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0. Abstract 

Recent years, with the rapid development of transportation and the increasing number of vehicles, motor 

vehicles have become an important source of urban environmental pollution and traffic congestion problems. 

Currently, 25% of CO2 come from transportation industry (Dablanc,2011). In response of side effects of the 

transportation sector on energy and the environment, many countries have adopted the development of new 

energy vehicles as a national strategy. As a representative of new energy vehicles, electric vehicles (EVs) with 

zero pollution and low energy consumption have been rapidly developed, it is also imperative to popularize EVs 

in the logistic sector, benefits from reducing harmful gas emissions and logistics costs. 

 Compared with the traditional fuel vehicles, the EVs distribution faces some difficulties such as battery 

capacity limitations, long charging time and few charging facilities. At present, the difficulty of charging 

seriously restricts the marketing promotion of EVs. Consummating the deployment of charging facilities are an 

important guarantee for the extensive use of EVs. The rational layout of charging stations is particularly 

important. The traditional vehicle routing problem cannot be directly applied to the EVs distribution system. The 

charging station location problem and the routing problem of EVs are interdependent. 

  This thesis mainly discusses:  

⚫ The problem of using EVs in logistics industry, especially in urban last mile delivery. 

⚫ Based on Genetic algorithm, design a model for solving optimization problems for both Charging Station 

Location Allocation Problem (CS-LAP) and for Electric Vehicle Routing Problem (E-VRP). 

⚫ Analyze some examples of scenario, compare the logistics costs between traditional vehicles and EVs.  
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1. Introductions to the related theories 

1.1 City logistics 

City logistics (urban freight distribution) generally is the logistic companies provide a series of logistics 

services to the customer points that distributed in urban area, these services includes processing, packaging, 

loading and unloading, distribution, etc. City logistics is an important activity that connects the exchange of 

goods between the city and the outside. It has a linking role in the entire logistics distribution system. 

Mainly have the following contents and characteristics [1][2][3]: 

1) The distribution area is relatively concentrated and fixed. The area is often bounded by the entire city 

boundary. So, it has the remarkable characteristic of short distribution distance. 

2) The scale of urban logistics is huge. Urban logistics mainly occurs in densely populated and resource-

intensive urban areas, so the customers’ needs are various and huge amounts. The common distribution 

forms are small-batch and multi-frequency. 

3) Urban logistics pay attention to customer service quality. It is directly facing to customers, so the quality of 

service directly affects the corporate image and reputation of company. Service quality is mainly embodied 

in whether the product packaging is intact, whether the delivery is on time, etc. 

4) The vehicle speed is not high. In urban logistics, because the city traffic conditions are complicated, such 

as traffic congestion and road maintenance. Besides, under the control of traffic lights, the speed of 

distribution vehicles cannot be very high. 

5) Low requirements for vehicle power performance. Due to the low speed restricted by urban roads, the 

requirements for vehicle power performance are generally low. Therefore, urban logistics companies pay 

more attention to the cargo loading capacity and operating costs when choosing the means of transport. 

1.1.1 Last mile delivery 

Delivery is the process of transporting goods from a source location to a predefined destination. The general 

process of delivering goods is known as distribution. Last mile delivery describes the movement of people and 

goods from a transportation hub to a final destination, it is the terminal distribution of urban freight distribution 

[4]. As a special type of distribution, last mile service provides short-distance and point-to-point distribution 

within cities, it can be divided into professional distribution and general merchandise distribution, as shown in 
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Figure 1.1: 

Figure 1.1 Last mile delivery classification 

Professional distribution: the main customers are small and medium-sized enterprises and large supermarkets 

in the city. General merchandise distribution: this type of demands has a wide variety, high timeliness 

requirements, high distribution frequency and uneven distribution, the main customers are small enterprises, 

residents and individuals.  

The distribution mode consists of four types [5]:  

1) Self-delivery mode (direct delivery by suppliers); 

2) Collaborative delivery mode (a number of logistics enterprises cooperated in a certain distribution area); 

3) Outsourced delivery mode (the third-party logistics); 

4) Integrated delivery mode (from production to transportation process comprehensively distribute goods by 

enterprises). 

  With the development of cities and the transformation of resident’s consumption patterns, cities need more 

efficient distribution systems to support the daily operation of cities. At the same time, residents’ higher pursuit 

of the urban living environment also requires logistics activities to reduce their negative impacts on environment 

and reduce energy consumption. Logistics is a key industry of the national economy, in China, logistic costs 

relative to GDP accounted for 14.6% in the first half of 2019 [6], and itself is also a major energy consumer and 

high emissions, so “Greening” logistic industry is imperative. 

1.2 Green logistics 

Green logistics refers to the use of advanced logistics technology to plan and implement logistics activities to 

restrain harm to environments and reduce resource consumption. The ultimate goal of green logistic is to 

minimize the impact of logistics activities on the environment and achieve sustainable development.  

The significance of developing green logistics is not only in energy saving and emission reduction, for 

logistics companies, it can also reduce logistics costs and improve economic and social benefits. The 
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development of green logistics is not only to achieve greening through technical means and management in a 

certain part of logistics. Moreover, the operation is carried out through all links in the logistics to realize the 

greening of the entire logistics system. 

  Green logistics is developed on the basis of traditional logistics, in term of operation process it is similar to 

traditional logistics. To realize a green logistics system, it is necessary to realize the greening of packaging, 

handling, transportation, storage, distribution, waste treatment, etc. Figure 1.2 shows the green logistics structure 

diagram [1]: 

Figure 1.2 green logistic structure diagram 

1.2.1 Low-carbon logistics 

Green logistics is a concept with deep meaning, all methods and processes aimed at reducing the ecological 

environment impact during logistics process belong to the category of green logistics. While, low-carbon 

logistics emphasizes environmental protection, which can reduce the carbon intensity (the ratio of greenhouse 

gas emissions produced to GDP) during logistics. In terms of scope, green logistics includes low-carbon logistics, 

green logistics is richer in connotation [7]. 

The origin of low-carbon logistics is attributed to the low-carbon economy and the Copenhagen Environment 

Conference’s advocacy of green issues. Low-carbon economy means that under the guidance of the concept of 

sustainable development, through technological innovation, institutional innovation, industrial transformation, 

new energy development and other means, as much as possible to reduce the consumption of high-carbon energy 

such as coal and petroleum, reduce greenhouse gas emissions, and achieve a win-win economic development 

pattern for social development and ecological environment protection. 

Often most of the logistics cost lies in the transportation goods, and the carbon emissions caused by vehicle 
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transportation also account for a large proportion of the carbon emissions of the entire logistics system. 

1.2.2 Carbon emissions cost calculation 

Carbon emission is an abbreviation for greenhouse gas emission, which is proposed under the background of 

global warming. Greenhous gases mainly include carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 

ozone (O3), chlorofluorocarbons (CFCS), etc. The largest proportion is CO2 among greenhouse gases [8]. 

Therefore, “Carbon” is used to represent greenhouse gas emissions. In this thesis, we mainly discuss the carbon 

dioxide gas, other gases are not considered due to small proportions. Because we study the electric vehicles 

routing problem of urban freight distribution, mainly consider two indicators for the calculation of the carbon 

emissions. One is the carbon emissions of the fuel in the upstream processing, and the other is the carbon 

missions caused by the exhaust emissions when the vehicle is driving. For electric vehicles and traditional fuel 

vehicles the carbon emissions sources are different [1][9]: 

1) Fossil fuel vehicle CO2 emissions calculation.  

The upstream process of fuel is mainly crude oil extraction and transportation, oil processing and 

transportation. We set a positive correlation between CO2 emissions and vehicle fuel consumption. Through 

the mass conservation equation, the expression can be obtained as Eq. (1.1) 

 𝐸 = ∑ 𝐹𝑘 ∙ (𝜇 + 𝜃) (1.1) 

    𝐸 = CO2 emission for a fossil fuel vehicle in a single delivery 

    𝐹𝑘 = Fuel consumption per vehicle k, can be obtained by multiplying unit fuel consumption by the distance 

    𝜇 = Vehicle emission factor, used to calculate the carbon emissions caused by fuel consumption 

    𝜃 = Fuel conversion factor, carbon emissions caused by fuel production process. 

2) Electric vehicle CO2 emissions calculation. 

Electric vehicles do not produce exhaust emissions when driving, so here we only consider the carbon 

emission brought by the upstream power generation company’s production process. According to statistics 

from China National Bureau of Statistics, power generation structure in the past five years as shown in 

Figure 1.3. 
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Figure 1.3 annual power generation structure chart 

We can see that thermal power generation has always accounted for the largest proportion, but the 

percentage has been declining. Thermal power generation accounted for 71% of total power generation in 

2018. According to the climate home news, in EU, power generation coming from fossil fuels accounts for 

34%. We ignore the carbon emissions caused by water power, wind power and nuclear power, only consider 

the carbon emissions caused by thermal power generation. According to the ratio of thermal power to the 

entire electricity and the mass balance equation, the expression can be obtained as Eq. (1.2): 

 𝐸 = 𝛾 ∙ ∑ 𝐹𝑘𝑒 ∙ 𝜆 (1.2) 

𝐸 = CO2 emission for a fossil fuel vehicle in a single delivery 

𝛾 = the proportion of thermal power in total power generation, here use 71% (2018) 

𝐹𝑘𝑒 = electricity consumption per vehicle k, can be obtained by multiplying the unit power consumption 

by the distance 

λ = carbon emissions per unit of electricity production 

When calculating the total logistic cost, the carbon emission cost of vehicles operation is also included in 

total cost. We consider the transportation distance, and converts the distance into the carbon emissions of 

fossil fuel vehicles and electric vehicles in the distribution process according to fuel consumption and 

electricity consumption through their respective conversion factors. Based on the unit carbon emission cost 

and the total carbon emission, calculate the carbon emission cost. 

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

thermal power

water power

nuclear power

wind power

solar power

thermal power water power nuclear power wind power solar power
2018 71% 17% 4% 5% 3%

2017 71.80% 18.30% 3.80% 4.50% 1.50%

2016 72.20% 19.40% 3.50% 3.90% 1.10%

2015 73.70% 19.40% 2.90% 3.20% 0.70%

2014 75.60% 18.80% 2.30% 2.80% 0.40%

2018

2017

2016

2015

2014
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1.3 Incentive policies and measures 

  In the global transportation field, the CO2 emissions caused by road transportation exceed 70% of the total 

emissions, of which the emissions from small vehicles (include light van and truck) account for more than 65%, 

become the main carbon emission source of the transportation industry, and forecasts project an increasing 

number of freight vehicles in city traffic [10]. In order to significantly reduce pollution and emissions from the 

transportation sector, some cities have announced that they will restrict internal combustion engine vehicles from 

entering the urban areas by delimiting zero-emission zones. Paris, London, Los Angeles, Oslo and Tokyo have 

already signed the Fossil Fuel Free Streets Declaration, commit to designate some core urban areas as zero-

emission zones by 2030. Amsterdam announced that the urban central area will be designated as a zero-emission 

zone by 2025, allowing only zero-emission vehicles to pass, and plans to expand the zero-emission zone to the 

entire city area by 2030. These plans to set the zero-emission zone or the restricted zone for traditional fuel 

vehicles send a clear signal to companies and the public, that is, to encourage everyone to buy the electric 

vehicles [11]. 

In 2017, China ministry of transportation issued a road freight industry plan, which clearly pointed out that it 

is necessary to strengthen the technical management of urban distribution vehicles and provide convenience for 

electric vehicles. In January 2018, the State Council of China issued a document to promote the development of 

express logistics, encouraging the express logistics sector to accelerate the use of new energy vehicles or higher 

emission standard fuel vehicles, and gradually increase the proportion of new energy vehicles [12]. 
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2. Electric vehicles applications in city logistics 

In the urban last mile process, as the last link before the product reaches the customer, there are many customer 

points, complex distribution routes and congested road conditions that make traditional fuel vehicles run under 

uneconomical, high fuel consumption, low speed or idle conditions for a long time, namely causes a lot of carbon 

emissions, noise and vibration, and also increase the cost of vehicle. In today’s low-carbon and environmental 

protection context, EVs have become the most promising alternative to current distribution vehicles with their 

zero-carbon emission, zero pollution and low noise characteristics, and are the main way to realize green logistics. 

This chapter defines the related concepts of EVs and analyzes the characteristics and application status of EVs 

distribution. 

2.1 Relevant concepts 

2.1.1 Types of electric vehicles 

  An electric vehicle is an automobile that is propelled by one or more electric motors, using energy stored in 

rechargeable batteries [13]. EVs used in logistic sector can also be called—electric freight vehicles (EFVs). At 

present, because of their mileage limit, the application range of EFVs is relatively limited to the field of urban 

logistics distribution. There are mainly three types: electric minivans and vans, electric light trucks, electric 

refrigerated vehicles, shown in figure 2.1. Table 2.1 lists the using features of these three types [14]. 

 

Electric Minivans Electric Vans 

Electric Light Truck Electric Refrigerated Vehicles 

Figure 2.1 main types of EFVs 
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Types Features 

Electric minivans and vans Small loading capacity, suitable for last mile delivery. 

Electric light trucks Large loading capacity, suitable for distribution from factory 

to distribution center (DC), master DC to regional/local DC 

and regional/local DC to dealers. 

Electric refrigerated vehicles Large capacity, suitable for transporting fresh food, fruits, etc. 

Table 2.1 main features of EFVs 

2.1.2 Characteristics of Electric vehicles 

Compared with traditional fuel vehicles, the advantages of EVs are obvious:  

1) They do not consume any fossil fuels or emit any CO2 during delivery. Although part of the electrical energy 

in the charging process comes from thermal power plant, it generally centrally processes emissions which 

can also reduce carbon emissions. If their electricity comes from renewable sources, they are completely 

clean.  

2) They make less noise than internal combustion engine vehicles, especially when driving at idle speed and 

low speed. 

3) Many municipalities have adopted traffic controls for traditional freight vehicles entering the city center, 

they can only choose the fixed time period to enter the urban area or make a detour, this will increase the 

logistic cost. The advantages of EVs are reflected at this time. With the support of national policies, many 

cities have formulated separate traffic regulations for EVs, they get the priority right of way, do not subject 

to the same traffic restrictions as traditional freight vehicles. 

Although there are great advantages of using EVs in environment, energy and services aspects, due to 

technical limitations, EVs still have some shortcomings: 

1) Long charging time. Fast charging in 1 hour can be charged to about 80% of the full power, or it may take 

several hours or even twenty hours. While, fuel tanks can be filled up just in minutes. 

2) Range anxiety. The limited range of EVs is often considered the most important barriers to EV adoption. 

From the data of the China Automotive Technology & Research Center’s 2018 electric freight vehicle 

market analysis, it can be known that the range of EVs used for logistics transportation in China is 

concentrated in 200 km-250 km, the cumulative proportion is 56%. This greatly reduces the distribution 

scope of EFVs, and currently it can only focus on city logistics distribution. One is branch transportation 

with a mileage of 50-150 km, and the other is last mile delivery. The last mile in urban areas is characterized 

by small distance: it has been estimated that more than 80% of freight trips European cities are shorter than 
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80 km, which is compatible with the limited range of EFVs.  

3) Backward planning of charging facilities. At present, EFVs have not been widely popularized, and they are 

still in the promotion period. The construction of supporting charging facilities means that a large amount 

of capital investment is required, but these investments cannot be profitable in the short term. From the 

government and enterprise level, there is a lack of motivation for the construction and improvement of 

charging facilities, resulting in an unreasonable ratio between the number of EFVs and charging station, 

and the problem of difficulty in charging. 

