
POLITECNICO DI TORINO

Master degree course in Computer Engineering
(Ingegneria Informatica)

Master Degree Thesis

HTTP and MQTT: A comparison
in the context of Industry 4.0

Supervisor:
Prof. Riccardo SISTO Candidate:

Domenico SPANTI

Internship Tutor:
Thomas FERRERO

Academic year 2019-2020

Summary

Since the beginning of the Internet spread, HTTP has represented and still represents,
the most widely used protocol for the exchange of information. However, with the
ever-increasing diffusion of IoT networks, some characteristics of HTTP (e.g. the
large overhead produced) brought researchers and companies to implement different
protocols. Between them, MQTT is the one that is spreading faster.

The aim of this thesis is to compare the various technical aspects of the two
protocols, especially for what concerns their performance and security.

The two protocols will be evaluated from a practical point of view through their
implementation in the Myna software suite, an open-source energy management
system developed by Myna-Project.Org s.r.l., with two industrial use cases in the
context of the H.O.M.E. (Hierarchical Open Manufacturing Europe) project.

iii

Contents

Summary iii

1 Introduction 1
1.1 Objectives . 2
1.2 Document structure . 3

2 Protocols analysis 5
2.1 HTTP structure . 5

2.1.1 HTTP Security . 8
2.2 MQTT structure . 10

2.2.1 MQTT Security . 14
2.3 Related works . 15

3 The energy management system 17
3.1 Network & Hardware Components 17
3.2 Software Components . 19
3.3 Wolf . 21
3.4 IEnergyDa . 23

4 HTTP implementation 29
4.1 Wolf REST output plugin . 30
4.2 IEnergyDa REST API . 31

4.2.1 Authentication & Authorization 31
4.2.2 Measures handling . 35

5 MQTT implementation 37
5.1 Mosquitto Broker . 37

5.1.1 ACLs . 38
5.1.2 Authentication plugin . 39
5.1.3 TLS on Mosquitto . 41

5.2 Wolf MQTT output plugin . 41
5.3 IEnergyDa MQTT API . 42

5.3.1 IEnergyDa MQTT Security 45

iv

6 Protocols comparison 47
6.1 Payload tests . 49

6.1.1 Payload tests without TLS 49
6.1.2 Payload tests with TLS . 51

6.2 Multithread tests . 53
6.2.1 Multithread tests without TLS 53
6.2.2 Multithread tests with TLS 54
6.2.3 Authentication plugin bottleneck 55

6.3 Industrial use cases tests . 58
6.3.1 Limited bandwidth . 58
6.3.2 MQTT over websockets . 59

7 Conclusion and future works 63

v

List of Tables

2.1 Notable CONNACK Return Codes 12
6.1 Payload tests average delivery times 51
6.2 TLS payload tests average delivery times 52
6.3 Multithread tests average time windows results 54
6.4 TLS multithread tests average time windows results 55
6.5 MQTT tests average time windows results with and without authen-

tication . 58

vi

List of Figures

1.1 What are the most significant barriers limiting your adoption of
IoT/analytics solutions? (and change since 2016)[1] 1

1.2 Messaging standards, trends on IoT solutions between 2016 and 2018[2] 2
2.1 Examples of URLs with a textual domain name and with IP and port 5
2.2 HTTP User login authentication: credentials are sent to server with

the Basic Authentication method . 7
2.3 Topics and wildcards examples . 12
2.4 An MQTT QoS 2 delivery with Method A 14
3.1 Network & Hardware Architecture Schema 19
3.2 Software Architecture Schema . 21
3.3 Entity-relationship model of IEnergyDa database (intermediate enti-

ties excluded) . 24
3.4 The request processing workflow in Spring Web MVC (high level)[3] 25
4.1 Example of a request with a previous preflight[4] 33
6.1 Time captures schema. 48
6.2 Payload tests without a secure connection 49
6.3 Header differences in message delivery between HTTP (left) and

MQTT (right). The blue highlight indicates the end of the header . 50
6.4 Payload tests with TLS . 51
6.5 Encryption settings and the agreed Compression Method indicated

in the Server Hello message of HTTPS handshake 52
6.6 Multithread tests without TLS . 53
6.7 Multithread tests with TLS . 54
6.8 Part of mosquitto.log file which shows the authentication bottleneck 56
6.9 Multithread tests without MQTT authentication 57
6.10 TLS multithread tests without MQTT authentication 57
6.11 Limited bandwidth 24 hours test . 59
6.12 Use case with MQTT over Websockets 24 hours test 60

vii

Chapter 1

Introduction

In the last decade, domotics has represented one of the fastest-growing fields of
applied science. Terms as Cloud Computing, cyber-physical systems (CPS) and
Internet of Things (IoT) have become known to a large part of the population, and
the cost of smart devices is decreasing through years in a manner that is inversely
proportional to the increase of their performance. In the technical field, words as
Industry 4.0 and Smart Manufacturing have become frequent to indicate the use of
these new technologies with the aim of automating industry.

Bain & Company, one of the three world’s largest management consultancy com-
panies, estimates that the markets for IoT hardware, software, systems integration,
and data and telecom services will grow to 520$ billion in 2021, more than double
of the market value in 2017 (235$ billion)[1].

Figure 1.1. What are the most significant barriers limiting your adoption of
IoT/analytics solutions? (and change since 2016)[1]

1

1 – Introduction

However, despite the growth of investments in the IoT market, as reported in
Figure 1.1, it is a common perception that IoT solutions could be insecure and
laborious to integrate with the Operational Technology already in use, particularly
in the case of IIoT (Industrial IoT). Also, other critical aspects like transition risk
and network constraints slowed down the implementation of IoT in the industrial
field.

It can be noted that all these critical aspects can be linked to two factors, security
and performance, which can result as important enablers for IoT in the context
of production. The choice of the application protocol used by the device impact
significantly on the performance and security of it.

Between the wide number of messaging protocols used in IoT, MQTT is the one
that is becoming more established, resulting as the second most used communication
protocol in the 2019 IoT Developer Survey, made by Eclipse Foundation, behind
HTTP[5]. It also results as the most used messaging protocol in the 2018 edition of
the same survey with a preference of 62% and a positive trend through the years,
as shown in Figure 1.2.

