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Abstract 
 

The design and optimization of space systems presents many challenges associated 

with the variety of physical domains involved and their coupling. A practical 

example is the case of space vehicles designed to re-enter the atmosphere upon 

completion of their mission. For these systems, aerodynamics and thermodynamics 

phenomena are strongly coupled and relate to structural dynamics and vibrations, 

chemical non equilibrium phenomena that characterize the atmosphere, specific re-

entry trajectory, and geometrical shape of the body. Blunt bodies are common 

geometric configurations used in planetary re-entry. These geometries permit to 

obtain high aerodynamic resistance to decelerate the vehicle from orbital speeds 

along with contained aerodynamic lift for trajectory control. The large radius-of-

curvature allows to reduce the heat flux determined by the high temperature effects 

behind the shock wave. The design and optimization of these bodies would largely 

benefit from accurate analyses of the re-entry flow field through high-fidelity 

representations of the aerodynamic and aerothermodynamic phenomena. However, 

those high-fidelity representations are usually in the form of computer models for 

the numerical solutions of Partial Differential Equations (e.g. Navier-Stokes 

equations, heat equations, etc.) which require significant computational effort and 

are commonly excluded from preliminary multidisciplinary design and trade-off 

analysis.  

This work addresses the integration of high-fidelity computer-based simulations for 

the multidisciplinary design of space systems conceived for controlled re-entry in 

the atmosphere. In particular, we will explore and discuss the use of multifidelity 

methods to obtain efficient aerothermodynamic models of the re-entering systems. 

Multifidelity approaches allow to accelerate the exploration and evaluation of 

design alternatives through the use of different representations of a physical 

system/process, each characterized by a different level of fidelity and associated 

computational expense. By efficiently combining less-expensive information from 

low-fidelity models with a principled selection of few expensive simulations, 

multifidelity methods allow to incorporate high-fidelity costly information for 

multidisciplinary design analysis and optimization. Modern multifidelity methods 

leverage active learning schemes to optimize the selection of the sample points 

while searching for the design optimum.  

This thesis discusses multifidelity methods and compares different implementations 

to assist the design of aerospace systems. In particular, active learning frameworks 

based on multifidelity expected improvement (MFEI) are implemented and 

assessed for the optimization of different benchmark analytical functions. 

Additionally, an original MFEI algorithm is proposed and implemented for the 

specific case of the design optimization of the Orion-like atmospheric re-entry 

vehicle. The results show that the proposed MFEI algorithm gives better 

optimization results (lower minimum) than single fidelity active learning based on 

low-fidelity simulations only. The outcome suggests that the MFEI algorithm 
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effectively enriches the information content with the high-fidelity data. Moreover, 

the computational cost associated with 100 iterations of our multifidelity active 

learning strategy is sensitively lower than the computational burden of 6 iterations 

of a single fidelity framework invoking the high-fidelity model.  
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1. Introduction 
 

The recent developments in space exploration have led to growing interest in new 

space vehicles. Specifically, atmospheric re-entry vehicles represent a significant 

class of them. Modern space missions are increasingly supported by vehicles able 

to perform complex assignments (e.g. transfer astronauts to the international space 

station, lunar exploration missions and future landing on Mars) and return safely to 

the earth's surface [1]. The concept of this vehicles must take into account the 

multidisciplinary context and coupling of the physical domains that characterize 

atmospheric re-entry. Given the high speed of entry into the atmosphere, the flight 

regime is hypersonic for most of the trajectory travelled. As a consequence, 

important physical phenomena must be considered in the design process [2].  

Basically, planetary entry vehicle are high-drag devices. The deceleration allows to 

drastically reduce the speed during the trajectory [3]. However, the vehicle structure 

and payload limit the maximum allowed deceleration. For unmanned re-entry 

probes, the structural deceleration limit can be quite high. Considering manned re-

entry capsules, the maximum deceleration tolerated by the human body is of about 

12 g for only a few minutes of time. Not only the maximum deceleration is a 

concern for aerospace designers. A reduced deceleration can lead to a bounce off 

the atmosphere with serious problems associated. Also, some lift is required in 

order to respond to uncertainties in atmospheric density, enable targeting to specific 

points on the earth surface and moderate the maximum accelerations on the 

structure and payload.  

The high Mach number, that characterize the re-entry phase, involve the occurrence 

of high-temperature effects behind the shock wave [4]. As a consequence, the real 

gas effects, that is the existence of a gas in equilibrium, non-equilibrium, frozen or 

all those states, are important in the hypersonic flow characterization, because they 

determine the heat flows on the surface of the re-entry vehicle. Surface heating is 

one of the most important quantities in the design of an atmospheric entry vehicle, 

as it drives the design of the thermal protection system (TPS). Energy may be 

transferred to the surface of a planetary entry vehicle by particles colliding and 

interacting with the surface (convective heating) and radiation from excited 

particles in the flow (radiative heating). The thermal protection system must be 

engineered to withstand the high thermal flows involved.  

Summing up, the design process must delicately balance the need to decelerate the 

capsule in order to carry out a controlled ground impact, and the survival of the 

vehicle upon heating.  

The most common re-entry vehicle shape geometries are blunt bodies [5].  These 

geometries allow to produce a significant aerodynamic drag, reducing the velocity 

from orbital or interplanetary to landing and a small amount of lift, provided by off-

setting the centre-of-gravity of the vehicle. The large radius-of-curvature of the 
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blunt body nose mitigate the effects of heating on the structure allowing the payload 

to survive during the entry trajectory. 

Given the complexity of the physical domains and the strong coupling between 

aerodynamic and aerothermodynamic phenomena, the design and optimization of 

these vehicles would largely benefit from the use of accurate representative models 

of the phenomena. These high-fidelity models allow to closely describe the real 

physic environment and the interaction of the physical domains involved. However, 

those high-fidelity representation are usually in the form of computer models for 

the numerical solution of partial differential equations which require significant 

computational resources and are commonly excluded from preliminary 

multidisciplinary design and trade-off analysis.  

In the early stages of re-entry vehicle design, aerospace designers prefer to 

implement simplified aerothermodynamic models [6, 7, 8, 9, 10, 11]. Commonly, 

these representations are referred to as low-fidelity models, as they represent the 

phenomena in a way deviated from reality introducing approximations and 

omissions of physical aspects considered negligible in the early phases of the 

decision-making process. The advantage of using low-fidelity models is the reduced 

computational effort associated with it. This allows to explore more technical 

solutions and carry out trade-off analyses in a short time during the preliminary 

design phase. However, despite the possible elicitation of large amount of data, low 

fidelity models may not be adequate to predict the real contest of operation of the 

system analysed. Moreover, the simplified description of physical phenomena can 

lead to design errors identified only in the advanced stages of the process, resulting 

in an increase in costs and design time. 

This work addresses the implementation of multidisciplinary optimization 

methodologies considering complex and coupled physical domains and their 

accurate representation, in order to identify design opportunities, associated 

constraints and reduce cost and design time in the preliminary phases of the project. 

In particular, the integration of high-fidelity computer-based simulations for the 

multidisciplinary design of space systems conceived for controlled re-entry in the 

atmosphere will be considered [12].    

Given the computational effort required by high-fidelity models, the use of multi-

fidelity methods will be discussed in order to increase the computational efficiency 

and information accuracy of aerodynamic and aerothermodynamic computer 

simulations. Multi-fidelity methods allow to speed-up the design and optimization 

process by effectively combining low-cost information from low-fidelity models 

and a reduced number of invocations of more computationally expensive high-

fidelity models reducing the total computational effort [13]. Modern multi-fidelity 

methods are based on active learning schemes in order to optimize the sampling 

process while searching for the optimum [14]. In Chapter 4 an overview of 

multifidelity methods is given.  
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Fot the design and optimization of a re-entry capsule addressed in this dissertation, 

the objective function and the simulation modules are treated as black box 

functions, that is, only inputs and outputs are visible/accessible. This is very 

common in design and engineering of aerospace multidisciplinary systems. When 

dealing with black box functions, the exact evaluations of derivatives is difficult 

and only approximations can be computed at the cost of evaluating the frequently 

expensive model in multiple neighbor points. For the optimization of black box 

functions, empirical approaches are usually adopted [16, 21, 22] which require a 

wise selection of the points to sample to learn about both the shape of the objective 

function and the path towards its global optimum.  

In this work we consider Surrogate-Based Optimization exploiting Bayesian 

frameworks for the optimization of black box functions. Surrogate based 

optimization constructs surrogate model using the available information acquired 

from expensive experiments and/or simulations and leverage it in the optimization 

process. Bayesian frameworks are a popular surrogate based optimization approach. 

In Bayesian optimization the prior belief about the problem is given by the initial 

surrogate and progressively update the information about the objective function 

through adaptive sampling. This is also known in literature as active learning.  

In addition, this dissertation considers the opportunities to leverage multiple 

representation of the physical phenomena at different level of fidelity in order to 

reduce the computational effort associated with the optimization process. 

Therefore, we focus on Multifidelity Bayesian Optimization framework. 

Multifidelity Bayesian Optimization frameworks combine effectively different 

information sources, approximating the objective function at different levels of 

fidelity, into a single surrogate model and implements active learning strategies by 

adaptively sampling from different fidelity levels. In Chapter 5 we present the 

detailed formulation of multifidelity Bayesian optimization frameworks.  

In this thesis, we discuss multi-fidelity methods and compare different 

implementations to assist the design of aerospace systems. In particular, an active 

learning multi-fidelity framework based on multi-fidelity expected improvement 

(MFEI) are implemented and assessed for the optimization of different benchmark 

analytical functions [15, 16, 17].  

In order to validate the effectiveness of the search for the minimum of the objective 

function, the MFEI algorithm is tested by means of benchmark analytical functions 

[20]. Despite the little engineering utility, the benchmark functions allow to test the 

performance of the algorithm, as the exact evaluation of the optimum is known, and 

the associated computational cost is reduced. Furthermore, these experiments are 

useful in providing information about the robustness and reliability of the 

implemented algorithm. Specifically, the analytic functions considered are the 

Forrester function, the sinusoidal squared 1D function and the Rosenbrock function. 

In the case of the Forrester function and the sinusoidal squared 1D function, two 

levels of fidelity were considered. For the Rosenbrock function 2, 4 and 8 

dimensions were implemented and the MFEI algorithm was tested for multiple 
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levels of fidelity including a linear mapping of the function, the quadratic function 

and a series of low-fidelity functions defined in the literature for the specific case. 

Afterwards, a comparison between the performance of the MFEI algorithm and a 

single fidelity expected improvement active learning algorithm was made, 

considering the maximum fidelity function, to verify the effectiveness of the multi-

fidelity approach. The experimental setup and results are presented in Chapter 7.  

An original formulation of a multi-fidelity expected improvement algorithm is then 

presented and implemented to assist the design of an Orion-like re-entry vehicle. 

The proposed algorithm allows opportunely to balance the process of exploration 

of the domain and exploitation towards the optimum of the objective function 

specifically formulated for the atmospheric re-entry problem. 

Considering the above, aerodynamics and aerothermodynamics phenomena are 

crucial in the design process of a re-entry vehicle. High-fidelity representations of 

this physical phenomena are characterized by considerable computational cost 

associated (e.g. computational fluid dynamics (CFD) simulations). In order to speed 

up the optimization process, the specialized MFEI algorithm combine aerodynamic 

and aerothermodynamic information from two fidelity models. The high-fidelity 

model data are acquired by hypersonic computational fluid dynamic simulations. 

The low-fidelity data are obtained by experimental correlations and simplified 

formulations of the governing equations. Low-fidelity and high-fidelity 

aerothermodynamic models and physical representations of re-entry phase are 

given in Chapter 8. 

The experiments were conducted by comparing the performance of the original 

MFEI algorithm for the re-entry problem and a single fidelity expected 

improvement algorithm, where only aerothermodynamic low-fidelity models are 

implemented. The outcomes are presented and discussed in Chapter 8. The results 

suggest that the proposed MFEI algorithm gives better optimization results than the 

single low-fidelity expected improvement algorithm. This achievement shows a 

significant design opportunity given the lower TPS mass, structural temperature 

and burned propellant mass. Also, this result demonstrate that the algorithm is able 

to combine effectively a high number of cheap information from experimental 

correlation and a significant lower data from CFD simulations. Moreover, the 

computational cost associated with 100 iterations performed by the proposed 

algorithm is far below the computational effort of performing 6 iterations of a single 

fidelity framework invoking the high-fidelity model. 

In Chapter 2 is given an overview of multidisciplinary design optimization 

approaches. In Chapter 3 we discuss the mathematical formulation of Bayesian 

optimization framework. In Chapter 4 is presented a multifidelity methods 

overview. In Chapter 5 is given the description of multifidelity Bayesian 

optimization. In Chapter 6 we introduce the single fidelity expected improvement 

and multifidelity expected improvement algorithm. In Chapter 7 are presented the 

experiments on analytical benchmark functions and outcome discussion. In Chapter 

8 the re-entry vehicle optimization problem is defined, the implemented physical 
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models are described and the original algorithm is presented. Then the results are 

examined and compared to the single low-fidelity expected improvement 

algorithm.  
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2. Multidisciplinary Design Optimization (MDO)  
 

Multidisciplinary design optimization (MDO) is a field of engineering involving 

the design of complex systems that includes a sensible number of disciplines or 

subsystems. MDO leverage numerical optimization techniques and advanced 

computational analysis tools to solve the optimization problem in the early stages, 

reducing time and cost of the design cycle.  

The origins of MDO can be attributed to the research of Haftka [93, 94, 95, 96] and 

Schmit [97, 98, 99, 100] who have extended the optimization formulations of 

structural problems to other disciplines. 

One of the most important aspects in the MDO implementation is the organization 

of the discipline models, approximated formulations (if any), and the optimization 

algorithm to achieve an optimal design.  

In the following paragraphs are presented the MDO methodology, the design 

structure matrix, the main MDO architectures and the approaches to the MDO 

resolution. The main issues with MDO analysis are also presented.  

 

2.1. MDO Methodology  
 
In this paragraph a summary of the methodology to deal with MDO problems is 

presented. Specifically, in the publication “Multidisciplinary aerospace design 

optimization – Survey of recent developments”, R. Haftka and J. Sobieski define 

MDO as a set of methodologies still of reference today.  

The authors identify the following MDO methodology constituent elements [74]: 

 

1. “Mathematical Modelling of a System”. It is necessary to define numerical 

models capable of effectively representing the systems involved in design 

optimization. Furthermore, the inputs and outputs of each model must be 

made explicit as well as the relationships that exist between them. 

Determining these interconnections is important to quantify the volume of 

data exchanged between the models and the associated computational cost. 

Given the increasing computational cost associated with representative 

models, a balance between cost and accuracy must be exercised. Referring 

to the mathematical models’ formulation, the decrease of computational 

effort of MDO problems can be done by reducing the detail level of the 

same physical model, using a less refined formulation, or combining 

effectively models of different fidelities.  
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2. “Design-Oriented Analysis”. In the preliminary design and trade-off phase, 

various project solutions are evaluated by means of appropriate analysis 

tools. Specifically, the analysis tools must have some key properties to 

accelerate the initial design exploration or elicit detailed information in the 

advanced phases. In particular, the analysis can be carried out by 

approximate tools in order to speed up the validation of different solutions 

and exclude others. Typically, this is done in the early stages of the project 

when certain constraints and requirements are not yet definitively 

quantified. The most accurate analysis tools are used only at an advanced 

stage of the design or on subsystems that need redesign. 

 

3. “Approximation Concepts”. Frequently, the acquisition of exact data from 

MDO analysis is prohibitive, given the associated high computational cost. 

In the preliminary design phases, the use of approximations allows to define 

a simplified multidisciplinary optimization problem from which it is 

possible to elicit a much greater amount of information. However, these data 

can lead to design errors that are costly in terms of economic resources and 

time consuming. Consequently, the introduction of simplifications must be 

consistent with the physical and operational context of the system, as well 

as with the degree of accuracy desired by the designers. 

 

4. “System Sensitivity Analysis”. The sensitivity of a system indicates how 

much that system is dependent on the subsystems that constitute it or the 

physical disciplines that model it. The importance of knowing these 

relationships is that it allows to guide decisions and design process 

effectively. Furthermore, the definition of the physical dependencies of a 

system represents a key point in the introduction of simplifications and in 

its modelling. In fact, considering the operational context it is possible to 

introduce approximations with greater awareness, avoiding coarse design 

errors. 

 

An important problem associated with MDO approaches and methodologies is the 

problem synthesis. The definition of the optimization problem is not clear most of 

times, given the difficult characterization of the integration and input/output 

relationship between disciplines. This characterization increases in hardness with 

the complexity of the system. The need to decompose the problem therefore appears 

to be an important aspect in MDO problems. The Design Structure Matrix is an 

effective tool to address the problem synthesis, defining the system components and 

the input-output relationships between them. In paragraph 2.2 a brief discussion on 

Design Structure Matrix is given.  
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2.2. Design Structure Matrix 
 

The Design structure matrix (DSM) is a powerful tool to support the design process 

by giving a visual representation of all the subsystems constituent the system, their 

associated relationships and dependence. The positives of DSM are the compact 

representation of a considerable number of information related to subsystems (the 

number of which also increases as a function of the complexity associated with the 

system considered), the applicability of matrix analytical techniques in order to 

improve system structure and identification of dependencies, in the form of 

feedback and nested loops between subsystems [75]. 

Basically, DSM is a square matrix. In the cells along the diagonal are allocated the 

elements of the system. The upper and lower triangle present the relationships and 

linkages between these elements, usually represented by arrows. In the upper 

triangle are presented the input-output connection between diagonal cells. In the 

lower triangle are highlighted the relational loops between system elements.  

Considering a single cell belonging to the diagonal. In the upper off diagonal along 

the corresponding row are defined the cell outputs that will constitute inputs for a 

subsequent diagonal block. The inputs are identified along the column entering the 

cell. In the lower off-diagonal outgoing from the element along the row are 

described the feedback relationships. 

In Fig. 1 is presented an example of DSM for the optimization problem of a re-entry 

vehicle. The goal is to minimize the propellant mass burned and the thermal 

protection system temperature (TPS) by means of an iterative process. Along the 

diagonal are presented the models that describe the re-entry vehicle physics. The 

optimization loop block defines the fixed data and the design variables in input to 

the diagonal elements.  Along the rows are defined the physical outputs of the 

models. Along the column are defined the physical inputs that the element in that 

column receives from other elements. Specifically, the propulsion system input are 

the thruster and propellant data; the outputs are the thrust vector and the propellant 

mass burned. The trajectory model inputs are the vehicle geometry and the initial 

re-entry conditions; the outcomes are the fluid and thermal data acquired during the 

re-entry. The aerothermodynamics block take as inputs the vehicle geometry and 

the output of trajectory; the outputs are computation of the heat fluxes. The thermal 

protection system model inputs are the heat fluxes and the system data; The output 

is the structural thermal reached.  In the lower triangle of the matrix are presented 

the feedback loops. In particular, the internal loop is given by the propellant mass 

and the outer loop is given by the structural temperature of the TPS.  To minimize 

these outputs, the optimizer defines new design variables at the new optimization 

step.  
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Figure 1: An example of design structure matrix for re-entry vehicle design 

optimization.  

 

  

The DSM represent effectively the constituent relationships of the MDO problem. 

This allows to understand which MDO architecture is appropriate to address the 

multidisciplinary problem. Several MDO architectures have been proposed in the 

literature. Some of the most popular are discussed in paragraph 2.3. 
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2.3. MDO Architectures  
 

A challenging aspect in MDO problems are the couplings between systems 

considered in the optimization problem. If the disciplines relationship is ignored, 

MDO reduces to a standard nonlinear programming problem [76], that is search the 

values of the design variables to minimize the objective function subject to 

constraints. MDO architectures provide a consistent, formal setting for managing 

the interdependence in the design process [77].   

In order to describe the specific MDO architectures, the All-at-Once (AAO) 

problem statement is presented.  The AAO formulate the MDO problem in the most 

general form. The other architectures narrated in this paragraph are derived from 

the following AAO framework [76]:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓0(𝑥, 𝑦) +∑𝑓𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖)

𝑁

𝑖=1

 

 

𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜          𝑥, �̂�, 𝑦, �̅�  

 

(1) 

 

                                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑐0(𝑥, 𝑦) ≥ 0 

                                                                𝑐𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖) ≥ 0                         𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

                                                               𝑐𝑖
𝑐 = �̂�𝑖 − 𝑦𝑖 = 0                         𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

                                                               ℛ𝑖(𝑥0, 𝑥𝑖 , �̂�𝑗≠𝑖, �̅�𝑖, 𝑦𝑖) = 0          𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

 

Where 𝑥 is the vector of design variables, 𝑦 is the vector of coupling variables 

(outputs from a discipline analysis), �̅� is the vector of state variables (variables used 

inside only one discipline analysis), �̂�  are the indipendent copies of the coupling 

variables distributed to other disciplines, 𝑓 is the objective function, 𝑐 is the vector 

of design contraints, 𝑐𝑐 is the consistency constraints vector, ℛ are the governing 

equations of a discipline analysis in residual form and 𝑁 are the number of 

disciplines. 

MDO architectures can be generally divided into monolithic architectures, where 

the MDO problem is solved as a single optimization problem and distributed 

architectures, where the optimization problem is decomposed into smaller 

problems.  In this dissertation we focus on monolithic architectures. An exhaustive 

overview of distributed MDO architectures is available in the literature [76, 80, 81, 

82, 83, 84, 85, 86] 
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The main monolithic architectures are summarized in the following points:  

 

• Simultaneous Analysis and Design (SAND). This architecture simplifies the 

problem (1) by removing the consistency constraints introducing a single 

group of coupling variables to replace the separate target and response group 

[76]. The optimization problem is formulated as follows:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓0(𝑥, 𝑦) +∑𝑓𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖)

𝑁

𝑖=1

 

 

𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜          𝑥, �̂�, 𝑦, �̅�  

 

(2) 

 

                                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑐0(𝑥, 𝑦) ≥ 0 

                                                                𝑐𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖) ≥ 0                         𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

                                                               ℛ𝑖(𝑥0, 𝑥𝑖 , �̂�𝑗≠𝑖, �̅�𝑖, 𝑦𝑖) = 0          𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

 

• Individual Discipline Feasible (IDF). IDF architecture is obtained by 

eliminating the discipline analysis constraints. The IDF architecture is also 

known as distributed analysis optimization [78] and optimizer-based 

decomposition [77]. The problem (1) reduces to:   

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓0(𝑥, 𝑦) +∑𝑓𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖)

𝑁

𝑖=1

 

 

𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜          𝑥, �̂�, 𝑦, �̅�  

 

(3) 

 

                                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑐0(𝑥, 𝑦) ≥ 0 

                                                                𝑐𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖) ≥ 0                         𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

                                                               𝑐𝑖
𝑐 = �̂�𝑖 − 𝑦𝑖 = 0                         𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 
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• Multidisciplinary Feasible (MDF). MDF architecture is obtained by 

removing both the discipline analysis constraints and the consistency 

constraints. In literature this architecture is also referred as fully integrated 

optimization [78] and nested analysis and design [79]. The resulting 

optimization problem is [76]:  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒          𝑓0(𝑥, 𝑦) +∑𝑓𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖)

𝑁

𝑖=1

 

 

𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡 𝑡𝑜          𝑥, �̂�, 𝑦, �̅�  

 

(4) 

 

                                  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑐0(𝑥, 𝑦) ≥ 0 

                                                                𝑐𝑖(𝑥0, 𝑥𝑖 , 𝑦𝑖) ≥ 0                         𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 

 

SAND methodology can potentially lead to the optimum quickly in comparison to 

other architectures because the optimizer explore region that are infeasible with 

respect to the analysis constraints [76]. The main issues in SAND approaches are 

the acquisition of state variables and the discipline modelling, leading to premature 

termination of the optimization problem and increase in problem size.  

IDF methods allow to perform parallel computation, since the coupling between the 

disciplines is resolved by the variables �̂� and consistency constraints 𝑐𝑐 [76]. 

Despite the computational advantage respect to SAND approaches, the problem 

size still an important challenge when the discipline complexity arises.  

MDF architectures present an important advantage over SAND and IDF 

approaches: the optimization problem formulation is small since the optimizer 

controls directly only the objective function, the design variables and design 

constraints. Moreover, the outcome of the optimization is always complying with 

the consistency constraints, even if the process is ended early [76]. The main 

negative of MDF approaches is the need to perform a full multidisciplinary design 

analysis (MDA) for every optimization iteration. Indeed, developing an MDA 

procedure can be time-consuming and computational expensive. 

In approaching the MDO problem, after defining the appropriate architecture to use, 

it is necessary to explore the possible design alternatives with certain criteria. The 

techniques of exportation are also defined as design of experiments and there is a 

great number proposed in the literature. Design of experiments is briefly introduced 

in section 2.4. 
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2.4. Design of Experiments  
 

Design of Experiments (DOE) is concerned with planning, conducting, analysing, 

and interpreting controlled test to evaluate the factors that control the value of a 

parameter or group of parameters. Specifically, DOE allows for multiple input 

design factors to be manipulated, determining their effect on a desired system 

response and identifying important interactions that may be missed when 

experimenting with one factor at a time.  

In MDO problem, DOE is important because define the most suitable sampling 

method for the system considered in order to perform the optimization process. In 

this paragraph we present a brief survey of sampling methods commonly adopted 

in engineering optimization problems.  

In statistics, sampling methods allow to select a subset of individuals from within a 

statistical population, referred as a statistical sample, in order to estimate properties 

and characteristics of the whole population.  

In optimization frameworks the sampling techniques can be relevant because it 

allows to generate a small representative subproblem by sampling the objective 

domain. Such subproblem is computationally less expensive than the main problem 

to analyse. Therefore, the goal in optimization frameworks is to examine the 

subproblem and grasp as much information as possible regarding the original 

problem. However, the sampling technique described is suitable only in 

exploration, that is if the goal is to know as much as possible the objective function.  

If, on the other hand, the optimization process wants to be guided towards the 

optimum, by sampling in the regions of the domain where it is believed (according 

to specific criteria) that the optimum of the objective function can be located, the 

sampling method must allow the balance between exploitation and exploration. In 

this contest, active learning frameworks (also referred as adaptive sampling) must 

be implemented.  

The first sampling method described is random sampling [161, 162, 163]. In a 

random sampling of a given size all subsets of a sampling frame have an equal 

probability of being selected. Therefore, a single element of the frame has the same 

probability of selection as the frame constituents. Furthermore, any given pair of 

elements has the same probability of selection as the other pairs (and similar for 

triples and so on). The consequence is minimizing the bias and simplifies the 

analysis of the results because the variance of the overall population can be 

estimated by the variance of the sampled individuals. The main disadvantage of 

random sampling is the vulnerability to sampling errors because of the inaccurate 

representation of the population given the randomness of the selection.  

Another significant class of sampling method are quasi-random sampling [164, 

165, 166] approaches. In quasi-random sampling the near-random samples are 

generated from a multidimensional distribution. Latin hypercube sampling is an 
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important method belonging to this class. In statistical sampling, a square grid 

containing sample positions is defined a Latin square if and only if there is only one 

sample in each row and in each column. Considering the generalization to a 

multidimensional contest, a Latin hypercube is defined if each sample is the only 

one in each axis-aligned hyperplane containing it. Considering a function of 𝑁 

dimensions, the Latin Hypercube sampling scheme place 𝑀 sampling points, 

respecting the Latin Hypercube requirements, in the 𝑀 equally probable intervals 

in which the range of each variable is divided. The main advantage in implementing 

this sampling scheme is the independence of the number of samples from the 

increase in dimension.  

The two categories of sampling methods are also referred as standard sampling 

approaches because the sample scheme is independent from the nature of the data 

available. In active learning frameworks [167, 168], or adaptive sampling methods, 

the sampling procedure is influenced from the data acquired. Considering an 

optimization iterative process, the determination of the sample to query is 

influenced from the information obtained in the previously computational steps 

Latin hypercube sampling is implemented in the multifidelity Bayesian 

optimization algorithm presented in chapter 6 to acquire initial information about 

the objective function. However, in Bayesian frameworks, the iterative 

optimization process is based on active learning techniques. The initial information 

about the objective function are acquired by starting samples and during the 

iteration samples are selected adaptively by an acquisition function. A more 

detailed dissertation is given in the following paragraphs. 
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2.5. Optimization Algorithm for MDO 
 
The MDO problem solution can be approached with different techniques from the 

optimization theories. In particular, the main methods to leverage in searching the 

optimum are gradient-based and gradient-free methods. 

Gradient-based methods are algorithm that guide the optimum search direction 

through the gradient of the function at the current point. In MDO problems, adjoint 

equation is a popular gradient-based method. Methods based on the resolution of 

adjoint equations are commonly used in wing shape optimization [87], fluid flow 

control and uncertainty quantification. Newton-Raphson method is another 

common gradient-based approach. Basically, the method consists of a root-finding 

algorithm which outcomes better approximations to the roots of a real-valued 

function during the iterative process [88]. Moreover, Conjugate gradient method is 

an accepted approach to optimization problems. Specifically, the conjugate gradient 

method is used to solve unconstrained optimization problems such as energy 

minimization [89].  

Gradient-free methods are a class of approaches that does not require the knowledge 

of derivatives information in the searching for the optimum. In engineering 

optimization problem, gradient-free methods are popular because the objective 

function is usually unknown, and the derivatives are unavailable or inaccurate 

approximations. In MDO problems, Nelder-Mead method is a popular technique 

[90, 91]. It is a direct search method (based on function comparison) used to 

minimize a multidimensional objective function using the concept of simplex, 

which is a special polytope of 𝑛 + 1 vertices in 𝑛 dimensions of the objective 

function. Another important family of derivative-free optimization method are 

patter search approaches. It is based on the theory of positive bases, that is attempt 

the optimization to find the best solution with lower error, in a multidimensional 

space of possibilities [92]. 

Moreover, the main issue in performing MDO is the associated computational 

effort. Usually, accurate approximation of system behaviour requires high-fidelity 

models capable to model effectively real phenomena. However, those 

representation are usually computationally expensive. Modelling with high fidelity 

models all the discipline that characterize a system can lead to computational costs 

impossible to bear especially in the preliminary design phases.  

