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Abstract

This thesis studies the modeling of credit risk in static credit portfolios. In this
context one of the most important issues is to understand the dependence between
defaults, that is one of the measures that helps shaping the probability distribution
of the total loss of a credit portfolio. In many cases this dependence is difficult to
define, and therefore it is hard to find directly the related risk measures (such as
the VaR). For this reason, we investigate the sharp bounds of the VaR of the total
loss distribution defined in [1] in two cases : when we do not know correlation
between defaults and when we consider an estimation ρ of it. In particular in [1]
they consider the indicators of default to be exchangeable and that the marginal
distribution of each default is a Bernoulli with probability p.
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Introduction

Credit Risk Management has become crucial among financial institutions. Not
only does credit risk management generate stability and reassure stakeholders, but
it can also lead to higher returns. However, in many circumstances risk managers
do not have enough pieces of information to properly define risk measures. For
instance, a variable that is difficult to estimate is correlation between defaults,
which plays a paramount role in the determination of the total loss distribution
of credit portfolios. Default correlation is present as obligors tend to have strong
borrower-lender relationships (if these are financial institutions) and because they
are subject to the same macroeconomic factors.

This thesis is based on the results of [1]. Here the authors model credit risk of
a portfolio of obligors when defaults are modeled with an exchangeable Bernoulli
vector in two contexts: with an estimation of correlation between defaults and
with no information about it. In particular, they find sharp bounds of the Value-
at-Risk (VaR) of the distribution of the loss for each context. In this work we
compare these bounds with other bounds defined thanks to [2] and by setting the
hypothesis as paper [1]. The latter bounds, unlike the ones defined in [1], are not
sharp. Several numerical examples will then be provided.

The rest of this thesis is organized as follows. In Chapter 1 we give an
overview on Risk Management, by introducing the most common financial risks,
the approaches and a brief history. Chapter 2 focuses on Credit Risk Management,
by showing the importance of dependence modeling and some of the most famous
credit risk models, such as Merton model and the mixture models. In particular,
mixture models will be defined after setting the mathematical framework with De
Finetti’s representation theorem. In Chapter 3 the mathematical framework is set
(with no mention on correlation), and a definition of the two couples of bounds
for the Value-at-Risk is given from [1] and [2]. In Chapter 4 we will compare
the bounds, and two numeric examples will be presented. In Chapter 5 we will
propose two new couple of bounds for the VaR from [1] and [2] considering an es-
timation of the correlation between defaults. These bounds will be then compared
thanks to two numerical examples.
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1 Risk Management

The concept of risk is usually seen in a negative way; it is usually connected to
hazard or to bad consequences. The general idea of risk is usually connected only
to its downside and less frequently as a possible advantage, i.e. the potential for a
gain. We can see this aspect in the concept of volatility. A volatile financial asset
is considered to be dangerous as its value can easily oscillate and therefore reach
low values. At the same, though, when an asset is volatile is means it is more
likely for it to reach higher values than another asset with the same expected value
but lower volatility.
In this chapter, we will try to present the concept risk from different point of
views. In Section 1.1 we will show what are the types of risk that financial insti-
tutions need to cope with; in Section 1.2 the focus will be on the reasons why risk
management tools should be implemented within a firm; Section 1.3 will discuss
the evolution of the approaches adopted in Risk Management; Section 1.4 will
talk about the Financial crisis in 2007-2008 and Section 1.5 will discuss about the
evolution of the Basel accords, which were implemented to provide more stability
and soundness to financial institutions.

1.1 Different types of risks
A financial institution faces all the time different kinds of risks. Here are the most
common, as presented from [3]:

• market risk: in broad terms, this is referred to a swinging of the price of
an asset, given maybe by an asymmetry between supply and demand, or by
other factors. Market risk can thus be furtherly divided into interest rate
risk (risk that the interest rate of a bond will change in the market, with
the risk that the bond will lose a lot of its value; this can be measured with
duration), equity risk and exchange rate risk (the risk of a sudden change in
exchange rates).

• credit risk: when we talk about credit risks we don’t just talk about the risk
that an obligor won’t manage to pay back its debt, but also how much of
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the outstanding debt is at risk. Connected with credit risk we can also find
collateral risk. When money is lent from a financial institution, the creditor
usually requires an asset as collateral, granting him the possibility to keep
that asset if the obligor is unable to repay its debt. Since the possibility of
default of the obligor exists, the collateral must not be set randomly, but
following specific procedures: its market and credit risk will be examined
thoroughly. An additional study may be done on the haircut coming from
that asset. The intuitive idea of an haircut is that if an amount of 100 is given
as a loan, the asset’s value given as collateral will be 100 plus a percentage
given by the haircut (which will be big for less solid creditors). We will
discuss later furtherly about credit risks.

• operational risks: these are referred to external factors of in general factors
that are not directly tied with financial risks, such as the information security
risk or reputational risk.

The boundaries of the aforementioned risk categories are not always clearly
defined. We can thus include two new risk categories which surface in nearly all
the three categories already presented:

• model risk: this is related to the misuse of a risk model, for instance in
calibrating the wrong parameters. It can be argued that in every model there
will always be some degree of model risk.

• liquidity risk: as of [13], it’s when a financial asset is not marketable, for
instance when it can’t be purchased or sold fast enough to avoid or minimize
a loss. It is typically explained by unusually big bid-ask spreads. This is the
case, for example, if an asset manager absolutely needed to buy an asset
when many other managers are rushing to buy it: if most of it has already
been sold, the asset manager will end up paying it a lot more.

1.2 Why managing financial risks
It is important to understand the reasons why a company should decide to invest
in Risk Management tools. It is important to consider all the points of view and
interests of all the stakeholders. Some of the stakeholders are the shareholders,
the management board or customers of the financial institution. A good risk man-
agement framework needs to be put in place in other to satisfy the interests of
all the parties involved. Two different views from [3] will now be presented, one
showing the society’s interest in investing in Risk Management, and the other the
shareholders’.
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A societal view

In our society, the stability and soundness of the banking and insurance systems
are capital to all of us, and therefore it’s just in our interests that the correct risk
management frameworks are put in place. It was the scare of systemic risk by the
population that lead to the Basel II accords. A systemic risk can be seen as the
fear that the troubles characterizing a financial institution may characterize also
other entities and therefore disrupt the usual financing systems. So we can say that
society looks at risk management in a positive way as it helps preventing systemic
situations to take place. Moreover society approves the work of regulators as
it sees in them those capable of creating the framework that will safeguard its
interests.

The shareholder’s view

It’s widely believed that the right financial risk management tools can enhance the
value of a corporation and therefore the value owned by the shareholders. There
are several reasons for which shareholders benefit from good risk management
(RM) frameworks:

1. RM can reduce tax costs. Under the usual tax regulations the tax amount
to be paid to corporations is a convex function of its income. If the firm’s
cash flow’s variability is reduced, then RM can guarantee a higher expected
after-tax profit;

2. As RM makes the probability of bankruptcy less likely, RM can enhance
the firm value when bankupcy costs need to be paid;

3. RM can reduce extrernal financing costs for the corporation, as it facilitates
the achievement of optimal investment.

1.3 Approaches to Risk Management
We can enumerate from [3] four different approaches measuring the risk contained
in a financial position.

