0 0 0 1 0,4789 1,99 1.010

8 0,7390 0 0 0 0 0 0 0,4787 1,97 1.027

9 0,8006 0 0 0 0 0 0,4091 0,4767 5,37 1.043

10 0,7388 0 0 0 0 0 1 0,4782 2,66 1.095

avg

error

2,89 avg

time

991

 High fault

Both faults shows decent performances, the high fault error is three time greater then the low

fault but that was predictable since the fitness function behaves better at low levels of friction.

 75

Backlash

Optimi

zation

low B time

1 0,0376

549824

0,2371 0 0 0 0 0,9135 0,5113 1,8 910

2 0 0,2355 0 0 0 0 0,4092 0,5010 1,45 917

3 0 0,2356 0 0 0 0 0,0635 0,5017 1,51 913

4 0 0,2374 0 0 0 0 0 0,4978 1,28 922

5 0 0,2365 0 0 0 0 0,5917 0,4978 1,37 917

6 0 0,2379 0 0 0 0 0 0,5747 7,5 922

7 0 0,2364 0 0 0 0 0,6667 0,4978 1,59 1.001

8 0 0,2368 0 0 0 0,1823 0,5029 0,5788 7,9 1.036

9 0 0,2494 0 0,0138 0 0,0166 0,0427 0,5013 1,24 1.049

10 0 0,2433 0 0,0000 0 0 0 0,5747 7,5 1.062

avg

error

3,31 avg

time

964

Optimi

zation

high B time

1 0 0,7323 0 0 0 0 0,6095 0,4974 1,78 971

2 0 0,7325 0 0 0 0 0 0,4979 1,75 975

3 0 0,7325 0 0 0 0 0,5740 0,4979 1,75 949

4 0 1 0 0 0 0 0,1054 0,7467 35,11 992

 76

5 0 0,7325 0 0 0 0 0,3563 0,4982 1,75 1.030

6 0 0,7155 0 0 0 0 0,4823 0,4969 3,46 1.017

7 0 1 0 0 0 0 0 0,7467 35,11 1.037

8 0 0,7325 0 0 0 0,2000

856545

1 0,5289 44,81 1.061

9 0 0,7339 0 0 0 0 0,8939 0,4972 1,63 1.098

10 0 0,6448 0 0 0 0,2426

568175

0,5092 0,4628 11,16 1.153

avg

error

14 avg

time

1.027

The backlash is well detected for the low fault, while the high fault has some problems of

convergence, for multiple optimization the algorithm diverge to the upper boundary.

Short circuit (Na)

Optimi

zation

low Na time

1 0 0 0,1970 0 0 0 1 0,4991 0,32 1.108

2 0 0 0,1963 0 0 0 1 0,4971 0,47 1.038

3 0 0 0 0 0 0,1177 0 0,5423 20,44 974

4 0 0 0,1935 0 0 0 0,1915 0,5016 0,67 1.006

5 0 0 0,1657 0 0 0,0066 0,8542 0,4959 3,81 1.021

6 0 0 0,1428 0 0 0,0176 0,2410 1,0000 50,3 1.028

7 0 0 0 0 0 0,1483 1 0,5023 20,32 1.038

8 0 0 0,1937 0 0 0 0,0640 0,5014 0,71 1.062

 77

9 0 0 0,1974 0 0 0 0 0,4979 0,34 1.074

10 0 0 0 0 0 0,1695 1 0,4569 31,45 1.086

avg

error

12,83 avg

time

953

Optim

ization

high

Na

time

1 0 0 0,6900 0,0693 0,0936 0 0 0,5117 18,13 986

2 0 0 0,6643 0 0,1847 0,2097 0,4746 0,5721 42,6 999

3 0 0 0,7811 0 0 0 0 0,4961 1,92 1.007

4 0 0 0,6306 0,1825 0,0456 0 0 0,5728 26,34 992

5 0 0 0,7780 0 0,0008 0 0,8017 0,5158 2,71 950

6 0 0 0,7786 0 0 0 1 0,5078 2,25 947

7 0 0 0,6793 0 0,0473 0,1607 1 0,3691 24,25 1.024

8 0 0 0,7753 0 0 0 0,7103 0,5225 3,34 1.064

9 0 0 0,7366 0 0 0,1412 1 0,4796 38,1 1.080

10 0 0 0,7792 0 0 0 1 0,5154 2,58 1.095

avg

error

16,22 avg

time

1.014

The short circuit has the worst results so far, having hard times at detecting both fault.

