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Summary

In this thesis work a real case problem concerning heavy duty vehicles’ usage
patterns identification is addressed.
Even if in the literature there are several cars usage patterns identification, the
same kind of analysis is less frequently carried out on industrial, construction or
off-roads vehicles. However, thanks to the wide spread of IoT devices and the
firmly established cars connected mobility, the heavy-duty in-vehicle connectivity
is growing in importance.
To this purpose, multivariate analysis of multiple CAN signals techniques based
on clustering and patterns discovery from time series data is presented. At first,
ultra-fine, asynchronous and heterogeneous signals have been analysed: the relevant
parameters to be monitored have been identified, the most appropriate level
of aggregation of data has been suggested and series characterized by different
sampling rates have been properly combined. Then, a multivariate time series
segmentation strategy based on an application of the VALMOD algorithm has
been proposed. Finally, different clustering and patterns discovery methods are
presented, inspecting signals properties both in time and frequency domain.
The results of the proposed procedures have been finally evaluated applying them
to a real use case: three different usage patterns have been identified, respectively
corresponding to idle, moving or regular working and higher workload. The results
have been validated both by domain experts and by means of the additional
information provided by NMEA 0183 messages data.
In conclusion, an autoencoder-based deep learning for multivariate time series
clustering is presented to inspect the presence of hidden features that may have
not been considered before.
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Chapter 1

Introduction and relative
work

Machine Learning is defined by [1] as "the automated detection of meaningful
patterns in data".
It can be seen as a branch of Artificial Intelligence, even if the aim of Machine
Learning is not process automation, but use patterns found in data to understand
them, predict future data or any response variable of interest or provide support to
decision processes under uncertainty [2]. In this sense, Machine Learning is a set of
tools which act as a complement to human intelligence.

Nowadays, because of digitization and its consequent fast large size production of
data, Machine Learning has become one of the most important areas of Computer
Science and it is often associated with a huge amount of information, commonly
called Big Data.
However, Machine Leaning is an interdisciplinary field with features shared with
mathematics, data analysis, statistics and information theory [3].

A Machine Learning algorithm is based on automatic learning: it takes as input
the data that can be seen as experience, and transform them into an output that
can be of different forms, such as a response variable or another algorithm. The
meaning of learning is that this output can be interpreted as knowledge extracted
from experience [1].

Commonly, two different scenarios can be considered.
The former is supervised learning: it is also called predictive learning, because
the aim is to find a model basing on the available data to explain the underlying
relationship between input and output variables in order to make predictions on
the unknown response variable of new observations.
Under this scenario, a training set is given, a finite set composed by n items or
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Introduction and relative work

observations, also called predictors, each associated with a response variable.
Examples of supervised algorithms are linear regression and logistic regression.
A different scenario is unsupervised learning: it is the case when for each observation
of input data there is a set of measurements but no response variable. If this is
the case, a descriptive analysis can be performed and this process is also known as
knowledge discovery because its main purpose is understanding data [2].
Examples of unsupervised algorithms are clustering or principal component analysis.

In this thesis work, an unsupervised clustering problem is addressed in order to
discover heavy duty vehicles’ usage patterns and workload status from CAN bus
data. Even if in the literature there are several cars usage patterns identification,
the same kind of analysis is less frequently carried out on industrial, construction
or off-roads vehicles. However, thanks to the wide spread of IoT devices and the
firmly established cars connected mobility, the heavy-duty in-vehicle connectivity
is growing in importance. It is extremely of interest for companies being able of
monitoring their equipment in order to optimize maintenance, production, business
and investments and a support to decisions in this sense can be obtained analysing
data generated from the large amount of sensors installed nowadays on each type
of vehicle.
Data are collected by a Z55 device: it is a data logger provided by Tierra S.p.A., a
company operating in the IoT sector internationally recognized for providing to
their customers sophisticated and reliable telematics solutions for management,
maintenance and remote diagnostics of equipment. This thesis was developed as a
result of my internship in Tierra S.p.A. and it is part of the applied research and
data analytics collaboration of the company with the SmartData@PoliTO center
for Big Data and Machine Learning technologies.

The company provides their clients with an on-board device with a SIM to collect
CAN bus data, then transmitted and stored inside Tierra cloud infrastructure.
Recorded data can be visualized and managed by the clients by means of a
customized web-based remote management systems.

Figure 1.1: Tierra solution
Images from www.tierratelematics.com
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CAN bus data are generated in the vehicle at high frequency and gathered by
a controller. However, only an aggregate report obtained computing one statistic
(max, min, average or last) every 10 minutes is sent to the centralized server [4].
This means that each line of the database corresponds to a value for a single SPN
that summarizes its behaviour during a time window of about 10 minutes. For the
moment, this type of information can be checked in real-time by the customers,
together with some statistics computed on these values, without applying any
advanced algorithm. For example, since Tierra identifies some different possible
workloads for the monitored vehicles, one of the statistics provided to their clients is
the total amount of working time spent in each workload type. However, whenever
the vehicle is in a given state is determined through some manually set thresholds,
driven by domain experts. The idea of this thesis is to apply some advanced
machine learning techniques in order to identify different usage patterns, phases
and working states from time series data, improving the provided analysis to the
clients.
Furthermore, since there is no particular evidence to set the data granularity to
10 minutes, for the following analysis non aggregate data are used. In this way
it is possible to evaluate improvements (if any) and set a more appropriate data
granularity as result of a trade off between clients and company specifications,
accuracy and computational costs.

The thesis work is organized as it follows.
In chapter two CAN bus data exploration is performed. After a brief introduction
to CAN data and relative standards, a descriptive analysis of the dataset and
of the main data cleaning steps is carried out. Some preliminary statistics are
computed and a deep description of parameters under analysis is provided. Finally,
the procedure identified for detecting working cycles is described.

In chapter three the problem of synchronization of signals is addressed. A
technique based on signal processing analysis and Fourier transform is applied,
since each parameter measurements can be seen as a digital signal. The purpose of
this procedure is to obtain constant rate and synchronized measurements in order
to interpret each parameter as a component of a multivariate time series.

Basing on the results of the previous chapter, the main tools for time series
analysis are applied in chapter four. At first, the measurements associated with
each parameter are considered in isolation, performing a univariate analysis of
stationarity, trend, seasonality, autocorrelation and partial autocorrelation. Then,
interactions between signals are analysed by means of cross-correlation, Pearson’s
correlation and Granger causality. Thanks to results of this section, feature
selection is performed in order to identify the meaningful parameters for the
following analysis.

3
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In chapter five two different clustering techniques are applied to identify common
usage patterns. The former, namely clustering by values, exploits the time series
synchronization, considering each data point as an item to cluster but without
taking into account the temporal order of time series data. As result, it provides
some automatic thresholds to define the vehicles’ states, of the same kind of
the manually set ones used by the company. The second clustering strategy
presented instead is based on the common technique used for unsupervised time
series clustering consisting in creating features to use as input to the algorithm.
However, in order to detect vehicles’ states basing on the shape of the time series
data, features are computed in the frequency domain, describing peaks, powers
and fundamental frequencies in three distinct bands, separately for high, medium
and low frequencies. The first step of this technique is time series segmentation,
performed as an application of the VALMOD algorithm, used to discover repeated
patterns in data.
Combining the results of both cluster techniques, it is possible to obtain a correct
identification of the expected workloads.
In the last part of the chapter, the obtained workloads types have been deeply
analysed thanks to the additional information provided by NMEA 0183 messages
data, used to validate and further interpret results.

Finally, in chapter six an autoencoder-based deep learning technique for time
series data clustering is presented. The aim of the described method is to validate
the obtained results and to highlight the presence of hidden features in data by
inspecting the properties of the items assigned to different classes by the two
clustering method. From this kind of analysis is possible to identify some strategies
to further improve results in future works.

4



Chapter 2

Controller Area Network
Bus Data Analysis

2.1 Introduction to Controller Area Network
bus data

Controller Area Network (CAN) is a message-based legacy protocol for in-vehicle
data communication, commonly used in automotive industry and embedded systems
networking. It was invented by Robert Bosch in 1986 to allow faster and robust serial
communication between microcontrollers, overcoming the inefficiency of separately
connecting each other by means of a broadcasting communication technique. The
most relevant CAN specification, CAN 2.0, was published by Bosch in 1991 and
thanks to its widespread popularity, it became in 1993 the international standard
ISO 11898 [5]. Since then, several higher-level protocols have been standardized on
CAN [6].

Nowadays, each type of vehicle is equipped with a large amount of sensors
capable to capture high frequency generated CAN messages, that are gathered
by a controller and then collected and processed. Even if CAN protocol was first
created for automotive applications, several other industries adopted CAN for a
wide variety of applications, ranging from medical devices to aerospace contexts.
Some of the most common standards are:

• SAE J1939 for heavy-duty vehicles

• OBD2 for on-board diagnostics

• CANopen for embedded control applications such as industrial automation

• CAN FD an extension of classical protocol to flexible data-rate

5
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To record CAN data, a CAN bus logger is used in order to temporally store
the collected parameters on an SD card which manages data transmission to cloud
servers. Then, raw data need to be decoded to transform them into a human-
readable form. This operations depends on the structure of CAN bus data. Indeed,
in order to decode raw CAN data, it is necessarily to know, for each CAN ID which
parameters are included and, for each of them, the corresponding start bit and
bit length. In passenger cars typically each manufacturer used its own protocol
[7]. For what concerns heavy-duty manufacturers instead, SAE J1939 is a common
adopted protocol that provides a set of standard messages and conversion rules
shared for agricultural, military, mining and construction vehicles. However, there
is also the possibility of collecting customized messages for which decoding extra
information are required.

Since the vehicle made available for the analysis presented in the thesis is
an heavy-duty one, the following considerations are based on the corresponding
standard, SAE J1939.
It represents a growing in importance protocol, thanks to the wide spread of
in-vehicle connectivity also for heavy-duty vehicles, supported by IoT solutions
and the firmly established cars connected mobility.

A SAE J1939 message is composed by 93 bits: the first 29 represent the CAN
identifier, while the last 64 consist in the data field. From the CAN identifier it
is possible to obtain the Parameter Group Number (PGN), starting at bit 9 and
with length 18. The first 9 bits correspond to the source address, while the last 3
define the message priority.
To each PGN corresponds different Suspect Parameter Numbers (SPN). Each SPN
identifies completely the measured CAN parameter and it is also used to define
the message priority, which is inversely proportional to the SPN value. For this
reason, CAN messages characterized by SPN smaller than 30000 are standard,
while the ones associated with higher SPNs are customized. The SPN is one of the
information contained in the data field and gives the interpretation of the logged 8
bytes of raw data, representing the measured value for the parameter identified by
the SPN.

Figure 2.1: SAE J1939 Message Diagram

6
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2.2 CAN bus data exploration
To validate the proposed procedures and analysis, they have been applied to a real
use case by collecting data from a vehicle made available for tests and researches
performed by Tierra. The vehicle under analysis is an almost fifteen years old
farm tractor used to test both devices and driver assistance systems. This has
two main implications that should be kept in mind to correctly interpret results.
The former is that, since the vehicle is pretty old, it is not easy to decode CAN
messages, especially customized ones: indeed, the standard might be changed or
the additional extra information needed to decode them might not be updated
or provided at all. The latter, since the vehicle is used to test assistance systems,
data are not collected during actual working cycles: they could be, sometimes,
simulated working phases whereas the behaviour during other periods could be
pretty unusual for a heavy duty vehicle of the same type that is actually employed
for working activities.

To collect data, an experimental "multipurpose, remote configurable, secure,
CAN bus data logger" 1 has been installed on the vehicle.
Since the logger has AWS upload capabilities, raw data are stored in txt files
that are sent to the Amazon storage service either when the vehicle is turned off
or if the maximum memory size is reached (3.6 MB). Then, the Tierra parser
script is applied to each txt file in order to decode its information. As previously
introduced, since only CAN IDs with known number of parameters and structure
can be decoded, for each input file two output txt files are created: one called
Parsed, where CAN IDs associated with extra information found inside Tierra
databases are decoded, and another one called notFound containing CAN IDs that
can not be decoded because the required information are not known by Tierra.
The only information available from the notFound files is the one related to the
PGN. For Parsed files instead, the information decoded from raw data is combined
with some metadata, so that each row of the resulting files is composed by 7 fields:

• Source address

• PGN

• Timestamp (in unix format)

• Message’s description

• SPN

1www.tierratelematics.com

7

https://www.tierratelematics.com/solutions/##research


Controller Area Network Bus Data Analysis

• Measured value for the considered SPN

• Unit of measurement

To avoid memory issues and high computational cost in the data import phase,
only the information related to SPN, Timestamp and Measured value are considered.
Indeed, any other additional information can be easily obtained in case of needs by
querying Tierra databases.

The available final dataset consists then in 62,419,883 observations explained by
3 variables and the first rows are shown in Figure 2.2. As it is possible to see, each
row refers to a single SPN measure, taken at the given and indicated timestamp.

Figure 2.2: First rows of dataset

The final dataset contains a set of parameters useful to describe the vehicle and
the engine status, such as engine speed, percent load, coolant temperature, digging
depth, etc.

All the observations come from 40 different days, from November 7, 2019 to
April 15, 2020. However, the histogram plot reported in Figure 2.3 shows a quite
irregular behaviour concerning the number of messages sent per day, highlighting
the relative irregular and heterogeneous behaviour of the working time per day,
typically associated with heavy-duty vehicles as the one under analysis [4]. Indeed
this kind of vehicles, because of the specific characteristics of their working sites
and the nature of the performed tasks, are often associated with a highly variable
number of working hours per day that makes their usage pattern identification
particularly complex.

8
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Figure 2.3: Number of observations per day

There are no null or missing values. However, the dataset contains some
duplicate rows (about 0.08% of the entire dataset): because of the higher precision
of timestamp with respect to the sampling rates, they are more likely to be due to
problems connected with the network or the environment rather than two distinct
observation sampled with time delta smaller than 1 millisecond. For this reasons,
they are removed.
Furthermore, it happened that for a given SPN and timestamp, two different
measures are collected. After checking that all the values collected in the given
timestamps are feasible (according to the full scales values for the given SPN)
and that they are relative close in magnitude, the same reasoning for solving the
previous issue are applied and only one observation for each pair timestamp and
SPN is considered for further analysis.

The dataset contains 20 different SPNs. It seems to be a limited number with
respect to the expected one. Possible explanations could be either that the analyzed
vehicle is quite old or it can be due to the fact that the considered model is not
registered in Tierra database: hence, some SPN (especially customized ones) are not
recognized by Tierra parser and can not be decoded, providing just the information
about their PNG.

Since from a preliminary exploratory analysis carried out considering just the
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first 40 files, a one-to-one relationship between SPNs and PGNs was noticed, the
number of distinct total (Parsed + notFound) PGNs can be used as a rough
approximation of the total number of distinct SPNs. Hence, it is possible to say
that the number of distinct monitored parameters is 40, but only 20 of them have
the additional information that make them in a suitable format for future analysis.

The considered 20 SPNs, their description, feasible range and unit of measure-
ment are summarized in Table 2.1. Observations out of feasible ranges are removed
since probably due to errors in measurement or during transmission or decoding
phases.

SPN Description Feasible range

81 Engine diesel particulate
filter inlet pressure 0 to 125 kPa

90 Power takeoff oil temperature -40 to 210 deg C
94 Engine fuel delivery pressure 0 to 1000 kPa
110 Engine coolant temperature -40 to 210 deg C
114 Net battery current -125 to 125 A
123 Clutch pressure 0 to 4000 kPa
164 Engine injection control pressure 0 to 251 Mpa
182 Engine trip fuel 0 to 2105540607,5 L
183 Engine fuel rate 0 to 3212.75 L/h
190 Engine speed 0 to 8,031.875 rpm
524 Transmission selected gear -125 to +125
975 Estimated percent fan speed 0 to 100 %
1638 Hydraulic temperature -40 to 210 deg C
30000 Engine percent load 0 to 250 %
30011 Front plow swith -
30694 Rear hitch position -
30789 Charge pressure -

31391 Amount of particulate
matter C method -

31800 Digging depth -
32061 Fuel Tank Level -

Table 2.1: SPNs: description and feasible range

In Figure 2.4 it is possible to see that the behaviour of SPNs is quite different:
indeed, some of them are really frequent while others are characterized by a lower
average sampling rate. Indeed CAN messages are transmitted at different rates
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because of the specific characteristics of the CAN bus data [8]. Additionally, these
rates are not constant, hence observations are not equally spaced in time. In
Chapter 3 some strategies applied to overcome both different rates and not constant
rates are presented. Having evenly time-spaced and synchronized observations
is fundamental in order to apply some specific algorithms. Indeed, obtaining a
constant sampling rate for each SPN allows to consider the given signal as a evenly
spaced univariate time series whereas obtaining signals sampled at the same instants
of time allows to consider the set of SPNs measurements as a multivariate time
series.

Figure 2.4: SPNs distributions

From the results of the analysis of the time delta distribution between consecutive
observations of the same SPN, a distinction among SPNs can be made. More in
details, four different groups can be identified: the first one is composed by regular
and frequently sampled SPNs, such as the engine speed (SPN 190), charge pressure
(SPN 30789) and engine load (SPN 30000). The second one contains parameters
regularly sampled, but less frequently with respect to the previous group. It is
the case, for example, of the engine fuel rate (SPN 183), rear hitch position (SPN
30694), amount of particulate matter (SPN 31391) and transmission selected gear
(SPN 524). The third group, characterized by regularly and more rarely sampled
SPNs, contains the engine coolant temperature (SPN 110), the estimated percent
fan speed (SPN 975) and the engine fuel delivery pressure (SPN 94). Finally, the
last group contains the front plow swith (DIG0) (SPN 30011) and the power takeoff
oil temperature (SPN 90), both characterized by a high number of occurrences, but
their distribution is not centered on a single value, meaning that they are collected
at quite irregular timestamps. Such a behaviour could be due, for example, to
device failures or they could be malfunction tell-tales. In any case, they should be
treated in a different way from other SPNs.