• Notional-amount approach: This is the traditional way of managing risk,
where the risk of a portfolio is calculated as the sum of the notional values
(referred to the value of an underlying asset in a derivatives trade) of all of
the single securities in the portfolio, and a weight is associated to each posi-
tion representing the amount of riskiness embodied. The advantage of this
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approach is that it’s quite simple, but on the other hand it does not take into
account the positive aspects of diversification on the overall risk of the port-
folio. In fact, this approach assesses in the same way a portfolio consisting
of loans to different firms that go bankrupt independently with a portfolio
made of one loan to a single company. Moreover, it does not distinguish a
long from a short position and can be far from exact in assessing derivatives,
as the underlying notional amount and the value of the derivative could be
widely different.

• Factor sensitivity measures: this risk measure shows the change in portfolio
value given the change of an underlying variable. Two examples are the
duration for bonds (it shows a relationship between a change in interest
rates with the resulting change in the value of the bond) and Greeks for
derivatives (for instance, delta measure shows how the price of a derivative
changes when the underlying asset changes of one unit).
The drawback of this approach stands in the fact that it can be difficult
to aggregate these measures on a single portfolio, as it is hard to make a
comparison of different measures for different asset classes.

• Risk measures based on loss distributions: More recent models use the
loss distribution and measures deriving from it to perform risk management
analysis. Thanks to this approach the common risk measure of the Value-
at-Risk (VaR) was born. Broadly speaking, the VaR can be defined as the
maximum possible loss after we exclude all worse outcomes. In particular,
in this thesis we will also focus on two measures deriving from the VaR,
such as the Left-Tail Value-at-Risk and the TVaR. These measures will be
presented more deeply in the following chapters.

• Scenario-based risk measures: In this approach, extreme scenarios (like a
sudden rise in exchange rates by a central bank, or some event that provokes
the exchange rate between two countries to rise) are considered, and the
associated maximum loss is measured.

1.4 Financial crisis of 2007-2008
To understand better the importance of risk management, it is worth analyzing
one of the most important financial crisis ever happended in the world: the 2007
Global Financial Crisis (GFC). This section is taken from [4], [11], [12].
Although it is impossible to list all the causes that let this crisis happen, the 2007
crisis started first as a crisis connected with the housing market in the United
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States, and in particular to the ease at which mortgages were granted to Ameri-
cans.
Gaining the concession for a mortgage became so easy for Americans since, fol-
lowing the 9/11 attacks, the burst of the dot-com bubble and a series of corporate
accounting scandals, the Federal Reserve lowered the Federal funds rate from 6.5
% in May 2001 to a historical low of 1% in June 2003, having as a consequence a
huge injection of cheap money in the economy.
As a consequence, the so-called subprime mortgages became popular. The idea
was that basically everyone (even those with low financial means) was given the
possibility to underwrite a mortgage with banks, despite the higher interest rate,
and somehow it became convenient from all the parties involved to grant a house
to people that were not actually able to afford it. Thanks to less strict restrictions
for subprime mortgages, more and more people were now able to buy a house, and
this increase in demand obviously made prices go up even more. In contrast to
what we would think right now, banks did not worry about the credit-worthiness
of their obligors, but they actually enjoying the surpluses in their loans given the
fact that the prices of the houses kept on rising. Later in time, financial institutions
noticed how exposed they were on the housing market, and thus they managed to
give away the risk from these mortgages by using Collateralized Debt Obligations
(CDOs). These are products made by putting together many loans (such as credit
card debts, student loans, mortgage loans or car loans) in a single product that
can then be traded. More in particular, investors on these bonds get a gain when
the underlying payments are made (for instance, when the interest on a mortgage
is paid). On the other hand, it is the owner of these instruments that now bears
the risk of default. These instruments were very attractive because their expected
return was high compared to the underlying risks that were perceived. Another
tricky side of these instruments is that investors were not seeing the underlying
assets composing these CDOs, and for risk purposes investors could only rely on
rating agencies. To understand why this complex mechanism reflected in a crisis
regarding many financial institutions, It is worth adding that the most common
way to ensure oneself from default risk was to by Credit Default Swaps (CDS)
from other financial institutions. The idea behind a CDS is that you swap the po-
tential credit default to a counterparty in exchange of an amount (it simply acts as
an insurance). During that period, the institution that sold most CDSs was called
AIG, and since this firm had granted protection against those financial instruments
that then defaulted, its financial stability plummeted after the crisis.

During 2007, this whole system became to be felt less solid and therefore its prices
dropped. Moreover, before 2007 banks had taken huge positions in the derivatives
market gaining huge amounts of money, but when the crisis started their exposure
was unhedged and this cause huge losses for them. Another problem that started

9



at that time is that banks stopped lending themselves money on a short-term basis,
as they were not trusting each other any longer. As this is a fundamental proce-
dure for banks, when this stopped financial markets were torn out and there were
huge liquidity problems. One of these, Lehman Brothers, was actually obliged to
go bankrupt.

It is clear that more developed risk management tools would have been able to
partially avoid this crisis. In fact, financial institutions at that time were not pre-
pared to fight against such extreme events, and moreover they didn’t consider the
powerful effects of contagion within the financial system.
Moreover, people realized that regulation needed to step in more. This idea was
motivated for instance by the fact that nothing was known about what backed the
CDOs. More over, the financial models that were in place at that time resulted not
to be prompt against extreme events. It is for this reason that the already existing
Basel Accords (which will be deepened later) were perfectioned to try to be ready
in case of a future similar crisis.

1.5 Basel Accords
We will now present a brief history (taken from [11])of the regulations put in place
to try to help financial institution in case of market distress.
We know that financial institutions need to have enough capital to help them sur-
vive in case of severe losses. It was the explosion of the Latin American debt
crisis that lead the Basel Committee on Bank Supervision (BCBS) to establish
the Basel Accords in 1988. The Committee firmly believed that a multinational
accord to strengthen the stability of the international banking system was needed,
together with a way to remove a source of competitive inequality arising from
different national capital requirements. It then proposed, under the name of Basel
I accords, a minimum ratio of capital to risk-weighted assets of 8% to be put in
place by the end of 1992. More in particular, these are guidelines for central banks
and governments to make sure that financial institutions in those countries respect
these orders. These are not actually laws, but it’s the countries taking part to the
BCBS that decided themselves to adopt them.

