
A two-step optimization
approach for a stochastic
multi-stage capacitated
vehicle routing problem

Author: Chiara Vercellino

Supervisor: Prof. Paolo Brandimarte

Master Degree in
Mathematical Engineering

Department of Mathematical Sciences
Politecnico di Torino

Italia
A.Y. 2019/2020

Contents

Introduction 4

1 Dynamic Capacitated Vehicle Routing Problem 5
1.1 From VRP to multi-period DCVRP 6

1.1.1 Vehicle Routing Problem 6
1.1.2 Capacitated Vehicle Routing Problem 6
1.1.3 Multi-period Dynamic Capacitated Vehicle Routing Prob-

lem . 7
1.1.4 The mathematical formulation of multi-period DCVRP . 7

1.2 The application to the case study 9

2 Policies for customers selection 12
2.1 Policies definition . 13

2.1.1 Early Policy . 13
2.1.2 Delayed Policy . 14
2.1.3 Neighbourhood Policy: first version 14
2.1.4 Neighbourhood Policy: second version 18

2.2 Analysis of Results . 20

3 Solvers for CVRP 39
3.1 Google OR-Tools solver . 41

3.1.1 Constraint Programming 41
3.2 CW-TS solver . 42
3.3 Analysis of Results . 50

3.3.1 Python implementation 50
3.3.2 Previous attempts . 51
3.3.3 Tuning and final results 53

4 Future Developments 58

5 Conclusion 59

Acknowledgement 60

Bibliography 61

1

List of Figures

1.1 Customers’ distribution . 10

2.1 Parameters analysis for NP . 17
2.2 Boxplot of average number of vehicles for NP 23
2.3 Cardinality boxplots for NP . 25
2.4 Frequencies of convti indexes for NP 26
2.5 Total travel costs comparison for NP 27
2.6 Average daily costs comparison for NP 28
2.7 Number of vehicles comparison for NP 29
2.8 Cardinality boxplots for NP_1 30
2.9 Frequencies of conv_1ti for NP_1 31
2.10 Total travel costs comparison for NP_1 32
2.11 Average daily costs comparison for NP_1 33
2.12 Number of vehicles comparison for NP_1 34
2.13 Total travel costs comparison of all policies 35
2.14 Average daily costs comparison of all policies 35
2.15 Number of vehicles comparison of all policies 35
2.16 Boxplots for execution times comparison of all policies 37

3.1 Swap neighbourhood . 45
3.2 Insertion neighbourhood . 45
3.3 CW-TS algorithm . 47
3.4 Boxplots for CW-TS algorithm iterations 52
3.5 Average costs for tuning of CW-TS algorithm 53
3.6 Average vehicles for tuning of CW-TS algorithm 54
3.7 OR-Tools solver and CW-TS solver comparison 55
3.8 Final Comparison of objective functions 56
3.9 Final Comparison of daily objective functions 56
3.10 Final Comparison of used vehicles 57

2

List of Tables

2.1 Average travel costs for EP and DP 22
2.2 Average number of vehicles for EP and DP 22
2.3 Number of postponed orders for EP and DP 22
2.4 Grid Search approach for NP . 24
2.5 Relative improvement on costs for policies NP and NP_1 36
2.6 Relative improvement on number of vehicles for policies NP and

NP_1 . 37

3.1 Costs variation for number of permutations in LocalSearch 52
3.2 Costs variation for CW-TS solver tuning 54
3.3 OR-Tools solver and CW-TS solver comparison 56

3

Introduction

Nowadays we benefit from the application of optimization algorithms in several
fields, one of them is the logistic field in which Vehicle Routing Problem, in short
VRP, settles down: VRP aims to find optimal routes, given a fleet of vehicles
that start from a depot and deliver a certain good to a set of customers.
Starting from the first definition of VRP, lots of variants were designed to deal
with the situations faced in the real-world: the subject of this thesis is multi-
period Capacitated Vehicle Routing Problem with stochastic customers’ demands
over time.

The study and the definition of this problem come from the real-world prob-
lem of a furniture’s delivery company: each day a set of stochastic customers
shows up and the company has to decide which customers to serve in the fol-
lowing day, according to the deterministic pending demands up to that day and
stochastic information about futures. After that, convenient routes have to be
found to schedule the path of each vehicle used to serve the daily customers.
Currently, there are a lot of solvers for VRP and its deterministic variants,
some of them are open source, like OR-Tools and CPLEX, others are commer-
cial software, like Gurobi. Each of these solvers has its own approach to the
optimization problem and allows the user to set different kinds of constraints
and decision variables. Anyway, they can be used to solve only the deterministic
problem and do not take into account the stochastic information, since it cannot
be modelled into them.

Starting from this observation, the first task of this thesis is to find a policy
to choose the set of customers to serve each day in order to minimize the total
travel and service cost in the long run, exploiting the stochastic information.
The set of the selected customer is then passed to OR-Tools solver to find fea-
sible and convenient routes.

Given an improving policy, with respect to naïve policies, the second part
of this thesis consists in the implementation of a meta-heuristic, based on Tabu
Search approach and Clark-Wright algorithm, to improve the convenience of the
daily routes. The previous results obtained with OR-Tools solver are considered
as benchmarks.

4

Chapter 1

Dynamic Capacitated
Vehicle Routing Problem

This chapter contains a description of the mathematical optimization model for
the multi-period Dynamic Capacitated Vehicle Routing Problem (multi-period
DCVRP). It is a multi-period and multi-stage problem, with a daily period.
The stochastic part of the problem, which makes it Dynamic, concerns the cus-
tomers’ demands because future demands are uncertain: there is not a set of
fixed customers, the demands in terms of kg of requested furniture, the service
times and the positions of future customers are unknown. What is known is the
probability distribution of customers in the region of interest.

Although the optimization problem can be mathematically defined with only
one model, the chosen optimization approach consists of two main steps that
are repeated day-by-day:

• Customers’ selection: select the most convenient customers to serve,
in this step the capacity constraint of available vehicles and the stochastic
information about future demands have to be taken into account.

• Route Plan: given the selected customers, find the less costly routes for
deliveries. The cost of the routes has both contributions of travel time and
of the number of used vehicles. The shorter the routes the more convenient
is the solution, also the number of used vehicles has to be minimized.

This division of the problem in two steps matches with the two main tasks
of this thesis.

5

1.1 From VRP to multi-period DCVRP
To describe the optimization problem, we start from the most basic version of
it, the Vehicle Routing Problem. Then, we specify the characteristics of more
sophisticated versions, according to the case study problem.

1.1.1 Vehicle Routing Problem
The Vehicle Routing Problem (VRP) is an extension of the Travel Salesman
Problem TSP. Indeed, TSP consists of finding the optimal path to visit a set
of customers, starting from one of them and then coming back to the starting
customer, all other customers are visited exactly once.
In VRP we still have a set of customers that we want to visit exactly once, but
the starting point is a depot, from which a fleet of vehicles starts: each vehicle
starts and ends its route in the depot. TSP is simply VRP with only one vehicle
and the depot coinciding with the starting customer.

The introduction of more than one vehicle implies that the routes of each
vehicle must be non-overlapping: each vehicle visit a subset of the original
customers and the visiting order is optimized in TSP mode.
This means that a possible decomposition of the VRP could be to first generate
clusters of customers visited by each vehicle and then to optimize the routes.
The optimization step should consider each vehicle’s route problem as a TSP,
starting and ending in the depot. Anyway, many other approaches can be
followed to solve VRP.
Another main aspect of VRP concerns the number of vehicles used to solve the
problem. In the simplest version of it, the number of available vehicles could
be unlimited, but in our definition, the number of vehicles itself defines the
feasibility of the solution: we have a limited number of vehicles and we want to
find a solution that exploits at most all of them.

1.1.2 Capacitated Vehicle Routing Problem
Given the VRP, other constraints can be added according to the real case needs.
If we consider constraints on the capacity, VRP becomes a Capacitated Vehicle
Routing Problem (CVRP).
The capacity constraints regard the quantity that each vehicle can carry. This
kind of constraint can address more than one measure for each vehicle: in the
most basic version of CVRP, we have only one capacity constraint for each ve-
hicle that models the total customers’ demand that a vehicle could deliver.

In our case, the CVRP will have:

- A capacity constraint, expressed in kg, that sets the maximum load of
customers’ demands delivered by each vehicle;

- A customers-capacity constraint, regarding the maximum number of cus-
tomers that each vehicle could serve;

- A time-capacity constraint, expressed in min, that specifies the maximum
travel and service time for each vehicle.

6

It must be noticed that vehicles could have heterogeneous capacities con-
straints, but we will deal only with homogeneous vehicles.

1.1.3 Multi-period Dynamic Capacitated Vehicle Routing
Problem

The CVRP can be extended to a multi-period version if we consider the problem
of solving it multiple times, with different sets of customers each time. If the
selection of the customers to serve and the corresponding route optimization is
made in different periods, the problem is also multi-stage.
In our problem, the period coincides with the stage step and it is of one day: so
each day, we solve a CVRP with a certain set of customers.

Till now, the problem has only deterministic aspects, but in our application,
it includes uncertainty that makes it a multi-period Dynamic Capacitated Vehicle
Routing Problem (multi-period DCVRP).
The kind of uncertainty we consider regards customers’ future demands. In fact,
each day we have a fixed depot position, a fixed number of available vehicles
(with deterministic capacity) and the customers’ demands till that day, but we
have to decide which customers to serve. To do this, we optimize the objective
function over all the periods and exploit the stochastic distribution of future
customers’ demands.
It must be observed that, if the customers’ demand were deterministic, the
problem would become a multi-period optimization problem in one stage since
the sets of customers to serve day-by-day could be decided at first.
Having to deal with a stochastic multi-stage problem it is much more difficult:
the selection of the daily served customers can be based only on weak future
information. The customers served in the previous day cannot be ’unserved’
and the daily customers’ demands cannot be procrastinated for too many days,
hoping that some other near customers will appear: in fact, for each customer
we have a stochastic period (expressed in days) to perform the delivery.

1.1.4 The mathematical formulation of multi-period DCVRP
Starting from the multi-period DCVRP in [8], we define our optimization prob-
lem as a planning problem on a certain day t.
We assume to have a planning time horizon T = {1, . . . , r}, at day t there is an
updated time horizon T

′
= {t, . . . , r} that represents the time interval in which

the demands are set.
With set N = {1, . . . , n} we represent the known but not yet served customers,
that we will call pending customers, this set is updated each day. The overall
set of locations is N0 = {0} ∪N , where index 0 indicates the depot.
We denote with A the set of all arcs connecting each pair in N0, so ci,j , ∀(i, j) ∈
A, is the travel time cost associated with each arc (i, j).
For each pending customer i ∈ N we consider a service time di and a demand
qi. Each customer can be served in a set of days {ai, . . . , bi}, to make this set
feasible, the first day has to become a

′

i = max{ai, t}, so the set of feasible days
for customer i is {a′

i, . . . , bi}.
The fleet of available vehicles is denoted by K = {1, . . . ,m}, each vehicle has a
capacity Q, it can travel along a route with duration limit D and it can deliver

7

up to C pending customers. A fixed cost f is associated with each vehicle.