Figure 1.2. Messaging standards, trends on IoT solutions between 2016 and 2018[2]

1.1 Objectives
The aim of this thesis is to study, analyze and implement the two most used
messaging protocols in IoT, HTTP and MQTT, compare their architectural aspects,
and then compare their security and performance in a real scenario implementation.

The two protocols will be implemented inside an in-development project created
by Myna-Project.Org s.r.l. (hereinafter also referred to as Myna-Project or Myna)

2

1.2 – Document structure

and known as Myna Software Suite, an open-source energy management system,
and tested through different networks and workload conditions.

The result that this thesis wants to achieve is to give a comprehensive overview
of HTTP and MQTT and explain, by comparison, in which situation one is better
than the other or equivalent.

1.2 Document structure
This thesis begins with a theoretical overview of the current state of the art for
HTTP and MQTT as reported in Chapter 2. The energy management system of
Myna-Project and its constituent parts are analyzed in Chapter 3.

The deployment of HTTP and MQTT protocols, and how it has been implemented
in the energy management system, is depicted respectively in Chapters 4 and 5, and
in Chapter 6 the result of their comparison in different environments is reported.

Lastly, the results of the thesis and possible future steps for improvement are
discussed in Chapter 7.

3

4

Chapter 2

Protocols analysis

2.1 HTTP structure
HTTP (HyperText Transfer Protocol) is the application protocol used to communi-
cate over the World Wide Web. Tim Berners-Lee and his team initially developed
it at CERN in 1989, and in the years, also because of its simplicity, it has become
the de-facto standard for Web communication.

HTTP is a reliable request-response protocol [6] in a client-server model that
stands on top of a TCP/IP connection. In HTTP, a client (e.g., a web browser)
sends a request to a web server and receive a response. There are different types of
requests; one of the most common is the request to get web content from the server.
The source of the web content is called web resource that can be an image, a text,
or any kind of file. Since the Internet hosts many different data types, HTTP tags
each object being transported to the Web with a data format label called a MIME
(Multipurpose Internet Mail Extensions) type, designed initially for mail systems
and then adopted by HTTP.

Every resource has a name, so clients can point out what they are interested in.
The resource name is called URI (uniform resource identifier). The most common
form of a resource identifier is the URL (uniform resource locator) that uniquely
identifies a resource on the Internet and it composed of three parts: the scheme,
the host and the path of the resource.

Figure 2.1. Examples of URLs with a textual domain name and with IP and port

5

2 – Protocols analysis

As shown in figure Figure 2.1, an URL can be represented through the IP address
of the server and a port number (which can be assumed to be 80 when not specified),
or through a textual domain name, or hostname, that is just a human-friendly alias
of an IP and it is converted by a facility called Domain Name System (DNS).

Requests & Responses Every HTTP request message has a method, that is
a command used to tells the server what action to perform. Some of the most
common HTTP methods are GET, used by the client request a named resource,
PUT, used to store data from client into a named server resource, POST, used to
store data from client to a server, and DELETE, used to delete a named resource
from the server.

Every HTTP response comes back with a status code. The status code is a three
digit numeric coda that tells the client if the request succeeded, or if there are
required actions. Some example of HTTP status code are the 200, request returned
correctly (OK), 201, resource created, and 404, resource not found.[7]

Connection & Authentication The HTTP connection, as mentioned before, is
reliable because it uses the Transmission Control Protocol (TCP) that provides an
ordered and error-checked delivery of massages. HTTP is also a stateless protocol,
which means that each request/response happens in isolation. For this reason, web
sites need a way to distinguish HTTP transactions from different users. There are
a few techniques to do so, for example through HTTP headers. The most used
techniques are[7]:

• User login. A built-in mechanism that uses WWW-Authenticate and Autho-
rization headers to implements logins. A server can explicitly ask the identity
of a user replying with the HTTP 401 Login Required status code to an unau-
thenticated request. An example of this mechanism, represented in Figure 2.2,
is the Basic Authentication method, which sends the credentials encoded with
the Base64 algorithm. This method is typically used with HTTPS encryption
because the encoding alone doesn’t provide data confidentiality. Alternatively,
the Digest Authentication method allows an encrypted authentication that
can be used in untrusted connections;

• Cookies. Used for several reasons (including web tracking), they are sent
by websites and stored by the web browser, generally in a text file, allowing
authentication and can last after browser or computer restart (persistent
cookies). Cookies are sent with every user request in the HTTP header
Set-Cookie.

Versions HTTP is a protocol with more than 30 years of history. During these
years the protocol changed and many new features have been introduced and
improved through versions. The released HTTP versions are:

6

2.1 – HTTP structure

Figure 2.2. HTTP User login authentication: credentials are sent to server with
the Basic Authentication method

1

• HTTP/0.9. The basic and initial version of HTTP, it is very simple, requests
are on one line and the only possible method is GET. The responses contain
only the file itself;

• HTTP/1.0. Due to browsers and server needs, the initial version of HTTP
has been expanded with several features including versioning information on
each request (HTTP/1.0 is appended to the get line), the status code line at
the beginning of the response and the notion of HTTP headers together with
the ability to transmit other documents than plain HTML files (thanks to
Content-Type header). As a result of many different features introduced
by browsers and server with a try-and-see approach, the 1.0 versions suffered
a lot of interoperability problems;

• HTTP/1.1. Version 1.1 has been released just a few months after version 1.0,
to standardize the protocol, clarifying ambiguities and introduce improvements
such as the possibility to reuse connections, pipelining, chunked responses
and cache control. Thanks to its extensibility, e.g. the possibility to create
easily new headers or methods HTTP/1.1 had two revisions, in 1999 and in
2014 in prevision of the release of HTTP/2, showing its stability through
more than 15 years. In this version of HTTP security aspects such as CORS2

