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Introduction

Chemical reaction networks are mathematical models widely used to describe
the dynamical behaviour of systems in biology, epidemiology, chemistry. In such
models, individual units (e.g. molecules), belonging to different groups (e.g.
chemical species), interact with each other according to specific laws, named
reactions, which may be represented in a graph. Reactions are usually modeled
as stochastic counting processes, so that the number of molecules in the system
for each species is described by a continuous time Markov chain.

When the number of molecules is very high, species dynamics may be suitably
described in terms of chemical concentrations, and the stochastic model is well
approximated by a deterministic, continuous dynamical system: this approach is
known in literature as classical scaling, and dates back to 1970s [14].

More recently, the study of chemical reaction systems in cellular biology has
renewed the interest in stochastic models. Indeed, these systems may involve
species with vastly different number of molecules or reactions whose propensities
vary over several orders of magnitude, so that the continuous approximation does
not provide a satisfactory description. In order to properly characterize such
complex phenomena, rescaled versions of the original models may be analysed
on different time-scales, and a comprehensive theory of convergence for chemical
reaction networks, extending the classical one, is widely developed in literature
[1] [2] [13].

In some specific cases, the intrinsic discreteness of the model cannot be
disregarded. For instance, in signal transduction processes, a single molecule
may trigger a biochemical cascade which causes a transition in the cell state.
An example of a chemical reaction system displaying such peculiar behaviour
was suggested by Togashi and Kaneko [17]: in this model, biochemical cascades
are driven by fast autocatalytic reactions, while inflows and outflows of single
species happen at much slower rates.

For this class of systems, the above-mentioned theory of convergence cannot
always be applied, since many of the underlying assumptions fail. The main
criticalities arise when the time-scale is accelerated so that trajectories of the
stochastic process describing species concentrations display sharp peaks or rapid
switches to different stable states, both induced by the fast autocatalytic reactions
and corresponding to failed or completed transitions, respectively. In particular,
such peculiar features prevent the model to converge to any limit on the Skorohod
space of cadlag functions equipped with the classical Skorohod topology [16].

An alternative sequential topology on the Skorohod space was proposed by
Jakubowski in order to weaken the Skorohod topology while preserving its useful
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properties [9] [11]. Although being non-metrizable, many of the fundamental
results of the classical theory of weak convergence on metric spaces hold true,
provided a stronger notion of convergence for probability measures is adopted.
In this topology, sharp peaks corresponding to failed transitions coalesce and
cancel out: therefore, it seems a promising candidate with respect to which
convergence of the Togashi-Kaneko model may be verified.

In the first chapter of this thesis, the classical theory of chemical reaction
networks is analysed in detail, as well as its most recent developments in the
direction of a multiscale approximation approach. In particular, the main results
concerning convergence on different time-scales are stated and discussed.

The second chapter is devoted to the theory of weak convergence in metric
and non-metric spaces [4], with focus on the Skorohod space of cadlag functions.
A new topology on this space, devised by Jakubowski, is presented, together
with a stronger notion of convergence in distribution, based on the Skorohod
Representation Theorem, which extends the usual definition to non-metric spaces
[10].

In the last chapter, a simplified version of the Togashi-Kaneko example is
studied in the framework of multiscale approximation theory, and convergence to
non-degenerate limit models is verified, whenever possible [3]. Moreover, some
useful properties of this model are formally derived: in particular, it is shown
that, under suitable conditions, autocatalytic cascades may be separated from
inflow and outflow reactions, in the sense that no inflows and outflows happen
during an autocatalytic cascade.

As for convergence at faster time-scales, it is verified that this version of the
Togashi-Kaneko model does not converge to a naturally arising limiting model
with respect to the Skorohod topology; specifically, the corresponding sequence
of probability measures on the Skorohod space is not relatively compact. On
the contrary, uniform tightness of such sequence is proved to hold in the weaker
Jakubowski topology, implying in turn convergence for subsequences. In order
to obtain convergence of the entire sequence to the above-mentioned candidate
limit, convergence of the finite-dimensional distribution has still to be proved.

Numerical simulations have been carried out using MATLAB R©; the code
developed for this purpose can be found in the annex to this thesis.
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Chapter 1

Chemical Reaction Networks

1.1 Mathematical modeling

The mathematical formulation of a chemical reaction system includes two parts:
a reaction network and a choice of dynamics [1, ch. 2].

The reaction network is the static component of the model and consists of
three sets:

• S, the set of species, the chemical components whose number or concentra-
tion we are interested in modeling dynamically;

• C, the set of complexes, which are linear and non-negative combinations of
species that describe how species can interact;

• R, the set of reactions, which are ordered pairs of complexes describing
how to convert a complex to another.

In this work, elements of these three sets are referred to consistently with
the following notations.

• Species S1, . . . , Sn are represented as capital letters.

• Complexes C1, . . . , Cm are more conveniently identified with non-negative
column vectors, whose i-th entry is the number of components of species i
constituting the complex:

Cj =
∑
i

(zj)iSi = zj · S, zj ∈ Nn0 . (1.1)

Note that the null complex, i.e. the complex corresponding to a null vector,
is an admissible complex, usually represented as ∅.

• Reactions R1, . . . , Rl are represented as ordered pairs of non-negative
column vectors (i.e. complexes),

Rk = (νk, ν
′
k), νk, ν

′
k ∈ C, (1.2)
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and usually depicted as two complexes connected by an arrow∑
i

(νk)iSi →
∑
i

(ν′k)iSi, νk, ν
′
k ∈ C,

or simply (with a slight abuse of notation)

νk → ν′k, νk, ν
′
k ∈ C.

The first element of the pair (complex νk) is sometimes referred to as the
substrate of the reaction, while the second element (complex ν′k) is called
the product.
In case a reaction can occur both ways (i.e. the reaction is reversible), a
double arrow is used:∑

i

(νk)iSi 

∑
i

(ν′k)iSi, νk, ν
′
k ∈ C. (1.3)

Consistently with the definition given above of a reaction as an ordered
pair, this writing actually implies two different reactions, usually identified
as the forward reaction νk → ν′k and the reverse reaction ν′k → νk.

Definition 1.1. A chemical reaction network (CRN) is a triple { S, C,R}, where

• S = {Si }ni=1 is the set of species,

• C = {Cj }mj=1 = { zj ∈ Nn0 }
m
j=1 is the set of complexes,

• R = {Rk }lk=1 = { νk → ν′k : νk, ν
′
k ∈ C }

l
k=1 is the set of reactions.

Chemical reaction networks have a natural graph representation, in which
complexes indentify with the vertices and reactions describe the edges: the
resulting directed graph is referred to as the complex graph. When introducing a
CRN, it is common to forgo an explicit description of the triple { S, C,R} and
simply illustrate the complex graph implied by the reaction network.

Example 1.2 (Enzyme catalysis). In biochemistry, one of the best-known
models of enzyme kinetics is due to Michaelis and Menten (1913), describing the
catalytic action of an enzyme. In particular, an enzyme E binds to a substrate
S, forming an enzyme-substrate complex ES, and catalyses the convertion of
the substrate into a product P , after which the product and the enzyme are
released. Moreover, production and degradation of the enzyme occur.

This model may be represented schematically via its complex graph:

S + E 
 ES → P + E, E 
 ∅. (1.4)

This representation formally corresponds to the reaction network described by
the sets

S = {S,E,ES, P } , C = {S + E, ES, P + E, E, ∅ } ,
R = {S + E 
 ES, ES → P + E, E 
 ∅ } .

Note that the set R of reactions is here written in a compact form, as it
actually contains five elements, since reversible reactions have to be counted
twice. Moreover, this example illustrates the role of the null complex ∅: it is
used to model inflows and outflows of species.
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The state of a chemical reaction system is described by a column vector
X ∈ Nn0 , whose i-th entry gives the number of molecules of species Si present
in the system. Each time a reaction occurs, the state of the system is updated
accordingly: in particular, whenever reaction

Rk : νk → ν′k

occurs, species contained in substrate complex νk are converted into species
contained in product complex ν′k, and therefore the state X is updated summing
the column vector

ζk := ν′k − νk ∈ Zn, (1.5)
which is referred to as the reaction vector.

Definition 1.3. The stoichiometric matrix of a chemical reaction network
{ S, C,R} is the matrix S ∈ Zn×l containing reaction vectors { ζk }lk=1 as
columns:

S =
[
ζ1 . . . ζl

]
. (1.6)

Other two matrices are useful to describe a chemical reaction network [18]:

• the complex stoichiometric matrix Z ∈ Zn×m is the matrix containing
vectors { zj }mj=1, defined in (1.1), as columns:

Z =
[
z1 . . . zm

]
. (1.7)

• the matrix B ∈ Zm×l is the incidence matrix of the complex graph, i.e.
the matrix whose entries are given by

Bjk =


−1 if Cj = νk

+1 if Cj = ν′k
0 otherwise

(1.8)

The fundamental relation connecting these matrices is expressed as

S = ZB. (1.9)

Example 1.4 (Enzyme catalysis). Recall that the Michealis-Menten model for
enzyme kinetics, described in Example 1.2, is represented by the complex graph

S + E 
 ES → P + E, E 
 ∅.

Therefore, adopting the labeling order introduced in the previous Example, the
corresponding stoichiometric matrix S is

S =


−1 1 0 0 0
−1 1 1 −1 1
1 −1 −1 0 0
0 0 1 0 0

 ∈ Z4×5.

Moreover, complex stoichiometric matrix Z and incidence matrix B are given by

Z =


1 0 0 0 0
1 0 1 1 0
0 1 0 0 0
0 0 1 0 0

 ∈ N4×5, B =


−1 +1 0 0 0
+1 −1 −1 0 0
0 0 +1 0 0
0 0 0 −1 +1
0 0 0 +1 −1

 ∈ N5×5.

One can easily check that the relation S = ZB holds true.
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Remark 1.5. Matrices Z (complex stoichiometric matrix) and B (incidence
matrix) completely determine a CRN, except for species and reactions relabeling.
Indeed, the incidence matrix fully characterizes the complex graph, while the
complex stoichiometric matrix captures the composition of complexes (i.e. the
vertices of the complex graph) in terms of chemical species.

On the other hand, the stoichiometric matrix S alone is not enough to
describe a CRN: for example, the following networks

(1) A+B 
 2B, (2) A
 B,

are both characterized by the same stoichiometric matrix

S =

[
−1 1
1 −1

]
∈ Z2×2,

but determine different chemical reaction systems. Indeed, the stoichiometric
matrix only captures net changes in the system state caused by each reaction
(as described by reaction vectors), and therefore does not consider those species
present in both the substrate and the product of a reaction, which are, in a
sense, "crossed out".

Chemical reactions such as A+B 
 2B are known in chemistry as autocat-
alytic reactions: chemical species B is both a substrate and a product for the
reaction, and acts as a catalyst. The effect of such autocatalytic reaction on the
state of the system is the same of the simpler reaction A
 B. However, as is
known from chemistry, the presence of a catalyst considerably speeds up the
reaction, since it lowers the activation energy. Similarly, in the mathematical
model, catalysts affect the definition of reaction rates: catalyzed reactions happen
at much faster rates.

In conclusion, stioichiometric matrix S does not completely determine a CRN
because it is "blind" to autocatalytic processes (and to catalysts in general).

Having defined a notion of reaction network as the static component of a
chemical reaction system, one turns to the problem of modeling its dynamical
behaviour. In particular, the state X of the system (a column vector representing
the counts of the different species in S) is now regarded as a function of time:

X = {X(t) ∈ Nn0 , t ≥ 0 } . (1.10)

Consider a column vector Y = {Y (t) }t≥0 whose k-th entry counts the number
of times reaction Rk has occurred up to time t ≥ 0

Y = {Y (t) ∈ Nl0, t ≥ 0 } ; (1.11)

then, the state X(t) of the system at time t ≥ 0 is clearly given by

X(t) = X(0) +
∑
k

ζkYk(t) = X(0) + S Y (t), t ≥ 0, (1.12)

where X(0) represents the initial state.
A choice of dynamics for a chemical reaction system consists in specifying

the form of the counting vector Y .
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In a stochastic setting, Y = {Y (t) }t≥0 is modeled as a multivariate counting
process with intensity functions denoted by

λk : Nn0 7→ R≥0, k = 1, . . . , l;

the number of times reaction Rk has occurred up to time t ≥ 0 is thus given by

Yk(t) = ξk

(∫ t

0

λk(X(s))ds

)
, t ≥ 0, (1.13)

where ξk, k = 1, . . . , l, are independent unit Poisson processes (for further details,
see [1, ch. 1]).

With this definition of the counting vector, the stochastic processX describing
the state of the system can be modeled as a continuous time Markov chain with
state space S = Nn0 :

X(t) = X(0) +
∑
k

ξk

(∫ t

0

λk(X(s))ds

)
ζk, t ≥ 0. (1.14)

Note that intensity functions do not depend on time s explicitely, but only
through the state X(s): therefore, X is a time-homogeneous Markov chain.

A specific form for the intensity functions is called a kinetics. A minimal
requirement for a kinetics is to be stoichiometrically admissible, that is

λk(x) = 0 if x < νk, k = 1, . . . , l, (1.15)

where x < νk is to be understood component-wise. Stoichiometric admissibility
ensures that a reaction cannot occur if molecules present in the system are not
sufficient to produce the substrate, and guarantees that the process remains in
S = Nn0 for all time.

Definition 1.6. Mass action kinetics is a kinetics which follows the law of
mass action, i.e. a kinetics whose intesity function (also called reaction rate) for
reaction Rk is

λk(x) = κk

n∏
i=1

xi!

(xi − (νk)i)!
= κk

x!

(x− νk)!
, k = 1, . . . , l, (1.16)

where constant κk is called reaction rate constant.

Mass action kinetics is stoichiometrically admissible and is the most common
choice of kinetics for chemical reaction systems. Note that the rate is proportional
to the number of distinct groups of molecules present in the system which can
form the substrate of the reaction: this choice of kinetics reflects the assumption
that the system is well-stirred.

Example 1.7 (Enzyme catalysis). Consider once again the Michaelis-Menten
model for enzyme kinetics, described in Example 1.2:

S + E 
 ES → P + E, E 
 ∅.

Adopting the labeling introduced there, reaction rates can be expressed as

λ1(x) = κ1xSxE , λ2(x) = κ2xES , λ3(x) = κ3xES

λ4(x) = κ4xE , λ5(x) = κ5.

8



Therefore, the state of the system at time t ≥ 0 is described by the following
equations:

XS(t) = XS(0)− ξ1
(∫ t

0

κ1XS(s)XE(s)ds

)
+ ξ2

(∫ t

0

κ2XES(s)ds

)
,

XE(t) = XE(0)− ξ1
(∫ t

0

κ1XS(s)XE(s)ds

)
+ ξ2

(∫ t

0

κ2XES(s)ds

)
+ ξ3

(∫ t

0

κ3XES(s)ds

)
− ξ4

(∫ t

0

κ4XE(s)ds

)
+ ξ5

(∫ t

0

κ5ds

)
,

XES(t) = XES(0) + ξ1

(∫ t

0

κ1XS(s)XE(s)ds

)
− ξ2

(∫ t

0

κ2XES(s)ds

)
− ξ3

(∫ t

0

κ3XES(s)ds

)
,

XP (t) = XP (0) + ξ3

(∫ t

0

κ3XES(s)ds

)
.

1.2 Linear Algebra for CRNs

Matrices S (stoichiometric matrix), Z (complex stoichiometric matrix), and B
(incidence matrix), defined above, capture geometrical properties of CRNs, which
are static properties, i.e. indepedendent from the choice of dynamics.

Definition 1.8. A chemical reaction network { S, C,R} is called reversible if
each reaction is reversible, i.e.

νk → ν′k ∈ R =⇒ ν′k → νk ∈ R, (1.17)

or, more formally,
∀k ∃h s.t. νk = ν′h, ν

′
k = νh.

For reversible networks, reactions can be represented in a simplified form:
indeed, forward reaction νk → ν′k and reverse reaction ν′k → νk can be identified
as the same reaction Rk, which is now represented as an unordered pair,

Rk = { νk, ν′k } , νk, ν
′
k ∈ C, (1.18)

and depicted using a double arrow,∑
i

(νk)iSi 

∑
i

(ν′k)iSi, νk, ν
′
k ∈ C. (1.3)

Consequently, the complex graph becomes an undirected graph.
Consistently with this new definition for reactions, the stoichiometric matrix

S and the incidence matrix B have to be redefined. In particular, only one of
the two columns representing an original forward-reverse reaction pair is kept
in each of these matrices; by convention, denote as forward reaction the one
whose corresponding vectors are kept, and as reverse reaction the one whose
corresponding vectors are removed. Clearly, the choice on which column to keep
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and which to remove must be the same for both matrices, in order to preserve
the fundamental relation S = ZB.

One the other hand, elements of the counting vector Y = {Y (t) }t≥0 are
allowed to take negative values

Y = {Y (t) ∈ Zl, t ≥ 0 } ; (1.19)

indeed, Yk(t) counts now the difference in the number of times forward and
reverse reactions Rk have occurred up to time t ≥ 0, i.e. captures the net effect
of reversible reaction Rk on the system.

In conclusion, the expression for the state X(t) of the system at time t ≥ 0
remains unchanged:

X(t) = X(0) +
∑
k

ζkYk(t) = X(0) + S Y (t), t ≥ 0, (1.20)

where the sum is now considered over reversible reactions.
In the following of this section, the discussion is based on the formulation of

CRNs in terms of reversible reactions presented above and extensively developed
in [18].

Remark 1.9. This alternative formulation turns out to be particularly useful
to derive geometrical properties from system matrices: the fact that the count-
ing vector Y ∈ Zn is now an element of a vector space makes the discussion
much easier, since no additional constraints on non-negativity of some linear
combinations have to be considered.

Consider the stoichiometric matrix S ∈ Zn×l; both its right and left null
spaces have a straightforward interpretation.

• Matrix S can be regarded as a (linear) function

S : Zl 7→ Zn, (1.21)

which maps a vector Y (t) of reaction counts to the effect it has on the
system state. From this perspective, its right null space contains counting
vectors Y (t) which define a circuit (or more circuits) in the state space
S = Nn0 :

Y (t) ∈ kerS =⇒ X(t) = X(0) + S Y (t) = X(0), t ≥ 0.

A basis for kerS is a set of reaction vectors corresponding to independent
cycles in the state space.

• Stoichiometric matrix also captures basic conservation laws of the system:
indeed, its left null space includes linear combinations of species which are
conserved for system dynamics:

k ∈ kerST =⇒ kX(t) = kX(0) + (kS)Y (t) = kX(0), t ≥ 0,

i.e. Q =
∑
i

kiSi is a conserved quantity.

If row vector k ∈ Zn0 has all non-negative entries, Q is called a conserved
moiety.
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Likewise, the image of matrix S also has a useful characterization [1, ch. 3].

Definition 1.10. Let S ∈ Zn×l be the stoichiometric matrix of a CRN.

• The vector subspace imS = spank { ζk } ⊆ Zn is the stoichiometric subspace
of the network.

• For x ∈ Zn, the affine space (x+ imS) ⊆ Zn is the stoichiometric compati-
bility class for state x.

It is straightforward to show that, whatever the choice of dynamics, the state
X(t) of the system remains within a single stoichiometric compatibility class for
all time t ≥ 0:

X(t)−X(0) = S Y (t) ∈ imS =⇒ X(t) ∈ (X(0) + imS) ⊆ Zn.

Moreover, given an initial condition X(0) ∈ Nn0 , (i.e. having non-negative entries),
the state of the system remains in the so called non-negative stoichiometric
compatibility class

(X(0) + imS) ∩ Nn0 ⊆ Zn,

provided that the choice of dynamics involves a stoichiometrically admissible
kinetics.

Theorem 1.11 (Rank-Nullity theorem). For a generic matrix S ∈ Zn×l, the
following relations hold:

l = dim kerS + dim imS (1.22)

n = dim kerST + dim imS (1.23)

Therefore, if the rank of S (i.e. the dimension of imS) is less than n, the
stoichiometric subspace is a proper subspace of the state space S. In this case,
kerST is non-null, and there exists a conserved quantity in the system.

Consider now the incidence matrix B ∈ Zm×l of the complex graph.

Remark 1.12. In the reversible setting considered here, the complex graph is
an undirected graph, even if the form of the incidence matrix B still suggests
a direction for graph edges: indeed, B describes the complex graph including
forward reactions only. However, elements of the counting vector Y (t), which is
right-multiplied by matrix B, can take negative values: this means that graph
edges can also be walked the other way.

Recall some geometric properties of (directed) incidence matrices [18].

Property 1.13. Consider a graph G with m vertices, and denote by B ∈ Zm×l
its directed incidence matrix.

• The rank of B is given by

rankB = dim imB = m− k, (1.24)

where k is the number of connected components. In particular, if G is
connected, rankB = m− 1.
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• The (right) null space of B contains vectors y ∈ Zl which define a circuit
(or more circuits) on G, where graph edges can be walked both ways. A
basis for kerB is a set of vectors corresponding to independent cycles on
the graph.

Therefore, the kernel of the incidence matrix B contains vectors Y (t) of
reaction counts defining circuits in the (reversible) complex graph [15].

A key relation may be established between right null vectors of matrices S
and B.

Property 1.14. A vector Y (t) which is in the kernel of the incidence matrix B
is also in the kernel of the stoichiometric matrix S:

Y (t) ∈ kerB =⇒ Y (t) ∈ kerS,

that is, each counting vector Y (t) corresponding to a circuit in the complex graph
also corresponds to a circuit in the state space S.

The statement easily follows from the fundamental relation S = ZB:

B Y (t) = 0 =⇒ S Y (t) = 0.

Intuitively, each circuit in the complex graph (i.e. each closed sequence of
reactions) restores the same counts of complexes, and therefore also restores the
same counts of chemical species. However, the converse is not necessarily true.

Definition 1.15. The deficiency of a chemical reaction network { S, C,R} with
stoichiometric matrix S and incidence matrix B is defined as

δ = dim kerS − dim kerB. (1.25)

Note that, from Property 1.14, it directly follows that the deficiency of a CRN
is always non-negative.

The deficiency can be interpreted, from the geometric point of view, as the
number of independent cycles (closed sequences of reactions) in the state space
which cannot be visualized as independent cycles in the complex graph; these
cycles are sometimes called hidden cycles [15].

An alternative equivalent definition of deficiency is commonly found in
literature (e.g. [18]).

Lemma 1.16. The deficiency can be expressed as

δ = dim imB − dim imS = rankB − rankS. (1.26)

Proof. Applying the Rank-Nullity Theorem 1.11 to matrices S and B, one
obtains

dim kerS = l − dim imS, dim kerB = l − dim imB. (1.27)

The result then follows directly substituting into the definition.
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This equivalent expression allows to give another geometric interpretation
of deficiency from a different point of view. Indeed, regarding the complex
stoichiometric matrix Z ∈ Zn×m as a function restricted on the proper subspace
imB ⊂ Zm,

Z : imB ⊂ Zm 7→ imS ∈ Zn,

deficiency can be associated with the dimensionality reduction caused by Z when
mapping imB into the stoichiometric subspace imS.

Moreover, recalling the definition for the rank of the incidence matrix (1.24),
one obtains

δ = m− k − rankS, (1.28)

wherem is the number of complexes and k is the number of connected components
in the complex graph (which are termed linkage classes in this setting) [1, ch. 3].

Remark 1.17. Zero-deficiency is a key property for a chemical reaction network:
observations above show that zero-deficiency is equivalent to

kerZ ∩ imB = 0,

or to the mapping Z : imB 7→ imS being injective.
Therefore, in a zero-deficient CRN, there exists a one-to-one correspondence

between the stoichiometric subspace imS and the subspace imB ⊂ Zm, which
determines all combinations of complexes counts that are reachable as a conse-
quence of reactions in R. In addition, all cycles in the state space S are also
cycles in the complex graph (and viceversa), i.e. there are no hidden cycles.

1.3 Limit behaviour under classical scaling

In classical chemistry, the number of molecules of species involved in a reaction
is usually very high, even for systems contained in relatively small volumes: for
this reason, the state of a reaction system is commonly described in terms of
chemical concentrations rather than number of molecules.

Definition 1.18. Let Xi ∈ N0 be the number of molecules of species Si present
in the system. The chemical concentration CNVi ∈ R≥0 of species Si is given by

CNVi :=
Xi

NV
, NV = NAV, (1.29)

where NA is Avogadro’s number (≈ 6.02 × 1023) and V is the volume of the
reaction mixture.

Similarly, reaction rate constants may also be affected by the volume of the
reaction mixture.

• For a binary reaction,
S1 + S2 → ∗,

the reaction rate should vary inversely with the volume, so that it takes
the form

λNV (x) =
κ′

NV
x1x2.
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This assumption captures the intuitive idea that, given a fixed number of
molecules for both species, reaction happens at faster rate if reactants are
confined is a smaller volume (when the system is well-stirred).

• For a unary reaction
S1 → ∗,

the reaction rate does not dependend on the volume:

λNV (x) = λ(x) = κx1.

In this case, the substrate is made of a single chemical species, which
transforms into the product complex independently of the volume of the
system.

• For an inflow reaction
∅ → ∗,

the reaction rate is assumed to vary proportionally with the volume, so
that it takes the form

λNV (x) = NV κ
′.

In general, when the volume of the reaction mixture is included in mass action
kinetics, the intensity function (reaction rate) for reaction Rk is given by

λNVk (x) =
κ′k

N
|νk|−1
V

x!

(x− νk)!
, k = 1, . . . , l, (1.30)

where |νk| =
∑

(νk)i is the number of molecules in the substrate. Assuming the
number of molecules of species involved in the reaction to be very high, one can
write the approximation

x!

(x− νk)!
≈ xνk ,

so that the intensity function becomes

λNVk (x) =
κ′k

N
|νk|−1
V

xνk = NV κ
′
k

xνk

N
|νk|
V

, k = 1, . . . , l.

Therefore, mass action kinetics can be easily redefined in terms of chemical
concentration of species instead of absolute numbers of molecules.

Definition 1.19. Let ci = N−1
V xi be the chemical concentration of species Si.

Mass action kinetics for concentrations has intensity function for reaction Rk
given by

λNVk (x) = NV λ
′
k(c), k = 1, . . . , l, (1.31)

where

λ′k(c) := κ′k

n∏
i=1

c
(νk)i
i = κ′kc

νk . (1.32)

With these definitions, the state of the system is now described by a vector
function of time

CNV = {CNV (t) ∈ Rn≥0, t ≥ 0 } , (1.33)

14



representing chemical concentrations of the different species in S. Note that the
volume is assumed to be constant over time, i.e. NV = NAV does not depend
on time.

The stochastic process CNV can thus be modeled as a continuous time Markov
chain with state space S = Rn≥0:

CNV (t) = CNV (0) +
∑
k

N−1
V ξk

(
NV

∫ t

0

λ′k(CNV (s))ds

)
ζk, t ≥ 0. (1.34)

As already highlighted, quantity NV = NAV is very large even if volume V is
small: therefore, if we consider a sequence of equations

CN (t) = CN (0) +
∑
k

N−1ξk

(
N

∫ t

0

λ′k(CN (s))ds

)
ζk, t ≥ 0, (1.35)

indexed by N (which is now unbound to the quantity NV ), the limiting stochastic
process C for N growing large,

C = lim
N→∞

CN ,

if it exists, should reasonably approximate the stochastic process CN , N = NV .
The following of this section is devoted to characterize the limiting process

for the sequence described in (1.35).
Let l = |R| <∞ and define the vector function

F : Rn≥0 7→ Rn, F (c) =
∑
k

λ′k(c)ζk, (1.36)

so that equation (1.35) becomes

CN (t) = CN (0) +MN (t) +

∫ t

0

F (CN (s))ds, t ≥ 0, (1.37)

where

MN (t) =
∑
k

N−1ξ̂k

(
N

∫ t

0

λ′k(CN (s))ds

)
ζk, t ≥ 0,

and ξ̂k(u) = ξk(u)− u.