2.1.3 Charging modes and charging infrastructures 

EVs charging modes can be divided into on-board charging, ground charging, battery swapping and wireless 

charging modes. Each charging method has its own characteristics. Here we consider the public charging method 

[15]: 

1) Fast charging (ground charging) 

The direct current (DC) charging station charges the battery directly over a short period of time with a large 

current. It has high charging power (60 kw, 120 kw, 200 kw or higher). Charging time is short, usually takes 

20mins to 2 hours, charging current is 150-400 A. Fast charging mode work and installation costs are higher 

than conventional charging mode. Due to the high current and large impact on the battery, easily heat the battery 

and may reduce the battery service life. 

2) Normal charging 

The alternating current (AC) charging pile delivers alternating current to charger, which converts its stored AC 

to DC to charge the battery. Because it is a two-stage power supply process, the charging speed is slow and 

usually takes 5 to 8 hours, some even reach 10-20 hours, charging current around 15 A. It is more suitable for 

charging in a fixed place or work place at idle time. 

3) Wireless charging 

The battery can be fast charged without the use of a cable to connect the power supply system. The technology 

is based on the electromagnetic induction principle, convert electrical energy into electromagnetic signals, the 

vehicle receives the signals and converts into electrical energy. This technology is not yet mature at present. 

4) Battery swapping 

Battery swapping means the electric vehicles supplement energy by replacing battery packs, eliminating the 

delay involved in waiting for charging battery. There are many restrictions of this mode. First, need a large-scale 

battery module to ensure the standardization and matching of battery replacement. Secondly, to achieve rapid 
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and convenient battery replacement, require professional staffs and corresponding swapping stations, and the 

locations of stations must fully consider the mileage limit of electric vehicles. The battery swapping stations also 

require professional technical personnel or mechanical equipment to complete the battery replacement, charging 

and maintenance. Due to high investment costs, high technical requirements and lack of professionals, at present, 

this mode only used in a few special fields and is not feasible in public. 

Battery charging stations are important infrastructures for cities in the future. At present, there are mainly two 

types: 

1) Centralized charging stations 

Provide electric energy supplement for EVs by establishing large-scale centralized professional charging 

facilities, similar to the current filling stations. 

2) Distributed charging stations 

Charing piles are installed in public places (public parking place, shopping mall, highway service area, etc.) and 

parking spaces of individual to achieve fast and convenient charging of EVs. 

  Besides, during the battery charging process, electric energy is converted into chemical energy and stored in 

battery. Due to the external environment affects and the chemical nature of the active materials inside battery, 

electrical energy cannot be converted into 100% of chemical energy, part of its consumed in other side reactions, 

so we need to consider the concept of charging efficiency. 

  The ratio of the discharged capacity to the input battery capacity when the battery is discharged to a certain 

cut-off voltage under certain conditions, this ratio is charging efficiency. Refer to the Electric vehicle charging 

technical specifications implemented in Shenzhen in 2011, as shown in Table 2.2. 

Charger type Charging efficiency 

Off-board charger ≥ 90% 

On-board charger 50%~100% 

Table 2.2 charging efficiency standard 

  We mainly consider to use off-board chargers (fixedly installed on the ground, convert AC power from 

electricity gird to DC power) to charging battery, from the current mainstream charging equipment, the DC 

charging efficiency (fast charging) can reach 95%. 

2.2 Application status 

  Many countries have begun to try and promote the use of EFVs in urban area. Next, we will introduce some 

applications in detail. 
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1) In Europe 

FREVUE (Freight Electric Vehicles in Urban Europe), the European FP7 project, it is co-funded by the 

European Commission under the Seventh Framework Program. It demonstrates the use of EFVs in city logistics 

operation in eight European cities [16].  

In Milan’s project activity is to improve the urban distribution of goods within the pharmaceutical chain by 

implementing a logistics system which will coordinate supply and utilize EVs (e-NV200 Nissan) for delivery. 

The system is dedicated to the distribution of medicines to pharmacies located within the Area C (city center). 

In order to achieve this goal, Milan established a consolidation center on the outskirts of the city and procured a 

(refrigerated) electric freight vehicle for operation. In cooperation with the local freight operator which serve the 

59 pharmacies located within Area C, the municipality of Milan estimates that their electric vehicle has the 

potential fulfil 20% of the pharmaceutical logistical needs. Through the use of an electric van for pharmaceutical 

deliveries, Milan intends to promote this model towards other Italian and European cities. 

In Lisbon demonstration project, the Portuguese postal company CTT uses 10 small electric vans (Renault 

Kangoo ZOE) for post and parcel operations. EMEL (Lisbon's mobility and parking company) uses 5 small 

electric vans for maintenance of the on-street parking and charging facilities. 

2) In China 

In recent years, the annual growth rate of China's express delivery business has been maintained at around 

50%. At present, the entire logistics industry has more than 20 million fuel freight vehicles in stock, the current 

market share of electric freight vehicles is only 2%, while the demand for short-distance delivery capacity in 

cities has continued to increase, which has created a huge market demand for electric commercial vehicles with 

zero emissions and suitable for short-distance distribution.  

In November 2017, JD (one of the two massive B2C online retailers in China) logistics announced a joint test 

with a number of electric vehicle manufacturers across the country to jointly promote, develop, and introduce 

thousands of EVs, and put them into use in 16 large and medium-sized cities. In the next five years, JD logistics 

plans to replace all vehicles in the system with EFVs [17]. 

3) In USA 

In September 2019, Amazon placed an order for 100,000 electric delivery vans from EV startup Rivian. The 

vans are expected to be on public roads by 2024, with the first coming as soon as 2021, prototypes possibly 

arriving as soon as 2020. This order came after Amazon led a 700-million-dollar investment round for Rivian, 

which could point to the two companies having a broader relationship as the e-commerce giant builds up a large 
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electric fleet, this is the Amazon’s sweeping plan to tackle climate change. 

In January 2020, UPS (American multinational package delivery and supply chain management company) 

said its venture capital arm, UPS Ventures, has completed a minority investment in Arrival, along with the 

investment in Arrival, UPS also announced a commitment to purchase 10,000 electric vehicles to be built for 

UPS with priority access to purchase additional electric vehicles. Arrival is the first commercial vehicle 

manufacturer to provide purpose-built electric delivery vehicles to UPS’s specifications and with a production 

strategy for global scale. Since 2016, UPS and Arrival have collaborated to develop concepts of different vehicles 

sizes. The company previously announced they would develop a state-of-the-art pilot fleet of 35 electric delivery 

vehicles to be trialed in London and Paris.  
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3. Vehicle distribution system relevant concepts 

The research on EFVs is a new topic in recent years. The current research on electric vehicle distribution 

systems mainly focuses on the following three aspects: charging station location allocation problem (CS-LAP), 

electric vehicle routing problem (E-VRP) and electric vehicle location-routing problem (E-LRP). Therefore, this 

chapter will introduce the basic theory and model of the LAP, the VRP and the LRP respectively.  

3.1 Location allocation problem (LAP) 

This problem is to find numbers and locations for new facilities under specified constraints, like minimizing 

the delivery time from facilities to customers. The location decisions of public service facilities, warehouses, 

and distribution centers all belong to the category of LAP. According to different classification standards, LAP 

can be divided into different types, as shown in Table 3.1 

Classifications LAP types 

Different demand points Based on point demand: P-center, P-median, maximum coverage; Based 

on route demand: Flow interception problem 

Time dimension Static state LAP, dynamic LAP 

Demand characteristics Deterministic LAP, stochastic LAP 

Facilities capacity Deterministic LAP, uncertain LAP 

Single/Multi-objective optimizations Single-objective optimization LAP, multi-objective optimization LAP 

Table 3.1 classification of LAP 

According to the different customer needs, the charging facilities location model can be summarized into two 

categories: LAP considering point demand and LAP considering the route demand. Point demand mainly refers 

to that the service objects are fixed on the nodes in the research network, here we consider the simplified basic 

model (with Euclidean distance): 

1) P-center model. This model mainly studies: on the premise that all demand points are served, how to select 

the number p facility locations in the network so that the sum of the total distances from demand points to 

facilities is the smallest. The model is shown in Eq. (3.1) - (3.5): 

 𝑚𝑖𝑛𝑍 = ∑ ∑ 𝑑𝑖𝑗 ∙ 𝑦𝑖𝑗𝑗∈𝑀𝑖∈𝑁  (3.1) 

s.t. 

 ∑ 𝑦𝑖𝑗 =𝑗∈𝑀 1, ∀𝑖 ∈ 𝑁 (3.2) 

 ∑ 𝑥𝑗 =𝑗∈𝑀 𝑝 (3.3) 

 𝑦𝑖𝑗 ≤ 𝑥𝑗 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (3.4) 
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 𝑥𝑗 , 𝑦𝑖𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (3.5) 

 

𝑀 = candidate facilities locations; 

𝑁 = customer points set; 

𝑑𝑖𝑗 = distance from point 𝑖 to 𝑗; 

𝑝 = numbers of facilities to be constructed; 

𝑥𝑗 = {
1
 0 

 =1 build facility at point 𝑗; 

𝑦𝑖𝑗 = {
1
 0 

 =1 customer point 𝑖 is covered by facility 𝑗; 

  Eq. (3.1) is the objective function of the facilities, which is to minimize the distance. Constraint (3.2) 

indicates all the customer points are assigned to a facility; Constraint (3.3) express the number of facilities to be 

built; Constraint (3.4) indicates that only open facility can provide services; Constraint (3.5) indicate the 𝑥𝑗, 

 𝑦𝑖𝑗 are 0-1 variables. 

2) Maximum coverage location model. The goal of this model is to select a reasonable location of service 

facility to satisfy the largest demand, under the condition that the quantity and service radius of facilities 

are known. The model is shown in Eq. (3.6) - (3.10): 

 𝑚𝑎𝑥𝑍 = ∑ ∑ 𝑑𝑖 ∙ 𝑦𝑖𝑗𝑗∈𝑀𝑖∈𝑁  (3.6) 

s.t. 

 ∑ 𝑥𝑗 ≥ 𝑦𝑖𝑗𝑗∈𝑀 , ∀𝑖 ∈ 𝑁 (3.7) 

 ∑ 𝑥𝑗 ≤ 𝑚𝑗∈𝑀 , ∀𝑖 ∈ 𝑁 (3.8) 

 𝑦𝑖𝑗 ≤ 𝑥𝑗 , ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (3.9) 

 𝑥𝑗 , 𝑦𝑖𝑗 ∈ {0,1}, ∀𝑖 ∈ 𝑁, 𝑗 ∈ 𝑀 (3.10) 

𝑀 = candidate facilities locations; 

𝑁 = customer points set; 

𝑑𝑖𝑗 = demand of point 𝑖; 

𝑚 = numbers of facilities to be constructed; 

𝑥𝑗 = {
1
 0 

 =1 build facility at point 𝑗; 

𝑦𝑖𝑗 = {
1
 0 

 =1 customer point 𝑖 is covered by facility 𝑗; 

  Eq. (3.6) is the objective function of the facilities, which is to maximize the demand points covered by 

facilities to be built. Constraint (3.7) indicates satisfy the customer point 𝑖 just when facility build at point 𝑗; 
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Constraint (3.8) express the number of facilities to be built; Constraint (3.9) indicates that only open facility can 

provide services; Constraint (3.10) indicate the 𝑥𝑗,  𝑦𝑖𝑗 are 0-1 variables. 

3) Flow interception location model. If customer demand is distributed on the traffic route in the network, this 

is a location model based on route demand. This model refers to how to select the service facilities location 

under the premise that the routes, the number of service facilities and the demand are known, so that the 

service facilities can intercept the maximum total demand. The model is shown in Eq (3.11) - (3.14): 

 𝑚𝑎𝑥𝑍 = ∑ 𝑓𝑞𝑞∈𝑄 ∙ 𝑦𝑞 (3.11) 

s.t. 

 ∑ 𝑥𝑗 = 𝑚𝑗∈𝑉  (3.12) 

 ∑ 𝑥𝑗 ≥ 𝑦𝑞𝑉𝑞∈𝐴 , ∀𝑞 ∈ 𝑄 (3.13) 

 𝑥𝑗 , 𝑦𝑞 ∈ {0,1}, ∀𝑗 ∈ 𝑉, 𝑞 ∈ 𝑄 (3.14) 

𝑉 =  set of all nodes in the network; 

𝐴 = set of all arcs in the network; 

𝑄 = set of all routes whose traffic flows are not 0; 

𝑓𝑞 = the traffic flow at 𝑞 route; 

𝑉𝑞 = set of nodes at 𝑞 route; 

𝑚 = numbers of facilities to be constructed; 

𝑥𝑗 = {
1
 0 

 =1 build facility at node 𝑗; 

𝑦𝑞 = {
1
 0 

 =1 at least build one facility on the route 𝑞; 

Eq. (3.11) is the objective function, indicates that service facilities to be built can meet the largest demand in 

the routes. Constraint (3.12) express the number of facilities to be built; Constraint (3.13) indicates that only 

open facility can provide services; Constraint (3.10) indicate the 𝑥𝑗,  𝑦𝑞 are 0-1 variables. 
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3.2 Vehicle routing problem 

The vehicle routing problem, VRP, one of the classic combinatorial optimization problems. It was introduced 

in the scientific literature by Dantzig and Ramzer (1959). This problem can be described as: Assign vehicles 

depart from the distribution center to serve customers in different locations. By optimizing the delivery routes 

of vehicles under certain constraints to minimize the total transportation cost. The classic VRP is shown in Figure 

3.1: 

Figure 3.1 the schematic diagram of classic VRP 

In a complete distribution network, generally a VRP includes [18]:  

1) Distribution center  

The distribution center (DC) is an important node in logistics activities where logistic activities such as 

collection, assembly, packaging and sorting of goods are carried out. DC has the fleet of vehicles and the 

goods, and saves the location and demand information of all customers, completes the task of delivering 

goods to customers [19]. As the hub of the distribution process, the DC is the starting and ending point of the 

distribution task, vehicles depart from the DC and finally return to the DC. 

2) Customers 

The service object of VRP is the customer, which is represented by the node in the problem. Each customer 

point contains typical characteristics such as service type and service time window. Service types represent 

the mode like delivery, pick up, or simultaneous pickup and delivery, this will affect the design of the 

distribution routes. Time window means the distribution vehicle should be completed within the earliest 

service time to the latest service time specified by the customer, otherwise should pay a certain waiting cost 

or penalty cost. 

3) Cargo 

Cargo is the main distribution target of vehicle and the main part of customer demand. The main attributes 

are the size, weight, storage conditions, delivery location and time, etc. 
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4) Vehicles 

In the VRP, the vehicles complete the task of goods distribution or collection service between the DC and 

customer points. VRP need to consider the attributes of vehicles and goods, and accurately arrange suitable 

vehicles, which can improve resource utilization and reduce distribution costs. 

5) Constraints 

Constraints refer to the conditions that must be satisfied during the vehicle delivery process. Basic 

constraints generally include loading capacity constraints, travel distance constraints, time window 

constraints, etc. 

6) Objective functions. 

The objective function is the purpose of the model, which can be divided into single-objective optimization 

and multi-objective optimization. In actual VRP, they are all multi-objective optimization problems. The 

optimization goals generally include: the shortest driving distance, the least cost, the least number of 

vehicles, etc. 