2Cross-Origin Resource Sharing

7

2 – Protocols analysis

and CSP3 headers and the SSL(TLS) security layer has been introduced and
will be detailed in the next section. Another important step in the evolution
of the protocol has been made in 2000 with the design of a new pattern
for using HTTP in a more extensive way, the representational state transfer
(REST). REST allowed any Web application to provide an API for retrieval
and modification of its data, not by using new HTTP methods but only by
accessing specific URIs with basic HTTP/1.1 methods;

• HTTP/2. Standardized in May 2015, HTTP/2 has been created to respond
to the increasing needs of resources and multiple connections from high-traffic
web applications, necessity covered only partially from version 1.1. HTTP/2
received many contributions to its making from a protocol named SPDY and
developed by Google, and has many differences from HTTP/1.1, as it is a
binary protocol rather tan text, can handle several parallel requests on the
same connection, compress headers and allows a mechanism called server push
to populate data in a client cache from the server prior to the request. HTTP/2
has had a rapid spread, especially in high-traffic websites, also because it not
require adaption on Web sites (HTTP/1.1 and HTTP/2 are transparent to
them).[8]

2.1.1 HTTP Security
As described above, the HTTP protocol has not been designed to handle critical
information, such as credit card numbers or personal data, but with its wide adoption,
a security improvement became necessary. In 1994 Netscape Communications
created HTTPS, a version of HTTP that uses the TLS (previously SSL) protocol
to grant confidentiality through encryption and integrity with keyed MAC4 check.

As defined in RFC 52465, TLS has four main goals:

1. Cryptographic security. TLS should be used to establish a secure connection
between two parties.

2. Interoperability. Independent programmers should be able to develop applica-
tions utilizing TLS that can successfully exchange cryptographic parameters
without knowledge of one another’s code;

3. Extensibility. TLS seeks to provide a framework into which new public key
and bulk encryption methods can be incorporated as necessary. This will also
accomplish two sub-goals: preventing the need to create a new protocol (and
risking the introduction of possible new weaknesses) and avoiding the need to
implement an entire new security library;

3Content Security Policy
4Message authentication code
5https://tools.ietf.org/html/rfc5246#section-2

8

https://tools.ietf.org/html/rfc5246#section-2

2.1 – HTTP structure

4. Relative efficiency. Cryptographic operations tend to be highly CPU intensive,
particularly public key operations. For this reason, the TLS protocol has
incorporated an optional session caching scheme to reduce the number of
connections that need to be established from scratch. Additionally, care has
been taken to reduce network activity.

TLS works in two phases, the first phase of handshake, where the cryptographic
methods and the keys to encrypt data are negotiated between parts, and a second
phase where data are exchanged. During the handshake phase, there is also the
exchange and validity check of the certificates. The choice of appropriate cipher
suites and keys strongly affects the security of the communication because a weak
cyber suite allows an attacker to decrypt the ongoing traffic easily.

Over the years, several vulnerabilities of TLS were found and fixed. On its
technical report[9], Jung categorized attacks in three categories, outlining three
general channels that can be attacked: the Users, meant as any part involved with
TLS (including CAs), the protocol itself and the implementation of the protocol
(e.g. bugs in software that allows overcoming the security mechanisms of TLS).
Three known cases of these categories are described below.

Heartbleed Discovered by Google researchers, Heartbleed is an attack that targets
the implementation of TLS protocol by exploiting a bug of an extension, Heartbeat,
used to check if the other party is still available. Through the extension, a client
sends a request to the server containing an arbitrary string and its length. The
server then answers with the received string, in order to maintain the connection
active. This process is also performed in the opposite direction, from server to
client.
The vulnerability is due to the length field that is not verified by OpenSSL, enabling
an attacker to read up to 64kB of data from victim memory (the length field is 2
bytes long). These memory areas could contain useless binary data but could also
contain sensitive information such as private keys. To avoid the attack, TLS must
be updated, and all certificates and passwords renewed to ward off previous data
leaks.

MitM The Man in the Middle (MitM) attack can be considered as a general
technique of attack in computer networks more than a specific attack against TLS.
In MitM an attacker is placed between the two parts of communication and relays
messages between them, potentially tapping sensitive data. In the specific case
of TLS, there are tools that allow attackers to perform a MitM-like attack for an
HTTPS session. Combined with an ARP Table poisoning, the sslstrip application
can be used by the attacker to set an insecure connection between him and the
victim. Many applications do not try to establish unsecured connections, so they
are not affected. But in web browser users can accept to continue an untrusted
connection making sslstrip a serious threat.
So, it’s important to face this attack that users are well aware when they accept a

9

2 – Protocols analysis

certificate that is untrusted and when they are connected to a website via HTTPS
or not.

BEAST The Browser Exploit Against SSL/TLS (BEAST) is an attack based
on a theoretical exploit on the Cipher Block Chaining (CBC) algorithm, which is
often used in TLS. In CBC, a plaintext that needs to be encrypted is divided into
blocks and every block Is ciphered using the previous ciphered block with an XOR
operation. The first block of the chain is encrypted with a random value known as
the Initialization Vector (IV). In TLS 1.0, at the end of a message the last ciphered
block will be used as IV for the next message, and this could lead to an attack
based on guessing the plaintext for the first block on certain messages.
Even if this attack is mostly theoretical, because the possibility to guess a whole
block of 8 bytes results in 2258 ≈ 1,7 × 1019 possibilities, if the first 7 bytes are
known as they are predictable in some circumstances (e.g. with a fixed header of
the message) the number of possibilities goes down to only 255. TLS 1.1 fixed this
issue by adding a unique IV field to every message. So, to avoid the attack, the
server administrator should forbid the use of TLS version 1.0 and less.

These examples show that the use of HTTPS does not automatically imply full
protection over the Internet and, even if attacks as BEAST are known from 2011,
SSL Labs stated that in 2020 nearly the 60% of websites (on a sample of 138,000
websites) still supports TLS 1.06, and major browsers like Chrome and Firefox
started the procedure to deprecate TLS 1.0 and 1.1 only in 201878. Nevertheless,
when applied correctly and updated TLS still represent a good way for securing
HTTP.

It is important to notice that TLS represents only a part, even if important, of
the HTTP security. Other aspects not directly linked to transport security, such as
access authorization to resources, are more related to the design of the application
and will be addressed in chapter 4.