Theorem 1.20 (Strong law of large numbers for Poisson process). Let ξ be a
unit Poisson process; then, for each t > 0,

lim
N→∞

sup
s≤t

∣∣N−1ξ(Ns)− s
∣∣ = 0, a.s. (1.38)

Under suitable hypotheses, the strong law of large numbers for Poisson
processes can be directly applied to process MN in order to prove the following
theorem, which may itself be regarded as a law of large numbers for the sequence
of stochastic processes described in (1.35) (for the proof, see [7, ch. 11]).
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Theorem 1.21. Let CN satisfy equation (1.35) and define the deterministic
function c : R≥0 7→ Rn as the solution to the equation

c(t) = c(0) +

∫ t

0

F (c(s))ds, t ≥ 0. (1.39)

Moreover, assume the local Lipschitz condition on F , i.e. for each compact
K ⊂ Rn≥0, there exists MK such that

|F (x)− F (y)| ≤MK |x− y|, x, y ∈ K. (1.40)

If CN (0) has finite (positive) limit for N →∞,

lim
N→∞

CN (0) = c(0) > 0,

then, for each ε > 0 and for each t > 0,

lim
N→∞

P
(

sup
s≤t
|CN (s)− c(s)| ≥ ε

)
= 0. (1.41)

As a consequence, the stochastic model for CNV described in (1.34) could be
reasonably approximated, in the large volume limit, by the deterministic model
described in (1.39):

CNV (t) ≈ C(t) = c(t), t ≥ 0.

The approximation procedure presented above is known in literature as classical
scaling (e.g. [1, ch. 4] and [13]).

Remark 1.22. Equation (1.39) is expressed in integral form, but can be equiv-
alently written as an ordinary differential equation [2]:

ċ(t) = F (c(t)) =
∑
k

κkc(t)
νkζk, t ≥ 0.

In this form, the equation is well-know in classical chemistry as deterministic
law of mass action. Note that we are implicitly assuming that a solution to
the equation exists for all t > 0; uniqueness is guaranteed by the Lipschitz
assumption.

1.4 Multiscale approximations

Chemical reactions systems studied in cellular biology renewed the interest in
stochastic models, since the approximation under classical scaling proved to be
inadequate to properly describe complex phenomena at cellular level. This is
essentially due to three reasons:

• the number of molecules involved, at least for some species, may be
sufficiently small that the continuous approximation of the deterministic
model does not provide a satisfactoy representation of the actual behaviour
of the system, or expressing their abundance as concentrations appears
inappropriate;
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• some species may be present in much greater abundance than others, so
that there is no normalization of molecules numbers that is suitable for all
species in the system;

• reaction rate constants frequently vary over several orders of magnitude.

Therefore, in order to capture this variability, we would like to explore alternative
approaches to produce interesting scaling limit approximation models.

Let N0 � 1 denote the (single) scaling parameter for the model: it is still
assumed to be large, but has no longer an interpretation in terms of Avogadro’s
number or volume of the reaction mixture (i.e. it has no physical meaning).

Definition 1.23. For each species Si, define the normalized abundance as

ZN0
i := N−αi0 Xi, i = 1, . . . , n, (1.42)

where αi ≥ 0 should be selected so that ZN0
i = O(1). Note that the normalized

abundance may be the species number (αi = 0), the species concentration
(αi = 1) or something else.

The scaling parameter N0 is usually chosen to be the order of magnitude of
the abundance of the most abundant species in the system, so that

0 ≤ αi ≤ 1, ∀i = 1, . . . , n.

Definition 1.24. For each reaction Rk, define the normalized reaction rate
constant as

κ′k := κkN
−βk
0 , k = 1, . . . , l, (1.43)

where βk ∈ R should be selected so that κ′k = O(1).

For example, if we suppose

κ1 ≥ κ2 ≥ · · · ≥ κl,

it could be reasonable to select coefficients βi, i = 1, . . . , l so that

β1 ≥ β2 ≥ · · · ≥ βl,

although it may be more natural to impose this order separately for unary, binary
or inflows reactions, as it happens for classical scaling (Remark 1.26).

Similarly to Definition 1.19, intensity functions characterizing mass action
kinetics can be rewritten in terms of normalized abundances [2].

Definition 1.25. Let zi = N−αi0 xi be the normalized abundance of species Si.
Mass action kinetics for abundances has intensity function for reaction Rk given
by

λN0

k (x) = Nβk+νk·α
0 λ′k(z), k = 1, . . . , l, (1.44)

where

λ′k(z) := κ′k

n∏
i=1

z
(νk)i
i = κ′kz

νk . (1.45)
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Therefore, the stochastic process ZN0 , representing normalized abundances,
can be modeled as a continuous time Markov chain: for each species Si and for
t ≥ 0,

ZN0
i (t) = ZN0

i (0) +
∑
k

N−αi0 ξk

(
Nβk+νk·α

0

∫ t

0

λ′k(ZN0(s))ds

)
(ζk)i.

Since N0 is assumed to be large, we can again consider a sequence of stochastic
models, indexed by N , satisfying

ZNi (t) = ZNi (0) +
∑
k

N−αiξk

(
Nβk+νk·α

∫ t

0

λ′k(ZN (s))ds

)
(ζk)i, (1.46)

for each species Si and for t ≥ 0, and attempt to approximate the original model
(corresponding to N = N0) with the limiting process for N growing large, if such
limit exists:

ZN0 ≈ Z = lim
N→∞

ZN . (1.47)

Remark 1.26. The classical scaling presented in Section 1.3 is a particular case
of the general scaling procedure described in this section, obtained taking

αi = 1, i = 1, . . . , n,

and
βk = 1− |νk| = 1−

∑
i

(νk)i, k = 1, . . . , l.

Remark 1.27. In Definition 1.23, the requirement ZN0
i = O(1) appears to be

quite vague, and still leaves a certain degree of arbitrariness about the selection.
To be more precise αi should be large enough so that the family of stochastic
processes {ZNi } is stochastically bounded, i.e. for each ε > 0 and t ≥ 0 there
exists Kε,t such that

inf
N

P
(

sup
s≤t

ZNi (s) ≤ Kε,t

)
≥ 1− ε, i = 1, . . . , n.

On the other hand, αi cannot be so large that {ZNi }N converges to zero for
N →∞: for example, a sufficient condition could be the existance of δε,t such
that

inf
N

P
(

inf
s≤t

ZNi (s) ≥ δε,t
)
≥ 1− ε, i = 1, . . . , n.

However, it is not uncommon to encounter situations in which αi = 0 and ZNi is
frequently zero, so this requirement is in general too restrictive [13, sec. 2].

In characterizing the limiting process for the sequence in (1.46), we would
like to consider also a scaling in time, and possibly study the model on different
time scales. Consider the change of time variable

τ = N−γt, t ≥ 0, (1.48)

and define the stochastic process ZN,γ as the time-scaled version of process ZN :

ZN,γ(τ) := ZN (t) = ZN (Nγτ), t ≥ 0. (1.49)
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Consequently, equation (1.46) can be restated in terms of the time-scaled process
as

ZN,γi (τ) = ZNi (0) +
∑
k

N−αiξk

(
Nγ+βk+νk·α

∫ τ

0

λ′k(ZN,γ(s))ds

)
(ζk)i,

for each species Si and for τ ≥ 0.
Different choices of time-scale parameter γ may lead to interesting approx-

imations for different subsets of species. A large number of examples in this
sense can be found in [2] and [13, sec. 6].

1.5 Balance conditions and natural time-scales

Remark 1.27 provides reasonable requirements to obtain nontrivial limiting mod-
els: these requirements may be extended to the time-scaled family of stochastic
processes {ZN,γi } and place constraints on possible values for parameters α, β
and possibly γ.

Consider the Michaelis-Menten model introduced in Section 1.1:

S + E 
 ES → P + E, E 
 ∅.

If we introduce scaling parameters α, β and γ, the equation for process ZN,γS is

ZN,γS (τ) = ZNS (0)−N−αSξ1
(
Nγ+β1+αS+αE

∫ τ

0

κ′1Z
N,γ
S (s)ZN,γE (s)ds

)
+N−αSξ2

(
Nγ+β2+αES

∫ τ

0

κ′2Z
N,γ
ES (s)ds

)
, τ ≥ 0.

Assume that ZN,γi = O(1) for i 6= S and ZNS (0) = O(1). Then ZN,γS = O(1) if
at least one of these constraints holds:

• the rate of production of species S has the same order of magnitude of its
rate of consumption, so that ZN,γS neither explodes nor goes to zero:

β2 + αES = β1 + αS + αE ;

• the rate at which reactions involving species S happen has order of magni-
tude less or equal to the normalization parameter for its abundance:

γ + βk + νk · α ≤ αS , k = 1, 2.

In general, we should require parameters α, β and γ to satisfy the following
condition [13, sec. 3].

Condition 1.28. Let Γ+
i ⊆ R and Γ−i ⊆ R be the sets of reactions that result

in an increase and decrease in the abundance of species Si, respectively:

Γ+
i := { k : (ζk)i > 0 } , Γ−i := { k : (ζk)i < 0 } , i = 1, . . . , n.

The species balance condition for species Si holds if at least one of these require-
ments is satisfied:
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1. Balance equation

max
k∈Γ+

i

(βk + νk · α) = max
k∈Γ−i

(βk + νk · α), i = 1, . . . , n; (1.50)

2. Time-scale constraint

max
k∈Γ+

i ∪Γ−i

(βk + νk · α) + γ ≤ αi, i = 1, . . . , n. (1.51)

Note that the time-scale constraint can be equivalently stated as

γ ≤ αi − max
k∈Γ+

i ∪Γ−i

(βk + νk · α), i = 1, . . . , n. (1.52)

In particular, if we consider reaction Rk, with (ζk)i 6= 0, the quantity

γ = αi − (βk + νk · α)

can be regarded as the natural time-scale for the normalized reaction counting

N−αiY N,γk (τ) = N−αiξk

(
Nγ+βk+νk·α

∫ τ

0

λ′k(ZN,γ(s))ds

)
. (1.53)

A similar idea can be extended at the species level.

Definition 1.29. The natural time-scale γi for the normalized abundance of
species Si is defined as

γi := αi − max
k∈Γ+

i ∪Γ−i

(βk + νk · α). (1.54)

For γ = γi, none of the normalized reaction countings in (1.53) for species Si
should blow up, and at least one should be nontrivial (i.e. should not uniformly
converge to zero). To be more precise, let Γi,0 ⊆ R be the set of reactions,
involving species Si, with fastest rates:

Γi,0 := arg max
k∈Γ+

i ∪Γ−i

(βk + νk · α).

Then, if αi > 0, we reasonably expect (see Theorem 1.20)

lim
N→∞

ZN,γii (τ) = lim
N→∞

ZNi (0) +
∑
k∈Γi,0

∫ τ

0

λ′k(ZN,γi(s))ds (ζk)i

 ,

while, if αi = 0, we expect

lim
N→∞

ZN,γii (τ) = lim
N→∞

ZNi (0) +
∑
k∈Γi,0

ξk

(∫ τ

0

λ′k(ZN,γi(s))ds

)
(ζk)i

 .

Note that time-scales are here associated with single species; therefore, one
reaction may determine different time-scales associated with different species (or
collection of species).

In conclusion, considering the whole reaction system, we would like Condition
1.28 to hold for each species Si, i = 1, . . . , n. In particular, we could require the
time-scale constraint, as stated in (1.52), to hold for each species:

γ ≤ αi − max
k∈Γ+

i ∪Γ−i

(βk + νk · α), ∀i = 1, . . . , n. (1.55)
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Definition 1.30. The (first) natural time-scale γ′ for a (normalized) reaction
system is defined as

γ′ := min
i∈S

γi = min
i∈S

(
αi − max

k∈Γ+
i ∩Γ−i

(βk + νk · α)

)
. (1.56)

Again, setting γ = γ′, none of the normalized reaction countings in (1.53)
should blow up, for each reaction Rk ∈ R and each species Si ∈ S, and at least
one should be nontrivial.

Let Γγi ⊆ R be the set of reactions, involving species Si, with natural
time-scale γ:

Γγi := { k : αi = γ + (βk + νk · α), (ζk)i 6= 0 } .

The following Theorem characterizes the limit for the stochastic process of
normalized abundances (for the proof, see [13, sec. 4]).

Theorem 1.31. Let γ′ be the first natural time-scale, as defined in (1.56), and
assume that ZNi (0) has finite positive limit for N →∞, for each species Si:

lim
N→∞

ZNi (0) = Zi(0) > 0, ∀i = 1, . . . , n.

Let Zγ
′
be the stochastic process described, for each species Si, by equations

Zγ
′

i (τ) = Zi(0) +
∑
k∈Γγ

′
i

∫ τ

0

λ′k(Zγ
′
(s))ds (ζk)i, if αi > 0,

Zγ
′

i (τ) = Zi(0) +
∑
k∈Γγ

′
i

ξk

(∫ τ

0

λ′k(Zγ
′
(s))ds

)
(ζk)i, if αi = 0.

Then, the stochastic process of normalized abundances ZN,γ
′
converges in distri-

bution (i.e. weakly) to the stochastic process Zγ
′
on time interval [0, τ∞),

ZN,γ
′
⇒ Zγ

′
, on [0, τ∞), (1.57)

where τ∞ is itself a random (stopping) time, defined as

τ∞ := lim
c→∞

(
inf

{
t : sup

s≤t
|Zγ

′
(s)| ≥ c

})
. (1.58)

Remark 1.32. The specification regarding the random time interval [0, τ∞)
reflects the possibility for the reaction system to explode in finite time.

For example, consider the following one-species reaction system,

2S1 → 3S1, S1 → ∅,

whose state at time t ≥ 0 is described by the equation

X1(t) = X1(0) + ξ1

(∫ t

0

κ1X1(s)(X1(s)− 1)ds

)
− ξ2

(∫ t

0

κ2X1(s)ds

)
.

This model is actually a birth-and-death process with quadratic birth rates and
linear death rates, expressed respectively by

λ1(x) = κ1x(x− 1), λ2(x) = κ2x.

Therefore, if X1(0) > 1, it has positive probability of exploding in finite time.
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1.6 Linear combinations and faster time-scales

Condition 1.28 seems a reasonable requirement to prevent normalized abundances
from blowing up as N grows large. However, in general, it does not ensure by
itself that

ZN,γi = O(1), i = 1, . . . , n.

Indeed, there may be subsets of species such that the collective rate of production
is greater than the collective rate of consumption, and therefore their collective
normalized abundance blows up as N →∞, at a suitable time-scale.

Consider again the Michaelis-Menten model,

S + E 
 ES → P + E, E 
 ∅,

and focus on species E and ES. If we assume, for example,

αE = αES = 0, 0 < β4 < β5 < β1 = β2 = β3, γ = 0,

the equations for processes ZN,γE and ZN,γES are

ZN,γE (τ) = XN
E (t) = XE(0)− ξ1

(
Nβ1

∫ t

0

κ′1Z
N,γ
S (s)ZN,γE (s)ds

)
+ ξ2

(
Nβ2

∫ t

0

κ′2Z
N,γ
ES (s)ds

)
+ ξ3

(
Nβ3

∫ t

0

κ′3Z
N,γ
ES (s)ds

)
− ξ4

(
Nβ4

∫ t

0

κ′4Z
N,γ
E (s)ds

)
+ ξ5

(
Nβ5

∫ t

0

κ′5ds

)
,

ZN,γES (τ) = XN
ES(t) = XES(0) + ξ1

(
Nβ1

∫ t

0

κ′1Z
N,γ
S (s)ZN,γE (s)ds

)
− ξ2

(
Nβ2

∫ t

0

κ′2Z
N,γ
ES (s)ds

)
− ξ3

(
Nβ3

∫ t

0

κ′3Z
N,γ
ES (s)ds

)
.

Since β1 = β2 = β3, the species balance condition is satisfied (balance equation
holds), but if we consider the process ZN,γE + ZN,γES we obtain the equation

ZN,γE (τ) + ZN,γES (τ) = XN
E (t) +XN

ES(t)

= XE(0) +XES(0)− ξ4
(
Nβ4

∫ t

0

κ′4Z
N,γ
E (s)ds

)
+ ξ5

(
Nβ5

∫ t

0

κ′5ds

)
,

and, given that β4 < β5, the normalized abundances blow up anyway, at this
time-scale. This example suggests the need to consider linear combinations of
species.

At first, assume for simplicity that αi = ᾱ for all species, and consider the
normalized abundance of a linear combination of species θ · S, defined as

ZN,γθ := θ · ZN,γ , θ ∈ Rn≥0. (1.59)
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The stochastic process ZN,γθ satisfies equation

ZN,γθ (τ) = θTZN,γ(τ) = θTZN (0) +
∑
k

N−ᾱY N,γk (τ) θT ζk, (1.60)

for τ ≥ 0, where

Y N,γk (τ) = ξk

(
Nγ+βk+νk·α

∫ τ

0

λ′k(ZN,γ(s))ds

)
,

for k = 1, . . . , l are reaction countings.
If normalization parameters αi, i = 1, . . . , n are not all equal, the linear com-

bination of species should be normalized with respect to the largest normalization
parameter among those of species involved in the combination,

αθ := max
i : θi>0

αi, (1.61)

so that the normalized abundance of a linear combination of species θ · S is

ZN,γθ := N−αθ θ · ΛNZN,γ = N−αθ θ ·XN,γ , θ ∈ Rn≥0, (1.62)

where ΛN is the diagonal matrix with entries

(ΛN )ii = Nαi , i = 1, . . . , n.

Therefore, the stochastic process ZN,γθ satisfies equation

ZN,γθ (τ) = N−αθθTΛNZ
N,γ(τ)

= N−αθθTΛNZ
N (0) +

∑
k

N−αθY N,γk (τ) θT ζk.
(1.63)

Requirements introduced in Remark 1.27 may be applied to linear combina-
tions of species to rule out degenerate limiting models.

As before, assume that ZN,γi = O(1) for species not entering the linear
combination, and ZNθ (0) = O(1). Then, ZN,γθ = O(1) if at least one of these
constraints holds:

• for species involved in the combination, the collective rate of production
has the same order of magnitude of the collective rate of consumption, so
that ZN,γθ neither explodes nor goes to zero;

• the rate at which reactions with a net effect on the combination happen has
order of magnitude less or equal to the common normalization parameter
for abundances αθ.

Species balance condition can thus be easily extended to linear combination
of species [13, sec. 3].

Condition 1.33. Let Γ+
θ ⊆ R and Γ−θ ⊆ R be the sets of reactions that result

in an increase and decrease in the abundance of the linear combination of species
θ · S, respectively:

Γ+
θ := { k : θT ζk > 0 } , Γ−θ := { k : θT ζk < 0 } .

The balance condition for linear combinations of species holds if at least one of
these requirements is satisfied for each θ ∈ Rn≥0:
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1. Balance equation

max
k∈Γ+

θ

(βk + νk · α) = max
k∈Γ−θ

(βk + νk · α), θ ∈ Rn≥0; (1.64)

2. Time-scale constraint

max
k∈Γ+

θ ∪Γ−θ

(βk + νk · α) + γ ≤ αθ, θ ∈ Rn≥0. (1.65)

Note that, as before, the time-scale constraint can be equivalently stated as

γ ≤ αθ − max
k∈Γ+

θ ∪Γ−θ

(βk + νk · α), θ ∈ Rn≥0. (1.66)

Remark 1.34. Considering θi > 0 for a single species Si, Condition 1.33 is equiv-
alent to Condition 1.28, and therefore the former is more general and includes
the latter. In particular, time-scale constraint (1.66) is completely equivalent
to (1.52), while balance equation (1.64) is a strictly stronger requirement than
(1.50).

Definition 1.35. The natural time-scale γθ for the normalized abundance of
linear combination of species θ · S is defined as

γθ := αθ − max
k∈Γ+

θ ∪Γ−θ

(βk + νk · α). (1.67)

For γ = γθ, none of the normalized reaction countings

N−αθY N,γk (τ), k ∈ Γ+
θ ∪ Γ−θ ,

should blow up, and at least one should be nontrivial (i.e. should not uniformly
converge to zero).

Note that, by Definition 1.29, the natural time-scale for the normalized
abundance of a linear combination of species is larger than the natural time-scale
for the normalized abundances of the single species involved in the combination:

γθ ≥ min
i : θi>0

γi. (1.68)

Moreover, as observed in Remark 1.34, time-scale constraints (1.66) and (1.52)
are equivalent, and therefore, by Definition 1.30,

γ′ = min
i∈S

γi = min
θ∈Rn≥0

γθ, (1.69)

where γ′ is the (first) natural time-scale. Then, setting γ = γ′, Condition 1.33
holds for each θ ∈ Rn≥0.

On the other hand, if Condition 1.33 holds for some time-scale γ strictly
larger than the first natural time-scale γ′, then necessarily balance equation
(1.64) holds at least for all θ ∈ Rn≥0 such that γθ = γ′, because of (1.69).

In general, let γ̂ be the largest time-scale for which Condition 1.33 holds:

γ̂ := sup { γ : Condition 1.33 holds } . (1.70)

This parameter may take different values, depending on whether, and for which
values of θ ∈ Rn≥0, balance equation (1.64) holds:
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• if γ̂ = γ′, balance equation never holds, or does not hold for some θ such
that γθ = γ′;

• if γ̂ =∞, balance equation holds for each θ;

• if γ′ < γ̂ <∞, balance equation holds (at least) for all θ such that γθ < γ̂
and does not hold for some θ such that γθ = γ̂.

As a consequence, if γ̂ is strictly larger than γ′, there exists at least one θ ∈ Rn≥0

whose natural time-scale γθ is larger than the natural time-scale γ′, and therefore
the reaction system has more than one natural time scale.

Definition 1.36. The second natural time-scale γ′′ for a (normalized) reaction
system is defined as

γ′′ := inf { γθ : γθ > γ′ } . (1.71)

Remark 1.37. The infimum in the definition above is actually a minimum:
indeed, the natural time-scale parameter γθ can take only a finite number of
values, since the set of reactions R is finite. Therefore,

γ′ < γ′′ ≤ γ̂,

and γ′′ is actually a second time-scale.

Example 1.38. Consider the reaction network

∅ → A
 B, (1.72)

and assume that
β1 = β2 > β3.

Suppose both species are balanced, i.e. balance equation (1.50) holds for both
species:

A: max(β1, β3 + αB) = β2 + αA, B: β2 + αA = β3 + αB .

For example, assume

β1 = β2 = β > 0, β3 = 0, αA = 0, αB = β,

so that balance equation is satisfied for both A and B. With this choice of
scaling parameters, the stochastic processes of normalized abundances satisfy
equations

ZN,γA (τ) = ZNA (0) + ξ1(Nγ+βκ1τ)− ξ2
(
Nγ+β

∫ τ

0

κ2Z
N,γ
A (s)ds

)
+ ξ3

(
Nγ+β

∫ τ

0

κ3Z
N,γ
B (s)ds

)
,

ZN,γB (τ) = ZNB (0) +N−βξ2

(
Nγ+β

∫ τ

0

κ2Z
N,γ
A (s)ds

)
−N−βξ3

(
Nγ+β

∫ τ

0

κ3Z
N,γ
B (s)ds

)
.
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Note that the natural time-scale for normalized abundance of species A is
γA = −β, while that of species B is γB = 0, and so the first natural time scale
for the normalized reaction system is

γ′ = min(γA, γB) = −β.

Considering linear combinations, for θ = (1, 1), the normalized abundance of
θ · S is given by

ZN,γθ := N−βZN,γA + ZN,γB ,

and stochastic process ZN,γθ satisfies equation

ZN,γθ (τ) = N−βZNA (0) + ZNB (0) +N−βξ1(Nγ+βκ1τ). (1.73)

However, for this choice of θ,

Γ+
θ = { 1 } , Γ−θ = ∅,

and therefore balance equation (1.64) fails. As a consequence, we should require
time-scale contraint (1.66) to hold,

γ ≤ αθ − β = 0, with αθ = max(αA, αB) = β.

Note that the natural time-scale for the normalized abundance of linear combi-
nation θ · S is γθ = 0, which is also the second natural time-scale

γ′′ = inf { γθ̄ : γθ̄ > γ′ } = γθ = 0,

since γθ̄ = −β = γ′ for all θ̄ 6= θ.
At the first natural time-scale γ′ = −β, the limit process Zγ

′
is described by

equations

Zγ
′

A (τ) = ZA(0) + ξ1(κ1τ)− ξ2
(∫ τ

0

κ2Z
γ′

A (s)ds

)
+ ξ3

(∫ τ

0

κ3Z
γ′

B (s)ds

)
= ZA(0) + ξ1(κ1τ)− ξ2

(∫ τ

0

κ2Z
γ′

A (s)ds

)
+ ξ3 (κ3ZB(0)τ) ,

Zγ
′

B (τ) = ZB(0), τ ≥ 0.

At the second natural time-scale γ′′ = 0, which is the natural time-scale for
species B, we could divide the equation for ZN,γ

′′

A by Nβ and take the limit for
N growing large,

0 = lim
N→∞

N−βZN,γ
′′

A (τ)

= lim
N→∞

N−βZNA (0) +N−βξ1(Nβκ1τ)

−N−βξ2
(
Nβ

∫ τ

0

κ2Z
N,γ′′

A (s)ds

)
+N−βξ3

(
Nβ

∫ τ

0

κ3Z
N,γ′′

B (s)ds

)
= lim
N→∞

(
κ1τ −

∫ τ

0

κ2Z
N,γ′′

A (s)ds+

∫ τ

0

κ3Z
N,γ′′

B (s)ds

)
,
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so that

lim
N→∞

(∫ τ

0

κ2Z
N,γ′′

A (s)ds−
∫ τ

0

κ3Z
N,γ′′

B (s)ds

)
= κ1τ, τ ≥ 0.

Therefore, the stochastic process ZN,γ
′′

B converges in distribution to the limit
process Zγ

′′

B given by

Zγ
′′

B (τ) = ZB(0) + κ1τ, τ ≥ 0, (1.74)

and so does the stochastic process ZN,γ
′′

θ , as follows directly from (1.73),

ZN,γ
′′

θ =⇒ Zγ
′′

θ = Zγ
′′

B . (1.75)

Remark 1.39. In the previous Example 1.38, the largest time-scale for which
balance condition for linear combinations holds is

γ̂ = γθ = γ′′,

and for time-scales γ strictly larger than γ̂, normalized abundance for species B
grows unbounded:

ZN,γB (τ)→∞, ∀τ ≥ 0, γ > γ̂.

This remark shows that Condition 1.28, and balance equation (1.50) in particular,
is actually not sufficient to prevent normalized abundances from blowing up as
N grows large, and time-scale constraint in Condition 1.33 becomes essential
here.

1.7 Limit behaviour at second natural time-scale

Consider a reaction system with more than one natural time-scale, i.e. a system
for which a second natural time-scale γ′′ exists (e.g. see Example 1.38).

Let Γγθ ∈ R be the set of reactions, resulting in a net effect on the linear
combination θ · S, with natural time-scale γ with respect to θ:

Γγθ := { k : αθ = γ + (βk + νk · α), θT ζk 6= 0 } .

Note that, by Definition 1.35, Γγθθ is the set of reactions, resulting in a net effect
on the linear combination θ · S, with the fastest rates.

As a result, if αθ > 0, it would be reasonable to expect

lim
N→∞

ZN,γθθ (τ) = lim
N→∞

ZNθ (0) +
∑
k∈Γ

γθ
θ

∫ τ

0

λ′k(ZN,γθ (s))ds θT ζk

 ,

while, if αθ = 0,

lim
N→∞

ZN,γθθ (τ) = lim
N→∞

ZNθ (0) +
∑
k∈Γ

γθ
θ

ξk

(∫ τ

0

λ′k(ZN,γθ (s))ds

)
θT ζk

 .

This intuition is certainly true if γθ = γ′, as it follows directly from Theorem
1.31.
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Proposition 1.40. Let Zγ
′

θ be the stochastic process defined, for the linear
combination of species θ · S, as

Zγ
′

θ := θTDαθZγ
′
, (1.76)

where Dαθ is the diagonal matrix with diagonal entry i equal to 1 if species Si
has normalization parameter αθ.

(Dαθ )ii =

{
1 if αi = αθ

0 if αi 6= αθ
, i = 1, . . . , n.

Then, stochastic process ZN,γ
′

θ of normalized abundance for the linear combination
θ · S converges in distribution to stochastic process Zγ

′

θ on time interval [0, τ∞):

ZN,γ
′

θ ⇒ Zγ
′

θ , on [0, τ∞). (1.77)

Since the reaction system is assumed to have more than one natural time-scale,
by Definition 1.36, there exists a linear combination of species θ · S, θ ∈ Rn≥0,
whose natural time-scale γθ is equal to γ′′.

For this particular choice of θ, it follows from Definition 1.35 that all reactions
with natural time-scale γ′ with respect to θ have a null effect on the normalized
abundance of the linear combination, which is equivalent to state that Γγ

′

θ = ∅.
In this case, at the first natural time-scale γ′ , the process ZN,γ

′

θ converges to
the constant process

Zγ
′

θ (τ) = Zθ(0), τ ≥ 0.