Unfortunately, Basel I accords were not as resolving as expected. Indeed, in
1999 a new framework was demanded to substitute the previous accords. The idea
was both to improve the already existing framework on capital requirements and
to use effectively disclosure of financial information as a way to increase market
discipline and promote sound banking practices.
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Even before Lehman Brothers collapsed in September 2008, there was the need
to improve the Basel II framework. The crisis proved at first that a new frame-
work of capital requirements needed to be put in place for banks, and therefore
higher global minimum capital standards for commercial banks was announced
in September 2010. This was anticipated by an agreement reached in July on
the overall design of the capital and liquidity reform package, called "Basel III".
Other measures were then put in place in the following years:

• tighter requirements for the quantity and quality of regulatory capital, rein-
forcing in particular the central role of common equity (the amount invested
in a company by all common shareholders, as of [9]).

• an additional layer of common equity called capital conservation buffer
that, when not respected, limits payouts helpful to meet the minimum com-
mon equity requirement

• the definition of a minimum liquidity ratio, the Liquidity Coverage Ratio
(LCR), to make sure to have enough cash to cover funding needs over a
stress period of 30 days and of a longer-term ratio, the Net Stable Fund-
ing Ratio (NSFR), intended to address maturity mismatches over the whole
balance sheet.
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2 Credit Risk Management

Credit Risk is the risk that the value of a portfolio changes due to unpredictable
changes in the credit quality of the obligors or trading partners.
Credit risk is present everywhere in financial corporations. A typical situation in-
volving credit risk is when a financial institution lends money to an individual or
to another institution. On the contrary, a situation in which the presence of credit
risk is less crystal clear is when there are certain OTC (over-the-counter, so when
there is not an established stock exchange to monitor a deal) derivative operations,
such as a swap. In case the counterparty defaults, the other member of the deal
won’t benefit from any pay-off.
Moreover, as already mentioned, there is not focus on risk management from a
financial point of view but also from a regulatory point of view, as the three dif-
ferent Basel Capital Accord testify.
In Section 2.1, a distinction of the different credit risk models will be made, to-
gether with a list of the difficulties encountered by credit risk managers; in Section
2.2, we will present two models used in Risk Management, the Merton model and
the Bernoulli mixture model.

2.1 Introduction to credit risk modeling
In the upcoming section we give an overview of the different kinds of models
employed in credit risk. Then, we will focus on some challenges that are in place
in credit risk management.

2.1.1 Credit Risk models
The Basel accords, together with the birth of credit derivatives generated a lot of
interest around quantitative credit risk models.
Two are the main areas of application for quantitative credit risk models: credit
risk management and analysis of credit-risky securities. For the former category,
models of credit risk management are used to represent the distribution of the loss
of a bond or loan portfolio over a specified time period. We can then see that, as
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the period is fixed, stochastic processes are not present in this framework, but the
attention will be on the distribution of the loss. For the analysis of credit-risky
securities, instead, dynamics models (that will use stochastic processes usually)
are needed, as the pay-off of many financial instruments depends on the exact mo-
ment of default.

More in detail, credit risk models can be divided into firm-value and structural
models on the one hand and reduced-form models on the other. Behind every
firm-value model there is the Merton model, which directly connects the default
of a company with its financial stability, in particular with the value in time of its
assets and liabilities. To be more precise, the default in a firm-value model takes
place when an asset value goes below some a threshold representing liabilities. In
this thesis we will focus on the general simple Merton model used to model the
default of a single company.
Reduced-form models instead do not have a specified rule for which defaults take
place. Here the default time of a firm is modeled as a non-negative random vari-
able whose probability distribution depends on economic covariables. In this the-
sis we will present some mixture models, that can be intended as static portfolio
versions of reduced-form models. More in detail, a mixture model assumes con-
ditional independence of defaults given common underlying economic factors.

2.1.2 Challenges in Credit Risk Management
Credit risk management has got a decent amount of challenges that are not present
in market risk for what concerns quantitative modeling. Here are some of them.

• Lack of available data and information. It’s usually difficult to find informa-
tion publicly available on the credit quality of companies. This is obviously
an issue for the lenders, that do not and cannot know about the financial
and economic soundness of a firm better than the management board of the
same firm. This unavailability of credit data also hinders the employment
of statistical methods in credit risk.

• Skewed loss distribution. Usually, the probability distributions of credit
losses are strongly skewed with a big upper tail, and this is due to the fact
that a credit portfolio will generate either frequent small profits or unusual
big losses. For these reasons, a big amount of capital is needed to support a
portfolio like this. In fact, the amount of capital required for a loan portfolio
usually corresponds to the 99.97 quantile of the distribution of the loss.

• The importance of modelling the dependence of defaults. One of the main
issues of the owner of a credit portfolio is the one concerning the simulta-
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neous default of many counterparties. In this context we usually talk about
contagion risk, which is the risk that one failure of a company can generate
successive failures of other companies. This is a cause of the globalization
on the financial markes, which made financial institutions more exposed in
many different markets around the world. For example, when prices in the
U.S. housing market dropped there have been strong consequences in the
entire world.
This dependence structure contributes massively to the shape of the upper
tail of a portfolio made of many obligors. For a large number of obligors,
even when the correlation of two variables is very weak, we know that the
tail of the total loss distribution gets way bigger than the case in which de-
pendence is not considered.
Two are the reasons for which there is a strong default dependence between
the firms. First is that all the companies are subject to the same macroe-
conomic factors. Secondly, it’s because there are direct economic links be-
tween firms, like a strong borrower-lender relationship.

2.2 The basis of all structural models of defaults:
the Merton model

A firm-value or structural model is a model that tries to explain the mechanism
by which default takes place. The most famous structural model is the Merton
model, that will be presented in the following section.
In the next chapters we will refer to stochastic processes in continuous time by
(Xt), whereas the value of the process at time t > 0 is given by the random variable
Xt .

2.2.1 Merton model
In 1974, the American sociologist and economist Robert Merton introduced a new
method to model the credit risk of companies. At the time the so-called Merton
model introduced a new approach to studying credit risk, and this model was
so versatile that it was then adopted in other financial areas, such as the Black-
Scholes model.
Behind this model there is the idea to have a look at the three main parts of the
Balance Sheet : assets, debt and equity. First of all, the Merton model makes two
assumptions. First, that the total debt of a company can be expressed as a single
zero-coupon bond with face value D̄ and maturity T . Moreover, for simplicity it
is assumed that companies do not finance themselves with new debt or pay divi-
dends to its shareholders. Let’s consider the total assets of a company, and let’s
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assume the amount of assets follows a stochastich process Vt , 0 6 t 6 T . Let us
also define Dt and Et respectively as the debt and equity of the company at time
t. If we also assume that there aren’t any transaction costs or taxes we have that
the total assets of the company is given by the sum of its equity and debt, i.e.
Vt = Dt +Et , for 0 6 t 6 T . In this context, the company will default if, at time T ,
the sum of its total assets won’t be enough to repay its debt, so if Vt < D̄. We can
notice that, for simplicity, the company can only default at time T and not before.
Moreover, the outstanding debt D̄ is fixed over time.

So, at time T , how will the financial conditions of the debt owner and of the
company look like ? If the company does not default, it will give the debt owner
the whole amount D̄, and the shareholders will have Vt − D̄. Instead, if the com-
pany does go bankrupt, the debt issuer will receive the maximum possible amount
Vt and the shareholders are left with nothing. We can notice that we can describe
these profits for debt issuers and shareholders using the payoffs of put and call
options.