 78

Eccentricity

Optimi

zation

low K time

1 0 0 0 0 0 0 0,3967 0,4614 50,1 1.020

2 0 0 0 0 0 0 0 0,4486 50,26 1.099

3 0 0,0314 0 0 0 0 0,0946 0,4384 50,37 1.069

4 0 0 0 0 0 0 0,0786 0,4614 50 1.151

5 0 0 0 0 0 0,2494 0,4983 0,5009 0,1 1.077

6 0 0 0 0 0 0 0 0,4493 50,61 998

7 0 0 0 0 0 0 0,1563 0,4487 50,63 1.047

8 0 0 0 0 0 0,2544 0,4988 0,5031 3,35 1.060

9 0 0,0297 0 0 0 0 0,4829 0,4406 50,77 1.060

10 0 0 0 0 0 0,2571 0,4993 0,5012 0,71 1.077

avg

error

35,63 avg

time

1.065

Optimi

zation

high K time

1 0 0 0 0 0 1 0 0,3695 13,05 951

2 0 0 0 0 0 0,5228 0,4993 0,5328 16,34 922

3 0 0 0 0 0 0,7652 0,4996 0,4991 8,71 918

4 0 0 0 0 0 1 0 0,3182 18,26 924

5 0 0 0 0 1 0,5166 1 0,5454 48,52 931

6 0 0 0 0 0 0,7606 0,5012 0,4978 7,3 981

 79

7 0 0 0 0 0 0,7518 0,4998 0,4884 3,21 1.019

8 0 0 0 0 0 0,7426 0,5045 0,4802 6,41 1.034

9 0 0 0 0 0 0,5282 0,4991 0,5142 33,3 1.039

10 0 0 0 0 0 0 0 0,3358 16,42 1.063

avg

error

19,23 avg

time

978

The algorithm seems to be not suited for the eccentricity fault detection, the errors are the worst

of every fault and both ratio and phases are poorly detced.

Gain

Optimi

zation

low G 939

1 0 0 0 0 0 0 0,9402 0,2549 0,49 925

2 0 0 0 0 0 0 0,1417 0,2549 0,49 980

3 0 0 0 0 0 0 0,1982 0,2549 0,49 961

4 0 0 0 0 0 0 0 0,2549 0,49 965

5 0 0 0 0 0 0 0 0,2264 2,36 976

6 0 0 0 0 0 0 0 0,2549 0,49 946

7 0 0 0 0 0 0 0,4185 0,2549 0,49 926

8 0 0 0 0 0 0 0,0655 0,2549 0,49 930

9 0 0 0 0 0 0 0,2737 0,2549 0,49 940

10 0 0 0 0 0 0 0 0,2549 0,49 949

avg

error

0,67 avg

time

949

 80

Optimi

zation

high G time

1 0 0 0 0 0 0 0 0,7342 1,58 1.059

2 0 0 0 0 0 0 0 0,7342 1,58 1.115

3 0 0 0 0 0 0 1 0,7337 1,56 972

4 0 0 0 0 0 0 0,2829 0,7342 1,58 917

5 0 0 0 0 0 0 0 0,7342 1,58 918

6 0 0 0 0 0 0 0 0,7342 1,58 918

7 0 0 0 0 0 0 0 0,7334 1,66 920

8 0 0 0 0 0 0 0,7584 0,7342 1,58 922

9 0 0 0 0 0 0 0,2185 0,7344 1,58 915

10 0 0 0 0 0 0 0 0,7342 1,58 1.009

avg

error

1,58 avg

time

966

The Gain is by far the best, both errors are good even if the fitness function does not behave at

the best for this fault.

6.6 Multiple fault detection

 81

As anticipated from the single fault detection, the results of the dragonflies algorithm applied to

the current model are not satisfied. Below there are the optimizations for the multiple fault

detection.

Optimi

zation

0,25 0,75 0,8 0,8 0,8 0,25 0,5 0,75 error time

1 0,4678 1 0,7516 0,5953 0,8509 0,8654 0,5766 0,7928 71,6 1.026

2 0,7035 0,8320 0,7036 0,7533 0,7434 0,0026 0,6751 1 67,57 1.039

3 0,6941 0,7875 0,7046 0,6851 0,8091 0,1436 0,7965 1 60,69 1.040

4 0,6945 0,7226 1 0,4742 0,5963 0,6032 1 0,6128 80,77 1.051

5 0,6002 0,7495 0,7526 0,7020 0,7638 0,7799 1 0,6164 79,91 1.056

6 0,2716 0,7534 0,7291 0,7309 0,8745 0,6343 1 0,6267 48,77 1.068

7 0,3076 1 0,7892 0,6175 0,8217 0,8698 0,5506 0,9496 74,6 1.074

8 0,2722 0,2529 0,8472 0,7378 0,7384 0,0043 0,8378 0,5221 66,5 1.095

9 0,5168 1 0,7357 0,7304 0,7553 0,2150 0,5318 1 47,48 1.095

10 0,4949 0,5137 0,7881 0,6689 0,8016 0,1564 0,4941 0,5821 45,56 1.102

avg

error

64,2 avg

time

1064

The average error shows that the current algorithm is not suited for this application.