2.2 MQTT structure
MQTT (Message Queue Telemetry Transport) is an asynchronous and lightweight
publish-subscribe protocol, firstly developed in 1999 by Arlen Nipper and Andy
Stanford-Clark 9. Unlike HTTP and other client-server protocols, the publish-
subscriber pattern of MQTT makes this protocol architecture quite different from
the HTTP architecture. In MQTT workflow there are three main “actors” involved:

6https://web.archive.org/web/20200226204529/https://www.ssllabs.com/ssl-pulse/

7https://blog.chromium.org/2019/10/chrome-ui-for-deprecating-legacy-tls.html

8https://bugzilla.mozilla.org/show_bug.cgi?id=1579270

9https://mqtt.org/2009/07/10th-birthday-party

10

https://web.archive.org/web/20200226204529/https://www.ssllabs.com/ssl-pulse/
https://blog.chromium.org/2019/10/chrome-ui-for-deprecating-legacy-tls.html
https://bugzilla.mozilla.org/show_bug.cgi?id=1579270
https://mqtt.org/2009/07/10th-birthday-party

2.2 – MQTT structure

• The Publisher. It is the device that sends data that wants to send to a specific
target of subscribers;

• The Subscriber. A Subscriber is a device that wants to receive data regarding
specific arguments to which it is interested in;

• The Broker. The Broker is the central point of the architecture. Every
client (publisher or subscriber) establishes a connection with the broker to
receive or dispatch messages. From MQTT version 3.1.1 the MQTT broker
is known as the MQTT server and, hereinafter, the two terms will be used
indistinctly[10, 11].

The channels where messages are dispatched by publishers and then sent by the
broker to relative subscribers are known as topics.

Topics A topic is a named logical channel referred to a UTF-8 string separated
by the forward-slash "/" symbol, known as the topic level separator. Every part
of the topic divided by "/" represents a topic level.

Each message sent in MQTT belongs to a topic and the broker applies a topic-
based filtering to deliver the message to all the subscribers interested in that
topic.

Wildcards Wildcards are special characters used in topics to allow subscribers
an easier way to subscribe to multiple topics without specifying the exact name of
every topic. There are two different wildcards symbols:

• Single Level Wildcard. The plus sign "+" represents the Single Level Wildcard,
it can be used at any level of the Topic Filter, including first and last levels
and it must occupy an entire level of the filter (e.g. "home/+/lamp" is valid
while "home+" is not valid);

• Multi Level Wildcard. The number sign "#" matches any number of levels
within a topic, it must be specified on its own or after a topic level separator
but, in both cases, it must be the last character specified in the Topic Filter[11]
(e.g. "home/#" and "#" are valid while "home/#/lamp" is not valid);

Connection & Authentication MQTT connections are performed through a
series of packets named MQTT Control Packets. The first packet sent by a Client
(a publisher or a subscriber) to a server when a connection is established is the
CONNECT packet. A Client can only send the CONNECT packet once over a
connection, a second CONNECT packet must be processed as a protocol violation
by the Server and forces Client disconnection. The payload of CONNECT packet
contains one or more encoded fields including the Client Identifier (the only that
is mandatory), Will Topic, Will Message, User Name and Password. The Will
Message is a message that must be stored by the server and sent to the client’s
subscribers in case of a forced disconnection.

11

2 – Protocols analysis

Figure 2.3. Topics and wildcards examples

User Name and Password fields are the built-in authentication method of MQTT,
they are optional fields and it is possible to send a Username without a Password
(but not vice versa). The CONNECT packet received by the server corresponds to a
CONNACK packet sent to the Client. This packet is the first sent from the Server
to the Client and if it is not sent in a reasonable amount of time (that depends on
the application type) Client should end the connection. CONNACK contains in its
variable header a Return Code used to validate Client credentials.

Value Return Code Response
0 Connection Accepted
4 Connection Refused, bad user name or password
5 Connection Refused, not authorized

Table 2.1. Notable CONNACK Return Codes

When the connection is established the Client sends a PUBLISH packet that
contains in the payload the message that will be forwarded to the subscriber by
the Server. PUBLISH packet has a fixed header and a variable header. The fixed
header contains the DUP field, which indicates that the message is a duplicate if
set to 1, RETAIN, which indicate that the message must be stored by the MQTT
Broker and delivered to future subscribers, and QoS, that will be examined further
in a dedicated paragraph, together with other packets that are QoS-specific. The
variable header contains the Topic Name and the Packet Identifier, a serial number
that identifies the packet when QoS is greater than 0.

The SUBSCRIBE packet is used by Clients that want to subscribe to one or more
topics. The payload of the packet contains the list of desired Topic Filters together
with the chosen QoS. A SUBACK packet is sent by the Server as acknowledgment and
also indicates the maximum QoS available. When a Client wants to unsubscribe one
or more topics it sends an UNSUBSCRIBE packet to the Server, it is acknowledged
by the UNSUBACK packet.

12

2.2 – MQTT structure

To check if the connection is active the packets PINGREQ and PINGRESP could
be used. At the end of a connection, the Client sends a DISCONNECT packet to
the Server which, once received the packet, will discard every Client’s Will message.
[11]

Quality of Service MQTT presents three levels of Quality of Service (QoS). QoS
is decided between sender and receiver (publisher-broker and broker-subscriber), so
it’s not mandatory to have the same QoS level from publisher to subscriber. The
three levels are:

• QoS 0: At most once delivery. This is the level of service with less quality.
A single PUBLISH packet is sent to the receiver that accepts the ownership
without sending responses. No retry is performed by the sender.

• QoS 1: At least once delivery. QoS 1 ensures that the message arrives at least
once. Every PUBLISH packet has a Packet Identifier in its header and its
acknowledged by a PUBACK Packet.

The specificity of this level of service is the possibility to send further PUBLISH
packets with different Packet Identifier, and it could be a problem in systems
where duplicates are not acceptable. Once a PUBACK is received, the Packet
Identifier could be reused for new packets.

• QoS 2: Exactly once delivery This is the service with the highest quality, it
prevents duplication and loss of the packet. A QoS 2 message has a Packet
Identifier in its header like a QoS 1 and uses a four-part handshake in the
delivery of messages. As for other levels, the first packet is the PUBLISH
packet.