Indeed, for centered distributions, it is possible to approximate the sampling rate
with the inverse of 50th percentiles of time delta distribution (that coincides with its
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mode) since the time delta are mostly centered on this value. This approximation
results quite wrong instead for SPN 30011 and 90, for which another technique for
estimating their sampling rate should be applied. However, since they are constant
all over the available observations, they are not considered in further analysis, as
well as regularly sampled constant SPNs.

The approximated time delta between consecutive observations of the 13 not
constant SPNs are summarized in table 2.2, while the distribution of a representative
SPN for each group is shown in Figure 2.5.

Figure 2.5: Time delta histograms for representative SPNs, namely SPN 190,
183, 110 and 30011

For display purpose, only shorter time deltas are shown in figure. However, data
contains also observations spaced by higher temporal lags, associated with few

occurrences, that are deeply analysed in the following since they could indicate shut
downs or some kind of malfunctions.
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SPN Approximated
time delta (s)

94 0,5
110 1
182 1
183 0,1
190 0,02
524 0,104
975 1
30000 0,05
30694 0,1
30789 0,03
31391 0,1
31800 0,1
32061 0,104

Table 2.2: SPNs approximated time delta between consecutive observation

Thanks to the obtained approximated values, it is possible to determine the
timestamps corresponding to the moments at which the vehicle is switched off and,
consequentially, the working cycles duration.
Indeed, the available data are collected only when the vehicle is on and therefore
a sufficiently long time delta between consecutive observations suggests that the
vehicle was turned off in the meanwhile. However, it is important to correctly
quantify a sufficiently long time delta in order to tell missing data or transmission
errors from the actual shutdowns.
Hence, to detect shutdown timestamps, the engine coolant temperature (SPN 110)
was used: indeed, it represents a quite regularly sampled signal, so that a time delta
higher than its average value, combined with a low measurement, suggests that
the vehicle was actually turned off for a sufficiently long time such that the engine
coolant reaches lower temperatures. Also time deltas higher than its 99.956th
percentiles without a corresponding reduction in the engine coolant temperature is
considered a shutdown: indeed, as it is possible to see from Figure 2.6, there are two
specific days in which there are really short working cycles, probably due to tests
on driver assistance studies carried out on the same vehicle, performed with smaller
interruptions in the middle such that the engine coolant had no enough time to
cool down. However, while the first method ensures that the identified timestamps
actually correspond to shutdowns, using the latter method extra information are
required to tell missing values and error transmissions from actual shutdowns.
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Figure 2.6: Working cycles length
The yellow vertical lines identify the different working days

Following this procedure, 130 different working cycles are identified. However,
as it is also possible to see from Figure 2.6, from a deeper analysis it appears that
five of them were extremely short, such that some SPN were not measured at all.
Since they are in a limited number, probably not enough informative for further
analysis and most likely due to transmission errors rather than actual working
cycles, they are removed and not considered in the following.

As a conclusion of the exploratory data analysis, it is possible to visualize some
of the considered SPNs: the first one corresponds to the engine coolant temperature,
the parameter chosen to identify working cycles. As it is possible to see, most of
working cycle starts correspond to it lower values, probably denoting the vehicle
ignition. The second shown parameter is the engine speed, particularly relevant for
the following analysis. The third SPN, the transmission selected gear, differs from
all others because it is a categorical variable. Finally, the last SPN describes the
engine trip fuel, an incremental value with a trivial upward trend. It is characterized
by a regularly increasing behaviour in all points, with the exception of a single
point of discontinuity: as a result of a deeper analysis it is possible to conclude that
in the middle of these observations there is a lag of about two months in which no
data are collected by the device. Such a behaviour can be used to identify device
or transmission failures.
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Figure 2.7: Plot over time for SPN 110, 190, 524 and 182
The yellow vertical lines identify the different working cycles

Finally, the distribution of the quantitative SPNs can be visualized and summa-
rized thanks to boxplot. More in detail, for the 12 selected quantitative variables,
minimum, first quartile, median, third qualite and maximum are graphically dis-
played. Indeed, the box goes from first to third quartile, while the horizontal line
inside the box denotes the median. The whiskers are instead used to describe the
data range. Using the provided function in Pandas 2 library, the whiskers are set

2pandas.pydata

15

https://pandas.pydata.org/


Controller Area Network Bus Data Analysis

by default to a distances from box borders equal to 1.5 times the interquartile
range, defined as the difference between the third and the first quartile. Points
outside the range given by whiskers are commonly considered outliers. In many
applications, outlier removal is one of the main steps of data cleaning. However in
this application they are taken into account, since observations outside full scale
values have been already removed and extreme values could be useful to identify
common patterns and make a distinction among different vehicle usages.

Boxplots are a descriptive non-parametric tool used to highlight the dispersion
and the skewness of the variables under analysis by means of the distances between
the five previously described quantity used to summarize the data distribution. As
it is possible to see from Figure 2.8, some distributions seem to be quite asymmetric
since they are more skewed to extremer values: it is the case of the engine speed,
the engine percent load and the engine fuel delivery pressure. On the other hand,
some SPNs are instead quite symmetric, such as the engine trip fuel. In addition,
it is possible to notice that some SPNs are characterized by a higher dispersion, in
the sense that they assume frequently a wider range of values, such as the engine
trip fuel, the engine percent load and the engine speed, while others distributions
are more flatted on few values, such as the digging depth, the estimed percent fan
speed and the amount of particulate C matter method.
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Figure 2.8: Boxplot for all the quantitative variables in the dataset, namely SPN
110, 182, 183, 190, 30000, 30694, 30789, 31391, 31800, 32061, 94, 975.
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Chapter 3

CAN bus signal analysis
and alignment

In the previous chapter, the two main issues related to the sampling of signals have
been highlighted. Namely, CAN messages are transmitted at different rates because
of the specific characteristics of the CAN bus data [8]. Additionally, these rates
are not constant, hence observations are not equally spaced in time. Hence, in this
chapter signals alignment is performed. Indeed, evenly time-spaced observations
is fundamental for further analysis since several algorithms and methods require
a constant sampling rate. For these reasons, signals alignment is considered one
of the fundamental preprocessing steps for multivariate time series analysis [9].
Furthermore, since the aim is to describe the vehicle state using the entire set of
available SPNs, considering each of them as a component of a multivariate time
series, observations need to be taken at the same instants of time.

In order to obtain aligned and evenly spaced data points, a technique based
on signal processing analysis and Fourier transform is applied. It is based on
performing a downsampling operation in order to obtain all signals sampled at
the lowest sampling rate. This procedure will cause a loss of information, but on
the other hand it is preferable over oversampling since it will not introduce extra
features in the original data [7]. In addition, since according to domain experts this
type of data is quite noisy, downsampling in frequency domain is more appropriate.
The choice of downsampling to the lowest sampling rate by frequency domain
interpolation is supported and commonly adopted in CAN data analysis [8]. Indeed,
since SPNs measure physical quantities, a higher rate would introduce redundancy
in data. Besides the computational advantages, reducing data granularity will
improve also costs due to data transmission on the network.

Since SPNs measurements can be seen as digital signals, the main signal pro-
cessing principles are presented in the following in order to introduce the tools
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used to synchronize time series, such as the discrete-time Fourier transform (and
the Fast Fourier Transform algorithm), filters and upsampling and downsampling
systems. In the second part of the chapter instead it is described how these tools
have been applied to the real case scenario under analysis.

3.1 Signal processing fundamentals
A signal is a function containing the information about a phenomenon over time.
It is said to be an analog signal if it is real valued and defined at each point in
time. In contrast, it is said to be digital if it is discrete-time and takes values on a
discrete set.
There exist also some intermediate situations: a signal is said to be a samples
sequence if it is discrete-time but real valued, while it is quantized if discrete valued
and defined at each point in time.

One or more signals can be the inputs of a system that can be seen as a device
that, given one or more inputs, will produce one or more signals as output, also
called responses.
The relationship between input and output signals can be of several forms and
systems can be characterized by the properties of the operator identifying the
system itself.

From now on, digital signals are considered because of the following applications
in the thesis work.

A digital signal is a sequence in the vector space H = CK, where K can be a
finite subset of Z or coincides with Z itself.
In the former case, the digital signal is finite length. It can be extended to an
infinite length signal using different methods. Examples can be zero padding,
symmetric extension consisting in left-flipping the signal at the beginning and
right-flipping it at the end, or periodic extension consisting in replicating the signal
at the beginning and at the end.

A given signal can be represented using different vector bases [10]:

Definition 3.1.1 Given a normed vector space V , a set of vectors {ϕk}k∈K, with
K finite or countably infinite, is called a basis for V if the following conditions are
satisfied:

• it is a complete set:

∀x ∈ V ∃α ∈ CK such that x =
Ø
k∈K

αkϕk

19



CAN bus signal analysis and alignment

• α ∈ CK is unique

Hence, according to definition (3.1.1), given a signal x and fixed a basis {ϕk}k∈K,
the signal expansion with respect to the chosen basis is given by a linear combination
of these functions with suitable coefficients:

x =
Ø
k∈K

αkϕk (3.1)

There exist different basis choices that can be made, each with its own proprieties
that can highlight different features of the same original signal [11], [10]. Usually,
useful proprieties that a basis should satisfied are:

• Sparsity: few coefficients αk are different from zero or significant.

• Interpretability: some features of the original signal can be directly extracted
from coefficients αk.

The category of bases commonly considered is orthonormal bases [10]:

Definition 3.1.2 Given an Hilbert space H, a set of vectors {ϕk}k∈K, with K
finite or countably infinite, is said to be an orthonormal basis for H if the following
conditions are satisfied:

• it is a basis for H

• it is orthonormal:

< ϕi, ϕj >=
1 if i = j

0 if i /= j

A sequence {ϕk}k∈J that satisfied only the latter condition is said to be an
orthonormal sequence.

In case of an orthonormal basis,

H = span {ϕk}k∈K

and the coefficients in (3.1) can be expressed as the inner product of the considered
Hilbert space,

αk =< x,ϕk >

thanks to the Riesz representation theorem:
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Theorem 1 Given an Hilbert space H and an orthonormal basis {ϕk}k∈K of H,
then the application

φ∗ : H −→ l2(K)
x −→ {< x,ϕk >}k∈K

is an isometric isomorphism.

The operator φ∗ is called analysis operator. Hence, the Parseval’s identity holds

||x||2H =
Ø
k∈K
| < x,ϕk > |2

and the inverse application φ, also called synthesis operator, is defined as

φ : l2(K) −→ H

α = {αk}k∈K −→
Ø
k∈K

αkϕk

so that ∀x ∈ H
x =

Ø
k∈K

< x,ϕk > ϕk

From previous equations it is clear that the synthesis operator is the adjoint of
the analysis operator [10].
By definitions, in the case of an orthonormal basis,

φ∗φ = φφ∗ = I

where I denotes the identity operator. Hence φ is unitary.

Examples of commonly used orthonormal bases for CKare Fourier or Wavelet
basis, definided as it follows:

Definition 3.1.3 The Fourier basis for the space CK is defined by the set of vectors1
ϕ0, . . . , ϕK−1

2
where

ϕkn = 1√
K
e

2π
N
ikn, k = 0, . . . , K − 1, n = 0, . . . , N − 1

The bounds on n and k are due to the fact that the considered functions are N
periodic thanks to the complex exponential property eli2π = 1 ∀l ∈ Z.

The angular frequency of ϕk is given by ωk = 2π
N
k while the frequency can be

obtained as fk = k

N
.

Hence, the maximum angular frequency is ωmax = π.
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The defined Fourier basis is orthonormal:

< ϕk, ϕm > = 1
N

N−1Ø
n=0

e
2π
N
ikne

−2π
N

imn

= 1
N

N−1Ø
n=0

e
2π
N
i(k−m)

= 1− e 2π
N

(k−m)N

1− e 2π
N
i(k−m)

=
1 if k = m

0 if k /= m

Definition 3.1.4 Wavelets are defined as a families of orthogonal basis functions
obtained from a mother wavelet ψ by translation and dilation as

ψj,k(t) = 1√
2j
ψ

A
t− 2jk

2j

B

and from a father wavelet φ by dilation and translation as

φj,k(t) = 1√
2j
φ

A
t− 2jk

2j

B

with j = 1,2, . . . is the index referred to the scale and k = 1, . . . , N2j indexes the
translation location in time [12].

Wavelet decomposition is often used to exploit its whitening or decorrelating
property: indeed, writing the signal with respect to a Wavelet basis represents
a way to deal with highly autocorrelated signals since what is typically observed
is that Wavelet coefficients are characterized by a smaller and often negligible
correlation [13].

If instead {ϕk}k∈J is an orthonormal sequence, then it is a basis for the vector
subspace S = span {ϕk}k∈J ⊂ H. In this case is still possible to define the analysis
and synthesis operator in an analogous way as previous case:

φ∗ : H −→ l2(J)
x −→ {< x,ϕk >}k∈J

(3.2)

φ : l2(J) −→ H

α = {< x,ϕk >}k∈J −→ x̂ =
Ø
k∈J

αkϕk
(3.3)
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The property φ∗φ = I still holds but

φφ∗ = PS

where PS denotes the orthogonal projection onto the subspace S.
x̂ can be interpreted as an approximation of x. It is called linear approximation

if the projection is onto a fixed M dimensional subspace (hence independent on the
signal x), non-linear approximation if the projection is onto the M dimensional
subspace generated by the M most important basis vectors with respect to x
variations. A way of characterizing the importance of these vectors is considering
the largest inner products with x.

The error of the approximation can be computed as

ε = ||x− x̂||2 = ||x̃||2

where x̃ is the projection of x onto the orthogonal complement of S.
Studying the behaviour of the approximation error using different basis decom-

positions, is possible to note that different bases yield to different results. Indeed,
it is possible to prove [10] that for linear approximation ε ∼ 1

M
both for Fourier

and Wavelet basis. However, in the case of non linear approximation, ε ∼ 1
M

for

Fourier decomposition while ε ∼ 1
2M for Wavelet one [14], [10].

3.1.1 Discrete-time systems
As previously introduced, a system is an operator that, given one or more input
signals, will produce one or more signals as output. A system is said to be discrete-
time if the input signal is a sequence that is mapped by the system in another
output sequence.

Given an input sequence x in a space V , the output of the system A can be
written as y = Ax.

Figure 3.1: System
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Definition 3.1.5 A discrete time system is said to be linear if A is linear operator:
∀x1, . . . , xn input signals, ∀α1, . . . , αn ∈ Cn

A

A
nØ
i=1

αixi

B
=

nØ
i=1

αiA (xi) =
nØ
i=1

αiyi (3.4)

Property (3.4) is also known as superposition principle.
An example of linear system is the one described by the shift operator Tk, k ∈ Z,

whose action can be written as

yn = Tkxn = xn−k

Linear operators can be naturally written in matrix form. This is particularly
useful when the matrix structure reflects some properties of the linear system. An
example, is given by memoryless property:

Definition 3.1.6 A linear system is said to be memoryless if the matrix A is
diagonal.

Previous definition means that the n-th component of output signal depends
only on the n-th component of the input one.

Definition 3.1.7 A discrete-time system is said to be shift-invariant if

ATkx = TkAx ∀k ∈ Z

where Tk denotes the shift operator.

Definition 3.1.8 A discrete-time system is called BIBO (bounded-input bounded-
output) stable when a bounded input x produces a bounded output y = Ax.

The previous definition can be rewritten as

A BIBO ⇐⇒ A : l∞(Z) −→ l∞(Z)

where l∞(Z) =
I
x = {xk}k∈Z : ||x||∞ = sup

k∈Z
|xk| <∞

J

Linear time-invariant stable operator H : l2(Z) −→ l2(Z) represent a relevant
class of systems, also called filters.
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Their importance is due to the fact that can be completely described by their
impulse response [11]:

Definition 3.1.9 Given a linear time-invariant stable operator H : l2(Z)→ l2(Z),
the impulse response h is defined as the output produced by system H when it takes
as input the Kronecker delta sequence δ:

h = Hδ

with δk =
1 k = 0

0 k /= 0

The Kronecker delta sequence δ can be used to express the canonical basis of
l2(Z) by means of the shift operator as

ek = Tkδ, k ∈ Z

Then, knowing the impulse response h, the response variable of system H when
it takes as input x = q

k∈Z
xkTkδ can be written, thanks to H linearity, stability,

shift-invariance and the given definition of impulse response respectively, as

Hx =
Ø
k∈Z

xkTkδ =
Ø
k∈Z

xkHTkδ

=
Ø
k∈Z

xkTkHδ =
Ø
k∈Z

xkTkh

Hence, yn = (Hx)n = q
k∈Z

xkhn−k.

More formally, it is possible to define the output of a linear time-invariant stable
system H from the definition of convolution [10]:

Definition 3.1.10 Given two sequences x and h, their convolution is defined as

(Hx)n = (x ∗ h)n =
Ø
k∈Z

xkhn−k =
Ø
k∈Z

hkxn−k

H is hence called convolution operator.

Definition 3.1.11 A filter is said to be [11]:

• causal if hn = 0 ∀n < 0, anticausal if hn = 0 ∀n > 0, not causal otherwise.

• stable if h ∈ l1(Z) or, equivalently, if H : l∞ −→ l∞ is BIBO.

• Finite impulse response if hn /= 0 for a finite number of indices n, infinite
impulse response otherwise.

25



CAN bus signal analysis and alignment

3.1.2 Fourier Transform
As shown in previous sections, in order to compute the response signal of a linear
time-invariant bounded system it is necessary to compute a convolution. However,
introducing an appropriate transformation, it is possible to rewrite the signal in
a different space such that the convolution becomes simply a multiplication. It
is sufficient to go from the time to the frequency domain, applying the so called
Fourier transform.
In addition to computational advantages, it can be useful also to highlight, in
the frequency domain, properties that were not inspectable in the time domain.
Furthermore, since the Fourier basis has the interpretability property, it can be also
used to approximate the signal considering only the components corresponding to
the most important frequencies.

In particular, in the following the discrete-time Fourier transform (DTFT) is
described: it is the Fourier transform version for infinite-length discrete-time signals
x [10], while usually the term Fourier transform refers to continuous-time signals

Let H be a linear shift-invariant system and consider the sequence v = {v}n∈Z
composed by the complex exponential vn = eiωn, n ∈ Z.
ω ∈ R is called angular frequency. It can be also written as ω = 2πf , where f
measures the number of cycles in a unit of time, also called frequency.