DT = min(VT , D̄) = D̄− (D̄−VT )
+

ET = max(VT , D̄) = (VT − D̄)+

The Merton model considers the process of the asset value to be a geomet-
ric Brownian motion (which is the same hypothesis made about the stock price
processes in the Black-Scholes model). So, VT has the following dynamics:

dVt = rVtdt +σVVtdWt (2.1)

where r > 0, σV > 0, and Wt is a standard Brownian motion. The parameter σV
stands for the volatility of the assets, and can either be estimated from historical
data or extracted from stock prices. By setting t = T and solving eq. (2.1) for Vt

, by using Ito’s Lemma we get that Vt =V0 ∗ exp
(
(r− σ2

V
2 )T +σVWT

)
. Moreover,

we can notice that WT is a standard Brownian motion and therefore WT follows a
Normal distribution with average 0 and variance T . If we divide this process to its
standard deviation, the process becomes standard normal, i.e. WT/

√
T ∼ N(0,1).

To make notation more understandable and clearer we introduce the random vari-
able Z ∼ N(0,1), so that WT =

√
T Z. So, thanks to this new notation, and remem-

bering that the company defaults when VT < D̄, we can express the probability of
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default as:

P(VT 6 D̄) = P

(
ln(VT )< ln(D̄)

)

= P

(
ln(V0)+

(
r−

σ2
V
2

)
T +σV

√
T Z < ln(D̄)

)

= P

(
σV
√

T Z < ln

(
D
V0

)
−

(
r−

σ2
V
2

)
T

)

= P

(
Z <

ln( D
V0
− (r− σ2

V
2 )T

σV
√

T

)

= φ

(
ln( D

V0
− (r− σ2

V
2 )T

σV
√

T

)

2.3 Mathemathical background and definition of mix-
ture models

In this section another important class of credit risk models will be presented:
the Bernoulli mixture models. Before deepening this topic, we will go through
the mathematical theorem that has a strong connection with them, namely De
Finetti’s representation theorem.

2.3.1 De Finetti’s Representation model
Before defining de Finetti’s theorem, it is worth introducing the definition of ex-
changeability for an infinite sequence:

Definition 2.1 (Exchangeable sequence). Let us consider the sequence X1,X2, ....
The sequence is exchangeable if it holds that

P(X1 = x1, ...,Xn = xn) = P(X1 = xσ(1), ...,Xn = xσ(n))

for all n ∈ N and all permutations σ of {1, ...,n}.

Let us then introduce πp as the (Bernoulli) probability measure on {0,1} given
by πp(1) = p and πp(0) = 1− p. Here is now the de Finetti’s theorem, as defined
in [6]:
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Theorem 2.1 (de Finetti’s representation theorem). Let {Xi}i>1 an infinite se-
quence of {0,1}-valued exchangeable random variables. Then there exists a prob-
ability measure µ on [0,1] such that for any N and any sequence (x1, ...,xN) ∈
{0,1}N

P(X1 = x1, ...,XN = xN) =
∫ 1

0

N

∏
i=1

πp(xi)dµ(p)

In other words, the theorem states (as in [6]) that an exchangeable sequence
with values in {0,1} is a mixture of independent sequences with respect to a mea-
sure µ on [0,1].

An issue regarding de Finetti’s theorem is that it needs an infinite sequence. We
can easily prove the theorem does not stand when we start with a finite dimension
exchangeable vector.
As from [7], let us define the random vector (X1,X2) so that:

P(X1 = 1,X2 = 0) = P(X1 = 0,X2 = 1) =
1
2

P(X1 = 0,X2 = 0) = P(X1 = 1,X2 = 1) = 0

We have constructed the vector (X1,X2) to be exchangeable. Nevertheless,
there is no probability measure µ satisfying de Finetti’s theorem. If fact, if there
were a probability measure µ such that

0 = P(X1 = 1,X2 = 1) =
∫ 1

0
p2dµ(p)

then necessarely µ will have probability density of 1 in 0, so we wouldn’t have:

0 = P(X1 = 0,X2 = 0) =
∫ 1

0
(1− p)2dµ(p)

2.3.2 Mixture models
De Finetti’s theorem can have numerous applications in finance, in particular in
modeling the default distribution of credit portfolios. We see a close connection
between this theorem and Bernoulli mixture models. "Financially" speaking, in a
mixture model the risk of default of an obligor is assumed to be dependent on a
set of economic factors, usually macroeconomic variables, which are also mod-
eled stochastically. Given a realization of the factors, we consider the defaults of
individual firms to be independent.

We now provide a general definition of the Bernoulli mixture models, taken
from [3].
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Definition 2.2 (Bernoulli mixture models). Given some p<m and a p-dimensional
random vector ΨΨΨ = (Ψ1, ...,Ψp)

′
, the random vector YYY = (Y1, ...,Ym)

′
follows a

Bernoulli mixture model with factor vector ψψψ if there are functions pi : Rp →
[0,1],1 6 i 6 m, such that conditional on ΨΨΨ the components of Y are indipendent
Bernoulli random variables satisfying P(Yi = 1 | ΨΨΨ = ψ) = pi(ψ).

For yyy = (y1, ...,ym)
′ ∈ {0,1}m we have that:

P(YYY = y | ΨΨΨ = ψ) =
m

∏
i=1

pi(ψ)yi(1− pi(ψ))1−yi

We consider the case when Ψ is unidimensional. In this case, the definition
of Bernoulli mixture models is just a reformulation of the Definetti’s theorem,
as the single economic variable stands for the mixing variable µ . Therefore we
are assuming that Y satisfies de Finetti’s assumption, so that (Y1, ...,Ym) are any
m elements of an exchangeable sequence. In particular, they are themselves ex-
changeable.

In the following chapters we consider the framework in [1], where the authors
slightly weaken the assumption of de Finetti and require (Y1, ...,Ym) exchangeable
but not necessarily part of an exchangeable sequence.
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3 Problem Description

We will now present the context of our analysis.
Given a credit risk portfolio P of d obligors, let the random vector X = (X1, ...,Xd)
be the default indicator for the portfolio P. For our purposes, we will just consider
the case where each variable Xi is a Bernoulli random variable with the same
mean:

Xi =

{
1 prob. p,
0 prob. q = 1− p

By taking the same mean for all of the default distributions, we are assuming the
obligors belong to the same credit rating.
To model the loss of a credit risk portfolio P of d obligors we consider the
weighted sum of the individual losses

L =
d

∑
i=1

ωiXi

where ωi ∈ (0,1] and ∑
d
i=1 ωi = 1. ωi stands for the weight of the credit granted

to obligor i in the portfolio. In this thesis we will consider the case ωi =
1
d , i ∈

{1, ...,d}. For equal weights, L = Sd
d , where

Sd =
d

∑
i=1

Xi

In this thesis we will then focus on the random variable Sd , which stands for the
sum of the defaults. In particular, we want to study the Value-at-Risk of this
distribution. Given u ∈ (0,1) and a random variable X , we define its VaR as:

VaR(X) = inf{x ∈ X : (P(X)≤ x)≥ u}

The VaR can be defined informally as the maximum possible loss after we exclude
all worse outcomes (as of [8]). Another useful measure for our purpose is the
VaR+

u , defined as:

VaR+
u (X) = sup{x ∈ X : (P(X ≤ x)≤ u}
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As already mentioned, the correlation between the different obligors plays a vital
role in defining the distribution of the total loss. Yet, this correlation is difficult to
estimate, and therefore it is hard to define properly the sum of the total loss, and
so also its VaR. What we will try to do in this chapter will be to find, thanks to a
theorem from [2], bounds for the VaR of Sd when we take a portfolio of d = 100
obligors and when we have no information on correlation between defaults. Then
we will compare these bounds with others defined in [1].

