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ABSTRACT 
 
 
 

As environmental concerns grow globally, the necessity to reduce polluting 

emissions is of key importance to the survivability of the automotive industry. The 

continuously rising number of vehicles that employ hybrid or fully electric 

powertrains leads to the need for more efficient electric machines. 

The most commonly used type of electric motor in the vehicular application 

field is the permanent magnet synchronous motor, thanks to its high power-density 

and efficiency. When implemented in a vehicle, the electric machine is fed by a PWM 

supply, whose harmonic content increases the power loss of the motor. 

The scope of this research is to improve the accuracy of the iron loss 

prediction in permanent magnet synchronous motors fed by PWM supply, employed 

in traction applications. The ability to estimate the loss quickly and correctly is of 

fundamental importance in the early stages of machine design, allowing proper 

optimization. 

In this work, a new iron loss estimation method using finite element analysis 

software is introduced. First, an overview of iron loss in electrical machines is given, 

presenting its physical meaning and the modelling approaches present in the literature, 

based on the concept of loss separation. 

The implementation procedure of the estimation method is explained and its 

performance is analyzed and compared to the standard estimation procedure applied 

in the industry. Last, the estimation method is validated on a second motor application 

to better understand its behavior and overall performance.  
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CHAPTER ONE 
 

INTRODUCTION AND LITERATURE REVIEW 
 
 
 

1.1 Introduction 

Due to the growing environmental concerns regarding energy consumption, 

governments and industries have required the development of more efficient electrical 

machines in all application fields. More stringent regulations on greenhouse gas 

emissions have shifted the interest of the automotive industry and its customers 

towards electric powered vehicles, of which efficient electric motors are a key 

enabling technology. Electrical machines for traction application are required to have 

high torque and power densities, along with high efficiency, over a wide range of 

torque and speed, all at the lowest possible cost. Of the many electric machines 

available, permanent magnet synchronous motors (PMSM) have been adopted in 

many applications, and hence, PMSM play a key role in fulfilling the aforementioned 

properties [1][2].  

An accurate estimation of the motor’s power loss during the design phase is 

necessary to allow for proper optimization of its development and to achieve good 

performance. The main focus of this research will be on iron losses, one of the three 

components that contribute to the total power loss. These losses are generated in the 

ferromagnetic core of the machine by time-varying magnetic fields. Electric motors 

used for traction in vehicles are supplied by a 3-phase inverter controlled by a pulse 

width modulation (PWM) algorithm; the PWM supply generates a non-sinusoidal 

signal that is polluted with harmonics (i.e. higher frequencies). The presence of 

harmonics in the current supply increases the total iron losses in the machine with 

respect to an ideal sinusoidal excitation and must be correctly modelled at all 
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operating conditions. This type of simulation is not an easy task due to expensive 

computations, but an indispensable one [3]-[8].  The objective of this research work is 

to create an analytical model, easily implementable in 2D FEA post-processing, able 

to take into consideration the effects of PWM supply on iron losses in permanent 

magnet synchronous machines. 

1.2 Overview of Electrical Machine Losses 

The correct estimation of total losses in electrical machines is of crucial 

importance to the evaluation of their efficiency, which is one of the main targets 

during design optimization process. The power losses can be divided into three main 

categories, as shown in Fig. 1.1.  

 

 

 

Figure 1.1.  Electrical machines total loss components 
 

 

They include mechanical, winding and iron losses: their respective influence 

on total power losses varies depending on many factors, such as machine type and 

size [9]. A quick overview of the origin of each loss is briefly provided in this section. 
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1.2.1 Mechanical Losses 

Mechanical losses include frictional losses (i.e. related to the bearings) and 

windage losses (i.e. related to gas friction). Power loss in bearings can be estimated 

using well-defined formulas provided by the manufacturer. According to SKF (well-

known European bearing supplier) power loss in bearings is calculated as follows: 

 𝑃𝑏 = 0.5𝜇𝑓𝑟𝐹𝑏𝐷𝑏𝜔 (1.1) 

where 𝜇𝑓𝑟 is the friction coefficient of the bearing, 𝐹𝑏 is the equivalent dynamic 

bearing load, 𝐷𝑏 is the bearing bore diameter and 𝜔 is the angular frequency [9][10]. 

Power loss increases proportionally to the rotational speed. 

Windage losses, on the other hand, are generated by the gas friction between 

the rotating mass of the rotor and the gas in the air gap. These losses are dependent on 

the geometry of the machine, which makes it difficult to obtain an analytical equation 

for their evaluation and thus they are usually computed through CFD simulations. 

1.2.2 Winding Losses 

Winding losses (also referred to as copper or ohmic losses) are generated by 

the current flowing through the conductors in the stator slots in form of Joule heating 

and in a 3-phase machine are obtained using Eq. (1.2) 

 𝑃𝑐𝑢 = 3𝑅𝑝ℎ𝐼2 (1.2) 

where 𝑅𝑝ℎ is the phase resistance and 𝐼 is the RMS value of the phase current [9]. In 

principle, winding losses seem simple to evaluate by applying Ohm’s law but there 

are two main factors affecting its accuracy that must be taken into account: the 

temperature dependence of the wires’ resistivity and the skin effect. The increasing 

resistivity of the copper wires with temperature will generate higher copper loss and 

an accurate thermal model is necessary to correctly predict its behavior. Moreover, the 
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skin effect, due to the alternating currents in the conductors, generates eddy currents 

through electromagnetic interaction: these eddy currents tend to oppose the current 

flow and are not symmetrically distributed in the cross-section of the wires along the 

radial direction, ultimately altering the current density distribution in the conductor 

[4]. This will result in a higher current flowing on the outer region (i.e. the skin) of the 

conductor, increasing total copper loss due to its quadratic dependence on current; this 

effect is especially prominent at higher frequency. 

1.2.3 Iron Losses 

Iron or core losses are generated by the alternating magnetic field in the 

ferromagnetic material of the stator and the rotor. From the physical point of view, 

these losses are due magnetic domain wall movement during the change in 

magnetization of the material [11][12]. The movement of domain walls generates 

eddy currents which in turn generate Joule heating. Iron losses are usually divided in 

static and dynamic losses, being independent or dependent on the magnetization 

frequency, respectively. 

1.3 Iron Loss Components and Separation Approaches 

Iron losses are a fundamental component of total loss in electrical machines 

used for traction applications and constitute the predominant losses in the machine 

during field weakening operation [11]. Iron losses are based on the same physical 

phenomenon: during the change in magnetization, the movement of domain walls 

generates microscopic and macroscopic eddy currents which in result dissipate energy 

in form of Joule heating. This phenomenon happens even at DC magnetization. 

During DC magnetization, the external field changes slowly, but the movement of the 

domain walls is discrete in time and the alignment of the magnetic moment of the 
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single domains can be very rapid. This phenomenon causes loss, which is known as 

hysteresis losses and it happens also at very low frequency [11][12]. 

A common approach to analyze iron losses is by separating the losses into 

different groups: static and dynamic (as shown in Eq. (1.3)). The static loss, also 

known as hysteresis loss, dissipates the same energy per cycle independent of the 

magnetization frequency while the dynamic loss component is frequency dependent.  

 𝑃𝑓𝑒 = 𝑃𝑠𝑡𝑎𝑡 + 𝑃𝑑𝑦𝑛 (1.3) 

This separation procedure is an engineering empirical approach that tries to 

evaluate separately the dependencies of total loss on frequency and induction, without 

explaining the physical phenomena directly, and then, allows engineers to quickly 

estimate losses during the design phase.  

The dynamic term was modeled using only classical eddy current, and later 

expanded by Bertotti [13][14] to include excess loss (known as anomalous loss) as 

well. Accordingly, total losses can be expressed by three terms as provided in Eq. 

(1.4) 

 𝑃𝑓𝑒 = 𝑃ℎ + 𝑃𝑐 + 𝑃𝑒 (1.4) 

where 𝑃ℎ is the hysteresis loss, 𝑃𝑐 is the classical eddy current loss and 𝑃𝑒 is the 

excess loss term. 

1.3.1 Hysteresis Losses 

Hysteresis loss per cycle is related to the area of the quasi-static hysteresis 

loop and the energy loss is considered to be independent of the frequency [3][4][8]: 

total power loss per unit volume is obtained by multiplying the loss per cycle with the 

magnetizing frequency [7]: 
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 𝑃ℎ = 𝑓 ∮ 𝐻𝑑𝐵 (1.5) 

where 𝑓 is the magnetizing frequency, 𝐻 is the magnetic field strength and 𝐵 is the 

magnetic induction (also referred to as magnetic flux density). It is often assumed that 

in the absence of minor hysteresis loops this loss is directly proportional to 𝑓 

regardless of the shape of the wave [3]. Therefore, it can be evaluated experimentally 

with quasi-static measurements on an Epstein frame under sinusoidal excitation [15]. 

In analytical models hysteresis loss is calculated using Steinmetz’s equation: 

 𝑃ℎ = 𝐾ℎ𝑓�̂�𝛼 (1.6) 

where �̂� is the peak magnetic induction, 𝐾ℎ and 𝛼 are experimental coefficients. 