Since |vn| = 1 ∀n, v ∈ l∞. If h ∈ l1, then h ∗ v is bounded and its components
can be written as

(Hv)n = (h ∗ v)n =
Ø
k∈Z

vn−khk =

=
Ø
k∈Z

eiω(n−k)hk =
Ø
k∈Z

hke
−iωkvn

Hence v is an eigensequence for the operator H.
The previous expression can be then rewritten as

Hv = H(eiω)v (3.5)

where H(eiω) is called frequency response or transfer function.
The discrete-time Fourier transform is then obtained projecting the signal onto

the subspaces generated by each eigensequence [10]:

Definition 3.1.12 Given a infinite-length discrete-time sequence x, its Fourier
transform is defined as

X(eiω) =
Ø
n∈Z

xne
−iωn, ω ∈ R (3.6)

26



CAN bus signal analysis and alignment

The previous expression shows that the discrete-time Fourier transform is a 2π
periodic function of the angular frequency ω.
It is well defined if the expression (3.6) converges ∀ω ∈ R.

For example, if x ∈ l1(Z) then (3.6) is uniformly absolutely-convergent on R
and X(eiω) is a continuous function.

For series x /∈ l1(Z), the convergence of (3.6) is not ensured. However, the
discrete-time Fourier transform can be extended to x ∈ l2(Z) considering, instead
of uniform convergence, the convergence in L2([−π, π)) norm, that is equivalent to
require that (3.6) converges for almost every ω ∈ R.

Indeed, considering the trigonometric polynomials defined as

XN(eiω) =
NØ

k=−N
xke

−iωk, N ∈ N

the discrete-time Fourier transform is defined as

X(eiω) = lim
N−→+∞

XN(eiω)

if this limit exists.
Hence, the discrete-time Fourier transform can be defined as an isomorphism F

that, given a sequence in l2(Z), maps it into a 2π-periodic function in the space
L2(−π, π).
The inverse discrete-time Fourier transform (IDTFT) can be defined as [10]:

Definition 3.1.13 Given a 2π periodic function X(eiω), its inverse discrete time
Fourier transform is defined as

xn = 1
2π

Ú π

−π
X(eiω)eiωndω n ∈ Z

It is possible to prove that the Parseval equality for discrete-time Fourier
transform holds:

||x||2l2 =
Ú π

−π
|X(eiω)|dω2π

27



CAN bus signal analysis and alignment

3.1.3 Discrete Fourier Transform
The Discrete Fourier Transform can be seen as the sampled version of the Discrete-
Time Fourier Transform. It is introduced to overcome some practical issues related
to the discrete-time version. First of all, the discrete-time Fourier transform can
not be handled by a computer because it is composed by an infinite number of
values. Moreover, the discrete Fourier transform became popular because of the
Fast Fourier Transform algorithm that allows to compute the discrete Fourier
transform of a signal with O(N log(N)) operations instead of O(N2), introducing
computational advantages for obtaining the response signal of given a system.
Hence it can be thought as an operational tool for computing the Discrete-time
Fourier Transform both for infinite-length periodic sequences both for finite-length
ones, treated as if they arise from one period of an infinite-length periodic sequence.
Indeed, they coincides if a finite segment of an infinite-length signal is considered.

Given a finite-length sequence x ∈ CN and the Fourier basis of CN defined in
(3.1.3), using the previous introduced analysis operator (3.2) it is possible to write
the finite-length signal as

x =
NØ

k=−N
αkϕ

k

where αk is the Fourier coefficient, given by

αk =< x,ϕk >

The set of coefficients with respect to the Fourier basis is called spettrum of x. The
modulus of Fourier coefficients gives a description of how the signal is distributed
over its discrete frequencies.

Furthermore, the Fourier coefficients of a real valued signal satisfy

|α−k| = |αk| ∀k = −N, . . . , N.

This means that in the case of real valued signal the spectrum is symmetric with
respect to N

2 and negative coefficients add no information in spectrum analysis.
Neglecting the normalization factors 1√

N
in the expression of the basis vectors,

it is possible to show the relationship between the Discrete-time Fourier Transform
and the Discrete Fourier Transform. Indeed, if the DTFT is sampled at points
ωk = 2π

N
k k ∈ {0, 1, . . . , N − 1}, the expression of DFT is obtained [10]:

X(eiω)|ω=ωk = X(ei 2π
N
k) =

Ø
n∈Z

xne
i 2π
N
kn =

=
N−1Ø
n=0

xne
i 2π
N
kn
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3.1.4 Multirate Systems
Two sequences are said to be multirate if each time index refers to a different
time scale. To handle these situations, multirate system are introduced: they are
the result of suitable combinations of filters and upsampling and downsampling
operators.

Given a positive integer N , a sequence x is downsampled by N is

yn = xNn

Its Discrete-Time Fourier Transform is given by

Y (eiω) = 1
N

N−1Ø
k=0

ei
ω+2πk
N

The corresponding operator is denoted by DN and defined as it follows

DN : l2(Z) −→ l2(Z)
x −→ y = DNx

Figure 3.2: Block diagram for downsampling

Since downsampling contracts time, it will expand frequency accordingly.

The dual operation of downsampling is upsampling.
Given a positive integer N , a sequence x is upsampled by N is

yn =
xn/N if (n,N) = 0

0 otherwise

Its Discrete-Time Fourier Transform is given by

Y (eiω) =
Ø
n∈Z

yne
−iωn =

Ø
n :(n,N)=0

x n
N
e−iωn =

=
Ø
k∈Z

xke
−Niωk = X(eiNω)

So the resulting spectrum is compressed.
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Figure 3.3: Block diagram for upsampling

The corresponding operator is denoted by UN and defined as it follows
UN : l2(Z) −→ l2(Z)

x −→ y = UNx

Downsampling and upsampling operators can be combined: indeed, for any
positive integer N

DNUN = I

while
P = UNDN

is the orthogonal projection operator over the l2 vector subspace
{{xn} : xn = 0 if (n,N) /= 0}

In addition, it is possible to achieve any rational rate change by suitable com-
bining upsampling by a factor M and downsampling by N . In this sense, they can
be used in multirate sequences analysis for aligning time scale and, consequentially,
scaling frequencies. However, the introduction of new frequencies in the spectrum
of the original signal is often an undesired effect.
To avoid this behaviour, downsampling is often preceded by filtering and upsampling
is often followed by filtering.

Indeed, considering xn ∈ l2(Z), the downsampling system φ∗ is composed by a
filter characterized by impulse response g∗

−n followed by a downsampling by N > 1.

Figure 3.4: Block diagram for downsampling preceded by filtering

Given x ∈ l2(Z), the response variable of the sampling system can be obtained
as it follows:

yk = (φ∗x)k = (g∗
−n ∗ xn)n=kN =

=
Ø
m∈Z

xmg
∗
m−kN =< x,ϕk >
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where
ϕk = gn−kN n ∈ Z (3.7)

In the following {ϕk}k∈Z will be assumed to be an orthonormal set. This means
that

< ϕk, ϕj >=< gn−kN , gn−lN >= δk−l ∀k, l ∈ Z

Then y is the orthogonal projection of x onto the subspace S generated by the set
{ϕk}k∈Z while its projection onto span {ϕk}k∈Z represents the loss of information
due to downsampling operations.
In this sense, any x ∈ l2(Z) has an orthogonal decomposition that can be written
as x = xS + xS⊥ where xS⊥ can not be reordered from y.

The upsampling system φ is composed instead by an upsampling by N > 1
followed by a filter characterized by impulse response gn.

Figure 3.5: Block diagram for upsampling followed by filtering

Given any y ∈ l2(Z), the output of the upsampling system xÍ can be computed
as

xÍ
n = (φy)n =

Ø
k∈Z

ykgn−kN =
Ø
k∈Z

ykϕk


n

where ϕk is defined in (3.7).

Combining upsampling and downsampling operators, it is possible to prove that
the following properties hold:

• φ∗φ = I ⇐⇒ {gn−kN}k∈Z is an orthonormal set

• φφ∗ = P where P denotes the orthogonal projection onto the subspace
generated by {ϕk}k∈Z
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Figure 3.6: Block diagram for the combination of upsampling and downsampling
operators

An important application of the previous described systems is to bandlimited
signals:

Definition 3.1.14 A signal x ∈ l2(Z) is said to be bandlimited if there exists
ω0 ∈ [0, 2π) such that the discrete-time Fourier transform X of x satisfied

X(eiω) = 0 ∀ω : |ω| ∈
3
ω0

2 , π
6

The smallest ω0 is called bandwidth of x.
If such ω0 does not exist, then x is a full-band sequence.

Indeed, it is possible to prove that the set of sequences in l2(Z) with bandwidth
limited by ω0 is a closed subspace, denoted by BL

3
−ω0

2 ,
ω0

2

4
.

Hence, the previous described procedure for downsampling and upsampling can
be applied to project an infinite-length signal x onto BL

3
−ω0

2 ,
ω0

2

4
.

For N > 1, let

gn = 1√
N

sinc
3
πn
N

4
, n ∈ Z (3.8)

The corresponding Discrete-Time Fourier Transform is

G(eiω) =

√
N if |ω| ≤ π

N
0 otherwise

Previous expression shows that gn and its shift belong to BL
3
−ω0

2 ,
ω0

2

4
.

Furthermore, because of the generalized Parseval equality, it can be proven that
they are orthonormal:
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< gn−kN , gn−lN > = 1
2π < e−iωkNG(eiω), e−iωlNG(eiω) >=

= 1
2π

Ú π

−π
eiω(k−l)N |G(eiω|2dω =

= N

2π

Ú π
N

− π
N

e−iω(k−l)N = δk−l

Hence for any positive integer N , combining φ and φ∗ as previously described
and considering as filter the one described by gn as defined in (3.8), it is possible
to prove [10] that

xÍ
n = 1√

N

Ø
k∈Z

yksinc
3
π

N(n− kN)
4

n ∈ Z

with
yk = 1√

N

Ø
n∈Z

xnsinc
3
π

N(n− kN)
4

k ∈ Z

is the best approximation of x in BL
3
−ω0

2 ,
ω0

2

4
.

In the general case the effect of the orthogonal projection onto BL
3
−ω0

2 ,
ω0

2

4
to truncate the spectrum of x to

5
− π
N
,
π

N

6
so that the Discrete-Time Fourier

Transform of the resulting signal can be written as

X̂(eiω) =
X(eiω) if |ω| ≤ π

N
0 otherwise

If x ∈ BL
3
−ω0

2 ,
ω0

2

4
instead, then x = xÍ so that it is possible to completely

recover the original signal from its samples.
In this case, the effect of the prefilter is simply to scale the signal by

√
N and the

sampling theorem for sequences holds [10]:

Theorem 2 Given a positive integer N , if x ∈ BL
3
−ω0

2 ,
ω0

2

4
then

xn =
Ø
k∈Z

xkN sinc
3
π

N(n− kN)
4

n ∈ Z
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In any other case, the role of the prefilter is to remove all the components outside
BL

3
−ω0

2 ,
ω0

2

4
. Indeed, if no prefilter is considered, then the Discrete-Time Fourier

Transform of y

Y (eiω) = 1√
N

N−1Ø
k=0

X(ei(ω+2k π
N

)) ω ∈ [−π, π)

contains the so called spectral replica. These frequencies overlap from the base
spectrum, composed by all frequency with fixed k = 0, introducing distortion. This
phenomenon is known as aliasing and occurs when the bandwidth ω0 ≥ 2π

N
but

does not if π
N
< ω0 < π. Hence, a sufficient condition for avoiding aliasing is that

the sampling rate 1
N

is greater than ω0
2π [10]. Indeed, this value corresponds to twice

the Nyquist frequency, the minimal sampling frequency that allows to restore the
unmeasured values of the original signal, given its discrete sampled representation,
according to the Nyquist-Shannon theorem [15].

3.2 Signals alignment
What described in the previous section has been applied to synchronize the signals
under analysis.

As first step, it is required each SPN to have a constant sampling rate. Since
this was not the case, each SPN has been interpolated in order to put it into a
suitable form for further analysis. Both linear and nearest interpolation are used,
leading to similar results. Hence nearest interpolation is chosen: the effect of
this operation is first to discretized the temporal axis of each previously identified
working cycles picking points with step length equal to the given SPN average time
delta (described in Table 2.2) and then to slightly move along the temporal axes
observations that were not at desired timestamps. Since signals refers to physical
quantity measured with limited accuracy instruments and since the difference
between original and new timestamps is in the order of milliseconds, this technique
can be considered a good approximation for the behaviour of the real signals.

Once SPNs have been sampled with constant sampling rate, they are ready to
be synchronized. There exists two possible choices that can be made: without
losing information, it is possible to resample each signal to the higher sampling
rate, each 20 milliseconds in this case. However, resampling data at the lowest
rate (1 Hertz in the available data) is sometimes more appropriate since the extra
points added upsampling could introduce noise and lead to distorted results [7]. In
addition, also computational costs would be higher. The choice of downsampling
the signal to the lowest rate is supported also by the analysis of the nature of the
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available data: indeed, since they refer to physical quantity of a heavy-duty vehicle,
they are not expected to have high-frequency variations but to change gradually,
in a quite slow way.

Hence, according to the average sampling rate of each SPN, signals can be
divided into three groups:

1. SPN 110, 182 and 975 are already sampled at 1 Hertz. Hence, no extra
operation is needed.

2. SPN 94, 183, 190, 30000, 30694, 31391, 31800 are characterized by an integer
downsampling factor to obtain the desired rate. Hence, it is sufficient to apply
downsampling operator.

3. For SPN 524, 30789 and 32061 there exists no integer downsampling factor
to achieve the desired rate. In this case, signals are first upsampled and then
downsampled.

Upsampling is implemented by means of zero padding technique: it involves
the addition of zeros to the original Discrete-Time Fourier Transform of the input
sequence in order to increase the total number of input data samples in time
domain, thanks to Fourier or zero padding theorem [16].

Zero padding can be defined as it follows [17]:

Definition 3.2.1 Zero padding consists in mapping a signal x of length N to a
signal of length M , with M not integer multiple of N , by adding a sequence of M
zeros between the components N2 − 1 and N

2 if N even, N − 1
2 − 1 and N − 1

2 if
N is odd.

Theorem 3 An ideal bandlimited interpolation in time domain is equivalent to
zero padding the original signal in the frequency domain [17]:

interpM = IDTFT(Zero_paddingM(X))

Previous theorem can be interpret in terms of the stretch of a factor L operator
[17], that maps a length N signal into a length M = LN one as it follows:

STRETCHL =
x(m/L), L | m

0, L /| m

Hence it inserts L− 1 zeros between each element of the original signal.
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Introducing the ideal lowpass filtering operation in frequency domain [17] with
cut-off frequency ω = 2πM−1

2N

F_LPM,k(X) =


X(k), −M − 1

2 ≤ k ≤ M − 1
2

0, M + 1
2 ≤ |k| ≤ N

2

that sets the to zero the spectrum components X(k) such that k /∈ [−M−1
2 , M−1

2 ],
it is possible to prove that the following theorem holds [17]:

Theorem 4 Given a signal x ∈ CN ,

interpM = IDTFT(F_LPN(DFT(STRETCHM(x))

Hence, for obtaining a bandlimited interpolation of x by a factorM , the following
sequence of operations can be performed: first the signal is stretched by a factor
M , then its DTFT is computed and the ideal lowpass filter is applied to the result
and finally the IDTFT is taken in order to go back to time domain.

For what concerns downsampling instead, the downsampling operation is pre-
ceded by a filter. The default anti-aliasing infinite impulse response filter provided
by the decimate function in Scipy 1 is used. It is a order 8 Chebyshev type I filter,
a low pass filter which exploits Chebyshev polynomials [18]. This choice is less
complex with respect to use a finite impulse response filter and furthermore it
introduces a lower delay.

Applying the described procedure separately for each SPN and working cycle,
the resulting dataset is shown in figure 3.7, where the row index indicates the
timestamp of each observation in unix format while each column contains the
measurement for the considered SPN.

1www.scipy.org
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Figure 3.7: First rows of resampled dataset
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Chapter 4

Time Series Analysis

The term time series denotes a sequence of quantitative observations about a
system or process made at successive points in time [19]. If the time series is
regular, then points are equally spaced in time. As previously introduced, the
frequency of observations depends in general on applications and on the described
variable.

From a more probabilistic point of view, a time series can be defined from the
notion of stochastic process [20]:

Definition 4.0.1 A stochastic process is a parameterized collection of random
variables {Xt}t∈T defined on a probability space (Ω,F ,P) and assuming values in
Rn.

From the previous definition, it follows that a time series can be seen as a set of
observations xt, t ∈ T that represent the realizations of the random variable Xt,
each recorded at a specific instant of time t.
The time series is said to be discrete-time if the set T is a discrete set, continuous-
time otherwise.

If the random variables take values in R, then the time series is said to be
univariate. It is said to be a multivariate time series otherwise.

Since a time series is made up of one or more measurable characteristics of an
individual entity taken at multiple points in time, resampled SPNs have the typical
structure of a time series.
As first step, they can be then analysed separately, as a univariate time series,
taking as individual entity the single parameter monitored by a given SPN. But
each SPN can also be treated as a component of a tuple containing, at a given
timestamp, the set of observation recordered for all the monitored parameters,
considering the vehicle itself as an individual entity.
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Indeed, a l-dimensional multivariate time series of length n is a set of points

X = {X(tk) ∈ Rl, k = 1, . . . , n}

such that

• for j < k ⇒ tj < tk

• tk ∈ T = [a, b] , ∀k = 1, . . . , n

• X(t) ∈ Rl, ∀t ∈ T

If each SPN corresponds to a dimension of Rl, methods for multivariate time series
analysis can be applied to the dataset shown in Figure 3.7.

4.1 Univariate time series analysis
Definition 4.1.1 Let {Xt} be a univariate time series such that E(X2

t ) <∞.
Then its mean function is defined as

µx(t) = E(Xt) ∀t ∈ R

However, since usually in applications only a limited number of observations
x1, x2, . . . , xn is available, the sample mean is introduced,

x = 1
n

nØ
t=1

xt.