3.1 Portfolio Var bounds with fixed marginal distri-
butions

This section recalls the similar-VaR bounds measures for given marginal distribu-
tions provided in [2]. These are the TVaR and the Left Tail Value-at-Risk LTVaR.
Formally, for α ∈ (0,1), we denote by TVaRα(X) the TVaR at level α ,

TVaRα(X) =
1

1−α

∫ 1

α

Varu(X)du

and by LTVaRα(X) the LTVaR,

LTVaRα(X) =
1
α

∫
α

0
Varu(X)du

So, TVaRα is the average of all upper Vars from level α onwards. Similarly,
LTVaRα is the average of all lowers VaRs.
We will first show from [2] some already existing bounds for a general case, and
we will then apply this case with our underlying hypothesis.

Theorem 3.1 (Unconstrained bounds). Let α ∈ (0,1), Xi ∼ Fi (i = 1,2, ...,n),
S = ∑

n
i=1 Xi. Then,

A :=
n

∑
i=1

LTVaRα(Xi)6VaRα(S)6VaR+
α (S)6 B :=

n

∑
i=1

TVaRα(Xi) (3.1)

We can thus see that, for the general case where the single variables Xi don’t
necessarily have the same distribution, the VaRα of the sum of the n distributions
is bounded by the sum of the LTVaRα and the sum of the TVaRα of the single
distributions. Therefore, to find the bounds for our case it’s enough to calculate
the TVaRα and the LTVaRα for a Bernoulli distribution with average p.
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3.2 Explicit calculation of the bounds
First of all, let’s write explicitly the cumulative distribution for a Bernoulli random
variable X ∼ B(p) (where q = 1− p). We know that:

FX =


0 x < 0,
q x ∈ [0,1],
1 x > 1

In order to calculate the TVaRα and the LTVaRα for the sum of Bernoulli
random variables, we need first to evaluate the VaR+

u (X) and VaRu(X) for one
Bernoulli distribution, depending on the values of q and u.
We will start with the calculation of the VaR+

u (X), in order then to calculate the
TVaR:

1. If u < q : VaR+
u (X) = sup{x ∈ R : (P(X)6 x)6 u}= 0

2. If u = q : VaR+
u (X) = sup{x ∈ R : (P(X)6 x)6 u}= 0

3. If u > q : VaR+
u (X) = sup{x ∈ R : (P(X)6 x)6 u}= 1

This can be rewritten as:

VaR+
u (X) =

{
0 u 6 q,
1 u > q

Now we are able to calculate explicitly the TVaR for a Bernoulli distribution:

1. if α 6 q:

TVaRα(X) =
1

1−α

∫ 1

α

Var+u (X)du =
1

1−α

∫ 1

q
du =

1−q
1−α

2. if α > q:

TVaRα(X) =
1

1−α

∫ 1

α

Var+u (X)du =
1

1−α

∫ 1

α

du = 1

To sum up:

TVaRα(X) =

{
1−q
1−α

α 6 q,
1 α > q

(3.2)

In a similar way I can calculate the LTVaR of a Bernoulli distribution with
average p:

21



1. If u < q : VaRu(X) = inf{x ∈ R : (P(X)6 x)> u}= 0

2. If u = q : VaRu(X) = inf{x ∈ R : (P(X)6 x)> u}= 0

3. If u > q : VaRu(X) = inf{x ∈ R : (P(X)6 x)> u}= 1

This can be rewritten as:

VaRu(X) =

{
0 u 6 q,
1 u > q

We can notice that in the case of a Bernoulli distribution the VaR+
u (X) and VaRu(X)

coincide. Now we are able to calculate explicitly the LTVaRα for a Bernoulli dis-
tribution:

1. if α 6 q:

LTVaRα(X) =
1
α

∫
α

0
Varu(X)du =

1
α

∫
α

0
0du = 0

2. if α > q:

LTVaRα(X) =
1
α

∫
α

0
Varu(X)du =

1
α

∫
α

q
1du =

α−q
α

To sum up:

LTVaRα(X) =

{
0 α 6 q,
α−q

α
α > q

(3.3)

From eq. (3.1),eq. (3.2) and eq. (3.3), we can define the bounds for the Value-at-
risk of the sum of defaults:

Proposition 3.1. Let the random vector X = (X1, ...,Xd) be the default indicator
for a portfolio P, where Xi ∼ B(p) (q = 1− p). Let Sd = ∑

d
1 Xi, and let α ∈ (0,1).

Then: {
0 α 6 q,
(α−q)d

α
α > q

6VaRα(Sd)6

{
d(1−q)

1−α
α 6 q,

1 α > q
(3.4)
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3.3 Portfolio bounds for exchangeable Bernoulli de-
faults

This section introduces analytical bounds for the VaR of the sum of d exchange-
able Bernoulli distributions with average p. The results from this sections are
taken from [1].

Definition 3.1 (Exchangeable vector). A random vector X=(X1, ...,Xd) with joint
cumulative distribution F is exchangeable if

F(x0,x1, ...,xd) = F(xπ(0),xπ(1), ...,xπ(d))

for any permutation of {0,1, ...,d} and for any (x0,x1, ...,xd) ∈ Rd .

We can see that the authors slightly weaken the assumption of de Finetti and re-
quire (Y1, ...,Ym) exchangeable but not necessarily part of an exchangeable se-
quence.

Let us then define Sd(p) as the class of distributions pS on {0, ...,d} such that
Sd = ∑

d
i=1 Xi, with the vector X belonging to the class of d-dimensional exchange-

able Bernoulli distributions with the same Bernoulli marginal distribution B(p).
The idea behind the calculation of these bounds is to find the generators of Sd(p),
which can be proved that are all the vectors pS = (p0, ..., pd) satisfying this equa-
tion

d

∑
i=1

( j− pd)p j = 0 (3.5)

Then, to define the bounds of the VaR, I have to provide the definition of extremal
rays.