On the basic of classic VRP, it can be complicated by adding different constraints or other restrictive elements, 

the main classifications are shown in the table 3.2 

Analysis elements VRP types 

Loading capacity Capacitated VRP, VRP without restriction of loading capacity 

Distribution center number VRP with single DC, VRP with multiple DCs 

Vehicles types VRP with single vehicle type, VRP with multiple vehicle types 

Customer time demand VRP without time window, VRP with time window (soft/hard time window) 

Distribution method Delivery type, simultaneous delivery and pick up 

Distribution information Static VRP, dynamic VRP 

Number of objective functions  Single-objective optimization, multi-objective optimization 

Table 3.2 different classifications of VRP 

  The classic VRP model is shown in Eq. (3.6) - (3.12): 

 𝑚𝑖𝑛𝑍 = ∑ ∑ 𝑐𝑖𝑗 ∙ 𝑥𝑖𝑗𝑗∈𝑉𝑖∈𝑉  (3.6) 

s.t. ∑ 𝑥𝑖𝑗 = 1, ∀𝑗 ∈ 𝑁 ∪ {0}  𝑖∈𝑉  (3.7) 

 ∑ 𝑥𝑖𝑗 = 1, ∀𝑖 ∈ 𝑁 ∪ {0}  𝑗∈𝑉  (3.8) 

 ∑ 𝑥𝑖0 = 𝐾𝑖∈𝑉  (3.9) 

 ∑ 𝑥0𝑗 = 𝐾𝑗∈𝑉  (3.10)



19 

 

 ∑ ∑ 𝑥𝑖𝑗 ≥ 𝑟(𝑆), ∀𝑆 ⊆ 𝑉\{0}, 𝑆 ≠ ∅𝑗∈𝑆𝑖∉𝑆  (3.11) 

 𝑥𝑖𝑗 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑉 (3.12) 

{0} = distribution center node; 

𝑐𝑖𝑗 = cost of going from node 𝑖 to 𝑗; 

𝐾 = numbers of available vehicles; 

𝑥𝑖𝑗 = {
1

 0 
 =1 arc is going from node 𝑖 to 𝑗; 

𝑟(𝑆) = the minimum number of vehicles needed to serve set 𝑆; 

Eq. (3.6) is the objective function, indicates the minimum delivery cost; constraints (3.7), (3.8) state that 

exactly one arc enters and exactly one leaves each customer point, respectively; constraints (3.9), (3.10) indicate 

the number of vehicles leaving the depot is the same as the number entering; constraint (3.11) is the capacity cut 

constraints, which impose that the routes must be connected and that the demand on each route must not exceed 

the vehicle capacity; constraints (3.12) indicates 𝑥𝑖𝑗 is 0-1 variables. 

3.3 Location-Routing problem 

Location-routing problem (LRP) can be described as: given a series of customer points and several potential 

facilities locations, by comprehensively consider the LAP of the facilities and the VRP in the same problem, the 

goal is to obtain the facilities locations and vehicle routes with minimum cost or distance under the certain 

constraints. Classic LRP diagram is shown in Figure 3.2, Table 3.3 shows the classifications of LRP: 

Figure 3.2 the schematic diagram of classic LRP 

 

Analysis elements LRP types 

Facilities number LRP with single facility, LRP with multiple facilities 

Vehicles types LRP with single vehicle type, LRP with multiple vehicles types 

Time window LRP without time window, LRP with time window (soft/hard time window) 
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Supply/demand characteristics Static LRP, dynamic LRP 

Number of objective functions  Single-objective optimization, multi-objective optimization 

Table 3.3 classifications of LRP 

Classical LRP model can be expressed as Eq. (3.13) – (3.20): 

 𝑚𝑖𝑛𝑍 = ∑ 𝐺𝑖𝑦𝑖𝑖∈𝑀 + ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑗∈𝑆𝑖∈𝑆𝑘∈𝐾  (3.13) 

s.t. 

 ∑ ∑ 𝑥𝑖𝑗𝑘𝑖∈𝑆𝑘∈𝐾 = 1, ∀𝑗 ∈ 𝑁 (3.14) 

      ∑ 𝑥𝑖𝑝𝑘 =𝑖∈𝑆 ∑ 𝑥𝑝𝑗𝑘𝑗∈𝑆 , ∀𝑝 ∈ 𝑆, 𝑘 ∈ 𝐾 (3.15) 

  ∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁∪{0} ∙ 𝑞𝑗 ≤ 𝑄𝑘 , ∀𝑘 ∈ 𝐾 (3.16) 

 ∑ ∑ 𝑥𝑖𝑗𝑘𝑗∈𝑁𝑘∈𝐾 ≥ 𝑦𝑖 , ∀𝑖 ∈ 𝑀 (3.17) 

 ∑ 𝑦𝑖𝑖∈𝑀 = 𝑝 (3.18) 

 𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖 ∈ 𝑆, 𝑗 ∈ 𝑆, 𝑗 ≠ 𝑖, 𝑘 ∈ 𝐾 (3.19) 

 𝑦𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝑀 (3.20) 

𝑀 = candidate distribution center locations; 

𝑁 = customer points set; 

𝑆 =  𝑀 ∪ 𝑁; 

𝐾 = vehicles set; 

𝐺𝑖 = the cost of building a DC at point 𝑖; 

𝑐𝑖𝑗 = cost of going from point 𝑖 to 𝑗; 

𝑞𝑗 = the demand of customer point 𝑗 

𝑄𝑘 = the maximum loading capacity of vehicle 𝑘; 

𝑝 = numbers of DC to be constructed; 

𝑥𝑖𝑗𝑘 = {
1
 0 

 =1 arc is going from node 𝑖 to 𝑗; 

𝑦𝑖 = {
1
 0 

 =1 build DC at node 𝑖; 

Eq. (3.13) is the objective function, represents the minimum total cost of construction and transportation; 

Constraint (3.14) indicates each customer can only be served by one vehicle; Constraint (3.15) indicates exactly 

one arc enters and exactly one leaves each customer point, respectively; Constraint (3.16) indicates the loading 

capacity restriction; Constraint (3.17) ensures that the vehicle can only depart from the DC; Constraint (3.18) 

indicates that select total P number of DCs; Constraints (3.19), (3.20) ensure the 𝑥𝑖𝑗𝑘, 𝑦𝑖 are 0-1 variables. 
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4. Location-routing problem of electric vehicles model formulation 

4.1 Model description 

With the improvement of people’s awareness of environmental protection and the countries’ promotion of new 

energy vehicles, EVs are expected to gradually replace traditional fuel vehicles and change the current status of 

cargo transportation. Therefore, for logistics companies, the problem is how to upgrade their transport vehicles 

with minimal cost. Meanwhile, because EFVs have not yet widely used, and the construction of charging stations 

is not complete, logistics companies need to consider where to charge when using EFVs for distribution. 

Compared with traditional LRP, we consider the following elements in this model: 

1) Distribution center. 

The distribution center is a distribution facility where goods are equipped according to customer 

requirements and delivered to users. In this model, we have one distribution center, as the starting point of 

transportations, equipped with a certain number of EFVs, they return to the distribution center after 

completing the delivery task. Different from traditional distribution centers, in this study have slow charging 

facilities in order to charging EFVs at night to save charging costs. 

2) Electric freight vehicles. 

According to types of vehicles, LRP can be divided into single vehicle type and multiple vehicles types. 

Considering that there are not so many types of EFVs on the market at present, meanwhile, logistics 

companies are in the status quo of partial conversion of delivery vehicles from traditional fuel vehicles to 

EFVs, so companies generally choose one type of vehicle when purchasing EFVs. Therefore, we will 

consider only one type of vehicle in our model. EFVs distribution not only needs to consider the maximum 

load and maximum mileage, but also consider whether and where they need to be charged during delivery 

process. These also make the LRP of EFVs more complicated than traditional fuel vehicles. 

3) Charging stations 

Unlike general LRP, the location problem of EVs is charging stations. Companies need to select suitable 

locations from several alternative locations where charging stations can be built. The EFVs can arrive at 

the charging station for power replenishment during delivery, while minimizing the total cost of location 

selection and transportation. 

4) Customers  

In this model, the customer mainly including retail stores, supermarkets, etc. The positions of customers in 

the transportation network are important. The entire transportation network routes will change with the 



22 

 

demand or time window of the customer points request. 

  Through the model introduction in section 4.1, we can know our LRP model is a special case of the traditional 

LRP model. The same point is both contain the location selection and routing arrangement, the difference is: in 

the traditional LRP model the location selection is distribution center, while the object of the electric vehicle 

LRP location selection is the charging station. Figure 4.1 (1), (2) part represents the classic LRP model and 

electric vehicle LRP model [20].  

Figure 4.1 typical routes of traditional LRP and electric vehicle LRP 

The mathematical model of the electric vehicle LRP with time windows is described as: 

𝐺 = {𝑉, 𝐸} is a distribution network composed of point sets and arc sets, set 𝑉 = 𝑁 ∪ 𝐵 ∪ 𝑂 includes all 

the nodes in the network. 𝑁  is the set of customer nodes, 𝐵  is the set of charging stations nodes, 𝑂  is 

distribution center.  

  Since the current charging facilities are not yet complete, in the initial stage, company can also consider the 

location problem and choose the location and number of charging stations with lowest total cost from the 

alternative charging stations. The confirmed information of customer points including the locations, demand 

amounts and time windows. The setting value of objective function is the minimum total cost. Company arrange 

the EFVs depart from distribution center, to serve the customer points under the constraint of maximum load 

capacity; Meanwhile, EFVs need to visit all customer points within the specified time window, otherwise they 

should pay the waiting cost or penalty cost. In addition, due to the short mileage of EFVs, they perhaps need to 

visit charging stations for power replenishment, so that there is sufficient power to continue to deliver the next 

customer. Until all customer points have been visited, they will go back to the distribution center. 

4.2 Assumptions and notations of model 

  Since the electric vehicles LRP model for urban freight distribution is derived from the traditional LRP model 
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of traditional fuel vehicles, and considering the complexity of transforming actual problems into mathematical 

models, we make the following assumptions to reduce the complexity of calculations: 

1) A single distribution center, multiple demand (customer) points. 

2) All the customer points’ locations, demand amounts and time windows are known quantitative data, and 

will not change dynamically. 

3) A customer point can be served only once. 

4) The demand amount of goods at customer points should not exceed the vehicle’s capacity. 

5) Vehicles depart from the distribution center, return to it after completing the distribution tasks. 

6) All vehicles run at a constant speed, regardless of traffic conditions. 

7) All vehicles are the same type, with the same capacity limitation, battery capacity and maximum mileage. 

8) Vehicles is fully charged after leaving the distribution center or visiting the charging stations. 

9) Vehicles have a fixed power consumption coefficient, and the power consumption is proportional to the 

driving distance. 

10) The charging efficiency of vehicles at the charging station is fixed, the charging time is proportional to the 

required charging capacity. 

In order to facilitate the accurate description of the model, the parameters and variables involved in model are 

defined in Table 4.1. 

Symbols Meanings 

(1) Sets 

𝑂 A single distribution center, {0} 

𝑁 Set of customers point (nodes), 𝑁 = {1,2 … 𝑛} 

𝐵 Set of battery charging stations, 𝐵 = {1,2. . . 𝑏} 

𝑉 Set of nodes, 𝑉 = 𝑁 ∪ 𝐵 ∪ 𝑂 

𝐾 Set of vehicles, 𝐾 = {1,2. . . 𝑘} 

(2) Decision variables 
𝑥𝑖𝑗𝑘 When vehicle 𝑘 finish task from point 𝑖 to 𝑗: = 1 

Otherwise = 0 

𝑦𝑖 When a charging station is established at node 𝑖 , =  1 

Otherwise = 0 

(3) Variables 

𝑎𝑟𝑟𝑖𝑘 The moment vehicle 𝑘 arrives at node 𝑖  

𝑙𝑒𝑣𝑖𝑘 The moment vehicle  𝑘 leaves from node 𝑖 

𝑟𝑒1𝑖𝑘 The residual power of vehicle 𝑘 when arrive at node 𝑖, unit is 𝑘𝑤ℎ 

𝑟𝑒2𝑖𝑘 The residual power of vehicle 𝑘 when leave from node 𝑖, unit is 𝑘𝑤ℎ 
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𝑞𝑖𝑘 The charging amount of vehicle 𝑘 at station 𝑖, unit is 𝑘𝑤ℎ 

𝑡𝑖𝑘 The charging time of vehicle 𝑘 at station 𝑖, unit is 𝑚𝑖𝑛 

𝑍𝑖𝑘 Auxiliary variable 

(4) Parameters 
𝑑𝑖𝑗 Distance between node 𝑖 and 𝑗 , unit is 𝑘𝑚 

𝐷𝑖 The weight of cargo required by customer 𝑖, unit is 𝑘𝑔 

𝐿 The maximum load capacity of vehicle, unit is 𝑘𝑔 

𝑒𝑖 The earliest time for customer point 𝑖 

𝑙𝑖 The latest time for customer point 𝑖 

𝑆𝑖 Service time at customer point 𝑖, unit is 𝑚𝑖𝑛 
𝑇𝑖𝑗 Vehicle travel time from node 𝑖 to 𝑗, unit is 𝑚𝑖𝑛 

𝑄 Vehicle’s battery capacity, unit is 𝑘𝑤ℎ 

𝑒𝑙𝑜𝑤 Minimum safe battery percent 

𝑀 Big positive number 

H Power consumption per unit mileage, unit is 𝑘𝑤ℎ/𝑘𝑚 

𝐹 Fuel consumption per unit mileage, unit is 𝐿/𝑘𝑚 

𝜇 Carbon emission per unit liter of gasoline, unit is 𝑘𝑔/𝐿 

𝜃 Carbon emission per unit of fuel production, unit is 𝑘𝑔/𝐿 

𝐵𝑐 Battery’s charging factor 

𝛾 Electric energy conversion coefficient 

𝜆 Carbon emission per unit electricity, unit is 𝑘𝑔/𝑘𝑤ℎ 

𝛽 Percent of thermal power generation per unit electricity 

𝑓𝑖 Construction cost of charging station at node 𝑖, unit is 𝑦𝑢𝑎𝑛 

𝐶𝐹 Fixed cost for each vehicle, unit is 𝑦𝑢𝑎𝑛 

𝐶𝑇 Transport cost per unit distance, unit is 𝑦𝑢𝑎𝑛/𝑘𝑚 

𝐶𝐸 Electricity price of charging facilities, unit is 𝑦𝑢𝑎𝑛 

𝐶𝑐 Environment cost per unit of carbon consumption, 𝑦𝑢𝑎𝑛/𝑘𝑔 

𝑃𝑒 The waiting cost per unit time of the vehicle arriving early, 𝑦𝑢𝑎𝑛/𝑚𝑖𝑛𝑠 

𝑃𝑙 The penalty cost per unit time of the vehicle arriving lately, 𝑦𝑢𝑎𝑛/𝑚𝑖𝑛𝑠 

Table 4.1 Electric vehicle LRP model parameters and variable definition 

4.3 Build the model 

4.3.1 Determine the objective functions 

  EFVs are mainly used in commercial logistics distribution. From the perspective of a logistic company, the 

ultimate goal is to minimize the distribution costs and maximize benefits. For customers, they expect to have 

higher service quality. So, the logistic companies cannot just consider the lowest transportation cost, the customer 

service satisfaction is also a major factor in business survival. We use the time windows to quantify customer 

satisfaction. 
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  With the increasing awareness of environmental protection, the goals pursued by the logistic companies are 

constantly updated, considering reducing the exhaust emissions of vehicles during delivery process. 