Multifidelity methods are a possible solution to the high computational cost 

associated with solving MDO problems. This class of approaches allows to speed 

up the search for the optimum by effectively combining information from models 

of the same discipline but with different degrees of accuracy and associated 

computational cost. More details are given in the paragraph 2.6.  
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2.6. Reduce the Computational Cost in MDO 

 
As previously mentioned in paragraph 2.1, two elements making up the MDO 

methodology are the mathematical modelling of a system and the approximation 

concepts. Consequently, in the MDO approach it is necessary to define the system 

by means of a mathematical model capable of grasping its salient phenomena. 

However, high accuracy models are often associated with high computational costs. 

From this aspect derives the need to introduce model approximations in order to 

reduce the computational burden compared to a less accurate approximation.  

Several approximation techniques are available in the literature. In this context, 

reference is made to the approximations proposed by Eldred et al. in [25]. 

According to Eldred et al. [25], the approximation of an accurate and expensive 

model can be made by defining a surrogate model. Surrogate models are classified 

in three main categories, according to the process by which they are obtained. Data-

fit models are usually obtained by interpolation or regression of a set of data 

generated from the original model. Hierarchy surrogate models are usually obtained 

from the high-fidelity model by coarser discretization, relaxed tolerances, omitted 

physics or reduced element order. Projection-based surrogate models are obtained 

applying projection of the original high-dimensional system down to a small 

number of generalized coordinates.  

In MDO problems, surrogate models can be leveraged instead of high-fidelity in 

order to reduce the computational burden associated. However, the reduced 

accuracy associated with surrogate models can lead to unsuitable optimization and 

design errors. A possibility to improve the data accuracy obtained by a surrogate 

model is the implementation of multifidelity methods.  

Multifidelity methods allows to build a surrogate model combining information 

from multiple models, defined a fidelity and accuracy hierarchy between them. The 

information are obtained from the higher fidelity model and from approximated 

model obtained by the approaches described above. The advantage is the 

enrichment of the low-fidelity model by using a small and strategic number of high-

fidelity data, that are expensive to obtain. As a consequence, the computational 

burden associated with the multifidelity-based surrogate is lower than the 

implementation of the high-fidelity model, but the accuracy is improved by 

leveraging the small amount of high-fidelity data. In Chapter 4, multifidelity 

methods and multifidelity optimization are presented.  
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3. Bayesian Optimization  

 
Optimization problems are common in aeronautical and space engineering. 

Examples include the design of vehicle, systems, and structures, which require the 

evaluation of disciplinary models and objective functions that are frequently treated 

as black-box functions [110]. Basically, in black-box function the process or 

formulation between input and output is unknown. This is very common in the 

problems mentioned before because this relationship is difficult to define.   

Typically, the objective function is evaluated at a given point by the algorithm till 

a stopping criterion is met. However, in the contest mentioned before the objective 

function is generally computationally expensive, so traditional methods for black-

box optimization are poorly suited when a considerable number of evaluations is 

required.  

Surrogate based optimization (SBO) synthetizes the available information into a 

surrogate model in order to decrease the calls of the expensive function, satisfying 

the necessary reduction in time, resources and associated costs [111, 112, 113, 114, 

115, 116]. The efficiency of SBO can be improved in a multi-fidelity contest, where 

are available computationally cheaper but potentially biased approximations to the 

function that can be used to assist the search of optimal points [117, 118, 119, 120, 

121, 122]. The use of Multi-fidelity active learning approaches for the optimization 

of black-box functions has been popularly studied in the Bayesian Optimization 

(BO) setting [123, 124, 125].  

Bayesian optimization (BO) is a class of machine learning approaches for the 

efficient optimization of expensive black-box functions [129, 130]. The 

optimization problem can be formulated concisely as follows:  

 

min
𝒙∈𝒜

𝑓(𝒙) (5) 

 

Where 𝑥 ∈ ℝ𝑑 is the input, 𝒜 is a feasible set in which is easy to assess membership 

and 𝑓(𝑥) ∈ ℝ is the objective function.  

Typically, a strong assumption is that the objective function has a known 

mathematical representation, is convex or is at least cheap to evaluate. However as 

mentioned before, in real applications evaluating the objective function is expensive 

or even impossible, and the derivatives and convexity properties are unknown.  

Bayesian optimization is a powerful strategy for minimize the objective functions 

that are expensive to evaluate or where is not available a closed-form expression 

but where observations (often noisy) of this function at sampled values are given. 

It is particularly effective when these observations are costly, the access to 

derivatives prohibitive or when the problem considered is non-convex. 
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Two components are the fundaments of BO setting:  

 

1.  Bayesian statistical model to approximate the objective function. 

Typically, the statistic models are Gaussian Processes (GP). Indeed, GP are 

capable to model complex functions and estimate uncertainty in a 

probabilistic framework [126, 117, 118, 127, 128]. The efficiency of BO 

stems in the ability to incorporate prior belief about the problem to help 

direct the sampling and to trade-off exploration and exploitation of the 

search space. 

2. Acquisition function to decide where to sample next, guiding the 

optimization process. The evaluation of the next candidate in the iteration 

must be a trade-off between a global exploration and a local exploitation of 

the surrogate.  

 

Bayesian optimization is founded on the Bayes’ theorem, which states that the 

posterior probability of a model 𝑀 given evidence (data or observations) 𝐸 is 

proportional to the likelihood of 𝐸 given 𝑀 multiplied by the prior probability of 

𝑀 [129]: 

 

𝑃(𝑀|𝐸) ∝ 𝑃(𝐸|𝑀)𝑃(𝑀) (6) 

 

In BO the prior represents our belief about the space of possible objective functions. 

It is reasonable to assume that a prior knowledge about some properties of the 

function, such as smoothness, exists and this make some possible objective 

functions more plausible than others.  

Let us define 𝒙𝒊 as the i-th sample and 𝑓(𝒙𝒊) the observation of the objective 

function at 𝒙𝒊. The posterior distribution can be obtained combining the accumulate 

observations 𝒟1:𝑡 = {𝑥1:𝑡, 𝑓(𝑥1:𝑡)} and the likelihood function 𝑃(𝒟1:𝑡|𝑓) [129]: 

 

𝑃(𝑓|𝒟1:𝑡) ∝ 𝑃(𝒟1:𝑡|𝑓)𝑃(𝑓) 

 

 

(7) 

To sample efficiently, BO uses an acquisition function in order to define the next 

candidate 𝑥𝑡+1 ∈ 𝒜 to sample. The decision is given with a trade-off between 

sampling where the uncertainty of the objective function is greater (exploration) 

and sampling where the objective function is expected to be minimum 

(exploitation) 
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In order to describe effectively the Bayesian Optimization process is needed to 

define fundamental conditions.  

In the following is presented the description given by Brochu et al. [129]. The 

authors proposed the form of the problem we are concerned with is maximization, 

rather than minimization, of the objective function (what has been described in the 

previous is valid as it is sufficient to change the sign of the objective function). 

 Considering a real-valued function, the maximization 𝑥∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑓(𝑥) can be 

regarded as the minimization of the transformed function [129]:  

 

𝑔(𝑥) = −𝑓(𝑥) 

 

(8) 

Another important assumption is that the objective function is Lipschitz- 

continuous: for all 𝑥1, 𝑥2 ∈ 𝒜 exists some constant 𝐶 (typically unknown) such 

that:  

 

‖𝑓(𝑥1) − 𝑓(𝑥2)‖ ≤ 𝐶‖𝑥1 − 𝑥2‖ 

 

(9) 

We can narrow the problem by defining it as of global optimization rather than local 

optimization. In local optimization problems, the maximization can be obtained 

searching a point 𝑥∗ such that:  

 

𝑓(𝑥∗) ≥ 𝑓(𝑥), ∀𝑥 𝑠. 𝑡. ‖𝑥∗ − 𝑥‖ < 𝜖  

 

(10) 

Then any local maximum is also a global maximum if −𝑓(𝑥) is convex.  

However, as mentioned before, in our optimization problems cannot be assumed 

that the function is convex. So, in engineering optimization problems, the objective 

function is treated as a black-box function: expression of the objective or the 

derivatives are not available or difficult to estimate with good approximation.  

Bayesian optimization uses the prior and the evidence to define a posterior 

distribution over the space of functions. So even when the objective function is 

unknown, informative priors can describe characteristics such as smoothness or the 

most likely locations of the maximum.  
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The optimization process follows the principle of maximum expected utility or 

minimum expected risk.  The choice of the next sample requires a utility function 

and a way of optimizing the expectation of this utility with respect to the posterior 

distribution of the objective function. The utility is referred in literature as 

acquisition function.  

In Tab.1 is shown the Bayesian optimization procedure. The two main components 

mentioned before can be found: the posterior distribution over the objective 

function and the acquisition function. By accumulating information 𝒟1:𝑡 =

{𝑥1:𝑡, 𝑦1:𝑡}, a prior distribution 𝑃(𝑓) is combined with the likelihood function 

𝑃(𝒟1:𝑡|𝑓) to produce the posterior distribution 𝑃(𝑓|𝒟1:𝑡) ∝ 𝑃(𝒟1:𝑡|𝑓)𝑃(𝑓). In the 

next paragraph will be presented how Gaussian Process priors can be placed on 𝑓.  

 

 

Bayesian Optimization Algorithm 

1: for 𝑡 = 1,2, … do 

2:   Find 𝑥𝑡 by optimizing the acquisition function over the GP: 𝑥𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑢(𝑥|𝒟1:𝑡−1). 

3:   Sample the objective function: 𝑦𝑡 = 𝑓(𝑥𝑡) + 𝜖𝑡. 

4:   Augment the data 𝒟1:𝑡 = {𝒟1:𝑡−1, (𝑥𝑡, 𝑦𝑡)} and update GP.  

5: end for  

 

Table 1: Bayesian optimization algorithm. 

 

Following the discussion proposed by Brochu et al. [129], Fig.2 illustrates a typical 

run of Bayesian optimization on 1D problem. In this example the formulation of 

the optimization problem is to maximize (instead of minimizing) the objective 

function. The optimization process starts with two samples and at each iteration the 

acquisition function is maximized to decide the next sample to query. Where an 

higher value of the objective function is predicted by the Gaussian process, that 

means exploitation toward the optimum, and where the prediction uncertainty is 

high, that means exploration of the objective domain, the acquisition function is 

high in value. Computed the maximum of the acquisition function, the objective is 

sampled. Then the Gaussian process can be updated, and the process repeated.  
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Figure 2: An example of using Bayesian optimization on a 1D design problem.  
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3.1. Gaussian Processes Priors  
 

A Bayesian method depends on prior distribution by definition. The convergence 

of the optimization method to the optimum occurs if the acquisition function is 

continuous and approximately minimizes the risk (defined as the expected deviation 

from the global minimum at a fixed sample) and conditional variance converges to 

zero (or to an appropriate positive minimum value in the presence of noise) if and 

only if the distance to the nearest observation is zero [131, 132].  

As defined in [132], the framework for Gaussian process prior must meet the 

following conditions: (i) the objective function is continuous; (ii) the prior is 

homogeneous; (iii) the optimization is independent of the 𝑚𝑡ℎ differences. 

A Gaussian process is an extension of the multivariate Gaussian distribution to 

infinite dimension stochastic process for which any finite combination of 

dimensions will be a Gaussian distribution [129].  

As a Gaussian distribution is a distribution over a random variable, completely 

specified by its mean and covariance, the GP is a distribution over functions, 

completely specified by its mean function 𝑚 and covariance function 𝑘:  

 

𝑓(𝑥)~𝒢𝒫(𝑚(𝑥), 𝑘(𝑥, 𝑥′)) 

 

(11) 

Typically, is assumed that the prior mean is zero function 𝑚(𝑥) = 0. Alternatives 

prior means can be found in [133, 134]. A very popular choice for defining the 

covariance function 𝑘 (also referred as Kernel function) is the squared exponential 

function:  

 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
1

2
‖𝑥𝑖 − 𝑥𝑗‖

2
)  

 

(12) 

This function approaches to 1 as values get close together and 0 as they get further 

apart. As a consequence, two points that are close together is expected to have a 

large influence each other, whereas distant points have almost none [129]. Other 

expression of Kernel functions ca be found in the next paragraph.  

According to what was said, in order to sample from the prior is needed to choose 

{𝑥1:𝑡} and sample the values of the function at these indices to produce the pairs 

{𝑥1:𝑡, 𝑓1:𝑡}, where 𝑓1:𝑡 = 𝑓(𝑥1:𝑡).  
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The function values are drawn according to a multivariate normal distribution 

𝒩(0,𝑲), where the kernel matrix is given by:  

 

𝑲 = [
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑡)

⋮ ⋱ ⋮
𝑘(𝑥𝑡, 𝑥1) ⋯ 𝑘(𝑥𝑡, 𝑥𝑡)

] 

 

(13) 

The diagonal values are 1 because each point is perfectly correlated with itself (only 

possible in noise-free environment).  

In the classical engineering problems, data from an external model are used to fit 

the GP and get the posterior. Considering the observations {𝑥1:𝑡, 𝑓1:𝑡} known, we 

want to use BO to decide the next candidate 𝑥𝑡+1. The value of the objective 

function at this arbitrary point is 𝑓𝑡+1 = 𝑓(𝑥𝑡+1).  

By the properties of Gaussian processes, 𝑓1:𝑡 and 𝑓𝑡+1 are jointly Gaussian: 

 

 

[
𝑓1:𝑡
𝑓𝑡+1

] ~𝒩 (0, [
𝑲 𝒌
𝒌𝑇 𝑘(𝑥𝑡+1, 𝑥𝑡+1)

]) 

 

(14) 

Where:  

 

𝒌 = [𝑘(𝑥𝑡+1, 𝑥1) 𝑘(𝑥𝑡+1, 𝑥2) ⋯ 𝑘(𝑥𝑡+1, 𝑥𝑡)]  

 

(15) 

Using the Sherman-Morrison-Woodbury formula [131], can be easily derived an 

expression for the predictive distribution:  

 

𝑃(𝑓𝑡+1|𝒟1:𝑡, 𝑥𝑡+1) = 𝒩(𝜇𝑡(𝑥𝑡+1), 𝜎𝑡
2(𝑥𝑡+1)) 

 

(16) 

Where  

 

𝜇𝑡(𝑥𝑡+1) = 𝒌
𝑻𝑲−𝟏𝑓1:𝑡 (17) 
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𝜎𝑡
2(𝑥𝑡+1) = 𝑘(𝑥𝑡+1, 𝑥𝑡+1) − 𝒌

𝑻𝑲−𝟏𝒌 (18) 

 

𝜇𝑡(∙) and 𝜎𝑡
2(∙) are the sufficient statistics of the predictive posterior distribution 

𝑃(𝑓𝑡+1|𝒟1:𝑡, 𝑥𝑡+1). 

Having regard for the discussion proposed by Brochu et al. [129], Fig. 3 illustrates 

a mono-dimensional Gaussian process considering three observations. The black 

line represents the Gaussian process surrogate mean prediction of the objective 

function. The area filled with blue colour represent the GP mean plus and minus the 

GP variance 𝜇(𝑥𝑖) ± 𝜎(𝑥𝑖), 𝑖 = 1, 2, 3. The black dots along the prediction indicate 

the values of the objective function (calculated on specific samples) known a priori. 

As expected, in the neighbourhood of this points, the GP variance is sensibly low 

because the knowledge about the objective function is maximum. The 

superimposed Gaussians correspond to the GP mean and standard deviation 𝜇𝑡(xi) 

and 𝜎𝑡
2(xi) 𝑖 = 1, 2, 3 of the prediction at the points considered.  

 

 

 

Figure 3: 1D GP with three observations 
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3.1.1. Kernel Functions  
 
In machine learning, a kernel is usually defined in the contest of the kernel trick. 

Kernel trick is a method of using a linear classifier to solve a non-linear problem. 

Basically, this approach transforms linearly inseparable data randomly distributed 

to linearly separable ones. The kernel function is what is applied on each data 

instance to map the original non-linear observations into a higher-dimensional 

space in which they become separable.  

The choice of kernel function is important as it determines the smoothness 

properties of samples drawn from it [129]. In machine learning literature can be 

found numerous kernel formulations (see, e.g., [135, 138] for an overview). 

However, the squared exponential and the Matérn kernel are the most common 

covariance function for Gaussian Processes.  

The squared exponential function presented in the Gaussian process dissertation in 

Eq. (12), must be generalized by adding hyperparameters. In an isotropic model, it 

can be done with a single hyperparameter 𝜃, which controls the width of the kernel:  

 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (−
1

2𝜃2
‖𝑥𝑖 − 𝑥𝑗‖

2
 )   

 

(19) 

Regarding the anisotropic models, a very common choice is the squared exponential 

kernel with a vector of automatic relevance determination (ARD) hyperparameters 

𝜃 [135]:  

 

𝑘(𝑥𝑖, 𝑥𝑗) = exp(−
1

2
(𝑥𝑖 − 𝑥𝑗)

𝑇
𝑑𝑖𝑎𝑔(𝜃)−2(𝑥 − 𝑥′)) 

 

(20) 

Where 𝑑𝑖𝑎𝑔(𝜃) is a diagonal matrix with 𝑑 entries 𝜃 along the diagonal. It can be 

observed that if a particular 𝜃𝑙 has a small value, the kernel becomes indipendent 

of l-th input, effectively removing it automatically. As a consequence, irrelevant 

dimensions are discarded.  

Considering the analysis conducted by Brochu et al. in [129], Fig.4 shows examples 

of different hyperparameter values on the squared exponential function and what 

functions sampled from those values look like. Typically, the hyperparameter 

values are learned by “seeding" with a few random samples and maximizing the 

log-likelihood of the evidence given 𝜃 [111, 139, 140, 135]. This can often be aided 

with an informative hyperprior on the hyperparameters, often a log normal prior 

[141, 142].  
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Another important kernel for Bayesian optimization is the Matérn kernel [136, 137], 

where a smoothness parameter 𝜍 has been introduced to allow greater flexibility in 

modelling functions:  

 

𝑘(𝑥𝑖 , 𝑥𝑗) =
1

2𝜍−1Γ(𝜍)
(2√𝜍‖𝑥𝑖 − 𝑥𝑗‖)

𝜍
𝐻𝜍(2√𝜍‖𝑥𝑖 − 𝑥𝑗‖) 

 

(21) 

Where Γ(∙) and 𝐻𝜍(∙) are the Gamma function and the Bessel function of order 𝜍. 

If 𝜍 → ∞ the Matérn kernel tends to the squared exponential kernel and if 𝜍 = 0.5 

it reduces to the unsquared exponential kernel.  

 

 

Figure 4: The effect of changing the kernel hyperparameters. Specifically, the 

exponential kernel is considered. The hyperparameter 𝜃 is considered equal to 0.1, 

0.2 and 0.5. The left graphs show the function 𝑘(0, 𝑥). The right graphs show three 

one-dimensional functions sampled from a Gaussian process with the 

hyperparameter value.  
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3.1.2.  Noise 
 
The model we have used so far assumes that we have perfectly noise-free 

observations. In real life, this is rarely possible, and instead of observing 𝑓(𝑥), we 

can often only observe a noisy transformation of 𝑓(𝑥) [129]. The simplest 

transformation can be considered when 𝑓(𝑥) is corrupted with Gaussian noise 

𝜖~𝒩(0, 𝜎𝑛𝑜𝑖𝑠𝑒
2 ) [135]. If is additive, the noise distribution can be easily added to 

the Gaussian distribution 𝒩(0,𝑲) and so can be defined:  

 

 𝑦𝑖 = 𝑓(𝑥𝑖) + 𝜖𝑖 (22) 

 

Since the mean is zero, the kernel can be replaced by the following expression for 

the noisy observations of 𝑓(∙):  

 

𝐾 = [
𝑘(𝑥1, 𝑥1) ⋯ 𝑘(𝑥1, 𝑥𝑡)

⋮ ⋱ ⋮
𝑘(𝑥𝑡, 𝑥1) ⋯ 𝑘(𝑥𝑡, 𝑥𝑡)

] + 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝐼 (23) 

 

This yields the predictive distribution:  

 

𝑃(𝑦𝑡+1|𝒟1:𝑡, 𝑥𝑡+1) = 𝒩(𝜇𝑡(𝑥𝑡+1, 𝜎𝑡
2(𝑥𝑡+1) + 𝜎𝑛𝑜𝑖𝑠𝑒

2 ) (24) 

 

And the sufficient statistics:  

 

𝜇𝑡(𝑥𝑡+1) = 𝒌
𝑇[𝑲 + 𝜎𝑛𝑜𝑖𝑠𝑒

2 𝐼]−1𝑦1:𝑡 

 

𝜎𝑡
2(𝑥𝑡+1) = 𝑘(𝑥𝑡+1, 𝑥𝑡+1) − 𝒌

𝑇[𝑲 + 𝜎𝑛𝑜𝑖𝑠𝑒
2 𝐼]−1𝒌 
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In a noisy environment change the definition of EI acquisition functions. Instead 

of using the best observation, we use the distribution at the sample points, and 

define as the incumbent, the point with the highest expected value, 

 

 

𝜇+ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖∈𝑥1:𝑡𝜇(𝑥𝑖) 

 

This avoids the problem of attempting to maximize expected improvement over 

an unreliable sample. 

 

 

3.1.3.  Kriging  
 
This paragraph briefly discusses the synergy between Kriging and Bayesian 

optimization. A more detailed analysis is given in [137, 138]. In many modelling 

techniques in statistics and machine learning, it is assumed that samples drawn from 

a process with independent, identically distributed residuals, typically, 

𝜖~𝒩(0, 𝜎𝑛𝑜𝑖𝑠𝑒
2 ): 

𝑦(𝑥) = 𝑓(𝑥) + 𝜖 

 

However, in kriging the assumption is that the errors are not independent but are 

spatially correlated: where errors are high is expected that nearby errors will also 

be high. Kriging is a combination of a linear regression model and a stochastic 

model fitted to the residual errors of the linear model. The residual is modelled with 

a zero-mean Gaussian process, so 𝜖 is actually parameterized by 

𝑥: 𝜖(𝑥)~𝒩(0, 𝜎2(𝑥)).  

The regression model depends on the type of kriging. In simple kriging, 𝑓 is 

modelled with the zero-function making it a zero-mean GP model. In ordinary 

kriging, 𝑓 is modelled with a constant but unknown function. In universal kriging 

models, 𝑓 is modelled with a polynomial of degree k with bases 𝑚 and coefficients 

𝛽, so that  

 

𝑦(𝑥) =  ∑𝛽𝑗𝑚𝑗(𝑥) + 𝜖(𝑥)

𝑘

𝑗=1
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Is clear that kriging and Bayesian optimization are related. But some key 

differences can be highlighted. In Bayesian optimization, models are usually fit 

through maximum likelihood. In kriging, models are usually fit using a variogram, 

a measure of the average dissimilarity between samples versus their separation 

distance.  

Fitting is done using least squares or similar numerical methods, or interactively, 

by an expert visually inspecting the variogram plot with specially designed 

software. Kriging also often restricts the prediction model to use only a small 

number of neighbours, making it fit locally while ignoring global information. 

Bayesian optimization normally uses all the data in order to learn a global model. 

 

 

 

3.2. Acquisition Functions for Bayesian Optimization  
 
Defined a prior model that represent our belief about the black-box function 𝑓 given 

𝒟1:𝑡. The acquisition function guides the sampling in the search for the optimum.  

Typically, where the acquisition function has higher values corresponds to 

potentially lower values of the objective function, whether because the prediction 

is high, the uncertainty is great, or both. Maximizing the acquisition function allows 

to select the next candidate at which to evaluate the objective function.   

In the early literature [143], maximizing the probability of improvement over the 

incumbent 𝑓(𝑥+) was the best practice, where 𝑥+ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝑖∈𝑥1:𝑡𝑓(𝑥𝑖) so that:  

 

𝑃𝐼(𝑥) = 𝑃(𝑓(𝑥) ≥ 𝑓(𝑥+)) 
 

 

                =  Φ(
𝜇(𝑥) − 𝑓(𝑥+)

𝜎(𝑥)
) (25) 

 

Where Φ(∙) is the normal cumulative distribution function, called also maximum 

probability improvement (MPI) or P-algorithm.  

A problem with the formulation in Eq. (25) is that is purely exploitation. In fact, 

points that have a high probability of being infinitesimally greater than 𝑓(𝑥+) will 

be drawn over points that offer larger gains but less certainty. In order to also 

consider exploration, a trade-off parameter 𝜉 ≥ 0 has been introduced in the 

formulation:  
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𝑃𝐼(𝑥) = 𝑃(𝑓(𝑥) ≥ 𝑓(𝑥+) + 𝜉) 
 

 

                =  Φ (
𝜇(𝑥) − 𝑓(𝑥+) − 𝜉

𝜎(𝑥)
) (26) 

 

The choice of 𝜉 is left to the user. In [143] is recommended a schedule for the trade-

off parameter so that it started fairly high early in the optimization to drive 

exploration and decrease toward zero as the algorithm continued.  

The impact of the trade-off parameter in different domains have been studied in 

several publications (see, e.g., [144, 145, 141]). A significant property of this 

formulation for perpetual and preference models is that while maximizing 𝑃𝐼(∙) is 

still greedy, it selects the point most likely to offer an improvement of at least 𝜉 

[129].  

An alternative acquisition function would be one that considers not only the 

probability of improvement, but the magnitude of the improvement a point can 

potentially yield. In particular, we want to minimize the expected deviation from 

the true maximum 𝑓(𝑥∗), when choosing a new trial point [129]:  

                             

𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝔼(‖𝑓𝑡+1(𝑥) − 𝑓(𝑥
∗)‖ |𝒟1:𝑡) 

 

 

                     = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥∫‖𝑓𝑡+1(𝑥) − 𝑓(𝑥
∗)‖𝑃(𝑓𝑡+1|𝒟1:𝑡)𝑑𝑓𝑡+1 (27) 

 

Considering this formulation, the decision process considers only one-step ahead 

choices. In order to plan two steps ahead, recursion can be applied:  

 

 

𝑥𝑡+1 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝔼(min
𝑥′
𝔼‖𝑓𝑡+2(𝑥

′) − 𝑓(𝑥∗)‖ |𝒟𝑡+1) |𝒟1:𝑡)   

 

(28) 
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However, applying this procedure of dynamic programming for many steps ahead 

can be computationally expensive.  

Mockus et al. [146] proposed the alternative of maximizing the expected 

improvement with respect to 𝑓(𝑥+). The definition of the expected improvement 

function is [146]:  

 

𝐼(𝑥) = max {0, 𝑓𝑡+1(𝑥) − 𝑓(𝑥
+)} 

(29) 

  

Where 𝐼(𝑥) is positive when the prediction is higher than the best value known thus 

far. Otherwise, 𝐼(𝑥) is set to zero. By maximizing the expected improvement, the 

new query point can be found:  

 

𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑥𝔼(max{0, 𝑓𝑡+1(𝑥) − 𝑓(𝑥
+)} |𝒟𝑡) 

(38) 

  

The likelihood of improvement 𝐼 on a normal posterior distribution characterized 

by 𝜇(𝑥), 𝜎2(𝑥) can be computed from the normal density function:  

 

1

√2𝜋𝜎(𝑥)
exp (−

(𝜇(𝑥) − 𝑓(𝑥+) − 𝐼)2

2𝜎2(𝑥)
) 

 

The expected improvement is the integral over this function: 

  

 

𝔼(𝐼) = ∫ 𝐼
𝐼=∞

𝐼=0

1

√2𝜋𝜎(𝑥)
exp (−

(𝜇(𝑥) − 𝑓(𝑥+) − 𝐼)2

2𝜎2(𝑥)
) 𝑑𝐼 

 

 

= 𝜎(𝑥) [
𝜇(𝑥) − 𝑓(𝑥+)

𝜎(𝑥)
Φ(

𝜇(𝑥) − 𝑓(𝑥+)

𝜎(𝑥)
) + 𝜙 (

𝜇(𝑥) − 𝑓(𝑥+)

𝜎(𝑥)
)] 

 

(30) 
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The expected improvement can be evaluated analytically [111, 146], yelding:  

 

𝐸𝐼(𝑥) =  {
(𝜇(𝑥) − 𝑓(𝑥+))Φ(𝑍) + 𝜎(𝑥)𝜙(𝑍)      𝑖𝑓 𝜎(𝑥) > 0

0                                                                   𝑖𝑓 𝜎(𝑥) = 0
 

(31) 

  

Defining:  

𝑍 =  
𝜇(𝑥) − 𝑓(𝑥+)

𝜎(𝑥)
 

 

Where 𝜙(∙) and Φ(∙) denote the PDF and CDF of the standard normal distribution, 

respectively. 

Following the discussion proposed by Brochu et al. [129], In Fig. 5 a typical 

expected improvement scenario is illustrated. The figure is the same presented in 

Fig. 3 previously but additionally showing the region of probable improvement.  In 

this example, the maximum observation is considered at x+. The blue filled area, 

representing the GP mean plus and minus the GP variance 𝜇(𝑥𝑖) ± 𝜎(𝑥𝑖), 𝑖 =

1, 2, 3, can be used as a measure of the improvement, I(x). As expected, the model 

predicts almost no possibility of improvement by observing at x1or x2, while 

sampling at x3 is more likely to improve on f(x+). 

 

 

Figure 5: typical expected improvement scenario. 
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4. Multifidelity Methods Background and Overview 

 
The term fidelity referring to a physical model describes how the model itself is 

able to estimate reality more or less accurately. Nowadays, in the preliminary 

design phase of complex systems the use of basic physical models or empirical tools 

is preferred, but these tools in the face of a fast computation, are not able to predict 

important physical phenomena involved. The need to describe reality more 

faithfully leads to the desire to use high fidelity models in the preliminary design 

phases. In fact, complex phenomena would be better described, redesign costs due 

to lack of performance satisfaction or because the system behaves in an unexpected 

way would be reduced if the complex system were modelled more accurately. 

However, the problem of using high fidelity models is related to the computational 

cost involved. High-fidelity models can consist of physical experiments or 

numerical simulations, both of which are expensive and time consuming. In the 

early stages of design, the evaluation of numerous configurations is important and 

therefore this is usually only possible with the use of low fidelity models. Multi 

fidelity frameworks offer the opportunity to overcome the problems exposed above. 

By effectively combining information from low-fidelity and high-fidelity models, 

multi-fidelity methods aim to accelerate design exploration providing accurate 

information with respect to physical reality.  