6.7 Comparison and conclusion

Some results has been taken from previous works in order to compare the DA and achieve a

better vision of its performance.

 82

GA PSO DE GWO DA

low F 2,50% 1,06% 1,11% 1,19% 1,14%

high F 4,08% 2,82% 3,41% 2,58% 2,89%

low B 1,96% 1,26% 1,26% 1,27% 3,31%

high B 2,08% 2,01% 1,94% 1,79% 14,00%

low Na 1,66% 0,44% 0,42% 0,78% 12,83%

high Na 8,06% 3,40% 3,11% 3,18% 16,22%

low K 1,24% 3,88% 0,38% 1,49% 35,63%

high K 1,60% 1,52% 1,71% 4,61% 19,23%

low G 1,63% 0,41% 0,43% 0,35% 0,67%

high G 1,27% 0,19% 0,27% 0,27% 1,58%

Average 2,57% 1,70% 1,40% 1,75% 10,75%

 83

Fig. 6.19 low faults errors comparison

The Dragonflies algorithms shows competitive results on friction and gain detection, while the

rest for the rest of faults the performance are not satisfactory.

GA PSO DE GWO DA

 84

Fig. 6.20 high faults errors comparison

low F 2549 2405 1874 2152 2.034

high F 2764 2589 1717 1893 1982

low B 2549 2593 1824 1867 1.928

high B 2737 2428 1809 1955 2.054

low Na 2745 2240 1829 1918 1.904

high Na 2882 2317 1859 1983 2.028

low K 2862 2304 1806 1892 1.065

high K 2735 1933 1739 1966 1956

low G 3002 2438 1867 2043 1.898

high G 3032 1873 1922 1957 1.928

Average 2786 2312 1825 1963 1.984

 85

6.21 low faults time comparison

For the time comparison the results of dragonflies are multiplied by 2, since it was used with half

of the iterations. In this case it just performed like the most parts of the algorithms.

GA PSO DE GWO DA

Time 2786 2312 1825 1963 1.984

Err 2,57% 1,70% 1,40% 1,75% 10,75%

RC 76,00% 91,00% 93,00% 92,00% 62,00%

In the end, the DA does have the lowest reliability coefficient among the algorithms studied, it is

not suited for this application, while PSO, DE and GWO are the best choice for carrying out the

optimization of this EMA model.

In the future, an hybrid algorithm will probably be the best way to achieve this task, since all the

presented methods have their weakness. In this sense, a note of praise must be done for the DA,

since its computational time is the lowest seen here, and that's an important feature for on-board

fault detection.

 86

Fig. 6.21 high fault time comparison

Appendix

function

[Best_score,Best_pos,cg_curve]=DA(SearchAgents_no,Max_iteration,lb,ub,dim,fob

j)

 display('DA is optimizing your problem');

cg_curve=zeros(1,Max_iteration);

 if size(ub,2)==1

 ub=ones(1,dim)*ub;

 lb=ones(1,dim)*lb;

end

 %The initial radius of gragonflies' neighbourhoods

r=(ub-lb)/10;

Delta_max=(ub-lb)/10;

Food_fitness=inf;

Food_pos=zeros(dim,1);

Enemy_fitness=-inf;

Enemy_pos=zeros(dim,1);

X=initialization(SearchAgents_no,dim,ub,lb);

Fitness=zeros(1,SearchAgents_no);

DeltaX=initialization(SearchAgents_no,dim,ub,lb);

for iter=1:Max_iteration

 87

 r=((ub-lb)/4)+((ub-lb)*((iter/Max_iteration)*2));

 w=0.9-iter*((0.9-0.4)/Max_iteration);

 %c / 10

 my_c=0.01-iter*((0.01-0)/(Max_iteration/2));

 if my_c<0

 my_c=0;

 end

 s=2*rand*my_c; % Seperation weight

 a=2*rand*my_c; % Alignment weight

 c=2*rand*my_c; % Cohesion weight

 f=2*rand; % Food attraction weight

 e=my_c; % Enemy distraction weight

 %Calculate all the objective values first

 for i=1:SearchAgents_no %Calculate all the objective values first

 Fitness(1,i)=fobj(X(:,i)');