Definition 4.1.2 The covariance function is

γX(t, s) = Cov(Xt,Xs) = E (Xt − µX(t)) (Xs − µX(s))

∀r, s ∈ R
Finally, its correlation is given by

ρ(t, s) = Cov(Xt,Xs)
σtσs

Important properties of time series are ergodicity and stationarity [21], [20].
A time series is said to be erogidc if the sample moments computed on a limited
number of observations converge, as the number of observations grows, to the
corresponding moments of the population [21]. This property is obviously satisfied
if, for example, the expectations and the variances are constant ∀t.
Instead, a time series is said to be stationary if its internal structure does not
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change over time [20]. More formally, a time series is said to be strictly stationary
if the joint distribution of (xt1 , xt2 , . . . , xtn) is equal, for every h > 0, to the joint
distribution of (xt1+h, xt2+h, . . . , xtn+h) [20].

However this is a strong condition, so in practise the following less restricting
concept of stationarity is required [21]:

Definition 4.1.3 {Xt} is said to be weak stationary or stationary in the second
moments if it is mean and variance stationary.
A process is said to be mean stationary if

E(Xt) = µt = µ

that is, if it is characterized by constant mean.
A process is said to be variance stationary if

Var(Xt) = E((Xt − µt)2) = σ2 = γ(0)

is constant and finite for every t.

If the moments are well defined, then stationarity implies weak stationarity [20].
If {Xt} is (weak) stationary, the covariance between Xt+h and Xt can be written

as
Cov(Xt+h, Xt) = γX(t+ h, t) = γX(h,0) = γx(h) ∀t ∈ R

γX(h) is called autocovariance function (ACVF) at lag h [20].
In order to make comparable the strength of dependence over time, the autoco-

variance function can be normalized, obtaining the autocorrelation function (ACF)
[21]:

Definition 4.1.4 The autocorrelation function at lag h is defined as

ρ(h) = E [(Xt − µ)(Xt+h − µ)]
E [(Xt − µ)2] ∀t ∈ R

It is called autocorrelation because it represents the correlation between random
variables belonging to the same underlying stochastic process that, in the case of
(weakly) stationary process, depends only on the time lag h but not on time index.
It follows from the given definition that ρ(0) = 1 and, thanks to variance symmetry,
ρ(−h) = ρ(h) [21].
Limit bounds for the autocorrelation function are given by

−1 ≤ ρ(h) ≤ 1 ∀h.
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In applications, thanks to ergodic assumption, variance and autocovariances can
be estimated as [21]

γ̂(0) = 1
n

nØ
t=1

(xt − µ̂)2

γ̂(h) = 1
n

n−hØ
t=1

(xt − µ̂)(xt+h − µ̂) h = 1, . . . , n− 1

Previous expressions define consistent estimators for variance and autocovari-
ances. A consistent estimator for autocorrelation function is given by the sample
autocorrelation function [21]

ρ̂(h) =

n−hq
t=1

(xt − µ̂)(xt+h − µ̂)
nq
t=1

(xt − µ̂)2
= γ̂(h)
γ̂(0) h = 1, . . . , n− 1

Commonly, the estimated autocorrelation function is computed for different values
of h and plotted together with confidence interval to evaluate statistical significance
of correlations. The serial correlation coefficients for a certain number of consecutive
lags is called correlogram [19].
Because of symmetry, it is sufficiently then to consider h ≥ 0.
Present and future observations are in the same direction if a time series shows
positive autocorrelation, opposite direction for negative autocorrelation and it is
difficult to find temporal dependencies if it is close to zero.
Furthermore, correlograms can be used to identify specific components of a time
series [19]: for example, if data contains a trend on the long run, then the correlo-
gram will exhibit a slow decay as h increases. Analogously, it is possible to verify if
data has periodic components searching for a similar behaviour in autocorrelation
function plot. There exist several tests to determine if the observed autocorrelation
is statistically significant, such as the Ljung-Box test [19]. The null hypothesis H0
is that the time series consist of random variations, while the alternative one Ha is
that observations are not independently distributed but there is a serial correlation.
The test statistic is

Q = n(n+ 2)
hØ
k=1

ρ̂2
k

n− k

where n denotes the sample size and h is the number of lags to be tested.
Under H0, Q is asymptotically following a Chi-square distribution with h degrees of
freedom. Hence, for a given and a priori fixed significance level α, there is enough
evidence to reject H0 if

Q > χ2
1−α,h
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where χ2
1−α,h denotes the 1 − α quantile of the chi-squared distribution with h

degrees of freedom.

Even if correlogram inspection can be useful to identify dependencies, it should
be considered that consecutive lags could be statistically dependent: indeed, the
correlation between two observations with a temporal lag h > 1 could be influenced
by the correlation of these observations with the intermediate ones. This means
that time series tends to carry information from previous observations. For this
reason, the notion of autocorrelation function is extended removing the intermediate
dependencies, obtaining the partial autocorrelation function [19]:

Definition 4.1.5 The partial autocorrelation function at lag h is defined as

PACF (h) = E [(Xt − µ)(Xt+h − µ) | xt+1, . . . , xt+h−1]
E [(Xt − µ)2 | xt+1, . . . , xt+h−1] ∀t ∈ R

4.1.1 Trend and seasonality analysis
Autocorrelation and partial autocorrelation function can be useful tools for finding
the systematic patterns contained in a time series and then for inspecting station-
arity. Indeed, systematic patterns in a time series can be described by means of
the three main internal characteristic: trend, seasonality and cyclical components.
Usually the aim is to estimate these components, using autoregressive models,
to split the original time series into different components describing the general
underlying behaviour of data [22]. However, the identification of trend, seasonality
and cyclical components can be difficult because they can be obfuscated by random
noise (also called unexpected variations), a stationary time series representing
the irreducible error. It reflects unexpected stochastic variations that can not be
predicted by a mathematical model. For this reasons, they are also called residuals.
General trend can be defined as an upward or downward movement in the long
run. Sometimes, it can be difficult to detect because it can be obfuscated by other
components.
Seasonality represents instead repetitive and periodic variations.
Finally, cyclical changes are similar to seasonality but the occurrences of repetitive
movements is less frequent and they could be not characterized by a fixed period.
This component is usually considered as a part of trend.

A time series analysis can be seen as the series decomposition into trend Ft,
seasonal St and irregular component εt [19].

More in details, if the model is additive, then it can be written as

xt = Ft + St + εt

If instead it is multiplicative,
xt = FtStεt
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An additive model is appropriate when seasonal variations are independent on
the series value. If instead the amplitude of variations is proportional with the
series value, a multiplicative model is more appropriate. However, by applying a
logarithmic function it is possible to rewrite a multiplicative model as an additive
one.
For what concerns trend analysis, the aim is to estimate a component that is, in the
long run, monotonous. It could be not that easy to identify the trend component,
if time series contains some observations that can be considered outliers or errors.
For this reason, what is typically done for estimating trend component is smoothing
the time series [19]. A non-parametric method for trend estimation is the moving
average, defined as [19]

F̂t = xt−k + xt−k+1 + . . .+ xt + xt+1 + . . .+ xt+k
2k + 1

that is the average value considering only observations in the range t ± k. k is
chosen basing on data periodicity, known or inferred during exploratory analysis.
Replacing each observation with the mean of the 2k nearby observations, random
noise is removed. From the definition of the moving average it is possible to see
that it is characterized by its order m = 2k + 1, that shows an asymmetry. To
obtain a symmetric structure, it is possible to consider the second order moving
average, defined as [19]

2× F̂ 2
t = F̂ 2

t + F̂ 2
t+1

2
where

F̂ 2
t = xt−1 + xt

2
There exists also a weighted version of moving average, assigning to observation

close to t higher weights whereas lesser to farther away ones, that helps to obtain a
better smoothing.

Seasonal dependency is instead defined as correlation dependency at lag k
measured by the autocorrelation function. For this reason, it can be identified from
the correlogram and from the partial autocorrelation plot [23].

4.1.2 SPN autocorrelation analysis
The first step to analyse time series consists in visualizing the available data points.
According to the type of behaviour of SPNs all over the available observations, it
is possible to made a distinction in different groups. The described SPNs for each
group are shown in Figure 4.1.
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Figure 4.1: Time series plot for representative SPNs
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The first one is represented by SPN 975, corresponding to the estimated percent
fan speed. It does not exhibit any sort of trend or seasonality since it is fixed on
the same value except in really short periods of time. Some of SPNs in this group
could seem categorical variables, but from a closer look on their values, variations
typically associated to real valued variables can be seen. It is not clear if they are
actually due to the nature of the parameter or if caused by errors in measurements
or transmission. Anyway, probably they are not enough informative for further
analysis, but they can be used to check, once the results have been obtained, if
a change in their value corresponds to some specific events. Its correlogram is
expected to show high correlation at lags corresponding to the variations and not
significant correlations in the remaining lags.

The second group is represented by SPN 182, corresponding to the engine trip
fuel. Because of the nature of the SPN, it looks like to have a trivial very smooth
and linear upward trend, with the exception of a single evident point. This point
of discontinuity corresponds to the first observation taken in March 18, 2020, while
the last observation before it was dated back to January 22, 2020, meaning that in
the meanwhile the vehicle was used but no data was collected, intentionally or for
some failures.
Since it is an incremental value, its correlation is expected to be significant for
multiple consecutive lags. An analogous upward trend is shown by SPN 30694,
corresponding to the rear hitch position. Its identification is more difficult with
respect to the previous case because its trend is obfuscated by other components.
However, by smoothing the signal using a moving average, it is possible to see
its long term increasing behaviour. Its shape suggests that in a first period the
vehicle worked with the rear hitch in lower positions with respect to more recent
observations.

To obtain stationarity for both signals it is sufficient to apply a first order
differencing technique and replace the n points of each series with n − 1 points
corresponding to the differences between consecutive values. But since they are
considered, in the following, as components of the same multivariate time series,
the same procedure should be applied to each SPN. However SPNs 182 and 30694
are probably not significant for profiling usage patterns, hence it is preferable to
not consider them in the following analysis and keep other signals in their original
form, preventing overfitting.

Finally, the last group can be represented by the engine speed (SPN 190) or
by the previously introduced engine coolant temperature (SPN 110). From their
plot it is immediate to recognize seasonality inside data: indeed, there are a lot of
repeated movements reflecting the repetitive behaviour of working cycles. In this
case, the correlogram is expected to have some peaks and not significant correlation
for many consecutive lags. The expected difference between the two correlograms
is the frequency of peaks: indeed, the engine coolant temperature has cyclical
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behaviour repeated once per working cycle, while the engine speed is more likely
to cyclical vary also inside a given working cycle.

The correlograms obtained from data are shown in Figure 4.2. The behaviour
is quite coherent with the expected one. Indeed, the first two SPNs show peaks
at lags corresponding to signal variations from their fixed value. SPN 182 and
30694 correlograms confirm the trivial dependence among consecutive values. The
last two SPNs have an initial high autocorrelations and some peaks that reflect
their cyclical behaviour. However, most of them are not statistically significant
according to the 95 percent confidence interval.

Figure 4.2: Correlograms for representative SPNs
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Finally, the partial autocorrelation function is shown in Figure 4.3. As it is
possible to see, most of the higher autocorrelations shown in Figure 4.2 are due to
influence by intermediate values. Indeed, partial autocorrelation is quite low for all
SPNs, with the exception of the first few lags.

Figure 4.3: Partial Autocorrelation plots for representative SPNs

To summarize:

• There is a group of SPNs (namely SPN 182 and 30694) with trivial trends that
do not add much information for the analysis. Hence, they can be ignored
since they are not significant for usage patterns profiling.

• There is a group of SPNs that are fixed on a single value with the exception
of really short intervals of time: the time deltas between the timestamps in
which the signal changes its value correspond to lags characterized, in the
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correlogram, by a high and significant correlation, as can be seen for SPN 975
and 31391 in Figure 4.2. They are probably not enough informative for the
following analysis, but they can be used in some specific applications since a
change in their values could represent a specific but for the moment unknown
event or a malfunction tell-tale.

• The largest group of SPNs is characterized by a strong seasonality due to
working cycles. As it is possible to be seen for SPN 110 and 190 in Figure
4.2, there are some oscillations in the correlogram reflecting seasonality, but
they are not significant since they are almost at every lag contained inside
the 95% confidence interval. In both the presented cases, it is possible to
recognize seasonality in the data inspecting Figure 4.1. For the engine coolant
temperature the interpretation is quite simple: when the vehicle is turned on
and the first observation is taken, the engine is cold and then, going on with
the work, it warms up. For this SPN, the cyclical component is repeated once
for working cycle. For what concerns the engine speed instead, it is possible to
notice that there are several repeated movements but in shorter periods with
respect to the previous case: indeed, when the vehicle is turned on and it starts
to move, the engine speed is expected to rapidly grow and then decreasing
when the cruising speed is reached or when the gear is changed. Hence, the
cyclical component is repeated several times in the same working cycle. For
analogous reasoning, the same seasonality behaviour is shown by the engine
speed (SPN 183) and the engine percent load (SPN 92).

• Most of SPNs parameters have low autocorrelations with wide lags, meaning
that the time series does not exhibit a notable autocorrelation persisting for
long lags. Excluding SPNs 182 and 30694 for the reasoning explained above,
analysing up to 200000 consecutive lags, it is possible to see that all the
remaining SPNs show not significant correlation after 10000 lags.
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4.2 Multivariate time series analysis
Once SPNs have been individually studied, it is possible to see if there exist
dependencies among different parameters and how they influence each other since
they are part of the same system.
This can be done first by analysing cross-correlation of SPNs pairs and then building
a vector autoregressive (MVAR) model for multivariate time series to investigate
Granger causality.

4.2.1 Cross-correlation analysis
The concept of cross-correlation has been developed both in signal processing and
statistics.
In the former, it can be used to transform one or more signals in order to inspect
them in an altered perspective [24]. For instance, the cross-correlation plots can
make easier the identification of hidden signals in data.
From a statistical point of view instead, cross-correlation can be seen as a measure
of association between time series. More in details, it is a common practice to shift
one curve with respect to the other in order to inspect dependencies even if the
change of a parameter affects the other with a certain delay. The number of data
points that the first signal is shifted is called lag [24]. Hence, the cross-correlation
is defined as it follows [25]:

Definition 4.2.1 Given two time series xt and yt both composed by N observations
with mean respectively µx and µy, the cross-correlation at lag h is defined as

τx,y(h) = σx,y(h)ñ
σx,x(0)

ñ
σy,y(0)

where σx,y(h) is the cross-covariance function,

σx,y(h) = 1
N − 1

NØ
i=1

(xt−h − µx)(yt − µy)

From previous definition it is possible to note that, since σx,x(0) = σ2
x and

σy,y(0) = σ2
x are the variances of each time series,

τx,y(0) = σx,y(0)
σxσy

is the Pearson correlation between the two variables [25].

The Pearson correlation between each pair of SPNs is graphically displayed in
Figure 4.4, exploiting the symmetry of the correlation function.
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Figure 4.4: Pearson correlation between SPNs

As it is possible to see, there is a group of strongly positive correlated features
composed by engine parameters, namely SPN 183, 190 and 30000, monitoring
respectively the engine fuel rate, the engine speed and the engine percent load.
They are also strongly correlated to another parameter, not directly connected to
the engine, the tank fuel level (SPN 32061). Since they provide almost the same
amount of information, to avoid multicollinearity issues SPNs 183, 30000 and 32061
can be removed, considering only the engine speed in the following analysis.

The same reasoning holds for spn 30694 and 182, representing respectively the
rear hitch position and the engine trip fuel. However, since this two features exhibit
a trivial trend as it was previously noticed, both of them should not be considered.

The remaining SPNs are characterized instead by low correlations.
However, computing correlation separately for each SPN is not sufficient since

data are heterogeneous [26], meaning that is possible to identify different groups of
variables. Indeed, there are engine parameters (namely SPN 94, 110, 182, 183, 190,
30000), parameters referring to vehicle attachments and working accessories (namely
30694, 30789, 31800), while the transmission selected gear, the estimated percent
fan speed, the amount of particulate C matter method and the fuel tank level can
be treated separately. Analysing the correlation between groups of parameters,

50



Time Series Analysis

called between-group correlation, it is possible to study how a group of variables
affects another one. The between-group correlation can be obtained computing
the average of the variables belonging to the same group and then computing the
Pearson correlation between the obtained average series of different groups [26].
Results are shown in Figure 4.5.

Figure 4.5: Between-group correlation
The figure represent the correlation between engine parameters (denoted by engine par),
the group referring to vehicle’s attachments and working accessories (denoted by working
acc) and the transmission selected gear, the estimated percent fan speed, the amount of

particulate C matter method and the fuel tank level.

As it is possible to see, the engine parameters are strongly positively correlated
with the fuel tank level as already noticed as result of Person correlation in Figure
4.4. However, the between-group correlation analysis highlights a previous not
noticed negative correlation between engine parameters and the SPNs referring to
vehicle’s attachments and working accessories: this could seem a contradiction, since
to higher charge pressures and digging depths should corresponds higher engine
percent load and engine speed values. However, according to domain experts, the
result is coherent with the tasks performed by the vehicle under analysis: indeed, as
previously introduced, the vehicle is not actually working while data are collected.
Hence such a behaviour could be due to the fact that, when the vehicle is moving or
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moving faster, the rear hitch is raised to higher positions. However, for a actually
working vehicle, these groups are expected to be probably positively correlated.

For strictly positive lags instead, the behaviour of cross correlation is shown
in figure 4.6. Due to computational costs, it is computed and displayed for 2000
consecutive lags, corresponding to a maximum delay of about half an hour. This
value is adequate to describe cross correlation between parameters since it is slightly
higher than the average length of working cycles. Furthermore, the cross correlation
for a limited portion of the dataset has been analysed also for lags greater than
2000, showing correlations close to zero also for higher lags.

The first one represents the cross correlation between SPN 190 and 183, but
it also summarizes the behaviour of the cross-correlation for all the other highly
correlated parameters in the same group. As it is possible to see, correlation at
lags 0 is quite strong and persists for several lags.

The second one describes the correlation between the parameters which constitute
the second group of highly correlated features. In this case, the elevate correlation
persists for all shown lags.

The last two plots summarize the general behaviour of not correlated SPNs:
indeed, in this case the cross correlation tends to 0 as the number of lags increases
or it is about constant on its initial negligible value.