Models are used to support many aspects of computational science and engineering. 

One primary purpose of a model is to characterize the input-output relationship of 

the system of interest. The input describes the system properties and environmental 

conditions and the output describes quantity of interest to the task at hand. Usually 

in engineering applications evaluating a model means performing numerical 

simulation that implements the model, computes a solution, and thus maps an input 

onto an approximation of the output [13].  

Mathematically, a model is a function 𝑓: 𝑍 → 𝑌 that maps an input 𝑧 ∈ 𝑍 to an 

output 𝑦 ∶ 𝑌, where 𝑍 ⊆ ℝ𝑑 is the domain of the inputs of the model, with 

dimension 𝑑 ∈  ℕ and  𝑌 ⊆ ℝ𝑑′ is the codomain of the model, with dimension 𝑑′ ∈

 ℕ. Model evaluations incur computational costs 𝑐 ∈ ℝ+ that tipically increase with 

the accuracy of the approximation of the output, where ℝ+ = {𝑥 ∈ ℝ ∶ 𝑥 > 0}.  

In many applications, different models with different levels of accuracy and 

computational cost are available. We define low-fidelity model 𝑓𝑙𝑜: 𝑍 → 𝑌 as a 

model that estimates the same output with lower accuracy and a cost 𝑐𝑙𝑜 ∈ ℝ+. The 

cost 𝑐ℎ𝑖 ∈ ℝ+of the high-fidelity model is typically higher than the low fidelity one 

but also the accuracy of information is higher.  

An important class of optimization methods are surrogate-based optimization 

(SBO) in which the search process is simulation-based and at each new sampling 

point, rather than invoke the high-fidelity model, a less computationally expensive 

surrogate model is query.  
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According to Eldred et al. [25], surrogate models leveraged in SBO can be obtained 

in three ways: data-fit models, hierarchical models, and projection-based models. 

Surrogate data fit is a non-physics-based approximation of a set of data generated 

by the original model, using interpolation or regression techniques. The model 

hierarchy surrogate is physic-based but is derived as a lower fidelity model (e.g. 

coarser discretization, reduced element order, relaxed solver tolerances, omitted 

physics etc.) and used in place of the high-fidelity model. The projection-based 

surrogate is derived directly from the high-fidelity model using a reduced basis and 

projection of the original high-dimensional system down to a small number of 

generalized coordinates. 

The classification proposed by Eldred et al. is significant in SBO based on 

multifidelity surrogate. In this case, the surrogate model is built combining 

information from multiple sources, known a priori a fidelity hierarchy of the 

models. These multiple information sources can be obtained from the High-fidelity 

model, that is our maximum accuracy believe, by data-fit models, projection-based 

models, and hierarchical models.  

Peherstorfer et al. [13] reviewed MF approaches within the context of uncertainty 

quantification and defined three categories of methods approaching the 

combination between data from multiple sources: “adaptation”, “fusion” and 

“filtering”.  

The adaptation strategy enriches the low fidelity model with information from the 

high-fidelity model while the computation is done. One example is global 

optimization with efficient global optimization (EGO) presented in [34, 35, 101, 

102, 103], where the adaptation process is applied to a kriging model in each 

iteration of the optimization. A second example is the correction of low fidelity 

model outputs with updates coming from the high-fidelity model [36, 37] or with 

Gaussian process models to predict better the output of the high-fidelity model [38, 

104].  

The fusion strategy evaluates low and high-fidelity models and then combine 

information from all outputs. An example is Cokriging multi-fidelity method where 

a surrogate model is derived from multiple high and low fidelity information 

sources [39, 40, 41, 105]. Another example is the control variate framework [42, 

43, 44, 106, 107], where the variance of Monte Carlo estimators is reduced by the 

correlation between high and low fidelity models.   

The last model management strategy is based on filtering, where the high-fidelity 

model is invoked following the evaluation of a low-fidelity filter. One example of 

MF filtering strategy is the two stage MCMC algorithms [45, 46, 108]. Another 

example is the exploration of the stochastic space with low-fidelity model to derive 

sampling points at which the high-fidelity model is then evaluated [47]. A third 

example is the MF importance sampling, where the high-fidelity model sampling is 

guided by an importance sampling biasing distribution constructed with a low-

fidelity model [48].   
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Beran et al. [24] considered MF analysis or design of a system when different 

mathematical descriptions (i.e. different physics represented by different governing 

equations, boundary conditions or parametric attributions) are used in cooperation 

during design or analysis procedure. Therefore, MF methods are considered a class 

of approaches that manipulate a set of information sources to accelerate 

computational task. The information sources quantify system response using both 

computational and non-computational approaches. 

Consequently, the authors noted that multi-information-source (MIS) (i.e. 

synergistic use of solutions of the same equations with different meshes considered 

or cooperative use of information source with surrogate extracted numerically from 

the information source [26]) methods are similar in form to MF when the relevant 

responses are high-level quantities of interest. Multi-information-source 

approaches optimize expensive black-box objective functions while optionally 

accessing cheaper biased noisy approximations referred as information sources 

[109]. The information sources quantify system response using both computational 

and non-computational approaches. 

The categorization of potential MIS adaptations proposed is: “governing 

equations”, “coupling”, “geometry”, “discretization”, “convergence” and “data”. 

The governing equations are derived from modelling assumptions and refinements: 

higher or lower fidelity models can be considered. More or less coupling between 

physics disciplines and more or fewer details in geometry description of the 

problem can be also included. Numerical adaptations are resumed in finer or coarser 

discretization and tighter or looser tolerances in convergence. The last category is 

referred to use more or less data from a particular information source or making the 

decision to use more or fewer information sources.  

Beran et al categorize various MF approaches in: “by quantity of interest (BQ) “, 

“by intermediate variables (BIV)”, “by system element (BSE)”, “by physical zone 

(BPZ)” and “by machine learned calibration (MLC)”.  

In BQ approaches the quantities of interest are sampled in different points of the 

parameter space and computed using models of different fidelity for one or more 

system elements. In [27, 28] can be found both design oriented and data centric 

examples. BIV approaches use a data-driven surrogate-refinement process (similar 

to BQ) but sample intermediate variables across the information sources. In [29, 

30] are shown analysis oriented and data centric examples.  

In BSE fidelity across system elements sharing a common discipline can be 

changed and are computed across the information sources. Analysis oriented and 

physics-centric example are in [31].  

BPZ approaches model part of the physical domain across the information sources, 

so the highest fidelity model may not be solved over the entire domain relevant to 

the calculation. An example can be found in [32].  
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In MLC approaches states across the information sources are correlated. In [33] 

there are examples design oriented and physics centric.  

In this thesis we will refer to multi-fidelity methods in all cases in which two or 

more sources of information are categorized according to hierarchical levels. We 

consider two key properties of multi-fidelity methods (in accordance with what is 

reported by Peherstorfer et al. [13]):  

 

1. Low-fidelity models 𝑓𝑙𝑜
(1)
 , … , 𝑓𝑙𝑜

(𝑘)
 that provide useful approximations of the 

high-fidelity model 𝑓ℎ𝑖. An important element of this property is the use of 

explicit low-fidelity models that approximate the same output quantity as 

the high-fidelity model.  

2. A model management strategy that distributes work among the models 

while providing theoretical guarantees that establish the accuracy and/or 

convergence of the outer-loop result.  
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4.1. Multifidelity Optimization  

 
Countless heuristic techniques have been used in literature to optimize a high-

fidelity function using information from low-fidelity functions. In this thesis the 

multi-fidelity optimization approaches (MFO) will be considered.  

Multi-fidelity optimization approaches generally aim to identify the global 

optimum of the high-fidelity function, but formal mathematical proofs that this will 

happen are not always available. These approaches are referred as heuristic 

methods, ranging from problem-specific formulations to computational strategies 

that calculate a probability of finding an improved high-fidelity function value.  

In contrast, non-heuristic methods are defined as those in which, given a set of 

requirements for the initial design and behaviour of the high-fidelity and low-

fidelity functions, there is a mathematical guarantee that the multi-fidelity method 

will achieve the optimum of the high-fidelity function. However, the non-heuristic 

multi-fidelity methods could take significantly longer than the single-level fidelity 

function given the acquisition of expensive high-fidelity data.  

Two main approaches are considered in the discussion of MFO: global and local. 

Global optimization methods search the best design across the feasibility domain, 

while local optimization methods try to find the closest and best performing design 

compared to all other nearby designs. The benefits of global methods lie in the fact 

that it is not necessary to estimate the gradient of the high-fidelity function. 

Frequently, in fact, the gradient of a high-fidelity function cannot be estimated or 

is determined with low accuracy. Examples of this are when a high-fidelity function 

is a simulation with a finite convergence tolerance, it is a black-box function, the 

output contains random noise, it can occasionally fail to provide a solution, or it is 

a physical experiment. In these cases, the high-fidelity gradient is not available and 

cannot be accurately estimated. However, using global MFOs typically requires 

considerably more high-fidelity function evaluations when compared to local 

methods. In the following paragraphs some of the global and local methods which 

can be found in literature are presented. 

Commonly, the multifidelity optimization process can be referred as offline/online 

or active learning searching for the optimum. Offline/online techniques built a 

surrogate model, combining information from models at different fidelities before 

the iterative optimization process, and leverage the surrogate in the searching for 

the optimum. Active learning approaches built an initial surrogate in the same way 

done by offline/online techniques. The difference is that during the iterations, the 

information obtained during the sampling are leveraged to update the surrogate 

model, guiding the exploration and exploitation towards the optimum.  
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4.1.1. Global Multifidelity Optimization  
 
Typically, gradient-free optimization frameworks interpolate high-fidelity 

objective function with several strategies. Offline-online methods represent a 

significant category. This technique provides a data set from different information 

sources offline (e.g. experimental, numerical or empirical models results) and then 

built the surrogate function online, combining data from high and low fidelity 

models by means of a Gaussian Process, in order to approximate the objective 

function. An example of this methods is Cokriging surrogate models. Cokriging 

method [49, 50] is commonly known as an extension of kriging including multiple 

levels of fidelities in the surrogate construction. The typical implementation of 

Cokriging methods in optimization is to create a global surrogate model of the 

expensive function. As shown in [51], update iteratively the global Cokriging 

models during optimization often results in finding a high-fidelity optimum faster 

than with other calibration models, even when the number of calibration points is 

limited from the computational cost [52]. The main problem related to Cokriging 

approaches is that the convergence to high-fidelity optimum is not guaranteed and 

without controlling the location of calibration points and the optimization steps 

taken, also the local convergence is not ensured. Another class of global methods 

are Goal-driven methods, where a Bayesian framework is used in order to drive the 

adaptive sampling. Several Bayesian framework-based approaches can be found in 

the literature. Many of these turn out to be derivations from the Efficient Global 

Optimization (EGO) technique. In EGO approaches the mean of the Gaussian 

process interpolates the value of the high-fidelity function value, while the mean 

square error of the Gaussian process models the uncertainty in the high-fidelity 

function value. This error estimate is zero at all locations where the value of the 

high-fidelity function is known and increase with the distance away from sample 

points. Optimization is then performed on the Gaussian process model, and the 

high-fidelity function is sampled at locations likely to reduce to the value of the 

function over the current observed minimum. This method can be made globally 

convergent, as illustrated in [53], and the high-fidelity derivative is not required. 

However, this method may be globally biased and attempt to explore the entire 

design space. In addition, EGO is sensitive to the initial high-fidelity samples [53] 

and to the exact metric of selecting points likely to improve the high-fidelity 

function value [54]. Examples of approaches related to EGO can be found in [55, 

56] where in searching performance improving points both improvement and risk 

are considered objectives in multi-objective methods and Regis et al. work [57], a 

provably convergent formulation that considers both the value of the Gaussian 

process and the distance from the previous interpolation point. Kennedy and 

O’Hagan enabled EGO to be used in a multi-fidelity contest, calibrating lower-

fidelity models with Gaussian process models to best predict the output of high-

fidelity models [58]. They also performed a complete Bayesian uncertainty analysis 

of calibrating computer models to true physical processes and determined where 

the uncertainties arise [59]. The challenge with global optimization is that to 
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proving that a global optimum within the domain has been reached is necessary 

demonstrating that the sequence of trial points of the algorithm becomes dense, or 

that function has been evaluated in all arbitrarily small intervals of the domain. With 

the limited exception of some cases (where there are known bounds on smoothness) 

global optimization methods requires an immense number of evaluations in order 

to find the optimum. However, local optimization techniques can guarantee the best 

design in the neighbourhood of a starting point often quickly and with few 

evaluations.  

 

4.1.2.  Local Multifidelity Methods 
 
A typical example of local multi-fidelity methods is the use of Trust regions 

algorithms. Trust regions have been frequently implemented in optimization 

problems and are probably convergent. Commonly trust region-based algorithm 

optimize a function using its gradient and Hessian at the centre of a trust region as 

a quadratic surrogate model of the function. The trust region then determines the 

allowable step length that may be taken based on how well the function can be 

represented by a quadratic surrogate. A significant extension of trust region to a 

general multi-fidelity optimization approach is given by Alexandrov et al. [60, 61, 

62]. They demonstrate that general low-fidelity models can be adjusted to be a 

surrogate model upon which optimization is performed in a manner provably 

convergent to an optimum of the high-fidelity function. The requirement for the 

surrogate is that at the centre of each trust region the surrogate model and the high-

fidelity function must have equal value and equal gradient, referred in literature as 

first-order consistency. Alexandrov et al. Proposed a multiplicative and an additive 

correction to adjust and arbitrary low-fidelity function so that a lower-fidelity 

surrogate satisfying the first order consistency requirement can be created [38]. 

When a high-fidelity gradient is not available and cannot be estimated accurately, 

the first-order consistency criteria cannot be satisfied. In this case, interpolation-

based surrogate models are also a common choice. Examples include that by Conn 

et al. [63, 64] or Marazzi et al. [65] and are based on polynomial interpolants and 

trust regions. Further work by Conn et al. on interpolation [66] and on derivative-

free trust regions methods [67, 68] have been used by Wild et al. to develop a 

derivative-free optimization algorithm that is provably convergent to a high-fidelity 

optimum also using a radial-basis function interpolant [69, 70]. Then March et al. 

[71] combined the probably convergent optimization frameworks of Wild et al. [69, 

70] and Conn et al. [66] with Bayesian model calibration ideas to result in a 

probably convergent multi-fidelity optimization approach that does not require 

high-fidelity gradient information. These latter techniques reduce the number of 

high-fidelity calls required to find a local minimum compared to other previous 

methods. However, the methods are sensitive to the quality of low-fidelity model 

dramatically with the number of design variables and the number of calibration 

points used to build the radial basis function model. 
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4.2. Open Issues in Multifidelity Optimization  
 
In this paragraph are summarized some of the most critical challenges in developing 

a multi-fidelity algorithm in design optimization contest following the discussion 

proposed by [24]:  

1. Curse of Dimensionality: the growth of computational cost with problem 

dimension, multidisciplinary, physics coupling and in general system 

complexity.  

2. Noise and Localized Behaviours: surrogate models constructed to fit 

sampled data are susceptible to spurious oscillations (errors) in presence of 

noise. Noise can be generated by experimental data or a consequence of 

numerical errors in analysis. Also changes in physical behaviour are 

relevant because models describing physical outcomes may have difficulties 

in coping with these transitions. The consequence is an increased model 

stiffness and number of samples required.  

3. Inconsistent Parameterization: parameter inconsistency between model, for 

example, when model at lower fidelity levels use coarser geometric 

descriptions requiring fewer parameters.  

4. Implementation Complexity and Computational Efficiency: overly complex 

and stiff procedures requiring expert knowledge of the multi-fidelity 

method; method; overly intrusive procedures requiring expert knowledge of 

the application when integrated with the multi-fidelity method; distribution 

barriers arising from the use of legacy software, proprietary software, or 

software with elaborate build requirements, and computational 

inefficiencies in method implementation (and potentially formulation) 

related to, for example, parallelization and scaling. 
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5. Multifidelity Bayesian Optimization  
 
Multifidelity optimization frameworks leverage the availability of analytical 

models characterized by different level of fidelity. In most cases, high-fidelity data 

includes information produced by stochastic process, physical models or real-life 

experiments that closely match the context of interest.  

However, these data are expensive to obtain in terms of both time and money, which 

limits the amount of data that can be obtained and so can significantly impair the 

ability of the model to produce valid estimates. Low-fidelity data are information 

coming from a stochastic process, physical models or real-life experiments that 

deviates from the real-world system of interest (e.g. introducing approximations, 

neglecting physical effects, coarser discretization, and resolutions of numerical 

models). This information is inexpensive to acquire, so it is possible to elicit larger 

amount of data. 

Multifidelity Bayesian Optimization enrich the Gaussian process combining a large 

amount of cheap low-fidelity data with a reduced number of expensive and accurate 

high-fidelity information. This potentially increase the knowledge of the objective 

function leveraging the effectively enrichment of low-fidelity data with high-

fidelity data.   

 

5.1. Multifidelity Gaussian Processes 
 
The Gaussian process regression can be extended to combine different sources of 

information in a single probabilistic model. Assuming that 𝑦(1)(𝑥),… , 𝑦(𝑀)(𝑥) 

observation values are available at 𝑀 different levels of fidelity, where 𝑦(1) is the 

lowest fidelity and 𝑦(𝑀)(𝑥) the highest. The training dataset 𝒟𝑛 =

{(𝑥𝑖, 𝑦
(𝑚)(𝑥𝑖),𝑚𝑖)}𝑖=1

𝑛
 is then composed by the paired input/output observation 

(𝑥𝑖, 𝑦
(𝑚𝑖)(𝑥𝑖)), generated by the 𝑚𝑖 unknown mapping function 𝑦(𝑚)(𝑥) =

𝑓𝑚(𝑥) + 𝜖, where the measurement noise 𝜖~𝒩(0, 𝜎𝜖) is assumed to have the same 

distribution over the fidelities.  

One of the possibilities mentioned in the literature is the Gaussian process 

regression (MF-GP) autoregressive scheme proposed by Kennedy and O’Hagan 

[8]. The following assumptions are posed by the authors:  
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1. Different levels of the same code are correlated in some way. Extra 

complexity is usually achieved by expanding simple models, so that each 

level of code should share some basic features.  

2. The codes have a degree of smoothness, in the sense that the output values 

for similar inputs are reasonably close. If the codes are extremely rough, 

then individual runs can only provide information about the output in a 

small surrounding neighbourhood, and the advantage of the Bayesian model 

is minimal. 

3. Prior beliefs about each level of the code can be modelled using Gaussian 

process.  

4. Each code output is scalar. Computer codes often produce multivariate time 

series output, so the method must be generalised assuming multivariate 

normality for the outputs.  

 

The lowest fidelity function prior can be represented as a Gaussian process prior:  

 

𝑓(1) = 𝐺𝑃(0, 𝑘1(𝑥, 𝑥
′)) (32) 

 

Where 𝑘1: ℝ
𝑑×𝑑 → ℝ is the kernel function. The higher fidelities function can be 

defined recursively as:  

 

𝑓(𝑚)(𝑥) =  𝜌𝑓(𝑚−1)(𝑥) + 𝛿(𝑚)(𝑥)      𝑚 = 2,… ,𝑀 (33) 

 

where 𝜌 is a constant factor that sales the contribution of the preceding fidelity to 

the following one, and 𝛿(𝑚)(𝑥)~𝐺𝑃(0, 𝑘𝑚(𝑥, 𝑥
′)) models the bias between 

fidelities.  

According to the autoregressive formulation:  

 

𝑐𝑜𝑣[𝑓(𝑚)(𝑥), 𝑓(𝑚−1)(𝑥′)|𝑓(𝑚−1)(𝑥)] = 0    ∀𝑥 ≠ 𝑥′ (34) 
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Which can be interpreted as a Markov property: given the point 𝑓(𝑚−1)(𝑥) nothing 

more cam be learnt about 𝑓(𝑚)(𝑥)from any other model evaluation 𝑓(𝑚−1)(𝑥′), for 

𝑥 ≠ 𝑥′ [8, 46]. A covariance function between a pair of samples 

{(𝑥𝑖 , 𝑦
(𝑚𝑖)(𝑥𝑖),𝑚𝑖), (𝑥𝑗 , 𝑦

(𝑚𝑗)(𝑥𝑗), 𝑚𝑗)} can be written as:  

 

𝑘 ((𝑥𝑖, 𝑚𝑖), (𝑥𝑗 , 𝑚𝑗)) = 𝑐𝑜𝑣[𝑓
(𝑚𝑖)(𝑥𝑖), 𝑓

(𝑚𝑗)(𝑥𝑗)] (35) 

 

As previous described, 𝑲 ∈ ℝ𝑛×𝑛 is the kernel matrix, such that 𝑲(𝑖, 𝑗) =

𝑘 ((𝑥𝑖, 𝑚𝑖), (𝑥𝑗 , 𝑚𝑗)). The predictive distribution of the MF-GP is defined by the 

predictive mean and variance:  

 

𝜇(𝑚)(𝑥) = 𝑘𝑛
(𝑚)(𝑥)𝑇(𝑲 + 𝜎𝜖𝐼)

−1𝑦 (36) 

 

𝜎2(𝑚)(𝑥) = 𝑘((𝑥,𝑚), (𝑥,𝑚)) − 𝑘𝑛
(𝑚)(𝑥)𝑇(𝑲 + 𝜎𝜖𝐼)

−1𝑘𝑛
(𝑚)
(𝑥) (37) 

 

 

Where 

𝑘𝑛(𝑥) = (𝑘((𝑥,𝑚), (𝑥1, 𝑚1)),… , 𝑘((𝑥,𝑚), (𝑥𝑛, 𝑚𝑛)))
𝑇

 

                               𝑦 = (𝑦(𝑚1)(𝑥1), … , 𝑦
(𝑚𝑛)(𝑥𝑛))

𝑇

. 
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5.2. Multifidelity Acquisition Function  
 
In the multi-fidelity context, given the availability of different models with different 

levels of fidelity, the Bayesian optimization process will not only have to determine 

the next candidate for each iteration, but will also have to choose which level of 

fidelity it is appropriate to query. Several approaches to this challenge can be found 

in literature. Some of the most significant will be presented in the following 

chapters.  

 

5.2.1.  Multifidelity Predictive Entropy Search  
 
The multi-fidelity acquisition function 𝛼 should be constructed to enable the multi-

fidelity BO algorithm to jointly and naturally optimize the non-trivial trade-off 

between exploitation vs. exploration over the target and auxiliary functions with 

varying fidelities for finding or improving the belief of the global target maximize. 

In order to do this, multi-fidelity predictive entropy search (MFES) approaches 

follow the idea of information-based acquisition function proposed by Henning et 

al. and Hernandez et al. in [156, 157]. The selection of the next candidate is based 

on maximize the expected reduction of the negative differential entropy of the 

posterior distribution 𝑝(𝑥∗|𝒟𝑛) of the location 𝑥∗ of the global maximum (in [156, 

157] the optimization problem is posed with the maximization of the objective 

function). The corresponding acquisition function is:  

 

𝛼𝑛(𝑥) = 𝐻[𝑝(𝑥∗|𝒟𝑛)] − 𝔼𝑝(𝑦|𝒟𝑛, 𝑥)[𝐻
[𝑝(𝑥∗|𝒟𝑛 ∪ {(𝑥, 𝑦)})]] (38) 

 

Where 𝐻[𝑝(𝑥)] = −∫𝑝(𝑥)𝑙𝑜𝑔𝑝(𝑥)𝑑𝑥 represents the differential entropy of its 

argument and the expectation above is taken with respect to the posterior predictive 

distribution of 𝑦 given 𝑥. The exact evaluation of Eq. (38) is infeasible in practice. 

A direct evaluation of Eq. (38) is possible only after performing many 

approximations [158]. To avoid this, predictive entropy search approach rewrite Eq. 

(38) as the mutual information between 𝑥∗ and 𝑦 given 𝒟𝑛. Since the mutual 

information is a symmetric function, 𝛼𝑛(𝑥) can be made explicit:  

 

𝛼𝑛(𝑥) = 𝐻[𝑝(𝑦|𝒟𝑛, 𝑥)] − 𝔼𝑝(𝑥∗|𝒟𝑛)[𝐻
[𝑝(𝑦|𝒟𝑛, 𝑥, 𝑥∗)]] (39) 
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Where 𝑝(𝑦|𝒟𝑛, 𝑥, 𝑥∗) is the posterior predictive distribution for 𝑦 given the 

observed data 𝒟𝑛 and the location of the global maximiser of 𝑓 . A multifildelity 

BO algorithm has to repeatedly selects the next candidate and the level of fidelity 

to query. The Eq. (39) can be extended to a multifidelity framework [159]: 

 

𝛼(𝑦𝑋 , 〈𝑥, 𝑖〉) = 𝐻(𝑦𝑖(𝑥)|𝑦𝑋) − 𝔼𝑝(𝑥∗𝑡|𝑦𝑋)[𝐻(𝑦𝑖(𝑥)|𝑦𝑋, 𝑥∗𝑡] (40) 

 

Where 〈𝑥, 𝑖〉 is the next input for evaluating the i-th function 𝑓𝑖 at 𝑥 that maximizes 

the Eq. (40) given the past observations (𝑋, 𝑦𝑋). The first Gaussian 

predictive/posterior entropy term can be computed analytically:  

 

𝐻(𝑦𝑖(𝑥)|𝑦𝑋) ≜ 0.5 log (2𝜋𝑒(𝜎〈𝑥,𝑖〉|𝑋
2 + 𝜎𝑛𝑖

2 )) 

 

(41) 

Where  

𝜎〈𝑥,𝑖〉|𝑋
2 ≜ Σ{〈𝑥,𝑖〉}{〈𝑥,𝑖〉}|𝑋 

 

More details can be found in [159].  
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5.2.2.  Multifidelity Max-Value Entropy Search  
 
This approach employs the information-based framework [156, 157]. In the case of 

MFBO the information gain for identifying the maximum of the highest fidelity 

function 𝑓∗ = max
𝑥∈𝒜

𝑓𝑥
(𝑀)

is derived by observing an arbitrary fidelity observation. 

Considering the case that a query is sequentially issued after the previous one is 

observed, which can be referred to as sequential querying (in [125] can be found 

also a parallel querying approach). Defining a training data set 𝒟𝑡 , to decide the 

next sample 𝑥𝑡+1 and level of fidelity 𝑚𝑡+1 the acquisition function is defined, 

recalling the formulation of Takeno et al. in [125], as:  

 

𝛼(𝑥,𝑚) = 𝐼(𝑓∗; 𝑓𝑥
(𝑚)|𝒟𝑡)/𝜆

(𝑚) 

 

(42) 

Where 𝐼(𝑓∗; 𝑓𝑥
(𝑚)|𝒟𝑡) is the mutual information between 𝑓∗ and 𝑓𝑥

(𝑚)
conditioned 

on 𝒟𝑡 and 𝜆(𝑚) is the querying cost associated at the m-th fidelity. By maximizing 

𝛼(𝑥,𝑚) we obtain a pair of the input 𝑥 and the fidelity 𝑚 which maximally gains 

information of the optimal value 𝑓∗ of the highest fidelity per unit cost.  

The mutual information can be written as the difference of the entropy [125]: 

 

 𝐼(𝑓∗; 𝑓𝑥
(𝑚)|𝒟𝑡)                             

 

                                           = 𝐻(𝑓𝑥
(𝑚)|𝒟𝑡) − 𝔼(𝑓∗|𝒟𝑡)

[𝐻(𝑓𝑥
(𝑚)|𝑓∗, 𝒟𝑡] 

(43) 

 

Where 𝐻(∙ | ∙) is the conditional entropy of 𝑝(∙ | ∙). The first term in the right-hand 

side of Eq. (43) can be derived analytically for any fidelity 𝑚:𝐻(𝑓𝑥
(𝑚)|𝒟𝑡) =

log(𝜎𝑥
(𝑚)
√2𝜋𝑒) where 𝑒 = 𝑒𝑥𝑝(1). The second term in Eq. (43) takes the 

expectation over the maximum 𝑓∗. Since an analytical formula is not known for this 

expectation, a possibility is to employ Monte Carlo estimation by sampling 𝑓∗ from 

the current GP regression:  

 

 

 



57 
 

 

𝔼(𝑓∗|𝒟𝑡)
[𝐻(𝑓𝑥

(𝑚)|𝑓∗, 𝒟𝑡] ≈ ∑
𝐻(𝑓𝑥

(𝑚)|𝑓∗, 𝒟𝑡)

|𝐹∗|
𝑓∗∈𝐹∗

 

 

(44) 

Where 𝐹∗ is a set of sampled 𝑓∗. For more details please refer to [125].  

 

 

5.2.3.  Multifidelity Expected Improvement 
 
Multi-fidelity expected improvement (MFEI) is based on the expected 

improvement formulation presented before, corrected as an integrated search 

criterion that determines both location and fidelity level of the subsequent 

evaluation. The following MFEI formulation presented by Huang et al. in [160] and 

implemented with an improved search algorithm in [110], is here reported:  

 

𝑀𝐹𝐸𝐼(𝑥,𝑚) = 𝔼[max(𝑓(𝑀)(𝑥) − 𝑓(𝑀)(𝑥+), 0] 𝛼1(𝑥,𝑚)𝛼2(𝑥,𝑚)𝛼3(𝑥,𝑚) (45) 

 

Where the first term is simply the EI evaluated at the highest fidelity. The utility 

functions 𝛼1(𝑥,𝑚), 𝛼2(𝑥,𝑚) 𝑎𝑛𝑑 𝛼3(𝑥,𝑚) are defined as:  

 

𝛼1(𝑥,𝑚) = 𝑐𝑜𝑟𝑟[𝑓
(𝑚)(𝑥), 𝑓(𝑀)(𝑥)] (46) 

 

 

𝛼2(𝑥,𝑚) = 1 −
𝜎𝜖

√𝜎2(𝑚)(𝑥) + 𝜎𝜖2
 (47) 

 

 

𝛼3(𝑥,𝑚) =
𝜆𝑀
𝜆𝑚

 

 

(48) 
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The term 𝛼1(𝑥,𝑚) is designed to account for the reduction in reward when a lower-

fidelity evaluation is used. When 𝑙 = 𝑚 the term 𝛼1(𝑥,𝑚) should be equal to one. 