After that message there are two methods to handle the packet: with Method
A the message is only stored by the broker, while with Method B only the
Packet Identifier is stored and the message is forwarded to subscribed clients.
Then the broker sends a PUBREC packet to the Sender (and a PUBREC
packet for any PUBLISH packet with the same Packet Identifier) and waits
for a PUBREL packet from the publisher. The broker must not deliver any
duplicate message with different Packet Identifiers that could be sent by the
publisher.

After receiving the PUBREL packet with Method A the broker will forward the
message to subscribers and delete the message, while with Method B broker
simply discard the Packet Identifier. Finally, the broker sends a PUBCOMP
packet to the publisher that will discard the initial message (it can also reuse
the Packet Identifier) and start a new publication.

13

2 – Protocols analysis

Figure 2.4. An MQTT QoS 2 delivery with Method A

2.2.1 MQTT Security
Security in a lightweight and IoT-oriented protocol as MQTT is an aspect with
several challenges to face, due to the necessity of a balanced trade-off between a
good level of security and the limited computing power and memory of IoT devices.
It should also be considered that IoT platforms, in most cases, are not deployed and
configured with a focus on security features, so, protocols and application design
must cover this gap.

MQTT, as described in the previous section, provides a built-in authentication
mechanism, but this mechanism is pretty basic and unsafe, because credentials are
sent to the Broker in clear text and, depending on the Broker settings, subscription
without authentication could be allowed by the Broker. There is also other infor-
mation provided by MQTT that can be used for authentication such as the client
identifier, a unique ID assigned by the broker, and X.509 client certificates, used
with TLS for the handshake between client and server and reused for authentication
purpose. Moreover, it is possible to implement authentication with database support.
This is the methodology implemented in this work and will be addressed in Chapter
5.

For what concerns confidentiality, MQTT stands on top of a TCP connection. As
for HTTP, TCP connections do not use encryption by default. For this reason, many
MQTT brokers allow the possibility to use of TLS, TLS protects credentials if the
built-in authentication is used, allow the use of certificates (even for authentication

14

2.3 – Related works

purposes) but in particular encrypt the payload of the packet giving confidentiality,
and integrity, to the protocol.

Instead of the standard MQTT port, 1883, it is strongly recommended that Server
implementations that offer TLS should use TCP port 8883, which IANA service
name is secure-mqtt. It is implied that all the aspects related to TLS vulnerabilities
and possible attack scenarios addressed at 2.1.1 may also be experienced in MQTT.

Authorization is another important aspect that should be taken into account.
Without proper authorization, each authenticated client can publish and subscribe
to available topics. MQTT 3.1.1 specifications advise to adopt authorization
mechanisms in the implementation[11]. Read and write permissions could be
implemented on the Broker side. There are different approaches to do so, mainly
based on Access Control Lists(ACLs), that vary with the Broker. As for other
implementation-specific aspects, security details on the authentication approach
chosen will be described in Chapter 5.

MQTT security risks One of the main threats in MQTT remains the misper-
ception of IoT devices’ risk by users and misconfigured MQTT servers. Studies
on users’ privacy risk awareness found that risk assessment on IoT devices vary
varies according to the manufacturer, the device functions, collection of bio-metrics
data, and, more generally, with the context, as indicated by Naeni et al. [12]. Risk
related to some devices, such as domotic lamps or temperature sensors, tend to be
underrated, but those devices can be exploited and used as attack vectors in DDoS
attacks.

In August 2018, Avast reports that it is possible to find, using the Shordan
IoT search engine, almost 49,000 MQTT servers exposed on the internet due to
a misconfigured MQTT protocol, including more than 32,000 servers that had no
password encryption10.

2.3 Related works
Other comparatives studies over HTTP and MQTT have been made during the
years.

Yokotani and Sasaki[13] analyzed protocols overhead, transmitted bytes with
increasing payloads, required server resources and transmitted bytes with increasing
topic length (only for MQTT) for HTTP and MQTT. The study finds that MQTT
is better in almost all cases excluding the case in which topic length is greater
than 680 Bytes. In the study, it is also provided a solution to enhance MQTT
performance for long topics through topics compression.

10https://blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes

15

https://blog.avast.com/mqtt-vulnerabilities-hacking-smart-homes

2 – Protocols analysis

Naik, in its 2017 study[14], compares four IoT protocols including MQTT and
HTTP. The criteria of the analysis highlight better results for MQTT in terms of
overhead, power consumption and resource requirements, bandwidth and latency,
reliability and M2M usage. HTTP resulted in better interoperability, security,
provisioning and standardization.

Wukkadada et al.[15] focused their comparison on battery consumption and
message delivery reliability concluding that MQTT is better of HTTP for power
consumption to keep the connection open.

16

Chapter 3

The energy management
system

The energy management system (hereinafter also named EMS) of Myna-Project
consists of an open-source software suite and a distributed hardware network to
collect, analyze and manage energy data in IIoT contexts.

The system aims to make aggregate energy data available to customers through a
web interface in order to have a better understanding of corporate assets consumption
and production(e.g. machines, solar panels, offices, etc.) and gives the possibility to
find energy waste and excessive consumption.

Those data can also be used to estimate the cost of the energy component in
the various production stages, enabling cost engineering operations to calculate
production processes efficiency.

3.1 Network & Hardware Components
The physical part of the EMS is formed by the hardware devices and the network
that connects them.

Hardware Components The hardware devices are:

• Energy Meters. Meters are directly connected to the monitored assets and
detect input and output consumption;

• Bridges. Optional components, bridges are used for several reasons. Whenever
a change of protocol is needed (e.g. from Modbus RTU, which is one of
the most common protocols used by meters in the architecture, to Modbus

17

3 – The energy management system

TCP) and when the number of interfaces in the microserver is not sufficient
to connect the meters directly.

For Modbus RTU meters there is a third reason to use a Modbus RTU/TCP
bridge: when assets are very distant from the microserver, which is a common
scenario in large factories, long serial cables are subject to strong signal
attenuation.