There are models, such as the ones developed in [6][15][16], in which 𝛼 is considered 

a constant (equal to 2) and models in which the parameter is obtained, along with 𝐾ℎ, 

by fitting Eq. (1.6) on measured loss data [17]. 

The assumption of constant loss per cycle holds only in the absence of 

hysteresis minor loops, which are generated by reversals in the induction waveform 

([7][15][18]), caused by harmonics in the excitation due to PWM supply[3][4][6][8]. 

In the presence of minor loops, an algorithm must be employed to detect them and 

models including a corrector factor must be developed, such as the one expressed in 

Eq. (1.7). 

 𝑃ℎ = 𝐾ℎ𝑓�̂�𝛼 [1 +
𝑘𝑚

�̂�
∑ Δ𝐵𝑖

𝑗

𝑖=1

] (1.7) 

𝑘𝑚 is a material dependent parameter (typically between 0.6 and 0.7 ), 𝑗 is the 

number of minor loops and Δ𝐵𝑖 is the amplitude of the i-th reversal in the induction 

waveform [6][18][19]. Equation (1.7) can be employed for the analytical calculation 

of the additional loss related to the area of the minor loops. 
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1.3.2 Eddy Current Losses 

Classical eddy currents are described by solving the so-called Maxwell-

Faraday equation for a given geometry, assuming uniform penetration of the magnetic 

field inside the material [20] 

 ∇ × 𝐸 = −
𝑑𝐵

𝑑𝑡
 (1.8) 

where 𝐸 is the electric field. For a thin lamination Eq. (1.9) is obtained [3] 

 𝑃𝑐 =
𝑑2

12𝜌𝑒
(

𝑑𝐵(𝑡)

𝑑𝑡
)

2

 (1.9) 

where 𝑑 is the lamination thickness and 𝜌𝑒 is the material electrical resistivity. For 

sinusoidal excitation Eq. (1.9) can be simplified to [4][15][20] 

 𝑃𝑐
𝑠 =

𝜋2𝑑2

6𝜌𝑒
𝑓2�̂�2   (1.10) 

where the superscript s is used to indicate that the excitation is sinusoidal. In 

analytical models a generic expression is used 

 𝑃𝑐 = 𝐾𝑐(𝑓�̂�)2 (1.11) 

where 𝐾𝑐 is the eddy current loss coefficient, an experimental coefficient to be 

evaluated through fitting of the equation on measured loss data. 

1.3.3 Excess Losses 

Early research by Pry and Bean [21] showed that hysteresis and classical eddy 

current losses were not sufficient to describe the measured loss and initially an 

anomalous loss coefficient was added to the eddy current loss term to consider for this 

discrepancy. This “anomalous” loss component was extensively researched by 

Bertotti, who explained its physical meaning in [14], based on the concept of 

magnetic object: “the basic physical mechanism governing excess losses in soft 

materials is identified with the competition between the external magnetic field, 
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applied uniformly in the sample, and highly inhomogeneous local counterfields due to 

eddy currents and microstructural interactions”. The expression to evaluate excess 

loss under sinusoidal excitation is reported in [3][7], which for a thin lamination is 

calculated using the following equation 

 𝑃𝑐
𝑠 = 8.67√

𝐺𝑉0𝑆

𝜌𝑒
(𝑓�̂�)1.5 (1.12) 

where 𝐺 ≈ 0.1356 is an non-dimentional coefficient and 𝑉0, a parameter dependent on 

the material microstructure, is the characteristic field controlling the number of 

simultaneously active MOs brought about by an external field [7][13][14][20]. 𝑆 is 

the surface area of the lamination. This equation can be generalized to 

 𝑃𝑒 = 𝐾𝑒(𝑓�̂�)1.5 (1.13) 

In analytical core loss models, 𝐾𝑒 is the excess loss coefficient and has to be obtained 

by fitting Eq. (1.13) on measured loss data. 

1.4 Iron Loss Modelling 

1.4.1 Constant Coefficients Models 

The simplest loss models employ constant coefficients, independent of 

frequency and induction. The first model of iron loss was proposed by Steinmetz 

based on the following equation 

 𝑃𝑓𝑒 = 𝐾𝑆𝐸𝑓𝛼�̂�𝛽 (1.14) 

where the three coefficients 𝛼, β and 𝐾𝑆𝐸 are evaluated by fitting the equation on 

measured loss data. This model assumed sinusoidal flux density, and thus, many 

revisions of the equation were proposed in order to improve it, including the Modified 

Steinmetz Equation and the Generalized Steinmetz Equation, among others. These 

models require little prior knowledge of the material but the results are not 
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satisfactory. The first two-term model was proposed by Jordan [22], and included a 

static (or hysteresis) term and a dynamic (or eddy current) term. 

 𝑃𝑓𝑒 = 𝑃𝑠𝑡𝑎𝑡 + 𝑃𝑑𝑦𝑛 (1.15) 

Jordan assumed the static portion of the losses to be proportional to the area of the 

quasi-static hysteresis loop and the dynamic portion to be made up of classical eddy 

current loss exclusively, according to (1.9). The inaccuracy of this model for SiFe 

alloys ultimately led to the addition of a third term by Bertotti, which resulted in the 

most popular iron loss model in use nowadays: 

 𝑃𝑓𝑒 = 𝐾ℎ𝑓𝐵2 + 𝐾𝑐(𝑓𝐵)2 + 𝐾𝑒(𝑓𝐵)1.5 (1.16) 

To obtain the three coefficients of this model, loss measurements are carried out on a 

single lamination using an Epstein frame under sinusoidal excitation; it is therefore 

not suitable to predict the loss behavior in presence of harmonics, skin effect and 

minor hysteresis loops. 

1.4.2 Variable Coefficients Models 

The fitting procedure of constant coefficient models uses measured loss data 

across many induction values, usually up to 1.7 ÷ 2T, and a broad frequency range; 

this simplified approach can be improved by considering dependence on induction of 

the coefficients. By dividing the induction spectrum in two or more sections and 

applying the same fitting procedure on each data set we are able to obtain more 

accurate results. 

This concept is applied to the evaluation of hysteresis loss in [6], where two 

intervals of the magnetic flux density are defined based on the position of the “knee” 

in the material’s magnetization curve. Assuming the knee to be at 𝐵=1T, hysteresis 
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losses per cycle per unit volume are evaluated as given in Eq. (1.17). This new 

expression improves the accuracy of the estimation of the model. 

 𝑊ℎ = {
𝐾ℎ1𝐵𝛼1 , 𝑥 < 1𝑇
𝐾ℎ2𝐵𝛼2 , 𝑥 ≥ 1𝑇

 (1.17) 

A much more complex model is proposed in [23], where the hysteresis loss 

coefficient is considered to be a function of 𝑓 and 𝐵 while the eddy current loss and 

excess loss coefficients are regarded as variable with induction only. The curve fitting 

of 𝐾𝑒 and 𝐾𝑐 was carried out with third-order polynomials resulting in 

 𝐾𝑒 = 𝐾𝑒0 + 𝐾𝑒1𝐵 + 𝐾𝑒2𝐵2 + 𝐾𝑒3𝐵3 (1.18) 

for the excess loss coefficient and likewise for the eddy current loss coefficient. The 

evaluation of the hysteresis loss coefficient and hysteresis loss power coefficient is 

performed by dividing the induction in three ranges: 0 ÷ 0.7, 0.7 ÷ 1.4 and 1.4 ÷ 2T. 

The values of 𝛼 and 𝐾ℎ are then evaluated through linear regression at 5 frequency 

values for each induction range (𝑓=25, 60, 120, 300 and 400Hz). This model proved 

to be very accurate, although it requires a lot of measurements and the fitting 

procedure is quite articulated. 

The dependency of the hysteresis loop area, and thus, the hysteresis loss, on 

the magnetizing frequency was already investigated in 1994 by Jiles [20], who 

modelled the influence of the dynamic loss components on the shape of the hysteresis 

loop at increasing frequency. The experimental results showed an increase of 

coercivity of the material increasing with frequency while the remanence is 

independent and remains constant. The loops model, shown in Fig. 1.2, is in good 

agreement with the measured data; the analytical expression of the model is not 

reported for sake of simplicity as it is not beneficial to the engineering approach 

proposed for this research work. 
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Figure 1.2.  Modelled hysteresis loops including the effects of eddy current and 
excess losses  

From “Frequency Dependence of Hysteresis Curves in Conducting Magnetic 
Materials”, by D. C. Jiles, 1994, Journal of Applied Physics, 76. Copyright 1994 by 

the American Institute of Physics. Reprinted with permission. 
 

 

1.4.3 Effects of Pulse Width Modulation Supply and Fourier Analysis of Iron Loss 

Although the desired shape of the induction waveform in the core of the 

machine is sinusoidal, due to factors like iron saturation and PWM excitation, 

practical magnetic cores are subject to non-sinusoidal flux, especially in regions such 

as the tooth tip. This causes an increase of the losses with respect to sinusoidal 

regime: the prediction of iron loss under arbitrary flux waveform becomes then of 

fundamental importance [3]-[8]. 