Also, 𝛼1(𝑥,𝑚) should be zero when sample at (𝑥,𝑚)) exists already and there is 

not random error, as such a replicate brings no additional benefit. In Eq. (45) 

𝛼1(𝑥,𝑚) is the correlation between the posterior estimate of system 𝑚 and the 

posterior estimate of system 𝑀 at location 𝑥, because can be interpreted as the 

fraction of uncertainty on system 𝑀 that can be eliminate once system 𝑚 is known.  

The purpose of the term 𝛼2(𝑥,𝑚) is to adjust EI when outputs of system 𝑚 contain 

random errors. It accounts for the diminishing return of additional replicates as the 

prediction becomes more accurate. This factor is equal to the relative reduction in 

the posterior standard deviation after a new replicate is added. This factor equals 

one when the variance of the random errors is zero. 

The term 𝛼3(𝑥,𝑚) is the ratio between the cost-per-evaluation on the higher fidelity 

system and that on system 𝑚. It represents an adjustment to the sampling strategy 

based on the evaluation costs. With the expected gains equal, a cheaper data point 

is preferred to a more expensive one 

To summarize, each modifier term in Eq. (45) has an important benefit. If 𝛼1(𝑥,𝑚) 
is excluded, we will always choose on the lowest-fidelity system as it is cheaper. If 

𝛼2(𝑥,𝑚) is excluded, we will see many unnecessary replicates when random errors 

exist. And if 𝛼3(𝑥,𝑚) is excluded, the cost-per-evaluation will be out of the picture, 

so the highest fidelity will always be chosen.  
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6. Numerical Implementation of Algorithms 
 
This chapter resents an overview of the numerical implementation of the single 

fidelity expected improvement (SFEI) algorithm and the multi-fidelity expected 

improvement (MFEI) algorithm.  Both SFEI and MFEI algorithm are implemented 

in Matlab in the form of function packages. The algorithms will be presented in the 

form of meta code.  

 

6.1. Single Fidelity Bayesian Optimization 
 
The single fidelity Bayesian optimization algorithm is based on the expected 

improvement approach in Eq. (31).  

In Tab.3 is presented the meta code of the algorithm. The input is the black-box 

function 𝑓(𝑥) to be optimized and a Matlab struct 𝑜𝑝𝑡  that includes the algorithm 

setup. More details of 𝑜𝑝𝑡 struct is given in Tab.2. The setup elements are presented 

in the Matlab nomenclature, so an element of the algorithm setup is defined as 

𝑜𝑝𝑡. 𝑠𝑒𝑡𝑢𝑝_𝑒𝑙𝑒𝑚𝑒𝑛𝑡. The term 𝑜𝑝𝑡. 𝑑𝑖𝑚𝑠 the dimension of the objective function 

is specified. The parameters 𝑜𝑝𝑡.𝑚𝑖𝑛𝑠 and 𝑜𝑝𝑡.𝑚𝑎𝑥𝑒𝑠 respectively report the 

minimum and the maximum value assumed by the objective function variables. The 

maximum number of iterations to be performed are defined in 𝑜𝑝𝑡.max _𝑖𝑡𝑒𝑟𝑠. 

The parameter 𝑜𝑝𝑡. 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒 define the number of points of the sampling grid. In 

order to perform the Gaussian process, the mean function, the kernel function, and 

the inference method are essential to characterized and are defined respectively in 

𝑜𝑝𝑡.𝑚𝑒𝑎𝑛𝑓𝑢𝑛𝑐, 𝑜𝑝𝑡. 𝑐𝑜𝑣𝑓𝑢𝑛𝑐 , and 𝑜𝑝𝑡. 𝑖𝑛𝑓𝑚𝑒𝑡ℎ𝑜𝑑. 

 

𝒔𝒕𝒓𝒖𝒄𝒕: “𝒐𝒑𝒕” 

𝑜𝑝𝑡. 𝑑𝑖𝑚𝑠: specifies the number of parameters of the objective function.  

𝑜𝑝𝑡.𝑚𝑖𝑛𝑠: the minimum value of each parameter. 

𝑜𝑝𝑡.𝑚𝑎𝑥𝑒𝑠: the maximum value of each parameter. 

𝑜𝑝𝑡.max _𝑖𝑡𝑒𝑟𝑠: number of iterations of Bayesian optimization to perform. 

𝑜𝑝𝑡. 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒: number of candidate points to sample in.  

𝑜𝑝𝑡.𝑚𝑒𝑎𝑛𝑓𝑢𝑛𝑐: mean function used in Gaussian Process. 

𝑜𝑝𝑡. 𝑐𝑜𝑣𝑓𝑢𝑛𝑐: Kernel function used in Gaussian Process. 

𝑜𝑝𝑡. 𝑖𝑛𝑓𝑚𝑒𝑡ℎ𝑜𝑑: Inference method. 

 

Tabel 2: Matlab struct 𝑜𝑝𝑡  that includes the algorithm setup. 
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At the beginning of the optimization process, an initial candidate hyper grid is 

drawn from a random Latin hypercube.  

As presented in chapter 2, Latin hypercube sampling aims to spread the sample 

points evenly across all possible values. It partitions each input distribution into N 

intervals of equal probability and select one sample from each interval.  

Once the initial samples 𝑥1 are determined, the initial values 𝑓(𝑥1) of the objective 

function can be computed and the main Bayesian Optimization single fidelity loop 

can start.  

Considering the i-th iteration, the mean 𝜇 and variance 𝜎2 of the Gaussian process 

are determined by enriching the posterior with the information about the objective 

computed in the previous step. The posterior is obtained given the inference 

method, the mean function, and the covariance function.  

The inference method for Gaussian likelihood reduces to compute mean and 

covariance of a multivariate Gaussian. The mean function selected is the constant 

value and the kernel function selected is the linear kernel.  

The next computational step is the definition of the expected improvement (see Eq. 

(31) for more details) and the maximization in order to select the next sample 𝑥𝑖+1 

of the iteration 𝑖 + 1.  

Finally, samples and values matrix are uploaded with respectively the new selected 

sample 𝑥𝑖+1 and the value of the objective in that sample 𝑓(𝑥𝑖+1).  

After all iterations, the minimum value of the objective 𝑎𝑟𝑔𝑚𝑖𝑛(𝑣𝑎𝑙𝑢𝑒𝑠) and the 

corresponding minimum sample 𝑎𝑟𝑔𝑚𝑖𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑠) are determined.  
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SFEI Algorithm 

 

[𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒] = 𝑆𝐹𝐸𝐼(𝑓(𝑥), 𝑜𝑝𝑡)   

 

1: Draw initial candidate grid from a random Latin hypercube 

 

ℎ𝑦𝑝𝑒𝑟 𝑔𝑟𝑖𝑑 = 𝐿𝑎𝑡𝑖𝑛ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒(𝑜𝑝𝑡. 𝑑𝑖𝑚𝑠, 𝑜𝑝𝑡. 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒, 𝑜𝑝𝑡. 𝑚𝑖𝑛𝑠, 𝑜𝑝𝑡.𝑚𝑎𝑥𝑒𝑠) 

→ ℎ𝑦𝑝𝑒𝑟 𝑔𝑟𝑖𝑑 → 𝑥1 →  𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = [𝑠𝑎𝑚𝑝𝑙𝑒𝑠; 𝑥1] 

 

2: Get values from the first samples 

 

→ 𝑓(𝑥1) → 𝑣𝑎𝑙𝑢𝑒𝑠 = [𝑣𝑎𝑙𝑢𝑒𝑠; 𝑓(𝑥1)] 

 

3: Main Bayesian Optimization Single Fidelity Loop  

 

𝒇𝒐𝒓 𝑖 = 1: 𝑜𝑝𝑡.max _𝑖𝑡𝑒𝑟𝑠 

 

𝑓(𝑥) ~ 𝐺𝑃 

 

[𝜇, 𝜎2] = 𝐺𝑃(ℎ𝑦𝑝𝑒𝑟𝑔𝑟𝑖𝑑, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠, 𝑣𝑎𝑙𝑢𝑒𝑠, 𝑜𝑝𝑡. 𝑖𝑛𝑓𝑚𝑒𝑡ℎ𝑜𝑑, 𝑜𝑝𝑡.𝑚𝑒𝑎𝑛𝑓𝑢𝑛𝑐, 𝑜𝑝𝑡. 𝑐𝑜𝑣𝑓𝑢𝑛𝑐) 

 

𝑏𝑒𝑠𝑡 = min (𝑣𝑎𝑙𝑢𝑒𝑠) 

𝐸𝐼 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝐼(𝜇, 𝜎2, 𝑏𝑒𝑠𝑡) 

max(𝐸𝐼) → 𝑥𝑖+1 

 

4: Upload Samples and Values  

 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = [𝑠𝑎𝑚𝑝𝑙𝑒𝑠; 𝑥𝑖+1] 
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𝑣𝑎𝑙𝑢𝑒𝑠 = [𝑣𝑎𝑙𝑢𝑒𝑠; 𝑓(𝑥𝑖+1)] 

𝒆𝒏𝒅 

 

5: Get minvalue and minsample 

𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = min (𝑠𝑎𝑚𝑝𝑙𝑒𝑠) 

𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒 = min (𝑣𝑎𝑙𝑢𝑒𝑠) 

 

Table 3: SFEI Algorithm meta code. 

 

 

 

 

6.2. Multifidelity Bayesian Optimization 
 
The Multifidelity Bayesian optimization algorithm is based on the multifidelity 

expected improvement formulation presented in Eq. (45).  

The initial candidate grid is drawn from a random Latin hypercube and the setup 

parameters are summed up in a Matlab struct as the SFEI algorithm.  

Given the different fidelity levels of the objective function, the following matrix are 

defined in the meta code presented in Tab. 4:  

 

𝐹(𝑥) = [𝑓(1)(𝑥), … , 𝑓(𝑚)(𝑥), … , 𝑓(𝑀)(𝑥)] 

 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠1 = [𝑠𝑎𝑚𝑝𝑙𝑒𝑠1
(1), … , 𝑠𝑎𝑚𝑝𝑙𝑒𝑠1

(𝑚), … , 𝑠𝑎𝑚𝑝𝑙𝑒𝑠1
(𝑀)] 

 

𝑣𝑎𝑙𝑢𝑒𝑠1 = [𝑣𝑎𝑙𝑢𝑒𝑠1
(1), … , 𝑣𝑎𝑙𝑢𝑒𝑠1

(𝑚), … , 𝑣𝑎𝑙𝑢𝑒𝑠1
(𝑀)] 

 

𝑚 = 1,… ,𝑀              𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦 

 

Where 𝑠𝑎𝑚𝑝𝑙𝑒𝑠1 is a matrix containing the initial samples related to the m-th level 

of fidelity, 𝑣𝑎𝑙𝑢𝑒𝑠1 are the initial value of the m-th level of fidelity objective 

function calculated in the corresponding sample vector.  
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Computed the initial samples and values, the main Bayesian optimization 

multifidelity loop starts performing the iterations.  

Considering the i-th iteration, the Gaussian process posterior is derived from the 

data computed in the previous iterations from all the m-th fidelity levels of the 

objective function.  

The next step is computing the terms 𝛼1(𝑚, 𝑥𝑖
(𝑚)), 𝛼2(𝑚, 𝑥𝑖

(𝑚)) that appears in the 

MFEI formulation. The cost vector 𝛼3(𝑚) is derived from knowledge-based 

considerations, experiments, and computational times analysis. More details are 

given in chapter 7, where the algorithm is tested on analytical experiments.  

Defined these parameters, the multifidelity expected improvement is computed. 

The next candidate 𝑥𝑖+1
(𝑚)

 and the m-th fidelity level of the objective function to 

query are determined by maximizing the MFEI.  

At the end of the iterations, the minimum value of the objective function 

𝑎𝑟𝑔𝑚𝑖𝑛(𝑣𝑎𝑙𝑢𝑒𝑠) and the corresponding minimum sample 𝑎𝑟𝑔𝑚𝑖𝑛(𝑠𝑎𝑚𝑝𝑙𝑒𝑠) are 

determined.  

 

 
MFEI Algorithm 

 

[𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒,𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒] = 𝑀𝐹𝐸𝐼(𝐹(𝑥), 𝑜𝑝𝑡)     

 

1: Draw initial candidate grid from a random Latin hypercube 

ℎ𝑦𝑝𝑒𝑟 𝑔𝑟𝑖𝑑 = 𝐿𝑎𝑡𝑖𝑛ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒(𝑜𝑝𝑡. 𝑑𝑖𝑚𝑠, 𝑜𝑝𝑡. 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒, 𝑜𝑝𝑡. 𝑚𝑖𝑛𝑠, 𝑜𝑝𝑡.𝑚𝑎𝑥𝑒𝑠) 

→ ℎ𝑦𝑝𝑒𝑟 𝑔𝑟𝑖𝑑 → 𝑥1
(𝑚) →  𝑠𝑎𝑚𝑝𝑙𝑒𝑠1

(𝑚) = [𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑚); 𝑥1
(𝑚)]  → 𝑠𝑎𝑚𝑝𝑙𝑒𝑠1   𝑚 = 1, . . , 𝑀 

2: Get values from the first samples 

→ 𝑓(𝑚)(𝑥1
(𝑚)) → 𝑣𝑎𝑙𝑢𝑒𝑠(𝑚) = [𝑣𝑎𝑙𝑢𝑒𝑠(𝑚); 𝑓(𝑚)(𝑥1

(𝑚))] → 𝑣𝑎𝑙𝑢𝑒𝑠1    𝑚 = 1, . . , 𝑀 

3: Main Bayesian Optimization Multifidelity Loop  

 

𝒇𝒐𝒓 𝑖 = 1: 𝑜𝑝𝑡.max _𝑖𝑡𝑒𝑟𝑠 

 

𝑓(𝑥) ~ 𝐺𝑃 



64 
 

 

              [𝜇(𝑚), 𝜎2(𝑚)] = 𝐺𝑃(ℎ𝑦𝑝𝑒𝑟𝑔𝑟𝑖𝑑, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖 , 𝑣𝑎𝑙𝑢𝑒𝑠𝑖, … 

                                                 𝑜𝑝𝑡. 𝑖𝑛𝑓𝑚𝑒𝑡ℎ𝑜𝑑, 𝑜𝑝𝑡.𝑚𝑒𝑎𝑛𝑓𝑢𝑛𝑐, 𝑜𝑝𝑡. 𝑐𝑜𝑣𝑓𝑢𝑛𝑐),    𝑚 = 1, . . , 𝑀 

𝛼1(𝑚, 𝑥𝑖) = 𝑐𝑜𝑟𝑟[𝑓
(𝑚)(𝑥𝑖), 𝑓

(𝑀)(𝑥𝑖)]  𝑚 = 1, . . , 𝑀 

 

𝛼2(𝑚, 𝑥𝑖) = 1 −
𝜎𝜖

√𝜎2(𝑚)(𝑥) + 𝜎𝜖2
     𝑚 = 1, . . , 𝑀 

 

𝛼3(𝑚) =
𝜆𝑀
𝜆𝑚
    𝑚 = 1, . . , 𝑀 

 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝔼[max(𝑓(𝑀)(𝑥𝑖) − 𝑓
(𝑀)(𝑎𝑟𝑔𝑚𝑖𝑛 𝐹(𝑥𝑖))] 

 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑀𝐹𝐸𝐼(𝑥,𝑚) 

 

max(𝑀𝐹𝐸𝐼(𝑥,𝑚)) → 𝑥𝑖+1 & 𝑚𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙 

4: Upload Samples and Values  

𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖+1 = [𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖; 𝑥𝑖+1] 

𝑣𝑎𝑙𝑢𝑒𝑠𝑖+1 = [𝑣𝑎𝑙𝑢𝑒𝑠𝑖; 𝑓
(𝑚)(𝑥𝑖+1)] 

𝒆𝒏𝒅 

 

5: Get minvalue and minsample 

 

𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = min (𝑠𝑎𝑚𝑝𝑙𝑒𝑠) 

𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒 = min (𝑣𝑎𝑙𝑢𝑒𝑠) 

 

Table 4: MFEI Algorithm meta code. 
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7. Analytical Experiments  
 

 
In this chapter are presented numerical experiments demonstrating the performance 

of the multifidelity expected improvement (MFEI) algorithm compared to a 

standard single fidelity expected improvement (SFEI) framework.  

In the following paragraphs a description of the experiments and of the experiment 

setup is given, including the benchmarks description and the tests configurations; 

Then will be discussed the results of both MFEI and SFEI algorithm.  

The tests are made on popular benchmark problems to test the efficiency and 

robustness of the proposed algorithm. The test functions are contrived and with no 

physical meaning, which is useful in demonstrating optimization methodologies. 

The benchmark functions were selected to exemplify different types of correlations 

among the fidelity levels, described in the following.  

Consistently with the already used notation, 𝑦(𝑚)(𝑥) is the objective function and 

𝑚 = 1,… ,𝑀 indicate the level of fidelity considered, with 𝑀 the highest-fidelity. 

MFEI, SFEI algorithms and the numerical experiments are implemented in Matlab.  

 

 

7.1 Forrester Function  
 
The first benchmark analytical function is the popular Forrester function [169]. This 

function is used to represent a multimodal objective function landscape, i.e. one 

where a search routine could become trapped in a local minimum. It is a 1-

dimensional nonlinear function defined over the domain [0, 1]:  

 

𝑦(2)(𝑥) = (6𝑥 − 2)2sin (12𝑥 − 4) (49) 

 

 

The minimum is at 𝑥∗ ⋍ 0.727549 and 𝑓(𝑥∗) ⋍ −6.02074. The low fidelity level 

is given by the linear mapping:  

 

𝑦(1)(𝑥) = 0.5𝑦(2)(𝑥) + 10(𝑥 − 0.5) (50) 
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Figure 6: Forrester function. Both high-fidelity and low-fidelity representation are 

plotted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

7.1.1.  Experiments Results  
 

 
In this paragraph, the results of the SFEI and MFEI algorithm applied to the 

Forrester function (Eq. (49)) are considered.  

In Fig.7 are reported the median and the interval of the error result of 100 single 

fidelity tests performed with the SFEI algorithm, for which single test an initial 

DOE of 𝑛0 = 2 points is selected. The number of iterations performed for test are 

70 with a grid of 10000 points. The error is calculated considering at each iteration 

the overall minimum found so far.  

In the graph presented, the median shows a smooth trend in reaching the zero, 

highlighting the balance between exploration of the design space and exploitation 

moving to the global minimum. Most of the tests conducted arrive at an error of 0 

in just over 50 iterations, but overall, about 60 iterations are a plausible estimate of 

the computational performance of the algorithm.  

The test results of the MFEI algorithm are obtained under the same conditions 

reported for the single fidelity tests. The DOE selected is of 5 low fidelity points 

and 2 high fidelity points. Specifically, two levels of fidelity of the Forrester 

function reported in Eq. (49) and Eq. (50) are considered.  

The term 𝛼3 = [4, 1] was determined from the experience gained with MFEI 

algorithm tests considering different computational costs associated with the two 

high and low fidelity functions.  

In Fig.8 it can be noted that not in all iterations the error tends to zero. Indeed, the 

interval remains up to zero with the iterations. The algorithm tends to stay in the 

local minima of the low fidelity function 𝑥 ⋍ 0.08481 𝑦 ⋍ 0.6717 and 𝑥 ⋍

0.7384 𝑦 ⋍ 4.463 and in the local minimum of the high-fidelity function 𝑥 ⋍
0.1394 𝑦 ⋍ −0.9848.  

However overall, 93% of tests exhibit zero error after a maximum of 64 iterations. 

Furthermore, was found on average an invocation of the high-fidelity function of 

7.8 times, suggesting a decrease in the total computational cost of tests compared 

to the SFEI case. Indeed, on average, the duration of a test using the MFEI algorithm 

was 126 seconds, against 318 seconds of the tests conducted with the SFEI 

algorithm.  
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Figure 7: Median/Interval-Iterations results of the SFEI algorithm applied to the 

Forrester function optimization problem. 

 

Figure 8: Median/Interval-Iterations results of the MFEI algorithm applied to the 

2-fidelity Forrester function optimization problem.   
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7.2. Sinusoidal Squared 1D Function 
 
The second benchmark is a sinusoidal squared 1-dimensional function [170], with 

domain in the interval [0, 1]. The high-fidelity function is defined as:  

 

𝑦(2)(𝑥) = (𝑥 − √2) (𝑦(1)(𝑥))
2

 (51) 

 

which is a non-linear function of the low fidelity variant, given by:  

 

𝑦(1)(𝑥) = sin(8𝜋𝑥) (52) 

 

The minimum is at 𝑥∗ ⋍ 0.0619147 and 𝑓(𝑥∗) ⋍ −1.35201. 

 

 

 

Figure 9: Sinusoidal squared 1D function. Both high-fidelity and low-fidelity 

representation are plotted.  
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7.2.1.  Experiments Results 
 
In this paragraph, the results of the SFEI and MFEI algorithm applied to the 

sinusoidal squared 1D function (Eq. (51)) are considered.  

In Fig. 10 are reported the median and the interval of the error result of 100 single 

fidelity tests performed with the SFEI algorithm, for which single test an initial 

DOE of 𝑛0 = 2 points are selected. The number of iterations performed for test are 

100 with a grid of 10000 points. The error is calculated considering at each iteration 

the overall minimum found so far.  

In the graph presented it can be seen that overall, the median trend tends towards 

zero with a considerably reduced number of iterations. In fact, in most cases a 

number of iterations less than 30 is sufficient to reach the minimum of the function.   

In Fig.11 are reported the results of the MFEI algorithm considering the 2 level of 

fidelity reported in the paragraph above. The tests are carried out under the same 

conditions reported for the experiments of the SFEI algorithm. The DOE selected 

is of 5 low fidelity points and 2 high fidelity points.  

The term 𝛼3 = [2, 1] was determined from the experience gained with MFEI 

algorithm tests taking into account different computational costs associated with 

the two high and low fidelity functions as in the case of the Forrester function.  

Overall, the median decreases with the number of iterations, until it reaches about 

zero. However, it can be noted that unlike what has been seen for the SFEI 

algorithm, the achievement of the null value requires a considerably higher number 

of iterations. Furthermore, the median seems to assume constant trends due to the 

achievement of the local minima of the low-fidelity function and the consequent 

stationing in those points.  

This behavior is predictable since the low-fidelity function presents the local 

minima in correspondence with the local minima and maxima of the high-fidelity 

function alternatively. When the stationing in the local minima of the low-fidelity 

function is presented, it has been noted that the invocation of the maximum fidelity 

function is necessary in order to allow the algorithm to converge towards the global 

high-fidelity minimum. Nonetheless, 99% of the test cases considered converge 

towards the global low of the high-fidelity function 

On average, the number of invocations of the high-fidelity function was 3.8 

suggesting a decrease in the computational cost of the tests. Despite the 

significantly higher number of iterations to reach the global minimum, the 

computation time associated with the MFEI algorithm averages 164 seconds against 

187 seconds for the SFEI algorithm.  
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Figure 10: Median/Interval-Iterations results of the SFEI algorithm applied to the 

sinusoidal squared 1D function optimization problem 

 

 
Figure 11: Median/Interval-Iterations results of the MFEI algorithm applied to the 

2-fidelity sinusoidal squared 1D function optimization problem.   
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7.3. Rosenbrock Function  
 
The third benchmark problem is the d-dimensional Rosenbrock function [171], a 

non-convex function with domain in the interval [−2, 2]𝑑 defined as:  

 

𝑦(𝑀)(𝑥) = ∑(1 − 𝑥𝑖)
2 + 100(𝑥𝑖+1 − 𝑥𝑖)

2

𝑑−1

𝑖=1

 (53) 

 

 
Where 𝑥 = [𝑥1, … , 𝑥𝑑] ∈ ℝ

𝑑. The global minimum 𝑓(𝑥∗) lies in a narrow, 

parabolic valley and is located at 𝑥∗ = [1,… , 1]𝑑.  

The MFEI algorithm has been tested considering 𝑑 = 2, 4, 8 and with different 

experimental setups.  

 

 

7.4. 2D Rosenbrock Function  
 

 
Recalling the Eq. (53), the highest fidelity function is defined as:  

 

𝑦(𝑀)(𝑥) = (1 − 𝑥1)
2 + 100(𝑥2 − 𝑥1)

2 (54) 
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Figure 12: Rosenbrock 2D function 

 

The experimental setups considered are distinct from the low fidelity functions 

considered:  

 

• Experiment 1: Low-fidelity function linear mapping defined as [172]: 

 

𝑦(1)(𝑥) =
𝑦(2)(𝑥) − 4.0 − ∑ 0.5𝑥𝑖

2
𝑖=1

3.0 + ∑ 0.25𝑥𝑖
2
𝑖=1

 (55) 

 

 

 

Figure 13: Low-fidelity linear mapping function. 
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• Experiment 2: Low-fidelity functions defined as the linear mapping in Eq. 

(56) and the quadratic 2-dimensions function defined in Eq. (57):  

 

𝑦(1)(𝑥) =
𝑦(𝑀)(𝑥) − 4.0 − ∑ 0.5𝑥𝑖

2
𝑖=1

3.0 + ∑ 0.25𝑥𝑖
2
𝑖=1

 (56) 

 

 

𝑦(2)(𝑥) = 𝑥2
2 + 𝑥1

2 (57) 

 

 
• Experiment 3: Low-fidelity functions defined by March et al. [173]:  

 

𝑦(1)(𝑥) = 𝑥1
2 + 𝑥2

2  

 

 

𝑦(2)(𝑥) = 𝑥2
4 + 𝑥1

2 (58) 

 

 

𝑦(3)(𝑥) =  −𝑥1
2 − 𝑥2

2 (59) 
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Figure 14: Low-fidelity function defined as 𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 

 

 

 

 

 

 

Figure 15: Low-fidelity function defined as 𝑓(𝑥) = 𝑥1
4 + 𝑥2

2 
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Figure 16: Low-fidelity function defined as 𝑓(𝑥) = −𝑥1
2 − 𝑥2

2 
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7.4.1.  Experiments Results 
 

This section reports the results of the SFEI and MFEI algorithm considering the 

experiments conducted on the 2-dimensional Rosenbrock function and mentioned 

above. 

• Experiment 1 

Fig. 17 shows the median and interval of the error achieved by the SFEI 

algorithm considering the high-fidelity Rosenbrock 2D function. The total 

number of tests conducted are 100.  

For each test, the number of iterations carried out was 100 with a subdivision 

of the grid into 100,000 points. As in the previous test functions, the error is 

calculated taking into account the overall minimum reached during the 

iterations.  

Observing the median curve, it can be seen that the number of average iterations 

necessary to achieve the zero value is of 37 runs. However, some tests require 

significantly more time with up to 86 iterations.  

Considering the results obtained by the MFEI algorithm in experiment 1 with a 

linear mapping as a low-fidelity function.  

In Fig. 18 are reported the median-interval trend over the 100 tests. The 

experiment setup is the same of the SFEI algorithm reported above.  

The term 𝛼3 = [4, 1] was selected after some numerical tests considering 

different elements of the cost vector. On average, the convergence of the tests 

occurs in 30 iterations but compared to the SFEI case, a greater variability of 

the interval and therefore of the overall minimum reached up to that 

computational step can be observed.  

This is explained by considering that the linear mapping of the low fidelity 

function has a higher computational efficiency than the high-fidelity function. 

Consequently, the algorithm is facilitated in the exploratory process, allowing 

to decrease considerable initial errors (higher than in the single fidelity case) in 

a contained number of iterations. On average, the number of invocations of the 

high-fidelity function is 11.2 explaining the different computational time jointly 

with the decrease of the iterations number in achieving convergence. The 

computation time associated with the MFEI algorithm averages 17 minutes 

against 31 minutes for the SFEI algorithm.  
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Figure 17: Median/Interval-Iterations results of the SFEI algorithm applied to the 

Rosenbrock 2D function optimization problem 

 

Figure 18: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 1 of the multifidelity Rosenbrock 2D function optimization problem. 
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• Experiment 2 

 

Experiment 2 considers three levels of fidelity: the 2D linear mapping of the 

Rosenbrock function, the two-dimensional quadratic function and the Rosenbrock 

2D high-fidelity function.  

The numerical conditions are the same as in experiment 1. In these tests the cost 

vector 𝛼3 = [4, 2, 1] is selected in order to emphasize the cost of the quadratic 

function over the linear mapping function. 

In Fig. 19 are presented the median and interval of the error resulting in the 

experiment 2 optimization problem.   

Compared to the previous case, the number of iterations necessary to clear the error 

is greater. This can be attributed to the invocation of the quadratic function which, 

being non-linear, tends to reduce the efficiency of the algorithm. On average, 

function 𝑦(1) was called 57.4 times, function 𝑦(2) 29.3 times and function 𝑦(3) was 

called 13.3 times. The computation time associated with the MFEI algorithm 

averages 22 minutes against 31 minutes for the SFEI algorithm.  

 

 

Figure 19: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 2 of the multifidelity Rosenbrock 2D function optimization problem. 
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• Experiment 3 

 

In experiment 3, four levels of fidelity are considered. The cost vector 𝛼3 =

[2, 4, 2.5, 1] was selected after different tries and calibration.  

In Fig.20 is shown the median-interval trend of the error resulting in the experiment 

3 optimization problem.   

A further increase in the iterations necessary to achieve convergence can be 

observed. This is due to the absence of linear mapping, making the algorithm less 

effective in the search process. Furthermore, 6% of the tests do not reach the null 

error condition, as the interval trend demonstrate, but keep staying in the 

neighborhood of the global minimum of the function.  

Probably with an even greater number of iterations, total convergence of the tests 

would have been achieved.  

On average, function 𝑦(1) was called 35.6 times, function 𝑦(2) 22.8 times, function 

𝑦(3) 25.9 times, and function 𝑦(4) was called 15.7 times. The computation time 

associated with the MFEI algorithm averages 24 minutes against 31 minutes for the 

SFEI algorithm.  

 

 

Figure 20: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 3 of the multifidelity Rosenbrock 2D function optimization problem. 
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7.5. 4D Rosenbrock Function  
 

 
The high-fidelity function is defined as:  

𝑦(𝑀)(𝑥) =∑(1 − 𝑥𝑖)
2 + 100(𝑥𝑖+1 − 𝑥𝑖)

2

3

𝑖=1

 (60) 

 

The experimental setups considered are the following:  

 

• Experiment 1: Low-fidelity function linear mapping defined as:  

 

𝑦(1)(𝑥) =
𝑦(𝑀)(𝑥) − 4.0 − ∑ 0.5𝑥𝑖

4
𝑖=1

3.0 + ∑ 0.25𝑥𝑖
4
𝑖=1

 (61) 

 

• Experiment 2: Low-fidelity functions defined as the linear mapping in Eq. 