The optimization problem is solved with respect to binary decision variables
xt
ijkl and ytkl defined as follow:

ytkl =

{
1 if vehicle k is used for the deliveries on day l

0 otherwise

xt
ijkl =

{
1 if vehicle k travels from i to j on day l

0 otherwise

We observe that the whole formulation of the optimization problem would
include the sum over all days in T , with a probabilistic distribution for the
customers’ demands, anyway we can decompose the whole optimization problem
into daily optimization problems, because even if the multi-period DCVRP is
dynamic, the routing problem solved each day over the planning horizon T

′ is
static, in fact it is based on known orders and routes are decided entirely before
their execution.
So the optimization problem at day t is the following:

minimize
xt
ijkl, y

t
kl

∑
l∈T ′

∑
k∈K

∑
(i,j)∈A

cijx
t
ijkl +

∑
l∈T ′

∑
k∈K

fytkl (1.1a)

subject to
∑

l∈{a′
i,...,bi}

∑
k∈K

∑
j:(i,j)∈A

xt
ijkl = 1 ∀i ∈ N, (1.1b)

∑
i∈N

∑
j:(i,j)∈A

qix
t
ijkl ≤ Q ∀k ∈ K, l ∈ T

′
, (1.1c)

∑
i∈N

∑
j:(i,j)∈A

(cij + di)x
t
ijkl ≤ D ∀k ∈ K, l ∈ T

′
, (1.1d)

∑
(i,j)∈A

xt
ijkl − 1 ≤ C ∀k ∈ K, l ∈ T

′
, (1.1e)

∑
(i,j)∈A

xt
ijkl − (C + 1)ytkl ≤ 0 ∀k ∈ K, l ∈ T

′
, (1.1f)

∑
j∈N0

xt
0jkl = 1 ∀k ∈ K, l ∈ T

′
, (1.1g)

∑
i∈N0

xt
i0kl = 1 ∀k ∈ K, l ∈ T

′
, (1.1h)

∑
i:(i,h)∈A

xt
ihkl −

∑
j:(h,j)∈A

xt
hjkl = 0 ∀h ∈ N, k ∈ K, l ∈ T

′
(1.1i)

xt
ijkl ∈ {0, 1} ∀(i, j) ∈ A, k ∈ K , l ∈ T

′

ytkl ∈ {0, 1} ∀k ∈ K , l ∈ T
′

Looking at this model, it can be noticed that the objective function (1.1a)
minimizes both the travel time and the number of vehicles used in the routing
plan.

8

Constraint (1.1b) ensures that each customer is visited exactly once, during
its feasible days and only by one vehicle. Constraints (1.1c), (1.1d), (1.1e) are
capacity constraints, respectively for the amount of goods that a vehicle can
transport, for the working time and for the number of customers visited in the
route.
Constraint (1.1f) links the decision variables xt

ijkl to ytkl, allowing the fixed costs
to be associated only with vehicles actually used for the deliveries.
Constraints (1.1g) and (1.1h) state that each vehicle must start and end its
route in the depot, the sum over N0 allows also empty routes, since c00 = 0.
Finally, constraint (1.1i) is a mass-balance equation that makes the flow conserve
through the route: the number of vehicles that come to a customer’s location is
equal to the number that leave it.

The complexity of this optimization classifies it as an NP-hard problem since
it is an extension of TSP, which means that its solution requires exact algorithms
that have exponential complexity in the worst case.
Generally, the complexity of CVRP is not computed, but, if we consider an
exhaustive search on the whole solution space, we can compute its dimension.
In fact, in each daily problem, we decide which customers to serve among the
ones in N ; let us consider to visit p ≥ 1 customers with at most m vehicles,
1 ≤ m ≤ p. Then the number of all possible assignments of customers to vehicles
is

m∑
i=1

(
p+ i− 1

i− 1

)
=

m

p+ 1

(
p+m

m

)
Then, for each cluster of customers that corresponds to a route, we have to
consider all possible permutations that start and end in the depot, so if the cus-
tomers in the cluster are s, the solution space will contain s!

2 permutations since
we consider symmetric distances and therefore clock-wise and anti-clockwise
tours are equivalent. However, if we consider the customers-capacity constraint,
we can set an upper bound for the permutation size, such that for each cluster
we can have at most C!

2 permutations.
So, we can obtain the dimension of the solution space as O(

(
p+m
m

)
C!).

1.2 The application to the case study
Concerning the multi-period DCVRP based on the application to the case study
of the furniture delivery company, we can specify some characteristics:

• the planning horizon T is made of r = 100 days;

• every day, there are at most m = 50 vehicles available, these vehicles are
homogeneous with customer-capacity C = 5, duration limit D = 480 min,
and Q = 1000 kg;

• the fixed cost f is difficult to estimate and to compare to variable costs
cij , anyway, we consider it as such greater than the variable costs that a
solution with fewer vehicles is always better.

Everyday a set of new customers show up, these customers’ locations are
sampled on a rectangular region of 205km× 215km. This region is divided into

9

square subregions, which we will call cells, of dimension 5km × 5km. A multi-
nomial distribution is modelled on the region, such that each cell is associated
with a probability and the sum of all cells’ probabilities sum up to 1. The idea
behind this choice is that cells with higher probability will have a higher number
of customers’ demands.
To be more precise, each day we simulate customers’ demands sampling the
total number of new orders by an integer uniform distribution ∼ U([175, 215]),
then the association of orders to the cells is made by means of the multinomial
distribution. Finally, for each order that belongs to a specific cell, we sample
the location in terms of Cartesian coordinates x and y uniformly on the cell.
The multinomial distribution is taken from the previous thesis [7] on the same
topic, a representative heatmap of this distribution is reported in figure 1.1.
The position of the depot is central, at coordinates (102.5, 107.5) km.

Figure 1.1: Heatmap of the density distribution of customers in the considered
region. A high-density area can be noticed in the middle-right part of the figure,
the depot is quite near to the high-density area and it is represented by the red
cross.

Moreover, the uncertainty of new customers’ demand regards also the amount
of goods they require and the daily feasibility of their orders.
So, for each new customer, we can have with equal probability, by means of a
Bernoulli distribution, a small or a big order: small orders are characterized by
light weights ∼ U([5, 10]) and short service times ∼ U([15, 45]), on the other
hand, big orders present high weights ∼ U([195, 490]) and long service times
∼ U([45, 135]). By coherence with the previous units of measurement, service
times are expressed in min and weight loads in kg.
Concerning the feasible days, when an order is received at day t, it can be exe-
cuted in the set of days {ai, . . . , bi}, with ai = t and bi ∼ U([t+ 3, t+ 5]).
Still, for the sake of measures coherence, we assume an average speed of vehi-

10

cles of 60 km/h, in this way we can convert distances between all locations into
travel times, so 1 min of travel time corresponds to 1 km of distance.

Finally, in the optimization problem definition, we have assumed that all
pending customers can be served in their feasible days period, anyway, this is
not always true in our setting, but it depends on the customers’ policy selection
we use to select the daily customers. If some customers cannot be served within
their last feasible days, those orders are not lost, but they become postponed
orders, which means that the last feasible day is incremented by 1. This results
in the evaluation of another metric that is not present in the objective function
(1.1a), to establish the performance of a policy. In fact, we would prefer a
solution with less, ideally 0, postponed orders.

11

Chapter 2

Policies for customers
selection

In this chapter. we define policies for the customers’ selection task, we
introduce two naïve policies, Early Policy and Delayed Policy, whose post-
optimization results are considered as benchmarks. This task aims to find a
policy that leads to an improvement with respect to benchmark policies, which
means, lower travel costs, fewer vehicles used and fewer postponed orders.
To reach this target, two versions of a more sophisticated policy have been im-
plemented, the one called Neighbourhood Policy. Analysing the results, obtained
with different datasets, the best policy for the problem is the second version of
the Neighbourhood Policy.

The main characteristics of this policy concern:

• Customers to cells aggregation: to evaluate the convenience of including
a customer in the set of the daily selected customers, we need to define
his neighbourhood. However, a neighbourhood defined over all possible
positions of customers in our region would lead to an uncountable set of
possible neighbours, so we need to discretize the region. To do this, the
partition in cells has been exploited: each customer is associated with the
cell from which he is sampled and the neighbours are defined in terms of
cells’ center positions.

• Actual vs Expected savings: Given the neighbourhood of a customer, the
choice of selecting him for the daily deliveries is associated with the pres-
ence/absence of neighbours that make his delivery convenient to be in-
cluded. The selection of the customer depends on a score that has both
contributions of actual neighbours among pending customers and expected
future neighbours estimated by the probability distribution on the consid-
ered region.

12

2.1 Policies definition
In the following subsections, we define the policies implemented and applied to
the multi-period DCVRP.
The Early Policy and the Delayed Policy are the naïve policies, they were both
presented in [7] and [1], but the notation used in this chapter comes from [1].
Also, the first version of Neighbourhood Policy takes inspiration from the paper
cited above, but some important modifications were introduced to fit the spec-
ifications of the problem.

All these policies are meant to be applied day by day and to lead to a feasible
solution of the daily CVRP. To guarantee the feasibility, the following algorithm
has been applied.

Algorithm 1 Customer Selection
1: Choose the policy
2: for t ∈ 1, ..., T do
3: N ← set of pending customers
4: S ← set of selected customers based on policy
5: solution← False
6: while not solution do
7: Try and solve CV RP , if it is feasible: solution← True
8: if solution == False then
9: Remove last customer in S

To avoid wasting too much execution time in the while cycle an upper
bound kmax on the number of selected customers in S is computed starting
from the aggregate capacity of all available vehicles. In particular, given the set
of pending customers N and m available vehicles:

avg_q = average{qi}, i ∈ N is the average load

avg_d = average{di}, i ∈ N is the average service time

Q̃ = m×Q is the aggregate load capacity

D̃ = m×D × perc is the aggregate duration capacity for service time

Then the upper bound is the integer approximation of

kmax = min

(
Q̃

avg_q
,

D̃

avg_d

)

The value of perc is fit to the data, with our dataset, a suitable value has been
found out as perc = 0.67. This means that, on average, more than half of the
available working time of each vehicle is reserved for the service task.

2.1.1 Early Policy
The Early Policy (EP) consists of selecting, among the pending customers of a
certain day, all possible ones. If not all customers fit the capacity constraints,

13

then as many as possible customers are selected according to an urgency crite-
rion.
In particular, the priority goes to orders

- that have yet been postponed: customers who see their orders postponed
will be unsatisfied, this priority rule is made to avoid delivery delays
greater than one day;

- with expiration day closer to the current day: to reduce as much as possible
the postponed orders.

If two or more orders have the same expiration day, the priority goes to the yet
postponed orders.
The main idea behind the EP is to reduce the waiting time for each pending
customer. This can result in a very convenient policy for customers and could
be a smart policy even for the company if the customers’ demand distribution
was quite uniform on the region or inventory costs were such high to encourage
a fast clean-out.

2.1.2 Delayed Policy
The Delayed Policy (DP) consists of selecting, from the pending orders, only
the ones whose expiration days coincide with the considered day. Also, in this
case, a priority criterion that privileges orders that have yet been postponed is
set.
It must be noticed that DP has a higher probability to produce postponed
orders with respect to EP, since if some of the pending customers, that should
be selected in the current day, do not fit in the available vehicles, their orders
will for sure be postponed.
This kind of policy can be convenient in case of few daily orders, so the pending
orders are delayed as much as possible, hoping that future orders would exploit
better the capacity of the available vehicles.

2.1.3 Neighbourhood Policy: first version
The first version of Neighbourhood Policy (NP) is based on the concept of
customers to cells aggregation. In fact, the association of each customer to the
corresponding cell allows the computation of estimated savings indexes between
pairs of customers.
The saving index Iij , between customers i, j ∈ N , is a common measure for
routing problems and it expresses the potential savings derived from serving
both customers using the same route:

Iij =
c0i + c0j − cij
2(c0i + c0j)

i, j ∈ N

As can be seen in the equation above, the more the customers i and j are near,
the more the savings index is closer to 0.5, Iij = 0.5 iff cij = 0. In general,
the higher the value of the saving index, the more convenient is to put both
customers on the same route.
Anyway, it is not convenient to use this index computing directly costs on cus-
tomers’ locations because, on one hand, we do not know the locations of future

14

customers and on the other hand the computation of the distance matrix be-
tween all pairs of n pending customers is costly, it scales as O(n2) and since not
all the pending customers will be selected the computation of all these distances
could be partially needless.
These issues are overcome through the associations of customers to the cells: in
the considered region, we have a fixed set of cells V = {1, . . . , v}, each cell has a
center, so we can consider as an approximate position of customers the center of
the cell to which they are belonging. The depot position 0 is not approximated
to the center of a cell because it is fixed and it will be present for all the days
in the simulation.
So, after having computed the pairs distances c̃ij , with i, j ∈ V0 = {0} ∪ V , the
approximated saving index becomes:

Ĩij =
c̃0i + c̃0j − c̃ij
2(c̃0i + c̃0j)

i, j ∈ V

Since the cells are squared 5km× 5km, the approximation error between a pair
of customers is at most 2

√
2.52 + 2.52 ≈ 7km. These indexes are computed only

once at the beginning of the simulation.
Given Ĩij ,∀i, j ∈ V , it is possible to compute the set of neighbours cells for a
certain cell i ∈ V :

Vρ(i) = {j ∈ V : Ĩij ≥ ρ}
The parameter ρ, to be tuned, controls the dimensions of the neighbourhood,
higher values of ρ lead to a smaller neighbourhood: from the previous observa-
tion, we know that Ĩij ≤ 0.5 and by triangular inequality Ĩij > 0, this comes
in handy to set a range for the tuning phase, ρ ∈ (0, 0.5]. If ρ = 0.5 only
customers belonging to the same cell of customer i form his neighbourhood.