An approach to compute the loss due to an arbitrary waveform is to express 

the induction and its derivative as a Fourier expansion 

 𝐵(𝑡) = ∑ 𝐵𝑛 sin(2𝑛𝜋𝑓𝑡 + 𝜙𝑛)

𝑛

      (𝑛 = 𝑜𝑑𝑑, 𝜙1 = 0) (1.19) 
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 �̇�(𝑡) = ∑ 2𝑛𝜋𝑓𝐵𝑛 cos(2𝑛𝜋𝑓𝑡 + 𝜙𝑛)

𝑛

    (𝑛 = 𝑜𝑑𝑑, 𝜙1 = 0) (1.20) 

where 𝑛 is the harmonic order, 𝐵𝑛 and 𝜙𝑛 are the amplitude and phase shift of the n-th 

harmonic component. This methodology, employed by Fiorillo and Novikov [7], 

requires to measure hysteresis loss and total loss under sinusoidal regime at an 

arbitrary frequency 𝑓0 and the knowledge of the harmonic content in order to predict 

with good accuracy the iron loss due to an arbitrary flux waveform. The loss under 

sinusoidal regime for a thin lamination can be calculated analytically using Eqs. (1.5, 

1.10 and 1.12), obtaining 

 𝑃𝑓𝑒
𝑠 = 𝑃ℎ

𝑠 + 𝑃𝑐
𝑠 + 𝑃𝑒

𝑠 = 𝑃ℎ(𝑓0) +
𝜋2𝑑2

6𝜌𝑒
(𝑓0�̂�)

2
+ 8.67√

𝐺𝑉0𝑆

𝜌𝑒
(𝑓0�̂�)

1.5
 (1.21) 

By comparing the measured loss to Eq. (1.21), it is possible to obtain the value of 

𝐺𝑉0, which can then be used to evaluate the loss under an arbitrary non-sinusoidal 

waveform: 

 𝑃ℎ(𝑓) = 𝑃ℎ
𝑠(𝑓0) ⋅

𝑓

𝑓0
 (1.22) 

 
𝑃𝑐(𝑓) =

𝜋2𝑑2

6𝜌𝑒
𝑓2 ⋅ ∑ 𝑛2𝐵𝑛

2

𝑛

 (1.23) 

 
𝑃𝑒(𝑓) = √

𝐺𝑉0𝑆

𝜌𝑒
𝑓 ∫ |∑ 2𝜋𝑛𝑓𝐵𝑛 cos(2𝜋𝑛𝑓𝑡 + 𝜙𝑛)

𝑛

|

3
2

𝑇

0

𝑑𝑡   (𝑛 = 𝑜𝑑𝑑, 𝜙1 = 0) (1.24) 

As the model relies on the hypothesis of independence of the hysteresis loop on the 

waveform, it is only applicable in the absence of minor hysteresis loop. 

A simplification of this method, aimed at reducing the amount of prior 

knowledge required, is introduced in [8], where the iron loss under non-sinusoidal 
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waveform is calculated as a second order polynomial of a newly introduced form 

factor coefficient 𝐹𝑐, starting from the measured loss for sinusoidal excitation. 

 𝑃𝑓𝑒 = 𝑃ℎ
𝑠 + 𝑃𝑐

𝑠 ⋅ 𝐹𝑐
2 + 𝑃𝑒

𝑠 ⋅ 𝐹𝑐 (1.25) 

In the special case of PWM excitation, the form factor coefficient is evaluated as 

 𝐹𝑐 =
2

𝜋√𝑓 ∑ 𝜏𝑖
𝑛
1

 (1.26) 

where 𝑛 is the number of pulses per half period and 𝜏𝑖 is the width of the i-th 

pulse, as shown in Fig. 1.3.  

 

 

 

Figure 1.3.  PWM voltage and resulting induction waveform 

From “A General Formula for Prediction of Iron Losses Under Nonsinusoidal Voltage 
Waveform”, by M. Amar and R. Kaczmarek, 1995, IEEE Transaction on Magnetics, 

Vol. 31, No. 5. Copyright 1995 by the IEEE. Reprinted with permission. 

 

 

This simplified approach yielded similar results to the previous model but, like 

its predecessor, it cannot predict the loss generated by the flux reversal in the 

induction waveform that happen when the harmonic content is high.  
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1.4.4 Rotational Loss 

Another reason for the discrepancy between test data from Epstein frame 

measurements and FEA simulation results is the rotational flux component in the core 

of rotating machines, especially at the roots of the teeth, the back section of the slots 

and the front parts of teeth [24]. 

The equation proposed in [25] to account for the hysteresis loss increase in 

case of elliptic flux is 

 𝑃ℎ,𝑟𝑜𝑡 = [1 + 𝑐(𝑟 − 1)] ⋅ 𝑃ℎ,𝑎𝑙𝑡 = [1 + 𝑐(𝑟 − 1)]𝐾ℎ𝑓�̂�2 (1.27) 

where 𝑐 is the ratio of minor to major axis of the ellipse and 𝑟 is an induction 

dependent parameter, as shown in Fig. 1.4. The subscript rot indicates the loss 

including the flux’s rotational component while the subscript alt is used when only 

the alternating component of the flux is considered. 

 

 

 

Figure 1.4.  Dependence of r on induction in nonoriented SiFe laminations 

From “An Improved Estimation of Iron Losses in Rotating Electrical Machines”, by 
G. Bertotti, A. Boglietti, M. Chiampi, D. Chiarabglio, F. Fiorillo and M. Lazzari, 

1991, IEEE Transactions on Magnetics, Vol. 27, No. 6. Copyright 1991 by the IEEE. 
Reprinted with permission. 
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In [24] a similar equation is proposed, in which the rotational loss coefficient 

is multiplied to both hysteresis and eddy current components 

 𝑃𝑓𝑒,𝑟𝑜𝑡 = 𝑃𝑓𝑒,𝑎𝑙𝑡 ⋅ (1 + 𝛾𝑐)  (1.28) 

where 𝑐 is again the minor-to-major axis ratio and 𝛾 is a parameter dependent on the 

lamination material and the induction level. 

1.4.5 Saturation Loss 

The Bertotti model tends to underestimate losses at high magnetic flux 

densities and high frequency by failing to account for the saturation of some regions 

of the core, such as the tooth tip. To compensate for this a higher order term is often 

added [15][26]: 

 𝑃𝑐,𝑠𝑎𝑡 = (1 + 𝑎3�̂�𝑎4) ⋅ 𝑃𝑐 = 𝐾𝑐(1 + 𝑎3�̂�𝑎4)𝑓2�̂�2 (1.29) 

In Eq. (1.29) two coefficients are introduced, 𝑎3 and 𝑎4, to be determined based on 

the nonlinear material behavior at high frequency and induction. The exponent 𝑎4 is 

dependent on the lamination thickness and typically assumes values between 2 and 6.  

Results in [26] show that consideration of flux harmonics helps to improve the 

accuracy of the results but it’s not sufficient by itself: it’s fundamental to consider 

also material saturation and the rotational loss component to further reduce the gap 

between FEA estimations and the measured loss. 

1.4.6 Influence of Temperature on Iron Loss 

All of the aforementioned models don’t have an explicit dependence of loss on 

temperature. The research in [27] shows that the measured loss decreases moving 

from 69°C to 100°C. Although the variation of model coefficients with temperature, 

along with frequency and induction, should be taken into consideration if the goal is 

to achieve the highest level of accuracy. It should be noted that the temperature 
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dependence of iron loss will not be regarded in my research, being unable to perform 

the necessary measurements to obtain the correlation, and all the simulations will be 

performed using the materials properties at 100°C. 

1.4.7 Influence of Machining on Iron Loss 

It is well known that the measured loss of a machine core differs quite 

significantly from the estimates based on analytical models; whose parameters are 

usually obtained by fitting a set of equations on loss data measured on a single 

lamination of material. The production process together with the assembly process of 

machine cores lead to a deterioration of the magnetic properties of the material. The 

residual mechanical and thermal stresses generated by machining operations (such as 

punching and cutting) and by assembly operations (such as stacking and welding) 

reduce the permeability of the core, increasing the iron loss. An annealing process can 

be applied to relief some of the accumulated stress and partially restore the magnetic 

properties [9]. In addition to the induced stresses, damage to the insulating layer 

between laminations can be caused by these processes which will increase the eddy 

current loss in the electric machine.  
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CHAPTER TWO 
 

METHODOLOGY 
 
 
 

2.1 Scope of the Work 

The scope of this research work is to develop an accurate iron loss estimation 

method for interior permanent magnet synchronous motors (IPMSM), easily 

implementable in FEA post-processing in Ansys Maxwell™. Currently, iron loss 

estimations calculated using FEA software require correction factors in order to be 

correlated to the test results; the correction factors can be as high as 2 or 3 for specific 

torque and speed points.  

The developed method aims at reducing the discrepancy between simulation 

results and test data, in order to provide more reliable data that can be used in the 

early stages of the machine development process to optimize its design and reach 

performance and efficiency targets. A schematic of the methodology followed is 

presented in Figure 2.1; the starting point of the research are two set of experimental 

data and two Ansys Maxwell™ models, provided by suppliers or Fiat Chrysler 

Automobiles (FCA) directly. 