However, at the second natural time-scale γ′′, the natural one for the linear
combination θ · S, we would expect a result similar to Proposition 1.40 to hold,
so that process ZN,γ

′′

θ converges to a non-degenerate model even at this faster
time-scale:

ZN,γ
′′

θ ⇒ Zγ
′′

θ , on [0, τ∞). (1.78)

In particular, it should be reasonable for ZN,γ
′′

θ to converge to the stochastic
process Zγ

′′

θ defined as
Zγ
′′

θ := θTDαθZγ
′′
. (1.79)

Example 1.41. Consider again the reaction system described in Example 1.38:

∅ → A
 B.

For linear combination θ = (1, 1), the normalized abundance of θ · S satisfies
equation

ZN,γθ (τ) = ZNθ (0) +N−βξ1(Nγ+βκ1τ), τ ≥ 0.

At the first natural time-scale γ = γ′ = −β, the stochastic process ZN,γ
′

θ

converges to the constant process

Zγ
′

θ (τ) = Zθ(0) = ZB(0), τ ≥ 0,
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while at the second natural time-scale γ = γ′′ = 0, the stochastic process ZN,γ
′′

θ

converges in distribution to the limit process Zγ
′′

θ given by

Zγ
′′

θ (τ) = Zθ(0) + κ1τ, τ ≥ 0.

Note that the limit process Zγ
′′

θ is equal to the limit process Zγ
′′

B for species
B at its natural time-scale: indeed, species B has normalization parameter
αB = β = αθ, and multiplying process Zγ

′′
by vector θTDαθ boils down to

considering only its component corresponding to species B.

Unfortunately, even if γ′′ has a natural interpretation as the second time-scale
for the reaction system, the sensible result stated in (1.78) does not hold in
general. Indeed, convergence of normalized abundance of linear combinations to
a non-degenerate process cannot be guaranteed a priori at the second natural
time-scale, unless additional conditions are satisfied.

Moreover, note that the definition of Zγ
′′

θ given in (1.79) does not even make
sense, since limiting process Zγ

′′
is actually not well-defined.

Remark 1.42. Convergence of process ZN,γ
′′

θ to a non-degenerate limiting
process may be easily verified in particular cases. Specifically, it follows directly
from Theorem 1.31 if intensity functions

λ′k(z), k ∈ Γγ
′′

θ ,

take particular forms:

• λ′k(z) does not depend on z, i.e. is a constant,

λ′k(ZN,γ
′′
) = κk;

• λ′k(z) depends on z only through zθ,

λ′k(ZN,γ
′′
) = λ′k(ZN,γ

′′

θ ).

In Example 1.38, reaction R1 is the only reaction in Γγ
′′

θ , and has intensity
function

λ′1(ZN,γ
′′
) = κ1.

Therefore, convergence of process ZN,γ
′′

θ is a consequence of Theorem 1.31.

To generalize the idea of convergence at the second natural time-scale, we
need to define specific subspaces of Rn.

Definition 1.43. Let L′ be the linear subspace of Rn spanned by species with
natural time-scale γi equal to the first natural time-scale γ′:

L′ := span { ei : γi = γ′ } ⊆ Rn, (1.80)

where { ei }ni=1 is the canonical basis of Rn, and let Π′ be the projection operator
onto L′.
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Moreover, let L′′ be the linear subspace of Rn spanned by linear combinations
of species θ · S such that, considering only species with natural time-scale γi
equal to the first natural time-scale γ′, the net effect on the linear combination
is null for each reaction in R:

L′′ := span { θ ∈ Rn≥0 :
∑
i

θiδi (ζk)i = 0, ∀k ∈ R} ⊆ Rn, (1.81)

where δi = 1 if γi = γ′, and let Π′′ be the projection operator onto L′′.

Intuitively, L′′ is the subspace of Rn on which reactions happen only at
the second natural time-scale, i.e. the slow subspace, while at the first natural
time-scale the projection onto L′′ remains in its initial state. On the other hand,
L′ may be considered as the fast subspace, where reactions happen at the first
natural time-scale.

Note that:

• L′′ contains the subspace spanned by species with natural time-scale γi > γ′,
but may be larger;

• since L′ ∩L′′ has not necessarily null dimension, Π′ and Π′′ are, in general,
not orthogonal;

• L′ and L′′ together cover Rn entirely, and therefore

(I −Π′′)(x) ∈ L′, ∀x ∈ Rn.

Let ẐN,γ be the projection of ZN,γ onto the slow subspace L′′:

ẐN,γ := Π′′(ZN,γ) ∈ L′′. (1.82)

In accordance with the intuitive result stated in (1.78), we should expect ẐN,γ
′′

to converge to a non-degenerate model Ẑγ
′′
at the second natural time-scale:

ẐN,γ
′′

=⇒ Ẑγ
′′
, on [0, τ∞). (1.83)

However, as already mentioned before, convergence is not guaranteed a priori.

Example 1.44. Consider the reaction network

∅ → S1, ∅ → S2, S1 + S2 → ∅,
∅ → S3, S1 + S3 → ∅,

and assume that
β1 = β2 = β3 = β, β4 = β5 = 0,

while αi = 0 for all species.
With this choice of parameters, balance equation (1.50) holds for each species,

and the stochastic processes of species numbers satisfy equations

XN,γ
1 (τ) = X1(0) + ξ1(Nγ+βκ1τ)− ξ3

(
Nγ+β

∫ τ

0

κ3X
N,γ
1 (s)XN,γ

2 (s)ds

)
− ξ5

(
Nγ

∫ τ

0

κ5X
N,γ
1 (s)XN,γ

3 (s)ds

)
,
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XN,γ
2 (τ) = X2(0) + ξ2(Nγ+βκ2τ)− ξ3

(
Nγ+β

∫ τ

0

κ3X
N,γ
1 (s)XN,γ

2 (s)ds

)
,

XN,γ
3 (τ) = X3(0) + ξ4(Nγκ4τ)− ξ5

(
Nγ

∫ τ

0

κ5X
N,γ
1 (s)XN,γ

3 (s)ds

)
.

The natural time-scale for species S1 and S2 is γ = −β, while natural time-scale
for species S3 is γ = 0:

γ1 = γ2 = −β, γ3 = 0.

Therefore, the first and second natural time-scale for the reaction system are

γ′ = min
i
γi = −β, γ′′ = 0.

At the first natural time-scale γ′ = −β, the limit process Xγ′ is described by
equations

Xγ′

1 (τ) = X1(0) + ξ1(κ1τ)− ξ3
(∫ τ

0

κ3X
γ′

1 (s)Xγ′

2 (s)ds

)
,

Xγ′

2 (τ) = X2(0) + ξ2(κ2τ)− ξ3
(∫ τ

0

κ3X
γ′

1 (s)Xγ′

2 (s)ds

)
,

Xγ′

3 (τ) = X3(0), τ ≥ 0.

At the second natural time-scale γ′′ = 0, which is the natural time-scale for
species S3,

lim
N→∞

XN,γ′′

3 (τ) = lim
N→∞

X3(0) + ξ4(κ4τ)− ξ5
(∫ τ

0

κ5X
N,γ′′

1 (s)XN,γ′′

3 (s)ds

)
.

However, if κ1 > κ2, it can be proved that

XN,γ′′

1 (τ)→∞, ∀τ ≥ 0,

and therefore XN,γ′′

3 (τ) does not converge to a non-degenerate process.
Note that, in this example, subspaces L′ and L′′ are given by

L′ = span { e1, e2 } , L′′ = span { e3 } .

The key issue preventing results similar to Theorem 1.31 to hold for the
projected process ẐN,γ

′′
is that the equations describing this process do not

depend only on the process itself.
Let WN,γ be the projection of ZN,γ onto the subspace orthogonal to L′′,

WN,γ := (I −Π′′)(ZN,γ) ∈ (L′′)⊥ ⊆ L′, (1.84)

so that ZN,γ can be decomposed into the sum of two othogonal processes

ZN,γ = ẐN,γ +WN,γ , ẐN,γ ∈ L′′, WN,γ ∈ (L′′)⊥. (1.85)

Then, in general, intensity functions λ′k depend on both processes,

λ′k(ZN,γ) = λ′k(ẐN,γ +WN,γ), k = 1, . . . , l,
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even if we consider only those reactions actually affecting the dynamics of the
projection.

As a consequence, the equation describing ẐN,γ
′′
is not self-closed, and a

description of WN,γ′′ should be provided in order to properly determine the
existence and the form of the limit process.

Remark 1.45. In Example 1.44, the equation for XN,γ′′

3 also depends on XN,γ′′

1 :

XN,γ′′

3 (τ) = X3(0) + ξ4(κ4τ)− ξ5
(∫ τ

0

κ5X
N,γ
1 (s)XN,γ

3 (s)ds

)
.

As a matter of fact, the reason preventing XN,γ′′

3 to converge is the explosion of
XN,γ′′

1 as N grows large. Indeed, even though balance equations are satisfied for
the fast subnetwork, given by

(S1, S2) = Π′(S),

this subnetwork is not stable, if κ1 6= κ2.

To guarantee convergence on the slow subspace L′′ at the second natural
time-scale, additional conditions should be satisfied to ensure that the system
on the fast subspace L′ is stable, so that the influence of fast components on the
slow subspace can be averaged.

In fact, at second natural time-scale, the system on the fast subspace fluctuates
very rapidly, and does not converge in a functional sense. However, its behaviour
may be partially captured by its so called occupation measure.

Definition 1.46. The occupation measure V N,γ for the projection of stochastic
process ZN,γ on the fast subspace L′ is the random measure on L′×R≥0, defined
as

V N,γ(C × [0, τ ]) :=

∫ τ

0

1C(WN,γ(s)) ds, C ⊆ L′, τ ≥ 0, (1.86)

where 1C is the indicator function for subset C ⊆ L′.

Remark 1.47. An intuitive idea of what the occupation measure represents
may be useful to have a better understanding of the dynamics of the system at
the second time-scale.

Consider the decomposition of process ZN,γ as defined in (1.85):

ZN,γ = ẐN,γ +WN,γ .

At the first natural time-scale γ = γ′, the limit process Zγ
′
is well-defined by

Theorem 1.31, and the limit process W γ′ is trivially obtained from projection
operation:

W γ′(τ) = (I −Π′′)(Zγ
′
(τ)), τ ≥ 0.

When time is accelerated to the second time-scale γ = γ′′, trajectories of
process WN,γ are progressively compressed in smaller and smaller time intervals.
What happens in the limit essentially depends on the stability of the system on
its fast subspace:
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• if the system is unstable, i.e. explodes in finite time or grows unbounded
as t→∞, probability mass eventually escapes each compact K ⊆ L′, for
any time τ ≥ 0:

1K(WN,γ′′(τ))→ 0, a.s., K ⊆ L′, τ ≥ 0;

• if the system is stable, the value of the indicator function 1C , i.e. the
probability of being in C, may be appropriately approximated via the
stationary distribution πN of process WN,γ′ , assuming it exists and is
unique,

1C(WN,γ′′(τ)) ≈ πN (C), C ⊆ L′, τ ≥ 0,

recalling, in some sense, and ergodic property for process WN,γ′′ .

Note that this observations are purely intuitive, and many fundamental details
have been disregarded.

Under suitable conditions on convergence of V N,γ for γ = γ′′ and on its
properties with respect to the projection onto the slow subspace, it can be shown
that ẐN,γ

′′
converges in distribution to a stochastic process Ẑγ

′′
(for complete

details and proofs, see [13, sec. 4]).
To simplify, we could say that, if

V N,γ
′′
⇒ V, on L′ × R≥0, (1.87)

then, disregarding minor details,

ẐN,γ
′′

= Π′′(ZN,γ
′′
) ⇒ Ẑγ

′′
, on [0, τ∞), (1.88)

where

Ẑγ
′′
(τ) :=Π′′Z(0) +

∑
k : ρk>0

∫ τ

0

∫
L′
λ′k(Ẑγ

′′
(s) + w)V (dw × ds)Dρkζk

+
∑

k : ρk=0

ξk

(∫ τ

0

∫
L′
λ′k(Ẑγ

′′
(s) + w)V (dw × ds)

)
Dρkζk,

and ρk = γ′′ + βk + νk · α.

Remark 1.48. The statement above is actually not completely precise: indeed,
we are assuming that V N,γ

′′
converges to a measure V , and then, given V , the

limit Ẑγ
′′
exists and is uniquely determined. However, in general, V N,γ

′′
depends

on ẐN,γ
′′
, and therefore convergences of V N,γ

′′
and ẐN,γ

′′
should be considered

together, i.e. we should prove that the pair converges to the corresponding limit
process:

{V N,γ
′′
, ẐN,γ

′′
} ⇒ {V, Ẑγ

′′
} . (1.89)

Assuming convergence in (1.89) to hold, it can be shown that, in the limit
for N growing large, the occupation measure V takes the form expected from
Remark 1.47:

V (dw × ds) = π(Ẑγ
′′
(s); dw) ds, (1.90)
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where π(Ẑγ
′′
(s); ·) is the (conditional) stationary distribution, if it exists and is

unique, for process W γ′ (at the first natural time-scale) given Ẑγ
′′
(s).

This specific form for the occupation measure allows to redefine intensity
functions so that they depend only on the state ẑ ∈ L′′ of the projected process.
In particular, for reaction Rk, the intensity function may be redefined as

λ̂′k(ẑ) :=

∫
L′
λ′k(ẑ + w)π(ẑ; dw), ẑ ∈ L′′. (1.91)

Therefore, the limit process Ẑγ
′′
satifies equation

Ẑγ
′′
(τ) :=Π′′Z(0) +

∑
k : ρk>0

∫ τ

0

λ̂′k(Ẑγ
′′
(s))dsDρkζk

+
∑

k : ρk=0

ξk

(∫ τ

0

λ̂′k(Ẑγ
′′
(s))ds

)
Dρkζk,

where ρk = γ′′ + βk + νk · α.
Further details on stochastic averaging methods and a rigorous discussion on

the result stated above can be found in [13, sec. 5].

Example 1.49. Consider once more the reaction system described in Example
1.38:

∅ → A
 B.

For this system, subspaces L′ and L′′ are given by

L′ = span { eA } , L′′ = span { eB } ,

so that projection operator Π′ corresponds to consider species A, while projection
operator Π′′ corresponds to consider species B.

At the first natural time-scale γ′ = −β, the process ZN,γ
′

A is described by
equation

ZN,γ
′

A (τ) = ZA(0) + ξ1(κ1t)− ξ2
(∫ τ

0

κ2Z
N,γ′

A (s)ds

)
+ ξ3

(∫ τ

0

κ3Z
N,γ′

B (s)ds

)
.

Given a fixed value for the normalized abundance of species B, ZN,γ
′

B (s) = zB,
it can be rewritten as

ZN,γ
′

A (τ) = ZA(0) + ξ1(κ1τ)− ξ2
(∫ τ

0

κ2Z
N,γ′

A (s)ds

)
+ ξ3(κ3zBτ).

This model is actually a birth-and-death process with constant birth rates
and linear death rates, expressed respectively by

(λ′1 + λ′3)(w) = κ1 + κ3zB , λ′2(w) = κ2w;

specifically, it is an M/M/∞ queue model, whose stationary distribution is the
Poisson distribution,

π(zB ; ·) ∼ Poisson
(
κ1 + κ3zB

κ2

)
.
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Therefore, the limit occupation measure for process ZN,γA , as N grows large, is

V (dw × ds) = π(zB ; dw) ds,

and, the intensity function for reaction R2,

λ′2(z) = κ2zA, zA ∈ L′ = N≥0,

may be redefined in terms of zB as

λ̂′2(zB) :=

∫
L′
λ′2(ẑB + w)π(zB ; dw)

=

∫
N≥0

κ2w π(zB ; dw) = κ1 + κ3zB .

As a consequence, at the second time-scale γ′′ = 0, the process ZN,γ
′′

B is described
by equation

ZN,γ
′′

B (τ) = ZNB (0) +N−βξ2

(
Nβ

∫ τ

0

(
κ1 + κ3Z

N,γ′′

B (s)
)
ds

)
−N−βξ3

(
Nβ

∫ τ

0

κ3Z
N,γ′′

B (s)ds

)
,

which converges to

Zγ
′′

B (τ) = ZB(0) +

∫ τ

0

(
κ1 + κ3Z

N,γ′′

B (s)
)
ds−

∫ τ

0

κ3Z
N,γ′′

B (s)ds,

= ZB(0) + κ1τ, τ ≥ 0,

as already stated in (1.74).
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Chapter 2

Weak Convergence in
Topological Spaces

2.1 Weak convergence in metric spaces

Sections 2.1, 2.2 and 2.3 are entirely inspired by the classic book of Billingsley,
Convergence of Probability Measures [4]. Refer to this work for additional details
and proofs of results stated in these sections.

Let (X , ρ) be a metric space and let B(X ) be the Borel σ-field on X , i.e. the
σ-field generated by open sets (or by closed sets).

Definition 2.1. A probability measure µ on (X ,B(X )) is a set function

µ : B(X ) 7→ [0, 1],

which satisfies
µ(∅) = 0, µ(X ) = 1,

and is σ-additive (or countably additive), i.e. for all countable collections
{Cn }n∈N ⊆ B(X ) of pairwise disjoint sets (Ci ∩ Cj = ∅, if i 6= j),

µ

(⋃
i∈N

Ci

)
=
∑
i∈N

µ(Ci).

Definition 2.2. A probability measure µ on (X ,B(X )) is said to be tight if, for
each ε > 0, there exists a compact set Kε ⊆ X such that

µ(Kε) > 1− ε. (2.1)

A metric space (X , ρ) which is separable and complete is called a Polish
space.

Theorem 2.3. If (X , ρ) is a Polish space, then each probability measure on
(X ,B(X )) is tight.

36



Probability measures on X are defined for all elements in the Borel σ-field
B(X ). However, to separate a probability measure µ from all the other probability
measures on X , it is sufficient, in general, to consider values of µ (regarded as a
function) on a subset of its domain.

Definition 2.4. A subset A ⊆ B(X ) is called a separating class if two probability
measures µ and ν that agree on A necessarily agree on the whole B(X ), that is

µ(A) = ν(A), ∀A ∈ A implies µ(A) = ν(A), ∀A ∈ B(X ).

In particular, a π-system on X , i.e. a collection of subsets of X closed under
finite intersections, which generates the Borel σ-field B(X ) is a separating class.

Definition 2.5. A sequence {µn } of probability measures on (X ,B(X )) is said
to converge weakly to a probability measure µ on (X ,B(X )) if∫

X
f(x)µn(dx)→

∫
X
f(x)µ(dx) in R, (2.2)

for every bounded, continuous function f : X 7→ R. Weak convergence is usually
written as

µn ⇒ µ. (2.3)

It can be proved that two probability measures µ1 and µ2 on (X ,B(X ))
coincide if ∫

X
f(x)µ1(dx) =

∫
X
f(x)µ2(dx),

for every bounded, continuous function f : X 7→ R. Therefore, if a sequence
{µn }n∈N converges to a limit µ, this limit is unique.

The following theorem provides useful conditions equivalent to weak conver-
gence, and each of them could serve as a definition.

Theorem 2.6 (Portmanteau Theorem). Let {µn } be a sequence of probability
measures on (X ,B(X )). The following conditions are equivalent:

• µn ⇒ µ;

• for every bounded, uniformly continuous function f : X 7→ R,∫
X
f(x)µn(dx)→

∫
X
f(x)µ(dx);

• for every closed set C ⊆ X ,

lim sup
n
µn(C) ≤ µ(C);

• for every open set A ⊆ X ,

lim inf
n
µn(A) ≥ µ(C);

• for every µ-continuity set S, i.e. for every set S ⊆ X whose boundary ∂S
satisfies µ(∂S) = 0,

µn(S)→ µ(S).
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The last condition is equivalent to weak convergence if convergence of values
µn(S) to µ(S) holds for every µ-continuity set S. However, to prove weak
convergence, it is actually sufficient to check convergence of values µn(S) for a
subsets of µ-continuity sets.

Definition 2.7. A subset A ⊆ B(X ) is called a convergence-determining class if,
for every sequence of probability measures {µn } and every probability measure
µ on (X ,B(X )), convergence of values µn(S) to µ(S) for every µ-continuity set
S ∈ A implies weak convergence of µn to µ, that is

µn(S)→ µ(S), ∀S ∈ A, S µ-continuity set implies µn ⇒ µ.

Note that a convergence-determining class is obviously a separating class,
since the limit measure is unique. However, the converse is not necessarily true.

A further condition equivalent to weak convergence involves subsequences.

Theorem 2.8. A necessary and sufficient condition for µn ⇒ µ is that each
subsequence {µm } ⊆ {µn } contains a further subsequence {µm(k) } which
converges weakly to µ.

Let h be a function from (X , ρ) to another metric space (Y, δ),

h : (X , ρ) 7→ (Y, δ).

If h is measurable, that is, for every set A in B(Y) (the Borel σ-field on Y),

h−1(A) := {x ∈ X : h(x) ∈ A } ∈ B(X ), (2.4)

then each probability measure µ on (X ,B(X )) induces through h a probability
measure ν on (Y,B(Y)), usually called pushforward measure, defined as

ν(A) := (µ ◦ h−1)(A), ∀A ∈ B(Y). (2.5)

We would like to have conditions under which

µn ⇒ µ implies νn ⇒ ν.

A simple and sufficient condition is that h is a continuous function. Indeed, for
every bounded, continuous function f : Y 7→ R, the function f ◦ h : X 7→ R is
bounded and continuous, and if we assume µn ⇒ µ, then∫

Y
f(y)νn(dy) =

∫
X
f(h(x))µn(dx)→

∫
X
f(h(x))µ(dx) =

∫
Y
f(y)ν(dy).

However, continuity assumption is not necessary and can be weakened.

Theorem 2.9 (Mapping theorem). Let h : X 7→ Y be a measurable function,
and let Dh ⊆ X be the set of its discontinuity points. If µn ⇒ µ and µ(Dh) = 0,
then νn ⇒ ν.

Definition 2.10. A family M of probability measures on (X ,B(X )) is said to
be relatively (sequentially) compact if, for every sequence {µn } of element of
M , there exist a subsequence {µn(k) } and a probability measure µ such that
µn(k) ⇒k µ.
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Note that µ is defined on (X ,B(X )) but is not necessarily an element of M .

Remark 2.11. Relative compactness is a key property to be verified for se-
quences of probability measures. Indeed, if a sequence {µn } is relatively compact,
each subsequence {µm } ⊆ {µn } contains a further subsequence {µm(k) } which
converges weakly to some probability measure (say ν); if all these limit measures
ν coincide with a measure µ, it follows by Theorem 2.8 that the entire sequence
{µn } converges weakly to µ

Definition 2.12. A family M of probability measures on (X ,B(X )) is said to
be uniformly tight if, for each ε > 0, there exists a compact set Kε ⊆ X such
that

µ(Kε) > 1− ε, for all µ ∈M. (2.6)

Theorem 2.13 (Prohorov theorem). Let M be a family of probability measures
on (X ,B(X )).

• Direct Prohorov theorem. If M is uniformly tight, then it is relatively
(sequentially) compact.

• Converse Prohorov theorem. Assume that (X , ρ) is a Polish space. If
M is relatively (sequentially) compact, then it is uniformly tight.

Note that the converse theorem contains Theorem 2.3, since an M consisting
of a single measure is obviously relatively compact. On the other hand, the
direct theorem is essential for applications: it is usually easier to prove uniform
tightness than relative compactness.

The theory of weak convergence can be equivalently restated as the theory
of convergence in distribution (or convergence in law).

Let (Ω,F , P ) be a probability space and let (X ,B(X )) be a metric space,
equipped with its Borel σ-field.

Definition 2.14. A measurable function X from (Ω,F , P ) to (X ,B(X )),

X : (Ω,F , P ) 7→ (X ,B(X )),

is called a random element of X , or an X -valued random element.

The terminology random element is used in general, but X may take specific
names depending on space X (e.g. random variable, random vector, random
function, stochastic process).

Definition 2.15. The distribution of a random element X is the pushforward
measure PX induced through X on space X by probability measure P :

PX(A) := P (X−1(A)) = P (ω ∈ Ω: X(ω) ∈ A) = P (X ∈ A), A ∈ B(X ).

The distribution of X is also called the law of X and denoted by L(X).

Note that measure PX is defined on the Borel σ-field B(X ) of metric space
X and contains the essential information about random element X.
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Definition 2.16. A sequence {Xn } of random elements of X is said to converge
in distribution to a random element X of X if

PXn ⇒ PX , or, equivalently, L(Xn)⇒ L(X), (2.7)

that is ∫
X
f(x)PXn(dx)→

∫
X
f(x)PX(dx) in R, (2.8)

for every bounded, continuous function f : X 7→ R, and is written as Xn ⇒ X.

Equation (2.8) may be restated, in terms of the usual notation adopted in a
probabilistic setting, as

E [f(Xn)]→ E [f(X)] in R,

for every bounded, continuous function f : X 7→ R

Remark 2.17. A key point is that, for convergence in distribution to hold,
random elements X1, X2, . . . , X need not be defined on the same probability
space (Ω,F , P ), that is, their domains may all be distinct. Actually, these spaces
are not even considered, as their structure enters the argument only by the
probability measures they induce on space X through functions X1, X2, . . . , X.

As a consequence, all definition, properties and theorems stated for probability
measures on (X ,B(X )) may be paraphrased in terms of random elements of X ,
without any difference.

2.2 Space C[0, 1] and uniform metric

Let C[0, 1] = C([0, 1] : R) be space of (uniformly) continuous functions on interval
[0, 1] with values in R.

The space C[0, 1] is naturally equipped with the uniform norm,

‖x‖ := sup
t∈[0,1]

|x(t)|, x ∈ C[0, 1], (2.9)

which induces the uniform metric

ρ(x, y) := ‖x− y‖ = sup
t∈[0,1]

|x(t)− y(t)|, x, y ∈ C[0, 1]. (2.10)

It can be proved that the space C[0, 1] with the uniform metric ρ is separable and
complete, and so is a Polish space. Therefore, by Theorem 2.3, each probability
measure on the Borel σ-field B(C[0, 1]) is tight.

A key feature of space (C[0, 1], ρ) is that uniform convergence implies point-
wise convergence,

ρ(xn, x)→ 0 implies xn(t)→ x(t), ∀t ∈ [0, 1], (2.11)

but the converse is false, as shown by the following example.
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Example 2.18. Consider the sequence of functions {xn }, where xn is the
function defined as

xn(t) =


nt if 0 ≤ t < n−1

2− nt if n−1 ≤ t < 2n−1

0 if 2n−1 ≤ t ≤ 1

.

The sequence {xn } converges pointwise to 0, i.e. xn(t)→ 0, for each t ∈ [0, 1],
but ρ(xn, 0) = 1 for each n, and therefore zn 6→ 0.

For each t ∈ [0, 1], the natural projection of x onto R is the functional πt
which evaluates function x at t:

πt : C[0, 1] 7→ R, πt(x) = x(t), x ∈ C[0, 1]. (2.12)

Similarly, for each finite set { t1, . . . , tk } ⊂ [0, 1], the natural projection of x
onto Rk is the functional πt1,...,tk which evaluates function x at t1, . . . , tk:

πt1,...,tk : C[0, 1] 7→ Rk, πt1,...,tk(x) = (x(t1), . . . , x(tk)), x ∈ C[0, 1].

Since x is a continuous function, natural projection πt(x) = x(t) is well-defined,
for each x ∈ C[0, 1] and for each t ∈ [0, 1]. Moreover, with the uniform metric ρ,
natural projections are continuous functions.

Because of the continuity of natural projections, mapping theorem applies.

Proposition 2.19. Let {µn } be a sequence of probability measures on C[0, 1]
which converges to a probability measure µ. The corresponding sequence of
pushforward measures {µn ◦ (πt1,...,tk)−1 } on Rk converges to measure µ ◦
(πt1,...,tk)−1, for every choice of t1, . . . , tk ∈ [0, 1]:

µn ⇒ µ implies µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1. (2.13)

Probability measure µ ◦ (πt1,...,tk)−1 on Rk is usually referred to as the
finite-dimensional distribution of µ.

Definition 2.20. Let πt1,...,tk be the natural projection onto Rk. A subset
F ⊆ C[0, 1] is a finite-dimensional set if it is the pre-image of a subset H ∈ B(Rk)
of Rk,

∃ H ∈ B(Rk) such that F = (πt1,...,tk)−1(H). (2.14)

Let B(C[0, 1])f be the class of finite-dimensional sets.

Note that finite-dimensional sets are elements of B(C[0, 1]), since natural
projections are continuous functions.