At a certain day t ∈ T , the set V is partitioned in the set of active cells V t, i.e.
the cells that are associated with locations of pending customers, and in the set
of inactive cells V \ V t. Then, we estimate the convenience of serving customer
i at time t computing index convti , according to the following considerations:

- customers with very few available service days may be very urgent to serve;

- we know the one-step probability ptij that a customer in cell j in the
neighbourhood of cell i will require service the following day. That is
simply the probability associated to cell j in the multinomial distribution;

- it may be convenient to postpone customer j if ptij is sufficiently large;

- the priority concerning yet postponed orders and the expiring ones must
be maintained.

These observations are summed up into the definition of convti :

convti =

1

bi − t

(
1 +

1

|Vρ(i) \ V t|
∑

j∈Vρ(i)\V t

(1− ptij)

)
bi > t, Vρ(i) \ V t 6= ∅

M

bi − t
bi > t, Vρ(i) \ V t = ∅

M bi = t, not yet postponed
M + γ bi = t, yet postponed

(2.1)

15

where bi is the last available day for order i, M is a parameter that guarantees
that whenever possible, all orders that reached their expiration date will be
selected at day t, and γ is a reinforcing term that gives the highest priority to
yet-postponed orders.

Finally, the customers’ selection at day t is performed by sorting the cus-
tomers by decreasing convti , and taking the top k ones with

k = min(kmax, kα)

kα = |{i ∈ N : convti ≥ α}|

It may seem that NP introduces a lot of parameters to be tuned, but actually,
the parameters to tune are only three: ρ, M and α, moreover the range for the
tuning of these parameters can be estimated. In fact, γ can be arbitrary set to
a value greater than 0, as it is only needed to give the priority to yet postponed
orders, among expiring orders, so we set γ = 1. The range for M can be
estimated looking at some bounds.
In the definition of convti , the term

1 +
1

|Vρ(i) \ V t|
∑

j∈Vρ(i)\V t

(1− ptij)

has value 2 as upper bound since ptij > 0, whereas its lower bound is 1, this
lower bound can be reached in the limit case V = Vρ(i) \ V t.
Then, considering that, by definition, in our dataset 1 ≤ bi − t ≤ 5

1

5
≤ 1

bi − t

1 +
1

|Vρ(i) \ V t|
∑

j∈Vρ(i)\V t

(1− ptij)

 < 2

Looking at the second equation in (2.1), which concerns customers that have
all active neighbours, we can see that, if we set the value of M ≥ 10, those cus-
tomers will be selected independently from their time availability. This situation
must be avoided because the customers-capacity of vehicles is limited and with
high probability, the kind of customers that could lead to a situation in which
Vρ(i)\V t = ∅ are the customers belonging to high-density cells; these customers
are also quite near to the depot and they can be easily visited by routes going to
more distant customers in low-density cells. So, if we select too many customers
in high-density cells we risk to waste capacity and do not be able to exploit the
presence of clusters of near customers in low-density cells.

Following these considerations, we can analyse the behaviour of M
bi−t to fur-

ther reduce the range for optimal M value. Looking at figure (2.1), considering
customer i such that Vρ(i) \ V t = ∅, we can see that if we set M = 8, 9, he
will be selected anyway, even if the number of available days to serve him is
≥ 4; with M = 6, 7 the minimum value of bi − t that leads to a sure selection
of customer i is 3. M = 2, 3 makes customer i to be for sure selected only if
bi − t = 1. Knowing that bi ∼ U([t+ 3, t+ 5]), we decided to look for values of
M that guarantees the selection of customer i when bi − t is at least 2, so the
choice of M has to be made in the range [4, 5].

16

Figure 2.1: Values of M
bi−t for different values of M , the blue region highlights

the region (15 , 2), that is the range in which we want to set most of the indexes
convti , for bi − t ∈ {1, 2, 3, 4, 5}

.

Concerning the parameter ρ, as said above an adequate interval for tuning
is (0, 1

2], whereas α must be chosen in (15 , 2).

To sum up, the following algorithm reports the main steps of NP implemen-
tation.

Algorithm 2 NP for customers selection

1: Compute Ĩij ∀i, j ∈ V
2: Set a value for ρ ∈ (0, 0.5]
3: Compute Vρ(i) ∀i ∈ V
4: γ ← 1
5: Set a value for M ∈ [4, 5]
6: Set a value for α ∈ (0.2, 2)
7: for t ∈ 1, ..., T do
8: Compute convti ∀i ∈ N
9: Sort N by decreasing convti

10: Compute kmax

11: k ← min(kmax, kα)
12: Select the top k customers in sorted N

17

2.1.4 Neighbourhood Policy: second version
The second version of Neighbourhood Policy (NP_1) starts from some con-
siderations on NP: NP introduces customers to cells aggregation allowing the
pre-computation of approximated saving indexes Ĩij only once and giving a
good approximation also for future customers, whose locations are unknown.
However, there is some more information that is not fully exploited in NP:

- apart for the definition of Vρ(i), the approximated savings indexes do not
enter in the definition of convti ;

- if a pending customer is very near to the depot and his service time is
small the corresponding order is quite easy to insert in a route, so the
selection of these customers is not so relevant, whilst farther customers
require more care;

- the one-step probability ptij refers only to the possibility of a demand from
customer j in the neighbourhood of customer i in day t + 1, but a more
precise probability can be defined taking into account the possibility that
the demand of customer j is within the expiration date of order i.

These observations lead to the introduction of the second main concept in
Neighbourhood Policy, which is the comparison of actual vs expected savings.

In NP_1, the definition of neighbourhood is based, as in NP, on cells using
Vρ(i) and for each pending customer i ∈ N , a corresponding cell i ∈ V is
activated. The set of active cells at day t is still denoted by V t, whilst the set of
inactive cells is V \ V t. For each customer i ∈ N , the set Vρ(i) is partitioned in
Vρ(i)∩V t the set of the actual neighbours and Vρ(i) \V t the set of the possible
future neighbours.
Then ∀i ∈ N , we can compute the total actual saving index, that is made by
summing up all the saving indexes of the customers in the actual neighbourhood∑

j∈Vρ(i)∩V t

Ĩij i ∈ N (2.2)

Similarly, we can define the total expected future savings as∑
j∈Vρ(i)\V t

p̃tij Ĩij i ∈ N (2.3)

In this last equation, the term p̃tij represents the probability that at least one
customer j, in his corresponding cell j ∈ Vρ(i) \ V t, will require service within
the last available day bi of customer i.
To compute p̃tij , we consider the uniform distribution X ∼ U([175, 215]) from
which we sample the number of new customers each day, then we use the prob-
ability pj associated to each cell j ∈ V in the multinomial distribution that we
use to assign each new customer to his corresponding cell.
Then the expected value of X, that is the average number of new customers each
day is X = 195, so, if the left available time to serve customer i ∈ N is bi − t,
the expected number of new customers within that period is X(bi − t). Thus,
the distribution that describes the number of future customers belonging to cell

18

j ∈ V within [t, bi] is Xj and it is a multinomial distribution with probabilities
ph associated to each cell h ∈ V and X(bi − t) trials.
So, we can compute p̃tij in the following way:

P(Xj = 0) = (1− pj)
X(bi−t) ⇒ p̃tij = P(Xj ≥ 1) = 1− (1− pj)

X(bi−t)

Successively, to express the difficulty to serve a customer in term of total
working time associated with the order, we compute

dmax = max{di}i∈N

cmax = max{c̃0i}i∈N

then we associate to each pending customer i the value

βi =
di + c̃0i

dmax + cmax
i ∈ N (2.4)

Finally, equations (2.2), (2.3), (2.4) are combined together to express, through
index conv_1ti, the profit of selecting customer i ∈ N :

conv_1ti =

1

bi − t

(
(1− βi)×

∑
j∈Vρ(i)∩V t

Ĩij − βi ×
∑

j∈Vρ(i)\V t

p̃tij Ĩij

)
bi > t

M1 bi = t

(2.5)
The main concepts behind this formulation are that

• orders nearer to expiration date are more urgent, so conv_1ti scales as the
inverse of the time availability bi − t;

• βi is used to scale the contribution of actual and expected future orders: if
an order is very difficult to serve βi ' 1, then the expected future savings
(2.3) has to be weighted more and actual savings (2.2) has less importance;

• the weighted difference between actual savings and expected future savings
suggests if select or not the order: the more negative is the result of the
difference the more we expect to benefit from the procrastination of the
order.

It can be noticed that in (2.5) we do not consider anymore the yet postponed
orders, this is done because with NP we managed to reach improving results
with no postponed orders and the NP_1 is implemented wishing to further im-
prove the results, but still keeping the number of postponed orders to 0.

Then the customers’ selection at day t is performed by sorting the customers
by decreasing conv_1ti, and taking the top k with

k = min(kmax, kα1)

kα1
= |{i ∈ N : convti ≥ α1}|

So, in the case of NP_1 the parameters to set are ρ, M1, α1. Concerning ρ,
probably a good threshold for the neighbourhood definition is the value found

19

for NP, the value of M1 cannot be estimated with the previous approach, the
only thing that can be said about it is that M1 > 0 and it has to be sufficiently
large to avoid postponed orders.

To sum up, the following algorithm reports the main steps of NP_1 imple-
mentation.

Algorithm 3 NP_1 for customers selection

1: Compute Ĩij ∀i, j ∈ V
2: Set a value for ρ ∈ (0, 0.5]
3: Compute Vρ(i) ∀i ∈ V
4: Set a value for M1 > 0
5: Set a value for α1

6: for t ∈ 1, ..., T do
7: Compute conv_1ti ∀i ∈ N
8: Sort N by decreasing conv_1ti
9: Compute kmax

10: k → min(kmax, kα1
)

11: Select the top k customers in sorted N

2.2 Analysis of Results
Python implementation

In this section, we report the results obtained by implementing the four de-
scribed policies and applying them to the simulated datasets. The reference
code has been developed using Python on VisualStudio Code editor and it is
entirely available at my GitHub repository.
Although the code has been developed using Windows10 environment the sim-
ulations were performed using Google Colaboratory notepads because they offer
a very useful interface with GitHub repositories and allow multiple simulations
to be run at the same time. Since the OR-Tools solver does not need GPU, the
runtime type for the simulations on Google Colaboratory was set to None.

Algorithm 4 summarizes the main steps of the simulations, that can be ex-
ecuted by calling the function main.py with the appropriate arguments:

python main.py file_path -p policy -d days_simulation -s solver

where file_path is the path to the file containing the distribution of cus-
tomers’ demands in the considered region, in the reference code it is grid.txt;
policy can be chosen among values EP, DP, NP, NP_1; days_simulation is the
number of days in the simulation, in following results days_simulation is equal
to 100. Finally, solver is the solver used to solve the instances of CVRP, in
this section solver is set to ortools

All the constant values that define the data of the problem, such as the
number of vehicles, the maximum duration of the routes etc. can be found and
modified in file constant.py.

20

https://github.com/ChiaraVercellino/Thesis-CVRP

Finally the more important functions used for the policies implementation are:

select_compatible_cells(df_distribution, depot, rho)

that is used to create the neighbourhood Vρ(i) ∀i ∈ V .
The definition of this function and a more detailed description can be found in
Functions/CostomerCompatibility.py

_early_policy(customer_df, this_day, num_deliveries)
that selects customers for CVRP according to EP.

_delayed_policy(customer_df, this_day, num_deliveries)
that selects customers for CVRP according to DP.

_neighbourhood_policy(customer_df, this_day, num_deliveries, compatibility,
probabilities)
that selects customers for CVRP according to NP.