 

 

 

Figure 2.1.  Methodology of the research 
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2.2 Analysis Setup 

2.2.1 Lamination Material Hysteresis Loop Data 

The test data, provided by the steel manufacturer, includes the measured 

magnetic induction in the lamination for varying magnetic field strength, at different 

magnetization frequencies 𝑓 and peak magnetic inductions �̂�. The magnetization 

frequencies provided in the test results are 50, 100, 400, 1000 and 2000 Hz. For each 

frequency, the peak magnetic induction is increased in increments of 0.1 T, starting at 

�̂�=0.1 T all the way up to �̂�=1.9 T at 𝑓𝑚=50 Hz, 1.8 T at 100 Hz, 1.6 T at 400 and 

1000 Hz and finally up to 1.2 T at 2000 Hz. The highest achievable peak magnetic 

induction is lower at higher frequency due to the onset of saturation. For each of the 

𝑓 − �̂� combinations a hysteresis loop can be plotted, such as the ones reported in 

Figures 2.2 and 2.3. Given the same peak induction, hysteresis loops broaden with 

increasing frequency. 

2.2.2 Interior Permanent Magnet Synchronous Motor Finite Element Analysis Model 

A 2D FEA model of the IPMSM was developed in Ansys Maxwell™ to be 

used for the iron loss simulations.  The material properties for the copper wires, the 

magnets and the electrical steel are imported for the operating temperature of 100 °C.  

Taking advantage of the symmetry of the e-motor, by using Neumann and 

Dirichlet boundary conditions, only one eighth of the machine had to be modelled, as 

shown in Figure 2.4. This procedure allows to reduce computational times during the 

iron loss simulations. The electric motor under analysis is a 48 slot, 8 pole IPMSM 

with buried v-shaped magnets; it is fed by a 3-phase PWM inverter and operates at a 

nominal DC voltage of 350 𝑉. The base speed is 6000 rpm and the maximum 

rotational speed achievable is 14000 rpm; torque and power rating cannot be disclosed 

and will be expressed in normalized terms as per unit (pu) of the maximum value. 
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Figure 2.2.  Hysteresis loop at f=400Hz and B̂=1.6 T 
 

 

 

Figure 2.3.  Hysteresis loop at f=1000Hz and B̂=1.6 T 
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Figure 2.4.  Ansys Maxwell™ model of the IPMSM 
 

 

The permanent magnets are made of neodymium-iron-boron (𝑁𝑒2𝐹𝑒14𝐵) 

whereas the electrical steel is a non-oriented FeSi alloy, having 0.27 mm thick 

laminations. The motor has a skew rotor divided in three sections: the nominal one is 

in the middle and two sections, shifted respectively of +2.5 deg and -2.5 deg, are to 

each side. In a 2D simulation environment this is accounted for by running three iron 

loss calculation, shifting the initial position of the rotor, and averaging the results. A 

more complicated 3D simulation would only be marginally more accurate in this 

regard and the additional computational effort makes it an unfeasible option. 

2.2.3 Pulse Width Modulation Currents Generation Model 

To provide the correct PWM current input to the motor in the iron loss 

simulation environment, a model of the power electronics circuit must be used. The 
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Ansys model, developed by FCA and shown in Fig. 2.5, includes the 3-phase inverter, 

the equivalent circuit model of the electric motor and the PWM controller. 

 

 

 

Figure 2.5.  PWM currents generation circuit 
 

 

In traction applications, an inverter is needed to convert the DC current output 

of the battery to a 3-phase AC current that can be fed to the motor. The operation of 

the inverter switches is controlled by the PWM algorithm, this is done to manipulate 

the frequency and amplitude of the output PWM current, which directly influence the 

operating point, i.e. rotational speed and torque, of the electric motor, according to 

Equations (2.1) and (2.2):  

 𝑁𝑠 = 120 ⋅
𝑓

𝑝
 (2.1) 

where 𝑁𝑠 is the rotational speed of the motor in rpm, i.e. the synchronous speed, 𝑓 is 

the frequency of the current and 𝑝 is the number of poles of the motor,  

 𝑇 =
3𝑝

4
(𝜓𝑚𝐼𝑞 + (𝐿𝑑 − 𝐿𝑞)𝐼𝑑𝐼𝑞)  (2.2) 

where 𝑇 is the output torque of the motor, 𝜓𝑚 is the flux linkage of the permanent 

magnets, 𝐿𝑑 and 𝐿𝑞 are the d- and q-axis inductances of the PMSM and 𝐼𝑑 and 𝐼𝑞 are 
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the d- and q-axis currents. The inputs required by the model are the target speed, as well 

as the values of 𝐼𝑑 and 𝐼𝑞. 

2.2.4 Electric Motor Iron Loss Test Data 

Although the research work takes place in a simulation environment, all the 

models were developed based on an already existing electric motor. The IPMSM was 

tested on a dynamometer, by FCA, to evaluate its iron loss component under different 

operating conditions; tests were performed for both no-load and load conditions, at 

100°C. At on-load condition, the e-motor was tested with constant torque intervals 

from zero up to the maximum torque and speed intervals of 1000 rpm, from 1000 up 

to the maximum rotational speed of 14000 rpm. Iron loss in the motor were separated 

by subtracting the mechanical loss component and the conduction loss in the copper 

wires from the total loss measured on the machine; the accuracy of the result is 

estimated by FCA to be ±5%. The obtained results are plotted in Fig.2.6.  

 

 

 

Figure 2.6.  IPMSM iron loss test data 
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This data is later compared to the FEA estimations and used for validation of 

the developed estimation method. 

2.3 Iron Loss Model Development 

In this section, the provided hysteresis loop data is used to determine the 

dependency of the lamination material iron loss on magnetizing frequency and 

magnetic induction. The coefficients of different analytical iron loss equations are 

evaluated starting from the obtained loss data; these models are then used to estimate 

the lamination iron loss and their prediction accuracy is compared to determine the 

most suitable one, that will later be implemented in Ansys Maxwell™ for the iron 

loss estimation of the IPMSM under pulse width modulation excitation. 

2.3.1 Lamination Test Data Analysis 

The starting point for the development of the iron loss model is the hysteresis 

loop data of the lamination material used in the traction motor. Each loop area was 

numerically integrated using the trapz function in MATLAB™ to obtain the energy 

loss per unit volume as function of 𝑓 and �̂�; the results were then multiplied by the 

magnetization frequency to obtain the power loss per unit volume: 

 𝑊𝑓𝑒 = ∮ 𝐻𝑑𝐵 (2.3) 

 𝑃𝑓𝑒 = 𝑓 ⋅ ∮ 𝐻𝑑𝐵 (2.4) 

Equation (2.4), although similar to Eq. (1.5), is actually representative of the total iron 

loss and not only of the hysteresis component. This is due to the fact that the 

integration is not carried out on the quasi-static hysteresis loop, but on the hysteresis 

loop measured at specific 𝑓 values and therefore it includes the effects of the dynamic 

iron loss component as well. The evaluated values of 𝑃𝑓𝑒(𝑓, �̂�) were then multiplied 
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by the density of the steel, 𝜌=7600 𝑘𝑔 𝑚3⁄ , to obtain the iron loss per unit mass; its 

dependency on �̂� at different frequencies is plotted in Figure 2.7.  

These loss curves are then used for evaluating the coefficient of the various 

analytical equations, explained in the next sections, and to define the lamination 

material properties in the simulation environment. 

 

 

 

Figure 2.7.  Iron loss per unit mass as function of magnetic induction at different 
magnetization frequencies 

 

 

2.3.2 Constant Coefficients Models 

The first analytical iron loss equation analyzed is a simple two-term constant 

coefficient model; this, as explained later, is also the model used by Ansys 

Maxwell™ for the estimation of iron loss on this particular lamination material. 

1) Two-term 𝑃𝑓𝑒 = 𝐾ℎ𝑓�̂�2 + 𝐾𝑐𝑓2�̂�2 
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Additionally, a three-term constant coefficient model, including a higher order term to 

better represent the loss behavior at high magnetic induction, was also analyzed. 

2) Three-term with saturation 𝑃𝑓𝑒 = 𝐾ℎ𝑓�̂�2 + 𝐾𝑐𝑓2�̂�2 ⋅ (1 + 𝑎3�̂�𝑎4) 

After importing the loss curves into the MATLAB™ curve fitting app, as shown in 

Fig. 2.8,  and specifying the custom equation representing the iron loss in function of 

the two variables 𝑓 and �̂�, the model coefficients were obtained through a non-linear 

least squares method. The coefficients of each analytical model are reported in Table 

2.1: 

 

 

 

Figure 2.8.  MATLAB™ curve fitting app 
 

 

Table 2.1.  Iron loss model coefficients 

Model 𝐾ℎ 𝐾𝑐 𝑎3 𝑎4 

1 220.4 0.2021 - - 

2 152.8 0.2213 0.03407 5.687 
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2.3.3 Variable Coefficients Model 

The third model that was analyzed is a variable coefficient model based on the 

same equation of model 1: 

3) Two-term variable coefficients 𝑃𝑓𝑒 = 𝐾ℎ(�̂�)𝑓�̂�2 + 𝐾𝑐(𝑓, �̂�)𝑓2�̂�2 

In this particular analytical model 𝐾ℎ is no longer constant, but dependent on the peak 

magnetic induction, whereas 𝐾𝑐 is now variable with both frequency and peak 

magnetic induction. The procedure followed to obtain the coefficients of the model is 

more complex than the constant coefficient models and it’s the following: the power 

loss data is divided by the frequency to obtain the energy loss per unit volume 𝑊𝑓𝑒, 

this is then plotted versus 𝑓 for each level of peak magnetic induction. 