It can be easily shown that class B(C[0, 1])f is a π-system on C[0, 1] which
generates the Borel σ-field B(C[0, 1]), and so is a separating class.

Proposition 2.21. Let µ and ν be probability measures on C[0, 1]. If finite-
dimensional distributions of µ and ν agree for every choice of t1, . . . , tk,

(µ ◦ (πt1,...,tk)−1)(H) = (ν ◦ (πt1,...,tk)−1)(H), ∀H ∈ B(Rk),

then µ coincides with ν.
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Unfortunately, B(C[0, 1])f is not a convergence determining class, as shown
by the following example.

Example 2.22. Let { zn } be the sequence of functions introduced in Example
2.18 and let µn = δzn , µ = δ0 be the Dirac measures centered on functions zn
and 0, respectively. Since we showed that zn 6→ 0, then obviously µn 6⇒ µ.

However, for every choice of t1, . . . , tk, there exists n0 such that

πt1,...,tk(zn) = πt1,...,tk(0) = (0, . . . , 0), ∀ n ≥ n0,

and therefore

(µn ◦ (πt1,...,tk)−1)(H)→ (µ ◦ (πt1,...,tk)−1)(H), ∀H ∈ B(Rk).

As a result,
µn(A)→ µ(A), ∀A ∈ B(C[0, 1])f ,

(including those that are not µ-continuity sets), even if µn 6⇒ µ, and so B(C[0, 1])f
is not a convergence-determining class.

This example clearly shows that in C[0, 1] results about weak convergence go
far beyond finite-dimensional theory.

Remark 2.23. To summarize, in C[0, 1], weak convergence implies weak con-
vergence of finite-dimensional distributions

µn ⇒ µ implies µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1, (2.15)

but the converse is not true,

µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1
����implies µn ⇒ µ. (2.16)

Although B(C[0, 1])f is not a convergence-determining class, the fact that
it is a separating class turns out to be useful to show that implication (2.16)
actually holds under the assumption of relative compactness of sequence {µn }
(see Remark 2.11).

Theorem 2.24. Let {µn } be a relatively compact sequence of probability mea-
sures on C[0, 1]. If finite-dimensional distributions of {µn } converge to those of
a measure µ, then µn ⇒ µ:

µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1 implies µn ⇒ µ. (2.17)

Proof. By relative compactness, each subsequence {µm } ⊆ {µn } contains a
further subsequence {µm(k) } which converges to some probability measure ν,
and, by the mapping theorem,

µm(k) ◦ (πt1,...,tk)−1 ⇒ ν ◦ (πt1,...,tk)−1.

Given that if a sequence converges to a limit, all its subsequences converge to the
same limit, since {µm(k) ◦ (πt1,...,tk)−1 } ⊆ {µn ◦ (πt1,...,tk)−1 }, then necessarily

µ ◦ (πt1,...,tk)−1 = ν ◦ (πt1,...,tk)−1.
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Therefore, finite-dimensional distributions of µ and ν are identical, and since the
class B(C[0, 1])f is a separating class, it is enough to conclude that µ = ν (see
Proposition 2.21). As a result, each subsequence contains a further subsequence
converging weakly to the same probability measure µ, and it follows by Theorem
2.8 that the entire sequence {µn } converges weakly to µ.

Theorem 2.25. Let {µn } be a relatively compact sequence of probability mea-
sures on C[0, 1]. If finite-dimensional distributions of {µn } converge to some
probability measure on Rk, for every choice of t1, . . . , tk ∈ [0, 1],

µn ◦ (πt1,...,tk)−1 ⇒ µt1,...,tk ,

then there exists a unique probability measure µ having {µt1,...,tk } as finite-
dimensional distributions.

Proof. By relative compactness, some subsequence {µm } ⊆ {µn } converges
weakly to some limit µ, and, following an argument similar to proof of Theorem
2.24, we can conclude that there exists a probability measure µ having {µt1,...,tk }
as finite-dimensional distributions. Uniqueness follows from Proposition 2.21
(B(C[0, 1])f is a separating class).

Note that, in this last theorem, we do not assume a priori that µt1,...,tk are
finite-dimensional distributions of a certain probability measure µ on C[0, 1],
and relative compactness is used to show that such a measure exists.

Remark 2.26. The arguments developed to prove Theorem 2.24 (and Theorem
2.25) rely on three elements:

1. a concept of relative compactness;

2. a converse proposition, here established via the mapping theorem (Propo-
sition 2.19);

3. a uniqueness proposition, here following by the fact that B(C[0, 1])f is a
separating class.

This framework is more general, and can be applied to a large class of metric
spaces (see Section 2.3).

In order to effectively use Theorem 2.24 to prove weak convergence in C[0, 1],
it is necessary to investigate the concept of compactness in this space.

Definition 2.27. Let x be an arbitrary function (not necessarily continuous)
on interval [0, 1] with values in R. The modulus of continuity wx of function x is
defined as

wx(δ) = w(x, δ) = sup
|s−t|≤δ

|x(s)− x(t)|, δ ∈ (0, 1]. (2.18)

In words, wx(δ) is the largest distance between function values x(s) and x(t)
taken at points s and t whose distance does not exceed δ.
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It is easy to show that a necessary and sufficient condition for x to be in
C[0, 1] is

lim
δ→0+

wx(δ) = 0. (2.19)

Relative compactness in C[0, 1] is completely characterized by the following
theorem.

Theorem 2.28 (Arzelà-Ascoli). A set K of elements of C[0, 1] is relatively
compact if and only if two conditions hold:

1. uniform boundedness,
sup
x∈K
|x(0)| <∞; (2.20)

2. uniform equicontinuity,

lim
δ→0+

sup
x∈K

wx(δ) = 0. (2.21)

Example 2.29. Let K = { zn } consist of the sequence of functions introduced
in Example 2.18. K is not relatively compact: in particular, it is uniformly
bounded, because

sup
n
|zn(0)| = sup

n
0 = 0 <∞,

but not uniformly continuous, since

sup
n
w(zn, δ) = 1, n ≥ δ−1.

In fact, uniform convergence does not hold, even if { zn } converges pointwise to
0-function.

The characterization of relative compactness of a sequence of probability
measures on C[0, 1] is obtained by simply translating the Arzelà-Ascoli charac-
terization.

Theorem 2.30. A sequence {µn } of probability measures on C[0, 1] is relatively
compact if and only if two conditions hold:

1. for each η > 0, there exist L and n0 such that,

µn (x ∈ C[0, 1] : |x(0)| ≥ L) ≤ η, n ≥ n0; (2.22)

2. for each ε > 0 and η > 0, there exist δ ∈ (0, 1] and n0 such that,

µn (x ∈ C[0, 1] : wx(δ) ≥ ε) ≤ η, n ≥ n0. (2.23)

Remark 2.31. The space C[0, 1] is a Polish space, and both direct and converse
Prohorov theorems (Theorem 2.13) apply. Therefore the concepts of relative
compactness and uniform tightness for families of probability measures coincide
on C[0, 1], and conditions stated in Theorem 2.30 for relative compactness are
also conditions for uniform tightness.
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The space C[0, 1] is the natural space for the description of stochastic processes
with continuous trajectories (e.g. Brownian processes).

Let X be a random element (function) of C[0, 1], and, for a fixed t, let
X(t) = πt ◦X be the random element (variable) on R defined as the composition
of X with the natural projection πt.

Theorem 2.32. Let {Xn } be a sequence of random elements of C[0, 1]. If
finite-dimensional distributions of {Xn } converge to those of a random variable
element X, i.e. for each choice of t1, . . . , tk,

(Xn(t1), . . . , Xn(tk))⇒n (X(t1), . . . , X(tk)), (2.24)

and, for each ε > 0,

lim
δ→0+

lim sup
n
P (w(Xn, δ) ≥ ε) = 0, (2.25)

then Xn ⇒ X.

2.3 Space D[0, 1] and Skorohod metric

The space C[0, 1] is unsuitable for the description of stochastic processes that
contain jumps (e.g. Poisson processes). Therefore, it is useful to enlarge this
space to include also some kinds of discontinuous functions.

Let D[0, 1] = D([0, 1] : R) be the space of functions on interval [0, 1] with
values in R that are right-continuous and have left limits, that is

1. for t ∈ [0, 1), x(t+) = lims↓t+ x(s) exists and x(t+) = x(t);

2. for t ∈ (0, 1], x(t−) = lims↑t− x(s) exists.

Elements of space D[0, 1] are usually called cadlag functions (from French
"continue à droite, limite à gauche") and space D[0, 1] is referred to as Skorohod
space.

Note that the Skorohod space essentially contains functions x with disconti-
nuities of the first kind, where the function value at each discontinuity point t is
assumed to be x(t) = x(t+) for convenience. Obviously, continuous functions
are cadlag functions, and therefore C[0, 1] is a subset of D[0, 1].

Remark 2.33. As an extension of C[0, 1], the Skorohod space may be equipped
with the uniform metric ρ defined in (2.10). However, this metric proves to be
unsatisfactory for the purpose of studying weak convergence on this enlarged
space, for a number of technical and practical reasons: among them, D[0, 1]
with the uniform metric is not separable, a fact that may be disadvantageous in
probability theory.

Let x and y be cadlag functions, and consider their domain [0, 1] to be a
time interval. Intuitively, in the uniform metric, x and y are near one another
if the graph of x can be superposed onto the graph of y by a uniformly small
perturbation of functions values, while evaluation points (time instants) are kept
fixed.
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In presence of jumps, for x and y to be near one another, it is necessary
that points of discontinuity of the two functions coincide: this requirement may
be weakened, and uniformly small perturbations of evalutation points may be
allowed. From a physical point of view, this amounts to recognise that it is not
possible to measure time exactly, and therefore x and y should be considered
close to each other also if their graphs can be superposed by a uniformly small
deformation of times scale.

This idea, originally introduced by Skorohod [16], leads to the construction
of a topology, known as Skorohod J1-topology, on space D[0, 1].

Let Λ be the class of strictly increasing and continuous mappings of [0, 1]
onto itself, that is λ : [0, 1] 7→ [0, 1] is a function in Λ if it is strictly increasing,
continuous, λ(0) = 0 and λ(1) = 1.

Definition 2.34. A sequence {xn } of cadlag functions is called J1-convergent
to function x if there exists a sequence {λn } of mappings in Λ such that

sup
t∈[0,1]

|λn(t)− t| → 0 and sup
t∈[0,1]

|xn(λn(t))− x(t)| → 0. (2.26)

Note that conditions in (2.26) may be rewritten with respect to the uniform
metric ρ as

ρ(λn, I)→ 0 and ρ(xn ◦ λn, x)→ 0, (2.27)

where I is the identity map in Λ, I(t) = t.
The class of J1-convergent sequences defines a (sequential) topology onD[0, 1],

called J1-topology, which can be easily metricized. The Skorohod metric d on
D[0, 1] is defined as

d(x, y) := inf
λ∈Λ

max { ‖λ− I‖, ‖x ◦ λ− y‖ } , x, y ∈ D[0, 1]. (2.28)

Remark 2.35. The uniform distance ρ(x, y) between functions x and y may be
equivalently defined as the infimum of those ε > 0 such that

sup
t∈[0,1]

|x(t)− y(t)| < ε;

their graphs can be superposed by perturbations of function values which do not
exceed ε.

On the other hand, the Skorohod distance d(x, y) between x and y may be
equivalently defined as the infimum of those ε > 0 for which there exists λ ∈ Λ
such that

sup
t∈[0,1]

|λ(t)− t| < ε and sup
t∈[0,1]

|x(λ(t))− y(t)| < ε;

their graphs can be superposed by perturbations of function values and deforma-
tion of time scales which both do not exceed ε.

It follows directly from the definition that convergence in ρ implies conver-
gence in d,

ρ(xn, x)→ 0 implies d(xn, x)→ 0, (2.29)

(take λ = I), but the converse is not true, as shown by the following example.
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Example 2.36. Consider the sequence of functions {xn }, where xn is defined
as

xn(t) = 1[0,τ+n−1](t), τ ∈ [0, 1), t ∈ [0, 1].

The sequence {xn } converges in the Skorohod metric to function

x(t) = 1[0,τ ](t), t ∈ [0, 1] :

indeed, if we define continuous time deformation λn so that it is piecewise linear
and λn(τ + n−1) = τ , then

sup
t∈[0,1]

|λn(t)− t| = n−1 and sup
t∈[0,1]

|xn(λn(t))− x(t)| = 0.

However, {xn } does not converge to x in the uniform metric, since

ρ(xn, x) = sup
t∈[0,1]

|xn(t)− x(t)| = 1, ∀n.

Moreover, note that pointwise convergence xn(t)→ x(t) fails for t = τ :

xn(τ) = 1, ∀n, x(τ) = 0.

As shown in this example, convergence in Skorohod metric does not imply
uniform convergence, neither pointwise convergence. However, it does with some
additional restrictions and requirements:

• convergence in Skorohod metric implies pointwise convergence for continuity
points, that is, if t is a continuity point of x, then

d(xn, x)→ 0 implies xn(t)→ x(t);

• convergence in Skorohod metric implies uniform convergence if the limit
function is continuous, that is, if x ∈ C[0, 1], then

d(xn, x)→ 0 implies ρ(xn, x)→ 0.

Therefore, the Skorohod metric on D[0, 1] restricted to C[0, 1] is equivalent to
the uniform metric, meaning that they induce the same topology on C[0, 1].

It can be proved that the space D[0, 1] with the Skorohod metric d is separable
but not complete. However, it is possible to define on D[0, 1] another metric d∗
which is equivalent to d (both induce Skorohod J1-topology) but under which
D[0, 1] is also complete. Therefore, D[0, 1] with metric d∗ is a Polish space.

Note that separability is a topological property, i.e is a property of the J1-
topology, and does not depend on d, while completeness is a property of metric
spaces, and so strictly depends on the chosen metric d or d∗.

Remark 2.37. The intuition leading to metric d∗ is slighlty less obvious than
the one proposed to define d. However, if some properties of metric spaces are
needed, the Skorohod space D[0, 1] is usually equipped with d∗ to take advantage
from completeness, which facilitates characterization of compact sets. On the
other hand, when only topological properties are concerned, both metrics can be
used, since they induce the same topology.
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In order to investigate compactness in D[0, 1], it is useful to define a quantity
that plays in D[0, 1] the same role played in C[0, 1] by the modulus of continuity.

Let {Ti } be a finite partition of interval [0, 1], such that

Ti = [ti−1, ti], i = 1, . . . , k, 0 = t0 < t1 < · · · < tk = 1;

a partition {Ti } is called δ-sparse if

|ti − ti−1| > δ, i = 1, . . . , k. (2.30)

For x ∈ D[0, 1] and T ⊂ [0, 1], define

wx(T ) := w(x, T ) = sup
s,t∈T

|x(s)− x(t)|, (2.31)

as the largest distance between function values x(s) and x(t) at points s, t in T .

Proposition 2.38. For each x ∈ D[0, 1] and each ε > 0, there exists a partition
{Ti } such that

wx(Ti) = sup
s,t∈Ti

|x(s)− x(t)| < ε, i = 1, . . . , k (2.32)

It follows from Proposition 2.38 that:

• for each ε > 0, there can be at most finitely many points t at which the
jump |x(t) − x(t−)| exceeds ε, and therefore, x has at most a countable
number of discontinuities;

• x is bounded,
‖x‖ = sup

t∈[0,1]

|x(t)| <∞. (2.33)

Definition 2.39. Let x be an arbitrary function on interval [0, 1] with values
in R. The cadlag modulus w′x of function x is defined as

w′x(δ) = w′(x, δ) = inf
{Ti }

max
i
wx(Ti), δ ∈ (0, 1), (2.34)

where the infimum is taken over all δ-sparse partitions {Ti }.
In words, w′x(δ) is the infimum over δ-sparse partitions of the maximum of

the largest distances between function values x(s) and x(t) taken at points s
and t belonging to the same partition interval.

As a consequence of Proposition 2.38, a necessary and sufficient condition
for x to be in D[0, 1] is

lim
δ→0+

w′x(δ) = 0. (2.35)

For an arbitrary function x : [0, 1] 7→ R, it is possible to derive relations
between its modulus of continuity wx and its cadlag modulus w′x.

• Since C[0, 1] ⊆ D[0, 1], then obviously wx(δ) → 0 implies w′x(δ) → 0:
indeed, it can be verified that

w′x(δ) ≤ wx(2δ), δ ∈ (0, 1/2).
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• A similar inequality in the opposite direction cannot exist, since wx(δ) 6→ 0
if x has discontinuities; however, it holds that

wx(δ) ≤ 2w′x(δ) + j(x),

where j(x) is the maximum absolute jump in x,

j(x) := sup
t∈[0,1]

|x(t)− x(t−)|.

Note that the supremum is a maximum because only a finite number of
jumps can exceed a given positive threshold (see Proposition 2.38).

• If x is continuous, i.e. x ∈ C[0, 1],

wx(δ) ≤ 2w′x(δ);

the modulus of continuity and the cadlag modulus are essentially equivalent
for continuous functions.

Relative compactness in D[0, 1] is characterized by an analogue of Arzelà-
Ascoli theorem, essentially obtained by substituting the modulus of continuity
with the cadlag modulus.

Theorem 2.40. A set K of elements of D[0, 1] is relatively compact if and only
if two conditions hold:

1. uniform boundedness,
sup
x∈K
‖x‖ <∞; (2.36)

2. an analogue of uniform equicontinuity,

lim
δ→0+

sup
x∈K

w′x(δ) = 0. (2.37)

To prove weak convergence in C[0, 1] (Theorem 2.24) we rely on the three
elements listed in Remark 2.26. Given the many similarities highlighted above
between C[0, 1] and D[0, 1], it would be natural to try to adapt those arguments
to D[0, 1].

Since D[0, 1] with metric d∗ is a Polish space, relative compactness and
uniform tightness for families of probability measures coincide, as it happens
for C[0, 1] (see Remark 2.31), and there is no difficulty on that point. However,
things becomes slighlty more complicated when it comes to finite-dimensional
distributions.

Natural projections, as defined in (2.12), play inD[0, 1] the same role they play
in C[0, 1]. The only (fundamental) difference involves continuity, as a consequence
of the fact that convergence in d does not imply pointwise convergence. In
particular, the following properties hold:

• each natural projection πt, t ∈ [0, 1], is a measurable function;

• natural projections π0 and π1 are continuous functions;
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• for t ∈ (0, 1), natural projection πt is continuous at x if and only if x is
continuous at t;

• the class of finite dimensional sets B(D[0, 1])f is a separating class, and so
finite-dimensional distributions are enough to separate probability measures
on D[0, 1].

Let {µn } be a sequence of probability measures on D[0, 1] which converges to
a probability measure µ. Since natural projections are not everywhere continuous
on D[0, 1], mapping theorem cannot be applied, and therefore, in general,

µn ⇒ µ ����implies µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1. (2.38)

Moreover, as it happens in C[0, 1], B(D[0, 1])f is not a convergence determining
class, and so

µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1
����implies µn ⇒ µ; (2.39)

indeed, Example 2.22 applies also to D[0, 1].
However, it is possible to establish in D[0, 1] a positive relation between weak

convergence and convergence of finite-dimensional distribution that is similar to
the one established for C[0, 1] thanks to the mapping theorem.

For a probability measure µ on D[0, 1], let Tµ be the set of t ∈ [0, 1] for which
the natural projection πt is continuous almost surely, i.e. is discontinuous on a
set of null µ-measure:

Tµ := { t ∈ [0, 1] : πt continuous µ-a.s. } . (2.40)

It can be easily proved that:

• since π0 and π1 are everywhere continuous, points 0 and 1 are in Tµ;

• for t ∈ (0, 1), since πt is continuous at x if and only if x in continuous at t,
then t ∈ Tµ if and only if

µ(Jt) = 0, Jt := {x ∈ D[0, 1] : x(t) 6= x(t−) } ; (2.41)

• since x ∈ D[0, 1] has at most a countable number of jumps, µ(Jt) > 0 for
at most a countable number of points t, and the complement of Tµ in [0, 1]
is at most countable.

Therefore, if t1, . . . , tk ∈ Tµ, the natural projection πt1,...,tk is continuous
µ-a.s., and mapping theorem applies.

Proposition 2.41. Let {µn } be a sequence of probability measures on D[0, 1]
converging to a probability measure µ. Then, for every choice of t1, . . . , tk ∈ Tµ,

µn ⇒ µ implies µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1. (2.42)

As a consequence, an analogue of Theorem 2.24 holds in D[0, 1].

Theorem 2.42. Let {µn } be a relatively compact sequence of probability mea-
sures on D[0, 1]. If finite-dimensional distributions of {µn } converge to those
of a measure µ, when restricted to Tµ, then µn ⇒ µ:

µn ◦ (πt1,...,tk)−1 ⇒ µ ◦ (πt1,...,tk)−1 implies µn ⇒ µ. (2.43)
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To conclude, the characterization of relative compactness of a sequence of
probability measures on D[0, 1] is obtained by translating the characterization
of relative compactness in D[0, 1] (Theorem 2.40).

Theorem 2.43. A sequence {µn } of probability measures on D[0, 1] is relatively
compact if and only if two conditions hold:

1. for each η > 0, there exist L and n0 such that,

µn (x ∈ D[0, 1] : ‖x‖ ≥ L) ≤ η, n ≥ n0; (2.44)

2. for each ε > 0 and η > 0, there exist δ ∈ (0, 1] and n0 such that,

µn (x ∈ D[0, 1] : w′x(δ) ≥ ε) ≤ η, n ≥ n0. (2.45)

2.4 Skorohod Representation Theorem

Let (X , ρ) be a metric space and let X and Y be X -valued random elements (see
Definition 2.14). There exist different concepts of "equality" between X and Y .

1. X and Y are equal as functions from a probability space (Ω,F , P ) to
(X ,B(X )),

X(ω) = Y (ω), ∀ω ∈ Ω. (2.46)

2. X and Y coincide as functions from (Ω,F , P ) to (X ,B(X )), except for a
set N ⊆ Ω having P -measure zero,

X(ω) = Y (ω), ∀ω ∈ Ω \N, P (N) = 0; (2.47)

this situation is usually called almost sure equality and is written as

X = Y P -a.s.. (2.48)

3. The distributions ofX and Y on (X ,B(X )) coincide as probability measures
on (X ,B(X )) (see Definition 2.15),

PX(A) = PY (A), ∀A ∈ B(X ) (2.49)

this situation is usually called equality in distribution and is written as

X ∼ Y or L(X) = L(Y ). (2.50)

There is a fundamental difference between the first two concepts and the
third one: for equality and almost sure equality to hold, X and Y must be
defined on the same probability space, while this is not necessary for equality
in distribution, since only the resulting probability measures on space X are
considered (see Remark 2.17).

Let {Xn } be a sequence of random elements of X and assume they are defined
on the same probability space (Ω,F , P ); a different (and stronger) concept of
convergence for sequence {Xn } can be defined.
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Definition 2.44. A sequence {Xn } of random elements of X defined on the
same probability space (Ω,F , P ) is said to converge almost surely to a random
element X of X , defined on (Ω,F , P ), if

ρ(Xn(ω), X(ω))→ 0, ∀w ∈ Ω \N, P (N) = 0, (2.51)

and is written as
Xn → X P -a.s.. (2.52)

Almost sure convergence clearly implies convergence in distribution, and is a
sort of pointwise convergence for random elements {Xn } regarded as functions
on a common probability space (Ω,F , P ). Indeed, if {Xn } converges to X
almost surely, then Xn(ω) converges to some element X(ω) in the metric space
(X , ρ), while if only convergence in distribution holds, Xn(ω) need not converge
anywhere in (X , ρ).

On Polish spaces, it is possible to define an almost surely convergent repre-
sentation for sequences, known as (almost sure) Skorohod representation [16].

Definition 2.45. Let (X , ρ) be a Polish space. A sequence {Xn } of random
elements of X is said to admit an (almost sure) Skorohod representation if
there exist a sequence of X -valued random elements {Yn } and an X -valued
random element Y , defined on the unit interval ([0, 1],B([0, 1])) equipped with
the Lebesgue measure `, such that

Xn ∼ Yn, ∀n, (2.53)
Yn → Y `-a.s.. (2.54)

Clearly, a sequence {Xn } which admits a Skorohod representation is conver-
gent in distribution to a random element X, whose distribution coincides with
that of Y :

Xn ⇒ X ∼ Y. (2.55)

The converse is also true, as stated in the following result (for the proof, see the
original article by Skorohod [16] or [4, sec. 6]).

Theorem 2.46 (Skorohod Representation Theorem). Let (X , ρ) be a Polish
space and let {Xn } be a sequence of random elements of X which converges in
distribution to a random element X of X ,

Xn ⇒ X.

Then, {Xn } admits a Skorohod representation with Y ∼ X.

Therefore, Theorem 2.46 establishes an equivalence between convergence in
distribution and existence of a Skorohod representation for sequences of random
elements.

Remark 2.47. Almost sure convergence in (2.54) can be actually extended,
without loss of generality, to each ω ∈ [0, 1]:

ρ(Yn(ω), Y (ω))→ 0, ∀ω ∈ [0, 1]. (2.56)

Indeed, adjusting values of random elements {Yn } on a subset N ⊆ [0, 1] such
that `(N) = 0 does not affect equality in distribution (2.53) nor convergence in
distribution (2.55).
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A generalization of Theorem 2.46 was proved in [5].

Theorem 2.48 (Blackwell-Dubbins-Fernique). Let (X , ρ) be a Polish space and
let µ be a probability measure on (X ,B(X )). Then, there exists a measurable func-
tion Yµ defined on the unit interval ([0, 1],B([0, 1]), `) with values in (X ,B(X ))
such that

` ◦ Y −1
µ = µ. (2.57)

Moreover, if a sequence {µn } of probability measure on X converges in distribu-
tion to probability measure µ, then

Yµn → Yµ `-a.s.. (2.58)

Therefore, if (X , ρ) is a Polish space, there exists a Skorohod parametrization
of probability measures on (X ,B(X )).

In general, it can be proved that, for an arbitraty metric space (X , ρ), there
exists a Skorohod parametrization of the subset of tight probability measures on
(X ,B(X )) (recall that on Polish spaces, every probability measure is tight) [6].

The Skorohod representation is frequently used to trivialize proofs in the
theory of convergence in distribution on Polish spaces. However, Skorohod
himself applied this representation in a uncommon and interesting way [16].

Let D[0, 1] be the Skorohod space, and let Q be a countable dense subset
of [0, 1] containing 1. Functions in D[0, 1] are completely determined by their
values on dense subsets of the domain, and therefore there exists a one-to-one
mapping

x ∈ D[0, 1] 7→ {x(q) }q∈Q ∈ RQ. (2.59)

The space RQ is Polish space and the class of finite-dimensional sets is a
convergence-determining class (unlike in C[0, 1] and D[0, 1]).

Let {Xn } be a sequence of random elements of D[0, 1]. If finite-dimensional
distributions of {Xn } converge for each choice of q1, . . . , qk ∈ Q, then it is
possible to define a random element X of RQ such that

{Xn(q) }q∈Q ⇒ X on RQ. (2.60)

By the Skorohod Representation Theorem, there exist random elements {Yn },
Y of RQ, defined on the Lebesgue interval, such that

X ∼ Y, {Xn(q) }q∈Q ∼ Yn, ∀n, (2.61)

Yn(q, ω)→ Y (q, ω), q ∈ Q, ω ∈ [0, 1]. (2.62)

Moreover, it is possible to define, for each random element Yn, Y of RQ, a
corresponding random element Zn, Z of D[0, 1] as

Zn(t, ω) := lim
q↓t+

Yn(q, ω), t ∈ [0, 1), Zn(1, ω) := Yn(1, ω), (2.63)

for almost each ω ∈ [0, 1].
As a result, the sequence {Zn } is a representation of the original sequence

{Xn } which preserves convergence on dense subset Q and which is independent
of any topology defined on D[0, 1].

This representation is relevant in at least two situations.
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1. Assuming uniform tightness (and thus relative compactness, via direct Pro-
horov Theorem) of the sequence {L(Xn) } with respect to some topology
on D[0, 1] (not necessarily J1), every subsequence {Zm } ⊆ {Zn } contains
a further subsequence {Zm(k) } which is convergent almost surely,

Zm(k) →k Z `-a.s.,

and this is enough to conclude convergence in distribution,

Xn ⇒ Z in D[0, 1].

2. Assuming convergence of finite-dimensional distributions of {Xn } on a
countable dense subset Q ⊆ [0, 1] and relative compactness of the sequence
{L(Xn) }, then uniform tightness is implied, independently of whether the
topology defined on D[0, 1] makes it a Polish space or not.