(61) and the quadratic 4-dimensions function:  

 

𝑦(1)(𝑥) =
𝑦(𝑀)(𝑥) − 4.0 − ∑ 0.5𝑥𝑖

4
𝑖=1

3.0 + ∑ 0.25𝑥𝑖
4
𝑖=1

  

 

𝑦(2)(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 (62) 

 

• Experiment 3: low-fidelity function defined as the quadratic 4-dimensions 

function:  

 

𝑦(2)(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2  
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7.5.1.  Experiments Results  
 
This section reports the results of the SFEI and MFEI algorithm considering the 

experiments conducted on the 4-dimensional Rosenbrock function mentioned 

above. 

• Experiment 1 

In experiment 1 two levels of fidelity are considered. The lowest fidelity function 

is a linear 4-dimensional mapping. The initial conditions are the same as those 

imposed in the tests of the 2D Rosenbrock function.  

The cost vector 𝛼3 = [4, 1] was selected to emphasize the lower computational cost 

of 𝑦(1), on the base of several tests of the algorithm.  

In Fig.21 is presented the error median and the interval over the test iterations. As 

already seen for the two-dimensional case, the median trend decreases rapidly with 

the number of iterations. Furthermore, the null value is reached in all the tests 

carried out. This suggests, as noted earlier, that the low-fidelity function defined as 

a linear mapping allows for greater effectiveness of the algorithm.  

On average, the low-fidelity function 𝑦(1) was called 88.9 times and the high-

fidelity function 𝑦(2) was called 11.1 times. The computation time associated with 

the MFEI algorithm averages 43 minutes against 61 minutes for the SFEI algorithm.  

 

Figure 21: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 1 of the multifidelity Rosenbrock 4D function optimization problem. 
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• Experiment 2 

In experiment 2 three levels of fidelity are considered. Function 𝑦(1) is a linear 

mapping, 𝑦(2) is a four dimensions quadratic function and 𝑦(3) is the Rosenbrock 

4D function.  

The initial conditions are the same as those imposed in the tests of the 2D 

Rosenbrock function. In these tests the cost vector 𝛼3 = [4, 2, 1] is selected for the 

same considerations in experiment 2 of the 2D Rosenbrock function.  

In Fig. 22 it can be seen how the effectiveness of the algorithm has slightly 

worsened. Although the median reaches values close to zero in a few iterations, the 

value of the interval is considerable. In fact, convergence is achieved in a greater 

number of iterations than in experiment 1. Furthermore, 3% of the tests do not reach 

the null error condition. On average, the function 𝑦(1) was called 59.5 times, the 

function 𝑦(2) 28.7 times and the high-fidelity function 𝑦(2) was called 11.8 times. 

The computation time associated with the MFEI algorithm averages 56 minutes 

against 61 minutes for the SFEI algorithm.  

 

 

Figure 22: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 2 of the multifidelity Rosenbrock 4D function optimization problem. 
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• Experiment 3 

Considering the experiment 3, two levels of fidelity are taken into account. The 

function 𝑦(1) is the 4D quadratic function and 𝑦(2) is the 4D Rosenbrock function. 

The initial conditions are the same as those imposed in the tests of the 2D 

Rosenbrock function. The cost vector selected is 𝛼3 = [4, 1].  

In Fig.23 it is shown how the performance of the algorithm is even worse than in 

the previous case. In most of the tests conducted, the median tends to zero in a 

significantly greater number of iterations. Furthermore 4% of the tests do not reach 

convergence, as the interval suggest. On average, the low-fidelity function 𝑦(1) was 

called 82.7 times, and the high-fidelity function 𝑦(3) was called 17.3 times. The 

computation time associated with the MFEI algorithm averages 69 minutes against 

61 minutes for the SFEI algorithm.  

 

 

 

 
Figure 23: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 3 of the multifidelity Rosenbrock 4D function optimization problem. 
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7.6. 8D Rosenbrock Function  
 

 
The high-fidelity function is defined as:  

 

𝑦(𝑀)(𝑥) =∑(1 − 𝑥𝑖)
2 + 100(𝑥𝑖+1 − 𝑥𝑖)

2

7

𝑖=1

 (63) 

 

The experimental setups considered are the following:  

 

• Experiment 1: Low-fidelity function linear mapping defined as:  

 

𝑦(1)(𝑥) =
𝑦(𝑀)(𝑥) − 4.0 − ∑ 0.5𝑥𝑖

8
𝑖=1

3.0 + ∑ 0.25𝑥𝑖
8
𝑖=1

 (64) 

 

• Experiment 2: Low-fidelity functions defined as the linear mapping in Eq. 

(64) and the quadratic 8-dimensions function:  

 

𝑦(1)(𝑥) =
𝑦(𝑀)(𝑥) − 4.0 − ∑ 0.5𝑥𝑖

8
𝑖=1

3.0 + ∑ 0.25𝑥𝑖
8
𝑖=1

  

 

 

𝑦(2)(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 + 𝑥5
2 + 𝑥6

2 + 𝑥7
2 + 𝑥8

2 (65) 

 

• Experiment 3: Low-fidelity functions defined as the quadratic 8-dimensions 

function:  

 

𝑦(2)(𝑥) = 𝑥1
2 + 𝑥2

2 + 𝑥3
2 + 𝑥4

2 + 𝑥5
2 + 𝑥6

2 + 𝑥7
2 + 𝑥8

2  
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7.6.1.  Experimental Results  
 
This section reports the results of the SFEI and MFEI algorithm considering the 

experiments conducted on the 8-dimensional Rosenbrock function mentioned 

above. 

• Experiment 1 

In experiment 1 two levels of fidelity are considered. The lowest fidelity function 

is a linear 8-dimensional mapping. The initial conditions are the same as those 

imposed in the tests of the 2D Rosenbrock function. The cost vector 𝛼3 = [4, 1] is 

selected based on previous low-dimensional experiments.  

In Fig.24 the error median and the interval over the test iterations is presented. As 

already seen for the lower dimension cases, the median trend decreases rapidly with 

the number of iterations. Nevertheless, the interval is different from zero at the end 

of the iterations, since 2% of cases do not reach convergence. This suggests that 

with the increase of the dimensionality of the problem, the algorithm tends to 

perform less effectively.  

On average, the low-fidelity function 𝑦(1) was called 83.4 times and the high-

fidelity function 𝑦(2) was called 16.6 times. The computation time associated with 

the MFEI algorithm averages 78 minutes against 108 minutes for the SFEI 

algorithm.  

 

Figure 24: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 1 of the multifidelity Rosenbrock 8D function optimization problem. 
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• Experiment 2 

In experiment 2 three levels of fidelity are considered. Function 𝑦(1) is a linear 

mapping, 𝑦(2) is an eight dimensions quadratic function and 𝑦(3) is the Rosenbrock 

8D function. The initial conditions are the same as those imposed in the tests of the 

2D Rosenbrock function. In these tests the cost vector 𝛼3 = [4, 2, 1].  

In Fig. 25 it can be seen how the effectiveness of the algorithm has worsened, both 

for the presence of the quadratic function and for the increase in dimensionality of 

the problem. In fact, convergence is achieved in a greater number of iterations than 

in experiment 1. Furthermore, 10% of the tests do not reach the null error condition. 

On average, the function 𝑦(1) was called 68.3 times, the function 𝑦(2) 23.6 times 

and the high-fidelity function 𝑦(2) was called 8.1 times. The computation time 

associated with the MFEI algorithm averages 93 minutes against 108 minutes for 

the SFEI algorithm.  

 

 

 

 

Figure 25: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 2 of the multifidelity Rosenbrock 8D function optimization problem. 
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• Experiment 3 

 

Considering the experiment 3, two levels of fidelity are taken into account. The 

function 𝑦(1) is the 8D quadratic function and 𝑦(2) is the 8D Rosenbrock function. 

The initial conditions are the same as those imposed in the tests of the 2D 

Rosenbrock function. The cost vector selected is 𝛼3 = [4, 1].  

In Fig.26 it is shown how the performance of the algorithm is even worse than in 

the previous case. In most of the tests conducted, the mean tends to zero in a 

significantly greater number of iterations. However, only the 1% of the tests didn’t 

reach the convergence.  

On average, the low-fidelity function 𝑦(1) was called 84.9 times, and the high-

fidelity function 𝑦(2) was called 15.1 times. The computation time associated with 

the MFEI algorithm averages 98 minutes against 108 minutes for the SFEI 

algorithm.  

 

 

 

Figure 26: Median/Interval-Iterations results of the MFEI algorithm applied to the 

experiment 3 of the multifidelity Rosenbrock 8D function optimization problem. 

 



89 
 

8. Re-Entry Vehicle Optimization Problem 
 
Returning to Earth from other planetary bodies or Low Earth Orbit (LEO) entails 

an extreme hypersonic environment during atmospheric entry. This involves 

entering Earth’s atmosphere at high velocities ranging from 10 km/s to 15 km/s 

with corresponding Mach numbers from 30 to 50, while withstanding 3000+ K 

temperatures at and near the stagnation point. The heat shield, which faces the 

freestream flow and protects the entry vehicle, is the primary source of the vehicle’s 

hypersonic aerothermodynamic performance (i.e. the aerodynamic forces, 

moments, and heat transfer). The rest of the vehicle is secondary since it is covered 

with regions of extremely low pressure, due to flow separation, and since it 

experiences significantly lower heat fluxes.  

For these systems, aerodynamics and thermodynamics phenomena are strongly 

coupled and relate to structural dynamics and vibrations, chemical non equilibrium 

phenomena that characterize the atmosphere, specific re-entry trajectory, and 

geometrical shape of the body.  

Blunt bodies are common geometric configurations used in planetary re-entry (e.g. 

Apollo Command Module, Mars Viking probe, etc.). These geometries permit to 

obtain high aerodynamic resistance to decelerate the vehicle from orbital speeds 

along with contained aerodynamic lift for trajectory control. The large radius-of-

curvature allows to reduce the heat flux determined by the high temperature effects 

behind the shock wave.  

Given the multidisciplinary nature of the phenomena and the Multiphysics domain, 

modelling the physical phenomena involved in the return phase represents a 

demanding challenge. The design and optimization of blunt bodies and the re-entry 

trajectories would largely benefit from accurate analysis of the re-entry flow-field 

through high-fidelity representations of the aerodynamic and aerothermodynamic 

phenomena.  

However, those high-fidelity representations are usually in the form of computer 

models for the numerical solutions of PDEs (e.g. Navier-Stokes equations, heat 

equations, etc.) which require significant computational effort and are commonly 

excluded from preliminary multidisciplinary design and trade-off analysis.  

To address this challenge, the application of Multi-fidelity methods is explored in 

the design optimization process. Multi-fidelity methods allow to accelerate the 

exploration and evaluation of designs in optimization problems through the use of 

different physical models characterized by different levels of fidelity and associated 

computational cost. High-fidelity data are produced by a process that can closely 

match the operational contest of interest. Low-fidelity data are produced by a 

process that deviates in terms of accuracy from the real-world case of interest.  
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The benefit of using low-fidelity data is that are cheaper to acquire, in terms of 

computational cost, than the high-fidelity information. However, despite the 

possible elicitation of large amount of data, low fidelity models may not be 

adequate to predict the real contest of operation of the system analysed.  

By effectively combining low-cost information from low-fidelity models and a 

reduced number of invocations of more expensive computationally high-fidelity 

models, multi-fidelity methods help speed up the process of identifying the optimal 

design reducing the total simulative computational cost. In particular, the 

implementation of a multi-fidelity method based on active learning will be 

investigated. This choice is linked to the possibility of reducing the number of 

points to be sampled and optimizing the choice of points to be sampled in the 

optimization process.  

In the following paragraphs the problem of optimizing an atmospheric re-entry 

vehicle will be faced. Specifically, the optimization problem will consist in defining 

an appropriate set of forces (therefore an appropriate re-entry trajectory) and 

thickness of the thermal protection system (therefore an appropriate structural 

design) in order to minimize a black-box objective function dependent on the mass 

of propellant burned, mass of the thermal protection system (TPS) and the 

temperature reached by the heat shield. The MFEI algorithm presented in Chapter 

6 and extensively tested on analytic test-functions in Chapter 7 has been 

implemented with an original formulation to address the re-entry optimization 

problem. 
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8.1. Re-Entry Vehicle Design Structure Matrix 

 
In Fig. 27 is presented the design structure matrix (DSM) of the re-entry 

optimization problem. Several workflows are defined supporting the 

multidisciplinary design problem described above. The various analyses include:  

1. Propulsion system: modelling the physics of space vehicle thrusters for 

attitude control and orbital manoeuvres. 

2. Trajectory: definition and computation of the equations of atmospheric re-

entry motion. 

3. Aerodynamic and thermodynamic: modelling the dynamics of the 

chemically unstable gas and the interaction with the vehicle. Determine the 

phenomena and thermal flows on the structure. Specifically, two levels of 

fidelity are considered for this multidisciplinary block: a low-fidelity model 

based on simplified formulations and a high-fidelity model based on the 

numerical resolution of the Navier-Stokes equations. 

4. Thermal protection system structure and temperature: implementation of a 

suitable structural model for the TPS of a re-entry vehicle to determine 

structural sizing and thermal loads. 

 

The input data to the optimization loop are a set of design optimization variables 

along with data required to configure the various analysis. The design optimization 

variables are the parameters sampled by that the algorithm in order to reach the 

minimum of the objective function.  

In Fig. 27 the optimization variables are the propellant mass burned during the 

manoeuvres and the TPS structural mass and temperature, indicated by orange 

blocks. The data needed for the analyses are shown in the green blocks. This 

information are not optimization variables and therefore it does not vary during the 

optimization loop. In the diagonal of the DSM are placed the models that define the 

multidisciplinary analyses conducted in the optimization loop. Physical model 

outputs are shown with grey blocks and are related according to the relationships 

listed in chapter 2. Nested loops are shown in the lower triangle of the DSM. 

Specifically, one loop is identified by the mass of propellant in output from the 

propulsion system block, the other is constituted by the TPS structure mass and 

temperature in output from the TPS structure and temperature block. In the 

following paragraphs the models adopted in the optimization process are described.  
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Figure 27: Design Structure Matrix Re-entry problem. 
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8.2. Atmospheric Re-Entry From Space: The Hypersonic 

Regime 
 
A Hypersonic flow is a flow moving many times faster than the speed of sound. As 

the definition of hypersonic flow, there is not a precise Mach number that sets the 

lower bound of the hypersonic regime. It is commonly accepted that hypersonic 

flow occurs when the free-stream Mach number is larger than a value ranging from 

5 to 7. Hypersonic flight is the flight regime that characterizes the entry of a space 

vehicle in a planetary atmosphere (terrestrial or extra-terrestrial). It is also the flight 

regime of propelled hypersonic vehicles that at this time have been or are being 

developed mainly for technology demonstration and military purposes.  

The difference between hypersonic flow and supersonic flow (1 < M < 5) has great 

impact on vehicle design [2]. For example, the shock wave that is generated will be 

closer to the vehicle surface, and a thick layer in which large frictional forces are 

present is generated. The flow has a high velocity and the kinetic energy is high. 

Due to the frictional forces, the air is slowed down, and heat is generated. This can 

result in high temperatures, in the order of 10,000K behind a normal shock. When 

air is heated up, the chemistry changes [4].  

Regular air is mainly dominated by concentrations of oxygen (𝑂2) and nitrogen 

(𝑁2). Around 800K, air is excited due to vibrational energy, which affects gas 

properties.  

Following the dissertation proposed by Anderson et al. [1787], Fig.28 shows the 

ionisation and dissociation diagram of oxygen and nitrogen. At 2500K oxygen 

begins to dissociate, breaking the molecule apart into two atoms (2𝑂). At 4000K, 

nitrogen also begins to dissociate into atomic nitrogen (2𝑁). Finally, at 9000K the 

air is completely dissociated and starts to ionise, a process where an electron (𝑒– ) 

moves freely around, resulting in positively charged nitrogen and oxygen ions (N+ 

and O+).  

The mixture of species (N2, N, N+, O2, O, O+) has enough energy to react with either 

the surface material of the vehicle or with other species itself, creating, for example, 

NO as well. Especially atomic oxygen is highly corrosive and is damaging to 

materials. The ionised species create a layer of plasma around the body, which is 

responsible for the communication blackout in re-entry.  

Fig.28 shows the Shuttle velocity-altitude map. Nitrogen and oxygen are already 

dissociated at the beginning of the trajectory of the Space Shuttle. When the velocity 

is decreased and the altitude decreases, only oxygen is still dissociated while 

nitrogen has recombined to nitrogen molecules. After the oxygen dissociation 

phase, the vibrational excited molecules are still present. In the final leg of the re-

entry trajectory, the velocity and altitude are decreased to a point where no chemical 

effects occur. Chemically reacting flows must be considered when considering 

hypersonic flow. 
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The presence of different chemical species in a flow calls for a different gas model 

than the well-known perfect gas model. The specific heat ratio 𝛾 is not constant 

anymore and the value of 𝑐𝑝 becomes dependent of temperature. Forward and 

backward reaction rates need to be considered. These reaction rates are determined 

experimentally, and the coefficients are difficult to compute. To deal with these 

chemical mechanisms (non-equilibrium flow), engineering methods have been 

derived to either treat the chemical composition as fixed in time and space (frozen 

flow) or only fixed in time (equilibrium flow) [178]. 

 

 

Figure 28: on the right dissociation and ionisation diagram of 𝑁2 𝑎𝑛𝑑 𝑂2 ; on the 

left the velocity-altitude map with Shuttle re-entry corridor and areas of vibrational 

excitation, dissociation and ionisation. The Images are taken from the dissertation 

of Anderson et al. [178] 

 

8.3. Re-Entry Vehicle Geometry 
 

Blunt body configurations are the most common geometry employed for entry into 

planetary atmosphere. Examples of manned blunt-body entry vehicles include the 

Mercury, Gemini and Apollo capsules and SpaceX Crew Dragon capsule. 

Examples of unmanned flight test or interplanetary probe blunt-body entry vehicles 

are more numerous and include the Viking Pioneer, FIRE II, ARD, OREX, 

Stardust, etc. [1].  

In broad terms, a blunt-body entry vehicle is comprised of a large heat shield that 

protects a smaller crew cabin or robotic probe payload. The heat shield is generally 

axisymmetric with either a large-angle, sphere cone geometry (e.g., the Mars 

Viking probe) or a large radius-of-curvature spherical cap (e.g., the Apollo 

command module), although asymmetric shapes have sometimes been considered 

(e.g., the cancelled Aero assist Flight Experiment).  
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The geometry of the heat shield produces large amounts of aerodynamic drag that 

decelerate the vehicle from orbital or interplanetary speeds. A small amount of 

aerodynamic lift for manoeuvrability and cross range capability may also be 

provided by offsetting the centre-of-gravity of the vehicle to trim it at a nonzero 

angle of attack [1]. 

 

8.3.1.  Ballistic Coefficient 
  
The re-entry vehicle’s size and shape help determine the ballistic coefficient (BC) 

and the amount of lift it will generate [3]:  

 

𝐵𝐶 =
𝑊

𝐶𝑑𝐴
 (66) 

 

Where  𝑊 is the vehicle weight, 𝐴 is the cross-sectional area and 𝐶𝑑 is the drag 

coefficient. The hardest component of BC to determine for re-entry vehicles is the 

drag coefficient, CD, which depends mainly on the vehicle’s shape. At low speeds, 

analysing a model of the vehicle in a wind tunnel and take specific measurements 

it’s enough to determine CD. But at re-entry speeds approaching 25 times the speed 

of sound, wind tunnel testing is not practical because no tunnels work at those 

speeds. Instead, mathematical models of hypersonic flow must be considered to 

find CD. The most accurate of these approaches is computational fluid dynamics 

(CFD).  

The Ballistic Coefficient is the single most important parameter in controlling flight 

trajectory during entry [3]. Heating and deceleration are less intense for a low BC 

value (low weight and/or high drag and large frontal area) than for a high BC value 

(high weight and/or low drag and small frontal area) since the entry occurs high in 

the atmosphere where the air is less dense. Early Inter-Continental Ballistic Missiles 

(ICBM) with highly blunted sphere-cone-cylinder-flare geometries utilized this re-

entry method. Thermal protection for these early warheads was a massive metallic 

heat shield, which merely provided a "heat sink" for the short heating pulse at high 

altitudes.  

It was soon discovered that delivery accuracy could be improved by increasing the 

values of BC using slightly blunted slender sphere-cone geometries thus increasing 

the impact velocity so that the final descent phase was less affected by winds. 

Thermal protection was provided by allowing the material at the surface of the heat 

shield to melt or vaporize thus transferring much of the heat back into the 

atmosphere. This method of thermal protection is referred to as "ablation," and the 

material that is applied to the vehicle’s outer surface is called an "ablator." 
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Representative ballistic earth entry trajectories are presented in the analysis 

proposed by Adams et al. [3]. In Fig.29 are presented the results based on the 

application of a point mass ballistic entry computer program using the 1976 U.S. 

standard atmosphere model [181]. Initial entry conditions are: 

 

• Altitude = 250,000 ft 

• Velocity = 22,500 ft/sec 

• Flight Path Angle = 12 deg 

 

with four values of BC, namely 100, 500, 1000, and 5000 𝑙𝑏𝑓/𝑓𝑡
2. A BC value 

between 100 and 500 is representative of the early ICBM highly blunted sphere-

cone-cylinder-flare geometry, while a BC value of 1000 to 5000 is representative 

of the slightly blunted slender sphere-cone geometry used in modern re-entry 

vehicles [3].  

The stagnation point heat transfer is for a sphere having a nose radius of 1.0 ft using 

the Fay-Riddell correlation. Note how peak deceleration, dynamic pressure, 

dynamic energy, stagnation point pressure, and stagnation point heat transfer are 

shifted to a lower altitude with increasing BC. Entry times vary from slightly over 

three minutes for a BC = 100 value to slight less than one minute for a BC = 5000 

value. Range distance is about 160 miles for the lowest value of BC (below about 

50,000 ft in altitude the vehicle has slowed to subsonic velocities and literally falls 

out of the sky), and increases to 190, 200, and 210 miles for the other three BC 

values in increasing order.  

The flight path angle at entry controls range distance and entry times, with shallow 

angles increasing range distance and flight time. Further observe that modern 

ballistic re-entry vehicles with BC values on the order of 5000 impact the earth’s 

surface at hypersonic conditions [3].  
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Figure 29: Ballistic Earth Entry Trajectory. The Images are taken from the work of 

Adams et al. [3]. 
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8.3.2.  Orion Crew Module Geometry  
 

In this thesis, Orion Crew Module geometry is considered in the re-entry 

optimization problem. The Project Orion Crew Exploration Vehicle (CEV) was 

defined by NASA’s Exploration Systems Architecture Study as NASA’s next 

manned space vehicle (Fig.30) [174].  

The CEV will support NASA’s exploration missions by providing crew access to 

the International Space Station, the moon, and Mars.  The geometry of the CEV 

(Fig.31) is similar to that of Apollo – a spherical segment heat shield that protects 

a truncated-cone shaped crew compartment – but is considerably larger. The 

maximum diameter (current design iteration) of the CEV is 5 m, as compared to 

that of 3.912 m for Apollo.  

The design of the CEV TPS must account for the high heating rates generated at 

lunar return velocities and the aerothermodynamic challenges of non-equilibrium 

thermo-chemistry, turbulent flow, and radiation transport [175, 176, 177].  

 

 

Figure 30: Orion Crew Exploration Vehicle (CEV). Image from NASA website 

[185]. 
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Figure 31: Orion CEV Crew Module Dimensions. Image reproduced from the 

dissertation of Adhams et al. [174]. 

 

 

8.4. Re-Entry Dynamics 

 
Several fundamental concepts regarding re-entry trajectory formulation have been 

applied. In the following paragraphs, a brief summary of them is provided including 

the equations of motion, atmospheric and gravitational model, and the computation 

of load factor. The following dissertation is taken from Hirshel et al. work [177].  

 

8.4.1.  General Equation for Planetary Flight 
 
Considering an unpowered and uncontrolled flight, Newton’s second law can be 

formulated for an inertial system1, 𝑶, 𝑥0, 𝑦0, 𝑧0,  illustrated in Fig. 32, as follows:  

𝑚
𝑑𝑽

𝑑𝑡
= 𝑭𝐴 +𝑚𝑮 (66) 

 

where 𝑭𝐴 contains the aerodynamic forces and 𝑮 represents the gravity.  
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Figure 32: Inertial coordinate system 𝑶, 𝑥0, 𝑦0, 𝑧0, planet fixed coordinate system 

𝑶, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝, and rotating coordinate system 𝑶, 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 . Image reproduced  from  

Hirshel et al. analysis in [177]. 

 

 

Figure 33: Coordinate system 𝑶′, 𝑥𝑔, 𝑦𝑔, 𝑧𝑔 parallel to coordinate system 

𝑶, 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 . Image reproduced from Hirshel et al. analysis in [177]. 
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After various changes of coordinate systems and manipulations [177], as shown in 

Fig 32, 33 and 34, Eq. (66) can be written in scalar form:  

 

𝑑𝑉

𝑑𝑡
=  −

1

𝑚
𝐷 − 𝑔 sin 𝛾 + 𝜔2𝑟𝑐𝑜𝑠2𝜙 (sin 𝛾 − cos 𝛾 𝑡𝑎𝑛𝜙 sin 𝜒) 

 

 

 

𝑉
𝑑𝛾

𝑑𝑡
=
1

𝑚
𝐿 𝑐𝑜𝑠𝜇𝑎 − 𝑔 cos 𝛾 +

𝑉2

𝑟
cos 𝛾 + 2𝜔𝑉 cos𝜙 𝑐𝑜𝑠𝜒

+ 𝜔2𝑟 cos2 𝜙 (cos 𝛾 + sin 𝛾 𝑡𝑎𝑛𝜙 sin 𝜒) 

 

(67) 

 

𝑉
𝑑𝜒

𝑑𝑡
=
1

𝑚

𝐿 sin 𝜇𝑎
𝑐𝑜𝑠𝛾

−
𝑉2

𝑟
cos 𝛾 cos 𝜒 tan𝜙 + 2𝜔𝑉(tan 𝛾 cos𝜙 sin 𝜒 − sin𝜙)

−
𝜔2𝑟

cos 𝛾
sin 𝜙 cos𝜙 cos 𝜒 

 

 

 

Figure 34: Coordinate system 𝑶′, 𝑥𝑔, 𝑦𝑔, 𝑧𝑔 and coordinate system 

𝑶′, 𝑥𝑘, 𝑦𝑘, 𝑧𝑘 with the definition of bank angle 𝜇𝑎 and the lift 𝑳 outside the 𝒓, 𝑽 

plane. Image reproduced from Hirshel et al. analysis in [177]. 
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The kinematic equations must be added to Eq. (67):  

 

𝑑𝑟

𝑑𝑡
= 𝑉 sin 𝛾 

 

 

 

𝑑𝜃

𝑑𝑡
=
𝑉 cos𝛾 cos 𝜒

𝑟 cos𝜙
 

 

(68) 

 

𝑑𝜙

𝑑𝑡
=
𝑉 cos 𝛾 sin𝜒

𝑟 
 

 

 

 

Considering the planet as non-rotating (𝜔 = 0), Eq. (67) can be simplified:  

 

𝑑𝑉

𝑑𝑡
=  −

1

𝑚
𝐷 − 𝑔 sin 𝛾   

 

𝑉
𝑑𝛾

𝑑𝑡
=
1

𝑚
𝐿 𝑐𝑜𝑠𝜇𝑎 − 𝑔 cos 𝛾 +

𝑉2

𝑟
cos 𝛾 

 

(69) 

 

𝑉
𝑑𝜒

𝑑𝑡
=
1

𝑚

𝐿 sin 𝜇𝑎
𝑐𝑜𝑠𝛾

−
𝑉2

𝑟
cos 𝛾 cos 𝜒 tan𝜙 
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During the re-entry it is assumed that the flight path azimuth angle 𝜒 does not vary. 

The last equation in Eq. (29) can be neglected:  

 

𝑑𝑉

𝑑𝑡
=  −

1

𝑚
𝐷 − 𝑔 sin 𝛾   

 

𝑉
𝑑𝛾

𝑑𝑡
=
1

𝑚
𝐿 𝑐𝑜𝑠𝜇𝑎 − 𝑔 cos 𝛾 +

𝑉2

𝑟
cos 𝛾 

 

(70) 

And Eq. (68) reduces to:  

𝑑𝑟

𝑑𝑡
= 𝑉 sin 𝛾 

 

 

 

𝑑𝜃

𝑑𝑡
=
𝑉 cos 𝛾

𝑟
 

 

(71) 

The system of non-linear ordinary differential Eq. (70) and (71) for planar re-entry, 

in the form of:  

𝑑𝑦

𝑑𝑡
= 𝑓(𝑦(𝑡), 𝑡) (72) 

 

Can be integrated using a Runge-Kutta method. The most suitable algorithms from 

MATLAB ODE solvers is ODE45.  

In Fig. 35-36-37 are presented the results of the integration of Eq. (72) performed 

in Matlab. The outcomes are computed considering an Orion-like vehicle and 

unpowered re-entry trajectory.  
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Figure 35: Inertial velocity- time relationship for Orion-like unpowered re-entry 

vehicle  

 

Figure 36: Flight Path Angle-time relationship for Orion-like unpowered re-entry 

vehicle  
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Figure 37: Altitude-time relationship for Orion-like unpowered re-entry vehicle  

 

 

8.4.2.  Atmospheric Model 
 
Different atmospheric models can be considered:  

• 1976 COESA model:  

implemented in the MATLAB Aerospace Toolbox as a built-in function 

atmoscoesa. See reference [181] for more details.  