 𝑊𝑓𝑒 =
𝑃𝑓𝑒

𝑓
= 𝐾ℎ(�̂�)�̂�2 + 𝐾𝑐(𝑓, �̂�)𝑓�̂�2 (2.5) 

The curve is extrapolated to obtain the y-axis intercept, representing the 

energy loss at 𝑓=0 Hz (i.e. the static component of the loss); this value is used for the 

evaluation of 𝐾ℎ(�̂�). After subtracting the hysteresis energy loss component from 

𝑊𝑓𝑒, we are able to evaluate 𝐾𝑐 for each combination of frequency and peak magnetic 

induction. The coefficient evaluation procedure was carried out in Ansys Maxwell™, 

using a Python script automated in the Extraction of Core Loss Coefficients toolkit; 

the values of 𝐾ℎ(�̂�) and 𝐾𝑐(𝑓, �̂�), reported in the Appendix A, are exported in a .txt 

file that will later be used as input to the IPMSM iron loss calculation using the 

variable coefficient model. 
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2.3.4 Performance Comparison 

In order to evaluate the quality of the prediction of the models the mean 

absolute percentage error (MAPE) was used: the obtained results are presented in 

Table 2.2. 

 𝑀𝐴𝑃𝐸 =
1

𝑘
∑ |

𝐴𝑖 − 𝐹𝑖

𝐴𝑖
| ⋅ 100

𝑘

𝑖=1

 (2.6) 

 

 

Table 2.2.  Mean absolute percentage error of each model 

Model MAPE 

1 57.43 % 

2 36.81 % 

3 0.42 % 

 

 

Model 2, thanks to its additional coefficients, is able to outperform model 1 

but, as expected, the variable coefficients model yields a much better estimate of the 

power loss in the FeSi lamination; for this reason, together with the ease of evaluation 

of the variable coefficients, model three will be the target of the FEA implementation 

procedure.  

The visual comparison of the iron loss at 𝑓=50 Hz, reported in Fig. 2.9, 

highlights the inability of model 1 and 2 to represent the change in concavity of the 

loss at increasing magnetic induction. Model 2 performs better than model 1 at 𝑓=400 

Hz, as shown in Fig. 2.10, and both perform poorly at 𝑓=2000 Hz, as displayed in Fig. 
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2.11. On the other end, model 3 shows great accuracy at all operating conditions, as 

suggested by the previous evaluation of a MAPE lower than 1%. The comparison of 

the estimate for the other two available frequencies is not shown for sake of brevity. 

 
 

 

Figure 2.9.  Comparison of iron loss estimate of model 1, 2 and 3 at f=50 Hz 

 

 

Figure 2.10.  Comparison of iron loss estimate of model 1, 2 and 3 at f=400 Hz 
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Figure 2.11.  Comparison of iron loss estimate of model 1, 2 and 3 at f=2000 Hz 

 

 

2.4 Finite Element Analysis Implementation 

In this section, the procedure followed to obtain the iron loss estimate of the 

IPMSM is explained, starting from the generation of the PWM current input, followed 

by the definition of an iron loss estimation baseline and concluding with the 

implementation of the variable coefficients analytical equation, previously mentioned 

as model 3. 

2.4.1 Pulse Width Modulation Currents Generation 

The generation of the PWM currents is carried out using the model of the 

power electronics circuit, previously shown in Figure 2.5. A different current 

waveform must be obtained for each of the working points available in the iron loss 

test data; as mentioned earlier, the target value of rotational speed in rpm is directly 

specified as an input parameter to the simulation whereas the output torque target is 

controlled by two inputs, 𝐼𝑑 and 𝐼𝑞. The values of the d- and q-axis currents are 
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reported in tables A.3 and A.4 in the Appendix A. The simulation is run for 5 cycles 

at low rpm values while longer simulations, up to 10 electrical cycles, are required to 

obtain a stable current at higher speeds. Figures 2.12 and 2.13 show the output of the 

simulation for two different operating conditions. The transient is discarded and only 

the values of current of the last electrical cycle are exported to be later used as input 

in the iron loss simulation. 

2.4.2 Iron Loss Baseline Evaluation 

A baseline estimate of the iron loss given by Ansys Maxwell™ is required to 

assess the improvement in prediction accuracy given by the newly developed method. 

As a baseline, the default iron loss calculation is carried out in Ansys Maxwell™: it 

uses a time-domain analysis and a constant coefficient analytical model. After having 

specified to the software the loss curves in the properties of the lamination material, 

Maxell evaluates three coefficients 𝐾ℎ, 𝐾𝑐 and 𝐾𝑒 by fitting the Bertotti iron loss 

model, based on Eq. (1.16), to the loss curves. For this particular lamination material, 

in the fitting procedure, the coefficient 𝐾𝑒 comes out to be negative, which has no 

physical meaning. As an alternative Maxwell resorts to using a two-term equation 

instead, previously referred to as model 1: 

 𝑃𝑓𝑒 = 𝐾ℎ𝑓�̂�2 + 𝐾𝑐𝑓2�̂�2 (2.7) 

A new simulation has to be carried out to obtain an estimate of the loss for 

each speed and torque combination present in the iron loss test data. The first step is 

to import the correct current waveform into the motor model, previously generated 

using the PWM circuit model. The simulation time is set-up to 4 electrical cycles due 

to the first two containing the transient response, which must be discarded.  
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Figure 2.12.  PWM currents for Ns=4000 rpm and 0.23 pu torque 
 

 

 

Figure 2.13.  PWM currents for Ns=10000 rpm and 0.68 pu torque 
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The correct rotational speed must be specified as input parameter and the 

simulation can now be run. The output torque is plotted and monitored during the 

simulation to make sure that the correct operating condition is achieved. 

The result of the iron loss estimation is obtained by averaging the 

instantaneous values of the loss, an example of which is plotted in Fig.2.14, over the 

last two electrical cycles, both for the stator and the rotor.  

 

 

 

Figure 2.14.  Iron loss plot at Ns=14000 rpm and 0.5 pu torque 
 

 

2.4.3 Variable Coefficients Model Implementation 

The crucial step of this estimation method resides in the implementation of the 

variable coefficient model in the FEA software. Unfortunately, this cannot be done 

directly within Ansys Maxwell™ and an external tool, the User Defined Core Loss 

program, has to be used.  
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2.4.3.1 User Defined Core Loss Model. The User Defined Core Loss Model external 

program’s source code, made available to the author by Ansys, is written in C++ and 

it’s accessible and modifiable by the end user. Its main functionality is controlled via 

a text file, the coreloss_user.data file, whose structure is shown in Figure 2.15. The 

target of this research is to implement a 2D, frequency-domain, variable coefficient 

analysis. This is done by setting the following key parameters: 

• 𝑁𝑐𝑜𝑜𝑟𝑑=2 

• UseFreqDomain=1 

• VarKhKc=1 

 

 

 

Figure 2.15.  Coreloss_user.data input file structure 
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Other important geometry-related parameters include the number of poles of 

the motor Npoles, the lamination stacking factor Stacking and depth of the model in 

the third direction ModelDepth. 𝑆ymmMultiplier must be correctly specified to 

account for the fact that, in our case, only 1/8th of the cross-section of the motor is 

modelled. The simulation time (when SimType=1) is controlled by the SimPeriod 

parameter and the integration domain, i.e. the stator and the rotor, must be specified in 

the ObjectIDs field. Finally, NG controls the number of quadrature integration points. 

In a constant coefficient simulation, the solver would read the values of the 

coefficients of the analytical Iron Loss equation of choice (here named 𝐾ℎ, 𝐾𝑐, 𝐾𝑒 , 

Beta and Alpha) directly from the coreloss_user.data file. As it will be explained in 

the next section, when VarKhKc=1, the program requires a separate additional input 

file containing the values of the variable coefficients 𝐾ℎ(�̂�) and 𝐾𝑐(𝑓, �̂�).  

2.4.3.2 Implementation Procedure. The first step is to compile the source code of the 

program, to build an executable file; this was done using Microsoft Visual Studio™. 

The obtained file is the linked in the Control Program field in the advanced section of 

the solution setup settings in Ansys Maxwell™, as shown in figure 2.16.  

 

 

 

Figure 2.16.  Solution setup settings 
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The directory of the coreloss_user.data file, containing the input parameters, must be 

specified in the arguments field. The list of input parameters used is reported in Table 

2.3. In order to run a variable coefficient analysis, an additional input is required by 

the program: a text file containing the previously evaluated variable coefficients 

𝐾ℎ(�̂�) and 𝐾𝑐(𝑓, �̂�). This has to be placed in the same directory as the 

coreloss_user.data file.  