Ethernet cables are instead at least reliable for distances below 100 meters1,
they can also be extended through switches and, in most cases, it is more
convenient for companies to have a larger Ethernet infrastructure than a serial
one;

• Microserver. It is the device where all or part of the software infrastructure is
installed and its located in one of the customer’s facilities;

• Data Center. It could be owned by the customer or connected to a server in
DMZ located in Myna headquarter (if the customer cannot preserve data on
its own properly), the Data Center is where energy information is kept.

Network As mentioned in the previous paragraph, mostly of meter-bridge connec-
tions are in Modbus RTU, whereas connections between bridges and microservers
are in Modbus TCP.

Each customer’s microserver is directly reachable from Myna network via a VPN
(Virtual Private Network) created with the open-source application OpenVPN2.
The VPN is also present between Myna network and Customers Data Centers,
allowing them to reach the Data Center.

External Cloud Data Centers receive data from their microservers through a
secure internet connection and standing behind a reverse proxy, which functioning
will be further discussed in section 3.2.

1https://www.se.com/ww/en/faqs/FA269550/

2https://openvpn.net/

18

https://www.se.com/ww/en/faqs/FA269550/
https://openvpn.net/

3.2 – Software Components

Figure 3.1. Network & Hardware Architecture Schema

3.2 Software Components
Every server in the architecture uses Linux Debian as O.S. and every application
installed on is open-source, as well as the applications developed by Myna-Project,
the core of the EMS.

19

3 – The energy management system

The application required for the EMS are:

• PostgreSQL3. Relational DBMS (DataBase Management System) used by
the back-end for data persistence;

• Apache Tomcat4. HTTP Application Server where back-end and front-end
application are deployed;

• OpenJDK5. open-source implementation of the Java SE Platform, required
for the functioning of IEnergyDa (the back-end);

• Apache HTTP Server6. The web server deployed in plants where a Reverse
Proxy is needed.

Anyway, not every required application is needed in every plant and, generally, for
plants where only the IoT Gateway is needed (e.g. certain customer’s Micorservers)
none of these applications is needed.

Software Suite The core of the EMS is represented by the three software com-
ponents developed in Myna. These components are:

• Wolf. It is the IoT Gateway of the architecture, it can retrieve or receive
(depending on the input protocol) measures from meters and bridges, saves
data in a queue, and then convert and send them in output. It is written in
Python and its structure is organized in input and output modules;

• IEnergyDa. IEnergyDa is the central part of the architecture. It is the back-
end of the application and performs data analysis (from which letters “Da”
in the name are derived) with data received from Wolf. It is developed in
Java with Spring and Hibernate frameworks;

• IEnergyUtils. It is the front-end application used to request and visualize
aggregated data from IEnergyDa with plots and tables. It is based on Angu-
larJs.

3https://www.postgresql.org/

4https://tomcat.apache.org/

5https://openjdk.java.net/

6https://httpd.apache.org/

20

https://www.postgresql.org/
https://tomcat.apache.org/
https://openjdk.java.net/
https://httpd.apache.org/

3.3 – Wolf

Figure 3.2. Software Architecture Schema

The two components that will be part of the trial, Wolf and IEnergyDa, will be
detailed in the next Sections and, for protocols implementation, in chapter 4 and
chapter 5.

3.3 Wolf
Wolf7 is a lightweight and modular IoT gateway written in Python. Wolf receives
or retrieves data, depending on the protocol used, from various industrial electronic
devices and then stores it into InfluxDB8 and/or sends it to other Information
Systems through the output plugins.

Wolf also exposes REST services to get, set, or update the configuration, and to
retrieve the measures data from InfluxDB, these REST services are used by WolfUI
(Wolf User Interface) to provide the web-based graphical interface. Wolf design is
lightweight to run low-performance environments such as embedded systems.

Plugins & Configuration Wolf supports the following input plugins:

• AMQP - JSON and XML data format

• EnOcean

7https://github.com/myna-project/Wolf

8https://www.influxdata.com/

21

https://github.com/myna-project/Wolf
https://www.influxdata.com/

3 – The energy management system

• IO-Link - JSON

• Modbus RTU

• Modbus TCP

• MQTT - JSON, Raw and XLM data format

• TPLink Smart plugs

and the following output plugins:

• AMQP

• InfluxDB (for local storage)

• IEnergyDa MQTT

• IEnergyDa HTTP REST

Wolf searches and loads plugins in the plugins directory and use them if they
are configured in the configuration wolf.ini file. Every plugin requests his own
configuration parameters and only REST and MQTT output plugin configuration
will be detailed in chapter 4 and chapter 5, respectively.

Unlike plugins configuration, Wolf configuration is always required. The fields of
Wolf configuration are:

• loglevel. Describe the verbosity of the log file;

• interval. An integer parameter that describes the time interval between a
pooling cycle and the next one. When the interval specified is greater than
60, its value is rounded to the closest multiple of 60;

• clientid. It is a parameter needed in IEnergyDa, where Wolf is recognized as
a specific case of an asset (client).

Redis cache Wolf uses a back-end database on Redis9 to implement caching and
data persistence. Cache implementation use <plugin_name>.<instance_id> as
key and the msgpack of the JSON, made by an input plugin, as value. To make
use of Redis cache a configuration inside wolf.ini is required. The parameters needed
are:

• host. IP address of redis server;

• port. Port of redis instance;

• db. Redis database name;

• expire. Max number of days for data retention (default value is no expire).

9https://redis.io/

22

https://redis.io/

3.4 – IEnergyDa

Data from input plugins are cached until they are requested from the output
plugin or sent in a pooling cycle. In case of failure, data remain on the cache to be
sent back in the next pooling cycle until the transmission succeeds. The parameter
expires is usually not needed, but it can be useful for installations with low disk
space, such as embedded systems.

3.4 IEnergyDa
IEnergyDa (also called I-Da) is a Java back-end and data-analysis software for
industrial energy management. The project uses Spring10 framework and its modules
for the application design structure (Spring MVC) and security (Spring Security).
Application’s build and dependencies management are delegated to Apache Maven11.