To summarize cross correlation general behaviour, it is possible to see that for
most pairs with positive (resp. negative) correlation, the cross correlation exhibits
a downward (resp. upward) trend as the number of lags increases and tends to 0,
with different slopes depending on the considered pair. Sometimes it shows smooth
and not significant oscillations. In few isolated cases the cross correlation is instead
almost constant. In any case, it is possible to say that if the correlation at lags 0 is
negligible, then it is also negligible for higher lags.
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Figure 4.6: Cross correlation plots for representative SPNs
The red line represents the 0 value, while the light blue ones denote the lower and the
upper limit of cross-correlation, respectively −1 and +1.

4.2.2 Granger causality analysis
Finding causality between components of a multivariate processes is of particular
interest. The testable definition of causality was introduced by Granger and first
applied in economics studies [15]. The definition is based on the predictability of a
term of time series thanks to the information contained in past terms of another
one. In order to give the formal definition, it is necessary to introduce the concept
of multivariate autoregressive model (MVAR):

Definition 4.2.2 Given a l-dimensional multivariate time series of length n
X = X(tk) ∈ Rl, k = 1, . . . , n, where X(tk) = (x1,t, x2,t, . . . , xk,t), a multivariate
autoregressive model of order p is a linear relationship that allows to write X(tk)
as a linear combination of the p previous values of the multivariate series:

X(tk) = A1X(tk−1) + A2X(tk−2) + . . .+ ApX(tk−p) + Ô(tk). (4.2)
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Ô(tk) = (Ô1(tk), Ô2(tk), . . . , Ôl(tk)) is a vector of noise process samples at time tk
representing the error term. Its covariance matrix V can be expressed as

V = Ô(tk)Ô(tk)T =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
... ...
0 . . . 0 σ2

l


where σ2

i is the variance of the ith component of Ô(tk), ∀k. V represents the residual
variance not explained by the model. In applications, it is possible to obtain only
an approximation of V , denoted by V̂ .

The MVAR model coefficient for each lag h is a l× l matrix that can be written
as

Ah =


A1,1(h) A1,2(h) . . . A1,l(h)
A2,1(h) A2,2(h) . . . A2,l(h)

... ...
Al,1(l) . . . Al,l−1 Al,l(h)


For all h = 1, · · · , p, this matrix components need to be estimated. However,

before starting the fitting procedure, it is necessary to slightly modify the original
time series components: indeed, each signal should be standardized, subtracting
from each observation the signal temporal mean and dividing by its temporal
standard deviation. Then, the estimation of model parameters is an extension of the
classical technique for univariate autoregressive model parameters estimation based
on the Yule-Walker algorithm [15], requiring the computation of the correlation
matrix R of the system up to lag p. In order to do that, both side of equation (4.2)
are multiplied by X(tk+s) for s = 0, . . . , p and expectations are taken:

Ri,j(s) = 1
N

NØ
k=1

xi,txj,t+s

Assuming that the noise is indipendent on the series, the following set of linear
equations, called Yule-Walker equations, is obtained:

R(0) R(−1) . . . R(p− 1)
R(1) R(0) . . . R(p− 2)
... ... ...

R(1− p) R(2− p) . . . R(0)



A(1)
A(2)
...

A(p)

 =


R(−1)
R(−2)

...
R(−p)


and

V̂ =
pØ
j=0

A(j)R(j)
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Solving these equations, coefficients can be finally estimated.

To find the optimal model order instead, several criteria can be used. They are
commonly based on the minimization of a cost function consisting of two terms:
one representing the reward for minimizing the residual variance while the second
one is a penalization term for too high model orders. For example, the Akaike
information criterion (AIC) at order p is defined as

AIC(p) = log[det(V̂ )] + 2pl
2

N

The Bayesian information criterion (BIC) instead is based on the minimization of
the function

BIC(p) = log[(V̂ )] + log(N)pl
2

N

while the function for the Hannan-Quinn information criterion (HQIC) is

HQIC(p) = log[(V̂ )] + 2 log(log(N))pl
2

N

and finally, for the Akaike’s Final Prediction Error, the minimization function is
given by

FPE(p) = log[(V̂ )] +
A
N − pl + 1
N − pl − 1

Bl

This procedure is applied to build a MVAR model fitting the available data.
The selected lags according to each criterion are summarized in Table 4.1.

Criterion Optimal lag (p)
AIC 80
BIC 28
HQIC 80
FPE 38

Table 4.1: Optimal MVAR order according to AIC, BIC, HQIC and FPE

Lower order models are in general preferred in order to prevent overfitting.
Hence, a order equal to 28 is selected to fit the model and to study Grenger
causality.

Since Granger causality was originally defined for the bidimensional case, lets
consider two univariate time series x(tk) and y(tk), k = 1, . . . , n. However, the
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same arguments apply also to higher dimensional situations and can be easily
generalized.

To predict a value of x(t) it is possible to build a model using p previous values
of x only, getting an error Ô:

x(tk) =
pØ
j=1

AÍ
1,1(j)x(tk−j) + Ô(tk)

However, if the two signals are considered as components of a multivariate time
series, from equation (4.2) it is possible to see that the value of x(t) can be predicted
using also the p previous observations of y, obtaining another prediction error Ô1:

x(tk) =
pØ
j=1

A1,1(j)x(tk−j) +
pØ
j=1

A2,1y(tk−j) + Ô1(tk) (4.3)

Then, y is said to Granger cause x if the variance Ô1 is smaller than the variance
Ô.

From this principle, formulated by Granger, it is possible to define the Granger
causality index [15]

GCIy−→x = log Ô1

Ô

This definition can be extended to quantify directed influence from a component
xj to another one xi of a l multivariate time series considering l and l−1 dimensional
MVAR models [15]. Indeed, first the model is fitted on the whole set of components,
obtaining a given residual variance V̂i,l(t). Then, a l− 1 dimensional model is fitted
removing from the components the jth one, obtaining a variance V̂i,l−1(t). The
Granger causality index is then defined as

GCIj−→i(t) = log V̂i,l(t)
V̂i,l−1(t)

From definition, it follows that GCI ≤ 0 since the variance of the l-dimensional
system is always lower than the residual variance of a l − 1-dimensional one.

To test if a component x Granger-causes another one y, a Granger causality
test can be performed. Considering the expression in equation (4.3), a Granger
test is a F-test carried out to verify if there is enough evidence to reject the null
hypothesis H0 : A2,1 = 0, that is non-causality, while the alternative hypothesis is
that y Granger causes x. The unrestricted model will be the one including also
previous observations of y, while the restricted one will be the one including only
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observations of x. Hence, it is possible to compute the F statistic as

F = RRSS − URSS
URSS

A
n− p
p

B

where RRSS is the restricted model’s residual sum of squares, URSS is the
unrestricted model’s residual sum of squares, n is the sample size and p is the
number of considered lags. Under H0, F follows a Fisher distribution F(p, n− p).
Hence, for a given and a priori fixed significance level α, there is enough evidence
to reject H0 if

F > F1−α, p, n−p

where F1−α, p, n−p denotes the 1−α quantile of the Fisher distribution with (p, n−p)
degrees of freedom.

As previously introduced, the Granger causality test is performed considering
a 28-order MVAR model on each pair of SPNs. The p-values of the test results,
considering as significant level α = 0.05, are displayed in Figure 4.7.

Figure 4.7: p-value of Granger causality test for MVAR(28)
The element (i, j) of the displayed matrix represent the p-value result at significant level
α = 0.05 of the Granger test with null hypothesis H0: "j does not Granger cause i".
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In a statistical hypothesis test, the p-value represents the probability that a
value at least as large as the test statistic will have occurred if H0 is true [27].

The element (i, j) of matrix dispalyed in Figure 4.7 is the p-value of the test
with null hypothesis H0: j does not Granger-causes i. As it is possible to see, there
is enough evidence to reject H0 for most SPNs pairs, meaning that a statistically
significant causality among SPNs at the considered lag can be assumed until there
is proof to the contrary. However, there are also some cases in which the test fails to
reject H0. For example, the transmission selected gear is caused by all parameters
related to the engine but there is no enough evidence in data for saying that it is
Granger caused also by the charge pressure and the fuel tank level. Analogously, it
is not possible to say that the engine trip fuel is caused by the estimated percent
fan speed and by the rear hitch position. This seems quite obvious conclusions, but
as said by Granger himself in his Nobel lecture, "Of course, many ridiculous papers
appeared", referring to the use of Granger causality test for fields different from
economics. Nevertheless, it remains a common method for time series causality
analysis.
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Chapter 5

Usage patterns
identification

As previously introduced, the expected outcome of this thesis is to identify different
usage patterns in data to support further analysis and maintenance. This can be
reformulated as a classical unsupervised clustering task. Indeed, cluster analysis
consists in dividing a set of items into homogeneous and well separated groups or
clusters [28].
Hence, in the first part of the chapter, the main principles about clustering are
presented. In particular, the K-Means algorithm and the silhouette analysis
for clustering evaluation are described. Then, two different approaches for usage
patterns identification are presented. The first one exploits the data synchronization
performed in previous sections, considering each line of the dataset as an item
to be clusterized. However, this approach does not take into account the time
relationship between observations, treating each data point in isolation. The second
method, instead, has the main advantage of considering the signals in their original
sampling rates, avoiding time synchronization. It involves time series segmentation
into subseries and the application of cluster analysis on suitable features extracted
from each segment.

5.1 Clustering fundamentals
Cluster analysis is one of the most widely used techniques for data exploration [1].
It consists in grouping similar entities together in such a way that the similarity
within data in the same cluster and the dissimilarity between points belonging to
different groups are maximized.

If C1, C2, . . . , CK denote clusters, for most of applications the following properties
are required:
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• Clustering is complete, in the sense that each observation belongs to at least
one cluster:

C1 ∪ C2 ∪ . . . ∪ CK = {x1, x2, . . . , xn} (5.1)

If property (5.1) does not hold, clustering is said partial.

• Clustering is exclusive, in the sense that each observation belongs to no more
than one cluster

Cj ∩ Ci = ∅ ∀j /= i (5.2)

If property (5.2) does not hold, clustering is said non-exclusive.
If the hypothesis of exclusive clusters holds, partitional clustering algorithms
are used.

The partitional algorithm selected for clustering is K-Means: it is fast, robust
and simple. The main drawback of this method is that it can not perform well
if data contains too much outliers or noisy points, if the expected clusters are
overlapping too much or if they are characterized by not globular shapes or different
densities [29]. However, in this application data are not expected to be particularly
noisy, since they have been downsampled in the first part of the work. In addition,
since the states are expected to be well separated, globular shapes hypothesis seems
to be correct. It has been selected since it is easy to perform and leads to good
results in many applications [30]. Another possible choice, not used in this thesis
work, is agglomerative hierarchical clustering: it has the advantage of being able
of recovering a hierarchy in data (if any) and does not require the user to provide
the number of clusters as input to the algorithm [31]. However, in this application
there is no particular evidence to support the hypothesis of any hierarchy in data.

Other algorithms commonly used are K-medoids and DBScan. With respect to
K-means, the former is more robust to outliers but is more expensive [29]. The
latter is a density-based clustering technique able to handle non globular shapes
and different density clusters, but once again is more complex and requires the
tuning of two hyperparameters [28].

Hence, despite its simplicity, K-Means is considered one of the universal clustering
algorithm that can be applied to large dataset, can be parallelized and distributed
and can be used in several contexts and real applications [30]. For these reasons,
K-Means has been employed in this applications. However, as future work, the
choice of the employed algorithm can be optimized, both analysing and validating
results with domain experts, both employing R built-in function available in the
library clValid 1 package for simultaneously clustering data and validating results
by means of different internal indexes, in a sort of brute force approach.

1clValid
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K-Means is a well-known partitioning method that associates each cluster with
a centroid [1]. Then, it assigns each point to the cluster with the closest centroid
according to the distance specified by the user as a parameter of the algorithm. In
the following, the Euclidean distance have been used. The algorithm, described in
Algorithm 1, is quite simple but requires to know the number k of clusters a priori:
however, in common applications, it is not always known. It is possible to tune the
algorithm maximizing several quality measures, among which the most popular
one is silhouette score, introduced in the following.

The k-Means algorithm starts choosing randomly k points as centroids: since it
is an iterative procedure, it is quite sensitive to initial starting conditions, meaning
that produced clusters may vary from one run to another. Then, at each iteration
it assigns points to the cluster with closer centroids and recomputes centroids
(typically as the mean of the points in the cluster) in order to update them on the
base of the new configuration of points. This procedure is ideally repeated until
centroids do not change anymore from one iteration to the next one, that means
convergence. It can be proved that this situation is reached after a finite number
of iterations [30]. However, in common applications it is sufficient to stop the
algorithm when it is close to convergence, forcing it if the centroids variations from
an iteration to the next one is under a certain tolerance threshold. In this way, the
algorithm usually stops after few iterations, since most of convergence happens in
the first ones [30]. However, the obtained result is not necessarily a global optimum,
but it could be a local one since it depends on the centroids initialization [30].

Algorithm 1 K-Means algorithm pseudo-code.
Input: Number of clusters K and dataset
Output: K complete and exclusive clusters
1: procedure K-Means(k, dataset)
2: Randomly select k points as initial centroids.
3: repeat:
4: Form k cluster by assigning all points to the closest centroids
5: Recompute the centroid of each cluster
6: until the centroids don’t change

return Clusters C1, C2, . . . , Ck
7: end procedure
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K-Means algorithm is an heuristic approach to minimize intra-cluster distances,
while it maximizes inter cluster distances: it is an optimization problem whose
objective function or clustering criterion

F : PK(Ω) −→ R

{C1, C2, . . . , Ck} −→ F ({C1, C2, . . . , Ck}) =
kØ
i=1

Ø
xj∈Ci

||xi − xi||22
(5.3)

is called square error criterion, where PK(Ω) denotes the set of all the possible
partitions of the input dataset into K non-empty clusters, xi,j is the j-th observa-

tions of the i-th cluster and xi = 1
|Ci|

kiq
xj∈Ci

xi ∀i = 1, . . . , k is the centroid of the

i-th cluster [1].
As previously introduced, one of the main drawbacks of the described algorithm

is that the number of clusters need to be known. In common applications, since
clustering is often used for understanding data in a unsupervised context, the
number of clusters is unknown. In these cases, silhouette analysis can be used to
measure the goodness of a clustering structure without any external information.
To compute its value, after that data are grouped into k clusters, for each item xi
the following quantity are computed:

• the average dissimilarity a(i) of xi with all other data within the same cluster:
the smaller is this value, the better is the assignment of xi to its cluster. For
item i in cluster Ch it is defined as

a(i) = 1
|Ch| − 1

Ø
j∈Ch,i /=j

||xi − xj||2

• the lowest average dissimilarity b(i) of xi to any other cluster of which xi is
not a member. For item i in cluster Ch it can be computed as

b(i) = min
k /=i

1
|Ck|

Ø
j∈Ck
||xi − xj||2

The second nearest cluster of item xi,

j∗ = arg min
j/=i

 1
|Ck|

Ø
j∈Ck

||xi − xj||2


is called neighbouring cluster.
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Then the silhouette of xi belonging to cluster Ch is defined as

s(i) =


b(i)− a(i)

max{a(i), b(i)} , if |Ch| > 1

0, if |Ch| = 1

From definition, it follows that the silhouette takes values in the interval [−1,1].
When the silhouette takes values close to 1, it means that the cluster is well
separated. On the other hand, values close to 0 describe the situation in which the
given point is characterized by a tiny margin from the decision boundary between
the cluster to which it is assigned and another one. Finally, a negative silhouette
value indicates instead that the point might have been wrongly assigned.

Computing the average of s(i) over all available data points it is possible to
obtain a measure of how closely clustered the data in the same group are, while
the overall average of s(i) gives a measure of how properly data have been grouped
considering the entire set of data points.

5.2 Clustering by value
The first method applied to identify vehicle’s states is clustering by value. Since
data have been synchronized, it is possible to consider each record of the dataset
as a point for clustering. This method focuses on the value of the single points
instead of considering the general trend since each point is taken in isolation as
an item to cluster. The main advantages of this method are that it is a classical
approach, easy to be performed. On the other hand, it does not take into account
the temporal order of observations.

Feature selection is performed coherently with Chapter 4 conclusions: neglecting
strongly correlated features and not informative SPNs, the parameters considered
in the analysis are the engine coolant temperature (SPN 110), the engine speed
(SPN 190), the engine fuel delivery pressure (SPN 94), the transmission selected
gear (SPN 524) and the charge pressure (SPN 30789).

Since the dimensionality of the dataset is limited, no dimensionality reduction
is needed. On the other hand, since K-Means involves distances, in order to make
comparable different quantities, the dataset is standardized, applying to each signal
the Z-score normalization:

z(tk) = x(tk)− µx
σx

Then, K-Means algorithm can be applied to the obtained dataset. In particular,
silhouette analysis is performed to identify the optimal number of clusters: hence
the k-Means algorithm is run for a number of clusters varying from 2 to 9 and
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the best value is the one that maximizes the silhouette score. Silhouette scores
obtained for each value of k, summarized in Table 5.1, are graphically displayed in
Figure 5.1.

Number of Clusters Silhouette score
2 0.786
3 0.742
4 0.761
5 0.769
6 0.7745
7 0.775
8 0.656
9 0.653

Table 5.1: Silhouette score for each number of clusters obtained performing
clustering by values, varying the number of clusters from 2 to 9.

Figure 5.1: Silhouette values for each number of clusters obtained performing
clustering by values, varying the number of clusters from 2 to 9.

For k = 2 the silhouette score reaches the maximum value, close to 0.8, meaning
that partitioning all data points in just two groups might be a right clustering.
However, the silhouette score represents only quantitative measure for selecting
the best number of clusters, but it could be a biased measure if used to validate
obtained results. Since this application is an unsupervised problem, no additional
information about the ground truth values is provided. In this cases, the final cluster
results should be validated by a domain expert or by qualitative considerations
about parameters distribution, separately in each cluster.

Finally, applying the K-Means algorithm with k = 2, data points are divided
into two groups, whose number of records are summarized in Table 5.2.
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Cluster Number of records
1 255036
2 39229

Table 5.2: Number of records in each cluster obtained performing clustering by
values applying K-Means algorithm with k = 2

To interpret cluster results, some statistics are computed for each SPN in each
cluster.