_neighbourhood_policy_1(customer_df, this_day, num_deliveries, compatibility,
probabilities, compatibility_index, depot_distance)
that selects customers for CVRP according to NP_1.

The definitions and some more detailed descriptions of the policies’ functions
can be found in Functions/CostomerSelection.py

Algorithm 4 Python Simulation
1: Choose a policy ∈ {EP, DP, NP, NP_1}
2: Load the distribution of orders in the considered region
3: Set the parameters’ values for the policies
4: if policy == NP or NP_1 then
5: Compute Ĩij ∀i, j ∈ V

6: for t ∈ 1, ..., T do
7: Sample from the orders distribution the new customers’ demands
8: Update set of pending customers N
9: Apply the chosen policy

10: Save daily data: selected customers, routes and costs
11: Remove the selected customers from N
12: Compute metrics to evaluate the performance of the policy

Some further considerations have to be made concerning the following sim-
ulations’ results.
The first 10 days in the simulations are not considered in the computation of
the metrics since we start with an empty set of pending customers, but this
does not correspond to the real case situation.
The metrics we use to compare the results are the average number of vehicles
used each day m̄ , the average daily travel cost c̄ and the total number of post-
poned orders post. It must be noticed that in the computation of c̄ we do not
consider the service times because those are costs that cannot be minimized.

21

Moreover, the choice of analysing the average daily travel cost instead of the
total travel cost up to last day T is justified by the fact that, reducing c̄, also the
total travel cost is minimized and the values are smaller, so easier to compare.
The metrics cited above concern the effectiveness of the policies, anyway also
the execution time of the different policies can be relevant, so a comparison of
the execution times has to be made.

NP results

To evaluate the NP we compare the obtained results with the ones of EP and
DP, using different seeds for the pseudo-random generation of the daily datasets.

In the following tables, we report the values of the performance metrics m̄ ,
c̄ and post for EP and DP.

Average travel cost seed=57 seed=43 seed=2 seed=89 seed=1074 seed=551
EP 5580.0 5506.0 5552.0 5601.0 5507.0 5566.0
DP 5551.0 5524.0 5571.0 5603.0 5497.0 5566.0

Table 2.1: Average travel cost c̄ for EP and DP for different seeds.

Average used vehicles seed=57 seed=43 seed=2 seed=89 seed=1074 seed=551
EP 45.429 44.912 45.374 45.538 45.099 45.088
DP 45.319 45.066 45.462 45.659 45.077 45.077

Table 2.2: Average number of used vehicles m̄ for EP and DP for different seeds

Postponed orders seed=57 seed=43 seed=2 seed=89 seed=1074 seed=551
EP 0 0 0 0 0 0
DP 197 403 276 226 177 141

Table 2.3: Total number of postponed orders post for EP and DP for different
seeds

Looking at these results, we can observe that m̄ is quite the same for both
policies and c̄ does not seem to point out a best policy between EP and DP.
Anyway, the values of post evidence that, in the long run, DP produces a lot of
postponed orders, so it is a policy to be avoided for our datasets.

The first step to evaluate the performance of NP has been a grid search
approach for values of ρ, M , α. In particular starting from the ranges ρ ∈
(0, 0.5], M ∈ [4, 5], α ∈ (0.2, 2), a study of c̄, m̄ and post has been performed.
The values chosen for the parameters were:

• M ∈ {4, 4.5, 5}

• ρ ∈ {0.1, 0.2, 0.3, 0.4}

• M ∈ {0.3, 0.7, 1.1, 1.5, 1.9}

22

The values of c̄ are reported in table 2.4. Concerning m̄, we produced the
boxplots for each seed in figure 2.2. Finally, the values of post are not repre-
sented since they were all equal to 0.

This first approach did not produce good results, as can be seen, the mini-
mum values of c̄ for each seed, the one corresponding to green cells in table 2.4,
are not improving the result with respect to EP and DP. Also, the value of m̄
does not seem to reduce when applying policy NP.
The only positive result about NP in the grid search approach is that it does
not produce postponed orders.

Figure 2.2: Boxplot of the average number of used vehicles using NP for each
seed. The samples in each boxplot are produced making M , ρ and α vary in
the grid search.

23

NP average travel cost seed=57 seed=43 seed=2 seed=89 seed=1074 seed=551
M = 4, ρ = 0.1, α = 0.3 5581.0 5517.0 5564.0 5598.0 5513.0 5563.0
M = 4, ρ = 0.1, α = 0.7 5567.0 5515.0 5580.0 5584.0 5507.0 5572.0
M = 4, ρ = 0.1, α = 1.1 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 4, ρ = 0.1, α = 1.5 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 4, ρ = 0.1, α = 1.9 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 4, ρ = 0.2, α = 0.3 5579.0 5515.0 5561.0 5628.0 5497.0 5563.0
M = 4, ρ = 0.2, α = 0.7 5568.0 5525.0 5579.0 5584.0 5510.0 5571.0
M = 4, ρ = 0.2, α = 1.1 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 4, ρ = 0.2, α = 1.5 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 4, ρ = 0.2, α = 1.9 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 4, ρ = 0.3, α = 0.3 5576.0 5519.0 5565.0 5616.0 5514.0 5567.0
M = 4, ρ = 0.3, α = 0.7 5570.0 5517.0 5579.0 5594.0 5511.0 5574.0
M = 4, ρ = 0.3, α = 1.1 5569.0 5513.0 5592.0 5601.0 5501.0 5586.0
M = 4, ρ = 0.3, α = 1.5 5568.0 5512.0 5587.0 5600.0 5498.0 5588.0
M = 4, ρ = 0.3, α = 1.9 5568.0 5512.0 5587.0 5600.0 5498.0 5588.0
M = 4, ρ = 0.4, α = 0.3 5579.0 5519.0 5561.0 5620.0 5503.0 5563.0
M = 4, ρ = 0.4, α = 0.7 5571.0 5508.0 5584.0 5586.0 5499.0 5572.0
M = 4, ρ = 0.4, α = 1.1 5565.0 5511.0 5591.0 5594.0 5512.0 5568.0
M = 4, ρ = 0.4, α = 1.5 5569.0 5519.0 5576.0 5604.0 5514.0 5570.0
M = 4, ρ = 0.4, α = 1.9 5569.0 5519.0 5576.0 5604.0 5514.0 5570.0
M = 4.5, ρ = 0.1, α = 0.3 5581.0 5517.0 5564.0 5598.0 5513.0 5563.0
M = 4.5, ρ = 0.1, α = 0.7 5567.0 5515.0 5580.0 5584.0 5507.0 5572.0
M = 4.5, ρ = 0.1, α = 1.1 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 4.5, ρ = 0.1, α = 1.5 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 4.5, ρ = 0.1, α = 1.9 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 4.5, ρ = 0.2, α = 0.3 5579.0 5515.0 5561.0 5628.0 5497.0 5563.0
M = 4.5, ρ = 0.2, α = 0.7 5568.0 5525.0 5579.0 5584.0 5510.0 5571.0
M = 4.5, ρ = 0.2, α = 1.1 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 4.5, ρ = 0.2, α = 1.5 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 4.5, ρ = 0.2, α = 1.9 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 4.5, ρ = 0.3, α = 0.3 5576.0 5519.0 5565.0 5616.0 5514.0 5567.0
M = 4.5, ρ = 0.3, α = 0.7 5570.0 5517.0 5579.0 5594.0 5511.0 5574.0
M = 4.5, ρ = 0.3, α = 1.1 5571.0 5513.0 5589.0 5602.0 5501.0 5586.0
M = 4.5, ρ = 0.3, α = 1.5 5569.0 5513.0 5592.0 5601.0 5501.0 5586.0
M = 4.5, ρ = 0.3, α = 1.9 5568.0 5512.0 5587.0 5600.0 5498.0 5588.0
M = 4.5, ρ = 0.4, α = 0.3 5579.0 5519.0 5561.0 5620.0 5503.0 5563.0
M = 4.5, ρ = 0.4, α = 0.7 5571.0 5508.0 5584.0 5586.0 5499.0 5572.0
M = 4.5, ρ = 0.4, α = 1.1 5558.0 5503.0 5586.0 5596.0 5507.0 5585.0
M = 4.5, ρ = 0.4, α = 1.5 5565.0 5511.0 5591.0 5594.0 5512.0 5568.0
M = 4.5, ρ = 0.4, α = 1.9 5569.0 5519.0 5576.0 5604.0 5514.0 5570.0
M = 5, ρ = 0.1, α = 0.3 5581.0 5517.0 5564.0 5598.0 5513.0 5563.0
M = 5, ρ = 0.1, α = 0.7 5567.0 5515.0 5580.0 5584.0 5507.0 5572.0
M = 5, ρ = 0.1, α = 1.1 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 5, ρ = 0.1, α = 1.5 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 5, ρ = 0.1, α = 1.9 5557.0 5508.0 5572.0 5593.0 5515.0 5580.0
M = 5, ρ = 0.2, α = 0.3 5579.0 5515.0 5561.0 5628.0 5497.0 5563.0
M = 5, ρ = 0.2, α = 0.7 5568.0 5525.0 5579.0 5584.0 5510.0 5571.0
M = 5, ρ = 0.2, α = 1.1 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 5, ρ = 0.2, α = 1.5 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 5, ρ = 0.2, α = 1.9 5561.0 5504.0 5593.0 5598.0 5516.0 5576.0
M = 5, ρ = 0.3, α = 0.3 5576.0 5519.0 5565.0 5616.0 5514.0 5567.0
M = 5, ρ = 0.3, α = 0.7 5570.0 5518.0 5579.0 5594.0 5511.0 5574.0
M = 5, ρ = 0.3, α = 1.1 5571.0 5513.0 5589.0 5602.0 5501.0 5586.0
M = 5, ρ = 0.3, α = 1.5 5569.0 5513.0 5592.0 5601.0 5501.0 5586.0
M = 5, ρ = 0.3, α = 1.9 5568.0 5512.0 5587.0 5600.0 5498.0 5588.0
M = 5, ρ = 0.4, α = 0.3 5579.0 5519.0 5561.0 5620.0 5503.0 5563.0
M = 5, ρ = 0.4, α = 0.7 5571.0 5508.0 5584.0 5586.0 5499.0 5572.0
M = 5, ρ = 0.4, α = 1.1 5558.0 5503.0 5586.0 5596.0 5507.0 5585.0
M = 5, ρ = 0.4, α = 1.5 5565.0 5511.0 5591.0 5594.0 5512.0 5568.0
M = 5, ρ = 0.4, α = 1.9 5569.0 5519.0 5576.0 5604.0 5514.0 5570.0

Table 2.4: Values of c̄ using NP for each seed, applying grid search on M , ρ and
α. The green cells correspond to the minimum values for c̄ for each seed.

24

Then to try and improve the results of NP a further analysis on values of
convti and ρ has been made.
Firstly, we evaluated the variability of the neighbourhood and in particular of
|Vρ(i)\V t| with respect to ρ. The figure 2.3 represents the cardinality variation
for each order i in the simulation for seed 57.

Figure 2.3: Above the boxplots for values of |Vρ(i) \ V t| for different values of
ρ ∈ {0.1, 0.2, 0.3, 0.4}. Below the boxplots for values of |Vρ(i) \ V t| for values
of ρ ∈ {0.4, 0.45}

It can be noticed that for low values of ρ the cardinality of the set is very
high, this implies that the considered neighbourhood is made up of a big num-
ber of cells. Since we are considering vehicles with a limited orders capacity,
C = 5, it does not make sense to consider a huge amount of neighbours cells in
the computation of convti . So values of ρ like 0.1, 0.2, 0.3 are not to be used.
The values of |Vρ(i) \ V t| for ρ = 0.4 seem to be more sensible.
A further comparison with values for ρ = 0.45 in figure 2.3 leads to the choice
for ρ equal to 0.45 because for this value there is less variability of |Vρ(i) \ V t|.