Interaction between I-Da and the Postgres database is handled with Hibernate12,
an ORM (object-relational mapping) framework which maps Java classes to database
tables and Java types to Postgres data types.

Hibernate also provides a query language called Hibernate Query Language (HQL)
which uses an SQL-like syntax to create queries with parameters. HQL queries are
checked and escaped by the engine to mitigate SQL-injection attempts.

Even if mitigated, SQL-injections are still possible if HQL is used in an incorrect
way13, so developers should take other measures to secure the application, such as
avoid improper usage of native HQL queries14.

Database structure The database structure is mainly based on eight entities.
Three of them are related to user authorization and authentication:

• Role. This entity indicates the user’s permissions. There are three types
of roles: ROLE_ADMIN, can access to every resource in both reading and
writing, ROLE_USER, a user with this role can access every resource in the
organizations for which it has a Job, and ROLE_USER_RO, which is the
same of ROLE_USER but with read-only access to resources;

• User. A personal account used for authentication;

• Job. It is the link between Users and Organizations, every user can access
one or more organizations according to its Jobs.

10https://spring.io/projects/spring-framework

11https://maven.apache.org/

12https://hibernate.org/

13https://owasp.org/www-community/Hibernate

14https://web.archive.org/web/20170227185238/https://owasp.org/index.php/
Hibernate-Guidelines/#Important

23

https://spring.io/projects/spring-framework
https://maven.apache.org/
https://hibernate.org/
https://owasp.org/www-community/Hibernate
https://web.archive.org/web/20170227185238/https://owasp.org/index.php/Hibernate-Guidelines/#Important
https://web.archive.org/web/20170227185238/https://owasp.org/index.php/Hibernate-Guidelines/#Important

3 – The energy management system

Figure 3.3. Entity-relationship model of IEnergyDa database (interme-
diate entities excluded)

Other relevant entities involve energy measures and are organized in a hierarchical
structure. These entities are:

• Organization. An organization (or org) corresponds to a company, a plant or
an industry. Organizations are recursive, so a single org can be only a part of
a business, like a branch or a subsidiary of a company, and thus be a "child"
organization of the main one;

• Client. It is a measured asset for the organization. A client can be a building,
a machine, a solar panel, or any other device that produces or consume energy.
Every client is associated with an organization and like organization can be
recursive;

• Feed. It represents the physical dimension of a measure. Examples of Feed
can be Energy, Power or Voltage.

• Drain. A drain is the detailed element measured, as many clients, such as

24

3.4 – IEnergyDa

compressors and other heavy machinery, are three-phase systems is needed to
distinguish a phase from another or the sum of them;

• Measure. It is the raw data, represented by a float value, a timestamp and an
associated drainID.

Structure The structure of IEnergyDa is strongly based on Spring MVC as the
project has been initially created to be a part of RESTful architecture. MVC
stands for Model-View-Controller and it is a well known and popular software design
pattern for the development of web applications. The first elements, for the definition
and startup of the application, are servlet (particularly DispatcherServlet) and
applicationContext.

Servlets & Controllers A servlet is a Java technology-based web component,
managed by a container, that generates dynamic content. The servlet container,
sometimes called the servlet engine, is a part of a Web server or application server
(for I-Da the application server is Tomcat) that provides the network services over
which requests and responses are sent. A servlet container also contains and manages
servlet through their life cycle[16]. It also improves exception handling through
HTML pages generated and returned to the user after exception processing.

Figure 3.4. The request processing workflow in Spring Web MVC (high level)[3]

25

3 – The energy management system

Spring’s DispatcherServlet is a type of servlet that is more integrated with other
Spring’s features. As shown in Figure 3.4, DispatcherServlet delegate requests
to a specific Controller, depending on the URL. Controllers, which represent the
C in the word MVC, provide access to an application behavior typically defined
through a service interface. Controllers interpret user input and transform it into a
model that is represented to the user by the view. Spring implements controllers in
a very abstract way, which enables to create a wide variety of controllers[3].

With Spring 2.5 annotation-based programming model for MVC controllers has
been introduced. Java annotations are syntactic metadata, preceded by “@”
symbol, that can be added to classes, method, fields and other meta-objects. They
are used as an alternative or in conjunction with XML for Spring configuration,
and can also be used in several cases, such as for Inversion of Control (IoC) design
pattern, serialization and ORM (they are also used by Hibernate). Controller
annotations will be dealt with other HTTP implementation aspects in chapter 4.

ApplicationContext To introduce the concept of application context it is first
necessary to explain the concept of IoC and introduce the concept of bean. Inversion
of control, also known as dependency injection (DI), is a process in which objects
define their dependencies through constructor arguments or properties that are set
on the object instance after it is constructed from a factory method.

This process is the inverse of what happens with a direct construction of classes,
or with mechanisms such as the Service Locator pattern, where the bean itself
verify the installation or location of its dependencies. A bean is an object that
is instantiated, assembled, and otherwise managed by a Spring IoC container. In
other words, it is simply an object within the application, such as a service or a
DAO (Data Access Object) in IEnergyDa.

To manage beans Spring utilize an advanced configuration mechanism: the
BeanFactory interface. ApplicationContext is a sub-interface of BeanFactory that
adds an easier integration with Spring’s AOP (Aspect Oriented Programming)
features, message resource handling (for internationalization, event publication and
application-layer specific contexts[3]. In IEnergyDa the main bean components can
be categorized as follows:

• Services;

• Dao;

• AuthenticationHandler ;

• CronJobs.

Service components are used to implement the business logic separated from the
REST Controller and their classes have the @Service annotation. Dao is strictly
linked to services and implements the part of operations related to Hibernate

26

3.4 – IEnergyDa

database transactions. In Dao classes, HQL is used on entity classes (defined by
the @Entity annotation) which reflect the database entities.

AuthenticationHandler is used for application login. Details on its implementation
are given on subsection 4.2.1. CronJobs instead, is a set of triggers to activate
periodically the classes that check interruptions or errors in the flow of energy
measures from Wolf and, in one of these cases, send a report to the administrator.
Triggers activation time indicated through cron expressions.