  Therefore, our goal is to minimize the total cost, which include the six costs as following:  

1) The construction cost of charging station. 

In the research phase of location selection for EFVs charging stations, the construction cost of charging 

station is the most important expenditure. In reality, the construction cost is affected by many factors, such 

as the construction area of charging station. Here we consider the total cost of building the charging stations 

as shown in Eq. (4.1): 

 𝑍𝑠𝑡𝑎𝑡𝑖𝑜𝑛 = ∑ 𝑓𝑖 ∙ 𝑦𝑖𝑖𝜖𝐵  (4.1) 

 

2) The fixed cost per each vehicle 

 𝑍𝑓𝑖𝑥𝑒𝑑 = ∑ 𝐶𝐹 ∙ 𝑘𝑘𝜖𝐾  (4.2) 

3) The transport cost of vehicle 

The most common objective function in the VRP is the shortest distance or the lowest cost. Generally 

speaking, the transport cost will increase proportionally as the distance increases. The transport cost as Eq. 

(4.3): 

 𝑍𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 = ∑ ∑ ∑ 𝐶𝑇 ∙ 𝑑𝑖𝑗 ∙ 𝑥𝑖𝑗𝑘𝑘∈𝐾𝑗∈𝑉
𝑖≠𝑗

𝑖∈𝑉  (4.3) 

4) The charging cost of vehicles 

If need battery charging during distribution process of using EFVs, we should consider the charging cost. 

Generally, the charging cost is related to the amount of charging required for EFVs. The charging cost 

represents as Eq. (4.4) 

 𝑍𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 = ∑ ∑ 𝐶𝐸 ∙ 𝑞𝑖𝑘 ∙ 𝑦𝑖𝑘∈𝐾𝑖∈𝑉  (4.4) 

5) The environmental cost 

The environmental costs are mainly reflected in carbon emissions, in section 1.2.2, we introduced in detail 

the calculation standards of carbon emissions for traditional fuel vehicles and EVs. The environment cost 

of fossil fuel vehicle and EVs are expressed as Eq. (4.5), (4.6): 

 𝑍𝑐𝑎𝑟𝑏𝑜𝑛 = 𝐶𝑐 ∙ (𝜇 + 𝜃) ∑ ∑ ∑ 𝑥𝑖𝑗𝑘 ∙ 𝑑𝑖𝑗 ∙ 𝐹𝑗∈𝑉
𝑗≠𝑖

𝑖∈𝑉𝑘∈𝐾  (4.5) 

 𝑍𝑐𝑎𝑟𝑏𝑜𝑛 = 𝛽 ∙ 𝐶𝑐 ∙ 𝛾 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘 ∙ 𝑑𝑖𝑗 ∙ 𝐻𝑗∈𝑉
𝑗≠𝑖

𝑖∈𝑉𝑘∈𝐾  (4.6) 

6) The penalty cost of violating the time windows 
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Taking into account the timeliness requirements of customers for delivery services, we take the time effect 

cost that is caused by the violation of the customer’s time window constraint, the penalty cost, into the total 

logistic cost. Time window restrictions can be divided into hard time windows and soft time windows. 

Considering the complexity of the actual delivery process, here we use the soft time window limit, [𝑒𝑖 , 𝑙𝑖] 

represents the soft time window of customer 𝑖. 𝑃𝑒 is the penalty cost per unit time for the early arrival of 

vehicle, 𝑃𝑙 is the penalty cost per unit time for vehicle late arrival. 

The penalty cost function is Eq. (4.7), (4.8): 

 𝑃(𝑎𝑟𝑟𝑖𝑘) = {

𝑃𝑒(𝑒𝑖 − 𝑎𝑟𝑟𝑖𝑘), 𝑎𝑟𝑟𝑖𝑘 ≤ 𝑒𝑖

0, 𝑒𝑖 ≤ 𝑎𝑟𝑟𝑖𝑘 ≤ 𝑙𝑖

𝑃𝑙(𝑎𝑟𝑟𝑖𝑘 − 𝑙𝑖), 𝑎𝑟𝑟𝑖𝑘 ≥ 𝑙𝑖

 (4.7) 

 𝑍𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = ∑ ∑ 𝑃(𝑎𝑟𝑟𝑖𝑘)𝑘∈𝐾𝑖∈𝑁  (4.8) 

4.3.2 Mathematical model 

  Based on the above model assumptions and notations, combined with the relevant analysis of the objective 

function, the mathematical model can be described as Eq. (4.9) 

 𝑚𝑖𝑛𝑍 = 𝑍𝑠𝑡𝑎𝑡𝑖𝑜𝑛 + 𝑍𝑓𝑖𝑥𝑒𝑑 + 𝑍𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 + 𝑍𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔 + 𝑍𝑐𝑎𝑟𝑏𝑜𝑛 + 𝑍𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (4.9) 

s.t. 

 ∑ ∑ 𝑥𝑖𝑗𝑘 = ∑ ∑ 𝑥𝑗𝑖𝑘 = 1𝑘∈𝐾𝑖∈𝑉
𝑖≠𝑗

𝑘∈𝐾𝑖∈𝑉
𝑖≠𝑗

 (4.10) 

 ∑ 𝑥0𝑗𝑘 = ∑ 𝑥𝑗0𝑘 ≤ 1𝑗∈𝑁∪𝐵𝑗∈𝑁∪𝐵 , ∀𝑘 ∈ 𝐾 (4.11) 

 ∑ ∑ 𝑥𝑖𝑗𝑘 ≤ 𝑦𝑗 ∙ 𝑀𝑘∈𝐾𝑖∈𝑉
𝑖≠𝑗

 (4.12) 

 ∑ 𝑥𝑖𝑗𝑘 = ∑ 𝑥𝑗𝑖𝑘,   ∀𝑗 ∈ 𝑁 ∪ 𝐵, 𝑘 ∈ 𝐾𝑖∈𝑉
𝑖≠𝑗

𝑖∈𝑉
𝑖≠𝑗

 (4.13) 

 ∑ ∑ 𝐷𝑖𝑗∈𝐵𝑖∈𝑉
𝑖≠𝑗

∙ 𝑥𝑖𝑗𝑘 ≤ 𝐿, ∀𝑘 ∈ 𝐾 (4.14) 

 𝑥0𝑗𝑘 = 0, ∀𝑗 ∈ 𝐵, 𝑘 ∈ 𝐾 (4.15) 

 𝑙𝑒𝑣𝑖𝑘 = 𝑎𝑟𝑟𝑖𝑘 + 𝑆𝑖 , ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (4.16) 

 𝑙𝑒𝑣𝑖𝑘 = 𝑎𝑟𝑟𝑖𝑘 + 𝑡𝑖𝑘, ∀𝑖 ∈ 𝐸, 𝑘 ∈ 𝐾 (4.17) 

 𝑎𝑟𝑟𝑗𝑘 = ∑ 𝑥𝑖𝑗𝑘 ∙ (𝑙𝑒𝑣𝑖𝑘 + 𝑇𝑖𝑗), ∀𝑗 ∈ 𝑁 ∪ 𝐵, 𝑘 ∈ 𝐾𝑖∈𝑉
𝑖≠𝑗

 (4.18) 

 𝑞𝑖𝑘 = 𝑡𝑖𝑘 ∙ 𝐵𝑐 ∙ 𝑦𝑖 , ∀𝑖 ∈ {0} ∪ 𝐵, 𝑘 ∈ 𝐾 (4.19) 

 𝑟𝑒20𝑘 = 𝑄, ∀𝑘 ∈ 𝐾 (4.20) 

 𝑟𝑒2𝑖𝑘 = 𝑦𝑖 ∙ 𝑄, ∀𝑖 ∈ 𝐵, ∀𝑘 ∈ 𝐾 (4.21) 

 𝑟𝑒2𝑖𝑘 = 𝑟𝑒1𝑖𝑘 , ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (4.22) 
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 𝑟𝑒1𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.23) 

 𝑟𝑒1𝑗𝑘 = ∑ 𝑥𝑖𝑗𝑘 ∙ (𝑟𝑒2𝑖𝑘 − 𝐻 ∙ 𝑑𝑖𝑗)𝑖∈𝑉
𝑖≠𝑗

, ∀𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.24) 

 𝑟𝑒1𝑗𝑘 ≥ 𝑒𝑙𝑜𝑤 ∙ 𝑄, 𝑗 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.25) 

 𝑞𝑖𝑘 = (Q − 𝑟𝑒1𝑖𝑘) ∙ 𝑦𝑖 , ∀𝑖 ∈ 𝐵, 𝑘 ∈ 𝐾 (4.26) 

 𝑞𝑖𝑘 = 0, ∀𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾 (4.27) 

 e𝑖 ≤ 𝑎𝑟𝑟𝑖𝑘 ≤ 𝑙𝑖 , ∀𝑖 ∈ 𝑁 ∪ 𝐵, 𝑘 ∈ 𝐾 (4.28) 

 𝑍𝑖𝑘 − 𝑍𝑗𝑘 + 𝑛 ∙ 𝑥𝑖𝑗𝑘 ≤ 𝑛 − 1, ∀𝑖 ∈ 𝑉, 𝑗 ≠ 𝑖, 𝑗 ∈ 𝑁, 𝑘 ∈ 𝐾 (4.29) 

 𝑍𝑖𝑘 ≥ 0, ∀𝑖 ∈ 𝑉, 𝑘 ∈ 𝐾 (4.30) 

 𝑥𝑖𝑗𝑘 ∈ {0,1}, ∀𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗, 𝑘 ∈ 𝐾 (4.31) 

 𝑦𝑖 ∈ {0,1}, ∀𝑖 ∈ 𝐵 (4.32) 

  Eq. (4.9) is the objective function, indicates the minimum total distribution cost. 

  Constraint (4.10) states that each customer point can be served only once. 

  Constraint (4.11) states that each vehicle departs from DC, return to DC after completing the distribution tasks. 

  Constraint (4.12) indicates EV can only charging battery at the position where a charging station is built. 

  Constraint (4.13) exactly one arc enters and exactly one leaves each customer point. 

  Constraint (4.14) states that the demand on each route must not exceed the vehicle capacity. 

  Constraint (4.15) states that vehicle cannot go to charging station directly after departing from DC. 

  Constraint (4.16) express the moment of vehicle depart from the customer point 𝑖. 

  Constraint (4.17) express the moment of vehicle depart from the charging station 𝑖. 

  Constraint (4.18) is the moment of vehicle arriving customer point 𝑖. 

  Constraint (4.19) indicates the charging time of EFVs, affected by charging amount and charging efficiency. 

  Constraint (4.20), (4.21) indicates that vehicle depart from the DC and charging station at the maximum power. 

  Constraint (4.22) indicates that the electric quantity of vehicle will not change at customer point. 

  Constraint (4.23) ensures the electric quantity always positive at any nodes. 

  Constraint (4.24) calculates the remaining battery after vehicle arriving node. 

  Constraint (4.25) ensures the vehicle remaining power to each node is not less than the minimum safe power. 

  Constraint (4.26) calculates the electric quantity needed to charge when vehicle visit charging station. 

  Constraint (4.27) ensure that vehicle cannot be charged at customer point. 

  Constraint (4.28) is the time window constraint. 

  Constraint (4.29), (4.30) indicate the sub-loop elimination. 
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  Constraint (4.31), (4.32) define the decision variable, 𝑥𝑖𝑗𝑘 , 𝑦𝑖  are both 0-1 variables. 
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5.Algorithm design for electric vehicle location-routing problem  

5.1 Algorithm overview 

We start from the perspective of using EFVs during distribution, meanwhile, conducts research on charging 

station location problem and distribution routes optimization, these problems can be called location-routing 

problem (LRP) of electric vehicle, which is derived from traditional LRP research. 

Vehicle routing problem (VRP) was first introduced in the scientific literature 61 years ago, during this long 

time period, many scholars have studied VRP and its various derivative models and algorithms. It is one of the 

classic combinatorial optimization problems, and the NP-hard problem (non-deterministic polynomial-time 

hardness) [21]. The LRP of EVs is a combination of VRP and LAP, so LRP is also an NP-hard problem. The 

existing algorithms for solving NP-hard problems including two categories: Exact algorithms and heuristic 

algorithms. Heuristic algorithms can be divided into classical heuristic algorithms and metaheuristic algorithms. 

The exact algorithms are mainly used to solve small-scale problems, as the scale of the problem expands, 

heuristic algorithms are more useful [22]. 

5.1.1 Exact algorithms 

An algorithm that can find the optimal solution of the problem is the exact algorithms. For difficult 

combinatorial optimization problems, when the scale of the problem is small, the exact algorithm can find the 

optimal solution within an acceptable time; when the scale of the problem is large, it can provide a feasible 

solution to the problem, meanwhile, give the initial solution for the heuristic method. 

Exact algorithms mainly include enumeration method, branch and bound method, cutting plane method, 

dynamic programming method and so on, as Table 5.1: 

Exact algorithm Principles Pros and Cons 

Enumeration method Enumerate all possible answers in 

inductive reasoning, reserve the 

answers that meet the constraints, 

discard the not satisfied answers. 

Pros: the correctness of algorithm is 

easy to verify; easy to understand. 

Cons: large amount of calculation, 

long solution time and low efficiency. 

Dynamic programming Simplifying a complicated problem by 

breaking it down into simpler sub-

problems in a recursive manner. 

Pros: the algorithm structure is 

simple, small amount of calculation, 

short solution time. 

Cons: the sub-problems are not 

independent of each other, otherwise 

they will not have advantages. 

Branch and bound method Branch: split all feasible solution Pros: can obtain quickly the optimal 
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spaces repeatedly into smaller and 

smaller subsets. Bound: calculate a 

target boundary (for the minimum 

problem) for the solution set within 

each subset. 

After each branching, those subsets 

that exceed the known feasible 

solution target values are no longer 

further branched, so that many subsets 

can be ignored, which is called 

pruning. 

solution of the problem. 

Cons: require large storage space, not 

suitable for solving large-scale 

calculation examples. 

Cutting plane method Relax the problem to a non-integer 

linear program, if the optimal solution 

is an integer, then stop, otherwise add 

new constraints to divide the feasible 

region. 

Pros: short solution time. 

Cons: the scope of application is 

restricted to the integer linear 

programming. 

Table 5.1 the main types of exact algorithms 

5.1.2 Heuristics algorithms 

Heuristic algorithm refers to the method of solving problems through inductive reasoning and experimental 

analysis of past experience, that is, by means of some intuitive judgment or heuristic method, to find the sub-

optimal solution of the problem or to find its optimal with a certain probability solution. Generality, stability and 

faster convergence are the main criteria for measuring the performance of heuristic algorithms. Widely used 

classical heuristic algorithms include sweep algorithm, saving algorithms, hill climbing, etc. 

1) Sweep algorithm 

This algorithm refers to Gillett and Miller's approach to solving VRP in 1974. This method uses polar 

coordinates to represent the location of each customer point, and then lets a customer point as the starting 

point, set its angle to zero degrees, to follow the clock or reverse clock direction, consecutive customers are 

assigned to a vehicle until capacity is reached. Then repeat for another vehicle. 

2) Saving algorithm 

This algorithm uses the principle that the sum of any two sides of a triangle must be larger than the third 

side. The main idea is: taking the vehicle loading capacity as the constraint, sequentially merge the two 

initially formed transportation arcs, so that the reduction of distance after each merger is maximized, and 

repeat the process until obtain the final route. 

3) Hill climbing. 