Definition 3.2 (Extremal Ray). Given the convex cone

Cp =
{

z ∈ Rd+1 :
d

∑
j=0

( j− pd)z j = 0, Iz > 0
}

which represents the set of positive solutions of eq. (3.5). A solution r of eq. (3.5)
is an extremal ray of Cp iff I∗z = 0 for a submatrix nI∗× (d +1), I∗ of I and

rank
[

A
I∗

]
= d.

It can be then proved that the extremal rays of the convex cone Cp have at most
two non-zero components.
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We will now define R( j1, j2) and Rpd as the random variables whose probability
mass functions are defined respectively on the two non-zero values j1 and j2 and
on the value pd.
Thanks to the following proposition we can find out sharp bounds for the Var of
Sd .

Proposition 3.2. Let Sd ∈ Sd(p) and let VaRu(Sd) be its value at risk. Then:

min
R

VaRu(R)6 VaRu(Sd)6 max
R

VaRu(R) (3.6)

where R are the ray densities of Sd(p)

Then, thanks to proposition 3.3, I’m able to define specifically which are the
upper and lower bounds of the VaR:

Proposition 3.3. Let us consider the class Sd(p) and let jp
1 = (p−(1−u))d

u

1. If jp
1 < 0, minVaRu(R( j1, j2)) = 0 and maxVaRu(R( j1, j2)) = j∗2, where j∗2 is

the larger integer smaller than pd
1−u .

2. If 0 6 jp
1 6 jM

1 , minVaRu(R( j1, j2)) = j∗1, where j∗1 is the smallest integer
greater or equal to jp

1 and maxVaRu(R( j1, j2)) = d.

3. If jp
1 > jM

1 , minVaRu(R( j1, j2)) = jm
2 = jM

1 + 1 and maxVaRu(R( j1, j2)) = d.
In this case, if pd is integer jM

1 +1 = pd
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4 Comparison of the bounds

So far, we have developed two different bounds for the VaR of the sum of defaults
when no information is provided on correlation between them. Now we will com-
pare the two bounds, according to the different conditions on α and q. To make
this comparison possible, we will consider the hypothesis of exchangeability for
both the couple of bounds.
In Section 4.1 we will introduce a theorem that compares the two bounds; in Sec-
tion 4.2 we will show two numeric examples to prove the results found in the
theorem.

4.1 Comparison
The following theorem allows us to confront the two couples of bounds defined in
chapter 3.

Theorem 4.1. Let us consider the class Sd(p). Let jp
1 = (p−(1−α))d

α
and let jM

1 be
the largest integer smaller than pd. The bounds calculated with Proposition 3.3
are always tighter or equal than those in Proposition 3.1.

Proof. First of all, we can notice that

jp
1 < 0 ⇐⇒ (p− (1−α))d

α
< 0 ⇐⇒ (α−q)d

α
< 0 ⇐⇒ α < q (4.1)

and that

0 6 jp
1 6 jM

1 ⇐⇒ 0 6
(α−q)d

α
6 jM

1 ⇐⇒ 0 6 (α−q)6
( jM

1 )α

d
(4.2)

We see therefore a close connection between the conditions defining the two dif-
ferent bounds. So, we can easily confront them:

1. if jp
1 < 0 (α < q):

(a) Thanks to equation (4.1), to calculate the upper bound I have to con-
front maxRVaRu(R) = j∗2 from proposition 3.3 with the upper bound
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(1−q)d
1−α

defined in proposition 3.1. Since by definition j∗2 is the largest

integer smaller than pd
1−α

= (1−q)d
1−α

, then j∗2 is the best bound.

(b) Using the same criteria used for point (a), we easily see that in both
cases the lower bound is 0

2. 0 6 jp
1 6 jM

1

(
0 6 (α−q)6 ( jM1 )α

d

)
:

(a) For the upper bound, in both cases the bound is d

(b) For the lower bound, given proposition 3.3 I have to confront maxRVaRu(R)
= j∗1 with the other upper bound (α−q)d

α
. Since by definition j∗1 is the

smallest integer greater than jp
1 = (α−q)d

α
, then j∗1 is the best bound.

3. jp
1 > jM

1

(
α−q > α( jM1 )

d > 0
)

(a) For the upper bound, in both cases the bound is d

(b) We need to prove that (α−q)d
α

(= jp
1 ) 6 jM

1 + 1. First of all, since 0 <
α < 1 , we can easily see that

(α−q)d
α

=
(p− (1−α)d)

α
=

pd
α
− (1−α)

α
< pd

Since by definition pd 6 jM
1 +1, then we have proved that the bounds

given by Proposition 3.3 are better than those given by Proposition 3.1.

Remark 1. We can notice that, when the bounds calculated with Proposition 3.1
are not integers, then we can always "tighten" the bounds to the closest integer
forward (for the lower bound) and to the closest integer backwards (for the upper
bound). This is because we are considering the distribution of Sd , which is defined
on the set of integer values {0,1, ...,d}. To make an example, it would make no
sense to say that the VaR is "less than 2,9", but we can say it is less than 2. For this
reason, having a better look at the two different bounds for all the three conditions
1., 2. and 3. from the previous theorem, we can see that only if jp

1 < 0 and if pd
1−d

is an integer, then there is an actual advantage of taking the bounds given by the
rays, otherwise the upper and lower bounds are always the same. Overall, since
the bounds presented in the second methods are sharp, they cannot be improved
(this is way the first method never manages to outperform the second one) and
moreover it provides explicitly the distribution (the extremal rays) in which they
are reached.

The following numeric examples will better clarify what was just stated.
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4.2 Numeric examples
We will now perform a couple of numeric examples to show the results proved in
the previous theorem and what I highlighted in the previous observation.
Let us suppose we have a credit portfolio P with 100 obligors. Let the random
vector X = (X1, ...,X100) collect the default indicators for the portfolio P and as-
sume the vector X belongs to the class of d-dimensional exchangeable Bernoulli
distributions with the same Bernoulli marginal distribution B(p). The variable Sd
represents the number of defaults and the distribution of S represents the distribu-
tion of the loss. We will analytically find bounds of VaRα , for α = 0.90, α = 0.95
and α = 0.99 using the two different methods.

4.2.1 Scenario 1: p=0,11%
Let us assume p = 0,11%, corresponding to S&P’s default rate in 2019 for a BBB
rating company (as of [5]).

1. α = 0,90
Since jp

1 = (0,0011−0,1)100
0,90 < 0, the lower and upper bound given by the ex-

tremal rays are respectively 0 and the largest integer less than (0,0011)100
0,10 , so

1.
With the new method, I get that the lower bound is 0, while the upper bound
is 1,1. As pointed in observation 1, we can say the upper bound is still 1.

2. α = 0,95
Since jp

1 < 0, the lower and upper bounds given by the extremal rays are
respectively 0 and the largest integer less than (0,0011)100

0,05 , so 2.
With the new method, I get that the lower bound is 0, while the upper bound
is 2,2. For the Observation, we can say the upper bound is 2.