The correct PWM current, based on the target speed and torque, has to be 

imported; the currents will be the same as the ones previously used in the baseline 

iron loss evaluation. Once this is done the simulation can be run, using the external 

control program. The output of the frequency domain analysis reports the total iron 

loss, its hysteresis and eddy current loss components, a rotor and stator subdivision 

and the individual contribution of each harmonic order; an example is shown in Fig. 

2.17.
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Table 2.3.  Variable coefficient analysis input parameters 

Parameter Values 

SimType 1 

Ncoord 2 

UseFreqDomain 1 

VarKhKc 1 

SymmMultiplier 8 

NG 3 

Npoles 8 

SimPeriod 4 

ObjectNames Stator Rotor 

ObjectIDs 65403 66592 

𝐾ℎ 220.4 220.4 

𝐾𝑐 0.2021 0.2021 

𝐾𝑒 0 0 

Alpha 2 2 

Beta 0.75 0.75 

Stacking 0.95 0.95 

ModelDepth 0.105 0.105 
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Figure 2.17.  Iron loss simulation results output file 
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CHAPTER THREE 
 

IRON LOSS ESTIMATION 
 
 
 

In this section the obtained results will be presented, including the absolute 

iron loss value in Watts estimated by the baseline and variable coefficient models. 

3.1 Iron Loss Test Data and Estimations 

This section includes the values in Watts of the iron loss measured in the test 

and estimated by the two models. 

3.1.1 Iron Loss Test Data 

The measured iron loss of the electric motor, gathered at different torque and 

speed combinations by FCA, is reported in Table 3.1. As expected, the iron loss 

increases with increasing torque and speed. The maximum loss is registered when the 

motor generates 0.5 pu torque torque at its maximum rotational speed of 14000 rpm, 

in these conditions the iron loss equals 3297.36 W. This dataset will later be 

compared to the iron loss estimations of the two models to assess their performance. 

3.1.2 Baseline Iron Loss Estimation 

Table 3.2 reports the iron loss estimation previously defined as the baseline, 

obtained using the two-term constant coefficient model employed as the default 

estimation method by Ansys Maxwell™. Although it is difficult to extrapolate useful 

information from looking at absolute iron loss values, referencing to the point of 

maximum loss discussed in the previous section (i.e. 0.5 pu torque at 14000 rpm), a 

significant drop can be observed, from almost 3300 W to 2057.8 W.  
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Table 3.1.  Iron loss test data 
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More in depth analysis of the prediction accuracy of this estimation method 

will be given in the following sections, looking at percentage error and MAPE. 

3.1.3 Variable Coefficients Model Iron Loss Estimation 

The iron loss estimate, obtained using the newly implemented method, is 

reported in Table 3.3; from here on out the model will be referred to as VarKhKc for 

sake of brevity. Once again, when looking at the working point associated to the 

maximum iron loss, this model quite accurately estimates it at 3287.35 W, compared 

to the test 

3297.36 W. 

3.2 Second Motor Analysis Setup 

To validate the estimation procedure and verify its consistency, the iron loss 

estimation method needs to be tested on different electric motors. Although multiple 

motors would be the preferred choice, the unavailability of test data and extremely 

time-consuming simulations required allowed the implementation of this method on a 

single other electric motor. This section includes a description of the second motor 

analyzed, the data and models required for implementation and a brief explanation of 

the methodology followed to estimate the iron loss, analogue to the one explained in 

Chapter 2. In conclusion, the analysis of the obtained results and a comparison with 

the previously obtained results on the first motor will be presented. 

To perform the analysis, two Ansys models are required: the 2D model of the 

motor and the PWM currents generation model; both were provided by FCA, 

alongside the iron loss test data measured on the motor. 
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Table 3.2.  Baseline model iron loss estimate 
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Table 3.3.  Variable coefficients model iron loss estimate 
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3.2.1 Finite Element Analysis Model 

The second motor under analysis, whose 2D section is reported in Fig. 3.1, is 

once again an interior permanent magnet synchronous motor; it has 8 poles, 48 slots 

and v-shaped buried 𝑁𝑑2𝐹𝑒14𝐵 magnets. Differences from the previous motor 

include a bigger size, different magnet and stator winding configurations, higher 

torque and power output and, most importantly, a different lamination material with 

reduced lamination thickness. The base speed is 4600 rpm, and the maximum speed 

of the motor is 16000 rpm; torque and power values cannot be disclosed and will be 

expressed on a per unit base. 

 

 

 

Figure 3.1.  Ansys Maxwell™ 2D model of the second IPMSM 
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3.2.2 Pulse Width Modulation Current Generation Model 

The model used to generate the PWM input currents is reported in Fig. 3.2, it 

includes the 3-phase inverter, the equivalent circuit model of the motor and the PWM 

controller. Following the same methodology employed for the first motor, the PWM 

model is used to generate a new current waveform corresponding to the speed-torque 

operating point to be analyzed, according to the specified 𝐼𝑑 and 𝐼𝑞 values, reported in 

Tables A.5 and A.6 in the Appendix A. 

 

 

 

Figure 3.2.  PWM current generation model of the second IPMSM 
 

 

3.2.3 Coreloss_user.data Input File and Variable Coefficients Evaluation 

In addition to the PWM current, the variable coefficient simulation requires 

two input files to run, one containing the input parameters and the other containing 

the variable coefficients. The first, containing the input parameters, is shown in Table 

3.4. With respect to the first motor, the parameters that needed modification are the 

SymmMultiplier, now equal to 4, and the ID of the stator and rotor objects. 
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Table 3.4.  Variable coefficient analysis input file of the second IPMSM 

Parameter Values 

SimType 1 

Ncoord 2 

UseFreqDomain 1 

VarKhKc 1 

SymmMultiplier 4 

NG 3 

Npoles 8 

SimPeriod 4 

ObjectNames Stator Rotor 

ObjectIDs 254644 289929 

𝐾ℎ 283.07 283.07 

𝐾𝑐 0.15124 0.15124 

𝐾𝑒 0 0 

Alpha 2 2 

Beta 0.75 0.75 

Stacking 0.95 0.95 

ModelDepth 0.150 0.150 
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The different lamination material used in the core of the machine requires a 

new evaluation of the variable 𝐾ℎ(�̂�) and 𝐾𝑐(𝑓, �̂�) coefficients,  this is done starting 

from the loss curves of the lamination material, plotted in Fig. 3.3.  

The lamination material iron loss information, together with the material 

density of 7600 𝑘𝑔/𝑚3, are given as input to the python script of the Extract Core 

Loss Coefficients toolkit and the variable coefficients are obtained, as explained in 

section 2.3.3. The output .txt file containing the coefficients is placed in the same 

directory of the coreloss_user.data file as the last input required to run the 

simulations. 

 

 

 

Figure 3.3.  Iron loss per unit mass as function of magnetic induction at different  
magnetization frequencies of the lamination material of the second motor 
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3.3 Iron Loss Test Data and Estimations on the Second Motor 

This section includes the values in Watts of the iron loss measured in the test 

and estimated by the two models. Given the much higher maximum torque with 

respect to the first motor and the even longer computational time, caused by the 

modelling of 1/4th of the cross-section with respect to 1/8th of the first motor, the 

simulations were carried out at larger torque intervals and 800 rpm speed intervals.  

3.3.1 Iron Loss Test Data of the Second Motor 

The iron loss test data, reported in Table 3.5, follows the expected behavior, 

where the loss is increasing at higher values of torque and rotational speed. The 

maximum iron loss is registered at the highest achievable torque and the maximum 

rotational speed of the motor (i.e. 0.22 pu torque at 16000 rpm) and it is measured at 

3404.28 W. 

This dataset will later be compared to the iron loss estimations of the two 

models to assess their performance. 

3.3.2 Baseline Model Iron Loss Estimate on the Second Motor 

The estimate of the iron loss of the motor, obtained using the default model 

implemented in Ansys Maxwell™, is reported in Table 3.6. The overall trend of the 

loss is consistent, making exception of the estimate at no-load, which in the higher 

rpm range shows higher values than the ones simulated at higher torque values, which 

is unreasonable. This can be attributed to the methodology employed to simulate the 

no-load condition, which may lead to inconsistent results at higher rotational speeds. 

Looking at the reference point of maximum loss, it is immediately possible to 

notice a significant discrepancy, as the estimation is over two kilowatts lower than the 

test results. Better analysis of the overall performance of the model will be given 

when looking at the percentage errors in the next sections. 
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3.3.3 Variable Coefficients Model Iron Loss Estimate on the Second Motor 

The iron loss estimate, obtained using the variable coefficient model, is 

presented in Table 3.7. The loss table shows high discrepancy in the lower speed 

region, especially in the range between 1600 rpm and 3200 rpm. The loss estimated at 

the speeds of 2400 and 3200 rpm are lower than the one evaluated at 1600 rpm, 

highlighting an unrealistic trend inversion. This could be caused either by an 

overestimation at the lower speed or from an underestimation at the two higher speeds 

and will be further investigated in the next sections. 