2.5 Sequential topological spaces and space P

Definitions and results stated in this section are entirely taken from [10, sec. 4];
see that article for additional references.

Let X be a generic space.

Definition 2.49. The space X is said of type L if

• among all sequences of elements of X , a class of convergent sequences is
distinguished;

• for each convergent sequence {xn }, there exists a unique point x in X ,
called the limit, and convergence is denoted as xn → x.

Convergent sequences defined above must satisfy two conditions:

1. for every x ∈ X , the constant sequence {x, x, . . . } is convergent to x;

2. if xn → x, each subsequence {xm } ⊆ {xn } is convergent, and converges
to the same limit x.

The identification of convergent sequences, together with their limits, allows
to define closed sets, and therefore a topology on X .

Definition 2.50. A set C ⊆ X is closed if, for every convergent sequence
{xn } ⊆ C, its limit x is in C.

Closed sets induce a topology O(→) on X , called sequential topology, and
the space (X ,O(→)) is called sequential (topological) space.

Note that the two very simple conditions stated in Definition 2.49 are enough
to define a topology on X .

The topology O(→) defines in turn a new class of convergent sequences (those
converging in the topology), which is, in general, larger than the initial class
of convergent sequences. To distinguish the two classes, sequences converging
in the induced topology O(→) are usually called convergent a posteriori, while
sequences identified in Definition 2.49 are called convergent a priori.

A characterization of sequences convergent a posteriori is the following.
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Theorem 2.51 (Kantorowich-Kisynski). A sequence {xn } of elements of X is
convergent a posteriori if and only if every subsequence {xm } ⊆ {xn } contains
a further subsequence {xm(k) } which is convergent a priori.

Therefore, the initial class of convergent sequences (convergent a priori) may
be enlarged to include also sequences convergent a posteriori.

Definition 2.52. The space X is said of type L∗ if it is of type L and convergent
sequences satisfy an additional condition:

3. if every subsequence {xm } of {xn } contains a further subsequence {xm(k) }
which is converges to x, then the entire sequence {xn } converges to x.

Convergence in L∗ is denoted as xn
∗−→ x .

Note that, because of Theorem 2.51, in spaces of type L∗ convergence a
posteriori coincides with convergence a priori. Moreover, convergence " ∗−→" is
already the usual convergence of sequences in the induced sequential topological
space (X ,O(→)) = (X ,O(

∗−→)).

Example 2.53. There are at least two well-known examples in which a notion
of convergence a priori is weakened to a notion of convergence a posteriori.

1. Let (Ω,F , P ) be a probability space and consider real-valued random
variables: if convergence almost surely is identified with convergence a
priori, then convergence a posteriori is the convergence in probability.

2. Let X = R and consider a sequence { εn > 0 } such that εn ↓ 0. Assume
that convergence a priori xn → x means

|xn − x| < εn, n ≥ 0,

i.e. {xn } converges to x at given rate { εn }. Then convergence a posteriori
is the usual convergence of real numbers.

The additional condition stated in Definition 2.52 is slighlty more complicated
to be checked than those stated in Definition 2.49. However, it is not actually
needed for the verification of relative sequential compactness.

Proposition 2.54. A set K ⊆ X is relatively sequentially compact with respect
to a priori convergence "→" if and only if it is relatively sequentially compact
with respect to a posteriori convergence " ∗−→".

Let (X , ρ) be a metric space and denote by P(X ) be the space of tight
probability measures on (X ,B(X )):

P(X ) := {µ prob. measure on (X ,B(X )) : µ is tight } . (2.64)

Note that if X is a Polish space, then, by Theorem 2.3, P(X ) contains all
probability measures on (X ,B(X )).

The notion of weak convergence of probability measures on (X ,B(X )), intro-
duced in Definition 2.5, is actually a notion of convergence on the space P(X ).
It can be easily checked that weak convergence satisfies conditions in Definition
2.49:
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• for each convergent sequence {µn }, there exists a unique limit µ ∈ P(X );

1. for every µ ∈ X , the constant sequence {µ, µ, . . . } is convergent to µ;

2. if µn → µ, each subsequence {µm } ⊆ {µn } is convergent, and converges
to the same limit µ.

Moreover, weak convergence also satisfies the additional condition in Definition
2.52, as a consequence of Theorem 2.8:

3. if every subsequence {µm } of {µn } contains a further subsequence {µm(k) }
which is converges to µ, then the entire sequence {µn } converges to µ.

Therefore, P(X ) is a space of type L∗ and weak convergence naturally induces
on P(X ) a sequential topology O(⇒).

Remark 2.55. The notion of relative (sequential) compactness for a family of
probability measures, given in Definition 2.10, actually corresponds to the notion
of relative compactness in the sequential topology O(⇒) on P(X ). Moreover,
Prohorov theorems are results on relative compactness in the sequential topology
induced by weak convergence.

2.6 Weak convergence in non-metric spaces

Let (X , τ) be a topological, non metrizable space and let B(X ) be the Borel
σ-field on X .

In a non-metric space X , the notion of weak convergence, introduced in
Definition 2.5, is still valid, since continuity of functions on X is a topological
property. However, it brings many disturbing problems, even when restricted to
the space P(X ) of tight probability measures on (X ,B(X )).

Consider the infinite dimensional Hilbert space (H, 〈, 〉) equipped with the
weak topology τ = σ(H,H). In [8] (reported in [10] and [12]), the author suggests
an example of a sequence {Xn } of random elements of H which is convergent in
distribution to X = 0, but has no uniformly tight subsequences. The following
observations summarize the notable features of this example.

• There are weakly convergent sequences of probability measures on (H,B(H))
for which no subsequence is uniformly tight, and therefore the direct Pro-
horov theorem, although still valid on (H, τ), looses its role as fundamental
tool for investigating weak convergence.

• Relative (sequential) compactness on P(H) could be completely char-
acterized, but it appears very difficult to check for it without uniform
tightness.

• It can be proved that every uniformly tight sequence {Xn } contains a
subsequence {Xn(k) } for which there exists a Skorohod representation
(Definition 2.45), and therefore {Xn(k) } is convergent in distribution [12].

• There are sequences convergent in distribution for which no subsequence
has a Skorohod representation.
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The third observation highlights a close relation between the direct Prohorov
theorem and the Skorohod representation for subsequences, which in turn im-
plies convergence in distribution. Unfortunately, a Skorohod representation is
not available for every sequence which converges in distribution, as the last
observation states.

However, in some other non-metric spaces, convergence in distribution and
existence of a Skorohod representation are essentially equivalent [12].

Proposition 2.56. In distribution spaces S ′ and D′, a sequence {Xn } of
random elements converges in distribution to a random element X if and only
if every subsequence {Xm } ⊆ {Xn } contains a further subsequence {Xm(k) }
which admits a Skorohod representation (with Y ∼ X).

Note that this Proposition is essentially a reformulation of Theorem 2.8,
where convergence in distribution for subsequences is replaced with the existence
of a Skorohod representation. It is therefore natural to raise questions on how
stronger the existence of a Skorohod representation is with respect to convergence
in distribution, and whether results similar Proposition 2.56 may be extended to
construct a consistent theory.

The theory of convergence of probability measures presented hereunder has
been devised by Jakubowski in [10] and [12] (see those articles for additional
details and proofs), and holds in topological spaces satisfying a specific condition.

Condition 2.57. Let (X , τ) be a topological space. There exists a countable
family

F := { fn : X 7→ [−1, 1], n ∈ N } ,

of τ -continuous functions which separate points of X , i.e. for each x, y ∈ X ,

x 6= y implies ∃ fn ∈ F s.t. fn(x) 6= fn(y).

This condition is not too restrictive, but is sufficient for (X , τ) to have some
important properties. The most remarkable feature is the following.

Proposition 2.58. Let (X , τ) be a topological space satifying Condition 2.57
and let µ be a tight probability measure on (X ,B(X )), i.e. µ ∈ P(X ). Then there
exists a measurable function Yµ define on the unit interval ([0, 1],B([0, 1]), `) with
values in (X ,B(X )) such that

` ◦ Y −1
µ = µ. (2.65)

In words, each tight probability measure on (X ,B(X )) has a Skorohod
parametrization.

Next, we need a result on the existence of a Skorohod representation on such
topological spaces, extending Theorem 2.46 (for the proof, see [12]).

Theorem 2.59 (Jakubowski). Let (X , τ) be a topological space satifying Condi-
tion 2.57 and let {Xn } be a uniformly tight sequence of random elements of X .
Then, there exist:

• a subsequence {Xn(k) } of {Xn },
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• a sequence of X -valued random elements {Yk } and an X -valued random
element Y , defined on the unit interval ([0, 1],B([0, 1])) equipped with the
Lebesgue measure `,

such that

Xn(k) ∼ Yk, ∀k, (2.66)
Yk → Y `-a.s.. (2.67)

Moreover, for each ε > 0 there exists a compact Kε ⊆ X such that

P ({ω ∈ [0, 1] : Yk(ω) ∈ Kε, ∀ k }) > 1− ε. (2.68)

The almost sure convergence in (2.67), with the additional condition stated
in (2.68), is called almost sure convergence in compacts, and the Skorohod
representation with convergence strengthened to almost sure convergence in
compacts is called strong Skorohod representation.

Therefore, adopting this new terminology, Theorem 2.59 may be restated as
follows.

Theorem 2.60. Let (X , τ) be a topological space satifying Condition 2.57 and let
{Xn } be a uniformly tight sequence of random elements of X . Then there exists a
subsequence {Xn(k) } of {Xn } which admits the strong Skorohod representation.

This theorem is essentially a direct Prohorov theorem, where convergence in
distribution is replaced with the existence of a strong Skorohod representation.

Remark 2.61. In the assumptions of Theorem 2.59, if additionally Xn ⇒ X,
then there exists a (strong) Skorohod representation for subsequences: every
subsequence {Xm } ⊆ {Xn } contains a further subsequence {Xn(k) } which
admits a (strong) Skorohod representation with Y ∼ X.

Given the central role that the (strong) Skorohod representation seem to play
for the theory of weak convergence in non-metric spaces, Jakubowski proposes
in [10] a new definition of convergence for random elements taking values on a
topological space, which is stronger than usual convergence in distribution.

Definition 2.62. Let (X , τ) be a topological space satifying Condition 2.57.
A sequence {Xn } of random elements of X is said to converge in the sense of
Jakubowski to a random element X of X , and is written as

Xn
∗

=⇒ X, (2.69)

if every subsequence {Xm } ⊆ {Xn } contains a further subsequence {Xm(k) }
which admits a strong Skorohod representation with Y ∼ X.

This novel notion of convergence for random element of X is in fact a notion
of convergence in the space P(X ) of tight probability measures on (X ,B(X )).

It is easy to check that convergence is the sense of Jakubowski satisfies
conditions in Definition 2.49 (Proposition 2.58 is essential here), as well as
the additional condition in Definition 2.52. Therefore, P(X ) equipped with
convergence in Definition 2.62 is of type L∗ and this notion of convergence
induces on P(X ) a sequential topology O(

∗
=⇒), which is sometimes referred to as

the sequential topology induced by the strong Skorohod representation.
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Remark 2.63. In light of Theorem 2.60, one may be tempted to define the new
notion of convergence by means of the strong Skorohod representation for full
sequences: a sequence {Xn } converges in the sense of Jakubowski to X if it
admits a strong Skorohod representation with Y ∼ X.

However, this notion of convergence in P(X ) does not satisfy the additional
condition in Definition 2.52. Therefore, P(X ) equipped with this convergence is
only of type L, that is, convergence a priori does not coincide with convergence
a posteriori. Instead, convergence in Definition 2.62 is obtained weakening
this notion of convergence (by means of Theorem 2.51) to include sequences
convergent a posteriori, so that it assumes a topological meaning.

Convergence in the sense of Jakubowski may be applied in many cases of
practical interest, is quite operational and proves to be more satisfactory than
usual convergence in distribution, when working on non-metric spaces.

In particular, assume that (X , τ) is a topological space satifying Condition
2.57 and space P(X ) is equipped with the sequential topology O(

∗
=⇒) induced by

the strong Skorohod representation (i.e. induced by convergence in the sense of
Jakubowski).

• Theorem 2.60 is essentially the direct Prohorov theorem for families of
random elements of X :

uniform tightness implies relative compactness in P(X ).

• Convergence in P(X ) implies uniform tightness, as a consequence of almost
sure convergence in compacts. The converse Prohorov theorem does not
hold in general, but it does in presence of some additional criteria [10,
sec. 6].

To conclude, it may be interesting to discuss the relation between this new
notion of convergence and usual convergence in distribution.

• The sequential topology O(
∗

=⇒) induced by convergence in the sense of
Jakubowski is finer than the sequential topology O(⇒) induced by con-
vergence in distribution. The example described at the beginning of this
section shows that in general these two topologies do not coincide, and
O(
∗

=⇒) may be strictly finer than O(⇒).

• If (X , τ) is a metric space, the notions of convergence in the sense of
Jakubowski and convergence in distribution are equivalent, that is, topolo-
gies O(

∗
=⇒) and O(⇒) coincide.

2.7 Jakubowski S-topology on D[0, 1]

Let D[0, 1] be the Skorohod space, i.e. the space of functions on interval [0, 1]
with values in R that are right-continuous and have left limits.

In [9] and [11], Jakubowski proposes a new sequential topology on D[0, 1],
which arises from quite natural criteria of compactness but cannot be metricized.
However, space D[0, 1] equipped with this topology satisfies Condition 2.57,
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and therefore it is possible to build a satisfactory theory of convergence for
probability measures on this space (see Section 2.6).

In order to better explain the arguments leading to the definition of the
above-mentioned sequential topology, Jakubowski starts discussing a simple
example.

Let V+ ⊆ D[0, 1] be the space of non-negative and non-decreasing cadlag
functions and let Q be a countable dense subset of [0, 1] containing 1. Moreover,
let K be a set of elements of V+ and assume that

sup
x∈K

v(1) <∞. (2.70)

Then, it can be shown that:

• there exist a sequence {xn } ⊆ K and an element x̃ ∈ RQ such that

xn(q)→ x̃(q), q ∈ Q; (2.71)

• the cadlag function x ∈ D[0, 1], defined as

x(t) := lim
q↓t+

x̃(q), t ∈ [0, 1), x(1) = x̃(1), (2.72)

belongs to V+;

• pointwise convergence holds for continuity points of x, that is, for each
t ∈ [0, 1] such that x is continuous at t,

xn(t)→ x(t). (2.73)

Moreover, each element x ∈ V+ determines a finite measure µ on ([0, 1],B([0, 1])),
given by

µ([0, t]) = x(t), t ∈ [0, 1]. (2.74)

Therefore, a notion of convergence on the space V+ may be defined by means of
weak convergence of the corresponding finite measures. It can be proved that
this notion of convergence is equivalent to the one in (2.73).

As a consequence, condition (2.70) restricted to V+ is a criterion of relative
compactness with respect to a quite natural sequential topology, induced by
weak convergence of the corresponding finite measures.

A similar procedure may be followed for space D[0, 1]. Let Q be a countable
dense subset of [0, 1] containing 1 and let K be a set of elements of D[0, 1] such
that

sup
x∈K
‖x‖ <∞. (2.75)

Again, it can be shown that

• there exist a sequence {xn } ⊆ K and an element x̃ ∈ RQ such that

xn(q)→ x̃(q), q ∈ Q. (2.76)
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However, in this case, constructing a candidate limit x ∈ D[0, 1] is not as easy
as in (2.72), and additional conditions beyond (2.75) should be considered, in
order to guarantee that each expression

x(t) := lim
q↓t+

x̃(q), t ∈ [0, 1), (2.77)

is actually well-defined and x belongs to D[0, 1]. Moreover, even when such
construction is possible, it is not clear whether the sequence {xn } converges to
x in some topology on D[0, 1].

The new sequential topology proposed by Jakubowski allows to naturally
extend the reasoning presented above for space V+ to the entire space D[0, 1].

Definition 2.64. Let x ∈ D[0, 1] be a cadlag function. The total variation V (x)
of function x is defined as

V (x) := sup
n
{ |x(0)|+

n∑
i=1

|x(ti)− x(ti−1)| : 0 = t0 < t1 < · · · < tn = 1 } .

The subspace of D[0, 1] containing cadlag functions with finite total variation is
denoted by V:

V := {x ∈ D[0, 1] : V (x) <∞} ⊆ D[0, 1]. (2.78)

Each element x ∈ V determines a (finite) signed measure ν on ([0, 1],B([0, 1]))
given by

ν([0, t]) = x(t), t ∈ [0, 1]. (2.79)

Similarly to V+, weak convergence of the corresponding signed measures defines
a notion of convergence on the space V.

Definition 2.65. A sequence {xn } of elements of V is said to converge weakly-∗
to an element x ∈ V if the corresponding signed measures { νn }, defined in
(2.79), converge weakly to the signed measure ν corresponding to x, that is, if∫ 1

0

f(t)νn(dt)→
∫ 1

0

f(t)ν(dt), (2.80)

for every continuous function f : [0, 1] 7→ R. In this section, weak-∗ convergence
is written as

xn
w−→ x. (2.81)

This notion of convergence is used in an essential way to define the Jakubowski
S-convergence on D[0, 1].

Definition 2.66. A sequence {xn } of cadlag functions is called S-convergent
to a function x if, for each ε > 0, there exist functions { x̃n,ε } and x̃ε in V
which are ε-uniformly close to the corresponding functions {xn } and x and are
weakly-∗ convergent, that is

‖xn − x̃n,ε‖ ≤ ε, ‖x− x̃ε‖ ≤ ε, (2.82)

x̃n,ε
w−→ x̃ε. (2.83)

In this section, S-convergence is written as

xn →S x. (2.84)
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Remark 2.67. The construction of functions { x̃n,ε } and x̃ε is quite standard.
For example, consider function x and, for each ε > 0, define time instants
{ τ εk(x) } recursively as

τ ε0(x) := 0, τ εk(x) := inf { t > τ εk+1(x) : |x(t)− x(τ εk−1(x))| > ε } ,

with the convention that inf ∅ =∞. Then, function x̃ε is naturally defined as

x̃ε(t) = x(τ εk(x)), τ εk(x) ≤ t < τ εk+1(x), t ∈ [0, 1].

An similar procedure is adopted to construct functions { x̃n,ε }.

It is possible to prove that the Skorohod space equipped with S-convergence
is of type L, that is, satisfies conditions in Definition 2.49. Therefore, we have
enough information to characterize closed sets and define a sequential topology
on D[0, 1] (see Definition 2.50), which is called Jakubowski S-topology.

Remark 2.68. Note that the Skorohod space equipped with S-convergence
is not of type L∗, i.e. does not satisfy the additional condition in Definition
2.52. Therefore, S-convergence, which is convergence a priori, may be weakened
to S∗-convergence by means of Theorem 2.51, in order to include sequences
convergent a posteriori.

However, this further complication is not always necessary, since in many
cases checking properties for S-convergence is enough to have them verified for
the induced sequential topology S. In particular, relative compactness with
respect to S-convergence coincides with relative compactness in the S-topology
(Theorem 2.54).

A typical example of S-convergent sequence is the following.

Example 2.69. Consider the sequence of functions {xn }, where xn is defined
as

xn(t) = 1[τ,τ+n−1](t), τ ∈ [0, 1), t ∈ [0, 1].

The sequence {xn } converges in the S-topology to the null function

x(t) = 0, t ∈ [0, 1].

Indeed, for each n ≥ 1, V (xn) = 2 <∞, and so xn ∈ V, which means that we
can take x̃n,ε = xn, for each ε > 0. Moreover, the corresponding signed measure
is given by

νn(dt) = δτ (t)− δτ+n−1(t),

and therefore ∫ 1

0

f(t)νn(dt) = f(τ)− f(τ + n−1) → 0,

for every continuous function f : [0, 1] 7→ R.
However, {xn } does not converge to x in the Skorohod metric d, since for

each δ > 0 there exists n0 such that

w′(xn, δ) = 1, n ≥ n0,
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which means that {xn } is not relatively compact. Clearly, {xn } neither con-
verges in the uniform metric ρ, even if the candidate limit x is a continuous
function.

Finally, note that pointwise convergence xn(t)→ x(t) fails for t = τ :

xn(τ) = 1, ∀n, x(τ) = 0.

As shown in this example, S-convergence does not imply pointwise conver-
gence, exactly as it happens for convergence in the Skorohod metric. However,
is does outside a countable set.

Proposition 2.70. Let {xn } be a sequence of cadlag functions converging to x
in the S-topology,

xn →S x.

Then, there exists a countable set D ⊆ [0, 1] such that

xn(t)→ x(t), t ∈ [0, 1] \D. (2.85)

In order to investigate compactness with respect to the S-topology, we need
first to introduce the notions of upcrossings and oscillations.

Definition 2.71. Let x ∈ D[0, 1] be a cadlag function.

• The number of upcrossings Na,b(x) of levels a < b for function x is defined
as follows: Na,b(x) ≥ k if there exist time instants

0 ≤ t1 < t2 < · · · < t2k−1 < t2k ≤ 1

such that
x(t2i−1) ≤ a, x(t2i) ≥ b, i = 1, . . . , k.

• The number of oscillations Nη(x) of size η > 0 for function x is defined as
follows: Nη(x) ≥ k if there exist time instants

0 ≤ t1 < t2 < · · · < t2k−1 < t2k ≤ 1

such that
|x(t2i−1)− x(t2i)| ≥ η, i = 1, . . . , k.

The most remarkable feature of the S-topology, and the main reason for its
use in probability theory, is represented by its very natural criteria of relative
compactness (for the proof, see [9, sec. 2]).

Theorem 2.72. A set K of elements of D[0, 1] is relatively (sequentially)
compact with respect to the S-topology if and only if it is uniformly bounded

sup
x∈K
‖x‖ <∞, (2.86)

and at least one of the following equivalent conditions hold:

1. for each a < b,
sup
x∈K

Na,b(x) <∞; (2.87)

63



2. for each η > 0,
sup
x∈K

Nη(x) <∞. (2.88)

Note that the alternative conditions in (2.87) and (2.88) are precisely the ad-
ditional requirements needed to guarantee that the construction of the candidate
limit in (2.77) is well-defined. In fact, the S-topology is exactly the topology on
D[0, 1] in which the sequence {xn } converges to the candidate limit x obtained
with such a procedure.

Proposition 2.73. Let Q be a dense subset of [0, 1] containing 1 and let {xn }
be a relatively compact sequence of cadlag functions, with respect to the S-topology.
If there exists an element x ∈ D[0, 1] such that

xn(q)→ x(q), ∀ q ∈ Q,

then {xn } converges to x in the S-topology.

It is interesting to point out that natural projections are useful for the
identification of the limit even though they are nowhere continuous in the
S-topology.

Indeed, for each natural projection πt, t ∈ [0, 1) and each cadlag function
y ∈ D[0, 1], consider the sequence {xn } defined in Example 2.69 with τ = t. It
is straightforward to prove that

y + xn →S y, (y + xn)(t) = y(t) + 1 6→ y(t),

which means that πt is not continuous at each point y ∈ D[0, 1].
Other fundamental results about S-topology are summarized in the following

theorem (proofs and further details can be found in [9, sec. 2]).

Theorem 2.74. Consider the Skorohod space D[0, 1] equipped with the sequential
topology S.

• The topological space (D[0, 1], S) is a Hausdorff space and cannot be metri-
cized.

• There exists a countable family of S-continuous functions which separates
points of D[0, 1], and therefore Condition 2.57 is satisfied.

• The Borel σ-field on D[0, 1] coincides with the σ-field generated by natural
projections:

BS = B(D[0, 1], S) = σ {πt, t ∈ [0, 1] } .

A direct consequence of the form of the Borel σ-field BS is that every
probability measure on (D[0, 1],BS) is tight, and the notion of random element
of (D[0, 1],BS) coincides with the notion of stochastic process with trajectories
in D[0, 1].

The fact that Condition 2.57 holds in (D[0, 1], S) allows to consider on this
topological space the notion of convergence for random elements on D[0, 1]
devised by Jakubowski, and described in Section 2.6. In particular, Definition
2.62 of convergence in the sense of Jakubowski is restated here.
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Definition 2.75. Let (D[0, 1], S) be the Skorohod space of cadlag functions
equipped with the S-topology. A sequence {Xn } of random elements of D[0, 1]
is said to converge in the sense of Jakubowski to a random element X, and is
written as

Xn
∗

=⇒ X, (2.89)

if every subsequence {Xm } ⊆ {Xn } contains a further subsequence {Xm(k) }
which admits a strong Skorohod representation with Y ∼ X.

In the space P(D[0, 1],BS) of (tight) probability measures on (D[0, 1],BS),
equipped with convergence in the sense of Jakubowski, both the direct and the
converse Prohorov theorems hold (see Section 2.6 and Theorem 2.60).

Theorem 2.76. Let M be a family of stochastic processes with trajectories in
D[0, 1]. Then M is uniformly tight with respect to the S-topology if and only if
it is relatively (sequentially) compact with respect to convergence in the sense of
Jakubowski.

As a consequence, we can work with probability measures on (D[0, 1],BS)
much like they were defined on a Polish space, despite the fact that (D[0, 1], S)
is not even metrizable.

The fact that natural projections, although nowhere continuous, are enough
to uniquely identify the limit (Proposition 2.73), translates into the context
of probability measures as the unique identification of the limit by means of
finite-dimensional distributions. Therefore, an analogue of Theorem 2.42 holds,
even if the mapping theorem can never be applied in this setting (see [9, sec. 3]
for the proof).

Theorem 2.77. Let Q be a dense subset of [0, 1] containing 1 and let {Xn } be
a relatively compact sequence of stochastic processes with trajectories in D[0, 1].
If finite-dimensional distributions of {Xn } converge to those of a stochastic
process X ∈ D[0, 1] when restricted to Q, then Xn

∗
=⇒ X: if, for every choice of

q1, . . . , qk ∈ Q,

(Xn(q1), . . . , Xn(qk))⇒n (X(q1), . . . , X(qk)), (2.90)

then Xn
∗

=⇒ X.

Remark 2.78. The construction of the candidate limit X, starting from its
finite-dimensional distributions, is precisely the one described in Section 2.4 for
a generic stochastic process on D[0, 1], independently of the chosen topology.
This observation highlights once more the fundamental role of the Skorohod
Representation Theorem in the theory of convergence in distribution.

A slighlty improved result is the following [9, sec. 3].

Theorem 2.79. Let M be a relatively compact family of stochastic processes
with trajectories in D[0, 1]. Then there exist

• a sequence {Xn } ⊆M ,

• a stochastic process X with trajectories in D[0, 1],
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• a countable subset D ⊆ [0, 1),

such that, for every choice of t1, . . . , tk ∈ [0, 1] \D,

(Xn(t1), . . . , Xn(tk))⇒n (X(t1), . . . , X(tk)), (2.91)

and, in particular, Xn
∗

=⇒ X.

Similarly to the case of the Skorohod J1-topology, the characterization
of uniform tightness (or, equivalently, relative compactness) of a family of
probability measures on (D[0, 1],BS) is obtained translating the characterization
of relative compactness in (D[0, 1], S) (Theorem 2.72).

Theorem 2.80. A family {Xα } of stochastic processes with trajectories in
D[0, 1] is uniformly tight with respect to the S-topology if and only if

• { ‖Xα‖ } is a uniformly tight family of R-valued random variables,

and at least one of the following equivalent conditions hold

1. for each a < b, {Na,b(Xα) } is a uniformly tight family of N-valued random
variables;

2. for each η > 0, {Nη(Xα) } is a uniformly tight family of N-valued random
variables.

To conclude this section, we highlight some facts which may hopefully help
clarifying the relation between S-topology and J1-topology on the Skorohod
space D[0, 1] [11]:

• D[0, 1] equipped with the Skorohod metric d∗, inducing the J1-topology,
is separable and complete;

• D[0, 1] equipped with the S-topology is a non-metrizable, Hausdorff topo-
logical space;

• J1-convergence implies S-convergence,

xn →J1 x implies xn →S x,

and therefore the S-topology is weaker than the J1-topology;

• addition is not sequentially continuous in the J1-topology, i.e.

xn →J1 x, yn →J1 y ����implies xn + yn →J1 x+ y;

• addition is sequentially continuous in the S-topology, i.e.

xn →S x, yn →S y implies xn + yn →S x+ y.