• Exponential model:  

 

𝜌(𝐻) =   𝜌0 exp (−𝛽𝑟) (73) 

 

          Where 𝜌0 = 1.225 𝑘𝑔/𝑚
3 is sea level density and  𝛽 =  1.40845 ∙

            10−4 𝑚−1  is a model parameter.   
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8.4.3. Gravitational Model  
 

In this work, spherical gravity model is considered. The Newton’s law for Universal 

Gravitation is used to determine gravitational acceleration with altitude:  

 

𝑔 (𝐻) = 𝑔0  (
𝑅𝐸

𝑅𝐸 +𝐻
)
2

 (74) 

 

Where 𝑔0 = 9.81 𝑚/𝑠
2 is gravitational acceleration at sea level and 𝑅𝐸 = 6.378 ∙

106 𝑚 is Earth Radius.   

 

 

8.4.4. Load Factor  
 
After rearrangement of Eq. (70), the load factor normal 𝑛𝑛 and along the flight 

path 𝑛𝑡 can be obtained:  

 

𝑛𝑛 =
𝑉

𝑔

𝑑𝛾

𝑑𝑡
 (75) 

  

𝑛𝑡 =
1

𝑔

𝑑𝑉

𝑑𝑡
 

(76) 

 

In Fig. 38-39 are presented the normal and tangential load factor trends with 

altitude. The vehicle considered is an Orion-like capsule and the re-entry is 

performed with unpowered trajectory.  
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Figure 38: Normal load factor-time relationship for Orion-like unpowered re-entry 

vehicle. 

 

 
Figure 39: Tangential load factor-time relationship for Orion-like unpowered re-

entry vehicle. 
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8.5. Flow Regimes 
 
Knudsen number is defined as:  

 

𝐾𝑛 =
𝑀𝐹𝑃

𝐿𝑐
 (77) 

 

Where 𝑀𝐹𝑃 is the mean free path between successive collisions of air molecules 

and 𝐿𝑐 is the flowfield characteristic length, approximated with the body 

characteristic length. The mean free path can be expressed as:  

 

𝑀𝐹𝑃 =
1

√2𝜋𝜎𝑑
2𝑛𝑑

 (78) 

 

Where 𝜎𝑑 = 3.7 ∙ 10
−10𝑚 is the effective diameter of the gas particles and 𝑛𝑑 is 

the number density that can be expressed as ratio between the air density and the 

molecule mass. The Knudsen number can be used to distinguish among three flow 

field regimes [178]:  

• Free Molecular Regime: 𝐾𝑛 > 10 

The Free Molecular Regime is characterized by a large mean free path and 

consequently by a long relaxation time. The continuum hypothesis does not 

hold, and it is necessary to consider the state of the single particles and their 

interaction with other particles and with boundaries. The direct simulation 

Monte Carlo (DSMC) method is required to simulate flow in the Free 

Molecular Regime.  

• Transition Regime: 0.01 < 𝐾𝑛 < 10 

In the Transition Regime both the molecule-surface collisions and the 

intermolecular forces are important. The direct simulation Monte Carlo 

(DSMC) method is used in the upper limit of Transition Regime. The 

Navier-Stokes methods can be extended to the lower limit of Transition 

Regime.  

• Continuum Regime: 𝐾𝑛 < 0.01 

In the Continuum Regime the flow has a very short relaxation time and the 

macroscopic properties can be considered to vary continuously. Navier-

Stokes methods are appropriate in the Continuum Regime.  

 



109 
 

8.5.1. Mach Number  

 
The Mach Number allows to establish how important the compressibility effects of 

the fluid under examination are. In physics, the Mach number defines the ratio 

between a macroscopic speed 𝑉 and the propagation speed 𝑎 of longitudinal sound 

waves in the considered medium:  

𝑀𝑎 =
𝑉

𝑎
 (79) 

 

The motion around bodies can be classified in different conditions which 

correspond to different fluid dynamic behaviours, depending on the local Mach 

number:  

• Subsonic Regime: 𝑀𝑎 < 0.8. 

• Transonic Regime: 0.8 < 𝑀𝑎 < 1.3. 

• Supersonic Regime: 1.3 < 𝑀𝑎 < 5.0. 

• Hypersonic Regime: 5.0 < 𝑀𝑎 < 10.0. 

• High-hypersonic Regime: 10.0 < 𝑀𝑎 < 25.0. 

• Re-entry Speeds Regime: 𝑀𝑎 > 25.0. 

 

 

8.5.2. Reynolds Number  
 
The Reynolds number physically represents the ratio between the inertia and 

viscous forces acting on a fluid particle moving with speed 𝑉 inside the same fluid: 

𝑅𝑒 =
𝜌𝑉𝑙𝑐
𝜇

 (80) 

 

Where 𝜌 is the air density, 𝑙𝑐 is the body characteristic length and 𝜇 is the fluid 

dynamic viscosity. The dynamic viscosity can be estimated using Sutherland’s Law 

[9]:  

 

𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2 𝑇𝑟𝑒𝑓 + 𝑆

𝑇 + 𝑆
 (81) 
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Where 𝑇𝑟𝑒𝑓 is the reference temperature, 𝜇𝑟𝑒𝑓 is the fluid dynamic reference 

viscosity and 𝑆 = 110 𝐾 is a constant. The Reynolds number allows to evaluate 

whether the flow of a fluid is in a laminar regime (in correspondence with which 

there are lower values of the Reynolds number) or in a turbulent regime (in 

correspondence with higher values of the parameter). This transition between 

laminar and turbulent regime can be predicted by exploiting the Moody diagram, 

with which the viscous friction coefficient can be calculated starting from the values 

of the Reynolds number and the relative roughness. The Reynolds number values 

are to be considered "low" or "high" in relation to a specific system, in which they 

are fixed: 

 

• The geometry of the body hit by the flow. 

• The nature of the fluid. 

• The operating conditions (temperature and pressure) under which the 

experience takes place. 
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8.6. Low Fidelity Aerothermodynamics Model  
 
In order to speed up the computation some important assumptions have been made 

in modelling aerodynamic and thermodynamic physics. Specifically, the 

aerodynamic model introduces the Oswatitsch Mach number indipendence 

principle while the thermodynamic model exploits the semi-empirical correlations 

of Tauber-Sutton and Sutton-Grave to solve heat equation.  

 

8.6.1. Aerodynamic Forces 
 
A body of any shape immersed in a fluid current is affected by a fluid-dynamic 

action whose resultant in general will be directed obliquely with respect to the flight 

speed V. The force F is the resultant of the local actions that, due to the relative 

motion, are exerted on each external surface element of the body. For ease of study, 

the F is decomposed according to the directions of the reference wind axes in two 

components:  

 

• Lift: is defined as the aerodynamic force acting perpendicular to the 

direction of the wind.  

𝐿 =
1

2
𝜌𝑉2𝐴𝑟𝑒𝑓𝐶𝐿 (82) 

 

• Drag: is defined as the aerodynamic force acting in the direction of the 

wind. 

𝐷 =
1

2
𝜌𝑉2𝐴𝑟𝑒𝑓𝐶𝐷 (83) 

 

Where 𝐴𝑟𝑒𝑓 is the area of the midship section of the vehicle, 𝐶𝐷 is the drag 

coefficient and 𝐶𝐿 is the lift coefficient. These coefficients are obtained by 

integrating the pressure distribution over the body surface.  

The main approximation of the trajectory model is that 𝐶𝐿 and 𝐶𝐷 remain constant 

with altitude. At large Mach numbers, given a defined body geometry, force 

coefficients tend to become independent of the Mach number, as illustrated in Fig. 

40. This is also true for the bow shock shape, the streamlines patterns, the sonic 

lines, the Mach lines in the supersonic region of the flow, the pressure coefficient 

and, in general, all force and moment coefficients. Physically, this may be 

interpreted saying that, as sound speed tends to infinity, the flow field “freezes” into 
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a limiting flow field. This principle can be found in literature as the Oswatitsch 

Mach number indipendence principle [10].  

 

 

Figure 40: 𝐶𝐷 tends to an asymptote as the Mach number increases. 

 

 

 

 

8.6.2. Stagnation Point Pressure 
 
Stagnation point pressure is the static pressure at a stagnation point in a fluid flow. 

In fluid dynamics, the stagnation point is a point in the flow field where the local 

instantaneous velocity is zero and all kinetic energy is converted into pressure 

energy isentropically. The stagnation point is on the surface of the object, in the 

flow field, which causes the flow to stop. So, stagnation point pressure is equal to 

the sum of the free-stream dynamic pressure 
1

2
𝜌𝑉2 and free-stream static pressure 

𝑝∞ [2]:  

 

𝑝 = 𝑝∞ +
1

2
𝜌𝑉2 (84) 
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8.6.3. Adiabatic Wall Temperature 
 

Adiabatic wall temperature is the temperature acquired by a wall in liquid or gas 

flow if the condition of thermal insulation is observed on it. The thermal insulation 

condition can be defined as the zero-wall normal temperature gradient condition:  

(
𝜕𝑇

𝜕𝑛
)
𝑤
= 0. It is sometimes called equilibrium temperature or recovery temperature. 

The concept of adiabatic wall temperature is used in the field of high velocity 

aerodynamics. The temperature profile in the boundary layer of a high-velocity gas 

flow over an adiabatic surface is displayed in Fig.41, Curve 1. Curve 2 shows a 

typical distribution of temperature for the case where heat is being added through 

the surface and Curves 3 and 4 are typical of cases where heat is being removed 

from the fluid via the surface 

For a compressible gas, adiabatic wall temperature can be calculated as [182]:  

 

𝑇 = 𝑇∞(1 + 𝑟𝑎𝑖𝑟
𝛾𝑎𝑖𝑟 − 1

2
𝑀∞
2 ) (85) 

 

Where 𝛾𝑎𝑖𝑟 = 1.4 is the isoentropic coefficient and 𝑟𝑎𝑖𝑟 is the recovery coefficient. 

𝑟𝑎𝑖𝑟 is not a constant but depends on the character of the flow on the surface, the 

flow regime, and the thermal properties of the medium. For simple geometries, its 

value can be estimated [182]:  

 

• 𝑟𝑎𝑖𝑟 = 1 at the front stagnation point of the body. 

• 𝑟𝑎𝑖𝑟 = √𝑃𝑟 in a laminar boundary layer with  0.5 < 𝑃𝑟 < 10. 

• 𝑟𝑎𝑖𝑟 = √𝑃𝑟
3

 in a turbulent boundary layer with Prandtl number close to 1 

 

 For supersonic flows when variations of the thermal properties of gas become 

significant, the above relations hold for the enthalpy field [182]:  

 

ℎ𝑟 = ℎ∞ +
𝑟𝑎𝑖𝑟𝑉∞

2

2
 (86) 
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In estimating the recovery coefficient, the Prandtl number is chosen at the reference 

Eckert enthalpy [11]:  

 

ℎ∗ = ℎ∞0.5(ℎ𝑤 − ℎ∞) + 0.22(ℎ𝑟 − ℎ∞) (87) 

 

 

 

 

 

Figure 41: Temperature profiles in the boundary layer of a high-velocity gas flow. 

The Image is taken from Dorrance et al. work in [182]).  
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8.6.4. General Heat Equation  
 
The general heat equation is a parabolic partial differential equation that describes 

the distribution of heat (or temperature change) in each region over time:  

 

𝜌𝐶𝑃𝑡𝑧
𝜕𝑇

𝜕𝑡
=  ∇(𝑘𝑡𝑧∇𝑇) − 𝑞𝑟 − 𝑞𝑐 + 𝑞𝑠 (88) 

 

Where the left term is the non-stationary one, while the right term is the sum of the 

conductive term, the radiative term 𝑞𝑟 =  𝜎𝜀(𝑇
4 − 𝑇𝑎

4), the convective term 𝑞𝑐 =

ℎ(𝑇 − 𝑇𝑎) and the source term 𝑞𝑠. 

In the following paragraphs are presented experimental correlations to approximate 

the terms in Eq. (88).  

In Fig. 42 is reported the outcome of Eq. (88) considering empirical formulations 

for the heat terms. The vehicle considered is an Orion-like capsule and the re-entry 

is performed with uncontrolled trajectory.  

 

 

Figure 42: Heat Flux-Altitude relationship for Orion-like unpowered re-entry 

vehicle. Experimental formulations are considered in computing the heat equation.  
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8.6.5. Tauber-Sutton Correlation  
 
The Radiative heat transfer is computed using the Tauber-Sutton radiative heating 

correlation for Earth re-entry [8]:  

 

𝑞𝑟𝑎𝑑 = 𝐶 𝑅𝑛
𝑎 𝜌𝑏𝑓(𝑉) (89) 

 

Where 𝑞𝑟𝑎𝑑 is the radiative heat-transfer rate into flight body, 𝐶, 𝑎, 𝑏  are constants 

based on the planetary atmosphere, 𝑅𝑛 is the hemispherical nose radius, 𝜌 is the 

freestream density and 𝑓(𝑉) is a tabulated function of velocity [8].  

  

V (m/s) f (V) 

9000 1.5 

9250 4.3 

9500 9.7 

9750 19.5 

10000 35 

10250 55 

10500 81 

10750 115 

11000 151 

11500 238 

12000 359 

12500 495 

13000 660 

13500 850 

14000 1065 

14500 1313 

15000 1550 

15500 1780 

16000 2040 

 

Table 5:  Radiative heating velocity function for earth. 
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8.6.6. Sutton-Grave Correlation 
 
The Convective heat transfer is computed using the Sutton-Grave convective 

heating correlation for Earth re-entry [12]:  

 

𝑞𝑐𝑜𝑛𝑣 = 𝑘 √
𝜌

𝑅𝑛
 (
𝑉∞
1000

)
3

 (90) 

 

 

Where 𝑞𝑐𝑜𝑛𝑣 is the convective heat-transfer rate into flight body, 𝑘 is a constant 

based on planetary atmosphere, 𝜌 is the free stream density and 𝑉∞ is the flight 

velocity.  
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8.7. High Fidelity Aerothermodynamics Model 
 
SU2 Computational Fluid Dynamic (CFD) is the solver used in this work to closely 

predict the Aerothermodynamics variables of interest. SU2 is a suite of open-source 

software tools written in C++ for the numerical solution of partial differential 

equations (PDE) and performing PDE-constrained optimization. In the following 

paragraphs the physical models present in SU2 are explained in detail.  

 

8.7.1. Navier-Stokes Equations 
 

The Navier-Stokes equations are considered to be the complete governing flow 

equations. The equations are derived by applying the conservation laws 

(conservation of mass, momentum, and energy) on a given control volume. The 

resulting equations2, including what contribution each term provides, yield [178]: 

 

𝜕𝜌𝑖
𝜕𝑡
+ ∇ ∙ (𝜌𝑽) = 0  (91) 

 

𝜕𝜌𝑖
𝜕𝑡
+ ∇  ∙ (𝜌𝑖𝑽𝒊) =  

𝑑𝜔𝑖
𝑑𝑡

 (92) 

 

𝜕(𝜌𝑽)

𝜕𝑡
+  𝜌(𝑽 ∙ ∇𝑽) + ∇𝑝 +  𝜌𝒇 + ∇ ∙ [ 𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) +  𝜆∇ ∙ 𝑽] = 0 (93) 

 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ ∙ (𝜌𝑽)𝐸

=  ∇ ∙ (𝑘∇𝑇) − ∇ ∙ (∑𝜌𝑖𝑽𝑖ℎ𝑖
𝑖

) − ∇ ∙ 𝒒𝑹 − ∇ ∙ (𝑝𝑽) + ∇

∙ (𝑽 ∙ 𝜏𝑖𝑗)  

 

(94) 

 

The Navier-Stokes equations include viscous effects, radiative effects, chemical 

reactions, species continuity in Eq. (92), diffusion and conduction. To fully simulate 

a flow, all these terms are necessary, especially for the hypersonic high temperature 
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flow considered in this thesis. However, creating a CFD software package to take 

all terms into account that can be validated and verified is difficult. In addition, the 

computational time would increase drastically. SU2 has capabilities of computing 

chemically reacting flow, however, this feature is not fully developed yet. Since the 

software is not specialised towards hypersonic flows, the following quantities from 

Eq. (92) and (94) are not included:  

 

• Species continuity in Eq. (30),  

• Body force,  

• Transport of energy due to chemical diffusion,  

• Transport of energy due to radiation.  

 

The resulting governing equations for the analysis of this thesis are [178]:  

 

𝜕𝜌𝑖
𝜕𝑡
+ ∇ ∙ (𝜌𝑽) = 0  (95) 

 

𝜕(𝜌𝑽)

𝜕𝑡
+  𝜌(𝑽 ∙ ∇𝑽) + ∇𝑝 + ∇ ∙ [ 𝜇 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
) +  𝜆∇ ∙ 𝑽] = 0 (96) 

 

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ ∙ (𝜌𝑽)𝐸 =  ∇ ∙ (𝑘∇𝑇) − ∇ ∙ (𝑝𝑽) + ∇ ∙ (𝑽 ∙ 𝜏𝑖𝑗)  (97) 
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8.7.2. Stagnation Point Heat Flux: Fay-Riddle Correlations 
 

A well-accepted engineering method to determine the stagnation point heat flux on 

a vehicle in a hypersonic flow is the method derived by Fay and Riddell. The 

equations are based on the transformed boundary layer energy equation. The 

assumptions associated with Fay and Riddell are [6] listed below and visualised in 

Fig. 43.  

 

• The shock-layer is partially dissociated and the flow conditions at the outer 

edge of the boundary layer are those for local thermodynamic and chemical 

equilibrium. The chemical reactions only take place in the boundary layer 

and the thermodynamic state of the flow outside the boundary layer does 

not change over time. 

• Regions of nonequilibrium, equilibrium or frozen flow may be present in 

the boundary layer, depending on the characteristic time for a fluid element 

to move through the flow field and the characteristic time for a fluid element 

to reach chemical equilibrium. 

• The inviscid velocity distribution at the outer edge of the boundary layer in 

the stagnation region is given by the incompressible relation: 

𝑢𝑒 = 𝑎𝑥,       𝑎 = (
𝑑𝑢𝑒
𝑑𝑥
)
𝑠
 (98) 

 

• The wall can be equilibrium catalytic or non-catalytic. That means that the 

surface material influences the chemical composition, such that the 

chemical composition at the wall are the local equilibrium values at the 

temperature and pressure at the wall (equilibrium catalytic) or the surface 

material has no influence on the chemical composition at all (non-catalytic). 

• The gas is assumed to consist of heavy particles and light particles (binary 

mixture, molecules, or atoms). This is a simplification to diffusion, such that 

an average for the transport coefficients can be assumed for the molecules 

and atoms separately. 

 

The equations derived by Fay and Riddell can be divided into three specific types 

of flow: an equilibrium boundary layer, a frozen boundary layer with equilibrium 

catalytic wall and a frozen boundary layer with a non-catalytic wall. The 

equations yield [6]: 

 



121 
 

 

• Equilibrium boundary layer (spherical nose):  

 

𝑞𝑤 = 0.76𝑃𝑟
−0.6 (𝜌𝑒𝜇𝑒)

0.4(𝜌𝑤𝜇𝑤)
0.1√(

𝑑𝑢𝑒
𝑑𝑥
)
𝑠
(ℎ0𝑒 − ℎ𝑤)  

× [1 + (𝐿𝑒0.52 − 1) (
ℎ𝐷
ℎ0𝑒
)] 

 

(99) 

 

• Frozen boundary layer with an equilibrium catalytic wall (spherical nose):  

 

𝑞𝑤 = 0.76𝑃𝑟
−0.6 (𝜌𝑒𝜇𝑒)

0.4(𝜌𝑤𝜇𝑤)
0.1√(

𝑑𝑢𝑒
𝑑𝑥
)
𝑠
(ℎ0𝑒 − ℎ𝑤)  

× [1 + (𝐿𝑒0.52 − 1) (
ℎ𝐷
ℎ0𝑒
)] 

 

(100) 

 

• Frozen boundary layer with a non-catalytic wall (spherical nose):  

 

𝑞𝑤 = 0.76𝑃𝑟
−0.6 (𝜌𝑒𝜇𝑒)

0.4(𝜌𝑤𝜇𝑤)
0.1√(

𝑑𝑢𝑒
𝑑𝑥
)
𝑠
(ℎ0𝑒 − ℎ𝑤)  

× [1 + (𝐿𝑒0.52 − 1) (
ℎ𝐷
ℎ0𝑒
)] 

 

(101) 

 

The stagnation-point velocity gradient is given using a pressure distribution based 

on the Newtonian theory:  

 

(
𝑑𝑢𝑒
𝑑𝑥
)
𝑠
=
1

𝑅
√
2(𝑝𝑒 − 𝑝∞)

𝜌𝑒
 (102) 



122 
 

 

 

Figure 43: Overview of the stagnation region flow model. The figure on the left 

shows the bow shock wave and the stagnation region where the shock wave can be 

assumed a normal shock. The figure on the right shows a close-up of the stagnation 

region, where outside the boundary layer an inviscid shock layer is present. In the 

boundary layer, equilibrium, non-equilibrium, or frozen flow can be present. 

Images taken from Anderson et al. [178]. 

 

 

8.7.3. Spatial Discretization 
 

Spatial discretisation methods are required to cast the governing flow equations (for 

example Navier-Stokes) into a discretised form for the use of CFD. For hypersonic 

flow, there are two main spatial discretisation techniques for the convective fluxes 

that are useful, the central scheme and the upwind scheme. Both methods discretise 

the governing flow equations to solve the state at a certain cell vertex. 

A central scheme is based on the Taylor expansion. Performing a Taylor expansion 

around a first order derivative yields [12]: 

 

(
𝜕𝑢

𝜕𝑥
)
𝑖
= 
𝑢𝑖+1 − 𝑢𝑖
∆𝑥

−
∆𝑥

2
(𝑢𝑥𝑥)𝑖 −

∆𝑥2

6
(𝑢𝑥𝑥𝑥)𝑖 +⋯ = 

𝑢𝑖+1 − 𝑢𝑖
∆𝑥

+  𝒪(∆𝑥) (103) 

 

 

Using the same Taylor expansion, a relation for 𝑢𝑖−1 can be derived:  
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(
𝜕𝑢

𝜕𝑥
)
𝑖
= 
𝑢𝑖 − 𝑢𝑖−1
∆𝑥

−
∆𝑥

2
(𝑢𝑥𝑥)𝑖 −

∆𝑥2

6
(𝑢𝑥𝑥𝑥)𝑖 +⋯ = 

𝑢𝑖 − 𝑢𝑖−1
∆𝑥

+  𝒪(∆𝑥) (104) 

 

When these forward and backward difference equations are added up, the central 

difference equation is obtained: 

 

(
𝜕𝑢

𝜕𝑥
)
𝑖
= 
𝑢𝑖+1 − 𝑢𝑖−1

2∆𝑥
+  𝒪(∆𝑥2) (105) 

 

In the central scheme, the evaluated grid point is computed using grid points in front 

and behind the central point. The finite difference representation of the first derivate 

is of order two. The central scheme does not generate two independent solutions of 

the equations, which physically means that upstream variables can be changed by 

this scheme. This causes instability in the solution; thus, artificial dissipation must 

be added to increase the stability. An example of a central scheme with artificial 

dissipation is the Jameson-Schmidt-Turkel scheme, which is also present in SU2. 

 

Upwind schemes are biased towards computing the current grid point by using the 

grid points upstream of the current grid point [12]:  

 

𝑢𝑖 = 𝑓(𝑢𝑖−1, 𝑢𝑖−2, … , 𝑢𝑖−𝑛) (106) 

 

The upwind scheme considers the wave propagation direction, which the central 

schemes do not. This makes the upwind scheme suitable for an accurate 

computation of the boundary layer. For capturing discontinuities, upwind schemes 

are particularly interesting. When considering supersonic flow, the information can 

only propagate in downstream direction, thus using only upstream values to 

compute a certain grid point state is valid. The downside of upwind schemes is 

notable in the higher-order accuracy schemes where limiters are needed to prevent 

oscillations near discontinuities. 
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8.7.4. Time Integration 
 

There are various numerical time integration methods available. In SU2, the Euler 

method and Runge-Kutta method are considered. Numerical integration methods 

are used to solve ordinary or partial differential equations. An integration method 

may have either an implicit scheme, an explicit scheme or both. Explicit schemes 

are generally easier to implement and to solve. For example, let 𝑥𝑛+1 denote the 

state of a differential equation at 𝑡 = 𝑡𝑛+1 (the new state) and 𝑥𝑛 at 𝑡 = 𝑡𝑛 (the old 

state). Then, for an explicit scheme, the new state would be calculated using: 

 

𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1, 𝑥𝑛−2, … ) (107) 

 

Implicit schemes are more difficult to implement, as the new state is also included 

in the function to compute the new state. Implicit schemes take more time to 

compute, as the new state has to be computed iteratively, thus more function 

evaluations are necessary to compute the new state. Consider again the old and new 

states as mentioned above, then an implicit scheme would be: 

 

𝑥𝑛+1  = 𝑔(𝑥𝑛+1, 𝑥𝑛, 𝑥𝑛−1, … ) (108) 

 

Although explicit schemes seem more interesting since they are easier and require 

less computation time, implicit schemes are more stable than explicit schemes. 

Moreover, implicit schemes may attain a higher order of accuracy, while using a 

larger step size than explicit schemes. Decreasing the step size in explicit schemes 

to attain a higher order has a negative effect: as the error in computation decreases 

(truncation error), the rounding error due to the small step size increases. In this 

section, the explicit schemes of the integration methods are discussed. 

 

The Euler method is the simplest integration method available. The Euler integrator 

is evaluated at the beginning of the step size interval. The method requires sufficient 

initial values to the differential equation. For example, consider an ordinary 

differential equation of the form [179]:  

 

𝑑𝑥

𝑑𝑡
= 𝑥′(𝑡) =  𝜆(𝑡)𝑥(𝑡),   𝑡 > 0, 𝑥(0) = 𝑐  (109) 
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For small step sizes, this method proves to be rather accurate. However, as the step 

size is increased, the error is also increased. An advantage of the Euler method is 

that it is fast. 

The Runge-Kutta method is a higher order integration method. To compute a next 

time step, it uses information about the previous time step, similar to the Euler 

method. The Runge-Kutta integrator is different from the Euler method. Whereas 

Euler only evaluates the new time step based on information at the beginning of the 

step interval, the Runge-Kutta method uses information about different locations 

from the step interval. The general Runge-Kutta scheme is given by the following 

equations [180]:  

 

𝑥𝑛+1 = 𝑥𝑛 + ℎ∑𝑏𝑖𝑘𝑖

𝑠

𝑖=1

 (110) 

 

Where  

𝑘𝑖 = 𝑓 (𝑡𝑛 + 𝑐𝑖ℎ𝑖𝑥𝑛 + ℎ∑𝑎𝑖𝑗𝑘𝑗

𝑠

𝑗=1

) (111) 

 

And  

𝑐𝑖 = ∑𝑎𝑖𝑗

𝑠

𝑗=1

 , 𝑖 = 1: 𝑠 (112) 

 

In these equations 𝑠 denotes the number of stages the Runge-Kutta integrator uses. 

The coefficients 𝑐𝑖, 𝑏𝑖 𝑎𝑛𝑑 𝑎𝑖   are given in Butcher arrays [179] per Runge-Kutta 

stage. 

As mentioned before, implicit methods are more difficult to implement, require 

more computational time and are more stable than explicit methods. Larger time 

steps can be taken whilst maintaining higher order accuracy. In SU2, the explicit 

Euler and Runge-Kutta schemes and implicit Euler scheme is implemented. To 

achieve convergence, a small-time step (CFL number) is required with a fourth 

order Runge-Kutta explicit scheme. Due to the small-time step, the order of 

accuracy is reduced for this method (due to rounding errors), and stability is not 

guaranteed. Hence, the implicit Euler method is used as a larger time stepping value 

can be used, the solution tends to converge, and the order of accuracy remains 

unchanged. 



126 
 

8.8. Thermal Protection System Temperature Evaluation   
 
Thermal protection systems are the features incorporated into a spacecraft’s design 

to protect it from the severe aerodynamic heating during high-speed travel through 

planetary atmospheres. The determination of the temperature reached by the system 

is an important design evaluation to size it correctly. In the following paragraphs 

are presented the geometry modelling and the resolution of the thermal protection 

system heat equation. The dissertation is taken from the work of Scaramuzzino et 

al. in [183]. 

 

8.8.1. Thermal Protection System Geometry Modelling 
 
In first approximation for preliminary sizing the Thermal protection system (TPS) 

can be modelled as an arc of circumference, assuming that the vehicle cane be 

assimilated to a sphere with a radius equal to the nose radius 𝑅𝑁. The model is show 

in Fig. 44.  

 

 

Figure 44: TPS modelling. Image from the work of Scaramuzzino et al. in [183]. 

 

Given this TPS model, the Heat equation in Eq. (89) can be specialized for the two-

dimensional case by considering uniform thermal conductivity 𝑘 and thickness 𝑡𝑧 
and no convective term [183]:  
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𝜌 𝐶𝑃 𝑡𝑧
𝜕𝑇

𝜕𝑡
= 𝑘 𝑡𝑧 (

𝜕2𝑇

𝜕𝑥2
+ 
𝜕2𝑇

𝜕𝑦2
 ) −  𝜎𝜀 (𝑇4 − 𝑇𝑎

4) + 𝑞𝑠 (113) 

 

 

Eq. (29) is non-linear due to the presence of the radiative term. In order to use a 

standard finite element approximation, a linearization must be performed [183]:  

 

𝜌 𝐶𝑃 𝑡𝑧
𝜕𝑇

𝜕𝑡
= 𝑘 𝑡𝑧 (

𝜕2𝑇

𝜕𝑥2
+ 
𝜕2𝑇

𝜕𝑦2
 ) −  4𝜎𝜀𝑇𝑎

3𝑇 + 4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠 (114) 

 

Further step is to discretize the TPS and specialize Eq. (114) for each element. In 

Fig. 45 is illustrated the discretization of the TPS using four elements and the global 

numeration adopted for the node.  

 

 

 

Figure 45: TPS discretization, example with four elements. Image from the work of 

Scaramuzzino et al. in [183]. 
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Considering a single element, as shown in Fig.46, if equidistant nodes are used 

[183]:  

 

𝑛𝑛 = 𝑛𝑒 + 1 (115) 

 

𝜑 =  𝜑𝑒 =
2𝜑𝑇𝑃𝑆
𝑛𝑒

 (116) 

 

𝑙 = 𝑙𝑒
′𝑅𝑛𝜙𝑒  (117) 

  

  

 

Figure 46: TPS element. Image from the work of Scaramuzzino et al. in [183]. 