31 

 

This algorithm belongs to the family of local search. It is an iterative algorithm that starts with an arbitrary 

solution to a problem, then attempts to find a better solution by making an incremental change to the 

solution. If the change produces a better solution, another incremental change is made to the new solution, 

and so on until no further improvements can be found. 

Table 5.2 list the Pros and Cons, application scope of these three algorithms: 

Classifications Pros Cons Application scope 

Sweep algorithm Can obtain a feasible 

solution in a short time 

small probability of 

obtaining the optimal 

solution 

Initial solution generation; 

optimization problem with fewer 

routes. 

Saving algorithm Easy to understand Consider less the time 

factor 

Suitable for simple optimization 

problem with stable demand or 

loose time. 

Hill climbing High search efficiency It is a local search, easily 

fall into the local optimal 

solution 

Suitable for small scale, small 

solution space optimization 

problem 

Table 5.2 the introduction of main classical heuristic algorithm 

5.1.3 Metaheuristics 

The metaheuristic algorithm is an improvement of the heuristic algorithm, it solves the shortcomings of 

classical heuristic algorithms that are easy to fall into local optimal solution. Metaheuristic is an iterative 

generation process. Through the intelligent combination of different concepts, this process uses the heuristic 

algorithm to explore and develop the search space. In this process, learning mechanisms are used to obtain and 

master information in order to effectively find approximately optimal solutions. 

Metaheuristic algorithms include simulated annealing algorithm, genetic algorithm, ant colony optimization 

algorithm, particle swarm optimization algorithm, artificial fish swarm algorithm, etc. 

1) Simulated annealing algorithm (SA) 

The algorithm starts from a higher initial temperature, with the continuous decrease of temperature 

parameters, and randomly looks for the global optimal solution of the objective function in the solution 

space combined with the probability jump characteristics, that is, have the probability to jump out the local 

optimal solution and eventually tends to the global optimal solution. 

2) Genetic algorithm (GA) 
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It is a stochastic global search and optimization method developed after imitating the biological evolution 

mechanism of nature, drawing on Darwin's evolution theory and Mendel's genetic theory. Its essence is an 

efficient, parallel, and global search method, which can automatically acquire and accumulate knowledge 

about the search space during the search process, and adaptively control the search process to obtain the 

best solution. 

3) Ant colony optimization algorithm (ACO) 

The walking path of ants is used to represent the feasible solution of the problem, and all the paths of the 

whole ant population constitute the solution space of the problem. The ants with shorter paths release more 

pheromones, and as time progresses, the concentration of pheromones accumulated on the shorter path 

gradually increases, and there will be more and more ants choosing the shorter path. Eventually, the entire 

ants will be concentrated on the optimal path under the effect of positive feedback, the optimal path is 

exactly the optimal solution of the optimization problem. 

4) Particle swarm optimization algorithm (PSO) 

This algorithm is a kind of swarm intelligence algorithm proposed by Kenndy and Ebeehart in 1995, which 

is derived from the research on bird predation behavior: A group of birds are searching for food randomly. 

If there is only one piece of food in this area, the easiest and most effective strategy to find food is to search 

the area around the bird closest to the food. In the PSO, the solution of each optimization problem 

corresponds to the position of a bird in the search space, and these birds are called “particles”. Each particle 

has its own position and velocity, and an adaption value determined by the optimization function. 

5) Artificial fish swarm algorithm (AFSA) 

This algorithm refers to a water area, fish can find nutrients on their own or trailing other fish, so the largest 

number of fish survival is generally the most nutrients in the waters, the algorithm is based on this 

characteristic, through the construction of artificial fish to imitate the fish foraging, grouping and tailing 

behavior, in order to achieve the optimal solution [23]. 

  The five metaheuristic algorithms listed above have the similarities and differences. The same point is that 

they all use neighborhood search for optimization, and the convergence criteria can be set in the same way. The 

difference is that the natural phenomena simulated by each algorithm are different, the basic ideas for reference 

and the key parameter set are also different. For example, the SA needs to set the initial temperature and de-

temperature function, GA needs to set the population size and genetic operators, while PSO needs to define the 

location and speed of swarms. Besides, these five algorithms have their own characteristics. Table 5.3 lists the 
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characteristics and application scope of each algorithm: 

 

Classification Characteristics Application scope 

SA Simple description, less restricted by initial conditions, not 

conducive to global search; Convergence speed slow. 

Suitable for large-scale 

combinatorial optimization 

problems 

GA Easy to implement, strong processing constraint ability, 

strong global search ability, parallel search, strong 

robustness; Long running time, slow convergence. 

Solve complex large-scale 

(linear/nonlinear) 

combinatorial optimization 

problems. 

ACO Adopt positive feedback mechanism, easy to obtain a local 

solution, strong robustness; The parameter setting will 

greatly affect the quality of solution, long running time, easy 

to fall into the local optimum. 

Solve large-scale and 

complex (especially discrete 

problems) combinatorial 

optimization problems 

PSO Fast solution speed, simple description; easy to produce; 

Premature convergence, easy to fall into local optimal. 

Solve the combinatorial 

optimization problems of 

continuous functions 

AFSA Low initial value and parameter setting requirements, strong 

robustness, strong global optimization ability, parallel 

search; Slow convergence speed, the accuracy of solution is 

not high. 

Solve complex, large-scale 

combinatorial optimization 

problems that do not require 

high precision. 

Table 5.3 characteristics and application scope of 5 metaheuristic algorithms 

Combining the five algorithms listed in Table 5.3, we can conclude that all these algorithms can be used to 

solve combinatorial optimization problems, but for SA, the global search ability is poor, the ACO, PSO and 

AFSA are easy to converge to the local optimum, while GA can mutate with a certain probability, it has stronger 

global search ability, the ability to deal with constraints is also stronger. 

Our electric vehicles LRP model with many constraints, even contains nonlinear constraints, need to calculate 

the time to reach each customer point, the remaining power and so on, which lead the problem more complex. 

Consider the characteristics of our model and various metaheuristics algorithms, we choose GA to solve the 

electric vehicles LRP. This is because GA has the processing power for a lot of constraints, strong robustness 

and code is easy to realization. 

5.2 Genetic algorithm overview 

5.2.1 Introduction 

Genetic algorithm (GA) is an algorithm that simulates biological evolution to search for optimal solutions. In 
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1975, American professor J.Holland made a systematic explanation of this algorithm for the first time in his 

monograph [24]. The core idea of GA is: the solution set of the problem can be simulated as a biological population, 

and the chromosomes represent different individuals in the population. The optimization process starts from a 

certain chromosome in the initial population, according to the competition mechanism--survival of the fittest in 

nature, each chromosome has a certain probability to be selected, and this probability is fitness. At the same time, 

each chromosome receives crossover or mutation with certain probability, which makes the offspring easier to 

adapt the current living environment. After a certain number of evolutions, the final optimal chromosome can 

be decoded as the optimal solution. 

5.2.2 Basic process 

1) Coding and decoding 

In combinatorial optimization problems, the parameters and solutions of the problem are generally 

intuitionistic, which is called phenotype. In the simulated genetic process, they are all expressed in the form 

of chromosomes, so we need the conversion. Coding is to establish a mapping relationship from phenotype 

to genotype, decoding converts chromosomes (genotype) to phenotype. Coding and decoding are very 

important in the algorithm, choosing the suitable method will greatly simplify the complexity of the 

problem and increase the calculation speed. 

2) Generating an initial population 

According to the determined coding method, an initial population is randomly generated with a certain 

number of individuals. The number of individuals in the population is called the population size.  

3) Calculating fitness value 

Fitness is a measure of how well an individual adapts to the current environment. The fitness value will 

affect the probability of an individual being selected. Generally, we use the fitness function to calculate the 

fitness value of each individual. 

4) Selection 

The essence of selection in the algorithm is the survival of the fittest in biological evolution. It is sorted 

according to the fitness value. The higher the value, the greater the probability of being selected. The 

individuals with the best fitness values in the current generation that are guaranteed to survive to the next 

generation. These individuals are called elite children. The default value of elite count is around 5% of the 

population size. 

5) Crossover 
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The essence is to simulate the information exchange mechanism in biological evolution. The DNA is cut at 

the same position on the two chromosomes, and the front and back strings are combined to form two new 

chromosomes, increasing the population biological diversity. 

6) Mutation 

Several individuals in the population will have genetic mutations with a certain probability due to some 

reasons, resulting in new individuals and increasing population diversity. 

7) Stopping criteria 

Algorithm generally need to run multiple cycles for continuously searching the optimization value, so 

certain stopping criteria must be set to avoid infinite loop. 

 The main methods used in algorithm process is listed in table 5.4, basic structure diagram is shown in figure 

5.1: 

Table 5.4 GA: the method of basic flow 

Process Main methods 

Coding and decoding Binary coding, Floating point coding, Symbol coding 

Generate initial population Randomly generate samples 

Calculate fitness Transform the objective function, includes: linear transformation, 

dynamic linear transformation, logarithmic transformation, etc. 

selection Roulette wheel selection, Optimal saving strategy, Stochastic 

tournament, Deterministic sampling selection, etc. 

Crossover One-point crossover, Multi-point crossover, Uniform crossover, etc. 

Mutation Simple Mutation, Uniform Mutation, etc. 

Stopping criteria Iterations number reach a certain value, fitness value no longer 

changes, the optimal individual fitness value reaches a certain value. 
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Figure 5.1 GA basic structure diagram 

 

5.2.3 Determine the parameters 

Whether the parameter setting is reasonable or not directly affects the solution speed and convergence of the 

algorithm. GA requires predetermined parameters including the following four items: 

1) Population size 

Size refers to the number of generated chromosomes, which will greatly affect the performance of algorithm. 

The population size cannot be too large, otherwise the solution speed will be reduced and the efficiency 

will be affected. The population size also cannot be too small, will be easily fall into the local optimum. 

Generally, this value can be set to 10-500 [25]. 

2) Crossover probability 

Simulating the generation of offspring during biological evolution, we generally set the crossover 

probability relatively large. However, if this value is too large, although the diversity of children is 

guaranteed, it will also increase the possibility of excellent individuals being damaged; If this value is too 

small, also easily fall into the local optimum. We can set the value 0.7-0.9 [26]. 

3) Mutation probability 
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The probability of mutation is to change the value of one or more genes in the gene segment so that new 

children can be produced. Like biological mutation, this probability is very low, we can set the value 0.001-

0.1 [26]. 

4) Numbers of iterations 

Among the 3 stopping criteria listed in table 5.4, setting a reasonable number of iterations is the most 

commonly used. Generally, this number can be set to 50-800 [25][26]. 

5.2.4 Advantages and disadvantages of genetic algorithm 

  The GA simulates the evolution process of natural organisms, adopts the competition mechanism of survival 

of the fittest, and has great advantages in convergence, calculation time and robustness. In addition, the 

advantages of GA in random fast search and scalability also make the algorithm widely used. 

  However, GA also have some shortcomings in application: the selection of crossover and mutation probability 

in genetic operators has a greater impact on the algorithm. The algorithm is relatively dependent on the initial 

population. 

  Taking into account the dependence on the initial population in the iterative process of traditional GA, the 

idea of greed is incorporated into the process of generating the initial population, and the choice of crossover 

probability and mutation probability may destroy the existing optimal solution. Join the elite retention strategy 

to improve the performance of the algorithm. 

5.3 Algorithm process design 

There are two main ideas when using metaheuristics algorithm to solve LRP: 

1) Split the LRP, solve the LAP first, then bring the obtained results into the VRP for optimization. 

2) The LRP taken as a whole, and obtain the result of comprehensive optimization of location and routes at 

the same time. 

  The (1) idea is just a simple superposition of two problems, will not consider some constraints, we choose the 

(2) idea to solve the LRP based on genetic algorithms. 

5.3.1 Chromosome coding and decoding 

The model in this thesis aims to provide reasonable arrangements of EFVs to offer distribution services for 

logistics companies, and to go to the charging station for replenishment when the power is insufficient during 

delivery. We use a greedy search operation in the genetic algorithm to solve this problem, and apply a hybrid 

coding method to represent a feasible solution with the coding of customers, distribution center and charging 

stations together. Natural number 1~𝑁  represent customers, natural number 𝑁 + 1~𝑁 + 𝑀  represent 
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charging stations, distribution center is 0, the number of vehicles owned by the distribution center is 𝐾. 

1) Coding: First generate the chromosome sequence, composed of routes and charging station locations.  

①. The first part is the driving routes. First generate a full array of customer points and charging stations 

(𝐶1, 𝐶2, ⋯ , 𝐶𝑁, 𝐶𝑁+1, ⋯ , 𝐶𝑁+𝑀), then randomly generate a number of distribution centers and insert them 

into the customer points sequence. The number of distribution center represents the same number of 

vehicles departing from the distribution center  (𝐶1, 𝐶2, ⋯ , 𝐶𝑎, 0, 𝐶𝑎+1, 𝐶𝑎+2, ⋯ , 𝐶𝑙, 0, 𝐶𝑙+1, ⋯ , 𝐶𝑁+𝑀). Add 

the closed loop conditions to generate 𝑐ℎ𝑟𝑜𝑚𝑒(0, 𝐶1, 𝐶2, ⋯ , 𝐶𝑎, 0, 𝐶𝑎+1, 𝐶𝑎+2, ⋯ , 𝐶𝑙, 0, 𝐶𝑙+1, ⋯ , 𝐶𝑁+𝑀, 0) 

sequence. 

②. The second part is the charging station locations. Randomly generate 0-1 variables with number of 𝑀 to 

indicate whether the charging station is selected, where 1 is the charging station is selected, and 0 represents 

not selected. 

2) Decoding: decoding is essentially the reverse process of coding. First, customers and charging stations are 

allocated to vehicles, and then the array 𝑐ℎ𝑟𝑜𝑚𝑒1 is used to store the decoded chromosome sequence. 

We illustrate the process of coding and decoding by using 10 customer points, 3 charging stations and 3 EFVs 

(1 to 10 represents customers, 11 to 13 represents charging stations) as shown in Figure 5.2, the sequence 

indicates that there are three vehicles for distribution and two charging stations selected, 10 and 13 respectively. 

The first vehicle departs from the distribution center and serves No.5,3,1 customers in turn, after finish the 

service of No.3 customer, charging at the No.13 charging station, then continuing to service customer point No.1 

and return to the distribution center; The second vehicle serve No.8,4,9,2 these four customers, before No.9, 2 

customer service should go to No.11 charging station charging battery and eventually return to the distribution 

center; The third vehicle serve No.10,6,7 three customers, finally return the distribution center. 
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Figure 5.2 chromosome coding and decoding diagram 
 

5.3.2 Generate initial population 

The genetic algorithm relies heavily on the initial population during iterating, and we use the Greedy algorithm 

to generate the initial population. Assuming that there are 𝐾 EFVs in the distribution center that can provide 

cargo delivery services, that there are 𝑁 customers and 𝑀 charging stations can be used to replenish the battery 

during delivery.  

The initial population generation method used is: according to the complexity and scale of the problem to set 

a reasonable population size 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 , the chromosomes is composed of two parts: the driving routes and 

charging station locations. The generation steps of first part is:  

𝑆𝑡𝑒𝑝1: Randomly generate the first customer point among the 𝑁 customer points, and then find the point 

closest to the first point as the next point according to the greedy idea until the 𝑁 customers and 𝑀 charging 

stations are generated in full arrangement. For example, there are 10 customers that need to be serviced and 3 

alternative charging stations, if the first customer point 5 is randomly generated, the closest to 5 is 3, the closest 

to 3 is 13, and so on, until the sequence is generated（5,3,13,1,8,4,11,9,2,10,6,12,7） 

𝑆𝑡𝑒𝑝 2 : Randomly select 𝑘 − 1  locations and sequence them in descending order in the first part of the 

chromosome sequence generated by 𝑆𝑡𝑒𝑝1, and then insert 0 at these locations of the chromosome sequences 

to indicate addition to the vehicle schedule, allowing different customers to be delivered by different vehicles. 