As it can be graphically seen from Figure 5.2, SPN 190 is the more discriminant
factor among clusters. Indeed, low values of engine speed are associated with
cluster 1, while higher values are associated with cluster 2. The same structure
holds also for the engine load: this was trivially predictable thanks to the strong
positive correlation between SPN 190 and 30000. For the same reasoning, the same
conclusions hold for spn 32061 and 183.
The same general behaviour, even if with less precise boundaries, can be seen for
the engine fuel delivery pressure (SPN 94). For the remaining SPNs, no particular
differences in distributions can be noticed. The useful quantities to summarize the
signals behaviour within each clusters are reported in Table 5.3.

The highlighted differences of SPNs distributions among different clusters can
be seen thanks to violin plots, shown in Figure 5.3.

In conclusion, it is possible to say that cluster 2 contains observations charac-
terized by extremer values, indicating a higher workload, while cluster 1 contains
observations that are more likely to be collected during an idle phase or standard
working phases, without any sudden change in the vehicle behaviour. According to
the number of items in each cluster, it can be noticed that the vehicle is mainly
in idle or standard working state: it is coherent with the expected results, since
the vehicle under analysis is mainly used for testing devices and driver assistance
systems, as previously introduced. The result of this procedure is then to auto-
matically identify some thresholds, as the manually set ones used by the company,
to identify the vehicle’s states. However, it is not possible to make a comparison
with the ones actually employed by the company since they are mainly based on
SPNs not available for this application and other additional information provided
by digital input reports.
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Figure 5.2: Time series plot, highlighting clusters, for representative SPNs
Data points belonging to cluster 1 are displayed in violet, while points belonging to
cluster 2 are the yellow ones.
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SPN Cluster mean std min 25% 50% 75% max

94
1 145.9 2.4 36.0 144.0 146.0 148.0 156.0
2 144.9 3.2 130.0 144.0 144.0 148.0 156.0

110
1 67.9 11.3 9.0 72.0 73.0 73.0 77.0
2 70.0 9.9 13.0 72.0 73.0 74.0 77.0

182
1 11488.9 122.7 11320.5 11396.5 11457.5 11547.5 11751.5
2 11530.5 141.0 11321.5 11413.0 11500.5 11714.0 11751.5

183
1 3.7 0.9 0.0 3.2 3.4 3.8 18.8
2 9.5 3.5 0.0 7.1 8.9 10.9 38.7

190
1 722.2 100.2 0.0 637.3 666.0 830.5 1061.6
2 1400.8 259.3 1061.5 1201.8 1350.1 1533.6 2422.9

524
1 1 0.1 1.0 1.0 1.0 1.0 5.0
2 2.0 1.36 1.0 1.0 1.0 1.0 3.0

975
1 100.0 0.4 67.6 100.0 100.0 100.0 100.0
2 100.0 0.4 69.2 100.0 100.0 100.0 100.0

30000
1 28.5 6.2 0.0 24.8 25.9 28.9 109.1
2 43.1 11.1 0.0 35.9 41.1 48.4 109.2

30694
1 89.7 3.1 -16.8 88.1 88.2 89.4 106.9
2 90.8 3.6 87.4 88.2 88.6 96.1 96.9

30789
1 205.3 16.3 -24.4 199.6 207.8 213.1 267.5
2 208.1 11.1 19.0 202.9 208.0 216.3 263.7

31391
1 0.0 1.0 -8.7 0.0 0.0 0.0 93.8
2 -0.0 0.0036 -0.6 0.0 0.0 0.0 0.3

31800
1 14207.4 5389.2 -2255.4 16260.7 16260.7 16260.7 21184.7
2 10301.8 7808.2 -1928.2 64.3 16260.7 16260.7 18248.7

32061
1 0.2 0.5 -1.6 -5 e-46 1 e-136 1e-07 21.4
2 1.9 1.9 -1.3 1.2 1.6 2.4 25.0

Table 5.3: Difference in SPNs distributions between the two clusters obtained
performing clustering by values applying K-Means algorithm with k = 2

Mean is substituted by mode in case of SPN 524 which is a categorical variable
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Figure 5.3: Violins plot to highlight the differences in SPNs distributions be-
tween the two clusters obtained performing clustering by values applying K-Means
algorithm with k = 2
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5.3 Clustering extracting features in frequency
domain

As previously introduced, CAN data clustering is an unsupervised time series
clustering task. It is particularly challenging, since the addition of time order
among observations increases the dimensionality and the complexity of the problem
under analysis. Indeed, in a time series clustering scenario, typically the number of
features is extremely high, also due to the fact that the time dimension is taken into
account in the analysis [32]. In addition, the temporal order which characterize the
observations causes the features to be often mutually dependent or can introduce
some hidden features that may not be directly inspectable [32]. Finally, this kind
of data are unlikely to be associated with a label. Hence, in a time series clustering
problem is important to reduce dimensionality, extract significant features from
data and discover the hidden relationships between points [32]. In addition, as
highlighted in previous section, because of the high complexity, a cluster model
based only on data point values that does not take into account the temporal
relationship between items may be not sufficient.

There exist many different clustering algorithms and techniques for problems
involving time series, but most of them are not suitable for this kind of application
since they are tools developed for univariate time series clustering or for supervised
context [7].

A possible way to overcome this issue consists in computing different features
based on the series distribution and shape and use those as input variables for
clustering [7]. This approach is presented in the following: as first step, it requires
to break the time series into segments of a fixed length to be clustered. Since the
optimal length of segments is unknown and there exists no multivariate algorithm
to infer it, VALMOD algorithm [33], a scalable one dimensional approach for
discovering repeated patterns of variable length in data, is applied. The VALMOD
output will be, for each signal, a list of pairs associated with different lengths,
ranked by closeness of the two considered segments. Hence, taking into account
only the first distances for each signal and combining together the obtained results,
it is possible to find an approximation of the optimal segment length.
Then, features in the frequency domain are extracted from each segment: this
procedure allows to characterize the general shape of each window in terms of its
variations and their respective rapidity and amplitudes by inspecting the signals
spectral content.
The main advantage of this method is that there is no need to synchronize data,
since each feature is extracted separately for each dimension. However, to limit the
computational time required by VALMOD algorithm for finding repeated patterns
in ultrafine data when the range of variability of patterns length is pretty wide,
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data resampled at 1Hz are considered to determine the optimal segments length,
obtaining an approximation of repeated patterns for original data.

5.3.1 Time series segmentation: an application of
VALMOD algorithm

The problem of time series segmentation can be formulated as it follows [23]: find
a partitioning of a given time series X(t) into s internally homogeneous segments.

The searched segments are often characterized by the same length, even if there
exist some techniques for variable-length segmentation: one of them is based on
applying a cluster algorithm with the constraint of grouping in the same cluster
observations that are sequentially taken over time [23]. However, because of the
high complexity of the problem, for the sake of simplicity fixed length segmentation
is applied in the following.

In a multivariate context, several variables are taken into account and the
segmentation of each component need to be synchronized. Of course, because of
the hidden underlying model of the considered system, components are correlated.
If combining results obtained for few significant signals is not sufficient for correct
segmentation of the entire multivariate time series, what is typically done is monitor
only some principal components [34]. However, for the following analysis, it is
not necessary since satisfactory results are obtained without employing principal
components.

In order to find the optimal length of segments, the VALMOD algorithm is
applied separately to each significant signal. Indeed, it is a tool for discovering
repeated patterns in data without requiring the user to provide their length,
unknown in most of applications even to data domain experts. The algorithm
proposed in [33], given a univariate time series X(t), finds the subsequence pairs
with the smallest Euclidean distance of each length in the user provided range
[L,U ]. Formally, a subsequence is defined as it follows [33]:

Definition 5.3.1 Given a time series X ∈ Rn, a subsequence Xi,l ∈ Rl of X is
the subset of l sequential values of X starting from position i.

The subsequence pairs with smallest Euclidean distance are called motifs [33]:

Definition 5.3.2 Given two subsequences Xa,l, Xb,l of length l of the same time
series X ∈ Rn, Xa,l and Xb,l are called motif pair if and only if

dist(Xa,l, Xb,l) ≤ dist(Xi,l, Xj,l) ∀i, j ∈ [1,2, . . . , n− l + 1], a /= b i /= j.

The distances between a subsequence with all the other subsequences from the
same series are stored inside an ordered array, the distance profile. From it, it
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is possible to compute the matrix profile MP ∈ Rn−l+1 evaluating the minimum
value of every distance profile vector. The matrix profile contains the so called
exclusion-zone, heuristically set to l

2 , to avoid trivial matches of a pattern with
itself or with a largely overlapping one [33].

The computation of the matrix profile for the smallest subsequence length L
is the first step of VALMOD algorithm: indeed, it minimizes computational cost
exploiting the property that if the nearest neighbor of Xi,L is Xj,L, then probably
the nearest neighbor of Xi,L+1 will be Xj,L+1. But since this property holds only
with few lags shift, a new vector called lower bound distance profile is introduced,
containing the lower bound distance between Xi,l+k and Xj,l+k, ∀k ∈ [1,2, . . .] that
can help to prune the number of needed computations [33]: indeed, if a best-so-far
pair motifs is characterized by a distance d, it is sufficient to calculate the exact
distance only for segments with lower bound strictly smaller than d. In addition, a
maximum number p of segments taken into account is fixed: hence, it is sufficient
to check the inequality only for the first smaller p lower bounds. In the worst case,
only O(np) exact length at each iterations are computed [33].

The first step to evaluate the lower bound distance profile is defining the lower
bounding Euclidean distance: supposing to know the z-normalized Euclidean
distance dli,j of two sequences of length l Xi,l and Xj,l, it is possible to estimate the
distance dl+ki,j between the subsequences Xi,l+k and Xj,l+k finding a lower bound
function LB(d) such that LB((di,j)l+k) ≤ dl+ki,j , as shown in [33]. As highlighted in
the reference article, the main problem in estimation of z-normalized Euclidean
distance is that the mean and the standard variations change as the length of
the given sequence increases, hence µi,l+k and σi,l+k are unknown and treated as
variables [33]:

dl+ki,j ≥ min
µi,l+k,σi,l+k

öõõô lØ
n=1

A
X(i+ n− 1)− µi,l+k

σi,l+k
− X(j + n− 1)− µj,l+k

σj,l+k

B2

= min
µi,l+k,σi,l+k

σj,l
σj,l+k

öõõõô lØ
n=1

X(i+ n− 1)− µi,l+k
σi,l+kσj,l
σj,l+k

− X(j + n− 1)− µj,l+k
σj,l

2

= min
µÍσÍ

σj,l
σj,l+k

öõõô lØ
n=1

A
X(i+ n− 1)− µÍ

σÍ − X(j + n− 1)− µj,l
σj,l

B2

Since previous expression defines an unconstrained optimization problem whose
objective function is convex, it is possible to obtain the minimum value, that is
LB(dl+ki,j ), by solving the first order optimality conditions

∂LB(dl+ki,j )
∂µÍ = 0 and

∂LB(dl+k
i,j )

∂σÍ = 0
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Hence the lower bound function LB(dl+ki,j ) for the z-normalized Euclidean distance
between the considered segments can be written as [33]

LB(dl+ki,j ) =


√
l
σj,l
σj,l+k

if qi,j ≤ 0ñ
l(1− q2

i,j)
σj,l
σj,l+k

otherwise

where

qi,j =

lq
n=1

X(j+n)X(i+n−1)
l

− µi,lµj,l

σi,lσj,l

By evaluating the previous expression with all possible subsequences with length
l+ k and sorting results in ascending order, it is possible to speed up computations,
pruning the number of operations according to the previous described technique.

The implementation 2 provided by the authors of [33] has been adopted, obtaining
as final output a vector of variable-length matrix profile VALMP containing the k
closest motif pairs. It has the following structure:

• i-th sequence and its nearest neighbor

• their straight Euclidean distance

• their length-normalized Euclidean distance, necessary for ranking different
length motifs

• the motif lengths

The idea is to apply the described algorithm to the most significant SPNs in
order to find the lengths of the closest motifs and combine together the obtained
results for different SPNs to determine an approximation of the optimal segment
length for the multivariate time series.
The searched motif lengths range was determined thanks to domain experts, keeping
in mind that a too tiny time window would be not enough informative to support
the analysis, whereas if it is too wide it would be hard to identify usage patterns.
In other words, the segments obtained dividing the original series according to a
suitable length should be characterized by an homogeneous and recognizable usage
pattern. Hence the searched motif length ranges from 2 to 10 minutes. Since it is
a pretty wide range, data resampled at 1Hz are used to limit the computational
time.

2helios.mi.parisdescartes.fr/mlinardi/VALMOD

72

http://helios.mi.parisdescartes.fr/~mlinardi/VALMOD.html


Usage patterns identification

As first trial, given the results of clustering by value, VALMOD is applied only
to the engine speed signal (SPN 190). Results are summarized in table 5.4: as it is
possible to see, the best length for SPN 190 is 2 minutes. Then, VALMOD has
been applied to the SPNs that are not correlated with 190 and that are considered
significant for the analysis: however, for SPN 110 and 30789 no motifs sufficiently
close were found in the given range. Furthermore, since the goal of this analysis is
to inspect the spectral content of each signal, the transmission selected gear (SPN
524) is not considered because it is a quite constant SPN and then not suitable for
spectral analysis since all the information will be focus on lower frequencies. Finally,
the fuel delivery pressure (SPN 94) gives similar results to the ones obtained for
SPN 190, hence 2 minutes was selected as window size. Working cycles smaller
than 2 minutes were removed, losing about 10 minutes of data.

As result of the described steps, 2405 segments are identified.
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Offset1 Offset2 Normalized distance motif length (s)
950 94087 0.049898 120
9787 49225 0.051419 120
9788 49226 0.052060 120
9789 49227 0.052633 120
9790 49228 0.052927 120
9791 49229 0.053718 120
9792 49230 0.054584 120
9793 49231 0.054954 120
9794 49232 0.056010 120
9795 49233 0.057158 120
9678 30491 0.057262 120
9797 49235 0.057567 120
949 94086 0.058008 120
9796 49234 0.058313 120
9677 30490 0.058516 120
9798 49236 0.058993 120
9799 49237 0.060244 120
9694 22728 0.060320 120
9676 30489 0.060781 120
9804 120205 0.060918 120
9693 22727 0.061090 120
9786 49224 0.061358 120
9800 49238 0.061556 120
9692 22726 0.061773 120
9675 30488 0.061905 120
9691 22725 0.062418 120
9690 22724 0.063302 120
2358 97378 0.063559 120
2359 97379 0.063658 120
9805 120206 0.063910 120
9801 49239 0.064137 120
9689 22723 0.064292 120
2360 97380 0.064437 120
2357 97377 0.064486 120
7015 122379 0.064636 120
7016 122380 0.064644 120
9674 30487 0.064760 120
7014 122378 0.064795 120
2355 97375 0.064932 120
9688 22722 0.065310 120
7013 122377 0.065588 120

Table 5.4: Top 40 motifs obtained as output of VALMOD algorithm applied to
SPN 190 with sampling rate 1Hz
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5.3.2 Feature extraction

As introduced in previous sections, applying a Fourier Transform can be useful
to highlight, in the frequency domain, properties that would remain undisclosed
in the temporal domain. Indeed, a way to identify usage patterns is describing
the frequencies and the amplitude of signals variations in different segments and
Fourier coefficients describe how the signal is distributed over the frequencies.
As first step, SPNs with informative spectral content must be selected. In order
to see the spectral content of each SPN, the biggest working cycle was selected,
corresponding to almost 4 hours of work. For each segment in this cycle and for
each SPN, the spectrum (shown for significant segments and SPNs in Figure 5.4) is
inspected in order to identify SPNs with enough spectral content: they corresponds
to signals with enough variations within the time window of 2 minutes, such that
some aggregate values can be computed separately in their low, medium and high
frequencies. The spectral of signals characterized by slower variations instead shows
all its information in correspondence of frequencies close to 0: applying frequencies
analysis in this case is almost useless since the zero frequency, also known as DC
component, is equal to the temporal average value of the signal [11]. Indeed, the
information corresponding to zero frequency is commonly not interesting for what
concerns spectrum analysis and therefore the mean value of the signal should be
subtracted before applying the Fourier transform [35].

There are two main reasons for which a signal is not suitable for analysis in
frequency domain, described in the following. The first one is the nature of the
signal: it is the case of transmission selected gear (SPN 524), of the estimated
percent fan speed (SPN 975), of the digging depth (SPN 31800) or of the amount of
particulate matter C method (SPN 31391). These signals, characterized by a more
constant behaviour due to the nature of the monitored parameters, should not be
analysed by means of frequencies analysis. The second reason is that the sampling
rate is not appropriate for describing the signal variations: this is the case of engine
coolant temperature (SPN 110, 1Hz), fuel tank level (SPN 32061, 9.6Hz), engine
fuel delivery pressure (SPN 94, 2Hz), engine trip fuel (SPN 182, 1Hz). For these
signals, a higher sampling rate could be a correct choice, even if the measurement
instrument should have an adequate sensitivity. Finally, SPNs with proper spectral
content are the engine speed (SPN 190, 50Hz), engine fuel rate (SPN 183, 10Hz),
engine load (SPN 30000, 20Hz), charge pressure (SPN 30789, 33.33Hz) and rear
hitch position (SPN 30694, 10Hz). Based on the conclusions drawn in the previous
analyses, just one parameter is considered in the following, the engine speed.
However, the following procedure is general and can be easily extended to mul-
tivariate clustering analysis if data with suitable form and spectral content are
provided.
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Figure 5.4: Spectrum in two different segments for SPN 31800, 94 and 190

According to frequencies distribution for each segment of the considered working
cycle as the two reported in Figure 5.4, the frequencies for SPN 190 are said to be
low from 0Hz to 5Hz, medium from 5Hz to 15Hz and high from 15Hz to 25Hz.