 

 

𝜑𝑒 = arctan (
𝑦2
𝑒 − 𝑦1

𝑒

𝑥2
𝑒 − 𝑥1

𝑒) , 𝑒 = 1: 𝑛𝑒 (118) 

 

 

𝒏�̂� = {−𝑠𝑖𝑛𝜓𝑒  𝑐𝑜𝑠𝜓𝑒} (119) 
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𝑥 = 𝑥1
𝑒 +  𝜉𝑐𝑜𝑠𝜓𝑒 (120) 

 

 

𝑦 = 𝑦1
𝑒 + 𝜉𝑠𝑖𝑛𝜓𝑒  (121) 

 

 

Using the chain rule is possible to change coordinates:  

 

 

𝜕

𝜕𝑥
=
𝜕𝜉

𝜕𝑥

𝜕

𝜕𝜉
=

1

𝑐𝑜𝑠𝜓𝑒

𝜕

𝜕𝜉
 (122) 

 

 

𝜕

𝜕𝑦
=
𝜕𝜉

𝜕𝑥

𝜕

𝜕𝜉
=

1

𝑠𝑖𝑛𝜓𝑒

𝜕

𝜕𝜉
 (123) 

 

𝜕2

𝜕𝑥2
= 

𝜕

𝜕𝑥
(

1

𝑐𝑜𝑠𝜓𝑒

𝜕

𝜕𝜉
) =

1

cos2𝜓𝑒

𝜕2

𝜕𝜉2
 (124) 

 

𝜕2

𝜕𝑦2
= 

𝜕

𝜕𝑦
(
1

𝑠𝑖𝑛𝜓𝑒

𝜕

𝜕𝜉
) =

1

sin2𝜓𝑒

𝜕2

𝜕𝜉2
 (125) 

 

 

Using Eq. (124) and (125), Eq. (114) becomes [183]:  

 

𝜌 𝐶𝑃 𝑡𝑧
𝜕𝑇

𝜕𝑡
= 𝑘 𝑡𝑧 (

1

cos2𝜓𝑒
+ 

1

sin2𝜓𝑒
 )
𝜕2𝑇

𝜕𝜉2
−  4𝜎𝜀𝑇𝑎

3𝑇 + 4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠𝑒 (126) 

 

Recalling that:  
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1

cos2 𝜓𝑒
+

1

sin2𝜓𝑒
= 

1

sin2𝜓𝑒 cos2𝜓𝑒
= 

4

sin (2𝜓𝑒)
 (127) 

 

 

Eq. (126) becomes:  

 

𝜌 𝐶𝑃 𝑡𝑧
𝜕𝑇

𝜕𝑡
=

4𝑘𝑡𝑧
sin(2𝜓𝑒)

 
𝜕2𝑇

𝜕𝜉2
−  4𝜎𝜀𝑇𝑎

3𝑇 + 4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠𝑒 (128) 

 

Introducing:  

 

𝑘𝑒 = 
4𝑘

sin(2𝜓𝑒)
  (129) 

 

Eq. (128) becomes:  

 

𝜌 𝐶𝑃 𝑡𝑧
𝜕𝑇

𝜕𝑡
= 𝑘𝑒𝑡𝑧  

𝜕2𝑇

𝜕𝜉2
−  4𝜎𝜀𝑇𝑎

3𝑇 + 4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠𝑒 (130) 
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8.8.2. Discretization 
 
Using the method of mean weighted residuals is possible to write the weak 

formulation of the problem [183]. Eq. (130) is likely to be written as:  

 

𝑓(𝑇(𝜉, 𝑡)) = 0 (131) 

 

Supposing that Eq. (45) is satisfied only in a finite number of points, while 

everywhere else only in average. This can be done multiplying Eq. (45) by a weight 

function 𝑊(𝜉), integrating over the domain and forcing it to be equal to zero:  

 

∫ 𝑊(𝜉)𝑓(𝑇(𝜉, 𝑡))𝑑𝜉 = 0
𝑙𝑒

0

 (132) 

 

The temperature along each element is approximated using the separation of 

variables technique, with the shape function N: 

 

𝑇(𝜉, 𝑡) = 𝑁(𝜉)𝜃𝑒(𝑡) (133) 

 

 

Applying the Galerkin method, using the shape function as test function:  

 

∫ 𝑁𝑇(𝜉)
𝑙𝑒

0

𝑓(𝑇(𝜉, 𝑡))𝑑𝜉 = 0 (134) 

 

 

 

∫ 𝑁𝑇(𝜉)
𝑙𝑒

0

[𝜌 𝐶𝑃 𝑡𝑧
𝜕𝑇

𝜕𝑡
− 𝑘𝑒𝑡𝑧  

𝜕2𝑇

𝜕𝜉2
+  4𝜎𝜀𝑇𝑎

3𝑇 − (4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠𝑒)] 𝑑𝜉

= 0 

(135) 
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Let us analyse the terms of Eq. (135): 

 

• Non-stationary term:  

 

∫ 𝑁𝑇(𝜉)
𝑙𝑒

0

𝜌 𝐶𝑃 𝑡𝑧
𝜕𝑇

𝜕𝑡
𝑑𝜉 = 𝜌 𝐶𝑃 𝑡𝑧∫ 𝑁𝑇(𝜉)

𝑙𝑒

0

𝑁(𝜉)𝑑𝜉
𝜕𝜗𝑒
𝜕𝑡

= 𝑨𝒆𝜽�̇� (136) 

 

 

• Conductive term:  

 

∫ 𝑁𝑇(𝜉)
𝑙𝑒

0

𝑘𝑒𝑡𝑧  
𝜕2𝑇

𝜕𝜉2
𝑑𝜉

=  −𝑘𝑒𝑡𝑧 [𝑁
𝑇(𝜉)

𝜕𝑇

𝜕𝜉
]
0

𝑙𝑒

+ 𝑘𝑒𝑡𝑧∫ [
𝜕𝑁

𝜕𝜉
]
𝑇 𝜕𝑇

𝜕𝜉
𝑑𝜉 = 

𝑙𝑒

0

 

 

 

 

                                                −𝑘𝑒𝑡𝑧 [𝑁
𝑇(𝜉)

𝜕𝑇

𝜕𝜉
]  + 𝑘𝑒𝑡𝑧 ∫ 𝑁/𝜉

𝑇 𝑁/𝜉𝑑𝜉𝜗𝑒 = 
𝑙𝑒
0

 

 

𝒃𝒆 +𝑲𝒆
𝒄𝒐𝒏𝒅𝝑𝒆 (137) 

 

• Radiative term:  

 

∫ 𝑁𝑇(𝜉)
𝑙𝑒

0

4𝜎𝜀𝑇𝑎
3𝑇𝑑𝜉 = 4𝜎𝜀𝑇𝑎

3∫ 𝑁𝑇(𝜉)𝑁(𝜉)𝑑𝜉𝜗𝑒 = 𝑲𝒆
𝒓𝒂𝒅𝝑𝒆

𝑙𝑒

0

 (138) 

 

 

• Constant term:  

 

−∫ 𝑁𝑇(𝜉)
𝑙𝑒

0

(4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠𝑒)𝑑𝜉 = −(4𝜎𝜀𝑇𝑎

4 + 𝑞𝑠𝑒)∫ 𝑁𝑇𝑑𝜉 =  −𝑓𝑒(𝑡)
𝑙𝑒

0

 (139) 
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Since 𝑇𝑎 and 𝑞𝑠𝑒 change with velocity and altitude and consequently with time, 

𝑓𝑒(𝑡) is time dependent.  

 

In conclusion, for each element the following equation can be written:  

 

𝑨�̇�𝜗�̇� +𝑲𝒆𝜗𝑒 = 𝑓𝑒(𝑡) (140) 

 

Where: 

 

𝑲𝒆 = (𝑲𝒆
𝒄𝒐𝒏𝒅 +𝑲𝒆

𝒓𝒂𝒅) (141) 

 

Considering linear shape function in Fig.47, Eq. (133) becomes:  

 

𝑇(𝜉, 𝑡) = [ 𝑁1(𝜉)    𝑁2(𝜉)]{𝜗1𝑒(𝑡)   𝜗2𝑒(𝑡)}
′ = [1 −

𝜉

𝑙𝑒
    
𝜉

𝑙𝑒
] {𝜗1𝑒(𝑡)   𝜗2𝑒(𝑡)}′ 

 

(142) 

Where 𝜗1𝑒(𝑡) and 𝜗2𝑒(𝑡) are the nodal temperatures.  

 

 

Figure 47: Linear shape functions. Image from the work of Scaramuzzino et al. in 

[183]. 
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In this way the matrices can be evaluated for each element:  

 

𝑁/𝜉 = [ −
1

𝑙𝑒
     
1

𝑙𝑒
]     (143) 

 

∫ 𝑁𝑇(𝜉)𝑁(𝜉)𝑑𝜉
𝑙𝑒

0

= ∫

[
 
 
 
 1 −

𝜉

𝑙𝑒
𝜉

𝑙𝑒 ]
 
 
 
 

[1 −
𝜉

𝑙𝑒
    
𝜉

𝑙𝑒
] 𝑑𝜉

𝑙𝑒

0

= ∫

[
 
 
 
 (1 −

𝜉

𝑙𝑒
)
2 𝜉

𝑙𝑒
−
𝜉2

𝑙𝑒2

𝜉

𝑙𝑒
−
𝜉2

𝑙𝑒2
𝜉2

𝑙𝑒2 ]
 
 
 
 

𝑑𝜉 = [

𝑙𝑒
3

𝑙𝑒
6

𝑙𝑒
6

𝑙𝑒
3

] =
𝑙𝑒
6
[
2 1
1 2

] 
𝑙𝑒

0

 

 

(144) 

 

 

∫ 𝑁/𝜉
𝑇

𝑙𝑒 

0

 𝑁/𝜉𝑑𝜉 =  ∫

[
 
 
 −
1

𝑙𝑒
1

𝑙𝑒 ]
 
 
 

 [−
1

𝑙𝑒
   
1

𝑙𝑒
] 𝑑𝜉

𝑙𝑒

0

= ∫

[
 
 
 
1

𝑙𝑒2
−
1

𝑙𝑒2

−
1

𝑙𝑒2
1

𝑙𝑒2 ]
 
 
 

𝑑𝜉 =

[
 
 
 
1

𝑙𝑒
−
1

𝑙𝑒

−
1

𝑙𝑒

1

𝑙𝑒 ]
 
 
 

=
1

𝑙𝑒
[
1 −1
−1 1

]

 

𝑙𝑒

0

 

 

(145) 

 

 

∫ 𝑁𝑇
𝑙𝑒

0

𝑑𝜉 = ∫

[
 
 
 
 1 −

𝜉

𝑙𝑒
𝜉

𝑙𝑒 ]
 
 
 
 

𝑑𝜉 = {

𝑙𝑒
2
𝑙𝑒
2

} =
𝑙𝑒
2
{
1
1
}

𝑙𝑒

0

 (146) 
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𝑨𝒆 = 𝜌𝐶𝑃𝑡𝑧∫ 𝑁𝑇(𝜉)𝑁(𝜉)𝑑𝜉 =
𝜌𝐶𝑃𝑡𝑧𝑙𝑒
6

[
2 1
1 2

]
𝑙𝑒

0

  (147) 

 

𝑲𝒆
𝒄𝒐𝒏𝒅 = 𝑘𝑒𝑡𝑍∫ 𝑁/𝜉

𝑇
𝑙𝑒

0

𝑁/𝜉𝑑𝜉 =
𝑘𝑒𝑡𝑧
𝑙𝑒
[ 
1 −1
−1 1

]  (148) 

 

 

𝑲𝒆
𝒓𝒂𝒅 = 4𝜎𝜀𝑇𝑎

3∫ 𝑁𝑇(𝜉)𝑁(𝜉)𝑑𝜉 =
4𝜎𝜀𝑇𝑎

3𝑙𝑒
6

 [
2 1
1 2

]
𝑙𝑒

0

 (149) 

 

 

𝑓𝑒(𝑡) = (4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠𝑒)∫ 𝑁𝑇𝑑𝜉 =

(4𝜎𝜀𝑇𝑎
4 + 𝑞𝑠𝑒)𝑙𝑒

2
 {
1
1
}

𝑙𝑒

0

 (150) 

 

 

 

A further approximation is introduced to make 𝑲𝒆
𝒓𝒂𝒅 non time dependent:  

 

𝐾𝑒
𝑟𝑎𝑑 =

4𝜎𝜀𝑇𝑎
3|ℎ=0𝑙𝑒
6

 [
2 1
1 2

] (151) 
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8.8.3. Boundary Conditions 
 

Two different boundary conditions can be considered [183]: 

 

• Dirichlet boundary conditions: the temperature at the boundary is imposed:  

 

𝑇|1(𝑡) =  𝜃1(𝑡) = 𝑇1̅(𝑡) (152) 

 

𝑇|𝑛𝑛(𝑡) =  𝜃𝑛𝑛(𝑡) = 𝑇𝑛𝑛
̅̅ ̅̅ (𝑡) (153) 

 

• Neumann boundary conditions: the heat flux at the boundary is imposed:  

 

−𝑘1𝑡𝑧
𝜕𝑇

𝜕𝜉
|1 (𝑡) =  𝑞1̅̅̅ (𝑡) (154) 

 

−𝑘𝑛𝑛𝑡𝑧
𝜕𝑇

𝜕𝜉
|1 (𝑡) =  𝑞𝑛𝑛̅̅ ̅̅̅ (𝑡) (155) 

 

Neumann boundary conditions are satisfied with the weak formulation of the 

problem.  

 

For the TPS sizing only Dirichlet boundary conditions are considered, formulated 

as follows [183]:  

 

𝑇|1 (𝑡) =  𝜃1(𝑡) = 𝑇𝑎 (𝑡) (156) 

 

𝑇|𝑛𝑛  (𝑡) =  𝜃𝑛𝑛(𝑡) = 𝑇𝑎 (𝑡) (157) 

 

The temperature at the boundary is imposed to be equal to the atmospheric one.  
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8.8.4. Initial Condition 
 
Considering the stationary problem, the initial condition can be formulated as 

follows [183]:  

 

∇(𝑘𝑡𝑧∇𝑇) − 𝑞𝑟 − 𝑞𝑐 + 𝑞𝑠 = 0 (158) 

 

If conductive and convective terms are neglected, Eq. (158) becomes:  

 

𝑞𝑟 = 𝑞𝑠 (159) 

 

The source term 𝑞𝑠 is the sum of convective heating 𝑞𝑔𝑤 and the shock-layer gas 

radiation heat flux 𝑞𝑟𝑔 [178]. 

 

𝑞𝑠 = 𝑞𝑖𝑛 = 𝑞𝑔𝑤 + 𝑞𝑟𝑔 (160) 

 

 

 

Figure 48: Schematic description of the thermal state of the surface in stationary 

condition, without convective and conductive heat fluxes. Image from the analysis 

of Anderson et al. in [178]. 
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The source term of each element corresponds to the projection of 𝑞𝑖𝑛 along the 

normal versor of the element itself:  

 

𝑞𝑠𝑒 = 𝑞𝑖𝑛 �̂�  ∙ 𝒏𝒆 (161) 

 

Considering the low fidelity aerothermodynamic model, the term 𝑞𝑖𝑛 can be easly 

evaluated for the stagnation point through the correlation Eq. (112) and (113). 

Regarding the high fidelity aerothermodynamic model, the term 𝑞𝑖𝑛 is computed by 

a CFD simulation.  

 

 

8.8.5. Assembly  
 
Considering Eq. (54), premultiply by the transpose of the virtual temperature 

𝛿𝜃𝑒  ≠ 0 and sum over all the elements [183]:  

 

∑𝛿𝜃𝑒
𝑇

𝑛𝑒

𝑒=1

(𝑨𝒆𝜃�̇� +𝑲𝒆𝜃𝑒 − 𝑓𝑒(𝑡)) = 0 (162) 

 

Using the incidence matrices Ω𝑒 is possible to shift from the local nodes numeration 

to the global one [183]: 

 

𝜃𝑒 = Ω𝑒𝜃       𝑒 = 1: 𝑛𝑒  (163) 

 

�̇�𝑒 = Ω𝑒�̇�       𝑒 = 1: 𝑛𝑒  (164) 

 

𝛿𝜃𝑒 = Ω𝑒𝛿𝜃       𝑒 = 1: 𝑛𝑒 (165) 
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Using Eq. (163), (164) and (165), Eq. (162) becomes:  

 

∑𝛿𝜃𝑇Ω𝑒
𝑇

𝑛𝑒

𝑒=1

(𝑨𝒆Ω𝑒�̇� + 𝑲𝒆Ω𝑒𝜃 − 𝑓𝑒(𝑡)) = 0 (166) 

 

𝛿𝜃𝑇

(

 
 
∑Ω𝑒

𝑇

𝑛𝑒

𝑒=1

𝑨𝒆Ω𝑒�̇�
⏟        

𝐴

+∑Ω𝑒
𝑇

𝑛𝑒

𝑒=1

𝑲𝒆Ω𝑒𝜃
⏟        

𝐾

+ ∑Ω𝑒
𝑇

𝑛𝑒

𝑒=1

𝑓𝑒(𝑡)
⏟      

𝑓(𝑡) )

 
 
= 0 (167) 

 

 

Since 𝛿𝜃 is arbitrary, Eq. (167) becomes [183]: 

 

𝑨�̇� + 𝑲𝜃 = 𝑓(𝑡) (168) 

 

The discretization in space allows to transform a system of partial differential 

equations (PDE) into a system of ordinary differential equations (ODE).  
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8.8.6. Time Integration 
 
The time derivative is approximated using finite differences [183]. Assuming a 

constant time step Δ𝑡: 

 

𝑡𝑛+1 = 𝑡𝑛 + Δ𝑡 = 𝑡1 + 𝑛Δ𝑡 (169) 

 

Using forward differences, the time derivative can be approximate as follows:  

 

�̇� =  
𝜃𝑛+1 − 𝜃𝑛

Δ𝑡
  (170) 

 

Using 𝜗-method for the integration, Eq. (168) becomes:  

 

 

[𝑨] {
𝜃𝑛+1 − 𝜃𝑛

Δ𝑡
} + [𝑲]{𝜗𝜃𝑛+1 + (1 − 𝜗)𝜃𝑛} = {𝜗𝑓𝑛+1 + (1 − 𝜗)𝑓𝑛}  (171) 

 

 

Solving the Eq. (171) for 𝜃𝑛+1:  

 

 

([𝐴] + Δt ϑ[K])⏟          
[𝐵]

{θn+1}

= ([𝐴] − Δ𝑡(1 − 𝜗)[𝐾])⏟              
[𝐶]

{𝜃𝑛} + {Δ𝑡𝜗𝑓𝑛+1 + Δ𝑡(1 − 𝜗)𝑓𝑛}⏟                
{𝑑}

 

 

(172) 

 

 

[𝑩]{𝜃𝑛+1} = [𝑪]{𝜃𝑛} + {𝑑} 

 

 

(173) 
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The value given to the parameter 𝜗 define a different integration method. The most 

common are summarized in Tab.6. 

 

𝜗 Method type Method name 

0 Explicit Foward Euler 

1 Implicit Backward Euler 

1/2 Semi-implicit Crank-Nicolson 

 

Table 6: Integration methods for different values of the 𝜗 parameter. 
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8.9. Propulsion System  

 
Depending on their missions, space vehicles present rocket propulsion systems. 

Rocket propulsion is used for primary propulsion, for example along the flight path 

for orbit insertion or orbit change manoeuvres, and secondary propulsion, for 

example attitude control, spin control, momentum wheel and gyro unloading, stage 

separation and the settling of liquid in tanks. A space vehicle usually has a series of 

different rocket propulsion systems, some often very small.  For spacecraft attitude 

control about three perpendicular axes, each in two rotational directions, the system 

must allow the application of pure torque for six modes of angular freedom, thus 

requiring a minimum of 12 thrust chambers. More complex manned spacecrafts 

have 40 to 80 rocket units in all its stages [184].  

 

8.9.1. Definitions  
 
Here are presented some common definitions in rocket science:  

 

• Total Impulse 𝐼𝑇: defined as the thrust force 𝐹 (which can be a function of 

time) integrated over the burning time 𝑡 [184]:  

 

𝐼𝑇 = ∫ 𝐹 𝑑𝑡
𝑡

0

 

 

(174) 

 

Total impulse is proportional to the total energy released by all the propellant in a 

propulsion system.  

• Specific impulse: is the total impulse per unit of weight of propellant [184]:  

 

𝐼𝑠 =
𝐼𝑇

𝑔𝑜 ∫ �̇� 𝑑𝑡
 

 

(175) 

 

Where 𝑔0 = 9.8066 𝑚/𝑠
2 is the standard acceleration of gravity at sea level and 

�̇� is the total mass flow rate of propellant. Specific impulse is an important figure 
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of merit of the performance of a rocket propulsion system. A higher number means 

better performance.  

 

• Thrust: is the force produced by a rocket propulsion system acting upon a 

vehicle. Thrust is given as:  

 

𝐹 = �̇�𝑣2 + (𝑝2 − 𝑝3)𝐴2 

 

(176) 

The first term is the momentum thrust represented by the product of the propellant 

mass flow rate and its exhaust velocity relative to the vehicle 𝑣2. The second term 

represent the pressure thrust consisting of the product of the cross-sectional area at 

the nozzle exit 𝐴2 and the difference between the exhaust gas pressure at the exit 

and the ambient fluid pressure.  

 

 

 

Figure 49: pressure, velocity, and cross-sectional area at different stations over the 

chamber axis. Image taken from Sutton et al. in [184]. 
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• Effective exhaust velocity is the average equivalent velocity at which 

propellant is ejected from the vehicle. It is defined as [184]:  

 

𝑐 = 𝐼𝑠𝑔0 = 𝐹/�̇� 

 

(177) 

 

The effective exhaust velocity as defined in Eq. (177) applies to all rockets that 

thermodynamically expand hot gases in a nozzle and, indeed, to all mass expulsion 

systems. Considering a constant propellant mass flow, Eq. (177) becomes:  

 

𝑐 = 𝑣2 +
(𝑝2 − 𝑝3)𝐴2

�̇�
 

 

(178) 

The second term of Eq. (177) on the right-hand side is usually small in relation to 

𝑣2. So, the effective exhaust velocity is usually close in value to the actual exhaust 

velocity. When 𝑐 = 𝑣2  the Eq. (176) can be rewritten as [184]:  

 

𝐹 =  �̇�𝑐 
(179) 

 

• Burned propellant mass: defined as the propellant mass flow integrated over 

burning time:  

 

𝑚𝑃 = ∫ �̇�
𝑡

0

𝑑𝑡 

 

(180) 

The definitions presented in this paragraph will be used to estimate the mass of 

propellant burned during the re-entry manoeuvre of the considered space vehicle.  
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8.9.2. Impulsive Orbital Manoeuvres 
 

A simplified orbital manoeuvre model is assumed which is applied with good 

approximation to chemical propulsion (considered in the return vehicle object of 

the thesis). The model assumes the application of an infinite thrust in infinitesimal 

times. As a result, only a variation of the spacecraft velocity 𝑉 is produced without 

a perturbation of the orbital radius during the burn. Considering the re-entry phase, 

aerodynamic and gravitational forces must be considered. The Newton’s second 

law, reported in Eq. (86), can be written as follows:  

 

𝑚
𝑑𝑽

𝑑𝑡
= 𝑻 +𝑚𝒈 + 𝑫+ 𝑳 

 

(181) 

Considering the forces as shown in Fig. 50, Eq. (100) becomes:  

 

 

𝑑𝑉

𝑑𝑡
=
𝑇

𝑚
𝑐𝑜𝑠𝛼 −

𝐷

𝑚
− 𝑔𝑠𝑖𝑛𝜑 =

𝑇

𝑚
−
𝑇

𝑚
(1 − 𝑐𝑜𝑠𝛼) −

𝐷

𝑚
− 𝑔𝑠𝑖𝑛𝜑 

 

(182) 

 

Where 𝜑 is the flight path angle and 𝛼 is the thrust angle. Integrating Eq. (182) over 

the burning time:  

 

 

Δ𝑉 = ∫
𝑇

𝑚
𝑑𝑡

𝑡

0⏟    
Δ𝑉 𝑖𝑑𝑒𝑎𝑙

−∫
𝑇

𝑚
(1 − 𝑐𝑜𝑠𝛼)𝑑𝑡

𝑡

0⏟            
𝑚𝑖𝑠𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑙𝑜𝑠𝑠𝑒𝑠

− ∫
𝐷

𝑚
𝑑𝑡

𝑡

0⏟    
𝑑𝑟𝑎𝑔 𝑙𝑜𝑠𝑠𝑒𝑠

− ∫ 𝑔𝑠𝑖𝑛𝜑𝑑𝑡
𝑡

0⏟      
𝑔𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑙𝑜𝑠𝑠𝑒𝑠

 

 

(183) 
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Figure 50: Re-entry vehicle aerodynamic forces.  

 

 

 

 

8.9.3. Rocket Equation 
 
The rocket equation, also commonly referred as the Tsiolkovsky equation, describes 

the motion of spacecrafts with variable mass:  

 

∆𝑉 = 𝑐 ln
𝑚𝑖

𝑚𝑓
 

 

(184) 

 

Where 𝑚𝑖 is the initial rocket mass and 𝑚𝑓 is the final rocket mass (after the burning 

time). The rocket equation is derived considering only the motion subject to the 

thrust, without aerodinamic or gravitational force.  

However, Eq. (184) can be effectively applied to the analysis of orbital manoeuvres, 

if performed with chemical thrusters. In fact, it allows both to determine which orbit 

can be reached with a given quantity of propellant, and to determine, in its inverse 

form (shown below), how much propellant 𝑚𝑝 is needed to reach a given orbit (that 

is, to acquire a given variation in the velocity value ∆𝑉):  

 

𝑚𝑝 = 𝑚𝑖 [1 − exp (−
∆𝑉

𝑔0𝐼𝑠
)] 

 

(185) 
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In the application to orbital manoeuvres, it is assumed in particular that the 

manoeuvre takes place in an impulsive manner: both the variation in the speed value 

and the ignition phase of the engine are treated as if they were instantaneous. This 

hypothesis is quite accurate for short-term ignitions, such as those used in course 

correction or orbital insertion manoeuvres. As the duration of the rocket ignition 

increases, however, the result loses accuracy due to the effects of gravity on the 

vehicle over the duration of the manoeuvre. 

 

 

8.9.4. Thrusters  
 
The space vehicle, considered for the test problem, has both primary and secondary 

propulsion systems. Chemical rocket engines for re-entry and attitude control are 

considered. The engine uses hypergolic propellant consisting of monomethyl 

hydrazine (MMH) as a propellant and dinitrogen tetra oxide (NTO) as an oxidant. 

They have the ability to be turned on multiple times and can precisely control thrust. 

For primary propulsion, the engine system consists of eight primary thrusters. For 

secondary propulsion, a cluster of eighteen secondary thruster are considered. In 

both cases propulsion system can vary thrust level from 20% to 100%.  

In Tab. 7 are summarized the technical specifications of the thrusters considered: 

 

 

Specifications Primary thruster Secondary thruster 

Propellant  NTO/MMH NTO/MMH 

Max Thrust (Vacuum) 73 kN 400 N 

Specific Impulse 253 s 300 s 

Burning time 25 s 25 s 

Number 8 18 

 

Tabel 7: Thruster technical specifications. 

 

 

 

 



148 
 

8.9.5. Equation for Planetary Controlled Flight 
 
The general equations for planetary flight must be modified to consider the thrust 

vector. Thrust vector 𝑇 can be decoposed in a component in the direction of the 

velocity 𝑇𝑉 and a component normal to the velocity 𝑇𝑁:  

 

𝑇 = { 𝑇𝑉   𝑇𝑁} 

 

(186) 

 

The Eq. (90) becomes:  

 

𝑑𝑉

𝑑𝑡
=  −

1

𝑚
𝐷 − 𝑔 sin 𝛾 + 𝑇𝑉  

 

𝑉
𝑑𝛾

𝑑𝑡
=
1

𝑚
𝐿 𝑐𝑜𝑠𝜇𝑎 − 𝑔 cos 𝛾 +

𝑉2

𝑟
cos 𝛾 + 𝑇𝑁 

 

(187) 

 

The thrust component 𝑇𝑉 is given by the engines used in primary propulsion, while 

the thrust component 𝑇𝑁 is given by the engines used in secondary propulsion. Since 

the propulsion system is powered by chemical propellant, impulsive manoeuvres 

are considered. The equations are integrated with MATLAB solver ODE45 from 

initial time 𝑡0 to final time 𝑡𝑓 with a temporal step ∆𝑡. Since the chosen time step is 

greater than the typical burning time of the thrusters, the components of the thrust 

vector will be considered different from zero only in a time step, simulating an 

impulsive manoeuvre. 
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8.10. Multifidelity Re-entry Optimization Algorithm 
 

The optimization problem is considered by means of the algorithm presented in 

chapter 6. However, some important changes have been made to adapt the multi-

fidelity expected improvement algorithm to solve the atmospheric re-entry 

problem. The following paragraphs present the objective black box function the 

alternative formulation introduced for the multi-fidelity expected improvement, the 

algorithm implemented including meta code and flow charts describing how the 

algorithm operates.  

The optimization problem is defined in the following way:  

 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑓(𝑥) 

Given the following constraints: 

 

𝐹𝑖𝑥𝑒𝑑 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 

𝐹𝑖𝑥𝑒𝑑 𝑇𝑃𝑆 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 

𝐹𝑖𝑥𝑒𝑑 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡𝑠 

𝐹𝑖𝑥𝑒𝑑 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑒𝑒𝑛𝑡𝑟𝑦 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 

𝑇ℎ𝑟𝑢𝑠𝑡 ≠ 0                   𝑖𝑓  90 𝑘𝑚 < 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 < 120 𝑘𝑚 

𝑇𝑃𝑆 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 < 𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝑚𝑒𝑙𝑡𝑖𝑛𝑔 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑚𝑎𝑠𝑠 𝑏𝑢𝑟𝑛𝑒𝑑 < 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑎𝑛𝑡 𝑚𝑎𝑠𝑠 𝑠𝑡𝑜𝑐𝑘𝑒𝑑 

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒𝑟𝑚𝑜𝑓𝑙𝑢𝑖𝑑 𝐶𝐹𝐷 𝑎𝑛𝑎𝑦𝑠𝑖𝑠 < 10−6 

  

Where 𝑓(𝑥) is the objective black box function. The capsule geometry, TPS 

material, propellants and initial re-entry conditions are fixed. The thruster can fire 

only in a specific range of altitude in order to avoid failure due to thermofluidic 

continuous regime, stressful for the propulsive system. The TPS temperature must 

be under the material melting temperature to guarantee the survival of the payload. 