For example, if the distribution center has 3 vehicles, two locations are randomly generated, and if two positions 

are (4,9) and sorted down (9,4), then if the sequence of chromosomes dispatched by the vehicle becomes 

(5,3,13,1,0,8,4,11,9,2,0,10,6,12,7).  

𝑆𝑡𝑒𝑝 3: Insert 0 at the beginning and end of the chromosomal sequence generated by 𝑆𝑡𝑒𝑝2, indicating the 

addition of closed-loop conditions, which eventually results in a chromosomal sequence 

(0,5,3,13,1,0,8,4,11,9,2,0,10,6,12,7,0).  

The second part of the chromosome randomly generates the 𝑀 − 𝑏𝑖𝑡 0-1 variable to indicate whether the 

charging station is selected, and the complete chromosome sequence is (5,3,13,1,8,4,11,9,2,10,6,12,7,0,1,0,1) 

Finally, the chromosome sequence is judged by loading weight, customer point remaining battery, and time 

window constraints. If the constraints are not satisfied, the chromosome sequence is discarded and the new 

chromosome sequence is regenerated until the 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 chromosome that satisfy the conditions. 
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5.3.3 Fitness function 

The fitness function is used to calculate the fitness value of each chromosome, which has a great influence on 

the solution speed and the quality of the solution. Since the objective function of this model is to minimize the 

total cost, and the larger the fitness value indicates that the chromosome is better, therefore, the function is set 

to the inverse of the objective function, which is both eligible and convenient for calculation. The specific 

formula is shown in the Eq. (5.1): 

 𝐹(𝑖) =
1

𝑍(𝑖)
 (5.1) 

𝐹(𝑖) is the fitness value of chromosome 𝑖, 𝑍(𝑖) is the objective function value of 𝑖. 

5.3.4 Genetic operators 

We incorporate the elite retention strategy with the proportional selection method, before the proportional 

selection, the fitness values are sorted in descending order, the first 2% chromosomes are directly retained as 

elite individuals into the new population, and the remaining 98% of the chromosomes of the new population are 

produced by proportional selection. 

1) Selection operators 

The algorithm selects a group of individuals in the current population, called parents, who contribute their 

genes—the entries of their vectors—to their children. The algorithm usually selects individuals that have 

better fitness values as parents. At present, the widely used selection operators are proportional selection 

(roulette wheel selection), optimal saving strategy and deterministic sampling selection. We choose the 

roulette wheel selection. The basic idea is that the probability of any individual being selected to the next 

generation is equal to the ratio of its fitness value to the sum of all individuals’ fitness value. Assuming that 

the population size is 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 and the fitness value of each chromosome is 𝐹(𝑖), the probability 𝑃(𝑖) of 

the selected is calculated as shown in Eq. (5.2). 

 𝑃(𝑖) =
𝐹(𝑖)

∑ 𝐹(𝑖)
𝑠𝑖𝑧𝑒𝑝𝑜𝑝
𝑖=1

 (5.2) 

After calculating the probability of each chromosome being selected, the probability is summed to form the 

roulette, sum operation cumulative probability 𝑁(𝑗) calculation as shown in the Eq. (5.3), each sector of 

the roulette disk represents a chromosome, the angle size of the sector is proportional to the cumulative 

probability of the chromosome, indicating that the chromosome fitness value accounts for the percentage 

of the roulette, as shown in Figure 5.3. 
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 𝑁(𝑗) = ∑ 𝑃(𝑖)
𝑠𝑖𝑧𝑒𝑝𝑜𝑝
𝑖=1  (5.3) 

Figure 5.3 roulette wheel selection 

Starting from the fitness value, randomly choosing the 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 chromosomes to form a new population. 

The specific steps are as follows:  

𝑆𝑡𝑒𝑝 1 : Sort the fitness values in descending order, retaining the first 2% of chromosomes as elite 

individuals into the new population;  

𝑆𝑡𝑒𝑝 2: Calculate the probability of each chromosome being selected, calculate the Eq. (5.2);  

𝑆𝑡𝑒𝑝 3: Calculate the cumulative probability of each chromosome being selected by Eq. (5.3); 

𝑆𝑡𝑒𝑝 4 : Randomly produce the 𝑥 ∈ [0,1]  and compared with 𝑁(𝑗) , if 𝑥 ≤ 𝑁(1) , then the first 

chromosome in the population will be selected into the next generation; if 𝑁(𝑖 − 1) < 𝑥 ≤ 𝑁(𝑖), the 𝑖-th 

chromosome will be selected into the next generation. 

𝑆𝑡𝑒𝑝 5: Repeat 𝑠𝑡𝑒𝑝 4 until the remaining 98% of the individuals are generated, merging with the previous 

elite individuals to form a new population, with a 𝑠𝑖𝑧𝑒𝑝𝑜𝑝 size. 

2) Crossover operators 

To increase the population diversity, genetic algorithms simulates the evolution of natural organisms that 

recombine chromosomes to generate the crossover children through the mating between parents, which is 

the main way to produce new chromosomes. According to the different coding methods, different crossover 

strategies can be used, commonly used crossover strategies include single-point cross, two-point crossover 

and multi-point crossover, etc. Using single-point crossover or two-point crossover will make the number 

of calculations increase and convergence speed is slow, so we use the multipoint crossover, so the algorithm 

will converge faster, but this method may destroy the existing good solution, so we incorporate the elite 

retention strategy. 

According to the two parts of chromosome, the crossover will operate separately. The specific steps are: 

𝑆𝑡𝑒𝑝 1: Select the crossover parent. Randomly combine all chromosomes that in the population in pairs. 
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Form [
𝑠𝑖𝑧𝑒𝑝𝑜𝑝

2⁄ ] sets of parents, choose one set inside [
𝑠𝑖𝑧𝑒𝑝𝑜𝑝

2⁄ ] to crossover; 

𝑆𝑡𝑒𝑝 2: Randomly generate 𝑥 ∈ [0,1], compared with 𝑃𝑐 (crossover probability, generally < 1), if 𝑥 ≤

𝑃𝑐, implement the multi-point crossover. The specific processes are: 

①. Remove all 0 genes in the driving route (inside the first part) of the parent chromosome, and record 

the locations of these 0 genes; 

②. In the range[1, 𝑁 + 𝑀] randomly generate 𝑚 numbers as crossover points; 

③. Exchange the genes at the intersection of the two parent chromosomes; 

④. Test respectively the repeated genes in the children and replace them with the missing genes. The 

sequence is consistent with the gene sequence in the middle of the original chromosome intersection. 

⑤. Add the 0 genes at the recorded positions. 

We illustrate the process of coding and decoding by using 10 customer points, 3 charging stations and 3 EVs. 

So, 𝑁 = 10, 𝑀 = 3 , the crossover points 𝑚 = 3 . The first part of two parent chromosomes are 

(0,5,3,13,1,0,8,4,11,9,2,0,10,6,12,7,0)  and  (0,6,3,0,11,7,10,8,5,12,1,2,0,4,9,13,0) . The first parent 

chromosome randomly generate 3 crossover points are (2,4,11), the second parent chromosome’s crossover 

points are (1,4,7) , the two children obtained by crossover are (0,5,6,13,7,0,8,4,11,9,2,0,10,1,12,3,0)  and 

(0,3,5,0,11,10,8,6,12,7,2,0,4,9,13,0). 

The crossover method of the second part (charging station locations) is similar with the first part, the only 

difference is that there is no need to remove the 0 gene position, but directly crossover. For example, the two 

parent chromosomes’ second parts are (1,0,1) and (0,0,1), the crossover point generated randomly are both at 

1. So the complete chromosomes after crossover are (0,5,6,13,7,0,8,4,11,9,2,0,10,1,12,3,0,0,0,1)  and 

(0,3,5,0,11,10,8,6,12,7,2,0,4,9,13,0,1,0,1). The complete crossover process is shown in Figure 5.4: 
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Figure 5.4 crossover process schematic diagram 

3) Mutation operators 

  Simulated biological evolution may occur in the natural phenomenon of genetic mutations, in the genetic 

algorithm, mutation refers to the generation of diverse populations, some individuals in the population will 

produce genetic mutations with a small probability, this change will make the population diversity increase, but 

may also destruct previous excellent chromosome, so the probability of mutation will generally be set not too 

large, the value is between 0.001 to 0.1. Because we have adopted the elite retention strategy for good solution 

of the genetic, it is appropriate to increase the probability of mutation in order to increase population diversity. 

The first part of the chromosome driving routes using interchange mutation, the second part of the charging 

station selection using the basic bit variation idea, as follows: 

𝑆𝑡𝑒𝑝 1: Randomly select an individual, as the mutant parent; 

𝑆𝑡𝑒𝑝 2: Randomly generate 𝑥 ∈ [0,1], compared with 𝑃𝑚, if 𝑥 ≤ 𝑃𝑚, implement the mutation. The specific 
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processes are: 

①. Remove all 0 genes in the driving route (inside the first part) of the parent chromosome, and record 

the locations of these 0 genes; 

②. In the range[1, 𝑁 + 𝑀] randomly generate 2 numbers as mutation points of the first part, meanwhile, 

the second part adopts the simple mutation; 

③. Operate the gene mutation of two parts at the mutation points separately; 

④. Add the 0 genes at the recorded positions. 

Assume the mutated chromosome is the crossover children 1 (0,5,6,13,7,0,8,4,11,9,2,0,10,1,12,3,0,0,0,1), 

the random mutation point of the driving route is (4,6), the mutation point of the charging station location is 2, 

the mutation processes as figure 5.5 shows: 

Figure 5.5 mutation process schematic diagram 

Step 3: Calculate the fitness value of each chromosome respectively, and select individuals with high fitness 

values as the new generation population. 

4) Stopping criteria 

There are two types of stopping criteria commonly used: the first type is to judge by fitness value. If the 

fitness value is equal to the given threshold, or if the fitness value changes very little in successive iterations, 

the operation will terminate. The second type is the operation numbers reach the given iteration numbers. 

According to the scale and complexity of the problem, we chooser the second type of criteria, set a 

reasonable number of iterations, the algorithm will stop after running enough times. The specific steps of 

the GA of our model are shown in figure 5.6: 
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Figure 5.6 GA flowchart  
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6. Case analysis 

The vehicles used for urban distribution are traditional fuel vehicles and EFVs, at present, fossil fuel vehicles 

are still the main distribution method, with a market share of 98% in China [27]. While, the characteristics of zero 

pollution and low energy consumption of EFVs have made it popular in recent years. In order to confirm the 

accuracy and effectiveness of the electric vehicles LRP model and genetic algorithm proposed in this thesis, this 

section will use medium and large-scale cases to verify the model. 

6.1 Algorithm implementation 

All calculation cases are performed on the computer: Intel (R) Core (TM) i7-8550U CPU @ 1.80GHz, 8GB 

RAM, Windows 10 operation system. Genetic algorithm codes are implemented on the MATLAB R2020a. 

In the coding process, I think the most difficult point is the design of the crossover process. the routes part 

and the charging station selection part are crossover separately, then duplicate parts are eliminated, the detailed 

process is as follows: 

Crossover process codes 

S1: if rand (1) < pcross 

generate randomly 𝑥 ∈ [0,1], compared with 𝑃𝑐, if 𝑥 ≤ 𝑃𝑐, implement the multi-point crossover 

S2:  ppc1 = pcross1(1: length(pcross1)-Nstation); 

ppc2 = pcross2 (1: length(pcross1)-Nstation); 

Remove the 0 genes in the routes part (first part) 

  zeropos1= find(ppc1==0); 

  ppc1 (zeropos1) = []; 

  zeropos2= find(ppc2==0); 

ppc2 (zeropos2) = []; 

Record all the positions of 0 genes, for later recovery 

S3: generate randomly 3 numbers ∈ [1, 𝑁 + 𝑀] as the crossover points 

crosspos1 = sort(randperm(length(pop1),3),'ascend'); 

crosspos2 = sort(randperm(length(pop1),3),'ascend'); 

S4: exchange the genes at each crossover point of the two parents, keep one of the genes as the output of cross 

p1cross(crosspos1) = p2cross(crosspos2);  

p2cross(crosspos2) = ptemp(crosspos1);  

S5: separately check the repeated genes in the children 

ptime = setdiff(pop1, p1cross); postime = zeros(1,length(ptime)); 

for i = 1: length (ptime) 

 postime(i) = find(pop1==ptime(i)); 

end 

Replace the repeated genes with the missing genes, the sequence is same with the gene sequence in the middle 
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of the orginal chromosome intersection 

postime = sort(postime,'ascend'); cnt = 1; 

for i = 1:length(p1cross) 

    if ~ismember(p1cross(i),ptemp) 

        ptemp = [ptemp,p1cross(i)]; 

    else 

       p1cross(i) = pop1(postime(cnt)); 

       cnt = cnt+1; 

    end 

end 

 

6.2 Basic data 

  The current examples for verifying the VRP or LRP models are mainly Solomon benchmark problems, which 

are divided into three series: R, C, and RC. In this thesis, we randomly generate the customer points sequence, 

meanwhile, the time window is relatively loose in actual delivery, so we choose R112 examples as the data 

source. In addition, based on the defined customer points coordinates, we use the P-center method (the total 

distance between the charging stations and the customer points is the smallest) to determine 6 candidate locations 

of charging stations filter from 20 locations for two cases (listed in Appendix attached list 1). We divide the data 

of R112 example into customer points and charging stations, and assume the distance between customer points 

is Euclidean distance. 

6.2.1 Charging station  

  The charging station here we consider 380V50kw vertical DC fast charger (as shown is figure 6.1), the cost 

of one DC charger is about 0.5 yuan/w, so a single 50kw DC fast charger equipment cost is about 25,000 yuan, 

the initial investment cost is listed in table 6.1(the relevant data comes from Guosheng Securities Research 

Institute): 

Figure 6.1 380V 50kw vertical DC fast charger 
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Single 50kw DC charger investment cost 

Total cost Charging equipment + power distribution equipment 

+ civil construction cost  

57,000-60,000 

Charging equipment cost Contains monitoring, charger module, assemblies 

box, relay, etc. 