 All_fitness(1,i)=Fitness(1,i);

 if Fitness(1,i)<Food_fitness

 Food_fitness=Fitness(1,i);

 Food_pos=X(:,i);

 end

 if Fitness(1,i)>Enemy_fitness

 if all(X(:,i)<ub') && all(X(:,i)>lb')

 Enemy_fitness=Fitness(1,i);

 Enemy_pos=X(:,i);

 88

 end

 end

 end

 for i=1:SearchAgents_no

 index=0;

 neighbours_no=0;

 clear Neighbours_V

 clear Neighbours_DeltaX

 %find the neighbouring solutions

 for j=1:SearchAgents_no

 Dist2Enemy=distance(X(:,i),X(:,j));

 if (all(Dist2Enemy<=r) && all(Dist2Enemy~=0))

 index=index+1;

 neighbours_no=neighbours_no+1;

 Neighbours_DeltaX(:,index)=DeltaX(:,j);

 Neighbours_X(:,index)=X(:,j);

 end

 end

 % Seperation%%%

 % Eq. (3.1)

 S=zeros(dim,1);

 if neighbours_no>1

 for k=1:neighbours_no

 S=S+(Neighbours_X(:,k)-X(:,i));

 end

 S=-S;

 else

 S=zeros(dim,1);

 89

 end

% Alignment%%%

 % Eq. (3.2)

 if neighbours_no>1

 A=(sum(Neighbours_DeltaX')')/neighbours_no;

 else

 A=DeltaX(:,i);

 end

 % Cohesion%%%

 % Eq. (3.3)

 if neighbours_no>1

 C_temp=(sum(Neighbours_X')')/neighbours_no;

 else

 C_temp=X(:,i);

 end

 C=C_temp-X(:,i);

 % Attraction to food%%%

 % Eq. (3.4)

 Dist2Food=distance(X(:,i),Food_pos(:,1));

 if all(Dist2Food<=r)

 F=Food_pos-X(:,i);

 else

 F=0;

 end

 90

 % Distraction from enemy%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 % Eq. (3.5)

 Dist2Enemy=distance(X(:,i),Enemy_pos(:,1));

 if all(Dist2Enemy<=r)

 Enemy=Enemy_pos+X(:,i);

 else

 Enemy=zeros(dim,1);

 end

 for tt=1:dim

 if X(tt,i)>ub(tt)

 X(tt,i)=lb(tt);

 DeltaX(tt,i)=rand;

 end

 if X(tt,i)<lb(tt)

 X(tt,i)=ub(tt);

 DeltaX(tt,i)=rand;

 end

 end

 if any(Dist2Food>r)

 if neighbours_no>1

 for j=1:dim

 DeltaX(j,i)=w*DeltaX(j,i)

+rand*A(j,1)+rand*C(j,1)+rand*S(j,1);

 if DeltaX(j,i)>Delta_max(j)

 91

 DeltaX(j,i)=Delta_max(j);

 end

 if DeltaX(j,i)<-Delta_max(j)

 DeltaX(j,i)=-Delta_max(j);

 end

 X(j,i)=X(j,i)+DeltaX(j,i);

 end

 else

 % Eq. (3.8)

 X(:,i)=X(:,i)+Levy(dim)'.*X(:,i);

 DeltaX(:,i)=0;

 end

 else

 for j=1:dim

 % Eq. (3.6)

DeltaX(j,i)=(a*A(j,1)+c*C(j,1)+s*S(j,1)+f*F(j,1)+e*Enemy(j,1)) +

w*DeltaX(j,i);

 if DeltaX(j,i)>Delta_max(j)

 DeltaX(j,i)=Delta_max(j);

 end

 if DeltaX(j,i)<-Delta_max(j)

 DeltaX(j,i)=-Delta_max(j);

 end

 X(j,i)=X(j,i)+DeltaX(j,i);

 end

 end

 Flag4ub=X(:,i)>ub';

 Flag4lb=X(:,i)<lb';

 X(:,i)=(X(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;

 92

 end

 Best_score=Food_fitness;

 Best_pos=Food_pos;

 cg_curve(iter)=Best_score;

 if iter>2

 line([iter-1 iter], [cg_curve(iter-1) cg_curve(iter)],'Color','b')

 xlabel('Iteration');

 ylabel('Best score obtained so far');

 drawnow

 end

 hold on

 scatter(iter*ones(1,SearchAgents_no),All_fitness,'.','k')

 criterium=2e-5;

end

end

 93