When looking at the reference point of maximum loss (0.22 pu torque at 

16000 rpm), the variable coefficient model shows a massive performance 

improvement over the baseline, estimating the loss at 2575.93 W, more than 1200 W 

closer to the actual loss measured on the motor. Further analysis of the performance 

of the model in all the different operating conditions is given in the next sections, 

looking at the percentage errors. 
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Table 3.5.  Iron loss test data of second IPMSM 
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Table 3.6.  Baseline iron loss estimate on the second IPMSM 
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Table 3.7.  VarKhKc iron loss estimate on the second IPMSM 
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CHAPTER FOUR 
 

ANALYSIS OF RESULTS AND DISCUSSION 
 
 
 

4.1 Performance Analysis on the First Motor 

In this section the percentage difference of each estimation with respect to the 

test data will be presented and analyzed, together with a comparison of the prediction 

errors of the two estimation methods; it must be kept in mind that the accuracy of the 

test data is estimated at ±5%. Furthermore, the data will be analyzed focusing on two 

different speed ranges to highlight the estimation behavior of the newly implemented 

method. 

4.1.1 Baseline Model Performance Analysis on the First Motor 

From the percentage difference between the baseline model estimate and the 

test data, reported in Table 4.1, it can be immediately noticed a heavy underestimation 

of the iron loss in the motor across the entire set of possible operating conditions. The 

estimation error is almost constant across different speeds denoting a quite consistent, 

although poor, estimation. The bigger estimation errors are encountered at no-load, 

which has been simulated without any currents in the excitations; here percentage 

errors above 50% are observed, especially in the lower rpm region. 

4.1.2 Variable Coefficients Model Performance Analysis on the First Motor 

The results shown in Table 4.2 highlight a quite significant behavior of the 

VarKhKc model with respect to the baseline model, showing an improved estimation 

performance. Once again, the prediction generally underestimates the iron loss in the 

motor, but by a lower amount across the board, whereas a few operating points near 

the maximum speed slightly overestimate the loss. Similar performance to the 

baseline model  
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Table 4.1.  Percentage error of the baseline model estimation 
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Table 4.2.  Percentage error of the VarKhKc model estimation 
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is obtained in the low torque and speed region, where errors of around 35 to 40 

% can be encountered. The bigger estimation errors are once again related to the no-

load torque value. 

For this model, in contrast to the baseline, estimation performance is not 

perfectly consistent across the operating conditions, showing significant improvement 

at higher rotational speeds (i.e. above the base speed) and at high torque values in the 

lower rpm region. 

4.1.3 Performance Comparison of the Models on the First Motor 

To compare the performance of the two estimations, Table 4.3 reports the 

difference in absolute percentage error of the baseline model and the variable 

coefficient model. Cells highlighted in green refer to better accuracy for the VarKhKc 

model whereas red cells indicate worse accuracy for the VarKhKc model. This 

representation allows graphical visualization of the region of the torque-speed range 

where implementing the more complicated estimation method would yield a 

significant benefit. Higher prediction accuracy happens in the higher half of the rpm 

range, with an increase of more than 30% in certain operating conditions. 

4.1.4 Mean Absolute Percentage Error and Speed Range Subdivision Analysis on the 
First Motor 

The best way to assess the overall estimation performance of the models 

across all the operating conditions is the mean absolute percentage error, which is 

reported in  

Table 4.4 for different ranges of operating conditions. When considering the entire 

speed and torque range, the newly implemented estimation method shows an 

improvement of almost 20%, reducing the MAPE from 36.80% of the baseline model 

down to 17.70%. 
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As noted before, the VarKhKc model is better performing at higher speeds. 

This is clearly shown by the MAPE figure when solely considering the region above 

the base speed (i.e. from 7000 to 14000 rpm). In this region the improvement 

achieved is of over 27%, reducing the error of 37.38% of the default estimation 

method to an error lower than 10% of the VarKhKc model. 

The same performance evaluation was repeated removing from the calculation 

the bad-performing no-load torque value, but without a noticeable difference. When 

limiting the torque range as described, the VarKhKc model performs even better 

above the base speed, with a MAPE of only 7.87 %. 

4.2 Performance Analysis on the Second Motor 

In this section the percentage difference of each estimation with respect to the 

test data will be presented and analyzed, together with a comparison of the prediction 

errors of the two estimation methods. Furthermore, the data will be analyzed focusing 

on two different speed ranges to highlight the estimation behavior of the newly 

implemented method. 

4.2.1 Baseline Model Performance Analysis on the Second Motor 

The percentage error of the baseline model, reported in Table 4.5, shows a 

significant underestimation of the loss across all the operating conditions. The 

percentage error reaches critical values, above 60%, in the higher rpm region whereas 

the model shows better accuracy, although always quite poor, in the lower rpm region, 

with errors ranging mostly between 30% and 45%. 
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Table 4.3.  Absolute percentage error difference between VarKhKc and baseline models 
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Table 4.4.  MAPE comparison of baseline and VarKhKc models 

Model Speed range Torque range MAPE 

Baseline Full Full 36.80 % 

VarKhKc Full Full 17.70 % 

Improvement Full Full 19.10 % 

Baseline Above base speed Full 37.38 % 

VarKhKc Above base speed Full 9.79 % 

Improvement Above base speed Full 27.59 % 

Baseline Full No-load excluded 35.97 % 

VarKhKc Full No-load excluded 16.12 % 

Improvement Full No-load excluded 19.85 % 

Baseline Above base speed No-load excluded 36.60 % 

VarKhKc Above base speed No-load excluded 7.87 % 

Improvement Above base speed No-load excluded 28.73 % 
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4.2.2 Variable Coefficients Model Performance Analysis on the Second Motor 

The percentage error of the VarKhKc model estimate with respect to the test 

data is reported in Table 4.6. The estimation is lower than the measured value across 

all operating conditions, with quite consistent errors in the order of  25% to 40%. 

From this table it’s possible to further address the data points highlighted by Table 3.6 

and previously mentioned in section 3.3.3; it shows that the model is both 

overestimating the loss at 1600 rpm and underestimating it at 2400 and 3200 rpm, 

when comparing the results to the rest of the operating conditions. 

The highest accuracy is obtained in the top rpm region, above 7000 rpm, 

where the errors are mostly between 20% and 35%. 

4.2.3 Performance Comparison of the Models on the Second Motor 

The performance comparison of the two models is carried out by looking at 

the difference between the absolute percentage errors, which is reported in Table 4.7. 

When looking at the lower rpm region, this comparison shows an unreasonable 

improvement at 1600 rpm, which must be discarded due to unreasonable trend in the 

estimate of the VarKhKc model; the same can be said about the performance decrease 

registered at 2400 and 3200 rpm. 

The two models perform similarly in the mid rotational speeds, between 4000 

and 8000 rpm, being within 10% of each other. On the other end, significant 

improvement is achieved in the upper speed range, with error reduction in the order of 

30% and peaks as high as 40%; this can be extremely significant given the high iron 

loss registered in these operating conditions, as the delta between the two estimations 

for some of these points exceeds 1 kW. 
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Table 4.5.  Percentage error of the baseline model estimation on the second IPMSM 
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Table 4.6.  Percentage error of the VarKhKc model estimation on the second IPMSM 
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Table 4.7.  Absolute percentage error difference between VarKhKc and baseline models on the second IPMSM 
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4.2.4 High Speed Mean Absolute Percentage Error and Absolute Loss Difference 
Analysis on the Second Motor 

To better appreciate the improvement achieved in the high-speed region, the 

mean absolute percentage error and average absolute loss of the two estimations will 

be analyzed and compared in this section. The MAPE of the two models, along with 

the average iron loss estimate, evaluated in the region above 7000 rpm, is reported in  

Table 4.8. 

The mean absolute percentage error is rather high for both estimation methods, 

measuring 55.93% when using the default iron loss estimation and 34.61% with the 

newly implemented method. Although the accuracy obtained using the variable 

coefficients model may not be considered sufficient yet, the performance 

improvement with respect to the baseline exceeds 20%, which is a significant 

achievement. This is reflected in the average iron loss estimation figures: in this speed 

range, where iron loss is 

 

 

Table 4.8.  MAPE and average iron loss estimate comparison of the two models above 
7000 rpm on the second IPMSM 

Model MAPE Average Iron Loss 
Estimate 

Baseline 55.93 % 793.5 W 

VarKhKc 34.61 % 1250.6 W 

Improvement 21.31 % 457.1 W 
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the dominant loss component in the machine, the improvement in iron loss 

estimate on average is in the order of 500 Watts, which is a substantial amount. The 

difference (in Watts) between the estimation of loss of the two models is even more 

apparent at the high-speed region; for example, over 1kW difference is noted at max 

speed and max torque condition. 

4.3 Discussion 

4.3.1 Magnetic Induction Analysis 

To address the prediction behavior of the variable coefficient model in the 

specific speed range between 1600 rpm and 3200 rpm, an analysis of the magnetic 

induction magnitude has been conducted to determine whether the two models were 

given the same 𝐵 field distribution by the software. The plots in Figures 4.1a and 4.1b 

show the magnetic induction magnitude in the stator and the rotor of the machine 

when using the two iron loss models, at the operating point of 0.51 pu torque and 

1600 rpm. 