25,000 

Civil construction cost Building operations, electric wire, etc. 10,000-13,000 

Power distribution equipment cost  low-voltage apparatus, electricity meter, etc. 22,000 

Table 6.1 single DC fast charger investment cost 

  Consider the slow charger is cheap, and the investment in civil engineering and power distribution equipment 

is less, assuming that the investment of one slow charger is 0.5 yuan/w, the total investment cost of one fast 

charger is calculated as 1.2 yuan/w. Suppose the equipment depreciation period is 10 years, the average annual 

maintenance cost is 3% of the initial investment, and the average annual operating and labor costs are 6% of the 

initial investment. The average annual fixed cost is listed in table 6.2: 

Costs 7.5kw 50kw 

Single charger initial investment 4000 60,000 

Annual depreciation expense (10 years) 400 6,000 

Annual equipment maintenance cost 100 1,800 

Average annual operating labor cost per pile 200 3,600 

Total annual fixed expenses (regardless of venue) 700 11,400 

Table 6.2 average annual fixed cost per one DC charger pile 

6.2.2 Vehicle relevant parameters 

The basic parameter settings of EFVs refer to the configuration parameters of Nissan e-NV200 (Figure 6.2), 

specific parameters listed in table 6.3, other parameters are shown in table 6.4 (the relevant data comes from 

Guosheng Securities Research Institute): 

Figure 6.2 Nissan e-NV200 
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Parameters Values 

Maximum loading capacity 700kg 

Maximum mileage 200km 

Battery capacity 40kwh 

Vehicle speed 30km/h 

Consumption of battery per km 0.143kwh/km 

Charging factor 60kwh/h 

Table 6.3 e-NV 200 configuration parameters 
 

Parameters Values 
Service time for one customer 10 mins 
Electric conversion coefficient 0.94 
Electricity fee 0.55 yuan/kwh 
Minimum safe battery percent 20% 
Fixed cost 100 yuan/vehicle 
Transport cost 2 yuan/km 
Carbon emission price 0.5 yuan/kg 
Waiting cost for vehicle arriving early 1 yuan/mins 
Penalty cost for vehicle arriving late 2 yuan/mins 

Table 6.4 other parameters 

  As comparison, the traditional fuel vehicle’s basic parameter refers to the Nissan NV 200 (Figure 6.3, same 

model as electric vehicle), relevant parameters list in table 6.5: 

Figure 6.3 Nissan NV 200 
 

Parameters Values 

Engine  1.6 L 

Maximum load capacity 700 kg 

Fuel consumption  0.07 L/km 

Carbon emission per unit liter of gasoline 2.3 kg/L 

Oil price  6.13 yuan /L 

Table 6.5 NV 200 parameters 
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6.3 Result analysis 

6.2.1 medium-scale case result analysis  

We select a medium-scale example for research, data comes from Solomon benchmark problem R112, 

forming a distribution system with 1 distribution center, 25 customers and 6 charging stations. The relevant data 

of coordinates of candidate charging stations and customer points are listed in Appendix attached list 2 and 

attached list 3. Table 6.6 lists the basic parameters setting of GA: 

Parameters Meanings Value 

𝑠𝑖𝑧𝑒𝑝𝑜𝑝 Population size 50 

𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒 Elite size 2 

𝑁𝑖𝑡𝑒 Iterations number 100 

𝑃𝑐 Crossover probability 0.9 

𝑃𝑚 Mutation probability 0.1 

Table 6.6 SA basic parameters 

  As the scale of the case increases, the possibility of the metaheuristic algorithm to obtain the optimal solution 

will gradually decrease, because the solution obtained is generally an approximate optimal solution. Therefore, 

we repeat 10 times for the experiment, take the minimum value from the 10 results as the optimal solution of the 

case. Figure 6.3 shows the iteration process, the algorithm converges after approximately 100 iterations, and the 

optimal solution obtained at this time has stabilized, the routes distribution is shown in figure 6.4 and the solution 

is listed in table 6.7: 

Figure 6.4 iteration process for medium-scale case           Figure 6.5 EFVs optimal routes distribution diagram 
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Indicators Values 

Optimal solution 60837.88 yuan 

Optimal distribution cost 

(without CS cost) 

837.88 yuan 

Routes ⚫ 0--7--8--16--4--15--3--10--17--18--19--21--20--25--

2--9--22--24--1--29(charging)--6 (red line) 

⚫ 0--23--5--14--13--11--12--0 (green line) 

Fixed cost 200 yuan 

Transport cost 592.27 yuan (296.14 km) 

Charging cost 16.30 yuan 

Environment cost 14.45 yuan 

Penalty cost 14.86 yuan 

Table 6.7 Results of calculation case 

According to figure 6.5 and table 6.7, in the given 4 alternative charging stations, No.29 node, coordinate 

(58,45), is chosen to build a charging station. Besides, in order to verify the stability of the algorithm, we run 

the calculation examples 10 times, obtain the 10 optimal solution for each time and calculate the deviation value, 

as shown in table 6.8: 

Time Optimal value Deviation value 

1 60850.21 0.02% 

2 60837.88 -- 

3 60861.31 0.04% 

4 60842.10 0.01% 

5 60911.32 0.12% 

6 60892.80 0.09% 

7 60945.82 0.18% 

8 60946.56 0.18% 

9 60851.65 0.02% 

10 60874.28 0.06% 

Average 60881.39 0.07% 

Table 6.8 calculation examples results of 10 run times 

In 10 run times, the average value of the solution is 60881.39, and the average deviation of the solution is 

0.07%. During operation, appears 1 optimal solution – 60837.88, and all solutions deviation are controlled within 

1%, and the maximum deviation is 0.18%. As a whole, we can see that the quality of the solutions obtained in 
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10 run times is good, the deviations are all within a reasonable range, indicating that the genetic algorithm model 

is stable. 

Then we compare the result of EFVs distribution with traditional fuel vehicle. For the convenience of 

comparison, consider the traditional fuel vehicles costs contain: fixed cost, transportation cost, fuel cost, 

environmental cost and time window penalty cost. The calculation examples used is same with EFVs case. The 

experiment is repeated 10 times, and the optimal solution is the minimum value in the 10 results, the optimal 

path is shown in the figure 6.7: 

Figure 6.6 fuel vehicle optimal routes distribution diagram 

  Compare the solution results of fuel vehicle distribution with the results of EFVs distribution, the comparison 

items are listed in table 6.9: 

Indicators Electric freight vehicle Traditional fuel vehicle 

Optimal solution (without CS cost) 837.88 yuan 939.81 yuan 

CS construction cost 60,000yuan -- 

Fixed cost 200 yuan 200 yuan 

Transport cost 592.27 yuan (296.14 km) 565.34 yuan (282.67km) 

Charging cost/fuel cost 16.30 yuan 121.29 yuan 

Environmental cost 14.45 yuan 41.26 yuan  

Time window penalty cost 14.86 yuan 11.92 yuan 

Distribution routes ⚫ 0--7--8--16--4--15--3--10--17--18--

19--21--20--25--2--9--22--24--1--

29(charging)--6 (red line) 

⚫ 0--17--18--19--21--20--25--2--9--

22--24--23--0 (red line) 
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⚫ 0--23--5--14--13--11--12--0 (green 

line) 

⚫ 0--6--7--8--16--4--15--5--14--13--

11--12--10--3--1--0 (green line) 

Table 6.9 results comparison of EFVs and fuel vehicles 

From the above table, we can know that for one mission, the distribution cost of using EFVs (excluding 

charging station relevant costs) is less than that using fuel vehicles, so if we use EFVs for distribution, we can 

pay less 101.93 yuan for each mission, save an average of 0.36 yuan/km. Because the needs for battery 

replenishment during delivery, the transportation distance and cost are higher than that of fuel vehicles, the 

exceed cost is16.93 yuan. The time window penalty cost of using EFVs is a little larger than that of fuel vehicles. 

While, the charging cost is significantly lower than the fuel cost of fuel vehicle, only account for 13.4% of fuel 

cost, and carbon emission costs are also reduced by 65%. Therefore, from the perspective of economic and 

environmental benefits, EFVs have obvious advantages.  

Then, we consider the total cost (plus charging station relevant costs), from section 6.2.1, we know that: 

1) One 7.5kw slow charger investment cost is 4000 yuan, the average annual fixed cost is 700 yuan, logistics 

company should have slow charging facilities in order to charging EFVs at night to save charging costs, 

here we consider one 7.5kw slow charger in DC;  

2) One 50kw DC fast charger investment cost is about 60,000 yuan and the average annual fixed cost is 11,400 

yuan, the upfront investment in self-built charging station is huge, we build one DC fast charger at point 

(39,56).  

  Suppose vehicles drive 300 days a year, and one distribution mission per day. The distribution cost is 837.88 

yuan/mission for using EFVs and 939.81 yuan/mission for using traditional fuel vehicles, the distribution cost 

saved by using EFVs is 30,579 yuan/year. The total annual cumulative cost is shown in figure 6.7: 

Figure 6.7 comparison of total logistics cumulative cost between EFVs and traditional fuel vehicles 

0 1 2 3 4 5 6 7 8 9 10

EFVs 64,000 327,464 590,928 854,392 1,117,856 1,381,320 1,644,784 1,908,248 2,171,712 2,435,176 2,698,640

Fuel vehicles 0 281,943 563,886 845,829 1,127,772 1,409,715 1,691,658 1,973,601 2,255,544 2,537,487 2,819,430
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  From the above figure, we can see that starting from the 4th year, the total logistics cost of using EFVs has 

become less than that of using fuel vehicles. In other words, at least 4 years before investors can actually earn a 

profit. Until the 10th year of using EFVs, the logistic company can save 120,790 yuan (≈15,098 euro) totally in 

distribution cost, the total cost saved is not much, so in this medium-scale case of customer demand, the self-

built charging station mode of company cannot bring huge benefits. Company is profitable because the annual 

cost savings by using EFVs distribution is larger than the annual cost of the charging stations, all costs of the 

charging station are borne by logistics company, the utilization rate of the charging station is low, so the charging 

station is always operating at a loss, especially the high cost of fast charging station, the total investment payback 

period is long. 

If the fast charging station we build can be used publicly or shared with other logistics companies, then the 

charging station operation can be profitable, and the total investment payback period of logistics company will 

also be accelerated. At present, the most basic profit method for charging stations is collect charging electricity 

and service fees. We consider the charging service fee is 0.55 yuan/kw, charging station operates 330 days a year, 

if the utilization rate of a single 50kw DC fast charger is 7% (1.68 hours per day), the payback period of 

investment will take 15.6 years, if the utilization rate increase to 30% (8 hours per day), the payback period will 

be 0.98 years, table 6.10 lists payback period under different utilization rates: 

Utilization rate 7% 10% 15% 20% 30% 50% 

Hours/day 1.68 2.4 3.6 4.8 7.2 12 

Payback period (years) 15.60 5.78 2.82 1.87 1.11 0.62 

Table 6.10 payback period under different utilization rates 

From the above table, we can know that the payback period of single charger is greatly affected by the 

utilization rate (= annual accumulated charging time / total time of a year). For example: if the fast charging 

station can be used for EFVs belongs to other logistics companies, during the 300 delivery times for a year, the 

utilization rate is 10%, the charging station daily service EFVs number is 4 (including 3 EFVs from other 

companies), then the company will be profitable in the 1.9th year. We can see the payback period is much shorter 

than before, and at the 10th year, the logistic company can save 269,290 yuan totally in total cost, around 2.2 

times as before. 

6.2.2 large-scale case result analysis  

The large-scale example uses the 61 nodes in the Solomon benchmark problem R112, forming a distribution 

system with 1 distribution center, 60 customers and 6 alternative charging stations. The relevant data of 
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coordinates of charging stations and customer points are shown in Appendix attached list 2 and attached list 4. 

Table 6.11 lists the basic parameters setting of genetic algorithms: 

Parameters Meanings Value 

𝑠𝑖𝑧𝑒𝑝𝑜𝑝 Population size 100 

𝑡𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡𝑆𝑖𝑧𝑒 Elite size 2 

𝑁𝑖𝑡𝑒 Iterations number 150 

𝑃𝑐 Crossover probability 0.9 

𝑃𝑚 Mutation probability 0.1 

Table 6.11 GA basic parameters 

Figure 6.8 iteration process for large-scale case  

Figure 6.8 shows the iteration process of using EFVs to distribution, the algorithm converges after 

approximately 150 iterations, and the optimal solution obtained at this time has stabilized, the routes distribution 

is shown in figure 6.9 and the solution is listed in table 6.12: 

Figure 6.9 EFVs optimal routes distribution diagram 
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Indicators Values 

Optimal solution  181799.44 yuan 

Optimum distribution 

cost (without CS cost) 

1799.44 yuan 

Charging station cost 60,000 yuan × 3 

Routes ⚫ 0--52--18--60--5--59--37--42--57--2--40--58--53--1--30--0 (red line) 

⚫ 0--41--15--22--23--55--39--56--25--24--29--34--33--51--66(charging)--3--9--35--0 (green 

line) 

⚫ 0--11--7--48--47--36--49--19--46--8--45--17--16--44--14--38--61(charging)--6--27--0 

(black line) 

⚫ 0--43--13--26--21--4--54--12--28--50--10--31--64(charging)--32--20--0 (yellow line) 

Fixed cost 400 yuan 

Transport cost 1270.18 yuan (635.09 km) 

Charging cost 51.76 yuan 

Environment cost 30.48 yuan 

Penalty cost 47.02 yuan 

Table 6.12 Results of calculation case 

According to figure 6.9 and table 6.12, in the given 6 alternative charging stations, No.61,64 and 66 nodes, 

coordinate (22,10), (39,56) and (58,45), are chosen to build charging stations. Besides, in order to verify the 

stability of the algorithm, we run the calculation examples 10 times, obtain the 10 optimal solution for each time 

and calculate the deviation value, as shown in table 6.13: 

Time Optimal value Deviation value 

1 181932.70 0.07% 

2 181970.85 0.09% 

3 182023.40 0.12% 

4 181830.93 0.02% 

5 181837.25 0.02% 

6 181799.44 -- 

7 181859.62 0.03% 

8 182009.60 0.12% 

9 182184.29 0.21% 

10 181946.76 0.08% 

Average 181939.48 0.07% 

Table 6.13 calculation examples results of 10 run times 
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In 10 run times, the average value of the solution is 181939.48, and the average deviation of the solution is 

0.07%. During operation, appears 1 optimal solution – 181799.44, and 9 solutions deviation are controlled within 

1%, and the maximum deviation is 0.21%. From these results, the algorithm model is relatively stable. 

  Then, same process as before, we compare the result of EFVs distribution with traditional fuel vehicle. The 

calculation case used is same with EFVs. The experiment is repeated 10 times, and the optimal solution is the 

minimum value in the 10 results, the optimal path is shown in the figure 6.10: 

Figure 6.10 fuel vehicle optimal routes distribution diagram 

 

Compare the distribution costs of using fuel vehicles and using EFVs, the comparison items are listed in table 

6.14, the route, the detailed routes are shown in table 6.15:  

 

Indicators Electric freight vehicle Traditional fuel vehicle 

Optimal solution(without 

CS cost) 

1799.44 yuan 1801.48 yuan 

Charging station cost 180,000 yuan -- 

Fixed cost 400 yuan 400 yuan 

Transport cost 1270.18 yuan (635.09 km) 993.54 yuan (496.77km) 

Charging cost/fuel cost 51.76 yuan 222.01 yuan 

Environmental cost 30.48 yuan 150.66 yuan 

Time window penalty cost 47.02 yuan 35.27 yuan 

Table 6.14 results comparison of EFVs and fuel vehicles 

EFVs optimal routes ⚫ 0--52--18--60--5--59--37--42--57--2--40--58--53--1--30--0 (red line) 

⚫ 0--41--15--22--23--55--39--56--25--24--29--34--33--51--66(charging)--3--9--35--0 (green 

line) 
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⚫ 0--11--7--48--47--36--49--19--46--8--45--17--16--44--14--38--61(charging)--6--27--0 

(black line) 

⚫ 0--43--13--26--21--4--54--12--28--50--10--31--64(charging)--32--20--0 (yellow line) 

Fuel vehicles optimal routes ⚫ 0--17--45--8--46--47--48--7--52--18--60--5--59--37--42--57--2--58--40--0 (red line) 

⚫ 0--53--28--27--1--50--33--51--9--35--34--29--24--54--0 (green line) 

⚫ 0--55--25--39--56--23--22--41--15--43--14--44--16--38--0 (black line) 

⚫ 0--6--13--21--4--26--12--3--30--20--32--10--31--11--19--49--36--0 (yellow line) 

Table 6.15 optimal distribution routes comparison 

From the feasible solution obtained in the above tables, it can be seen that in the large-scale case (long-

distance transportation process), the use of EFVs distribution and the use of traditional fuel vehicle distribution 

required costs are not much different, the difference value is only 2.04 yuan for each mission. Meanwhile, EFVs 

need to be charged in the distribution process, resulting in transportation cost (distance) and time window penalty 

cost are higher than the use of traditional fuel vehicle distribution. But the EFVs’ charging costs and 

environmental costs are much lower than the fuel vehicles, where the environmental cost reduced by 79.77%, 

Therefore, the total cost of using EFVs for the same mission almost same with using fuel vehicles. 