3. α = 0,99
In this specific case, we can see that the method given by the extremal
rays finds a better upper bound. As jp

1 < 0, the lower and upper bounds
given by the extremal rays are respectively 0 and the largest integer less
than (0,0011)100

0,05 = 11, so 10. With the new method, instead, the upper bound
would be 11

Previous results can be summarized by this table:

27



α left bound 1 left bound 2 right bound 1 right bound 2
0,90 0 0 1 1
0,95 0 0 2 2
0,99 0 0 11 10

Table 4.1: two different bounds of VaRα of the number of defaults with
p = 0,11%.

4.2.2 Scenario 2: p=1,49%
Let us assume p = 1,49%, corresponding to S&P’s default rate in 2019 for a B
rating company (as of [5]). Here we will also consider the case when α = 0,999.

1. α = 0,90
Since jp

1 = (0,0149−0,1)100
0,90 < 0, the lower and upper bound given by the ex-

tremal rays are respectively 0 and 14.
With the new method, I get that the lower bound is 0, while the upper bound
is 14,9. As pointed before, we can say the upper bound is still 14.

2. α = 0,95
Since jp

1 < 0, the lower and upper bounds given by the extremal rays are
respectively 0 and 35.
With the new method, I get that the lower bound is 0, while the upper bound
is 35,8, which can be rounded to 35.

3. α = 0,99
In this case, jp

1 = (0,0149−0,01)100
0,99 = 0,4949 > 0. As jM

1 = 1 > jp
1 , the lower

and upper bounds given by the extremal rays are respectively 1 and 100.
With the new method, the upper bound is still d whereas the lower one is
0,4949, which can be rounded to 1.

4. α = 0,999
In this case, jp

1 = (0,0149−0,001)100
0,999 = 1,3913 > jM

1 = 1. So, the lower and
upper bounds given by the extremal rays are respectively 2 and 100.
With the new method, the upper bound is still 100 whereas the lower one is
1,3913, which can be rounded to 2.

Previous results can be summarized by the following table
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α left bound 1 left bound 2 right bound 1 right bound 2
0,90 0 0 14 14
0,95 0 0 35 35
0,99 1 1 100 100
0,999 2 2 100 100

Table 4.2: two different bounds of VaRα of the number of defaults with
p = 1,49%.
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5 Problem description with given correlation ρ

So far, we have just considered bounds for the Value-at-Risk without knowing the
default correlation between the obligors. In this chapter, we consider an estima-
tion of default correlation to be at level ρ . As we will see later, when correlation
is known, we can easily find the variance of the distribution of the total loss Sd .
The chapter is organized as follows. In Section 5.1 we will introduce the new
class of ditributions Sd(p,ρ), and we will define sharp bounds (from [1]) for the
Value-at-risk of the loss Sd ∈ Sd(p,ρ). In Section 5.2, we will first define new
bounds from [2], calculated with a given variance constraint. Then we will show
how to calculate the variance of the loss distribution Sd given correlation between
defaults. In Section 5.3 we will perform numeric examples to confront the two
couples of bounds.

5.1 Portfolio bounds for exchangeable Bernoulli de-
faults and correlation ρ

Let us first define Sd(p,ρ) as the class of distributions pS on {0, ...,d} such that
Sd = ∑

d
i=1 Xi, with the vector X belonging to the class of d-dimensional exchange-

able Bernoulli distributions with the same Bernoulli marginal distribution B(p),
and given correlation ρ between the Bernoulli distributions.
Sharp bounds for the Var of Sd ∈ Sd(p,ρ) are defined thanks to the following
proposition from [1]. It is worth noticing that the bounds are constructed in the
same way as from space Sd(p).

Proposition 5.1. Let Sd ∈ Sd(p,ρ) and let VaRu(Sd) be its value at risk. Then:

min
R

VaRu(R)6 VaRu(Sd)6 max
R

VaRu(R) (5.1)

where R are the ray densities of Sd(p,ρ)

As from space Sd(p), to define VaR bounds we have to understand the dis-
tribution of the extremal rays. We can do so thanks to the following proposition
from [1].
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Proposition 5.2. Let α j = j− pd and β j = j2− (pd +d(d−1)µ2) and let Ai j =

det
[

αi α j
βi β j

]
= d.

If 
A jk > 0
Aik > 0
Ai j > 0

the extremal rays of 5.1 are rrrρ = (p0, ..., pd), where pl = 0, l 6= i, j,k,

pi =
jk− ( j+ k−1)d p+d(d−1)µ2

(k− i)( j− i)

p j =−
ik− (i+ k−1)d p+d(d−1)µ2

(k− j)( j− i)

pk =
i j− (i+ j−1)d p+d(d−1)µ2

(k− j)(k− i)

with i < j < k.

5.2 Portfolio Var bounds with fixed marginal distri-
butions and variance constraint

In Section 5.1 we assumed that between obligors there exists a certain default
correlation ρ . From basic probability theory, when we know correlation between
variables Xi (as well as the probability distributions of the single variables), we are
able to calculate the variance of the sum of these distributions. Therefore, in our
context, assuming a certain default correlation between the obligors is the same
as assuming the respective level of variance for the sum of the defaults.
In this Section, we will first define from [2] new VaR bounds for Sd given a con-
straint on its variance. Then we will show how to calculate the variance of the
sum of defaults given correlation ρ , in order then to be able to compare the two
couple of bounds defined in this chapter.

Let us now define the general theorem from [2] with which we are able to define
bounds of VaR(Sd) given a variance constraint.

Theorem 5.1 (constrained bounds). Let α ∈ (0,1), Xi ∼ Fi (i = 1,2, ...,n), S =

∑
n
i=1 Xi satisfy var(S)6 s2. Let µ = E

(
∑

n
i=1 Xi

)
.
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a := max

(
µ−

√
1−α

α
,A

)
6 m 6VaRα(S)

6VaR+
α (S)6 M 6 b 6 b := min

(
µ + s

√
α

1−α
,B

)

where A and B are the bounds defined without variance constraint in Theorem
3.1.
In particular, if s2 > α(A− µ)2 +(1−α)(B− µ)2, then a = A and b = B (the
unconstrained bounds are not improved by the presence of the constraint on vari-
ance).

This theorem allows us to find non-sharp bounds for the distribution of the number
of defaults. We can notice that this theorem works also when we define ex-ante a
fixed amount of variance.

In order to be able to compare the two bounds, let’s now go through the connec-
tion between correlation and variance.
Consider a random vector XXX = (X1, ...,Xd) with Corr(Xi,X j) = ρ , ∀ i,j. Let
var(Xi) = σ2, ∀i 6 d. We have that:

var

(
d

∑
i=1

Xi

)
= var(X1 + ...+Xd) = dvar(X1)+d(d−1)ρ/σ

2

So, when considering the sum of exchangeable Bernoulli distributions with aver-
age p with given correlation ρ , we know the variance of the sum of the defaults
Sd will be:

var(Sd) = d p(1− p)(1+ρd−ρ) (5.2)

Therefore, it now sounds natural to confront the bounds given by Proposition 5.1
with the ones given by Theorem 5.1 setting the corresponding level of variance.
In particular, in this section we do not confront "theorically" the two couples of
bounds as in chapter 4, but we provide significant numerical examples.