25

The second step has been a study of the distribution of convti for each cus-
tomer i during the days of the simulations. The value of ρ was set to 0.45, then
we collected all values of convti , for bi > t, Vρ(i) \ V t 6= ∅. As can be seen in
figure 2.4 we have three big bins corresponding to intervals for convti which are
[0.5, 0.8], [0.9, 1.1] and [1.7, 2.0].
If we set a value of α ∈ [0.5, 0.8], we risk selecting orders that should be procras-
tinated, or better, to select only the top kmax orders obtaining a result quite
similar to the one obtained by EP. If the value of α is taken in [1.7, 2.0] then
we are selecting too few customers and we do not select in a convenient day the
customers whose convti index never reaches such a high value unless for bi = t.
So, a good smaller interval for the search of α value is [0.9, 1.1]. Further anal-
ysis of the distribution in [0.99, 1.0] suggests to look for α value very near to 1.0.

Following these considerations, we obtain also some indication for the value
of M . Since we are looking for a value of α < 1.0, a good value for M seems to be
5, because in this case M

bi−t > 2 only for bi− t ∈ {1, 2}, but if we compare orders
with Vρ(i)\V t 6= ∅ and convti < 1.0 with orders corresponding to Vρ(i)\V t = ∅,
the lasts will have the priority on the first ones, for any bi − t ∈ {1, 2, 3, 4, 5}.

Summing up, we have reduced the search for the parameters in the following
way:

• ρ ∈ (0.2, 0.5) −→ ρ = 0.45

• M ∈ [4, 5] −→M = 5

• α ∈ (0.2, 2) −→ α ∈ (0.99, 1.0)

Figure 2.4: Histograms representing the number of occurrences of convti values.
The plot on the left represents the overall distribution of convti , we can notice
three well-separated bins, with the same order of magnitude of occurrences. The
plot on the right is a histogram based on values of the central bin of the left
plot, corresponding to convti ∈ [0.99, 1.0]

Applying the obtained results to a gradually finer grid search on values
for α we reach the final step of the tuning looking at the results of NP for
α ∈ [0.999, 1.0] with step-size equal to 0.0001.
The figures below show c̄, m̄ and the total travel cost of each simulation, at the

26

varying of α. The obtained results are compared to the benchmarks represented
by policies EP and DP, trying to find a value of α that minimizes all the con-
sidered metrics. For a less dataset-dependent choice of α, six seeds for dataset
generation have been considered: seed ∈ {57, 43, 2, 89, 1074, 551}

Figure 2.5: Total travel costs for different seeds applying EP, DP and NP
with α ∈ [0.999, 1.0] with step-size equal to 0.0001, M = 5, ρ = 0.45, γ = 1.
Comparing the six plots, lot of variability can be noticed in the total travel cost,
anyway except for seed = 57 and α = 1.0 all the costs are below the benchmarks
represented by policies EP and DP. In three cases over six, seed = 57, 89, 551,
α = 0.9992 corresponds to the minima, for seed = 2 it leads to a slightly
suboptimal result. So α = 0.9992 seems a good threshold.

27

Figure 2.6: Average daily costs c̄ for different seeds applying EP, DP and NP
with α ∈ [0.999, 1.0] with step-size equal to 0.0001, M = 5, ρ = 0.45, γ = 1.
Comparing the six plots, we can observe that the trends in the costs c̄, for
different values of α, are very similar to the ones in figure 2.5. In fact, also
for c̄ the combination seed = 57 and α = 1.0 corresponds to an average cost
higher than the benchmark of DP, all other combinations lead to costs below
the benchmarks of EP and DP. In three cases over six, seed = 57, 89, 551,
α = 0.9992 corresponds to the minima, for seed = 2 it leads to a slightly
suboptimal result. So, similarly to figure 2.5, α = 0.9992 seems a good threshold.

28

Figure 2.7: Average number of daily vehicles m̄ for different seeds applying
EP, DP and NP with α ∈ [0.999, 1.0] with step-size equal to 0.0001, M = 5,
ρ = 0.45, γ = 1. In this case, the variation of m̄ is in a very small interval,
differences in the number of vehicles range in [0.3, 0.4], so these results cannot
be really relevant, since NP does not save even a whole vehicle. Anyway, looking
at the plot of seed = 57, a suggested range for α is [0.9991, 0.9992] since it is
the only interval in which c̄ is below the benchmarks of policies EP and DP.
This result is in agreement with the results reported in figures 2.5, 2.6 .

By a majority vote, looking on best values of c̄, m̄ and knowing that NP has
post = 0 for each value of α, the best configuration for NP is:

• ρ = 0.45

• M = 5

• γ = 1

• α = 0.9992

29

NP_1 results

The results on policy NP encourage the implementation of policy NP_1. More-
over, the tuning approach for NP can be taken as a guideline for the tuning of
NP_1. In this last policy the parameters to tune are ρ, M1 and α1.
In this case, the value of M1 is less complicated to set with respect to the case of
NP, because it is sufficient that M1 > conv_1ti ∀ bi > t. The choice of ρ can be
made through an analysis of the cardinalities |Vρ(i)∩V t| and |Vρ(i) \V t| which
determine the neighbourhood in the definition of conv_1ti in equation 2.5.
Looking at figure 2.8 we can notice that ρ = 0.4 produces a very big neigh-
bourhood Vρ(i), that has a cardinality up to 200. A smaller and more suitable
neighbourhood is the one defined by ρ = 0.45.

Figure 2.8: Boxplot for cardinalities |Vρ(i) ∩ V t| and |Vρ(i) \ V t| for ρ ∈
{0.4, 0.45}.

Concerning the value of M1, the analysis of values conv_1ti ∀ bi > t produces
the histograms reported in the figure 2.9. So a M1 > 7 is a value sufficiently
large such that all orders with bi = t are selected, we decided to set M1 = 8.
The search for an adequate value of α1 is more complicated, in this case, we
have not well-separated bins that clearly identify very low or very high values for
conv_1ti, moreover, the threshold α1 influences a lot the indexes distribution,
as can be noticed by comparing the two plot in figure 2.9.

30

Figure 2.9: Histograms representing the number of occurrences of
conv_1ti ∀ b1 > t values. On the left the indexes distribution when orders are
selected with a threshold α1 = 8, on the right the distribution corresponding to
threshold α1 = 0.4

So the tuning of parameter α1 has been made through a gradually finer grid
search:

• α1 ∈ [−1.1, 2.3] with step-size equal to 0.2

• α1 ∈ [−0.5, −0.3] with step-size equal to 0.02

The following figures summarize the tuning results on policy NP_1. We plot
the values of the total travel cost up to the 100th day of simulation, the average
daily cost c̄ and the average number of used vehicles m̄ for different values of
α1. The results of NP_1 are compared to the results of EP and DP, for all
the three considered costs the best value of α1 corresponds to the minima. To
select a value of α1 not depending on the specific values of a dataset, different
seeds for the dataset generation has been used.

It can be noticed that NP_1 further improves the results of NP, not only
for the costs c̄ and consequently for the total travel cost, but it also reduces
significantly the number of used vehicles. Moreover, these results have been
achieved without producing postponed orders (post = 0).
Finally, the chosen value for α1 has been −0.4 since generally a good range for
this parameter is [−0.5,−0.3], but for α1 values ranging in this interval, there
are some oscillations in the costs that make difficult to set a universally good
value for α1. The value α1 = −0.4 is associated with the minimum number of
vehicles in two cases over six, even if the minima of the travel costs correspond
to other values in [−0.5,−0.3]. Anyway, the costs associated with α1 = −0.4
are only slightly suboptimal with respect to the global minima reached by costs
functions in the simulated scenarios.

To sum up, the best configuration for NP_1 found so far is:

• ρ = 0.45

• M1 = 8

• α1 = −0.4

31

Figure 2.10: Total travel costs for different seeds applying EP, DP and NP_1
with α1 ∈ [−1.1, 2.3], M1 = 8, ρ = 0.45. NP_1 reduces the costs if α1

threshold is set properly. In these plots, a good range for this parameter is
the one highlighted by the zooms, which is α1 ∈ [−0.5,−0.3]. Concerning the
minima of the cost functions, most of them are in the range [−0.5,−0.46].

32

Figure 2.11: Average daily costs c̄ for different seeds applying EP, DP and NP_1
with α1 ∈ [−1.1, 2.3], M1 = 8, ρ = 0.45. Similarly to figure 2.10, NP_1 reduces
the average costs, especially for α1 threshold ∈ [−0.5, −0.3], this interval is the
one zoomed in each figure. It can also be noticed that the trends of functions
c̄ are really similar to the ones of the total costs, that justifies the choice of
considering only one of these values as a performance metric.

33

Figure 2.12: Average number of daily vehicles m̄ for different seeds applying EP,
DP and NP_1 with α1 ∈ [−1.1, 2.3], M1 = 8, ρ = 0.45. These plots evidence
that good tuning on NP_1 can lead to a significant reduction of the number
of used vehicles. For values of α1 ∈ [−0.5, −0.3] we get a reduction of more
than one vehicle in the average daily used ones, this can be a relevant reduction
in the fixed costs, if we consider the total fixed costs on the long run. Finally,
in the suggested range for the threshold α1, the value −0.4 is associated with
minima in two cases over six.

Final Comparison

In this final subsection, we compare the results of the four policies EP, DP,
NP and NP_1, considering the total travel costs, the average daily costs, the
average daily number of used vehicles and the execution times of the simulations.
The first three metrics will evaluate the performances of the policies, whilst the
execution time is a measure of the effort to compute indexes and sort customers
for the selection.

34

Figure 2.13: Total travel costs for datasets generated with different seeds.

Figure 2.14: Average daily travel costs for datasets generated with different
seeds.

Figure 2.15: Average number of daily used vehicles for datasets generated with
different seeds.

35

Looking at figures 2.13 and 2.14, it can be noticed that for all instances NP
and NP_1 introduce a relevant reduction in the costs with respect to EP and
DP. Generally, NP_1 performs better than NP.
Moreover, in figure 2.15 it can be observed that, for all instances, NP_1 signifi-
cantly reduces the number used vehicles, whilst NP uses quite the same vehicles
than EP and DP.

To quantify the improvements of the neighbourhood policies we define the
relative percentage improvement as

%impr∗ =
min(costEP , costDP)− cost∗

cost∗
× 100 ∗ = NP, NP_1

The results of this formula, applied to the costs obtained by simulations are
summarized in tables 2.5 and 2.6.

Average travel cost min(EP,DP) NP improvement (%) NP_1 improvement (%)
seed=145 5489.0 1.07 2.50
seed=68 5481.0 0.94 2.49
seed=999 5456.0 0.96 1.47
seed=202 5549.0 0.69 2.42
seed=7890 5514.0 1.03 2.49
seed=11 5486.0 0.59 2.43
seed=36 5514.0 1.19 1.94
seed=322 5494.0 1.74 2.56
seed=1 5492.0 1.10 2.41
seed=17 5527.0 1.39 2.60
seed=100 5521.0 0.25 2.83
seed=330 5610.0 1.26 3.09
seed=499 5496.0 0.48 2.29
seed=1000 5484.0 0.59 2.79

Table 2.5: Relative percentage improvements of policies NP and NP_1 with
respect to minima average daily costs of benchmark policies EP and DP. NP_1
is associated with the most relevant improvements.

36

Average daily vehicles min(EP,DP) NP improvement (%) NP_1 improvement (%)
seed=145 44.758 0.52 2.39
seed=68 44.714 0.20 2.44
seed=999 44.549 0.03 1.83
seed=202 45.022 0.12 2.55
seed=7890 45.153 0.56 2.90
seed=11 44.857 -0.14 2.56
seed=36 45.066 0.49 2.01
seed=322 44.824 0.79 2.62
seed=1 44.505 0.47 2.50
seed=17 44.912 0.74 2.43
seed=100 44.835 -0.25 2.92
seed=330 45.703 0.51 2.87
seed=499 44.956 0.10 2.58
seed=1000 44.824 0.17 2.93

Table 2.6: Relative percentage improvements of policies NP and NP_1 with
respect to minima average number of vehicles of benchmark policies EP and
DP. NP_1 is associated with the most relevant improvements.

Figure 2.16: Boxplot of execution times of simulations for the policies EP, DP,
NP, NP_1.