The last observation is the reason for the typical phenomenon of self-cancelling
oscillations in the S-topology (see Example 2.69), which is instead not allowed
in the J1-topology.
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Chapter 3

Togashi-Kaneko Model

3.1 Original 4-dim model

In the study of biochemical reactions at cellular level, is not infrequent to
encounter models for which an approximation based on classical scaling turns
out to be unsatisfactory. In particular, the intrinsic discreteness of the stochastic
process describing species counts cannot always be disregarded, even when
normalized abundances correspond to species concentrations. A well-known
example in cellular biology is the signal transduction process, in which even a
very small number of molecules may trigger a biochemical cascade, eventually
determining a switch in the state of a cell.

In [17], Togashi and Kaneko propose a chemical reaction system which
displays this sort of peculiar behaviour. Its dynamics is characterized by switches
between patterns where some species are present in very small or vanishing
quantities, while others are abundant. Similarly to signal transduction processes,
switches are triggered by the inflow of a single molecule belonging to a species
which was previously extinct, and the switching phase involves a sequence of
fast reactions.

Such a drastic effect of a single molecule inflow on the system dynamics is
highly non-linear (a negligible perturbation is extremely amplified) and cannot
be captured by the classical continuous approximation. In fact, switches are
intrinsically tied with the underling discrete structure of the stochastic model,
and, for this reason, are called Discreteness Induced Transitions [3].

The general Togashi-Kaneko model involves species S1, . . . , Sn and is charac-
terized by two classes of reactions:

• (fast) autocatalytic reactions,

RAi : Si + Si+1 → 2Si+1, i = 1, . . . , n, (3.1)

with the convention that Sn+1 = S1;

• (slow) inflow and outflow reactions,

RIi : ∅ → Si, ROi : Si → ∅, i = 1, . . . , n. (3.2)
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Autocatalytic reactions are very common in this type of cellular processes and
are actually those responsible for the amplification effect which causes switches.

According to mass action kinetics (Definition 1.6), reaction rates are expressed
as:

λAi (x) = κixixi+1, i = 1, . . . , n,

λIi (x) = ηi, λOi (x) = δixi, i = 1, . . . , n.
(3.3)

As highlighted by the form of intensity functions, autocatalytic reaction RAi may
happen only if both Si and Si+1 are together present in the system, that is,
transitions are triggered by an inflow of a species which was previously extinct
(thus preventing the autocatalytic cascade to start).

The number of molecules of species Si at time t ≥ 0 is described by the
following equation:

Xi(t) = Xi(0) + ξAi−1

(∫ t

0

κi−1Xi−1(s)Xi(s)ds

)
− ξAi

(∫ t

0

κiXi(s)Xi+1(s)ds

)
+ ξIi

(∫ t

0

ηids

)
− ξOi

(∫ t

0

δiXi(s)ds

)
.

(3.4)

Notice that, assuming no autocatalytic cascade involving species Si is running,
either Si is extinct or both Si−1 and Si+1 are extinct. This observation suggests
some sort of alternation pattern between extinct and abundant species, which is
confirmed by numerical experiments when autocatalytic reactions are sufficiently
faster than inflows and outflows.

In their article [17], Togashi and Kaneko consider the case for n = 4 and
approximate the system dynamics according to the classical scaling procedure
(see Section 1.3):

• species abundances are expressed in terms of their concentrations,

CNi =
Xi

N
, i = 1, . . . , n; (3.5)

• reaction rate constants for autocatalytic reactions are given by

κi =
κ′i
N
, i = 1, . . . , n; (3.6)

• reaction rate constants for inflow and outflow reactions are expressed as

ηi = η′iN, δi = δ′i, i = 1, . . . , n. (3.7)

For further simplification, the authors assume

κ′i = 1, η′i = δ′i = D, ∀ i = 1, . . . , n. (3.8)
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Therefore, under the above assumptions, the concentration of species Si at time
t ≥ 0 is given by

CNi (t) = CNi (0) +N−1ξAi−1

(
N

∫ t

0

CNi−1(s)CNi (s)ds

)
−N−1ξAi

(
N

∫ t

0

CNi (s)CNi+1(s)ds

)
+N−1ξIi

(
N

∫ t

0

Dds

)
−N−1ξOi

(
N

∫ t

0

DCNi (s)ds

)
.

(3.9)

The limit as N grows large is obtained according to Theorem 1.21. Indeed,
assuming that vector CN (0) has a finite (positive) limit for N →∞,

lim
N→∞

CN (0) = c(0) > 0, (3.10)

the stochastic solution of (3.9) converges to the deterministic solution of equation

ci(t) = ci(0) +

∫ t

0

ci−1(s)ci(s)ds−
∫ t

0

ci(s)ci+1(s)ds

+

∫ t

0

Dds−
∫ t

0

D ci(s)ds, t ≥ 0.

(3.11)

The resulting system of equations can be restated in differential form as

ċi = ci−1 ci − ci ci+1 +D −D ci

= ci(ci−1 − ci+1) +D(1− ci), i = 1, . . . , 4.
(3.12)

It is easy to show that the ordinary differential system above has an equilib-
rium for

ci = cei = 1, i = 1, . . . , n, (3.13)

and such equilibrium is asymptotically stable, since the Jacobian matrix, evalu-
ated at this point, has eigenvalues

λ1 = λ3 = −D, λ2 = −D − 2i, λ4 = −D + 2i.

Note that the presence of two complex conjugate eigenvalues makes the equilib-
rium point an attractive focus in the subspace generated by the two corresponding
eigenvectors,

x(2) =
[
1 i −1 −i

]
, x(4) =

[
1 −i −1 i

]
,

i.e. the subspace on which the sums of species counts for S1 and S3 and for S2

and S4, respectively, are constant, showing again an alternation pattern between
species.

Numerical experiments are carried out setting the scaling parameter to

N = 256,

and initializing species concentrations at the equilibrium point cei = 1, i =
1, . . . , 4; in order to model slow inflow and outflow reactions, their common
normalized reaction rate constant is set to

D = 1/16.

Results are displayed in Figure 3.1:
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Figure 3.1: Realization of stochastic process CN of species concentrations for
the Togashi-Kaneko model with n = 4 species. Parameters are set to N = 256
and D = 1/16. Trajectories fluctuate around the stable equilibrium.

• species concentrations fluctuate around the deterministic stable equilibrium;

• species S1 and S3 (respectively, S2 and S4) are paired and oscillate around
the attractive focus in the subspace generated by x(2) and x(4), with
frequency f = 1/π.

However, if the diffusion parameter D is progressively decreased, making
inflows and outflows more and more rare, the anticipated phenomenon of Dis-
creteness Induced Transitions appears; setting, for example,

D = 1/4096,

we obtain results as displayed in Figure 3.2 (see also [17, fig. 1]).
In the initial transition phase:

• species S3 happens to become extint;

• molecules of species S2 are produced but not consumed (since the auto-
catalytic reaction consuming molecules of S2 does not happen, being S3

extinct);

• at the same time, molecules of S1 are consumed, until S1 also becomes
extinct;

• the system enters a configuration in which both S1 and S3 are extinct, so
that all autocatalytic reactions are stopped, concentration of S2 is high,
while concentration of S4 is low (call this pattern 2H4L [3]).

In the long run:

• autocatalytic reactions are stopped most of the time, and are triggered by
the inflows of molecules of extinct species;
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Figure 3.2: Realization of stochastic process CN of species concentrations for
the Togashi-Kaneko model with n = 4 species. Parameters are set to N = 256
and D = 1/4096. Discreteness Induced Transitions appear.

• the system alternates four different configurations, each with a pair of
extinct species (S1 and S3 or S2 and S4) and a pair of species which are
present with higher and lower concentrations, respectively;

• switches between configurations are driven by autocatalytic reactions, and
a pattern like 2H4L is far more often followed by pattern 2L4H than by
the other opposite configurations 1H3L and 1L3H.

Clearly, results displayed in Figure 3.2 do not contradict the theoretical
result in (3.11): for N growing large, the system dynamics converges to the
deterministic model for each value of D. However, these numerical experiments
suggest that, with a different scaling of reaction rate constants, it is possible to
obtain limiting models featuring Discreteness Induced Transitions.
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3.2 Simplified 2-dim model

In order to simplify the analysis of Discreteness Induced Transitions and obtain
meaningful results, in the following sections we consider the case with n = 2.

The reaction network is represented by the following complex graph

S1 + S2 → 2S2, S1 + S2 → 2S1,

S1 
 ∅, S2 
 ∅,
(3.14)

and reation rates are again given by mass action kinetics

λAi (x) = κix1x2, i = 1, 2,

λIi (x) = ηi, λOi (x) = δixi, i = 1, 2.
(3.15)

Similarly to the original case with n = 4, approximate the system dynamics
according to the classical scaling:

CNi =
Xi

N
, κi =

κ′i
N
, ηi = η′iN, δi = δ′i, i = 1, 2, (3.16)

and further assume that

κ′i = 1, η′i = δ′i = D, ∀ i = 1, 2. (3.17)

As N grows large, the stochastic solution converges to the deterministic solution
of equations

ċi = D(1− ci), i = 1, 2. (3.18)

In this case, deterministic equations are disjoint, and there exists an asymptoti-
cally stable equilibrium for cei = 1, i = 1, 2, since the Jacobian matrix is diagonal
with diagonal entries equal to −D.

Again, numerical experiments are carried out setting the scaling parameter
to

N = 256,

and initializing species concentrations at equilibrium cei = 1, i = 1, 2. Figure 3.3
shows results obtained setting the diffusion parameter to

D = 1/16.

Exactly as in the case with n = 4, trajectories fluctuate around the deterministic
stable equilibrium; no periodic oscillations are observed, since the Jacobian
matrix has no complex eigenvalues and the equilibrium is a stable node.

On the contrary, Figure 3.4 displays results obtained for

D = 1/4096.

The dynamics is here extremely simplified:

• species S1 becomes extinct, preventing autocatalytic reactions to happen;

• inflows of molecules of S1 trigger autocatalytic cascades, which occasionally
lead to a switch in the roles of the two species, i.e. S2 is extinct and S1

has high concentration;
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Figure 3.3: Realization of stochastic process CN of species concentrations for the
Togashi-Kaneko model with n = 2 species. Parameters are set to N = 256 and
D = 1/16. Trajectories fluctuate around the stable equilibrium, since ND = 16.

• autocatalytic cascades frequently fail to produce a switch, and result instead
in peculiar peaks, reaching various levels between 0 and the value taken by
the sum process;

• the sum of the two species, denoted as

W := C1 + C2, (3.19)

is not affected by autocatalytic reactions, and fluctuates around its equi-
librium point we = ce1 + ce2 = 2.

In order to have a better understanding of the behaviour of the 2-dim Togashi-
Kaneko reaction system, it is interesting to look at its stationary distribution.
Assume that network (3.14) has reaction rate constants given by

κ1 = κ2 = κ, δ1 = δ2 = δ. (3.20)

It is proved in [3] that there exists a unique stationary distribution π which
factorizes as

π(x) = µ(x1|n) ν(n), (3.21)

where n = x1 + x2 is the total number of molecules in the system. In particular:

• ν is a Poisson distribution,

ν(n) =
γn

n!
exp(−γ), n ≥ 0, (3.22)

with parameter
γ =

η1 + η2

δ
,

and is the stationary distribution for the stochastic process describing the
sum of the two species counts;
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Figure 3.4: Realization of stochastic process CN of species concentrations for
the Togashi-Kaneko model with n = 2 species. Parameters are set to N = 256
and D = 1/4096. Discreteness Induced Transitions appear, since ND = 1/16.

• µ(·|n) is a beta-binomial distribution,

µ(i|n) =

(
n

i

)
B(i+ α, n− i+ β)

B(α, β)
, i = 0, . . . , n, (3.23)

where B is the beta function, with parameters

α =
δη1

κ(η1 + η2)
, β =

δη2

κ(η1 + η2)
,

and represents the number of moleculs of S1, compared to S2, given their
sum n.

Note that, under the further assumption

η1 = η2 = η,

the parameters α and β of the beta-binomial distribution coincide and no more
depend on η:

α = β =
δ

2κ
. (3.24)

This form for the stationary distribution can be checked by direct verification;
further details and explicit calculations can be found in [3].

The beta-binomial distribution may assume different shapes depending on
the parameter values (see Figure 3.5):

• if α, β > 1, the distribution is unimodal, and symmetric if α = β;

• if α, β < 1, the distribution is bimodal, with probability mass concentrated
at boundaries;
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Figure 3.5: Beta-Binomial distribution for n = 10.

• if α = β = 1, the distribution reduces to the discrete uniform on { 0, . . . , n }.

The explicit form for the stationary distribution for reaction system (3.14)
turns out to be extremely useful if we consider again the approximation under
classical scaling, described in (3.16), with reaction rate constants given by (3.17).

In particular, parameters α and β of the beta-binomial distribution coincide
and are equal to

α = β =
ND

2
; (3.25)

as a consequence, for large N , the behaviour of the system dynamics in the long
run is determined by the quantity ND:

• for ND >> 1, trajectories fluctuate around the deterministic equilibrium,
since the beta-binomial density is unimodal and symmetric, with a sharp
peak around n/2 (see Figure 3.3, where ND = 16);

• for ND << 1, Discreteness Induced Transitions appears, since the beta-
binomial distribution is bimodal, with probability mass concentrated in 0
and n (see Figure 3.4, where ND = 1/16).

It can be actually shown that, for ND → 0, the probability mass of the beta-
binomial distribution is confined at the boundaries, for each n:

µ(0, n) + µ(n, n)→ 1, ND → 0. (3.26)

On the other hand, the parameter γ of the Poisson distribution ν for the
sum of the two species counts is given by

γ = 2N ; (3.27)

for large N , the normalized sumW = C1+C2 concentrates around its equilibrium
point we = 2, since

E[W ] =
γ

N
= 2, Var(W ) =

γ

N2
=

2

N
→ 0. (3.28)
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The following sections are devoted to further investigate properties of the
2-dim Togashi-Kaneko model in the limit for N growing large, preserving, at the
same time, such peculiar Discreteness Induced Transitions. To this end, classical
scaling procedure is set aside, and reaction rates constants are scaled so that

α = β =
δ

2κ
→ 0, as N →∞. (3.29)

3.3 Multiscale approximations

The chemical reaction system proposed by Togashi and Kaneko, in the case with
n = 2, is represented by the complex graph

S1 + S2 → 2S2, S1 + S2 → 2S1,

S1 
 ∅, S2 
 ∅.
(3.14)

with reactions rates given by

λAi (x) = κix1x2, i = 1, 2,

λIi (x) = ηi, λOi (x) = δixi, i = 1, 2.
(3.15)

The stochastic process X describing species counts is modeled as the contin-
uous time Markov chain solving equations, for t ≥ 0,

X1(t) = X1(0)− ξA1
(∫ t

0

κ1X1(s)X2(s)ds

)
+ ξA2

(∫ t

0

κ2X1(s)X2(s)ds

)
+ ξI1(η1t)− ξO1

(∫ t

0

δ1X1(s)ds

)
,

(3.30)

X2(t) = X2(0) + ξA1

(∫ t

0

κ1X1(s)X2(s)ds

)
− ξA2

(∫ t

0

κ2X1(s)X2(s)ds

)
+ ξI2(η2t)− ξO2

(∫ t

0

δ2X2(s)ds

)
.

(3.31)

As discussed in the Section 3.2, the classical scaling procedure has to be
set aside in order to preserve Discreteness Induced Transitions. However, some
of the assumptions considered there should be kept not to loose fundamental
properties of the model:

• species abundances are expressed in terms of their concentrations,

CNi =
Xi

N
, i = 1, . . . , n; (3.32)

• reaction rates constants coincide for the two species,

κ1 = κ2 = κ, η1 = η2 = η, δ1 = δ2 = δ; (3.33)
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• the relationship between reaction rate constants for inflows and outflows
remains fixed,

η

δ
= N, (3.34)

since this relationship determines the behaviour of the processW = C1+C2.

To keep coherence with the previous discussion, we may arbitrarily assume that
the reaction rate constant for autocatalytic reactions scales as

κ =
κ′

N
; (3.35)

reaction rate constants for inflow and outflow reactions are scaled according to
generic scaling parameters βI and βO,

η = η′NβI , δ = δ′NβO , (3.36)

with the constraint that βI = βO + 1 = β.
Therefore, the stochastic process CN of normalized abundances is described

by the following equations:

CN1 (t) = CN1 (0)−N−1ξA1

(
N

∫ t

0

κ′CN1 (s)CN2 (s)ds

)
+N−1ξA2

(
N

∫ t

0

κ′CN1 (s)CN2 (s)ds

)
+N−1ξI1(Nβη′t)−N−1ξO1

(
Nβ

∫ t

0

δ′CN1 (s)ds

)
,

(3.37)

CN2 (t) = CN2 (0) +N−1ξA1

(
N

∫ t

0

κ′CN1 (s)CN2 (s)ds

)
−N−1ξA2

(
N

∫ t

0

κ′CN1 (s)CN2 (s)ds

)
+N−1ξI2(Nβη′t)−N−1ξO2

(
Nβ

∫ t

0

δ′CN2 (s)ds

)
,

(3.38)

For the continuation of the discussion, assume that

lim
N→∞

CN (0) = c(0) > 0. (3.39)

For β = 1, we resort to classical scaling, and the stochastic process CN
converges to the solution c of the deterministic system of equations,

ci(t) = ci(0) + ηt−
∫ t

0

δci(s)ds, i = 1, 2; (3.40)

the two equations are disjoint, and their solution is given by

ci(t) =

(
ci(0)− η′

δ′

)
exp (−δ′t) +

η′

δ′
, i = 1, 2. (3.41)

Note that, if η′ = δ′ as assumed in the previous sections, the asymptotically
stable equilibrium is cei = 1, i = 1, 2.
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However, as observed at the end of Section 3.2, in order to preserve Discrete-
ness Induced Transitions for N growing large, we need the parameter(s) α = β
of the beta-binomial distribution in (3.23) to converge to zero as N grows, i.e.
we should require

δ

2κ
=

δ′

2κ′
Nβ → 0, as N →∞, (3.42)

and therefore we must take

β = −α, α > 0. (3.43)

Moreover, we may also consider a scaling in time, expressed as

τ = N−γt, t ≥ 0. (3.44)

As a consequence, the time-scaled stochastic process CN,γ is described by the
equations

CN,γ1 (τ) = CN1 (0)−N−1ξA1

(
N1+γ

∫ τ

0

κ′CN,γ1 (s)CN,γ2 (s)ds

)
+N−1ξA2

(
N1+γ

∫ τ

0

κ′CN,γ1 (s)CN,γ2 (s)ds

)
+N−1ξI1(Nγ−αη′τ)−N−1ξO1

(
Nγ−α

∫ τ

0

δ′CN,γ1 (s)ds

)
,

(3.45)

CN,γ2 (τ) = CN2 (0) +N−1ξA1

(
N1+γ

∫ τ

0

κ′CN,γ1 (s)CN,γ2 (s)ds

)
−N−1ξA2

(
N1+γ

∫ τ

0

κ′CN,γ1 (s)CN,γ2 (s)ds

)
+N−1ξI2(Nγ−αη′τ)−N−1ξO2

(
Nγ−α

∫ τ

0

δ′CN,γ2 (s)ds

)
,

(3.46)

It is easy to check that the balance equation (1.50) is verified for both
species: considering the fastest reactions (i.e the autocatalytic reactions), the
rate of production has the same order of magnitude of the rate of consumption.
Moreover, both species have the same natural time-scale

γi = 1−max { 1,−α } = 0, i = 1, 2,

and therefore the first natural time-scale for the (normalized) reaction system is

γ′ = min
i
γi = 0. (3.47)

For γ = γ′, the processes of normalized reaction countings for autocatalytic
reactions converge to their deterministic equivalent,

N−1ξA1

(
N

∫ τ

0

κ′CN,γ
′

1 (s)CN,γ
′

2 (s)ds

)
→

∫ τ

0

κ′CN,γ
′

1 (s)CN,γ
′

2 (s)ds,

while reaction countings for inflows and outflows converge to zero,

ξIi (N−αη′τ) → 0, ξOi

(
N−α

∫ τ

0

δ′CN,γ
′

i (s)ds

)
→ 0, i = 1, 2.
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As a consequence, the stochastic process CN,γ
′
of species concentrations converges

to the solution c of the deterministic system of equations (Theorem 1.31):

ci(τ) = ci(0)−
∫ τ

0

κ′c1(s)c2(s)ds+

∫ τ

0

κ′c1(s)c2(s)ds

= ci(0), i = 1, 2.

(3.48)

In other words, the limiting process at the first natural time-scale is the constant
process, that is, nothing happens at this time-scale.

It is interesting to note that the first natural time-scale is defined so that
none of the normalized reaction countings should blow up and at least one should
be non trivial, as it actually happens in this case (Definition 1.30). However,
despite such characterization, the fact that normalized countings for autocatalytic
reactions are somewhat perfectly balanced results in a constant dynamics for
the limiting model.

Considering linear combinations of the two species (see Section 1.6), the only
combination θ · S which raises some interest is obtained for θ = (1, 1), corre-
sponding to the sum of their counts. The normalized abundance (concentration)
of the sum process is given by,

WN,γ := CN,γ1 + CN,γ2 , (3.49)

and the stochastic process WN,γ satisfies equation

WN,γ(τ) = WN (0) +N−1ξI1(Nγ−αη′τ) +N−1ξI2(Nγ−αη′τ)

−N−1ξO1

(
Nγ−α

∫ τ

0

δ′CN,γ1 (s)ds

)
−N−1ξO2

(
Nγ−α

∫ τ

0

δ′CN,γ2 (s)ds

)
.

(3.50)

Note that the balance equation (1.64) is also verified for this linear combination,
and thus for each linear combination θ ∈ Rn≥0.

The natural time-scale for the concentration of the sum is

γθ = 1−max {−α } = 1 + α,

which is also the second natural time-scale,

γ′′ = min { γθ̄ : γθ̄ > γ′ } = γθ = 1 + α, (3.51)

since γθ̄ = γ′ = 0 for all θ̄ 6= θ.
As discussed in Section 1.7, convergence of (3.50) to a non-degenerate model

is not guaranteed a priori at the second natural time-scale, at least in the general
case. Indeed, some additional requirements concerning stability of the reaction
system on its fast subspace should be satisfied, in order to average the influence
of fast components on the slow subspace.

However, in this particular example, it is possible to bypass this issue relying
on a peculiar property of this model, namely lumpability.

Consider a continuous time Markov chain X = {X(t) : t ≥ 0 } on state space
S with transition rates Q(x, y), x, y ∈ S. Let {Pi : i ∈ I } be a partition of the
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state space S and let L be the function mapping each element x ∈ S into the
index of the partition it belongs to:

L : S 7→ I, L(x) = i if and only if x ∈ Pi.

Definition 3.1. A continous time Markov chain {X(t) : t ≥ 0 } on state space
S is called (strongly) lumpable with respect to a partition {Pi } if the lumped
process X̄, defined as

X̄(t) = L(X(t)), t ≥ 0,

is itself a continuous time Markov chain, for any choice of the initial distribution.

A necessary condition for lumpability is that, for every i, j ∈ I and every
x, y ∈ Pi, ∑

z∈Pj

Q(x, z) =
∑
z∈Pj

Q(y, z) := Q̄(i, j); (3.52)

the quantities Q̄(i, j) are the transition rates for the lumped process X̄.
With these concepts in mind, consider the stochastic process X of species

counts, introduced at the beginning of this section, which is a continuous time
Markov chain on the state space S = N2

0, and let {Pn : n ∈ N } be the partition
of S defined as

Pn := {x ∈ S : x1 + x2 = n } . (3.53)

It is proved in [3] that process X is lumpable with respect to partition {Pn },
under the assumptions in (3.33).

The lumped process X̄ describes the total number of molecules in the system,
since, by definition of {Pn },

X̄(t) = n if and only if X1(t) +X2(t) = n.

In particular, its transition rates are obtained according to (3.52):

• the rate at which the total number of species is increased by one unit is
equal to the sum of inflow reaction rates of the two species:

Q̄(n, n+ 1) = λI(n) := η1 + η2 = 2η, n ≥ 0;

• the rate at which the total number of species is decreased by one unit is
equal to the sum of outflow reaction rates of the two species:

Q̄(n, n− 1) = λO(n) := δ1x1 + δ2x2 = δn, n ≥ 1.

Note that the transition rate (i.e. intensity function) for inflows is constant, while
the transition rate for outflows depends on state x only through n = x1 + x2,
highlighting the essential property which makes lumped processes Markov chains.

Remark 3.2. A consequence of the definition of partition {Pn } is that auto-
catalytic reactions can be completely disregarded when considering the lumped
process. Indeed, such reactions do not affect the total number of species in the
system, and therefore the set of states visited during an autocatalytic sequence
is contained in a single element of the partition.

80



Lumpability is not affected by the scaling procedure, since reaction rates for
inflows (respectively, outflows) of the two species are multiplied by the same
constant, which includes scalings of state space, reation rate constants and time.
In particular, after rescaling, reaction rates can be rewritten as

λI(w) = Nγ−α2η′, λO(w) = Nγ−αδ′w.

Therefore, the stochastic process WN,γ describing the concentration of the sum
of the two species is itself a continuous time Markov chain satisfying equation

WN,γ(τ) = WN (0) +N−1ξI(Nγ−α2η′τ)

−N−1ξO
(
Nγ−α

∫ τ

0

δ′WN,γ(s)ds

)
.

(3.54)

where ξI and ξO are independent unit Poisson processes.
It is interesting to observe how expression (3.54) seems to derive directly

from (3.50) as a trivial consequence of a well-know property of Poisson processes.

Proposition 3.3 (Superposition property). Let Y1, . . . , Yl be Poisson processes
with intensity functions λ1, . . . , λl, respectively, that is

Yk(t) := ξk

(∫ t

0

λk(s) ds

)
, t ≥ 0,

where ξ1, . . . , ξl are independent unit Poisson processes. Then, the process Y
defined as

Y (t) =
∑
k

Yk(t), t ≥ 0,

is a Poisson process with intensity function

λ(t) =
∑
k

λk(t), t ≥ 0.

In light of this property, it should be reasonable to express reaction countings
for inflows as a single counting process

Y I(τ) = Y I1 (τ) + Y I2 (τ)

= ξI1(Nγ−αη′τ) + ξI2(Nγ−αη′τ)

= ξI(Nγ−α2η′τ),

(3.55)

while reaction countings for outflows may be rewritten as

Y O(τ) = Y O1 (τ) + Y O2 (τ)

= ξO1

(
Nγ−α

∫ τ

0

δ′CN,γ1 (s)ds

)
+ ξO2

(
Nγ−α

∫ τ

0

δ′CN,γ2 (s)ds

)
= ξO

(
Nγ−α

∫ τ

0

δ′
(
CN,γ1 (s) + CN,γ2 (s)

)
ds

)
= ξO

(
Nγ−α

∫ τ

0

δ′WN,γ(s)ds

)
.

(3.56)
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This approach seems correct in the case of inflows, since reaction rates do not
depend on the state, i.e. are constant. On the contrary, reaction rates for
outflow reactions depend on the concentrations of the two species, which in turn
are not independent from each other. Therefore, it is not clear a priori if the
superposition property could be applied in this context.

Regardless of whether (3.54) derives from lumpability or superposition, at
the second natural time-scale γ′′ = 1 + α, it becomes

WN,γ′′(τ) = WN (0) +N−1ξI(N 2η′τ)

−N−1ξO
(
N

∫ τ

0

δ′WN,γ′′(s)ds

)
.

(3.57)

By Theorem 1.21, under the assumption stated in (3.39), that is

lim
N→∞

WN (0) = w(0) = c1(0) + c2(0) > 0, (3.58)

the process WN,γ′′ converges to the solution w of the deterministic equation,

w(τ) = w(0) + 2η′τ −
∫ τ

0

δ′w(s)ds, τ ≥ 0, (3.59)

which is given by

w(τ) =

(
w(0)− 2η′

δ′

)
exp (−δ′τ) +

2η′

δ′
, τ ≥ 0. (3.60)

Note that, for η′ = δ′, the asymptotically stable equilibrium is we = 2.
Numerical experiments are carried out in order to confirm empirically results

discussed above. In particular, parameters are set to the following values:

κ′ = η′ = δ′ = 1, α = 1, c1(0) = c2(0) = 2.

Figures 3.6 and 3.7 display sample trajectories for growing values of the scaling
parameter

N = 16, 64, 256, 1024,

at the first and second natural time-scales, respectively.
As anticipated, at the first natural time-scale, the process of species concen-

trations converges to the constant process

ci(τ) = ci(0) = 2, i = 1, 2.