5.3 Comparison of the bounds with correlation ρ

Some numerical examples will now be performed to compare the two previous
theorems. A default correlation ρ will be set ex-ante.
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The sharp bounds proposed in the following scenarios are taken from [1]. The
bounds from theorem 5.1 will be calculated based on the set ρ , and the corre-
sponding variance s2 (that will act as our "variance constrain" of theorem 5.1)
will be calculated ex-post thanks to eq. (5.2).

Let us suppose we have a credit portfolio P with 100 obligors. Let the random
vector X = (X1, ...,X100) collect the default indicators for the portfolio P and as-
sume the vector X belongs to the class of d-dimensional exchangeable Bernoulli
distributions with the same Bernoulli marginal distribution B(p) and correlation
ρ . The variable Sd represents the number of defaults. We will analytically find
bounds of VaRα , for α = 0.90, α = 0.95 and α = 0.99 using the two methods
defined in this chapter.
We remind that the bounds A and B of the sum of defaults (that we need to calcu-
late the bounds in theorem 5.1) set in Proposition 3.1 are:

A :=

{
0 α 6 q,
(α−q)d

α
α > q

6VaRα(Sd)6 B :=

{
d(1−q)

1−α
α 6 q,

1 α > q
(5.3)

5.3.1 Scenario 1: p=0,17%, ρ= 1/6
Let us assume p = 0,17% and ρ = 1/6.

1. α = 0,90
From [1], the sharp bounds are respectively 0 and 16.
To calculate the new bounds, let us first calculate s2 thanks to eq. (5.2).

s2 = 100∗ (0,0017)(1−0,0017)(1+(1/6)∗100−1/6) = 29,24

We can easily calculate A = 0 and B = 17. To see of we can improve these
bounds, we confront s2 with

α(A−µ)2 +(1−α)(B−µ)2 =(0,90)(0−1,7)2)+

(1−0,90)(17−1,7)2 = 26,01
(5.4)

So, we can’t improve the bounds A and B.

2. α = 0,95
From [1], the sharp bounds are respectively 1 and 25.
We can easily calculate that A = 0 and B = 34. To see of we can improve
these bounds, we confront s2 with

α(A−µ)2 +(1−α)(B−µ)2 =(0,95)(0−1,7)2)+

(1−0,95)(34−1,7)2 = 54,91
(5.5)
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Since 54,91 > 26,01, we can improve the bounds A and B. From The-
orem 5.1, we find the new lower and upper bounds are respectively µ −
(1−α)/α)1/2 = 0,459 and µ + s(α/(1−α) = 25,27. Following the same
reasoning done in the section 4, we can round the bounds to 1 and 25.

3. α = 0,99
From [1], the sharp bounds are respectively 2 and 55.
We can easily calculate that A = 0,707 and B = 100. To see of we can
improve these bounds, we confront s2 with

α(A−µ)2 +(1−α)(B−µ)2 =(0,99)(0,707−1,7)2)+

(1−0,99)(100−1,7)2 = 97,60
(5.6)

Since 97,6 > 26,01, we can improve the bounds A and B. From Theo-
rem 5.1, we find the new lower and upper bounds are respectively µ− (1−
α)/α)1/2 = 1,1564 and µ + s(α/(1−α) = 55,5. Following the same rea-
soning done in the section 4, we can round the bounds to 2 and 55.

Previous results can be summarized by the following table:

α left bound 1 left bound 2 right bound 1 right bound 2
0,90 0 0 16 17
0,95 1 1 25 25
0,99 2 2 55 55

Table 5.1: two different bounds of VaRα of the number of defaults with
p = 1,7% and ρ = 1/6.

5.3.2 Scenario 2: p=0,17%, ρ= 1/2
Let us assume p = 0,17% and ρ = 1/2.

1. α = 0,90
From [1], the sharp bounds are respectively 0 and 9.
To calculate the new bounds, let us first calculate s2 thanks to eq. (5.2).

s2 = 100∗ (0,0017)(1−0,0017)(1+(1/2)∗100−1/2) = 84,39

We can easily calculate A = 0 and B = 17. To see of we can improve these
bounds, we confront s2 with

α(A−µ)2 +(1−α)(B−µ)2 =(0,90)(0−1,7)2)+

(1−0,90)(17−1,7)2 = 26,01

Since 26,01 6 84,39 we can’t improve the bounds A and B.
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2. α = 0,95
From [1], the sharp bounds are respectively 0 and 25.
We can easily calculate A = 0 and B = 34. To see if we can improve these
bounds, we confront s2 with:

α(A−µ)2 +(1−α)(B−µ)2 =(0,95)(0−1,7)2)+

(1−0,95)(34−1,7)2 = 54,91

Since 54,91 6 84,39 we can’t improve the bounds A and B.

3. α = 0,99
From [1], the sharp bounds are respectively 1 and 93.
We can easily calculate that A = 0,707 and B = 100. To see of we can
improve these bounds, we confront s2 with

α(A−µ)2 +(1−α)(B−µ)2 =(0,99)(0,707−1,7)2)+

(1−0,99)(100−1,7)2 = 97,60
(5.7)

Since 97,6 > 84,39, we can improve the bounds A and B. From Theo-
rem 5.1, we find the new lower and upper bounds are respectively µ− (1−
α)/α)1/2 = 0,78 and µ +s(α/(1−α) = 93,1. Following the same reason-
ing done in the section 4, we can round the bounds to 1 and 93.

Previous results can be summarized by the following table:

α left bound 1 left bound 2 right bound 1 right bound 2
0,90 0 0 9 17
0,95 0 0 25 34
0,99 1 1 93 93

Table 5.2: two different bounds of VaRα of the number of defaults with
p = 1,7% and ρ = 1/2.

Overall, what we notice from these examples is that when we manage to improve
the bounds A and B, then the bounds given by Theorem 5.1 assume the same
values as the sharp bounds found in paper [1].
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6 Conclusions

The purpose of this thesis was to compare two different couples of bounds of the
Value-at-Risk of the total loss of a portfolio, with some underlying hypothesis.
While in a first scenario we didn’t take into account the correlation between de-
faults, in the second case we assumed there was between them a correlation ρ .
Although it seemed the bounds given by the extremal rays were much finer, we
could then realize that just in some cases they can improve the boundaries set
by [2] (in particular, as we saw in chapter 4, bounds given by [1] are rarely better
than the ones taken from [2] when no information on correlation is provided). The
effectiveness of the bounds from [2] can be seen by two aspects. First, it’s that
they do not require the further hypothesis that the default vector is exchangeable.
Secondly, they are more intuitive, and the calculation done in this specific case
can be repeated in other cases, with other distributions of the variables Xi. On the
other hand, it was worth remembering that only the bounds proposed in [1] are
sharp, as they provide the exact maximum and minimum possible values of the
Value-at-Risk.
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