Finally, some observations about execution times have to be made: NP and
NP_1 require more computations than EP and DP and this is reflected in higher
execution time. Anyway, the total execution time for a 100 days simulation is
of about 10 minutes, which corresponds to nearly 6 seconds a day, including
dataset generation, customers’ selection and CVRP solution by means of OR-

37

Tools solver.
Looking at boxplots in figure 2.16, we can observe that the gap in the execution
times introduced by NP and NP_1 is of nearly 1 minute per simulation that
is nearly 0.6 seconds per day in simulation. However, this slight increment is
justified by the much more relevant reduction of the costs.

38

Chapter 3

Solvers for CVRP

In this chapter, we discuss two solvers to solve the daily CVRPs in the simula-
tion.
Nowadays, there are many solvers that could be used to solve this kind of prob-
lems, and most of them are very keen on the constraints’ definition. Anyway,
solvers that implement exact algorithms, like Gurobi or CPLEX, require a lot
of execution time for large instances and solutions obtained with a very short
time limit risk to be really suboptimal.
Other software for CVRP based on meta-heuristics, like VRPH, or on constraint
optimization, such as OR-Tools are much faster and produce very convenient
results.
In the first part of this thesis, OR-Tools solver has been used, because it has
an available library for Python and allows a handy definition of constraints,
whilst VRPH is written in C++ and the integration of the solver is possible
only through an executable file that takes as input .txt files; moreover the only
capacity constraint available in VRPH is the one concerning the number of cus-
tomers visited by each vehicle.
In this second part of the thesis, we introduce a new solver, based on a meta-
heuristic approach, that improves the convenience of the routes with respect to
the ones found by OR-Tools. So, the main analysis of this chapter concern:

• Google OR-Tools solver: it is a solver based on constraint optimization,
developed by Google API to solve various classes of problems: assignment,
bin packing, network flows, scheduling and routing problems. This solver
is available for C++, Java, Python and DotNet programming languages,
so it is very easy to integrate inside the code. This kind of solver takes
nearly 6 seconds to sub-optimally solve the instances of CV RP produced
by the customers’ selection.

• CW-TS solver: it is a solver developed during this thesis, which aims to
improve the results of OR-Tools, but maintaining the definition of all the
constraints. This solver has been implemented using Python to be easily
included in the code developed in the first part of the thesis. Anyway,
the Object-Oriented structure of the code allows an easy transcription to
compiled and faster languages, such as C++ and Java. This solver is
composed of two main steps:

39

- Clark-Wright and SmallRoutesElimination algorithms: greedy ini-
tialization of the CVRP solution. This first solution is dominated by
the OR-Tools one and runs in less than 1 second.

- TabuSearch meta-heuristic: meta-heuristic that produces at each step
a new feasible solution of the CVRP, by means of Swap and Insertion
functions combined with a Local Search. The exploration of the solu-
tion space is guided by a Tabu Search approach that highlights tabu
moves and avoids local minima. This second phase of the algorithm
is the one that produces improving routes and it is designed to run
for 45 seconds.

40

3.1 Google OR-Tools solver
OR-Tools is open-source software for combinatorial optimization, its library is
a set of operations research tools developed in C++ by Google. It can be used
to find the optimal, or suboptimal, solutions to an optimization problem, using
state-of-the-art algorithms to narrow down the exploration of the solution space.
The performances of OR-Tools won it four gold medals in the 2019 MiniZinc
Challenge, the international constraint programming competition.

Concerning the routing optimization, OR-Tools can be used to solve different
kinds of problems:

- TSP: the most basic routing problem.

- CVRP: VRP with capacity constraints.

- TWVRP: VRP with time windows that specifies feasible time intervals to
visit the customers

- VRP with dropped visit: VRP in which vehicles could visit only a subset
of all customers, but take a penalty for each customer that is not visited
(dropped customer).

For all these problems, an exhaustive search on the solution space would lead
to the optimal solution. Anyway, the amount of execution time to solve them
grows exponentially with the size of the problem, determined by the number
of customers. So, an exact approach is computationally intractable for all but
small sets of locations. Considering larger problems, optimization techniques
are needed to investigate the solution space in a smart way and find optimal or
sub-optimal solutions.
The approach used by OR-Tools is a combination of constraint programming
and meta-heuristics, based on Local Search and Large Neighbourhood Search.

3.1.1 Constraint Programming
Constraint Programming, in brief CP, is a field of operations research that aims
to solve optimization problems focusing on the constraints rather than the ob-
jective functions.
CP has been successfully applied to different kinds of optimization problems,
also with heterogeneous constraints. In fact, one of the main strengths of CP is
the possibility to deal with any kind of constraints, even the ones that include
symbolic variables and meta-constraints i.e. constraints on constraints.
Another peculiarity of CP is the ease of modelling a problem: since CP exploits
locally each constraint, the insertion of constraints, even during the search, can
be easily dealt with.
These aspects result in a very important advantage in CP: CP can be applied
to very different kind of models, maintaining quite the same search strategy.

The problems to which CP is applied are called Constraint Satisfaction Prob-
lems (CSP). They are mathematical models with constraints and the aim is to
find a feasible solution. That is done by assigning values to the decision vari-
ables of the model such that every constraint is met.

41

Once defined the model, some algorithmic techniques are applied in order to
solve the problem: these techniques aim to find a smart way to visit the search
space reducing the number of visited solutions and investigating only the inter-
esting portions of the search space as quickly as possible.
The main techniques used in CP are chronological backtracking, constraint prop-
agation, Local Search and branching heuristics.

- Backtracking search is a general algorithm to solve CSP that systemati-
cally generates candidates to the solutions, by assigning feasible values to
the variables. It tries to extend a partial solution to a complete one, but
if it finds infeasibility during the process, it backtracks: it abandons the
candidate and returns to the last valid assignment.

- Constraint propagation reduces the domains of the variables, strengthening
or creating new constraints. It aims to make the problem easier to solve
and can be used also to check infeasibility in some portions of the search
space. If the application of constraint propagation does not lead to a
solution, a feasible value is assigned to a variable.

- Local Search is an incomplete method to improve the solution of a problem.
It proceeds iteratively assigning values to variables until all constraints are
satisfied: more precisely, only one value of a variable is modified in each
iteration, this leads to a solution that is close in the search space to the
one of the previous iteration and justifies the name local.

- Branching heuristics are heuristics based on Branch&Bound method, since
they are not exact methods they not necessarily lead to optimal solution,
but are designed to avoid wasting execution time in the exploration of
worsening solutions. Some of the most famous branching heuristics com-
bine pruning (to propagate constraints and reduce the variables domain),
creation of cuts (new constraints to further reduce the search space) and
beams based approaches (to reduce the number of investigated branches
in the search tree).

Usually, these techniques are combined together and exploit the dynamic
programming principle. Dynamic programming is both a mathematical opti-
mization method and a computer programming method. It consists of simplify-
ing a complicated problem by splitting it up into easier sub-problems recursively
and then solve the easiest problems. It must be noticed that non all decision
problems can be solved with this approach, but in general decisions that are
taken in several stages allow a recursive formulation.

3.2 CW-TS solver
The OR-Tools solver allows us to obtain good results in a very short time, any-
way, the user has little control over the algorithm of the solver and it has to use
it as a black-box solver, given the data of the problem. So, to try and further
improve the results, a meta-heuristic to solve CVRP has been developed.
This meta-heuristic, that has been named CW-TS algorithm, is the combination
of three famous algorithmic techniques: Clark-Wright algorithm, Tabu Search

42

heuristic and Local Search.

The first step in CW-TS algorithm is the initialization of a feasible solution,
that is to find non-overlapping routes that visit all customers, satisfying all
capacity constraints (on the number of customers, on the maximum load and on
the duration of the route) and using a feasible number of vehicles. To initialize
routes Clark-Wright algorithm has been combined with SmallRoutesElimination
algotithm.
Clark-Wright algorithm starts with the computation of the savings matrix, that
is, given the set of selected customers S and the depot location 0, the entry at
row i and column j of the savings matrix SM is

SMij =

{
c0i + c0j − cij ∀ i 6= j ∈ S

0 ∀ i = j ∈ S

where cij ∀i, j ∈ S ∪ {0} are the travel costs between the locations.
The entries of SM , analogously to savings indexes Iij , describe the convenience
of visiting customers i and j with the same route, the higher the savings the
more convenient is their assignment to the same route.
Then each customer is assigned to a route, so at the beginning, the number of
vehicles is equal to the number of customers: each vehicle starts from the depot,
visits exactly one customer and returns to the depot. Each route is correctly
initialised, by updating the current load, the number of visited locations, the
duration and the path of the route. After that, the entries in the upper tri-
angular matrix of SM , except the diagonal elements are sorted in decreasing
order: the row-column pairs indexes (i, j) correspond to customers in S. Given
the sorted pairs of customers, we consider the corresponding routes and try to
merge them. If the merge leads to a feasible route, then the set of current routes
is updated: the pair of old merged routes are eliminated, the new merged route
is inserted with the updated path, load and duration, and the number of used
vehicles is decremented by one.
This approach is applied to all sorted pairs of customers, so hopefully, in the
end, we obtain fewer routes that satisfy the capacity constraints.
Given these routes, we apply SmallRoutesElimination algorithm: the routes ob-
tained by Clark-Wright algorithm can include small routes, i.e. routes that visit
only 1 or 2 customers. These routes can probably be eliminated or better, the
number of small routes, and consequently, the number of used vehicles, could be
reduced. So, SmallRoutesElimination acts by considering each customer in the
small routes and trying to insert him in another route. The insertion is done by
looking for the best feasible insertion for the customer, which is the insertion
that produces the lowest additional travel cost, still preserving the feasibility of
the chosen route for the insertion. If a feasible insertion is found, the two routes
involved in the insertion and the set of small routes are updated.
At the end of this step, if the number of used vehicles is lower than the number
of available vehicles, we obtain a feasible initial solution. Otherwise, the last
customer in S is removed and the initialization of routes is repeated.

The second step of CW-TS algorithm concerns the Tabu Search and Local
Search techniques.
Given the initial feasible solution, we apply an iterative procedure that aims

43

to reduce the travel costs of the routes. The number of iterations is implicitly
controlled by setting a time limit for the execution of the algorithm.
The Tabu Search approach is used to avoid getting stuck in local minima: given
the current solution, we generate a solution in its neighbourhood, that is a
solution that is a slight modification of the current one. In our case, a neighbour
solution is obtained by slightly modifying at most 4 routes. Then, the cost of
the neighbour solution is evaluated and we decide if accept or not this solution
as a new current one. Anyway, to decide whether to accept or not a solution we
cannot consider only the improvement on the travel costs, because if we are in
the neighbourhood of a local minimum this would lead to a solution that gets
trapped in the local minimum. The main idea is that we have to accept some
worsening solution to avoid local minima and go towards global optima.
Tabu Search expresses this concept introducing the tabu list and the aspiration
criterion:

- The tabu list is a list that contains tabu moves, that are variations of the
current solution that lead to a yet visited solution. In our case, before
generating the neighbour solution, we save the old routes’ paths of the
routes involved in the transformation. Then, if the neighbour solution is
accepted, we insert in the tabu list the reverse moves for the neighbour-
hood, which are the old routes’ paths. In this way, each time we generate
a neighbour, we can easily check if the new routes correspond to a yet vis-
ited solution, this corresponds to a tabu violation. Another key element
for the tabu list is its length tabu_length, in fact, we do not memorize
in the tabu list all the reverse moves, but we set a fixed maximum length
for the tabu list and add the reverse moves till the length of the tabu list
reaches the maximum length. Once reached the maximum dimension, the
tabu list is updated in FIFO mode, allowing the memorization of the most
recent tabu moves and losing memory of very old tabu moves.

- The aspiration criterion is used to determine the acceptance of a solution.
In fact, given the neighbour solution there are three aspects that charac-
terize it: the difference diff in travel costs between the current solution
and the neighbour one, the difference diff_best in travel costs between
the best solution found so far and the neighbour solution, the reduction
of used vehicles associated with the neighbour solution and the violation
of the tabu in the neighbour generation. If the diff > 0 and the neigh-
bour solution does not violate the tabu, the solution is always accepted,
if diff < 0, the neighbour solution does not violate the tabu and we have
not accepted a new solution within the last gap_worse iterations, we ac-
cept the worsening solution. Finally, the neighbour solution is accepted,
even if it violates the tabu, if it reduces the number of used vehicles or it
is associated with the minimum travel cost found so far, diff_best > 0,
that is the aspiration criterion.