As expected, the magnetic induction plots in the two different cases are 

identical. This is due to the fact that the difference between the two estimation 

methods resides in the iron loss model and algorithm, and not in any of the inputs 

parameters that determine the 𝐵 field distribution (i.e. the input current). This is 

confirmed also by a second analysis, carried out at a different rotational speed (2400 

rpm); the results are shown in Figures 4.2a and 4.2b. 

Having performed this check, the cause of the inconsistency must reside in the 

iron loss computation algorithm, which is defined by the external control program. 

Being the source code of the program accessible, a review of the code was done to 

spot a possible cause of the phenomenon but the effort was unsuccessful, partially due 

to a lack   
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Figure 4.1.  Magnetic induction magnitude plot at 1600 rpm and 0.51 pu torque of the 
default simulation (a) and variable coefficients simulation (b) 

 

(a) 

 

(b) 
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Figure 4.2.  Magnetic induction magnitude plot at 2400 rpm and 0.51 pu torque of the 
default simulation (a) and variable coefficients simulation (b)  

 

(a) 

 

(b) 
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of advanced coding knowledge of the author. Being able to find a potential 

point of improvement of the code can be considered an accomplishment of this 

research, opening up to the necessity of a more in-depth review on Ansys side to 

address it. The out of trend data is easy to spot when assessing the results and very 

limited in the operating conditions in which it appeared (in fact this phenomenon 

didn’t happen in any working point when analyzing the first motor). 

4.3.2 Estimation Accuracy Comparison Between Motors 

Implementing the developed iron loss estimation method on another electric 

motor allowed for better insight on the behavior of the iron loss model when applied 

to a different environment; the points of similarity and contrast of the two applications 

are going to be highlighted and analyzed in this section. 

When looking at the estimation accuracy of the variable coefficients model on 

the two motors, reported respectively in Tables 4.2 and 4.6, it is clear that the model 

performs better on the first motor, yielding a more accurate estimate across all 

operating conditions. This does not happen exclusively on the newly implemented 

iron loss estimation method, as the same estimation accuracy discrepancy is mostly 

reflected also in the default model results, reported for the two motors in Tables 4.1 

and 4.5, respectively. 

Many factors differentiate the two motors and two datasets are not enough to 

build a definite correlation. Saturation level in the magnetic core of the two machines 

has been analyzed at the maximum achievable torque at the base speed, respectively 

6000 rpm and 4600 rpm, and the highest achievable torque at the maximum rotational 

speed, respectively 0.5 pu torque at 14000 rpm and 0.22 pu torque at 16000 rpm. The 

magnetic induction magnitude is plotted for each of the aforementioned conditions in 
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Figures 4.3, 4.4, 4.5 and 4.6; the maximum reported magnetic induction value on the 

scale is 𝐵=1.8 T for all the plots. 

When looking at the saturation levels in the worst-case scenario, i.e. maximum 

torque at the base speed of the motor, it is possible to observe that motor 1 manifests a 

slightly higher saturation level in the stator teeth whereas a high saturation level is 

present in the rotor of motor 2, due to the different magnet configuration. 

Similarly, when analyzing the maximum speed working condition, it is still 

possible to observe higher saturation levels above the magnets in the second motor, 

whereas both machines reach high 𝐵 values in the stator only in the tooth tip region, 

which is to be expected. 

Finally, both estimation methods use an iron loss model unable to determine 

the additional loss due to the presence of minor loops, caused by reversals in the flux 

density waveform; this phenomenon, as discussed in chapter 1, is emphasized by the 

presence of PWM current supply. The region most interested by the minor loops is 

typically above the magnets in the rotor, which could explain the higher average 

discrepancy between the estimations of both models and the test results in the second 

motor. 
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Figure 4.3.  Magnetic induction magnitude plot of the first motor at 6000 rpm and 1 
pu torque 

 

 

 

Figure 4.4.  Magnetic induction magnitude plot of the second motor at 4600 rpm and 
1 pu torque 
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Figure 4.5.  Magnetic induction magnitude plot of the first motor at 14000 rpm and 
0.5 pu torque 

 

 

 

Figure 4.6.  Magnetic induction magnitude plot of the second motor at 16000 rpm and 
0.22 pu torque  
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CHAPTER FIVE 
 

CONCLUSIONS AND FUTURE WORK 
 
 
 

5.1 Conclusions 

In this work the physical origin of iron losses has been studied and presented 

alongside the influencing factors related to electric motors applications. The concept 

of iron loss separation has been introduced and the most common modelling 

techniques related to this approach have been analyzed. 

The scope of the research was to accurately estimate iron loss in electric 

motors used for traction applications. In particular, the work was focused towards 

interior permanent magnet synchronous motors under pulse width modulation 

excitation. First, the PWM currents, required as input to the 2D iron loss simulation, 

were generated using the finite element analysis software Ansys Electronics Desktop. 

Second, a baseline iron loss estimation was defined using a two-term constant 

coefficient model in time domain, which is employed as default by the software for 

the iron loss calculation. A new estimation method, using a variable coefficient 

frequency domain analysis, has been implemented. The methodology followed has 

been presented, including the evaluation of the lamination material properties, the 

acquisition of the variable coefficients, the current generation process and the final 

implementation in the simulation environment. The default model and variable 

coefficient model have been applied on two electric machines of different rated power 

for iron loss estimation. 

The comparison of the results between the two estimation methods showed a 

significant improvement with a mean absolute percentage error reduction close to 

20% when considering the entire operating range of the machine, and an even higher 
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reduction of 27% in flux-weakening conditions. In contrast with the baseline 

estimation method, the variable coefficient one requires more steps to be implemented 

and uses an external control program to evaluate the iron loss in post-processing. 

Given that the current generation procedure is the same and that both simulation 

methods require the same computational effort, the improvement in prediction 

accuracy is well worth the trade-off in slightly longer initial setup. 

The frequency domain variable coefficient model highlighted an inconsistency 

in the iron loss estimation in a specific rpm range and only for the second motor. The 

phenomenon is to be attributed to the code that governs the external control program. 

The analysis of the results of the second motor showed an overall worse performance 

of both estimation methods when considering MAPE with respect to the first motor. 

The benefits of the more articulated simulation procedure are evident again in the 

flux-weakening operating range, with a MAPE reduction just over 20%. 

5.2 Future Work 

Though in this work the iron loss estimation method was applied to interior 

permanent magnet synchronous motors, the same technique could be applied to 

different electric machine topologies. It would be interesting to apply and validate the 

model on different motors, such as surface mounted permanent magnet and inductions 

motors. 

The prediction accuracy of the presented variable coefficient model justifies 

its implementation over the default iron loss estimation technique but some code 

refinement would be beneficial, to reduce  or totally eliminate instances of 

inconsistent model behavior. 

Integration of this estimation method on more motors can be the subject of 

additional research, aimed at creating a correlation between model performance and 
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motor characteristics, at improving the performance of the model itself and at 

streamlining its implementation procedure in the finite element analysis software. 
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APPENDIX A 
 

DATA TABLES  
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Table A.1.  Values of Kh as function of peak magnetic induction 

B [T] 𝐾ℎ 

0.1 184.6 

0.2 185.4 

0.3 170.5 

0.4 155.4 

0.5 142.9 

0.6 132.7 

0.7 124.2 

0.8 117.5 

0.9 112.4 

1 108.6 

1.1 106.0 

1.2 104.9 

1.3 105.7 

1.4 109.1 

1.5 110.7 

1.6 106.6 

1.7 98.1 

1.8 93.6 

1.9 88.1 
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Table A.2.  Values of Kc as function of frequency and peak magnetic induction 

𝐾𝑐 f [Hz] 

B [T] 50 100 400 1000 2000 

0.1 0.48 0.48 0.4 0.37 0.31 

0.2 0.49 0.49 0.42 0.35 0.29 

0.3 0.49 0.49 0.41 0.33 0.27 

0.4 0.48 0.48 0.39 0.31 0.25 

0.5 0.47 0.47 0.38 0.3 0.24 

0.6 0.45 0.45 0.37 0.29 0.24 

0.7 0.44 0.44 0.36 0.28 0.24 

0.8 0.43 0.43 0.35 0.28 0.24 

0.9 0.42 0.42 0.34 0.28 0.24 

1 0.41 0.41 0.34 0.28 0.25 

1.1 0.4 0.4 0.34 0.29 0.26 

1.2 0.4 0.4 0.34 0.3 0.27 

1.3 0.41 0.41 0.34 0.3 0.27 

1.4 0.43 0.43 0.36 0.32 0.27 

1.5 0.45 0.45 0.38 0.34 0.26 

1.6 0.46 0.46 0.39 0.37 0.26 

1.7 0.47 0.47 0.41 0.4 0.26 

1.8 0.4 0.4 0.42 0.42 0.25 

1.9 0.35 0.35 0.43 0.43 0.25 
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Table A.3.  Id values for PWM current generation 

 
 

 

Table A.4.  Iq values for PWM current generation 
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Table A.5.  Id values for PWM current generation of the second IPMSM 

 

 

 

Table A.6.  Iq values for PWM current generations of the second IPMSM 
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