To be precise, inflows and outflows are more and more rare, so that the sum
process is essentially constant, while autocatalytic reactions have a non-negligible
impact on process trajectories, but their effects are balanced in such a way that
species concentrations fluctuate nearer and nearer to their initial values.

On the contrary, at the second natural time-scale, the process describing the
sum of the two species converges to the deterministic process

w(τ) = 2 + (w(0)− 2) e−τ = 2 + 2e−τ ,

and the process of species concentrations fluctuates rapidly, occasionally display-
ing the peculiar Discreteness Induced Transitions. In particular, inflows and
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Figure 3.6: Realizations of stochastic process CN,γ
′
of species concentrations at

the first natural time-scale γ′ = 0, for growing values of the scaling parameter
N .

Figure 3.7: Realizations of stochastic process CN,γ
′′
of species concentrations at

the second natural time-scale γ′′ = 1 + α = 2, for growing values of the scaling
parameter N .
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outflows determine the dynamics of the sum process, while autocatalytic reactions
are responsible for peaks and switches, which apparently happen instantaneously.

It is interesting to focus our attention on autocatalytic cascades:

• at the first natural time-scale γ′ = 0, time goes by too slowly to detect
complete transitions, and only small fluctuations near to the initial value
are observed;

• at the second natural time-scale γ′′ = 1 + α, time passes too fast, and
autocatalytic cascades apparently occur in an infinitesimal time span.

Therefore, it seems reasonable to wonder if there exists a time scale γ̄ in between
γ′ and γ′′ at which autocatalytic cascades happen in finite but not vanishing
time, while inflows and outflows are still too slow to be observed.

Consider the intermediate time-scale γ̄ = 1; the stochastic process CN,γ̄ is
described by the equations

CN,γ̄1 (τ) = CN1 (0)−N−1ξA1

(
N2

∫ τ

0

κ′CN,γ̄1 (s)CN,γ̄2 (s)ds

)
+N−1ξA2

(
N2

∫ τ

0

κ′CN,γ̄1 (s)CN,γ̄2 (s)ds

)
+N−1ξI1(N1−αη′τ)−N−1ξO1

(
N1−α

∫ τ

0

δ′CN,γ̄1 (s)ds

)
,

(3.61)

CN,γ̄2 (τ) = CN2 (0) +N−1ξA1

(
N2

∫ τ

0

κ′CN,γ̄1 (s)CN,γ̄2 (s)ds

)
−N−1ξA2

(
N2

∫ τ

0

κ′CN,γ̄1 (s)CN,γ̄2 (s)ds

)
+N−1ξI2(N1−αη′τ)−N−1ξO2

(
N1−α

∫ τ

0

δ′CN,γ̄2 (s)ds

)
,

(3.62)

At this time-scale, normalized reaction countings for inflows and outflows converge
to zero, i.e. are too slow to be detected:

N−1ξIi (N1−αη′τ) → 0, N−1ξOi

(
N1−α

∫ τ

0

δ′CN,γ
′

i (s)ds

)
→ 0.

In order to characterize the limit for normalized countings of autocatalytic
reactions, we need the following result on functional convergence for Poisson
processes (see [1, app. A] for the proof, and [7, ch. 7] for generalizations).

Theorem 3.4 (Functional Central Limit Theorem for Poisson process). Let ξ
be a unit Poisson process and let WN be the stochastic process defined as

WN (t) =
1√
N

(ξ(Nt)−Nt) , t ≥ 0.

Then, WN converges weakly to a standard Brownian motion W ,

WN ⇒ W.
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In light of this Theorem, define process WN
i as

WN
i (uN (τ)) := N−1ξAi

(
N2uN (τ)

)
−NuN (τ), i = 1, 2, (3.63)

where
uN (τ) =

∫ τ

0

κ′CN,γ̄1 (s)CN,γ̄2 (s)ds,

so that normalized countings for autocatalytic reactions may be rewritten as

N−1ξAi
(
N2uN (τ)

)
= WN

i (uN (τ)) +NuN (τ), i = 1, 2. (3.64)

Therefore, the stochastic process CN,γ̄i is given by

CN,γ̄i (τ) = CNi (0)−WN
i (uN (τ))−NuN (τ)

+WN
i+1(uN (τ)) +NuN (τ)

= CNi (0)−WN
i (uN (τ)) +WN

i+1(uN (τ)).

(3.65)

By the functional central limit theorem stated above, process CN,γ̄ converges
in distribution to the stochastic process C γ̄ , solution of the following system of
equations:

C γ̄i (τ) = Ci(0)−Wi(u(τ)) +Wi+1(u(τ)), i = 1, 2, (3.66)

where W1 and W2 are standard Brownian motions and

u(τ) =

∫ τ

0

κ′C γ̄1 (s)C γ̄2 (s)ds.

Using properties of Brownian motions, the system in (3.66) may be rewritten as

C γ̄1 (τ) = C1(0) +W

(∫ τ

0

2κ′C γ̄1 (s)C γ̄2 (s)ds

)
, (3.67)

C γ̄2 (τ) = C2(0)−W
(∫ τ

0

2κ′C γ̄1 (s)C γ̄2 (s)ds

)
, (3.68)

where W is a standard Brownian motion.
Numerical simulations are carried out assuming the same experimental setting

discussed above (Figures 3.6 and 3.7), and results are displayed in Figure 3.8.
At this intermediate time-scale, inflow and outflow reactions are more and

more rare, and the sum is nearly constant, while autocatalytic cascades can be
approximated by a Brownian motion. Note that, since inflows and outflows are
too slow to be detected at this time-scale, once the autocatalytic cascade ends
(i.e one of the species is extinct), the process trajectory remains constant.

3.4 Characterization of the limit process

At the second natural time-scale γ′′ = 1 + α, the process WN,γ′′ describing the
concentration of the sum of the two species satisfies equation

WN,γ′′(τ) = WN (0) +N−1ξI(N 2η′τ)

−N−1ξO
(
N

∫ τ

0

δ′WN,γ′′(s)ds

)
,

(3.57)

85



Figure 3.8: Realizations of stochastic process CN,γ̄ of species concentrations at
the intermediate time-scale γ̄ = 1, for growing values of the scaling parameter
N .

and converges, for N growing large, to the deterministic process

w(τ) =

(
w(0)− 2η′

δ′

)
exp (−δ′τ) +

2η′

δ′
, τ ≥ 0, (3.60)

as already discussed in the previous section.
On the contrary, the bidimensional process CN,γ

′′
describing the concen-

trations of the single species is characterized by fast fluctuations, driven by
autocatalytic reactions, which determine sharp peaks of different heights and,
occasionally, Discreteness Induced Transitions (see Figure 3.7).

The purpose of this section is to derive some useful properties for this process
and, eventually, identify a candidate limit, for N growing large. To this end, a
single component (say, C1) is considered, being the other completely determined
by the former and their sum W .

Figure 3.9 provides a closer look at a sample trajectory of process CN,γ
′′

1 ,
describing concentration of species S1. Some empirical observations may be
collected:

• autocatalytic cascades, either leading to peaks or switches, are almost
instantaneous;

• the process CN,γ
′′

1 is either equal to zero or to the sum process WN,γ′′ for
most of the time;

• the sum process WN,γ′′ is approximately constant during autocatalytic
cascades.
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Figure 3.9: Realization of stochastic process CN,γ
′′

1 describing concentration of
species S1 at the second natural time-scale γ′′ = 1 + α, for N = 256 and other
parameters set as for Figures 3.6 and 3.7.

It is then natural to ask whether these properties could be stated in a more
rigorous form and actually characterize the limit process. In particular, we may
try to answer the following questions:

1. do autocatalytic cascades occur instantaneously?

2. are autocatalytic reactions stopped for almost all the time?

3. is the sum process constant during autocatalytic cascades?

In order to discuss the first two questions, we initially assume that the third one
has a positive answer: the fact that such assumption is actually verified, under
suitable conditions, is proved later on.

Suppose that, at time τ̂−, species S1 is extinct and species S2 has concentra-
tion s−, equal to the concentration W of the sum,

CN,γ1 (τ̂−) = 0, WN,γ(τ̂−) = CN,γ2 (τ̂−) = s− =
S − 1

N
;

then, at time τ̂ , an inflow of species S1 occurs, triggering an autocatalytic
cascade:

CN,γ1 (τ̂) =
1

N
, WN,γ(τ̂) = s =

S

N
. (3.69)

Since the sum process is assumed to be constant for the duration of the cascade,
the process describing the number of molecules of species S1 can be modeled as
a continuous time birth-and-death Markov chain on the state space

S = { 0, 1, . . . , S } ,

with absorbing states 0 and S = sN . The key properties of this process are
gathered in the Appendix to this chapter: in particular, results about the exit
distribution and the expected exit time are used in the following of this section.
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Let TNE be the duration of the autocatalytic cascade, i.e. the time it takes
the Markov chain to reach an absorbing state, starting from state x = 1:

TNE (s) := TNE (s) = inf { t ≥ 0 : CN,γ1 (τ̂ + t) ∈ { 0, s } } . (3.70)

Proposition 3.5. The random (stopping) time TNE defined in (3.70) converges
in probability to 0 at the second natural time-scale γ′′,

lim
N

P
(
TNE ≥ ε

)
= 0, ∀ε > 0.

Proof. Taking into consideration the scaling of reaction rate constant κ and the
scaling in time,

κ =
κ′

N
, τ = N−γt,

the expected value of TNE , for large N , is approximated as

E
[
TNE
]
≈ logN

κ′s
N−γ .

Since TNE is a non-negative random variable, by Markov’s inequality we obtain,
for each ε > 0,

P
(
TNE ≥ ε

)
≤ 1

ε
E
[
TNE
]
.

At the second natural time-scale, γ = 1 + α, and therefore,

P
(
TNE ≥ ε

)
≤ logN

εκ′s
N−γ =

logN

εκ′s
N−1−α → 0,

for N growing large.

As a consequence, we may give a positive answer to the first question:
autocatalytic cascades occur instantaneously at the second time-scale, in the
sense that their duration converges to zero in probability. Note that this
Proposition holds true not only at the second natural time-scale γ′′ = 1 + α, but
at every time-scale strictly faster than the first natural time-scale γ′ = 0.

Remark 3.6. In the proof of Proposition 3.5, the limit procedure is correct
assuming that s = O(1). This assumption is not restrictive, since process WN,γ′′

converges to the deterministic process (3.60), and therefore, for each τ > 0 and
each ε > 0, there exists m > 0 such that, for sufficiently large N ,

P
(

inf
σ≤τ

WN,γ′′(σ) ≥ m
)
≥ 1− ε. (3.71)

Likewise, for each τ > 0 and each ε > 0, there exists M < ∞ such that, for
sufficiently large N ,

P
(

sup
σ≤τ

WN,γ′′(σ) ≤M
)
≥ 1− ε. (3.72)

In order to answer the second question, we must consider the entire process
CN,γ1 on a finite time interval [0, T ]. An autocatalytic cascade is triggered
whenever:
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• species S1 is extinct and an inflow of S1 occurrs;

• species S2 is extinct, that is, the concentration of S1 is equal to the
concentration W of the sum, and an inflow of S2 occurs.

By assumption, the sum process WN,γ is constant during autocatalytic cascades,
and thus inflows (and outflows) of species happen only when one of the species
is extinct. Moreover, reaction rates of inflows are independent from species
concentrations.

Therefore, whatever the species which is extinct and whatever the concen-
tration of the non-extinct species, the number Y T (τ) of inflows triggering an
autocatalytic cascade, up to time τ , is a counting process with the same rate of
the inflow reactions:

Y T (τ) := ξT
(
Nγ−αη′τ

)
, (3.73)

where ξT is a unit Poisson process.
In addition, the duration of each cascade depends only on the value of the

sum process WN,γ at the time the cascade is triggered, and so

TNE
(
WN,γ(τi)

)
, i = 1, . . . , Y T (τ),

where { τi } are the jump times of process Y T , are conditionally independent
random variables.

Let T̄NE (τ) be the total duration of the autocatalytic cascades, up to time τ :

T̄NE (τ) :=

Y T (τ)∑
i=1

TNE
(
WN,γ(τi)

)
. (3.74)

Proposition 3.7. The random variable T̄NE (τ) defined in (3.74) converges in
probability to 0 at the second natural time-scale γ′′, for each τ ≥ 0,

lim
N

P
(
T̄NE (τ) ≥ ε

)
= 0, ∀ε > 0.

Proof. Conditioning on the counting process Y T (τ), we can write the expected
value of T̄NE (τ) as

E
[
T̄NE (τ)

]
= E

E
Y T (τ)∑

i=1

TNE
(
WN,γ(τi)

) ∣∣∣ Y T (τ)


= E

Y T (τ)∑
i=1

E
[
TNE

(
WN,γ(τi)

)] .
As observed in the proof of Proposition 3.5, the expected value of stopping time
TNE (s) is approximated, for large N , as

E
[
TNE (s)

]
≈ logN

κ′ s
N−γ .

By Remark 3.6, we may assume that, for sufficiently large N ,

WN,γ(τi) ≥ m > 0, i = 1, . . . , Y T (τ),
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and therefore obtain

E
[
TNE

(
WN,γ(τi)

)]
≤ logN

κ′m
N−γ , i = 1, . . . , Y T (τ).

As a consequence,

E
[
T̄NE (τ)

]
≤ E

[
Y T (τ)

logN

κ′m
N−γ

]
= E

[
Y T (τ)

] logN

κ′m
N−γ ,

and, by definition (3.73) of counting (Poisson) process Y T (τ),

E
[
T̄NE (τ)

]
≤ η′τ

κ′m
logN N−α.

Since T̄NE (τ) is a non-negative random variable, by Markov’s inequality we obtain,
for each ε > 0,

P
(
T̄NE (τ) ≥ ε

)
≤ 1

ε
E
[
T̄NE (τ)

]
,

which implies that, for each τ ≥ 0,

P
(
T̄NE (τ) ≥ ε

)
≤ η′τ

ε κ′m
logN N−α → 0,

for N growing large.

This Proposition gives a positive answer to the second question: since the total
duration of autocatalytic cascades converges to zero in probability, autocatalytic
reactions are stopped for almost all the time. More formally, we may say that the
Lebesgue measure of the subset of time interval [0, T ] containing time instants
at which the process CN,γ1 is different from both zero and WN,γ converges to 0
in probability:

lim
N

P
(
`
(
{ τ ∈ [0, T ] : CN,γ1 (τ) 6∈ { 0,WN,γ(τ) } }

)
≥ ε
)

= 0, (3.75)

where ` is the Lebesgue measure on [0, T ].

Remark 3.8. Proposition 3.7 seems to hold independently of the time-scale.
However, for time-scales γ < α, the number Y T (τ) of inflows triggering autocat-
alytic cascades, up to time τ , converges to 0,

Y T (τ) = ξT
(
Nγ−αη′τ

)
→ 0, γ < α;

consequently, the total duration of such cascades trivially goes to 0, since none
of them happens in the limit for large N .

The fact that the sum process WN,γ remains constant while the rapid
sequence of autocatalytic reactions occur has been used in an essential way
for proving results above. Indeed, this assumption is fundamental to model
the autocatalytic process as a continuous time birth-and-death Markov chain
which is homogeneous in time, that is, whose reaction rates do not depend on
time. However, whether such assumption actually makes sense has to be verified
rigorously.
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Suppose the setting introduced in (3.69) holds, that is, an inflow of species
S1, previously extinct, occurs at time τ̂ :

CN,γ1 (τ̂) =
1

N
, WN,γ(τ̂) = s =

S

N
. (3.76)

Then, the dynamics of the number of molecules of S1 is described by the above-
mentioned Markov chain up until the first inflow or outflow reaction happens,
changing the value of the sum process.

Since the countings of inflows and outflows of process WN,γ are modeled as
Poisson counting processes (3.54), the time until an inflow or outflow occur has
exponential distribution. In particular:

• the process Y I counting inflows is a Poisson process with constant intensity
function

λI(·) = Nγ−α2η′,

so that the time TNI until the first inflow, starting from time τ̂ , has
exponential distribution with parameter λI ,

TNI ∼ Exp
(
Nγ−α2η′

)
; (3.77)

• the process Y O counting outflows is a Poisson process with intensity
function

λO(w) = Nγ−αδ′w,

so that the time TNO until the first outflow, starting from time τ̂ , has
exponential distribution with parameter λO,

TNO ∼ Exp
(
Nγ−αδ′WN,γ(τ̂)

)
= Exp

(
Nγ−αδ′s

)
. (3.78)

Therefore, the time TNIO until the first inflow or outflow occurs, starting from τ̂ ,
has also exponential distribution with parameter λI + λO:

TNIO = min(TNI , T
N
O ) ∼ Exp

(
Nγ−α(2η′ + δ′s)

)
. (3.79)

As a result, the question on whether the sum process WN,γ is constant or
not during the autocatalytic cascade may be reformulated asking if, in the limit
for large N , the duration of the autocatalytic sequence TNE is smaller that the
time TNIO until the first inflow or outflow, that is if

lim
N→∞

P
(
TNE ≤ TNIO

)
= 1 (3.80)

Proposition 3.9. Let TNE and TNIO be random variables defined in (3.70) and
(3.79), respectively. Then,

P
(
TNE ≥ TNIO

)
≤ O

(
log2N N−α

)
, for N →∞.

Proof. Since TNIO has exponential distribution,

TNIO ∼ Exp
(
Nγ−αρ

)
, with ρ = 2η′ + δ′s,
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the probability of TNE being larger than TNIO can be rewritten conditioning on
the value of TNIO:

P
(
TNE ≥ TNIO

)
=

∫ ∞
0

P
(
TNE ≥ t

)
fN (t) dt,

where fN (t) is the probability density function of TNIO,

fN (t) = ρNγ−α exp
(
−Nγ−αρ t

)
By Markov’s inequality we obtain,

P
(
TNE ≥ t

)
≤ min

{
1 ,

1

t
E
[
TNE
]}

,

and therefore

P
(
TNE ≥ TNIO

)
≤
∫ ∞

0

min

{
1 ,

1

t
E
[
TNE
]}

fN (t) dt

=

∫ E[TNE ]

0

fN (t) dt+

∫ ∞
E[TNE ]

1

t
E
[
TNE
]
fN (t) dt.

Recall that the expected value of stopping time TNE is approximated, for large
N , as

E
[
TNE
]
≈ logN

κ′ s
N−γ .

Introduce the change of integration variable

z = Nγ−αρ t,

and substitute the expressions for E
[
TNE
]
and fN (t):

P
(
TNE ≥ TNIO

)
≤
∫ E(N)

0

e−z dz +

∫ ∞
E(N)

1

z
E(N)e−z dz

≤ E(N)

(
1 +

∫ ∞
E(N)

1

z
e−z dz

)
,

where
E(N) =

ρ

κ′ s
logN N−α.

The exponential integral E1 : C 7→ R is the non-elementary function defined as

E1(z) =

∫ ∞
z

1

z
e−z dz;

it can be expressed in the form of convergent series as

E1(z) = −γEM − log z −
∞∑
k=1

(−z)k

kk!
,

where γEM is a constant, so that, for z → 0,

E1(z) ≈ − log z.

92



Therefore, using the fact that E(N)→ 0 for large N , we obtain

P
(
TNE ≥ TNIO

)
≤ E(N) (1− logE(N)) .

Substituting the expression for E(N),

1− logE(N) = 1− log
( ρ

κ′ s
logN N−α

)
≈ α logN,

which leads to the result:

P
(
TNE ≥ TNIO

)
≤ αρ

κ′ s
log2N N−α.

for large N .

This result guarantees that, when a single autocatalytic cascade is triggered,
the probability that an inflow or outflow happens before the conclusion of the
autocatalytic sequence converges to 0 as N grows large. However, in order to
claim that this is true for every autocatalytic cascade, we have to consider the
entire process on a finite time interval [0, T ].

In particular, consider the process Y T describing the number of inflows
triggering an autocatalytic cascade:

Y T (τ) = ξT
(
Nγ−αη′τ

)
; (3.73)

for γ ≤ α, the number of such inflows is finite or converging to 0, and therefore
the result in Proposition 3.9 is enough to conclude that no inflows or outflows
occur during autocatalytic cascades. On the contrary, for faster time-scales, the
number of such inflows grows unbounded for large N , and a conclusion is not
trivial.

Remark 3.10. The number of inflows triggering an autocatalytic cascade is
modeled as a Poisson counting process Y T with intensity function

λT (c) = Nγ−αη′.

However, such expression for λT would be correct under the assumption that no
inflows happen during autocatalytic cascade, that is exactly what we want to
prove hereunder.

On the other hand, this counting process actually overestimates the true Y T ,
possibly considering inflows which instead occur during autocatalytic cascades.
Therefore, assuming this expression for λT does not affect the argument, since
in the proof of Proposition 3.12 the counting process Ŷ T is eventually bounded
from above.

Before stating a formal result, recall a well-know property of Poisson processes.

Proposition 3.11 (Thinning property). Let Y be a Poisson process with inten-
sity function λ,

Y (t) = ξ

(∫ t

0

λ(s)ds

)
, t ≥ 0,

where ξ is a unit Poisson process, and assume that each arrival has a given
property with probability p, possibly depending on time.
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Then, the process Ŷ counting arrivals of Y having such property (thinned
process) is a Poisson process with intensity function λp,

Ŷ (t) = ξ

(∫ t

0

λ(s)p(s)ds

)
, t ≥ 0.

Consider again the process Y T describing the number of inflows triggering an
autocatalytic cascade. For each of such inflows, the probability pN that another
inflow or outflow happens before the conclusion of the autocatalytic sequence
depends only on the value of the sum process WN,γ at the time the cascade is
triggered:

pN = pN
(
WN,γ(τi)

)
, i = 1, . . . , Y T (τ),

where { τi } are the jump times of process Y T .
Let Ŷ T be the thinned process, derived from Y T , which describes the number

of autocatalytic cascades that are still running when another inflow or outflow
occur:

Ŷ T (τ) := ξT
(
Nγ−αη′

∫ τ

0

pN
(
WN,γ(s)

)
ds

)
. (3.81)

Proposition 3.12. The random variable Ŷ T (τ) defined in (3.81) converges in
probability to 0 at the second natural time-scale γ′′, for each τ ≥ 0,

lim
N

P
(
Ŷ T (τ) ≥ ε

)
= 0, ∀ε > 0,

under the assumption that α > 1.

Proof. By Proposition 3.9, the probability pN (s) is bounded above:

pN (s) = P
(
TNE (s) ≥ TNIO(s)

)
≤ αρ

κ′ s
log2N N−α.

By Remark 3.6, we may assume that, for sufficiently large N ,

WN,γ(τ) ≥ m > 0, τ ≥ 0,

and therefore obtain

pN
(
WN,γ(τ)

)
≤ αρ

κ′m
log2N N−α, τ ≥ 0.

As a consequence, the intensity function of the thinned process may be bounded
above by a quantity which does not depend on time:

Nγ−αη′ pN
(
WN,γ(τ)

)
≤ η′ αρ

κ′m
log2N Nγ−2α;

then, the expected value of Ŷ T (τ) can be bounded as well:

E
[
Ŷ T (τ)

]
≤ η′τ αρ

κ′m
log2N Nγ−2α.

By Markov’s inequality we obtain, for each ε > 0,

P
(
Ŷ T (τ) ≥ ε

)
≤ 1

ε
E
[
Ŷ T (τ))

]
,
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which implies that, for each τ ≥ 0,

P
(
Ŷ T (τ) ≥ ε

)
≤ η′τ αρ

ε κ′m
log2N Nγ−2α,

for large N . At the second time-scale γ = 1 + α, and so

lim
N→∞

P
(
Ŷ T (τ) ≥ ε

)
= 0,

if γ = 1 + α < 2α, that is, α > 1.

The fundamental consequence of Proposition 3.12 is that, in the study of the
limit process at the second natural time-scale, we may restrict to consider the
space S of those processes for which autocatalytic cascades and inflow/outflow
reactions are separated, in the sense that no inflows or outflows happen while an
autocatalytic sequence is running:

S := {CN,γ
′′
∈ D[0, T ] : Ŷ T (T ) = 0 } . (3.82)

Indeed, in the limit for large N , the probability measure of this subset of the
Skorohod space D[0, T ] converges to 1, that is, for each ε > 0, there exists N0

such that
P
(
CN,γ

′′
∈ S

)
≥ 1− ε, ∀N ≥ N0. (3.83)

The procedure of thinning the counting process Y T of inflows triggering
autocatalytic cascades turns out to be useful to derive other interesting properties
of the limit process. In particular, we may focus on the number of Discreteness
Induced Transitions and on the number of peaks (i.e. failed transitions) of height
at least h > 0, that is, peaks which cause a variation in species concentration of
at least h before returning to their original values.

Proposition 3.13. Let Y T be the counting process defined in (3.73). At the
second natural time-scale γ′′, in the limit for N growing large,

• the number Y DIT (τ) of Discreteness Induced Transitions, up to time τ , is
a Poisson process

Y DIT (τ) := ξT
(
η′
∫ τ

0

1

w(s)
ds

)
, τ ≥ 0; (3.84)

• the number Y Peak(h; τ) of peaks of height at least h, up to time τ , is a
Poisson process

Y Peak(h; τ) := ξT

(
η′
∫ τ

0

1

h

(
1− h

w(s)

)+

ds

)
, τ ≥ 0. (3.85)

Proof. Suppose that an inflow of species S1, previously extinct, occurs at time
τ̂ , as in (3.69):

CN,γ1 (τ̂) =
1

N
, WN,γ(τ̂) = s =

S

N
.

The probability that the resulting autocatalytic sequence leads to a transition is
given by

pDIT = pDIT (s) =
1

S
=

1

sN
,
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and so the process Y N,DIT describing the number of transitions is obtained by
thinning process Y T with probability pDIT :

Y N,DIT (τ) = ξT
(
Nγ−α−1η′

∫ τ

0

1

WN,γ(s)
ds

)
, τ ≥ 0.

At the second time-scale γ = 1 +α and the sum process WN,γ′′ converges to the
deterministic process w defined in (3.60), so that

Y N,DIT ⇒ Y DIT , Y DIT (τ) = ξT
(
η′
∫ τ

0

1

w(s)
ds

)
, τ ≥ 0.

Similarly, the probability that the resulting autocatalytic sequence leads to a
peak of height at least h < s is given by

pPeak(h) = pPeak(h; s) =
1

hN

(
1− h

s

)
;

clearly, if h ≥ s the definition of peak does not make sense, since the process
either completes a transition (if h = s) or cannot reach an height of h moving
inside the interval of values [0, s].

The process Y N,Peak(h; ·) describing the number of peaks of height at least
h is obtained by thinning process Y T with probability pPeak(h):

Y N,Peak(h; τ) = ξT

(
Nγ−α−1η′

∫ τ

0

1

h

(
1− h

WN,γ(s)

)+

ds

)
, τ ≥ 0.

Again, at the second time-scale γ = 1 +α and the sum process WN,γ′′ converges
to w, so that

Y Peak(h; τ) = ξT

(
η′
∫ τ

0

1

h

(
1− h

w(s)

)+

ds

)
, τ ≥ 0.

The following result is analogous to this Proposition, and will be used in the
next section.

Corollary 3.14. The number Y V (h; τ) of autocatalytic cascades which cause
a variation in species concentration of at least h, up to time τ , is a Poisson
process

Y V (h; τ) := ξT
(
η′
∫ τ

0

1

h
{h ≤ w(s)} ds

)
, τ ≥ 0. (3.86)

Proof. Again, suppose that an inflow of species S1, previously extinct, occurs at
time τ̂ :

CN,γ1 (τ̂) =
1

N
, WN,γ(τ̂) = s =

S

N
.

The probability that the resulting autocatalytic sequence reaches at least a height
of h ≤ s is given by

pV (h) = pV (h; s) =
1

hN
;

as before, if h > s the definition does not make sense, since the process cannot
reach an height of h moving inside the interval [0, s].
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The process Y N,V (h; τ) is therefore obtained by thinning process Y T with
probability pV (h):

Y N,V (h; τ) = ξT
(
Nγ−α−1η′

∫ τ

0

1

h

{
h ≤WN,γ(s)

}
ds

)
, τ ≥ 0;

at the second time-scale γ = 1 + α and process WN,γ′′ converges to w, so that
(3.86) follows.

A consequence of Proposition 3.13 is that, even if the number of inflows
triggering autocatalytic cascades (and thus, the number of such cascades) grows
unbounded for large N at the second time-scale γ′′, the number of Discreteness
Induced Transitions and peaks of finite height h > 0 is actually finite and depends
on N only through process WN,γ′′ , which in turn converges to a non-degenerate
process w.