Then, the same procedure has been performed on the longest cycle as trial is
applied to each cycle characterized by a time length greater than 2 minutes: in
each segment the Fourier transform of the signal is computed and only positive
coefficients are considered exploiting the symmetry of Fourier coefficients for real
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signals. Then, for each subband, the power spectrum value [36] is computed: given
a discrete real-valued signal {xn}, it is defined as the square of the signal quadratic
norm [11]. If (α0, α1, . . . , αN) represent the signal discrete-time Fourier positive
coefficients, thanks to Parseval equality, its power spectrum value can be computed
as

||x2||22 =
nØ
i=0
|αn|2

The power value for low, medium and high frequencies is denoted rispectively
as power_lf, power_mf and power_hf. Then, to describe peaks values and their
frequencies, the maximum absolute value of Fourier coefficients and the correspond-
ing frequency in each subband are computed, namely peak_lf, peak_mf, peak_hf,
peakfreq_lf, peakfreq_mf and peakfreq_hf. Finally, the last feature considered is
the temporal mean of the signal, Tmean.

The distributions of the computed features are summarized in Figure 5.5.

Figure 5.5: Mean, standard deviation, minimum, quartiles and maximum of the
new features

Studying the correlation between the extracted features, it is possible to notice
that most of them are strongly correlated, as shown in Figure 5.6. For example, the
power in low, medium and high frequencies and the peak value for low frequencies
are characterized by high positive correlation, whereas the peak frequency in the
high subband is strongly negatively correlated with both the peak frequency in
the other subbands. Applying the same reasons as the ones employed in feature
selection for the previous clustering strategy, only the power in low frequencies
subband, the peak value for high frequencies and the mean of the signal over time
are considered.
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Figure 5.6: Correlation between new features extracted from engine speed (SPN
190)

5.3.3 Analysis of clustering outcomes
Once the previous described features have been computed for each segment, the
K-Means algorithm is applied to the resulting dataset. In order to find the optimal
number of clusters, silhouette analysis is again performed, by varying k from 2 to
19. Results, summarized in Table 5.5, are graphically displayed in Figure 5.7.

For k = 2 the silhouette score is close to 0.57, meaning that partitioning all
data points in just two groups might be a right clustering. As in the previous case,
silhouette score represents only a quantitative measure for evaluating unsupervised
cluster results. They should be, however, validated by a domain expert or by
considering other additional information: examples could be digital inputs report,
such as data collected by embedded devices installed on the vehicle, or spatial
information such as the ones collected by GPS to infer, as example, the speed of the
vehicle [4]. Another option could be collecting few measurements in a supervised
context and use their ground truth values to obtain a measure of how well the
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Figure 5.7: Silhouette score for each number of clusters obtained performing
clustering by features, varying the number of clusters from 2 to 19.

Number of Clusters Silhouette score
2 0.5693
3 0.4923
4 0.5003
5 0.4243
6 0.4301
7 0.4325
8 0.4440
9 0.4255
10 0.4343
11 0.4334
12 0.4264
13 0.4501
14 0.4415
15 0.4444
16 0.4475
17 0.4498
18 0.4449
19 0.4487

Table 5.5: Silhouette score for each number of clusters obtained performing
clustering by features, varying the number of clusters from 2 to 19.

build model fit new data.
Applying the K-Means algorithm with k = 2, data points are divided into two

groups, whose number of records are shown in Table 5.6.

79



Usage patterns identification

Cluster Number of records
1 2021
2 384

Table 5.6: Number of records in each cluster obtained performing clustering by
features applying K-Means algorithm with k = 2.

By averaging the feature values separately for each cluster, summarized in Table
5.9, it is possible to explore clusters characteristics and pairwise similarity. Indeed,
it can be seen that cluster 2 contains segments characterized by higher frequencies,
hence higher and rapid variations in time domain are expected. On the other hand,
cluster 1 is characterized by lower frequencies, corresponding to smaller and slower
variations in time domain.

Cluster power_lf power_mf power_hf peak_lf peak_mf peak_hf TMean
1 7.52 e+8 215282.6 56342.1 4.38e+8 939.0 122.9 1227.1
2 3.02e+7 22537.5 4456.1 1.4e+07 3453.1 97.1 740.1

Table 5.7: Mean value, computed separately for each cluster, of power and peaks
in low, medium and high subbands and temporal mean value.

In addition, some representative segments for each cluster are shown in Figure
5.9. As it is possible to see, clusters are well separated according to the segments
variations: indeed, cluster 1 (represented in red in Figure 5.9), corresponds to a
working vehicle since it is characterized by a higher workload and a more aggressive
driving style, probably with rapid acceleration and braking. On the other hand,
cluster 2 (whose segments are represented in green and gray in Figure 5.9) is
characterized by a more regular workload. It is possible to see the differences
between segments assigned to the two different clusters in the frequency features
distribution violin plots shown in Figure 5.8. Cluster 2 is characterized by lower
powers both in low, medium and high frequencies and characterized by lower
variations with respect to clusters 1. Furthermore, the same behaviour can be
noticed in the distribution of peaks in low frequencies. On the other hand, there are
no evident differences in peaks in high frequencies. Finally, cluster 1 is characterized
by a higher temporal mean, while it is possible to see two peaks in the temporal
mean distribution for segments belonging to cluster 2.

The presence of the two peaks can be explained considering that, according to
domain experts, at least two states should be identified: moving and idle. As can
be seen from Figure 5.9, the algorithm identified a higher workload and a more

80



Usage patterns identification

Figure 5.8: Violin plots showing the different distribution of frequency domain
features between the 2 identified clusters

regular one, but it is not capable of telling an idle state (in gray) from a moving
with regular driving style one (in green).

Indeed, since their variations are characterized by similar amplitudes and fre-
quencies, spectral analysis is not an adequate tool to discern one from another.
Indeed, the only visible difference between segments associated with this two usage
patterns is the mean value of engine speed: moving vehicle is associated with higher
engine speeds, whereas when the vehicle is in idle state, lower values are collected.
Hence it would be possible to make a distinction between these states by means
of suitable thresholds, as the ones identified as result from the previous clustering
strategy: since the mean value of engine speed for cluster representing regular
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Figure 5.9: Representative segments for each cluster (Engine speed, SPN 190)
Red segments, corresponding to cluster 2, represent the vehicle in overload. On the other
hand, segments in green and gray belong to cluster 1, corresponding to a low workload.
However, segments in green represents the vehicle while it is moving, while the ones in
gray describe idle states.

workloads was 722.2 rpm, if a segment is characterized by a lower mean value, it is
probably describing an idle state.
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Therefore, combining the two cluster procedures it is possible to obtain three
clusters, each characterized by a number of segments summarized in Table 5.8
and graphically represented in Figure 5.10: cluster 1 denotes working patterns or
overload periods, cluster 2 describes moving patterns or regular workloads and
cluster 3 contains segments associated with the vehicle in idle. As was expected,
most of observations belong to cluster 3: indeed, as previously introduced, the
vehicle under analysis is mainly used for testing devices and driver assistance
systems, but rarely employed for working. Hence, it is plausible that the vehicle
spent actually most of time in an idle state. On the other hand, observations in
cluster 1 corresponds to a vehicle that is in a stressed state, identifying an overload
usage. Finally, cluster 2 contains segments characterized by slow and not high
variations, denoting a regular moving or working vehicle.

Cluster Number of records
1 384
2 799
3 1222

Table 5.8: Number of records in each cluster obtained combining the two clustering
strategies

Figure 5.10: Number of segments in each cluster identified combining the two
clustering strategies
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The distributions of the features in the three different clusters can be visualized
in Figure 5.11.

Figure 5.11: Violin plots showing the different distribution of frequency domain
features between the 3 identified clusters

As it can be noticed, the distribution of features in cluster 3 is characterized
by less variations with respect to the one associated with cluster 2, typically more
centered on few values. In addition, it can be noticed how in some cases the
distribution of observations in cluster 2 is more similar to the one associated with
cluster 1, as for example in the case of the peak in medium frequencies, while
other features, such as the power in the medium frequency, are characterized by
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a distribution closer to the one associated with cluster 3. Cluster 2 represents,
indeed, an intermediate situation between the observations assigned to idle and
the ones associated with working patterns.

5.3.4 Result evaluation with NMEA 0183 messages data
As previously introduced, the problem under analysis is unsupervised. Hence, for
validating the results obtained with the described procedure, some extra information
are required: even if they have been already validated by domain experts, a
numerical score can be obtained considering National Marine Electronics Association
(NMEA) 0183 3 messages data .

NMEA 0183 is a one-way serial data communication protocol, used for sending a
subset of messages from the vehicle to external devices. This type of data contains
extra information with respect to the ones provided by CAN bus data, such as
the vehicle’s position in terms of latitude and longitude and the vehicle’s speed.
These quantities, computed by the GPS receiver, can be used for evaluating results
obtained in the previous sections. This type of information was not taken into
account in the first part of this work since it was available only during the conclusion
phase of this research. In addition, since GPS data are typically characterized by
high measurement errors [37], they are considered too noisy to be included among
input variables of a cluster algorithm. Even if they are only used for validation
purposes, it should be kept in mind that the reliability of GPS data affects also
the accuracy score obtained in the following. In addition, vehicle’s speed can be
used to validate idle state segments, but it is hard to make a distinction between
moving and working states basing on it.
With these premises, cluster results are mapped into idle and not idle class.

During data import phase, since for each NMEA 0183 message a quality binary
indicator is provided, messages characterized by quality indicator equal to zero are
neglected, since this values indicates an invalid data. In addition, also the number
of satellites in use is a parameter taken into account to select data with adequate
quality.

In Figure 5.12 it is possible to see the behaviour of the parameter speed over the
ground obtained from NMEA 0183 messages data. The collected speeds, ranging
from 0 to 35 km/h, are coherent both with the type of vehicle under analysis, a
heavy-duty vehicle expected to be characterized by quite slow movements, and the
kind of performed tasks.

3www.nmea.org
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Figure 5.12: Speed over the ground (km/h) obtained from NMEA 0183 messages
data

Computing the mean value of the vehicle’s speed in each segment and combining
this value with the number of non zero elements, it is possible to set a threshold to
distinguish idle states from moving ones. The labels obtained with the described
procedure are considered as ground truth values. The results can be evaluated
inspecting the following confusion matrix:

True labels
Idle Moving/Working

Cluster outputs Idle 1023 225
Moving/Working 199 958

Table 5.9: Confusion matrix for evaluating the obtained results using as ground
truth values the ones inferred using NMEA 0183 messages data

The accuracy score, defined as the ratio of corrected classified observations and
the total number of items to be clustered, reacheas a value equal to 82.37%. This
quantity does not focus on a class, but computes a value summarizing the overall
class prediction quality [38]. Accuracy can be considered as a good measure for
empirically evaluating the perform of the described method since the resulting
dataset is quite symmetric, consisting in 50.81% of segments assigned to idle class
according to GPS information and 49.19% to moving/working class.

For the sake of completeness, for evaluating separately the method with respect
to each class, also sensitivity and specificity are computed [38], for this application
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respectively defined as

sensitivity = Number of observations correctly assigned to Idle
Total number of Idle observations

and

specificity = Number of observations correctly assigned to Moving/Working
Total number of Moving/Working observations

The obtained values are

sensitivity = 83.72% and specificity = 80.98%

Hence, it is possible to conclude that the method seems to perform quite well
both considering the overall accuracy and the described measures separately for
each class. As previously introduced, these measures just give an indication about
the method performance, since it is not possible to make a distinction between
moving and working basing on the vehicle’s speed and because of the GPS data
measurement errors. In addition, by inspecting the wrongly assigned segments, it
is possible to see that in some cases there are rapid and multiple changes in the
engine speed, reaching also high values typically associated with a moving vehicle,
even if the vehicle’s speed is equal to zero for each observation recorded in the
considered segment. Such a behaviour can be due to GPS data reliability, but can
be also explained considering that the vehicle under analysis is used for testing
purpose. In this sense, speed is not a reliable parameter for evaluating results, since
high engine speed activity but with no movement associated can be considered as
an error. However, this scenario should rarely occur once the procedure is applied
to an actually working vehicle.
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Chapter 6

Autoencoder-based deep
learning for time series data
clustering

In the previous chapters, a clustering technique based on the identification of a set
of possible features is presented. However, because of the higher complexity of time
series clustering due to the high dimensionality of the problem, conventional data
analysis based on all the known features should be not enough. For this reasons,
in this section a more challenging problem is addressed, namely the detection
of hidden features in the available set of observations applying deep learning
techniques. Indeed, there could exists some hidden features, due to both exogenous
or endogenous factors, that cannot be directly detected. Their discovering allows
typically to build more accurate model and highlight some underlying phenomena,
but deep learning algorithms are designed for supervised problems, while time
series data are often unlabelled [32]. A possible strategy to overcome this issue
is presented in [32]. It is based on two consecutive stages: the former consists
in extracting some features from the original data to summarize the behaviour
of each segment to cluster. These features are used as inputs for a classical
clustering algorithm, applied to obtain observations’ labels and transform the
original unsupervised problem into a supervised one. Then, in the second stage, it
is possible to build an autoencoder-based deep learning model to predict the labels
of previously unseen data, taking into account the information given both from
known and hidden features. Following the describing procedure, the main issues
related to time series clustering are solved: in the first step indeed the unlabelled
data problem is overcome. In the last stage instead, neural networks are employed
to simultaneously reduce the problem dimensionality and discover hidden features.
The main drawback of this approach is that, since the classification neural network
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is trained on the previously obtained class labels, the procedure is deeply dependent
on the accuracy of unsupervised clustering results. Hence, it should be thought as
a tool for validating cluster outputs or to highlight the presence of hidden features
that should be included in the model, for example by inspecting items assigned to
different clusters by the two procedures, rather than a tool for classification.

The idea of this chapter is then to apply the second stage described in [32]
directly to the results obtained by clustering in the frequency domain: indeed,
thanks to quite satisfactory results of previous sections both according to domain
experts and with respect to GPS information, it could be a useful strategy to
discover interesting characteristics that have not been taken into account before.

6.1 Artificial Neural Networks and Autoencoders
The proposed procedure is based on Autoencoders, a particular type of artificial
neural networks (ANN).
Artificial Neural Networks are nowadays considered as one of the most advanced
tools in data science [39] and are inspired by the learning procedure in the human
brain. The structure of an artificial neural network is basically organized in different
layers, namely an input layer, one or more hidden layers and an output layer. Each
layer is characterized by nodes, also called neurons, used to represent the number
of features. The number of nodes in a given layer defines its size. Furthermore,
each node in the internal layers is equipped with an activation function (such
as sigmoid, softmax or tangent hyperbolic). Then, information in each active
neuron is mapped through links, also called synapses, from the input layer first
to the nodes in the hidden layers and then to the output layer, which provides
the result. The strength and the significance of the connections of each nodes is
given by the weight associated to each link. They are used to identify the most
important features to be considered. However, their values are typically unknown
but iteratively learned and updated through a process called law of learning [39],
basically consisting in solving an optimization problem. Indeed, during the network
training, at every iteration weights are repeatedly assigned and adjusted in order
to find the configuration that leads to the minimum training error. To find their
optimal value, at each iteration, errors are back propagated into the network from
the output layer towards the input one until the cost function is minimized and
the model is then trained. This method, called backpropagation, requires labeled
data to compare the output produced by the network with a ground truth value
and back propagating the error: hence, it is used in supervised context.
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Figure 6.1: Artificial Neural Network architecture diagrams
The artificial neural network shown in Figure 6.1 is composed by an input layer

consisting of 10 neurons, 3 hidden layers with respectively 9, 12 and 8 nodes and an
output layer characterized by 5 nodes.

The figure is obtained using the online tool NN-SVG.

However, autoencoders are a type of neural networks that can be used in an
unsupervised context since their output coincides with their input: the aim of
autoencoders is indeed to reproduce their input.
An autoencoder is composed by two parts: an encoder, that maps the input data x
into a lower dimensional set by identifying the most important features to describe
the original set, and a decoder that has the role to reconstruct the original input
from its reduced representation.
The output of the encoder is called latent-space representation and is an abstrac-
tion of the input data, a compress representation that allows simultaneously to
summarize data and discover essential information that could be not inspectable
in the original form [40]. Furthermore, decomposing the original data and then
recovering it by means of the couple encoder-decoder is a commonly used procedure
to remove surrounding noise [40].

From a mathematical point of view, an autoencoder network is a composition of
two non-linear functions: an encoder function f that takes as input a data point
x ∈ Rm and produces, as output, its latent-space representation h ∈ Rn, where
n < m, and a decoder function g that takes as input h and returns an output r.
The objective of the network is to minimize the difference between the input and r.
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More precisely, the relationship between input data and its latent-space representa-
tion can be written as [40]

h = fk(x) = σk0
1
W k

0 (fk−1(x)) + bk0
2

(6.1)

while the output can be written from its latent-space representation as

r = gk(h) = σk1
1
W k

1 (fk−1(h)) + bk1
2

(6.2)

where
• k > 1 is the number of hidden layers

• σ0 and σ1 represent activation functions. Commonly used choices are hyper-
bolic tangent, sigmoid or softmax function, depending on applications.

• W0, b0, W1 and b1 form the set of parameters that the model need to learn
through back propagation algorithm, respectevely for the encoder and decoder.
If W l

0 denotes the set of weights describing the strength of the links connecting
layers l − 1 and l, with l ≤ k, then W l

0 ∈ Rdl×dl−1 , where dl is the dimension
of data in layer l. In this case, since W0 is one of the parameters used to
characterize the encoder, data dimension is reduced from dl−1 to dl < dl−1.
With the same notations, b0 ∈ Rdl−1 . Since autoencoder networks are assumed
to be symmetric, the decoder will work analogously to the encoder but in the
inverse order. Hence, W l

1 ∈ Rdl−1×dl and b1 ∈ Rdl . Furthermore, the number
of layers and nodes of the decoder side will be the same of the encoding one
[32].

W0, b0, W1 and b1 are chosen in order to find the best possible configuration, that
is the one that optimizes a given loss function.
The aim of this type of analysis is to produce a latent-space representation of
the input data such that the more important features of the given dataset can be
extracted and used for further analysis.

There exists several types of auoencoders:
1. Basic autoencoder, characterized by an input layer with size |x|, a hidden

layer with size |h| < |x| and an ouput layer with size |r| = |x|.

2. Multilayer autoencoder, characterized by a number of hidden layers greater
than 1. They are used when additional internal hidden layers are required to
extract hidden features.