Then, consider we should build 3 charging stations (50kw DC fast charger) in this large-scale case, the 

initial investment is 180,000 yuan, average annual fixed cost increasing 34,200 yuan. The distribution cost saved 

by using EFVs is 2.04yuan/mission. In this large-scale case, self-built charging station of company have no 

benefits. Same as before, we consider the 3 charging stations available for the EFVs of other logistics companies, 

under the same assumptions as previous, if the utilization rate of each charging station is 10%, each charging 

station daily service EFVs number is 4 (including 3 EFVs from other companies), then the company will be 

profitable in the 7th year, much longer than before. If the utilization rate is 20%, it means each charging station 

daily service EFVs number is around 8, then the company will be profitable in the middle of the 1st year. The 

key is to increase the utilization rate of charging stations, reasonably open charging stations for public. 

6.4 Conclusions 

This thesis integrates the charging station cost, charging cost and environmental cost into the electric vehicle 

LRP model, and designs the genetic algorithm to solve the model, so some corresponding conclusions are drawn.  

According to the two scale of examples, Table 6.16 lists the saved cost of using EFVs with respect of fuel 

vehicles: 
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 Saved distribution costs Saved total costs 

(300 missions/year) 

Saved environmental costs 

Medium-scale (25 customers,1 

charging stations, 2 vehicles) 

101.39 yuan/mission 

(0.36 yuan/km) 

18,317 yuan/year 24.81 yuan/mission (64.98%) 

Large-scale (60 customers, 3 

charging stations, 4 vehicles) 

2.04 yuan/mission 

(0.004 yuan/km) 

-34,288 yuan/year 121.73 yuan/mission (80.7%) 

Table 6.16 comparison of costs 

In summary, considering the aspects of distribution costs and environmental costs, EFVs distribution has 

certain advantages, but with the increase in total distribution distance and customer points, the average total cost 

savings reduced, This is because fuel vehicles are not subject to the same mileage limits as EFVs due to the 

number of customers, the increase in distribution distance and the limitations of the customer's time window, so 

they have more freedom of choice for customer service priorities, thereby reducing transportation costs and time 

window penalty costs to offset some of the environmental costs; Meanwhile, since the EFVs in delivery do not 

produce carbon emission, so the EFVs environmental costs than the use of fuel vehicles savings of an average 

of about 64.98%. 

However, taking into account the total cost, if logistics company prepare to self-building charging stations and 

not open to the public, in the case of medium distribution scale, from a sustainable development perspective, 

using EFVs for distribution has advantages, both economic and environmental benefits are better than fuel 

vehicles. Due to the high initial investment cost of charging stations, when the scale of the distribution becomes 

larger and the increasing number of charging stations needed to be established, and electric vehicles no longer 

have an obvious distribution cost advantage, the total logistic cost of using EFVs will be higher than using fuel 

vehicles. If the charging station built by the logistics company can be opened to the public, the charging stations 

can be profitable, company can quickly compensate for the excessive upfront investment of using EFVs for 

distribution. 

Considering the limitation of research time and the difficulty of data acquisition, there are still some 

shortcomings in this thesis that need to be perfected and improved: 

1) Taking into account the difficulty of obtaining customer locations, time windows, demands and related data 

of distribution vehicles from the actual enterprise, we do not use the actual research data in the electric 

vehicles LRP model, but on the basis of the Solomon benchmark problems to make reasonable assumptions 
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about the relevant data. Therefore, if the actual experimental data can be obtained, it can make the research 

more convincing. 

2) The research object is relatively single, limited to the EFVs that use fast charging mode in distribution. 

Therefore, in future studies, the charging route of hybrid vehicles may be considered, and other charging 

methods (partial charging, wireless charging, etc.) can also be studied. 

3) Simplify the electric vehicles LRP model during model building process. Although the integration of 

charging station cost, charging cost and environmental cost makes the model more realistic, but like the 

variety of vehicle types, real traffic conditions and distance, dynamic demand of customers, and other 

factors are not taken into account. 

4) In the design process of electric vehicle LRP genetic algorithm, although the idea of the greedy algorithm 

and elite retention strategy have improved the performance of the algorithm, but the optimal solution 

number of the algorithm in solving the case studies is not many, indicating that there are still some 

shortcomings in algorithm convergence. 
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APPENDIX 
Attached list 1 coordinates where charging stations can be built 

Number 𝑥 coordinate 𝑦 coordinate 

1 4 14 
2 22 10 
3 50 8 
4 62 23 
5 39 27 
6 28 35 
7 4 37 
8 35 17 
9 55 20 
10 15 30 
11 31 52 
12 46 39 
13 39 56 
14 65 61 
15 10 55 
16 58 45 
17 25 19 
18 24 58 
19 15 45 
20 18 68 

 
Attached list 2 charging station coordinates 

number x coordinate y coordinate 
1 22 10 
2 50 8 
3 39 27 
4 39 56 
5 10 55 
6 58 45 

 
Attached list 3 medium-scale case: customer points data 

Number 𝑥 coordinate 𝑦 coordinate Demand Starting time Ending time 

0 35 35 0 0 8 
1 41 49 46 2.4 7.1 
2 55 45 24 0 5.7 
3 25 30 72 1.3 6.5 
4 20 50 24 0.5 6.2 
5 10 43 52 1.2 5.8 
6 55 60 30 0 7.5 
7 30 60 26 2.2 6.5 
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8 20 65 63 0.5 6.5 
9 50 35 30 0.3 5.6 
10 30 25 23 1.9 7.5 
11 15 10 58 0.5 6.8 
12 30 5 45 0.8 5.8 
13 10 20 35 0.5 5 
14 5 30 52 2 6.3 
15 20 40 61 0.5 4.8 
16 15 60 29 1 5.5 
17 45 20 30 0.5 4.5 
18 45 10 48 1.6 5.1 
19 55 5 29 1.2 5.6 
20 65 35 51 1.2 7 
21 65 20 25 1.8 6.2 
22 45 30 91 2.5 6.2 
23 35 40 45 0.1 4.7 
24 41 37 29 0.2 5 
25 64 42 61 0.5 5.5 

 
Attached list 4 large-scale case: customer points data 

Number 𝑥 coordinate 𝑦 coordinate Demand Starting time Ending time 

0 35 35 0 0 480 
1 41 49 52 144 426 
2 35 17 23 0 390 
3 55 45 15 0 342 
4 55 20 23 90 450 
5 15 30 26 12 390 
6 25 30 14 78 390 
7 20 50 35 30 372 
8 10 43 61 72 348 
9 55 60 49 0 450 
10 30 60 26 132 390 
11 20 65 35 30 390 
12 50 35 18 18 336 
13 30 25 23 114 450 
14 15 10 20 30 408 
15 30 5 26 48 348 
16 10 20 48 30 300 
17 5 30 27 120 378 
18 20 40 38 30 288 
19 15 60 83 60 330 
20 45 65 43 60 480 
21 45 20 52 30 270 
22 45 10 51 96 306 
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23 55 5 15 72 336 
24 65 35 72 72 420 
25 65 20 46 108 372 
26 45 30 26 150 372 
27 35 40 37 6 282 
28 41 37 48 12 300 
29 64 42 73 30 330 
30 40 60 46 12 414 
31 31 52 29 0 390 
32 35 69 41 18 468 
33 53 52 11 6 408 
34 65 55 14 72 402 
35 63 65 37 24 480 
36 2 60 34 30 432 
37 20 20 36 72 474 
38 5 5 61 48 390 
39 60 12 56 12 456 
40 40 25 26 18 414 
41 42 7 36 48 480 
42 24 12 47 0 390 
43 23 3 44 90 444 
44 11 14 18 60 390 
45 6 38 16 12 456 
46 2 48 41 72 468 
47 8 56 27 12 450 
48 13 52 36 66 414 
49 6 68 30 78 402 
50 47 47 13 72 480 
51 49 58 10 12 336 
52 27 43 25 0 414 
53 37 31 71 48 432 
54 57 29 26 126 468 
55 63 23 36 36 480 
56 53 12 16 96 474 
57 32 12 49 48 408 
58 36 26 30 78 480 
59 21 24 62 0 456 
60 17 34 15 72 468 

 

P-center code 

disbak = dis; ite = 0; 
valite = []; 
 
while 1 



66 

 

    ref = zeros(N,1); 
    k = size(dis,1); 
    ite = ite+1; 
 
    for i = 1: N 
        coor = client(i,2:3); 
        [val,ind] = min(sum((dis(:,2:3)-repmat(coor,k,1)).^2,2)); 
        ref(i) = ind; 
    end 
    disite = 0; 
    % calculate the total distance 
    for i = 1: N 
        disite = disite + sum((dis(ref(i),2:3)-client(i,2:3)).^2); 
    end 
    valite = [valite,disite]; 
     
    klist = unique(ref);  
    if length(unique(ref)) ==p 
        break; 
    end 
     
    if length(unique(ref))>p 
        % drop  
        addval = zeros(length(unique(ref)),1); 
        for i = 1: length(unique(ref)) 
            droppoint = klist(i); 
            clientdrop = find(ref==droppoint); 
            % find other closer location 
            for j = 1: length(clientdrop) 
                coor = client(clientdrop(j),2:3); 
                disleft = dis; 
                disleft (droppoint, :) = []; 
                addval(i) = addval(i) + min(sum((disleft(:,2:3)-repmat(coor,length(disleft(:,2:3)),1)).^2,2)) - 

sum((coor-dis(droppoint,2:3)).^2); 
            end 
        end 
        [~, ii] = min(addval); 
        dis (ii, :) = []; 
    end 
end 

Main Program Code 

 
clear all 
close all 
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%% GENETIC ALGORITHM INITIALIZATION 
Nite = 150; % iteration number 
Npop = 100; % population size 
pcross = 0.9; % crossover probability 
pmutate = 0.1; % mutation probability 
 
% Generating initial population 
population = zeros (Npop, Nclient+2*Nstation+Kvehecal+1); 
offspring = zeros (Npop, Nclient+2*Nstation+Kvehecal+1); 
bestfitness = zeros (Nite, 1); 
bestpop = zeros (Nite, Nclient+2*Nstation+Kvehecal+1); 
cnt = 1; 
while 1 
    [p1,p2,p3] = popinit; 
    fff = checkroute(p3); 
    if checkroute(p3) 
        population (cnt, :) = p3; 
        cnt = cnt+1; 
    end 
    if cnt > Npop 
        break; 
    end 
end 
 
for ite = 1: Nite 
    fprintf('ite %d\n',ite) 
    fval = zeros(Npop,1); 
    for i = 1: Npop 
        fval(i) = fitness (population(i, :)); 
    end 
 
% Selection 
%  Sort the fitness values in descending order, keep the top 2% chromosomes as elite individuals in the new 

generation. 
    [fvalnew,Ipos] = sort(fval,'descend'); 
    tournamentSize=2;  
    for k=1: Npop 
        for i=1: tournamentSize 
            randomRow = randi(Npop); 
            tourPopDistances(i) = fval(randomRow); 
        end 
        parent1 = max(tourPopDistances); 
        [parent1X, ~] = find (fval==parent1,1, 'first'); 
        parent1Path = population (parent1X, :); 
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        for i=1:tournamentSize 
            randomRow = randi(Npop); 
            tourPopDistances(i) = fval(randomRow); 
        end 
        parent2 = max(tourPopDistances); 
        [parent2X, ~] = find (fval==parent2,1, 'first'); 
        parent2Path = population (parent2X, :); 
         
% Crossover 
%  Select the crossover parents, randomly combine all the chromosomes in the population in pairs to form a parent 

group, and select one group from it for crossover; 
    parent1Pathcross = parent1Path; 
    if rand(1) <pcross 
        while 1 
            indcross = randperm(Npop,2); 
            pcross1 = parent1Path; 
            pcross2 = parent2Path; 
            ppc1 = pcross1(1:length(pcross1)-Nstation); 
            ppc2 = pcross2(1:length(pcross2)-Nstation); 
            zeropos1 = find(ppc1==0); 
            ppc1 (zeropos1) = []; 
            zeropos2 = find(ppc2 == 0); 
            ppc2(zeropos2) = []; 
            [pppc1,pppc2] = crossover(ppc1,ppc2); 
 
            start = 1;p1new = zeros(1,length(ppc1)); 
            for i = 1:length(zeropos1)-1 
                p1new(zeropos1(i)+1:zeropos1(i+1)-1) = pppc1(start:start+zeropos1(i+1)-zeropos1(i)-2); 
                start = start+zeropos1(i+1)-zeropos1(i)-1; 
            end 
            p1new = [p1new,0]; 
            p1new = [p1new,pcross1(length(pcross1)-Nstation+1:end)]; 
            start = 1;p2new = zeros(1,length(ppc2)); 
            for i = 1:length(zeropos2)-1 
                p2new(zeropos2(i)+1:zeropos2(i+1)-1) = pppc2(start:start+zeropos2(i+1)-zeropos2(i)-2); 
                start = start+zeropos2(i+1)-zeropos2(i)-1; 
            end 
            p2new = [p2new,0]; 
            p2new = [p2new,pcross2(length(pcross2)-Nstation+1:end)]; 
            if checkroute(p1new) && checkroute(p2new) 
                parent1Pathcross = p1new; 
                break 
            end 
        end 
    end 
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% Mutation 
    if rand(1)<pmutate 
        while 1 
            indmutate = randi(Npop); 
            pmutate = parent1Pathcross; 
            indzero = find(pmutate(1:length(pmutate)-Nstation)==0); 
            pmutate1 = pmutate(1:length(pmutate)-Nstation); 
            pmutate2 = pmutate(length(pmutate)-Nstation+1:end); 
            p1list = find(pmutate1 > 0 & pmutate1 <= Nclient); 
            mutatepos = randperm(length(p1list),2); 
            temp = p1list(mutatepos(1)); 
            p1list(mutatepos(1)) =  p1list(mutatepos(2)); 
            p1list(mutatepos(2)) = temp; 
            if Nstation >1 
                m2pos = randi(Nstation); 
                if pmutate2(m2pos) == 0 
                   pmutate2(m2pos) = 1; 
                else 
                   pmutate2(m2pos) =0;  
                end 
            end 
            pmutate = [pmutate1,pmutate2]; 
            if checkroute(pmutate) 
                parent1Pathcross = pmutate; 
                break; 
            end 
        end 
    end 
    offspring(k,:) = parent1Pathcross; 
    end 
 
% Record iteration 
    bestfitness(ite) =  fvalnew(1);  
    bestpop(ite,:) = population(Ipos(1),:); 
    population = offspring; 
end 
 