Remark 3.15. It is interesting to observe the way probability pPeak(h) of a
peak of height at least h changes with the value of h:

pPeak(h) = pPeak(h; s) ∼ s− h
h

, h ∈ [0, s]. (3.87)

In particular, this probability is null only for h = s, since once the transition is
completed it is not possible to return to the original concentrations within the
same autocatalytic sequence. On the contrary, such probability is positive for
each value of h strictly smaller than s.

Indeed, as displayed in Figure 3.9, peaks may reach any height with positive
probability, possibly very near s, without resulting in a transition. However,
for value of h larger than s/2, the probability of a transition is larger than the
probability of a peak, as one may reasonably expect.

To conclude this section, we commit to identifying a candidate limit C for the
sequence of processes {CN,γ′′ } of species concentrations at the second natural
time-scale:

lim
N→∞

CN,γ
′′
"=" C. (3.88)

In the light of results stated above, the limit process should satisfy the following
requirements:

• it is a cadlag process, so that we can discuss convergence properties in the
Skorohod space (see Section 2.3 for definition and properties):

C ∈ D[0, T ];

• species concentrations are either equal to zero or to the deterministic
process w for almost all the times, because of Proposition 3.7:

` ({ τ ∈ [0, T ] : C1(τ), C2(τ) 6∈ { 0, w(τ) } }) = 0;

• the number of switches (Discreteness Induced Transitions) is modeled as a
Poisson process Y DIT , described in Proposition 3.13:

Y DIT (τ) := ξT
(
η′
∫ τ

0

1

w(s)
ds

)
, τ ≥ 0;
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The first requirement seems to be quite natural, but is actually the critical
one, as it solves the issue of defining the limit process for time instant at which
autocatalytic cascades happen.

Indeed, suppose that at time τ̂ an autocatalytic cascade is triggered: since,
at the second time-scale, the duration of such cascades converges to 0 in the
limit for large N , we may informally say that the process visits all the states
reached during the autocatalytic sequence "at the same time". It is therefore
natural to ask what value should the limit process take at time τ̂ .

The fact that the limit process is assumed to be right-continuous easily
answers to this question. In particular, assume that

C1(τ̂−) = 0, C2(τ̂−) = w(τ̂);

• if the autocatalytic cascade leads to a transition, the process values at time
τ̂ are switched between the two components,

C1(τ̂) = w(τ̂), C2(τ̂) = 0,

so that C is right-continuous at τ̂ ;

• if the autocatalytic cascade leads to a peak (of any height), the process
values at time τ̂ do not change,

C1(τ̂) = 0, C2(τ̂) = w(τ̂),

so that the C is actually continuous at τ̂ .

In other words, the value of the limit process at time τ̂ is the value taken at the
end of the "instantaneous" autocatalytic process.

The last point to address is what value should the limit process take at the
starting time τ = 0.

Proposition 3.16. Suppose that

lim
N→∞

CN1 (0) = c1(0) > 0, lim
N→∞

CN2 (0) = c2(0) > 0.

The limit process C at time τ = 0 should be defined as

C1(0) =

{
0 if I = 0

w(0) if I = 1
, C2(0) = w(0)− C1(0),

where I is a Bernoulli random variable,

I ∼ Bernoulli
(
p =

c1(0)

w(0)

)
, w(0) = c1(0) + c2(0).

Proof. Since c1(0) and c2(0) are both non-zero, an autocatalytic sequence is
immediately triggered (i.e. autocatalytic reactions are not stopped in the initial
state). Let TNE be the duration of such autocatalytic sequence:

TNE = inf { t ≥ 0: CN,γ1 (t) ∈ { 0, w(0) } } .
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The expected value of TNE , for large N , is approximated as

E
[
TNE
]
≈ K

κ′
N1−γ , K = O(1).

At the second natural time-scale γ = 1 + α, and therefore, for N growing large,

P
(
TNE ≥ ε

)
≤ K

εκ′
N1−γ → 0,

which in turn implies that the process "instantaneously" reaches one of the two
absorbing states.

The probabilities that CN,γ1 ends up in WN (0) or 0, respectively, are equal to

FN
(
CN1 (0),WN (0)

)
=

CN1 (0)

WN (0)
→ c1(0)

w(0)
:= p

FN
(
CN1 (0), 0

)
= 1− CN1 (0)

WN (0)
→ 1− c1(0)

w(0)
= 1− p.

The statement of the Proposition follows by the arguments on right-continuity
of the limit process already discussed in the case of a generic autocatalytic
cascade.

As a result, the candidate limit is defined as follows.

Definition 3.17. Let w be the deterministic process defined in (3.60),

w(τ) =

(
w(0)− 2η′

δ′

)
exp (−δ′τ) +

2η′

δ′
, τ ≥ 0,

and let Y DIT be the counting process defined in (3.84),

Y DIT (τ) = ξT
(
η′
∫ τ

0

1

w(s)
ds

)
, τ ≥ 0.

Moreover, suppose that

lim
N→∞

CN1 (0) = c1(0) > 0, lim
N→∞

CN2 (0) = c2(0) > 0, (3.89)

and let I be a Bernoulli random variable,

I ∼ Bernoulli
(
p =

c1(0)

w(0)

)
, w(0) = c1(0) + c2(0). (3.90)

The candidate limit process C is defined, for each τ ≥ 0, as

C1(τ) =

{
0 if Y DIT (τ) + I is even
w(τ) if Y DIT (τ) + I is odd

(3.91)

C2(τ) = w(τ)− C1(τ). (3.92)
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3.5 Convergence to the candidate limit process

Definition 3.17 suggests a candidate limit process C for the sequence of processes
{CN,γ′′ } of species concentrations at the second natural time-scale,

lim
N→∞

CN,γ
′′
"=" C. (3.93)

Such candidate limit is expressly defined on the Skorohod space D[0, T ] of
cadlag functions, and therefore we would like to establish weak convergence
(i.e. convergence in distribution) of the sequence {CN,γ′′ } to C:

CN,γ
′′
⇒ C.

However, it is not clear at all whether there exists a topology on the Skorohod
space with respect to which such convergence in distribution actually holds.

The processWN,γ′′ describing the concentration of the sum of the two species,
satisfying (3.54), converges in probability, and therefore in distribution, to the
deterministic process w defined in (3.60):

WN,γ′′ ⇒ w. (3.94)

The topology on D[0, T ] implicitly assumed for this class of discontinuous pro-
cesses is the Skorohod J1-topology (Definition 2.34). However, since the deter-
ministic limit process w is continuous, that is

w ∈ C[0, T ],

the above convergence holds true if D[0, T ] is equipped with the topology induced
by the uniform metric.

On the contrary, the process CN,γ
′′

1 describing the concentration of species
S1 does not converge to the candidate limit process C1, defined in (3.91), nor
to any other limit process in the Skorohod J1-topology. Indeed, the sequence
of stochastic processes {CN,γ

′′

1 } is not relatively compact with respect to this
topology.

Proposition 3.18. Let {CN,γ
′′

1 } be the sequence of stochastic processes defined
in (3.45), with γ = γ′′. This sequence is not relatively compact with respect to
the Skorohod J1-topology on D[0, T ].

In particular, there exist ε > 0 and η > 0 for which, for every δ ∈ (0, T ],
there exist N0 such that

P
(
w′
(
CN,γ

′′

1 , δ
)
≥ ε
)
≥ η, ∀N ≥ N0.

Proof. Theorem 2.43 provides a necessary condition for a sequence {µn } of
probability measures on D[0, T ] to be relatively compact: for each ε > 0 and
θ > 0, there exist δ ∈ (0, T ] and n0 such that

µn (x ∈ D[0, T ] : w′(x, δ) ≥ ε) ≤ θ, n ≥ n0.
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Such condition can be reformulated for a sequence {CN,γ
′′

1 } of random elements
of D[0, T ] (random cadlag functions) as follows: for each ε > 0 and θ > 0, there
exist δ ∈ (0, T ] and N0 such that

P
(
w′
(
CN,γ

′′

1 , δ
)
≥ ε
)
≤ θ, N ≥ N0.

In order to show that this condition does not hold, one should find ε > 0 and
θ > 0 for which, for every δ ∈ (0, T ] and every N0, there exists N ≥ N0 such
that

P
(
w′
(
CN,γ

′′

1 , δ
)
≥ ε
)
≥ θ.

Fix a height ε > 0 strictly lower than the lowest value taken by deterministic
function w:

0 < ε < min
τ∈[0,T ]

w(τ);

the number of autocatalytic cascades which cause a variation in species concen-
tration of at least ε is a Poisson process described in Corollary 3.14:

Y N,V (ε;T ) = ξT

(
η′
∫ T

0

1

ε

{
ε ≤WN,γ(s)

}
ds

)
, τ ≥ 0.

By Remark 3.6 we may fix θ1 > 0 and find the corresponding N1 such that

P
(

inf
τ≤T

WN,γ′′(τ) ≥ ε
)
≥ 1− θ1, N ≥ N1;

conditioning on the event above, the probability that there exists at least one
autocatalytic cascade causing a variation in concentration of at least ε is given
by

P
(
Y N,V (ε;T ) > 0

)
= exp

(
−η
′

ε
T

)
.

Note that the expression for Y N,V (ε;T ) holds provided that the number Ŷ T (T )
of autocatalytic cascades that are still running when another inflow of outflow
occur is 0; by Proposition 3.12, one can find N2 such that this condition is
satisfied with sufficiently large probability,

P
(
Ŷ T (T ) = 0

)
≥ 1− θ2, N ≥ N2.

Moreover, by Proposition 3.7, the total duration T̂NE (T ) of autocatalytic cascades
converges to 0 in probability: therefore, for every δ ∈ [0, T ], one can find N3

such that
P
(
T̄NE (T ) ≤ δ

)
≥ 1− θ3, N ≥ N3,

for a previously fixed θ3 > 0. Therefore, if we assume that an autocatalytic
cascade causing a variation in concentration of at least ε happens, for every
δ-sparse partition {Ti } there exist a time interval containing such autocatalytic
cascade entirely, which implies that

w′
(
CN,γ

′′

1 , δ
)
≥ ε.
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To summarize, for the height ε > 0 fixed at the beginning, we may choose
θ̂ > 0 and fix

θ = (1− θ̂) exp

(
−η
′

ε
T

)
.

Then, for every δ ∈ [0, T ], one can find N0 such that the events

inf
τ≤T

WN,γ′′(τ) ≥ ε, Ŷ T (T ) = 0, T̄NE (T ) ≤ δ,

jointly happen with probability larger than 1− θ̂, for every N ≥ N0.
Given such events, the probability that there exists at least one autocatalytic

cascade causing a variation in concentration of at least ε and occurring in a time
span smaller than δ is given by

P
(
Y N,V (ε;T ) > 0

)
= exp

(
−η
′

ε
T

)
> 0.

This implies that
P
(
w′
(
CN,γ

′′

1 , δ
)
≥ ε
)
≥ θ.

The presence of Discreteness Induced Transitions and peaks of finite height is
the reason why the sequence {CN,γ

′′

1 } is not relatively compact in the Skorohod
J1-topology. In particular:

• Discreteness Induced Transitions prevent relative compactness to hold
because they result from a sequence of infinitesimal jumps which coalesce
in the limit into a single jump of finite height;

• peaks prevent relative compactness to hold because they reach a finite
height and return back within an infinitesimal time span.

In consequence of Proposition 3.18, there exists at least a subsequence of {CN,γ
′′

1 }
not containing any further subsequence which is convergent in distribution. This
in turn implies that the entire sequence cannot converge to any random element
of D[0, T ] equipped with the Skorohod J1-topology.

Although convergence with respect to the classical Skorohod topology has
to be set aside for lack of relative compactness, the limit process suggested in
Definition 3.17 seems a reasonable candidate. A first step towards obtaining
convergence in distribution to such candidate limit is to find a topology on the
Skorohod space of cadlag functions with respect to which the sequence {CN,γ

′′

1 }
is relatively compact.

In light of the main criticalities highlighted above, preventing relative com-
pactness with respect to J1-topology to hold, we are looking for a topology on
D[0, T ] satisfying the following requirements:

• a cascade of infinitesimal jumps leading to a finite variation within an
infinitesimal time span converges to a single jump;

• a peak of finite height occurring within an infinitesimal time span is
self-cancelling in the limit;
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• the topology is strictly weaker than Skorohod J1-topology.

The Jakubowski S-topology, described in Section 2.7, perfectly fits this
framework, since it is weaker than the J1-topology and features self-cancelling
oscillations (see Example 2.69). As a matter of fact, the sequence {CN,γ

′′

1 } is
uniformly tight with respect to the S-topology, as proved in Proposition 3.21.

The following results are preliminary to the proof of that Proposition; however,
they are stated independently, being of interest on their own.

Lemma 3.19. Let {Xn } be a sequence of non-negative random variables. As-
sume that there exists a constant M <∞ such that

E [Xn] ≤M, for all n ≥ 0.

Then, the sequence {Xn } is uniformly tight.

Proof. By definition, a sequence of R-valued random variables is uniformly tight
if, for each ε > 0, there exists a compact set Kε ⊆ R such that

P (Xn ∈ Kε) ≥ 1− ε, for all n ≥ 0.

Since Xn is a non-negative random variable, by Markov’s inequality we obtain

P (Xn ≥ L) ≤ 1

L
E [Xn] , for all n ≥ 0;

moreover, by hypothesis,

E [Xn] ≤M, for all n ≥ 0,

and therefore
P (Xn ≥ L) ≤ M

L
, for all n ≥ 0.

As a consequence, for each ε > 0, there exists a compact set (i.e. closed and
bounded)

Kε :=

[
0 , L =

M

ε

]
⊆ R,

such that

P (Xn ∈ Kε) = P (Xn ≤ L) ≥ 1− M

L
≥ 1− ε, for all n ≥ 0.

Proposition 3.20. Let UN (a, b; τ) be the process describing the number of
upcrossings of levels a < b, up to time τ , for process CN,γ1 at the second natural
time scale γ′′ (see Definition 2.71).

Then, for every a ≥ 0, a < b, there exists a constant M <∞ such that, for
sufficiently large N ,

E
[
UN (a, b;T )

]
≤M.

Proof. Consider first the case for a = 0, b > 0.

103



The number UN (0, b;T ) of upcrossings of levels 0 < b, up to time T , is
controlled by the number Y N,V (b;T ) of autocatalytic cascades causing a variation
in concentration of at least b:

UN (0, b;T ) ≤ Y N,V (b;T ).

Indeed, some of these cascades are triggered when process CN,γ
′′

1 is in state 0:
such cascades lead to a single upcrossing of levels 0 < b, since the process cannot
move back to 0 and then reach state b again within the same autocatalytic
sequence.

From the proof of Corollary 3.14, we obtain

E
[
Y N,V (b;T )

]
= η′

∫ T

0

1

b

{
b ≤WN,γ(s)

}
ds ≤ η′T

b
,

and therefore
E
[
UN (0, b;T )

]
≤ E

[
Y N,V (b;T )

]
≤ η′T

b
.

Consider now the general case for a > 0, b > a. Suppose that, at time τ̂ , the
process CN,γ

′′

1 is in state a > 0, with a < s, for the first time within the ongoing
autocatalytic cascade:

CN,γ1 (τ̂) = a =
A

N
, WN,γ(τ̂) = s =

S

N
.

As derived in the Appendix, the number Û(a, b) of upcrossing of levels a < b
before the end of the autocatalytic sequence has a geometric distribution,

Û(a, b) = Û(a, b; s) ∼ Geometric
(
s

b
· b− a
s− a

)
.

Clearly, if b > s this expression does not make sense, since the process cannot
reach state b moving inside the interval of values [0, s].

As a consequence, we obtain

E
[
Û(a, b)

]
=
a

s
·
(
s− b
b− a

)+

.

In the particular case b = s, the expected number of upcrossing is actually equal
to the probability of ending up in s before reaching 0, that is

E
[
Û(a, s)

]
=
a

s
{ a < s } .

Let Y U (a; τ) be the number of autocatalytic cascades reaching state a > 0,
up to time τ . The number of upcrossings in each cascade depends only on the
value of the sum process at that time, and so

Û
(
a, b; WN,γ′′(τi)

)
, i = 1, . . . , Y U (a; τ),

where { τi } are the jump times of process Y U , are conditionally independent
random variables.
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The total number UN (a, b;T ) of upcrossings of levels a < b, up to time T ,
can be expressed as

UN (a, b;T ) =

Y U (a;T )∑
i=1

Û
(
a, b; WN,γ′′(τi)

)
.

Conditioning on the counting process Y U (T ), we can write the expected value
of UN (a, b;T ) as

E
[
UN (a, b;T )

]
= E

E
Y U (a;T )∑

i=1

Û
(
a, b; WN,γ′′(τi)

) ∣∣∣ Y U (a;T )


= E

Y U (a;T )∑
i=1

E
[
Û
(
a, b; WN,γ′′(τi)

)] .
By Remark 3.6, for sufficiently large N , we may assume that

0 < m ≤WN,γ′′(τi) ≤M <∞, i = 1, . . . , Y U (a;T ),

and therefore obtain

E
[
Û
(
a, b;WN,γ′′(τi)

)]
≤ a (M − b)
m (b− a)

, i = 1, . . . , Y U (a;T ).

As a consequence,

E
[
UN (a, b;T )

]
≤ E

[
Y U (a;T )

a (M − b)
m (b− a)

]
= E

[
Y U (a;T )

] a (M − b)
m (b− a)

.

The number Y U (a;T ) of autocatalytic cascades reaching state a, up to time
T , is controlled by the number Y N,V (c;T ) of autocatalytic cascades causing a
variation in concentration of at least c,

Y U (a;T ) ≤ Y N,V (c;T ), where c = min { a, b− a } .

Indeed, either the process CN,γ
′′

1 reaches state a from state 0, with a variation
of concentration of at least a, or reaches state a from the state s of the sum
process at the time the autocatalytic cascade is triggered. However, in case level
b is larger than state s, such autocatalytic sequence can be disregarded, since
no upcrossing can happen. Therefore, in this case, b < s and the variation of
concentration is at least b− a.

From the proof of Corollary 3.14, we obtain

E
[
Y N,V (c;T )

]
= η′

∫ T

0

1

c

{
c ≤WN,γ(s)

}
ds ≤ η′T

c
,

and therefore
E
[
Y U (a;T )

]
≤ E

[
Y N,V (c;T )

]
≤ η′T

c
.

In conclusion, we have that

E
[
UN (a, b;T )

]
≤ E

[
Y U (a;T )

] a (M − b)
m (b− a)

≤ η′T

c

a (M − b)
m (b− a)

.
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Proposition 3.21. Let {CN,γ
′′

1 } be the sequence of stochastic processes defined
in (3.45), with γ = γ′′. This sequence is uniformly tight with respect to the
Jakubowsky S-topology.

Proof. Theorem 2.80 provides necessary and sufficient conditions for a familiy
{CN,γ

′′

1 } of random elements of D[0, T ] to be uniformly tight in the S-topology:

1. the sequence { ‖CN,γ
′′

1 ‖ } is a uniformly tight family of R-valued random
variables;

2. for each a < b, the sequence {UN (a, b;T ) } is a uniformly tight family of
N-valued random variables.

By definition of process CN,γ
′′

1 , for each N ≥ 0,

0 ≤ CN,γ
′′

1 (τ) ≤WN,γ′′(τ), τ ≥ 0,

and therefore,

‖CN,γ
′′

1 ‖ := sup
τ≤T

CN,γ
′′

1 (τ) ≤ sup
τ≤T

WN,γ′′(τ) =: ‖WN,γ′′‖.

By Remark 3.6, for each ε > 0, there exist M <∞ and N0 such that,

P
(

sup
τ≤T

WN,γ′′(τ) ≤M
)
≥ 1− ε, N ≥ N0.

As a consequence, for each ε > 0, there exist a compact set

Kε := [0,M ] ,

and N0 such that

P
(
‖CN,γ

′′

1 ‖ ∈ Kε

)
≥ 1− ε, N ≥ N0,

which means that the sequence { ‖CN,γ
′′

1 ‖ } is uniformly tight.
By Proposition 3.20, for every a ≥ 0, a < b, there exist a constant M <∞

and N0 such that
E
[
UN (a, b;T )

]
≤M, N ≥ N0.

Since {UN (a, b;T ) } is a sequence of non-negative random variables, the above
condition is enough to conclude that it is uniformly tight, in consequence of
Lemma 3.19.

Theorem 2.76 contains both the direct and converse Prohorov theorems for
the space P(D[0, 1],BS) of tight probability measures on (D[0, 1],BS), equipped
with convergence in the sense of Jakubowski. This notion of convergence is
introduced in Definition 2.62 and represent the "equivalent" of weak convergence
for non-metric topological spaces.

As a consequence, since the sequence {CN,γ
′′

1 } is uniformly tight with respect
to the S-topology, as proved in Proposition 3.21, then it is relatively (sequentially)
compact with respect to convergence in the sense of Jakubowski. By definition,
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this means that each subsequence contains a further subsequence which admits a
strong Skorohod representation, as defined in Theorem 2.59; in particular, these
further subsequences are convergent in distribution in the classical sense.

In order to prove convergence of the sequence {CN,γ
′′

1 } to the candidate
limit C1 in the space P(D[0, 1],BS),

CN,γ
′′

1
∗

=⇒ C1,

we still need to prove convergence of finite-dimensional distributions, that is, we
should verify that, for every choice of τ1, . . . , τk ∈ [0, T ],(

CN,γ
′′

1 (τ1), . . . , CN,γ
′′

1 (τk)
)
⇒N (C1(τ1), . . . , C1(τk)) .

As highlighted in Theorem 2.77, it is actually sufficient to prove convergence of
finite-dimensional distribution on a dense subset Q ⊆ [0, T ] containing T : for
every choice of q1, . . . , qk ∈ Q,(

CN,γ
′′

1 (q1), . . . , CN,γ
′′

1 (qk)
)
⇒N (C1(q1), . . . , C1(qk)) .

Formal results and empirical observations collected in these sections suggest that
convergence of finite-dimensional distributions holds. However, a rigorous proof
of this fact has not been devised yet.

To conclude, consider again the process WN,γ′′ describing the concentration
of the sum of the two species; as recalled at the beginning of this section, it
converges in distribution with respect to the Skorohod J1-topology to process w,

WN,γ′′ ⇒ w.

Since the S-topology is weaker than the J1-topology, convergence with respect
to the latter implies convergence with respect to the former: as a consequence,

WN,γ′′ ∗
=⇒ w.

Moreover, addition is sequentially continuous in the S-topology, that is

xn →S x, yn →S y implies xn + yn →S x+ y.

Therefore, if we assume that the sequence {CN,γ
′′

1 } converges to the candi-
date limit C1, then it directly follows that sequence {CN,γ

′′

2 } converges to its
corresponding candidate limit C2:

CN,γ
′′

2 := WN,γ′′ − CN,γ
′′

1
∗

=⇒ w − C1 =: C2.

Appendix: Continuous time birth-and-death
Markov chain with absorbing states

Consider a continuous time birth-and-death Markov chain {X(t) : t ≥ 0 } on the
state space

S = { 0, . . . , S } ,
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with birth and death rates given by, respectively,

λ(x) = x(S − x), µ(x) = x(S − x), x ∈ S.

States can be classified into transient states T ,

T = { 1, . . . , S − 1 } ,

and recurrent (absorbing) states R,

R = { 0, S } .

The transition rate matrix Q (after potential reordering) could be partitioned
as

Q =

[
QT,T QT,R

0 QR,R

]
∈ R(S+1)×(S+1),

where QT,T contains transition rates among transient states:

Q(x, x+ 1) = λ(x) = x(S − x), Q(x, x− 1) = µ(x) = x(S − x),

Q(x, x) = −λ(x)− µ(x) = −2x(S − x).

Note that, in this case, QR,R = 0.
Moreover, let P be the transition matrix of the embedded discrete time

Markov chain, denoted by {Y (t) : t ∈ N }:

P =

[
PT,T PT,R

0 PR,R

]
∈ R(S+1)×(S+1),

where
P (x, y) =

Q(x, y)

Q(x, x)
, x ∈ T .

Exit distribution

Let F (x, y) be the probability that, starting from x ∈ T , the process visits y ∈ R
as the first absorbing state, i.e. the process dies in y:

F (x, y) = Px(y = arg min
z∈R

τz),

where τz is the hitting time for state z.
Conditioning on the first step, one can show that

F = PT,TF + PT,R,

and therefore, since matrix I − PT,T is invertible,

F = (I − PT,T )−1PT,R.

By direct computation, one obtains:

F (x, 0) = 1− x

S
, F (x, S) =

x

S
.
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Expected number of visits to transient state

Let N(x, y) be the expected number of visits to transient state y ∈ T , starting
from x ∈ T :

N(x, y) = Ex[1Y (t)=y].

One can show that

N =

∞∑
n=0

(PT,T )n,

and, since matrix PT,T is substochastic, it can be rewritten as

N = (I − PT,T )−1,

By direct computation, one obtains:

N(x, y) = 2 min(x, y)

(
1− max(x, y)

S

)
, x, y ∈ T .

Expected time spent in transient state

Let T (x, y) be the expected time spent in transient state y ∈ T , starting from
x ∈ T :

T (x, y) = Ex[1X(t)=y].

One can easily show that

T (x, y) = −Q−1
T,T =

N(x, y)

λ(y) + µ(y)
,

and therefore
T (x, y) =

1

S
min

(
x

y
,
S − x
S − y

)
.

Expected time to reach a absorbing state

Let T (x) be the expected time it takes the process to enter R, starting from
x ∈ T :

T (x) = Ex[min
z∈R

τz].

It directly follows that
T (x) =

∑
y∈T

T (x, y),

and therefore

T (x) =
S − x
S

x∑
y=1

1

S − y
+
x

S

S−x∑
y=1

1

S − y
− 1

S
.
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Scaling of state space with respect to N

Let us rewrite the elements of the state space as functions of a common parameter
N :

x = kN, S = sN, k ∈ [0, s].

The exit distribution is easily adapted to this new definition,

FN (k, 0) = F (kN, 0) = 1− k

s
, FN (k, s) = F (kN, sN) =

k

s
.

Likewise, the expected time to reach a absorbing state becomes

TN (k) = T (kN) =

(
1− k

s

) k∑
z=1/N

1

N

1

s− z
+

k

s

s−k∑
z=1/N

1

N

1

s− z
− 1

sN
.

For large N , the above expression can be approximated as follows:

TN (k) = T (kN) ≈
(

1− k

s

)∫ k

0

1

s− z
dz +

k

s

∫ s−k

0

1

s− z
dz

= −
(

1− k

s

)
log

(
1− k

s

)
− k

s
log

(
k

s

)
.

Note that the maximum is reached for k = s/2 (i.e. for x = S/2),

TN (s/2) = T (S/2) ≈ log 2,

and, for x = 1, as N grows large,

k =
x

N
→ 0, T (1) = TN (1/N) ≈ log(sN)

sN
→ 0.

Finally, if reaction rates are multiplied by a constant α = α(N), the exit
distribution remains unchanged, while the expected time to reach an absorbing
state is given by

TN,α(k) =
1

α(N)
TN (k).

Number of upcrossing distribution

Let U(x, y) be the number of upcrossings of levels x, y ∈ T , with x < y, starting
from x.

Recall that U(x, y) is defined as follows: U(x, y) ≥ k if there exist time
instants

0 ≤ t1 < t2 < · · · < t2k−1 < t2k

such that
Y (t2i−1) ≤ x, Y (t2i) ≥ y, i = 1, . . . , k.

If the process is in state x, the probability of moving up to y and then come
back to x before reaching an absorbing state is given by

pU (x, y) =
x

y
· S − y
S − x

.
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This expression derives from the result on the exit distribution stated above, and
uses in an essential way the fact that transition probabilities of the embedded
discrete time Markov chain do not depend on the state. Indeed, embedded
discrete time Markov chains defined on the subsets of the state space S,

S1 = { 0, . . . , y } ⊆ S, S2 = {x, . . . , S } ⊆ S,

are "equivalent" to the one defined on the entire state space.
As a consequence, the number U(x, y) of upcrossings of levels x < y, starting

from x, is a geometric random variable with parameter 1− pU (x, y):

U(x, y) ∼ Geometric
(
S

y
· y − x
S − x

)
.

Assume that elements of the state space are rewritten as functions of a
common parameter N ,

x = kN, y = hN, S = sN, k, h ∈ [0, s];

the number of upcrossing is easily adapted to this new definition:

UN (k, h) = U(kN, hN) ∼ Geometric
(
s

h
· h− k
s− k

)
.
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