3. Convolutional autoencoder, in which the input is filtered for extracting only
some parts of it. They are mainly employed in image processing applications.

4. Regularized autoencoder for which some other factors are considered in feature
extraction and training, such as loss functions.
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6.2 Encode-decoder-based deep learning method
for time series clustering

As previously introduced, the method proposed in [32] is based on two phases,
namely label generation and encode-decoder-based clustering.

The steps for label generation are summarized in the following. Given a set of
time series segments,

1. The main features from the available set of data are extracted and used for
building the features vectors, denoted as f1, f2, . . . , fn, for each segment.

2. A clustering algorithm to be applied to the extracted features is selected. For
example, in [32], the conventional k-Means is used in this application. The
outcome of this step is to identify the different cluster groups.

3. The obtained cluster labels are used to assign each segment to a class, trans-
forming the given unsupervised problem into a supervised one.

This stage, summarized in Figure 6.2, has already been carried out in previous
chapters.

Figure 6.2: Labels generation main steps
The figure shows the main steps of labels generation, proposed in [32], referring to
previous chapters results. More in details, SPN 190 segments and their relative

previously obtained clusters are displayed.

Once the original unsupervised problem is mapped into a supervised one, encode-
decoder-based clustering, whose steps are described in the following and graphically
summarized in Figure 6.3 and 6.4, can be performed [32]. However, with respect
to the procedure proposed in [32], some modifications have been made. More in
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details, in this work, the autoencoder network training is performed separately
and independently from the class labels prediction: instead of building a neural
network that takes as input the features vector and the class labels and computes,
as output, a single floating value used then to predict the class label, in this
application an autoencoder is trained to transform the features vector into its
latent-space representation. Then, the latent-space representation is used as input
of a classification layer that produces as output a 3 dimensional vector, representing
a posterior probability distribution over classes labels. Finally, each segment is
assigned to the class for which the posterior probability is maximized.

With this procedure it is possible to train the autoencoder minimizing the Mean
Square Error (MSE), while the classification layer is trained using as loss function
the Categorical Cross Entropy (CCE), defined as

CCE(q, p) = −
Ø
x

p(x) log(q(x))

where p denotes the ground truth distribution, while q(x) is the predicted one.
These modifications allow to correctly treat the class label as a categorical

attribute, instead of predicting a floating value mapped then into a categorical
attribute as proposed in [32]. In this way it is possible to ignore the class labels
during autoencoder training, avoiding bias results, and, most important, it prevents
to make any mistakes introducing a not existing order relationship among classes
[41] due to the mapping to integers values.

Summarizing, the step followed for encoder-decoder based clustering are

1. Split data into training, validation and testing set.
In this application, the data split is performed in a stratify manner with respect
to the previously obtained class labels. As result, 1611 (66.66%) segments are
used to train the model, 531 (22.22%) to validate and 263 (11.11%) to test it.

2. Build an autoencoder neural network, with encoder side symmetric with
respect to the decoder one.
The details of the used architecture are described in the following.

3. Train the autoencoder on the train set and validate its hyperparameters on
the validation set.

4. Use the trained network to obtain the latent-space representation for extracting
the most important feature to summarize the input data, taking into account
also the hidden features.

5. The latent-space representation is the input of a classification layer, whose
output corresponds to a posterior probability distribution over classes labels.
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6. Assign each segment to the class for which the probability is maximized.

Figure 6.3: Main steps for extracting latent-space representation of input data

Figure 6.4: Main steps to classify segments based on the previous obtained
latent-space representation
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For what concerns the networks architecture, summarized in Figure 6.5, some
of the specification given in [32] have been followed. More in details,

• The nodes characterizing the input layer represent the input features. Hence,
in this application, the dimension of the input layer is 7.

• The encoder side is composed by 4 layers, with size respectively 100, 50, 20
and 3. The sizes decrease since one of the purpose for applying an encoding
function is to reduce the dimensionality of input data and the size of the
most hidden layer is equal to 3, the number of clusters identified in labels
generation.

• The activation function used for the hidden layers is the Rectified Linear Unit
(ReLu) defined as

ReLu(x) = max(0, x)

From definition, it follows that ReLu activation function returns a value in
the range [0,+∞) [42].

• By symmetry, the decoder side is characterized by the same structure of the
encoder one, but in the inverse order.

• The output layer is composed by a number of nodes equal to the size of input
data, 7 in this application.

Compiling the model, the closeness of the output to the input vector is measured
using the mean square error (MSE).

To compile the model, the Adam optimized has been chosen. It is a stochastic
first-order gradient based optimization algorithm, used when the objective function
is characterized by a high number of parameters or for solving noisy problems [43].
Furthermore, it has gained popularity because it has been proved that it achieves
good results in fewer iterations with respect to other commonly used stochastic
optimization methods [43]. It is based on adaptive estimation of moments using
bias-corrected moving averages, hence its name.

The chosen optimization algorithm works separately on batch of training data,
randomly selected and used for training until it exhausted the entire available
dataset, completing an epoch. Then, this procedure is repeated an user specified
number of epochs [44]. The number of epochs and the batch size represent some
of the model hyperparameters. The size of the batch should be large enough to
correctly approximate the behaviour of the entire dataset [44], but it has been
proven that bigger batch sizes lead to models that are hard to generalize [45].
Indeed, it is possible to see this behaviour inspecting the validation error associated
with a batch size of 1024, as the one suggested in [32], compared with the validation
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Figure 6.5: Encoder-Decoder based network architecture
The figure shows the architecture of the network trained for applying the
encoder-decoder-based deep learning method for time series clustering..

error in the case of the batch size selected for this application, 256. Decreasing the
batch size, the validation error get closer to the training error, meaning that the
model is less overfitting the training data.

Figure 6.6: Loss function with respect to the number of epochs for different batch
sizes, namely 1024, 512 and 256

From Figure 6.6, it is also possible to see the behaviour of MSE with respect
to the number of epochs used to train the network. As in the previous case, the
number of epochs should be chosen on the basis of the validation set. It represents
the number of iterations used to update the weights [46]. The model has been
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trained for 3000 epochs, but as it is possible to be noticed, after less than 500
epochs the MSE is close to 0 both for the training and the validation set. Hence, a
lower value can be selected in order to prevent overfitting and reduce computational
cost.

Once the latent-space representations have been obtained, they are used as
input for a classification layer: it is a 3 nodes layer that produces, as output, a
probability distribution over the 3 identified classes.
To this purpose, the activation function associated with this layer is the Softmax,
widely used to obtain a categorical probabilistic distribution for classification from
the output of a neural network [47], [48]. Given x ∈ Rn, a softmax function
σ : Rn −→ Rn is defined as

σ(x)i = exi
nq
j=1

exj
, for i = 1, . . . , n.

As it is possible to be noticed from definition, softmax function takes as input the
components of vector x and maps them into values in the range (0,1) such as they
sum up to 1. The output of softmax function can be then interpret as a posterior
probability: the i-th component represents the probability that the class label y is
i, given x [48], namely

σ(x)i = p(y = i|x)

Finally, the predicted class label is the one that maximizes the obtained posterior
probability. This final step is justified by the empirically proved connection between
standard K-Means algorithm and classification performed with a classification layer
equipped with softmax activation function [49], whose mathematical proof is
achieved in [50].

Applying the described procedure, the 96,96% of testing observations are assigned
to the same cluster obtained with the previous clustering method. However, as it
is possible to be noticed in Figure 6.7, 8 of them are assigned to a different class.
These segments may indicate that the autoencoder-based cluster is performed
taking into account some hidden features that are not considered by the k-Means
algorithm [32].

Some of the segments assigned to different classes by the two method are shown
in Figure 6.8.

It can be seen in Figure 6.8 that segments 555 and 1666, both previously
identified as moving or regular working segments, are now assigned to cluster 1,
composed by higher working states. Indeed, in both cases, it is possible to see a
short period characterized by variations that are more likely to be associated with
higher working states rather than regular working or moving patterns. However,
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Figure 6.7: Class labels obtained applying the autoencoder-based method to the
testing set, compared with the previously obtained ones

The picture shows the segments assigned to different classes in the two described
procedure: indeed, the y axis refers to the class labels obtained with the previous

clustering method (1 for working, 2 for moving/regular working and 3 for idle), while the
points color highlight the class labels obtained with the autoencoder-based clustering

before and after this short period, the engine speed shows a regular behaviour.
They represent hence a kind of intermediate situation and some hidden features
made them to be assigned to cluster 1 instead of cluster 2.

Conversely, segment 2247, previously assigned to cluster 1, is now associated
with cluster 2: in this case, even if it is possible to notice some variations typically
associated with higher working states, the engine speed is in most of observations
quite regular, hence assigned to cluster 1.

Finally, segment 1995 was previously described as an idle segment, while the
autoencoder-based cluster results assign it to cluster 2. According to domain experts,
the behaviour of engine speed shown for segment 1995 is typically associated with
a vehicle that, from an idle state, starts to move. Hence, even if for most of
observation the vehicle is in an idle state, it is not wrong to group this segments
with the ones associated with moving state.

These qualitatively described differences can be quantitatively inspected looking
at the values taken by the features for segments 555, 1666, 2247 and 1995 and
comparing them with the ranges of variability of these quantities in their respective
previously assigned clusters.
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Figure 6.8: Some of the segments (namely 555, 1666, 2247 and 1995) assigned
to different classes by the autoencoder-based cluster method with respect to the
previous proposed one.

Indeed, as can be noticed from Figure 6.9, segments 555 and 1666 are character-
ized by a value of the peak in the low frequencies closer to the ones taken by items
belonging to cluster 1, displayed in orange, rather than the ones taken by cluster 2,
displayed in green.
The same conclusions hold also for the power in the low frequencies, where it is
possible to note that segment 1666 takes a value strictly greater than the values
taken by segments in cluster 2.

Similarly, segment 2247 is characterized by peak value in the low frequencies
and power in the middle and high frequencies closer to the values taken by the
same feature for segments associated with the moving state.

Finally, the power in the middle and high frequencies associated with segment
1995 is strictly greater than the maximum value taken by this quantity for items
belonging to cluster 2 and closer to the values associated with cluster 1.
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Figure 6.9: Comparison between the features ranges of variability in the different
clusters and the values taken by these quantities in the case of differently assigned
segments.
The colors assigned to the differently assigned segments refer to the classes obtained by

the first procedure, before the correction made applying the autoencoder-based
procedure.

In conclusion, it is possible to say that the identified segments can be considered,
in some sense, as outliers or extreme observations in the cluster where they were
previously assigned. Their behaviour can be explained looking at the values they
take in the time domain. Indeed, in all the presented cases, the engine speed shows
a behaviour that does not identify a single state, but contains elements both of
the previous identified class, both of the new one. This type of analysis suggests
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hence that some other features should be considered for correctly identifying this
segments too. For example, the peaks, the powers and the temporal mean could
be computed not overall the 2 minutes points, but considering shorter intervals
in the same segment. For the same reasons, the procedure may report that a
fixed window segmentation could be not appropriate for these cases: hence, other
techniques based on variable length time series windowing, could be applied in
order to identify homogeneous segments in the original time series.
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Chapter 7

Conclusions and future
works

Being able of automatically identifying usage patterns and workload states for
heavy duty vehicles is extremely important for companies which desire to monitor
their equipment. Analysing CAN bus data represents a way to provide support
for optimizing maintenance, production, business and investments. Furthermore,
deeply studying the properties of the signals generated at high frequencies by
sensors installed on the vehicle, it is possible to identify the most relevant signals
and the most appropriate sampling rate to use.

In the first part of the thesis work, a procedure based on Fourier transform for
resampling a CAN bus signal to a given constant rate is presented: it is used, in
this real case application, for synchronizing CAN bus data, transmitted at different
and irregular rates because of the inherent structure of CAN networks. Having
synchronized and evenly spaced data points is a requirement for many algorithms,
as the ones used in the following of the thesis work, since it allows to treat SPNs
measurements as components of a multivariate time series.
The described procedure is general and can be used both for upsampling or
downsampling. In addition, it could be a tool for changing data granularity,
since working with ultrafine data could be redundant and noisy for some SPNs or
applications. Indeed, as highlighted in the first part of the thesis work, some SPNs
are characterized by constant measurements all over the available time windows,
while others are characterized by slow changes. In this cases, lower sampling rates
should be set in order to reduce the transmission costs. In any case, constant SPNs
should be identified and reported because they could represent technical failures
(due to sensors, device or transmission) that should be checked by the device’s
manufacturer.
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The resampling procedure is not suitable for too irregular sampled SPNs: however,
since it is not clear to domain experts if this behaviour is due to technical errors
or because irregular sampled parameters are malfunction tell-tales, they are not
considered until further information are provided.

Once signal synchronization is achieved, SPNs can be deeply studied in order to
describe their properties both treating each parameter individually, since they are
describing different physical quantities, both considering their mutual interaction,
since their are describing the behaviour of the same vehicle. As result, the most
important parameters to be monitored are identified, removing SPNs that are not
informative, correlated and with particular internal structures, such as the ones
characterized by strong (and trivial) positive trend.
Reducing the number of variables to collect, send on the network and store, it is
possible to limit data transmission costs. For the results obtained in this thesis, the
number of monitored parameters can be reduced from 20 to 4, namely the engine
coolant temperature, the engine speed, the engine fuel delivery pressure and the
charge pressure.

Finally, two unsupervised clustering procedures are described in order to automat-
ically detect usage patterns in data. The first one exploits the data synchronization
to 1Hz, considering each line of the dataset as an item to be clusterized. Even
if this approach does not take into account the temporal relationship between
observations, its outcome is to automatically identify thresholds to divide different
workload types basing on the instantaneous values taken by SPNs. As result, two
different workloads are identified, namely overload and idle or standard workload.
The two detected states seem to be coherent with the task carried out by the
vehicle, but since no ground truth activity is provided, there is no measure to
quantitatively validate results. It has been asked to the testing field to collect
few days of observations providing a report describing the tasks performed by the
vehicle. In this case, it should be possible to use this limited amount of observations
as validation set.

The resulting thresholds identify states that are analogous to the manually set
ones used by the company. However, it is not possible to make a comparison with
the actually employed thresholds since they are based also on digital input data
that are not available for this analysis. As future improvement, an additional device
could be installed on the vehicle to include also digital inputs among clustering
variables. Furthermore, by varying the tasks carried out by the vehicle, a higher
number of identified states are expected.

The second method for identifying usage patterns proposed in this thesis is
based on signals spectral content. Indeed, analysing the available measurements in
the frequency domain it is possible to describe the signals’ variations by means of
their frequencies distribution. Since this type of analysis is suitable only for signals
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with enough informative spectral content, spectral analysis is performed to identify
signal characterized by high variations and enough resolution. From its outcome
it is possible to obtain some guidelines for SPNs sampling rates, that could be
lowered without loosing much information for some SPNs, are adequate for some
signals while the resolution should be higher for others.

The SPNs spectral content, separately for low, medium and high frequencies, is
then used to summarize the behaviour of the vehicle every 2 minutes of observations.
The time window size is set combining the range provided by domain experts with
an application of VALMOD algorithm.
This method does not require time series synchronization and takes into account
the temporal order among observations. Its outcome is to automatically tell a
highly variations segment, describing a higher workload or a more aggressive
driving style, with multiple breaks and acceleration, from a slow varying and more
regular one, describing an idle state or a regular driving style. Its result consists in
dividing segments according to the main state that characterizes and summarizes
the behaviour of the vehicle in the 2 considered minutes. Once again, the obtained
clusters seem to be coherent with the tasks carried out by the vehicle, but no
quantitative measure can be used to validate results since it is a total unsupervised
context. However, what can be immediately noticed is that, since regularly moving
segments are characterized by shapes similar to idle ones, this method is not able
to tell when the vehicle is moving. The difference among the two states is the
engine speed value: in the first case, it would be higher, while if the vehicle is idle,
it would be around the minimum value. Applying the thresholds identified by the
previous method, it is possible to obtain three different clusters, describing idle
state, moving/regular working and higher workload.

The obtained results have been validated by domain experts and are quite
coherent with the ones expected, considering the particular tasks the vehicle carried
on during data collection. However, the described techniques are general and they
are expected to perform well also on more realistic data, with a higher number of
SPNs used as variables and with data coming from several vehicles.
Combining results with extra information obtained from GPS data, it is possible
to conclude that this procedure performs pretty well, being able of telling an idle
state from a moving/working one reaching an estimated accuracy score over 82%.
This value is quite high considering the limited reliability of GPS data and the
vehicle’s irregular behaviour due to the particular tasks it carried out during data
collection phase.

To further validate the obtained results, an autoencoder-based deep learning
technique for time series data clustering has been applied: inspecting segments
that are assigned to a different classes by the autoencoder-based clustering with
respect to the ones obtained with the previous described procedure, it is possible to
identify the presence of some hidden features, not previously taken into account by
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the standard k-Means algorithm. For example, this procedure reveals the presence
of not homogeneous segments that can be assigned to different classes because they
represent intermediate situations, such as a vehicle that from idle state starts to
move. Hence, it suggests possible modification to improve clustering results: in the
first place, the same features could be computed for a given segment separately in
shorter time intervals, such as 30− 45 seconds. Alternatively, another approach
for time series segmentation could be applied: indeed, these results could report
that a fixed window segmentation is not appropriate because in this application it
leads to not homogeneous segments. These problems could be fixed, for example,
applying variable length techniques.

Even if available data were collected during a limited number of performed tasks,
significant results have been achieved and all the described methods and procedures
can be easily generalized and applied to a larger set of monitored parameters,
collected in standard working situations.

This thesis represents hence just a starting point and several improvements can
be made. At first, the optimal data granularity can be searched, both tuning it
accordingly to spectral analysis results, both evaluating differences by means of
a loss function lowering the sampling rate. In addition, also several aggregation
techniques could be considered as well as resampling using different bases, such
as cosine or wavelet. Using different basis decompositions, it is also possible to
identify different features to summarize the behaviour of SPNs in a fixed length
window. Finally, Recurrent Neural Network or Long Short-Term Memory Network
can be applied to the original segments to perform time series clustering without
the need of computing features and exploiting hidden features and the potentials
of deep learning [7].
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