The thrust needed to optimize the trajectory must be allowable by the stock 

propellant mass so the propellant mass burned must be less than tank mass. Finally, 

an important constraint is the residual of CFD analysis in order to guarantee the 

convergence of computation.   
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8.10.1. Objective Function Definition  
 

In the setup of the atmospheric re-entry problem, the objective function (the 

black-box function) to be minimized is defined as follows: 

 

 

𝑓(𝑥) = 𝑣1
𝑚𝑇𝑃𝑆

𝑚𝑇𝑃𝑆0
+ 𝑣2

𝑇𝑇𝑃𝑆
𝑇𝑇𝑃𝑆0

+ 𝑣3
𝑚𝑝

𝑚𝑝0
 

 

(188) 

 

𝑣1 = 0.4   𝑣2 = 0.4    𝑣3 = 0.2 

 

 

𝑚𝑇𝑃𝑆0 = 2000 𝑘𝑔   𝑇𝑇𝑃𝑆0 = 1500𝐾   𝑚𝑝0 = 150 𝑘𝑔 

 

 

𝑥 = {𝐹𝑛, 𝐹𝑡, 𝑠𝑇𝑃𝑆} 
 

 

Where 𝑚𝑇𝑃𝑆 is the TPS mass computed, 𝑚𝑇𝑃𝑆0 is the TPS mass of reference, 𝑇𝑇𝑃𝑆 

is the TPS temperature computed, 𝑇𝑇𝑃𝑆0 is the TPS temperature of reference, 𝑚𝑝 is 

the propellant mass burned, 𝑚𝑝0 is the propellant mass of reference, 𝐹𝑛 is the thrust 

normal to velocity vector, 𝐹𝑡 is the tangential thrust to velocity vector and 𝑠𝑇𝑃𝑆 is 

the TPS thickness.  

The reference variables are chosen on the basis of experimental data from 

atmospheric re-entry vehicles. The multiplicative coefficients 𝑣1, 𝑣2 and 𝑣3 

selection is given by knowledge-based considerations. In fact, it is believed that the 

temperature and mass of the TPS are more important when compared to the mass 

of propellant consumed. This derives from considerations related to the survival of 

the vehicle in the re-entry phase and the reduction of costs in the launch phase. 
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8.10.2. Re-Entry Multi-Fidelity Expected Improvement 
 

Having regard to the nomenclature presented in Chapter 5, the Re-Entry Multi-

Fidelity Expected Improvement formulation is the following:   

 

𝑅𝑒𝐸𝑛𝑡𝑟𝑦𝑀𝐹𝐸𝐼(𝑥,𝑚) = 𝑀𝐹𝐸𝐼(𝑥,𝑚)𝛼4(𝑥,𝑚) (189) 

 

𝑚 = 1,… ,𝑀            𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦 

 

Where 𝑀𝐹𝐸𝐼(𝑥,𝑚) is the multi-fidelity expected improvement presented in Eq. 

(45). The 𝛼4(𝑥,𝑚) is a term defined as follows:  

 

 

 

𝛼4(𝑥,𝑚) =  

{
 

 
1     𝑖𝑓 𝑚 = 1,… ,𝑀 − 1

𝛽
ℎ

ℎ0
     𝑖𝑓 𝑚 = 𝑀 𝑎𝑛𝑑 35 𝑘𝑚 ≤ ℎ ≤ 65𝑘𝑚  ℎ0 = 50𝑘𝑚

1     𝑖𝑓 𝑚 = 𝑀 𝑎𝑛𝑑 ℎ < 35𝑘𝑚 𝑜𝑟 ℎ > 65𝑘𝑚

 

 

 

 

Where ℎ is the altitude of the vehicle, ℎ0 is the reference altitude and 𝛽 = 200 is 

the multiplicative parameter. The reference height h0 is chosen on the basis of 

empirical considerations. In fact, h0 represents the typical altitude at which thermal 

phenomena are most important. 

  

Consequently, the algorithm is incentivized to define the thermal loads by means 

of the higher-fidelity model when the altitude is considered critical for the vehicle's 

survival.  

 

The value assigned to 𝛽 is defined on the basis of tests carried out on the algorithm. 

The outcomes suggest that 𝛽 = 200 is a satisfactory value.  
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8.10.3. Multifidelity Re-entry Algorithm 
 
In this paragraph is described the algorithm implemented in Matlab. Specifically, 

the meta code and the flow chart of the algorithm is presented. The MFEI Re-entry 

code is implemented in Matlab in the form of functions packages. The algorithm 

setup is presented in a Matlab struct 𝑜𝑝𝑡 and listed in Tab. 2 (For more details please 

refer to Chapter 6.).   

In the specific optimization problem considered, the aerothermodynamic models 

are hierarchically divided into two levels of fidelity, as described in the previous 

paragraphs.  In the following is illustrated the meta-code presented in Tab. 8. 

The initial candidates are sampled by a Latin hypercube sampling method and 

stored in the 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 variable. The values of the objective function are computed 

from the initial candidates and stored in the 𝑣𝑎𝑙𝑢𝑒𝑠 variable.  

After the initialization process, the multifidelity Bayesian optimization loop starts. 

Considering a generic iteration, defined the thrust vector and the thickness of TPS, 

the trajectory and the propellant mass burned are computed. The re-entry trajectory 

is computed in Matlab with ODE45. Consequently, the outcome is defined as a 

matrix whose dimension depends on the integration time step used.  

The next computational step is evaluating the aerothermodynamic conditions in all 

the trajectory points and select which aerothermodynamic fidelity model to query. 

First the Gaussian process in enriched by the information about the objective 

function obtained from the previous computational step. Then the GP mean and 

variance is computed.  

The next step is evaluating the MFEI acquisition function. In the specific problem 

considered, the MFEI is evaluated in each point of the trajectory (in the generic 

Bayesian optimization loop iteration) in order to determine the next 

aerothermodynamic fidelity model to query at the following point of the trajectory.     

To account this, in all the points is evaluated and maximized the MFEI considering 

the formulation in Eq. (189).  

Once the aerothermodynamic variables are computed for all the trajectory points, 

the structural and thermal analysis of TPS is performed and TPS temperature and 

mass are calculated.  

Consequently, the value of the objective function for the iteration considered is 

evaluated and stored in 𝑣𝑎𝑙𝑢𝑒𝑠 matrix. Considering the values of MFEI calculated 

in each trajectory point, the absolute maximum identifies the next sample to query 

in the following iteration. The new sample is then stored in 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 matrix.   
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MFEI Re-Entry Algorithm 

 

 

1: Draw initial candidate grid from a random Latin hypercube 

 

ℎ𝑦𝑝𝑒𝑟 𝑔𝑟𝑖𝑑 = 𝐿𝑎𝑡𝑖𝑛ℎ𝑦𝑝𝑒𝑟𝑐𝑢𝑏𝑒(𝑜𝑝𝑡. 𝑑𝑖𝑚𝑠, 𝑜𝑝𝑡. 𝑔𝑟𝑖𝑑𝑠𝑖𝑧𝑒, 𝑜𝑝𝑡. 𝑚𝑖𝑛𝑠, 𝑜𝑝𝑡.𝑚𝑎𝑥𝑒𝑠) 

→ ℎ𝑦𝑝𝑒𝑟 𝑔𝑟𝑖𝑑 → 𝑥1
(𝑚) →  𝑠𝑎𝑚𝑝𝑙𝑒𝑠1

(𝑚) = [𝑠𝑎𝑚𝑝𝑙𝑒𝑠(𝑚); 𝑥1
(𝑚)]  → 𝑠𝑎𝑚𝑝𝑙𝑒𝑠1   𝑚 = 1, 2 

 

 

2: Get values from the first samples 

 

→ 𝑓(𝑚)(𝑥1
(𝑚)) → 𝑣𝑎𝑙𝑢𝑒𝑠(𝑚) = [𝑣𝑎𝑙𝑢𝑒𝑠(𝑚); 𝑓(𝑚)(𝑥1

(𝑚))] → 𝑣𝑎𝑙𝑢𝑒𝑠1                𝑚 = 1, 2 

 
 
3: Main Bayesian Optimization Multifidelity Loop  

 

 

𝒇𝒐𝒓 𝑖 = 1: 𝑜𝑝𝑡.max _𝑖𝑡𝑒𝑟𝑠 
 

 

4: Compute re-entry trajectory  

 

𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑖) = {𝑉(𝑖), ℎ(𝑖), 𝑟(𝑖), 𝜃(𝑖), 𝛾(𝑖)} 
 

 

5: Compute Propellant mass burned 𝑚𝑝  

 

 

 

6: Select the Aerothermodynamic fidelity model to query:   

 

 

𝒇𝒐𝒓 𝑗 = 1: 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑖)) 

 

 

 

              [𝜇(𝑚), 𝜎2(𝑚)] = 𝐺𝑃(ℎ𝑦𝑝𝑒𝑟𝑔𝑟𝑖𝑑, 𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖 , 𝑣𝑎𝑙𝑢𝑒𝑠𝑖, … 

                                                 𝑜𝑝𝑡. 𝑖𝑛𝑓𝑚𝑒𝑡ℎ𝑜𝑑, 𝑜𝑝𝑡.𝑚𝑒𝑎𝑛𝑓𝑢𝑛𝑐, 𝑜𝑝𝑡. 𝑐𝑜𝑣𝑓𝑢𝑛𝑐),    𝑚 = 1, 2 
 
 

𝛼1(𝑚, 𝑗) = 𝑐𝑜𝑟𝑟[𝑓𝑎𝑒𝑟𝑜𝑡ℎ
(𝑚) (𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗)), 𝑓𝑎𝑒𝑟𝑜𝑡ℎ

(𝑀) (𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗))]   𝑚 = 1, 2 

 

 

𝛼2(𝑚, 𝑗) = 1 −
𝜎𝜖

√𝜎2(𝑚)(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗)) + 𝜎𝜖2
          𝑚 = 1, 2 
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𝛼3(𝑚) =
𝜆𝑀
𝜆𝑚
                                                𝑚 = 1, 2 

 

 

𝛼4(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗),𝑚) =  

{
 

 
1     𝑖𝑓 𝑚 = 1

𝛽
ℎ

ℎ0
     𝑖𝑓 𝑚 = 2 𝑎𝑛𝑑 35 𝑘𝑚 ≤ ℎ ≤ 65𝑘𝑚  ℎ0 = 50𝑘𝑚

1     𝑖𝑓 𝑚 = 2 𝑎𝑛𝑑 ℎ < 35𝑘𝑚 𝑜𝑟 ℎ > 65𝑘𝑚

 

 

 

 

 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝔼[max(𝑓𝑎𝑒𝑟𝑜𝑡ℎ
(2) (𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗))  − 𝑓𝑎𝑒𝑟𝑜𝑡ℎ

(2) (𝑎𝑟𝑔𝑚𝑖𝑛 𝑓𝑎𝑒𝑟𝑜𝑡ℎ
𝑚 (𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗)))] 

 

 

𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑀𝐹𝐸𝐼(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗),𝑚) 
 

 

max(𝑀𝐹𝐸𝐼(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑗),𝑚)) →   𝑚𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙 𝑎𝑡 𝑗 + 1 𝑠𝑡𝑒𝑝  

 

 

 

𝒆𝒏𝒅 

 

 

 

 

 

7: Compute TPS temperature 𝑇𝑇𝑃𝑆 and TPS mass 𝑚𝑇𝑃𝑆 

 

 

8: Choose next candidate 

 

max(𝑀𝐹𝐸𝐼(𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦(𝑖),𝑚)) →   𝑥𝑖+1         𝑓𝑜𝑟 𝑚 = 1,2  
 

 

 

9: Upload Samples and Values  

 

 

𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖+1 = [𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑖; 𝑥𝑖+1] 

𝑣𝑎𝑙𝑢𝑒𝑠𝑖+1 = [𝑣𝑎𝑙𝑢𝑒𝑠𝑖; 𝑓
(𝑚)(𝑥𝑖+1)] 

 

𝒆𝒏𝒅 
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10: Get minvalue and minsample 

 

 

𝑚𝑖𝑛𝑠𝑎𝑚𝑝𝑙𝑒 = min (𝑠𝑎𝑚𝑝𝑙𝑒𝑠) 

𝑚𝑖𝑛𝑣𝑎𝑙𝑢𝑒 = min (𝑣𝑎𝑙𝑢𝑒𝑠) 
 

 

Table 8: MFEI algorithm specialized for re-entry vehicle optimization problem. 
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Figure 24: Re-entry vehicle optimization problem flow-chart. 

Figure 51: Re-entry optimization problem flow-chart 
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8.11. Multifidelity Optimization Results 
 

In this paragraph are presented the results of the MFEI algorithm formulated for the 

re-entry optimization problem. The results of the optimization problem are summed 

up in the following:  

 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑓(𝑥) = 0.8332    

𝑎𝑡        𝑥 = {3.4100 ∙ 104, 1.8041 ∙ 103, 0.0105}     𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 97 

𝐻𝑖𝑔ℎ𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦 𝑐𝑎𝑙𝑙𝑠 = 153 

𝑙𝑜𝑤𝑓𝑖𝑑𝑒𝑙𝑖𝑡𝑦 𝑐𝑎𝑙𝑙𝑠 = 1324 

𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 = 561 ℎ𝑜𝑢𝑟𝑠  

 

Specifically, the physical outcomes are the following:  

 

𝐹𝑇 = 3.4100 ∙ 10
4𝑁 

𝐹𝑁 = 1.8041 ∙ 10
3𝑁 

𝑠𝑇𝑃𝑆 = 0.0105 𝑚 

 

𝑎𝑟𝑔𝑚𝑎𝑥(𝑇𝑇𝑃𝑆) = 1230.8 𝐾 

𝑚𝑇𝑃𝑆 = 1465.8 𝑘𝑔 

𝑚𝑝 = 86.8429 𝑘𝑔 

 

In Fig. 52 is reported the value of the objective function at each iteration. It can be 

noted that at first the trend of the objective function turns out to be variable. This is 

because the algorithm tends to favour the exploration phase. However, as the 

iterations increase, the variability of the objective function is significantly reduced. 

This can be interpreted as a prevailing of the exploitation phase towards the 

minimum. 

In Fig. 53 are presented the global minimum at each iteration. Although there are 

some sections where the global minimum does not decrease for some iterations, 

overall, it decrements with a significant rate. Moreover, in the last iterations the 

decrease of the global minimum seems to be faster, synonymous with the fact that 
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with a higher number of iterations the algorithm could have further decreased the 

value found. 

In Fig. 54 are reported the samples over the iterations. With the red point is 

indicated the sample corresponding to the global minimum. There is a great 

variability of the forces applied by the thrusters and of the thickness of the TPS. 

This is because the application of suitable forces allows to reduce the temperature 

reached by the materials. However, there are few samples with very high forces. 

This is because as the tangential force increases above the speed, the tangential load 

factor tends to increase considerably, forcing an increase in the structural mass. The 

thickness of the TPS, on the other hand, tends to vary within a limited and globally 

small range of values. This is understandable from the fact that the temperatures 

reached by the TPS are contained due to the applied forces, thus leading to better 

tolerance to thermal loads and reducing the structural mass of the TPS itself. 

In Fig. 55 the trend of the mass of the TPS is presented with the number of 

iterations. As mentioned before, the variability of the contained structural thickness 

and the reduced tangential load factor led to a globally decreasing trend in the 

number of iterations.  

In Fig. 56 the variation of the maximum structural temperature of the TPS is 

presented with the performed iterations. The trend is substantially increasing. This 

is because in the first iterations the level of the applied forces is excessive. On one 

hand, high forces have made it possible to drastically reduce the structural 

temperature, on the other hand, however, the structural mass increases considerably 

to be able to withstand the high tangential load factor. Consequently, going towards 

the optimum the temperature of the TPS increases in the face of lower forces and 

lower structural masses accordingly. 

In Fig. 57 is shown the trend of the mass of propellant burned as the iterations 

proceed. Due to the discussion made above on the applied forces, the mass of 

propellant consumed tends to decrease. 

The results computed by the trajectory model are shown in Fig. 58. Specifically, 

the time of the beginning of the graphs refers to the altitude of 85 km, where the 

continuum hypothesis is valid and therefore the models implemented. 

The pressure, the thermal flow and the wall temperature on the gas side are 

presented respectively in Fig. 59-60-61. Specifically, the blue curve is calculated 

considering the low-fidelity aerothermodynamic model. The values indicated by 

the green points, on the other hand, are obtained by solving a CFD simulation. In 

the iteration corresponding to the optimum, the high-fidelity aerothermodynamic 

model was invoked three times. Following the formulation presented for the 𝛼4 

parameter in Eq. (XX), the high-fidelity model is required in the altitude interval 

where the thermal flows are more stressful for the structure. In fact, the maximum 

heat flux is computed by means of a CFD simulation. This choice is due to the 

design importance given by the heat flux for the structural dimensioning of the TPS. 
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Figure 52: 𝑓(𝑥)-iterations.  

 

Figure 53: 𝑓(𝑥) overall minimum-iterations 
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Figure 54: sample points selected during iterations. In red is reported the sample 

corresponding to the overall minimum of the objective function.  

 

 

Figure 55:  TPS mass-iterations 
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Figure 56: TPS maximum temperature-iterations 

 

 

Figure 57: Propellant mass-iterations 
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Figure 58: velocity, altitude, gamma, theta, Reynolds, and Mach number over re-

entry time.   
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Figure 59: Stagnation point pressure-altitude. The green points are the high-

fidelity values computed during the optimum iteration.  

 

Figure 60: Stagnation point heat flux-altitude. The green points are the high-

fidelity values computed during the optimum iteration.  
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Figure 61: Stagnation point heat flux-altitude. The green points are the high-

fidelity values computed during the optimum iteration. 
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8.12. Comparison Between Single and Multifidelity 

Algorithm  
 

In this paragraph is presented a comparison between the single fidelity expected 

improvement algorithm, presented in chapter 6, and the original multifidelity 

algorithm described in this chapter. The aim is to determine if, from the only tests 

performed, the multifidelity algorithm is more performing than the single fidelity 

algorithm considering the re-entry optimization problem. The single fidelity 

expected improvement algorithm is implemented considering the low-fidelity 

aerothermodynamic model.  

 

The results are presented in Tab.9: 

 

 SFEI algorithm MFEI algorithm 

Iterations 100 100 

Overall minimum 1.0816 0.8332 

Tangential thrust 40,902 kN 34.1 kN 

Normal thrust 2.0917 kN 1.804 kN 

TPS thickness 0.0250 m 0.0105 m 

TPS mass 2265.9 kg 1465.8 kg 

TPS max temperature 2018.3 K 1230.8 K 

Propellant mass 114.114 kg 86.8429 kg 

Computation time 18 minutes 561 hours 

 

Table 9: SFEI and MFEI algorithm results comparison. 

 

Overall, the MFEI algorithm appears to perform better than the SFEI. This can be 

derived from the fact that the global minimum of the objective function, and 

therefore the consequent design variables, are smaller in the case of the multifidelity 

algorithm. Since the objective function has been defined so that the value 1 

corresponds to average data of atmospheric re-entry capsules, two considerations 

can be made: the low-fidelity model would seem to be the most conservative and 

that the information coming from the CFD simulations allow an enrichment of 

information and therefore a better re-entry mission. 
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In Fig. 62 a comparison is presented between the value of the objective function 

assumed for each sample in the case of MFEI and SFEI algorithms. In particular, 

the performance of the SFEI algorithm shows, in the first calculations performed, 

an exploration phase characterized by a strong variability of the objective function. 

However, with increasing iterations the exploitation towards the minimum shows a 

reduced fluctuation of the objective. 

This is proven by the trends of the global minima with the number of iterations. The 

SFEI algorithm shows in Fig. 63 a decreasing trend that is not excessively 

accentuated, if compared to the trend of the MFEI algorithm. However, as in the 

multifidelity case, it can be assumed that by increasing the number of iterations, the 

minimum can further decrease. 

The sampling carried out in the iterations are shown in Fig. 64. The SFEI algorithm 

shows a sampling characterized by a greater variability of the thickness of the TPS. 

Furthermore, the values themselves are also significantly higher. This can be 

interpreted by the fact that the low fidelity aerothermodynamic model has in output 

higher thermal loads than the high-fidelity model. To cope with the higher thermal 

loads, the thickness of the TPS must necessarily increase. In Fig. 65-66 what has 

just been said can be noted. Although both the mass of the TPS and the structural 

temperature have an average decreasing trend, the values reached are significantly 

higher than the results obtained with the multifidelity algorithm. In Fig. 67 the 

propellant mass computed performing the SFEI algorithm shows the same trend.  

In Fig.68 are reported the outcomes of the trajectory model to characterize the 

optimum re-entry profile.    

The comparisons between the single fidelity and multifidelity trends of pressure, 

heat flux and gas side wall temperature at the point of stagnation are shown in Fig. 

69-70-71 respectively. Focusing on the heat flux, the single fidelity result shows a 

peak of 6.333 ∙ 105 𝑊/𝑚2 at the altitude of 5.771 ∙ 104 𝑚 while the multifidelity 

output shows a maximum heat flux of 5.541 ∙ 105 𝑊/𝑚2 at the altitude of  5.901 ∙

104 m. Considering the wall temperature, on average the values obtained with the 

SFEI algorithm are greater than the one obtained with MFEI strategy, confirming 

what has been said earlier about the single fidelity optimization result. The same 

result can be observed in the stagnation point pressure trend.  

In conclusion, the single fidelity algorithm leverages effectively the low-fidelity 

aerothermodynamic models, allowing design exploration to be carried out in a short 

time given the limited calculation expense. However, the global minimum value of 

the objective function is above 1 (mean reference value for atmospheric re-entry 

vehicles). This suggests that aerothermodynamic physical models are conservative, 

because tend to overestimate thermodynamic variables such as heat flux or wall 

temperature. Consequently, the optimum design obtained with the SFEI algorithm 

overestimates the structural mass, the temperature of the TPS and the mass of 
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propellant burned. By contrast, the multifidelity algorithm is computationally less 

efficient given the much longer computation times. However, the information 

coming from high fidelity numerical simulations allows to enrich the knowledge of 

the objective function, leading to a better optimal design. 

Some considerations can be made on the implementation of a SFEI algorithm with 

high fidelity model. In this work, suitable tests were not done due to a high time 

required and computational cost. However, some considerations can be made. The 

model that allows the computation of the trajectory has been set in order to have 23 

points in the range of heights of interest for the problem. Consequently, an iteration 

of the SFEI or MFEI algorithm involves evaluating the aerothermodynamic model 

23 times. Based on this consideration and the computational performance of the 

MFEI algorithm known, the time required to perform 100 iterations by 

implementing the multifidelity algorithm corresponds to approximately the time 

required to perform 6 iterations by implementing the single high-fidelity model.  

Therefore, two important implications can be outlined: the multifidelity algorithm 

is computationally more efficient than the single high-fidelity algorithm and allows 

to improve the solution obtained with the single low-fidelity algorithm; While it 

can be said with some confidence that 6 single high-fidelity iterations are not 

enough to achieve convergence, nothing can be said about the level of accuracy 

achievable by performing 100 iterations with the high-fidelity model. 
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Figure 62: 𝑓(𝑥)-iterations. The graph above is the result of the MFEI algorithm. 

The lower one of the SFEI algorithm.  
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Figure 63: 𝑓(𝑥) overall minimum-iterations. The graph above is the result of the 

MFEI algorithm. The lower one of the SFEI algorithm. 
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Figure 64: sample points selected during iterations. In red is reported the sample 

corresponding to the overall minimum of the objective function. The graph above 

is the result of the MFEI algorithm. The lower one of the SFEI algorithm.  
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Figure 65:  TPS mass-iterations. The graph above is the result of the MFEI 

algorithm. The lower one of the SFEI algorithm. 



172 
 

 

 

Figure 66: TPS maximum temperature-iterations. The graph above is the result of 

the MFEI algorithm. The lower one of the SFEI algorithm. 
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Figure 67: Propellant mass-iterations. The graph above is the result of the MFEI 

algorithm. The lower one of the SFEI algorithm. 
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Figure 68: trajectory model outcomes.  
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Figure 69: Stagnation point pressure-altitude. The graph above is the result of the 

MFEI algorithm. The lower one of the SFEI algorithm. 
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Figure 70: Stagnation point heat flux-altitude. The graph above is the result of the 

MFEI algorithm. The lower one of the SFEI algorithm. 
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Figure 71: Stagnation point wall temperature gas side-altitude. The graph above 

is the result of the MFEI algorithm. The lower one of the SFEI algorithm 
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9. Conclusions  

 
The objectives of this thesis are to investigate the leverage of multifidelity methods 

to speed-up the design optimization process and to develop an innovative 

multifidelity algorithm for the multidisciplinary design optimization (MDO) of a 

vehicle performing an atmospheric controlled re-entry.  

This thesis has explored multifidelity methods in order to reduce the time expense 

in the design process and acquire significant information about the system in the 

early stages of the process. Specifically, a multifidelity expected improvement 

algorithm is implemented and compared to the performance of a single fidelity 

expected improvement algorithm in order to address an optimization problem. The 

tests are conducted on analytical benchmark objective functions and related low-

fidelity formulations, given the low computational expense of simulations and 

knowledge about the analytical optimum of the test functions. The single fidelity 

algorithm invokes the higher fidelity formulation of the analytical functions. The 

multifidelity algorithm leverages the hierarchical set of different fidelity level 

functions.  

The results show that the multifidelity framework enriches the information elicited 

from low-fidelity models with high-fidelity data, guiding effectively towards the 

optimum. Moreover, the computational expense is inferior compared to the single 

fidelity algorithm. In fact, we can observe that the high-fidelity model is queried a 

lower number of times than low-fidelity models during the optimization process. 

The tests show that the algorithm tends with a probability of less than 7% to detect 

the minimum of the low-fidelity functions as global minimum of the optimization 

problem, instead of the benchmark functions minimum. However, this behaviour 

was expected given the use of significantly less data from the benchmark functions. 

In addition, this thesis proposed an innovative multifidelity algorithm to address the 

multidisciplinary design optimization problem of controlled re-entry vehicle.  

The objective function is dependent on propellant mass burned, thermal protection 

system (TPS) mass and structural temperature. The design variables are the thrust 

tangential and normal to the trajectory and the TPS thickness. The optimization 

constraints are the capsule geometry, TPS material, propellants and initial re-entry 

conditions. Moreover, the thruster can fire only in a specific range of altitude in 

order to avoid failure due to the hypersonic thermofluidic regime, stressful for the 

propulsive system; The TPS temperature must be under the material melting 

temperature to guarantee the survival of the payload; The thrust needed to optimize 

the trajectory must be allowable by the stock propellant mass; The residual of CFD 

analysis must be less than 10−6 in order to guarantee the convergence of 

computation. 

Specifically, two levels of fidelity are considered for the aerodynamic and 

aerothermodynamic model, given the importance of this physical phenomena for 
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the problem. In fact, this physical discipline has a dominant impact on design of 

TPS structure, TPS material selection and trajectory definition of a re-entry vehicle. 

The low-fidelity aerodynamic and aerothermodynamic model is defined by 

experimental and empirical correlations. The high-fidelity model is given by 

computational fluid dynamic (CFD) simulations for the aerodynamic physics and 

Fay-Riddle correlations for thermal loads estimate.  

The original multifidelity algorithm is based on the MFEI approach. The 

formulation of the multifidelity expected improvement was modified to consider 

the aerodynamic and aerothermodynamic physical phenomena involved in 

atmospheric re-entry. The optimization process is conducted considering 100 

iterations for both the original MFEI and SFEI algorithm.  

The results show that the proposed MFEI algorithm is capable to achieve a better 

optimization results than the SFEI algorithm based on low-fidelity 

aerothermodynamic model. The formulation of the objective function it is 

dimensionless and was designed to return 1 when the propellant mass, temperature 

and mass of the TPS correspond to average values for re-entry spacecrafts. 

Specifically, the minimum of the objective function is 0.8332 performing the 

multifidelity approach and 1.0816 executing the single fidelity approach. As a 

consequence, the optimal design achieved by leveraging the multifidelity method 

has a TPS structural mass, TPS structural temperature and propellant mass burned 

significantly lower than the single low-fidelity outcome. This suggest that the 

innovative algorithm is capable to enrich low-fidelity data with high-fidelity 

information to improve the knowledge about the objective function.  

Analysing the computational effort outcoming from the MDO problem, a 

comparison between the original MFEI algorithm and SFEI based on high-fidelity 

aerothermodynamic model can be conducted. It is possible to note that the 

computational expense of the multifidelity algorithm in performing 100 iterations 

corresponds to the calculation time necessary to perform 6 iterations considering 

the single high-fidelity algorithm.  

Many future developments for further research relating to the multifidelity methods 

applied to re-entry optimization problems can be considered. First the high-fidelity 

representation of the aerothermodynamic physics would largely benefit from the 

use of CFD solvers capable to implement vibrational and chemical non-equilibrium 

phenomena to further refine the solution. Moreover, the experiments conducted on 

the MDO problem were carried out with a single run of the algorithm due to the 

excessive computational cost. It would be significant to extend the number of runs 

in order to have a statistic on the performance of the innovative MFEI and SFEI 

algorithm considering both the low and high-fidelity cases. The time discretization 

implemented in the numerical integration of the equations of planetary re-entry 

flight can be refined in order to obtain more detailed results. The selected time 
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discretization is the result of a trade-off between the accuracy of results and the 

computational resources available.  

In conclusion, this thesis demonstrated the ability of multifidelity methods to speed 

up the search for the optimum in an optimization problem. Furthermore, it has been 

shown that the innovative multi-fidelity formulation proposed for the MDO 

problem of atmospheric re-entry, allows to effectively and efficiently combine low 

fidelity information with accurate and computationally expensive data, in order to 

obtain a sensitive improvement to the design of a re-entry vehicle.  
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