Another critical point in this second step of CW-TS algorithm concerns the
neighbours generation, in fact, a compromise between the simplicity and the
improvement of the neighbourhood has to be reached: if we use too simple
and random algorithms to produce a neighbour solution, we risk needing too
many iterations to reach an improving solution, if we use too complicated and
optimum-seeking algorithms we risk to waste too much execution time in the

44

neighbour generation and to point towards local minima.
After various attempts, the best configuration to generate a neighbour has been
found as a combination of Swap and Insertion algorithms.
The Swap consists of selecting two random routes in the current solution, then
one random customer is selected on each of the two routes. These customers
are intended to be swapped, that is, the customer selected on the first route is
assigned to the second route and vice-versa, the order of the other customers
in the routes is preserved. Every time a swap is tried, the feasibility of the
new routes is checked, if the swap is not feasible, other two random routes with
corresponding customers are selected, until a feasible swap is found.

Figure 3.1: Example of routes generated by Swap. The routes on the left are
the two randomly selected ones, the customers selected for the swap are the red
ones and the depot is represented by the black circle. The routes obtained with
the swap are the ones on the right.

The insertion phase takes place after having found a feasible swap. It consists
of operating on two random routes, if possible the first route is selected among
small routes. Then a random customer is selected on the first route, given this
customer, we try to insert him in the best position in the second route. If the
insertion leads to a feasible route then both routes are updated and contribute
to the neighbour solution definition, otherwise, the perturbation of the current
solution is only given by the swap.

Figure 3.2: Example of routes generated by Insertion. The routes on the left
are the two selected ones, the customer selected for the insertion is the red one
and the depot is represented by the black circle. The routes obtained after a
feasible insertion are the represented on the right.

It must be noticed that Insertion is not iteratively performed until reaching

45

a feasible solution because is much more difficult to find a combination of routes
that lead to feasibility with respect to the case of Swap. In fact, in our instances
of CVRP, the customer-capacity constraint seems to be much stronger than the
duration and the load constraints. This implies that Swap is a much easier op-
eration since it does not change the number of customers in each route, instead
Insertion increment the number of customers in the second route. Anyway,
even if it less probable that Insertion would lead to a feasible insertion, it is a
fundamental operation, that allows us to reduce the number of used vehicles,
by trying and emptying the small routes, hence the preferential choice of small
routes as the first route in the Insertion algorithm.

Given the feasible neighbour solution, a Local Search phase is performed: for
each route that has been modified in the current solution to obtain its neigh-
bour, we look for the best order to visit customers. Actually, we do not analyse
all possible permutations for each route, that is done for two main reasons: we
don’t want to spend too much execution time in the Local Search step and we
don’t need it either, and because we want to give way to a wider exploration
of the neighbourhood in the following iterations, without getting stuck in local
minima.
The choice of the examined permutations is done through the following reason-
ing: given the customers-capacity constraint, our routes could visit from 1 to
5 customers. If the considered route has 1 or 2 customers, we don’t need to
evaluate its permutations, in fact with 1 costumer we have only the identity
permutation and with 2 customers the clockwise and the anti-clockwise per-
mutations are associated with the same travel cost. If we have a number of
customers n that is from 3 to 5, we have n!

2 − 1 permutations to consider, we do
not evaluate the cost associated to the identity permutation since we have com-
puted yet during the neighbour generation. So, for 3-customers routes we have
2 permutations to analyse, for 4-customers routes we have 11 permutations, and
for 5-customers routes we have 59 permutations. Now, the exhaustive neigh-
bourhood investigation can be done without using too much execution time for
routes with 3 or 4 customers, but if we try all possible configuration also for
routes with 5 customers (and a lot of routes have 5 customers) we would spend
too much time in the Local Search, reducing significantly the number of itera-
tions of the CW-TS algorithm. So we set a maximum number of permutations
num_perm that can be tried to improve the costs of the modified routes for
5-customers routes.
After the Local Search phase, the neighbour solution goes through the accep-
tance step, supervised by the Tabu Search approach. Another important ob-
servation is that, since we perform the Local Search on the order of customers
in the modified routes, the routes paths contained in the tabu list are saved
as unordered sets of customers, otherwise it would be really unlikely to obtain
tabu violations.

Figure 3.3 exemplifies one iteration of CW-TS algorithm from the neighbour
generation to the acceptance step.
Finally, a summary of CW-TS algorithm is reported in algorithm 5.

46

Figure 3.3

47

Figure 3.3: One iteration of CW-TS algorithm starts with the generation of the
neighbour solution, given the current solution. The first variation is given by the
Swap algorithm, that is iteratively performed until a feasible swap is found, once
the feasibility is reached we check if the new routes violate the tabu and update
the routes for the neighbour solution. Successively, we try one iteration of the
Insertion algorithm, the result of this step does not produce for sure feasible
routes: if the found routes are feasible, then the neighbour is updated and
checked for tabu violation, otherwise, as in the example, the routes generated
by the insertion are discarded. Then, all the modified routes in the neighbour
go through the Local Search step that aims to reduce the travel costs of the
new paths, in the example, only the routes produced by swap goes through the
Local Search. The output of the Local Search contains both the optimized new
routes and the reduction in travel costs associated with the neighbour solution:
diff_cost is the reduction with respect to the current solution and diff_best is
the reduction with respect to the best solution found so far. In the example, we
have that the neighbour introduces an improvement for both best and current
solution (diff_cost > 0, diff_best > 0), anyway the first route generated by
swap corresponds to one of the unordered set contained in the tabu list (the
one highlighted in blue), so the neighbour solution violates the tabu. This tabu
violation implies that the neighbour solution is not accepted as a new current
solution, but since it is the best solution found so far, it activates the aspiration
criterion and it is accepted as the new best solution. This kind of acceptance
leads to the final step that is the tabu list update: in the example, the maximum
length of the tabu list is set to 6 and the current dimension of the tabu list is 5
so the first reverse move, corresponding to the set of the first old route in the
current solution before swap, is inserted. After that, the tabu length is 6, so
before adding the second reverse move, we have to delete the first tabu move
in the tabu list. In this way, the final dimension of the tabu list is equal to the
maximum allowed length.

48

Algorithm 5 CW-TS algorithm
1: elapsed_time←− 0
2: S ←− set of selected customers
3: initial_feasible←− False
4: while not initial_feasible do
5: Apply Clark-Wright algorithm
6: Apply SmallRoutesElimination algorithm
7: if number of routes ≤ number of available vehicles then
8: initial_feasible←− True
9: Save the solution: initial_solution

10: else
11: Remove last customer in S
12: Set time limit: max_time
13: Set number of iterations before accepting a worsening solution: gap_worse
14: current_solution←− initial_solution
15: best_solution←− initial_solution
16: no_improvement←− 0
17: tabu_list←− empty list
18: while elapsed_time ≤ max_time do
19: eliminated_route←− False
20: violate_tabu←− False
21: feasilble_swap←− False
22: while not feasilble_swap do
23: Apply Swap algorithm
24: if Swap algorithm produces feasible routes then
25: feasilble_swap←− True

26: Apply Insertion algorithm
27: if Insertion algorithm eliminates a route then
28: eliminated_route←− True

29: Apply Local Search
30: Check for tabu violations in the neighbour_solution
31: if at least one of the generated routes violates tabu then
32: violate_tabu←− True

33: Compute diff_cost and diff_best
34: if not violate_tabu and diff_cost ≥ 0 or eliminated_route then
35: current_solution←− neighbour_solution
36: Update the tabu_list
37: no_improvement←− 0
38: if diff_best ≥ 0 or eliminated_route then
39: best_solution←− neighbour_solution

40: else if diff_best ≥ 0 or eliminated_route then
41: best_solution←− neighbour_solution
42: Update the tabu_list
43: no_improvement←− 0
44: else if not violate_tabu and no_improvements ≥ gap_worse then
45: current_solution←− neighbour_solution
46: Update the tabu_list
47: no_improvement←− 0
48: else
49: no_improvement←− no_improvement+ 1

49

3.3 Analysis of Results
3.3.1 Python implementation
In this section, we describe the results of the CW-TS algorithm applied to the
CVRP instances generated by NP_1. Even this part of the code is imple-
mented in Python and developed using VisualStudio Code editor. The entire
code is available in the same GitHub repository.
Also for this part of the thesis, we have exploited Google Colaboratory notepads
to run multiple simulations, with the runtime type set to None.
We must observe that the variations, introduced by the solver of CW-TS algo-
rithm, do not affect the structure of the main function in file main.py.
To solve the CVRP instances with this solver, you have to call the main function
with the following command line arguments:

python main.py file_path -p policy -d days_simulation -s solver

where file_path is the path to the file containing the distribution of cus-
tomers’ demands in the considered region, in the reference code it is grid.txt;
policy can be chosen among values EP, DP, NP, NP_1; days_simulation is the
number of days in the simulation, in following results days_simulation is equal
to 100. Finally, solver is the solver used to solve the instances of CVRP and
is set to cwts

We observe that, even if the choice for policy is set to NP_1 , in order to
apply the CW-TS solver in combination with the best policy found so far, it is
compatible even with the other policies’ options. Furthermore, the solver can be
applied also to CVRP instances that are not generated by our simulation. This
can be done by exploiting the object-oriented structure of the solver, initializing
the solver’s objects.
Finally also for this solver, we have some constant values, such as the time limit
or the tabu length, to avoid magic numbers inside the code, also these values
are set only once in the file constant.py.

For a better understanding of the code structure we report here the basic
classes that are used to define and solve a CVRP instance: all these classes
definition and their documentations can be found in the folder Classes of the
GitHub repository.

class Route:
def __init__(self, cap_kg=constant.CAPACITY, cap_min=constant.TIME,

cap_cust=constant.CUSTOMER_CAPACITY):
it is used to define routes’ objects and check capacity constraints for each vehicle.

class Customer:
def __init__(self, id, demand, service_time):

it defines the customers’ objects and stores customers’ service times, locations
and demands.

50

https://github.com/ChiaraVercellino/Thesis-CVRP

class ClarkWrightSolver():
def __init__(self, selected_customer, depot

it is used to obtain a first feasible solution to CVRP instances.

class TabuSearch():
def __init__(self, initial_solution, max_time, tabu_len, gap_worse):

it is the core of the solver and it applies the Tabu Search algorithm to improve
the first solution of a CVRP instance.

3.3.2 Previous attempts
Before reaching the final configuration of the CW-TS algorithm several attempts
were performed: the main problems of the previous versions of this algorithm
concerned the execution time to generate neighbour solutions and apply Local
Search. In fact, those two parts are the ones more time-consuming, as evidenced
by the profiling tool for Python software of VS-Code.
The reason why we want these steps to be the more efficient as possible is that
we want to set a time limit of the order of seconds, since the OR-Tools solver
takes nearly 6 seconds to solve an instance of CVRP. Considering that the OR-
Tools solver is developed in C++, which is a compiled language, whilst our
software is entirely written in Python, an interpreted language, we consider a
good time limit for the CVRP solution 45 seconds. This time limit is set with
the belief that if the solver for CW-TS algorithm was translated in C++, the
execution time to perform the same number of iterations would be much lower,
such that the C++ time limit for CW-TS algorithm could be set to nearly 4−5
seconds.

Concerning the Local Search step we found out that the investigation of all
the possible permutations for the 5-customers routes exploited too much ex-
ecution time, making the LocalSearch taking up to more than 30 seconds of
cumulative execution time out of the 45 available seconds, resulting in a very
important reduction in the number of the performed iterations.
So, a first approach to solve this kind of problem has been a parallelized version
of the Local Search over all the possible permutations. Anyway, this kind of
approach led to a critical reduction of the performed iterations, because at each
iteration of CW-TS algorithm we had to parallelize the variables, introducing
a really high-demanding operation, vanishing the positive effect of the paral-
lelization. So, the second approach has been focused on reducing the number of
examined permutations for the 5-customers routes, trying to find a compromise
between the need for an accurate local search and its requested computation
time.
In figure 3.4, we report the boxplots for the iterations performed on the 100
days simulation, at the varying of the number of permutations performed on
5-customers routes in the Local Search step. The corresponding costs, in terms
of average travel costs and used vehicles, are shown in table 3.1.
Looking at the obtained results, a good number of permutations to considers is
20.

51

Figure 3.4: Boxplots of CW-TS algorithm iterations, at the varying of the
maximum number of permutations of a route performed in the Local Search
step. Each boxplot is obtained solving the instances of CVRP for the 100 days
simulation with a time limit of 45 seconds.

num_perm=20 num_perm=30 num_perm=40 num_perm=50 num_perm=60
Average travel cost 5367.0 5372.0 5380.0 5385.0 5383.0

Average number of vehicles 44.198 44.264 44.44 44.407 44.462

Table 3.1: Costs’ variation for number of permutations in the Local Search, the
results are based on a 100 days simulation, with time limit set to 45 seconds to
solve each CVRP instance.

Concerning the neighbourhood generation, the following attempts have been
made.

• Iterate until feasibility the Swap algorithm and then iterate until feasi-
bility Insertion algorithm: this approach resulted in never-ending while
cycles for some instances of CVRP, concerning the Insertion step. When
instances allowed a finite number of iterations in both while cycles, the
number of iterations of CW-TS algorithm were more than halved.

• Perform multiple feasible swaps: the swaps could involve more than one
pair of routes and the number of swapped customers on each route could
be more than one. This kind of neighbourhood generation is pretty time-
demanding and requires a complicated hyper-parameter tuning on the
number of routes’ pairs and on the number of swapped customers.

• Un-routing and re-routing: this procedure consists of removing from the
routes of the current solution some customers and then re-inserting them.
This approach was useful to reduce the number of used vehicles when
the Insertion algorithm did not have the priority for the small routes,

52

after that priority definition, this algorithm did not improve the results
anymore.

Another important step, for which we have made different attempts, is the
solution initialization.
In fact, the first idea was to develop a multi-start algorithm based on Clark-
Wright algorithm to initialize the routes, inserting a random component: the
idea was to take only some of the ordered pairs of row-columns indexes in the
savings matrix to merge the routes and then randomly try to aggregate the re-
maining pairs. Anyway, after having tried different percentages, to consider only
the pairs of customers corresponding to the very highest values in the savings
matrix, we found out that the best solutions were the ones that considered all
the sorted elements in the upper triangular matrix of SM . So, the initialization
of a feasible solution became deterministic and this multi-start approach was
discarded.

3.3.3 Tuning and final results
Given the CW-TS algorithm definition, we have two parameters to be tuned:
the number of not improving iterations before accepting a worsening solution,
gap_worse, and the maximum size of the tabu list, tabu_length.
To find the best values for these parameters we analyse the performances of
the CW-TS solver on the 100 CVRP instances generated with seed 57, when
the applied policy is NP_1. The costs we are minimizing are the average daily
travel costs and the average number of daily used vehicles. Figures 3.5 and 3.6
show these costs variations for different values of gap_worse and tabu_length.

Figure 3.5: Average daily costs at the varying of tabu_length and gap_worse.

53

Figure 3.6: Average number of used vehicles at the varying of tabu_length and
gap_worse. The variation in the number of vehicles is not much relevant since
the gap from minimum value to the maximum is of nearly 0.6 vehicles.

It must be noticed that the corresponding costs, when OR-Tools solver is
applied are

• Average daily travel cost = 5425.0

• Average number of used vehicles = 44.143

The first phase for tuning has been a grid search approach on the values

• gap_worse ∈ {50, 100, 150, 200, 250, 300, 350}

• tabu_length ∈ {40, 60, 80, 100, 120, 140}

As second step for tuning, we decided to further investigate the results ob-
tained with gap_worse = 250 and tabu_length ∈ {30, 40, 50}. We obtained
the results reported in table 3.2.

tabu_length=30 tabu_length=40 tabu_length=50
Average travel cost 5384.0 5368.0 5386.0

Average number of vehicles 44.429 44.297 44.385

Table 3.2: Costs variation for CW-TS solver tuning, the value for gap_worse
is set to 250.

Looking at the tuning results we decided that the best configuration for
CW-TS solver was

• num_perm = 20

• time limit of 45 seconds

54

• gap_worse = 250

• tabu_length = 40

Concerning the final improvement of the tuned CW-TS solver with respect
to the OR-Tools one, we observe that the absolute improvement on the travel
cost is on average of 57 km a day, that corresponds to percentage improvement
of 1.06%. Whilst the number of the average used vehicles remains quite the
same, as it is associated with a variation of 0.154 vehicles.

To further evaluate the possible advantages of using OR-Tools solver or CW-
TS solver, we consider the loads and the durations of the single routes found
during CVRP daily optimizations. We report the boxplots comparing the two
solvers results in figure 3.7: as can be noticed CW-TS solver produces more
balanced routes, in fact the variance of the routes’ loads and especially of the
routes’ durations is lower. These results can be really important for the planning
of the routes since it allows to plan more balanced work shifts.

Figure 3.7: Boxplots comparison for the characteristics of the routes found with
OR-Tools and CW-TS solvers: on the left the comparison of the average load
in kg for the singles routes, on the right the boxplots of the durations expressed
in min.

Finally, we propose a comparison of the two solvers’ results using different
seeds for the daily CVRPs scenarios’ simulations: as can be noticed in table
3.3, the tuned version of the CW-TS solver outperforms the OR-Tools solver
also on these scenarios and leads to an average reduction in the travel lengths
of 47.2 km a day.

55

vehicles OR-Tools vehicles CW-TS cost OR-Tools cost CW-TS improvement (km)
seed = 43 43.901 43.956 5387.0 5334.0 53
seed = 2 44.176 44.319 5424.0 5378.0 46
seed = 89 44.297 44.418 5444.0 5398.0 46

seed = 1074 43.901 44.044 5355.0 5316.0 39
seed = 551 43.824 43.912 5421.0 5369.0 52

Table 3.3: Comparison of the results obtained with OR-Tools and CW-TS
solvers using different seeds for scenarios’ simulations. The average reduction
for the daily routes, when applying CW-TS solver is of 47.2 km a day, in the
simulated scenarios.

For the sake of coherence, we propose a last comparison that highlights the
costs’ reduction due to to both the application of NP_1 policy and the CW-TS
solver: the combination of both these optimization approaches reduces the costs
for the deliveries of about 3.40%.

Figure 3.8: Total travel costs for datasets generated with different seeds. The
simulation is made of 100 days and the costs sum the travel costs of all the
vehicles for all the days.

Figure 3.9: Average daily travel costs for datasets generated with different seeds.
The average takes into account the travel costs associated with each daily CVRP.

56

Figure 3.10: Average number of daily used vehicles for datasets generated with
different seeds. The number of vehicles is averaged over the simulation’s days,
considering each day the number of vehicles to solve the CVRP.

57

Chapter 4

Future Developments

The work done in this thesis offers some starting points for future developments
that can be investigated both as a subject of a future thesis and as an applica-
tion to real-world datasets.
A first approach for future development concerns the translation of this thesis’
code into a compiled language, such as Java or C++: this translation could
reduce significantly the runtime for the CW-TS solver. Moreover, reducing the
execution time of the solver could open the way to the implementation of more
complicated neighbourhood functions, to further improve the CVRP solutions.
Another improvement concerning the solver could be the development of other
initialization functions to obtain the first feasible solutions to the CVRP in-
stances: this way a parallel multi-start algorithm could be implemented. Con-
cerning the parallelization of the algorithm, C++ language is suggested, since
the parallel implementation can be done very easily.

About the policies for customers’ selection, some other policies could be
defined and this is an open field that can be deeply investigated. A more de-
fined development concerns the definition of the distributions used to compute
the indexes for the policies NP and NP_1: first of all the parameters of the
distributions could be estimated from real-world data, by means of statistical
approaches, then the customers’ arrivals could be modelled by a Poisson distri-
bution, instead that using an integer Uniform. The use of a Poisson distribution
on real-world data could lead to interesting results for the furniture company
and it is a distribution that is highly used to model arrivals over time, given the
hypothesis of independent arrivals over non-overlapping time-windows. Instead,
the multinomial distribution over the region of interest could be maintained, ap-
plying the splitting property on the Poisson distribution to assign the customers
to the corresponding cells.

58

Chapter 5

Conclusion

To sum up, the two main targets of this thesis have been reached: we found
out a policy for the customers’ selection task that exploits the future stochas-
tic information in an appropriate way: applying policy NP_1 we were able to
both reduce travels costs, to the benefit of the furniture company, and satisfy
customers’ demands, without producing postponed orders. The comparison to
the naïve policies, EP and DP highlighted an average reduction in the costs of
2.44% over different scenarios simulations.

The development of the CW-TS solver opens the way to further costs re-
duction. The improvement obtained by solving the CVRP instances using our
solver instead of the OR-Tools one is of about 0.96% and the obtained routes
allow a more balanced plan of the work shifts. This improvement comes at the
cost of an execution time that is nearly 7 times higher, but could be hopefully
reduced by an adequate translation in a faster programming language, such as
C++.
Finally, the considered constraints for the CW-TS solver are the ones required
by our case study, but other constraints, to meet other requirements, could be
easily added without much effort.

59

Acknowledgement

Per concludere vorrei ringraziare le persone che mi hanno supportato nel mio
percorso universitario, soprattutto in questi ultimi due anni per poter raggiun-
gere il traguardo della Laurea Magistrale.

Innanzitutto, vorrei ringraziare la mia famiglia, che mi ha permesso di af-
frontare i miei studi, fornendomi tutto l’appoggio e l’aiuto che mi serviva per
poter ottenere i migliori risultati.

Ringrazio inoltre i miei colleghi e amici che ho conosciuto in questi anni, che
hanno reso la frequenza delle lezioni non solo un momento di apprendimento,
ma anche un momento di amicizia che è rimasta anche al di là dell’ambito acca-
demico. Un particolare ringraziamento è per Valeria, mia collega e soprattutto
amica con la quale ho affrontato svariate situazioni, positive e negative, uscen-
done sempre con ottimi esiti.

Infine, un sentito ringraziamento alle mie amiche di lunga data, Giulia,
Valentina e Dahiana con le quali ho mantenuto un bellissimo rapporto di ami-
cizia in tutti questi anni e che hanno sempre apprezzato il mio impegno, incor-
aggiandomi a puntare sempre al massimo.

60

Bibliography

[1] Maria Albareda-Sambola, Elena Fernández, and Gilbert Laporte. The dy-
namic multiperiod vehicle routing problem with probabilistic information.
Computers & Operations Research, 48:31–39, 2014.

[2] Paolo Brandimarte and Giulio Zotteri. Introduction to distribution logistics,
volume 21. John Wiley & Sons, 2007.

[3] Geoff Clarke and John W Wright. Scheduling of vehicles from a central
depot to a number of delivery points. Operations research, 12(4):568–581,
1964.

[4] Laurent Perron and Vincent Furnon. Or-tools.

[5] Paolo Toth and Daniele Vigo. The vehicle routing problem. SIAM, 2002.

[6] Nikolaj van Omme, Laurent Perron, and Vincent Furnon. or-tools user’s
manual. Technical report, Google, 2014.

[7] Eleonora Vardé. A top-down approach for the dynamic vehicle routing prob-
lem. Master’s thesis, Politecnico di Torino, 2018.

[8] Min Wen, Jean-François Cordeau, Gilbert Laporte, and Jesper Larsen. The
dynamic multi-period vehicle routing problem. Computers & Operations
Research, 37(9):1615–1623, 2010.

61

	Introduction
	Dynamic Capacitated Vehicle Routing Problem
	From VRP to multi-period DCVRP
	Vehicle Routing Problem
	Capacitated Vehicle Routing Problem
	Multi-period Dynamic Capacitated Vehicle Routing Problem
	The mathematical formulation of multi-period DCVRP

	The application to the case study

	Policies for customers selection
	Policies definition
	Early Policy
	Delayed Policy
	Neighbourhood Policy: first version
	Neighbourhood Policy: second version

	Analysis of Results

	Solvers for CVRP
	Google OR-Tools solver
	Constraint Programming

	CW-TS solver
	Analysis of Results
	Python implementation
	Previous attempts
	Tuning and final results

	Future Developments
	Conclusion
	Acknowledgement
	Bibliography