Model & View The Model, which is the M in word MVC, is how a controller
communicates data to the view. The format chosen to send this data is JSON
(JavaScript Object Notation) format, for its better readability compared to XML.
Finally, the View (the V in MVC), instead of a classical JSP (JavaServer Pages) view
approach, is externalized on the client-side and it is represented by the AngularJs
User: Interface IEnergyUtils.

27

28

Chapter 4

HTTP implementation

HTTP implementation, as mentioned in the previous chapter, is based on REST
communication between Wolf and IEnergyDa. REST (REpresentational State Trans-
fer) is an architectural style, defined in 2000 by Roy Fielding, for providing standards
between systems on the web with the aim of facilitating their communications.

REST has 6 (5 plus an optional one) architectural constraints, or guiding principles,
that must be respected to create a REST compliant interface, also defined RESTful.
These principles are:

1. Client-Server. The first constraint is about the separation of user interfaces
from the data storage concerns, to improve the portability of user interface
across multiple platforms and to improve scalability by simplifying server
components. The separation also allows an independent evolution of the
components.

2. Stateless. Session state is kept entirely on the client and each request from the
client to server must contain all of the information necessary to understand the
request. This constraint improves visibility because a monitoring system does
not have to look beyond a single request to determinate its nature, reliability,
because its easier to recover partial failure, and scalability because the server
does not need to store state from every user and quickly free resources.

3. Cache. To improve network efficiency it is required that response data will
be implicitly or explicitly labeled as cachable or not. If a response is cachable,
then a client can reuse it for later, equivalent requests.

4. Uniform interface. By applying the software engineering principle of gener-
ality to the component interface, the overall system architecture is simplified
and the visibility of interactions is improved. In order to obtain a uniform
interface, multiple architectural constraints are needed to guide the behavior
of components. REST is defined by four interface constraints: identification of

29

4 – HTTP implementation

resources, manipulation of resources through representations, self-descriptive
messages hypermedia as the engine of application state (HATEOAS).

5. Layered System. This principle allows an architecture to be composed of
hierarchical layers by constraining component behavior such that components
cannot be visible beyond the immediate layer with which they are interacting.

6. Code on demand (optional). REST allows client functionality to be
extended by downloading and executing code in the form of applets or scripts.
This simplifies clients by reducing the number of features required to be
pre-implemented.

The key abstraction of information in REST is a resource. Any information can
be a resource and REST uses a resource identifier to target a particular resource
involved in an interaction between components. The state of a resource in a particular
moment is known as resource representation and consists of data, metadata that
describes the data and hypermedia links to help clients in transition to the next
desired state [17].

Resources are linked to resource methods used to access and modify a specific
resource. In HTTP, the pre-defined methods (GET, POST, PUT and DELETE) can
be used as resource methods, even in Fielding’s work, there aren’t recommendations
on which method use and in which condition. The only requirement is to maintain
a uniform interface as declared by the fourth guiding principle.

In the next sections, the HTTP REST implementation in Wolf REST output
plugin and IEnergyDa input REST API will be detailed.

4.1 Wolf REST output plugin
Wolf REST output plugin is searched and loaded from the main component of the
gateway on startup, together with other installed plugins.

The configuration of REST output plugin has four parameters:

• baseurl;

• username;

• password;

• retries;

• backoff.

Baseurl is the REST API endpoint that Wolf use to contact I-Da, represented
by an HTTPS URL. Username and Passoword are credentials for authentication
purposes. Retries is an integer number that indicates the number of retries that
will be attempted in case of error and it is related to Backoff which is a float
number that represents an exponentially increasing time in seconds that will be

30

4.2 – IEnergyDa REST API

waited for every retry in order to mitigate response lack due to a server overload.
The last two parameters for retry attempts are used as part of a specific Retry
object which is included in the urllib3 library, an HTTP client for Python used in
Wolf.

Once the plugin parameters are loaded, on the application start-up, the function
__post_config() is activated from the main thread. This function runs only once
when Wolf starts, and it is used to send the configuration of Wolf’s clients, feeds and
drains to I-Da, which will add or update its previous configuration (if necessary), in
order to avoid mismatch of entities between the gateway and the back-end.

Every n seconds (where n is the parameter interval defined in Wolf configuration)
the function post is called by the main module. In this function raw data are picked
up from redis queue and parsed to form the JSON file that will be send.

The function __post() is called by the two functions described previously to
concretely send both configuration and field data to I-Da through a POST request.
By going into detail of this function, it can be noticed that, before the POST request,
if the csrf header is missing, function __get_token() is called.

In function __get_token() it is performed a GET request to I-Da in order to ob-
tain a X-CSRF-TOKEN which is used to protect the application from Cross-site
request forgery (CSRF) attacks. This type of protection, covered in subsec-
tion 4.2.1, is unnecessary for non-browser clients[18] like Wolf, but it is needed for
Web UI, so it is mandatory for communications with I-Da and leaves also possibilities
for future Wolf-based UIs.

When X-CSRF-TOKEN is set, the auth variable is filled with username and
password and the POST request is sent. If the HTTP response code is equal to
403, it could be possible that X-CSRF-TOKEN expired, so a recursion flag is set
and another request with a new token will be tried. If the recursion variable is
already flagged, the request operation will not be repeated to avoid recursion and
an error message will be displayed. For any other error case, the request will be
repeated according to the Retry variable.

4.2 IEnergyDa REST API
4.2.1 Authentication & Authorization
As mentioned previously, I-Da security features are provided with Spring Secu-
rity, a powerful and highly customizable authentication and access-control frame-
work which represents the de-facto standard for securing Spring-based applications
[18]. The class where security features are implemented and configured is called
SecurityConfig.

SecurityConfig starts with two Spring annotations, @Configuration
and @EnableWebSecurity. The first one is used to declare one or more beans that

31

4 – HTTP implementation

need to be dealt on run-time, while the second one is a marker annotation and,
combined with @Configuration, allows Spring to find and automatically apply the
class to the global WebSecurity and switch-off the default web security configuration.

For the authentication part, UserDetailsService interface is used. This compo-
nent is a DAO interface for loading data that is specific to a user account. Once
an AuthenticationManager is created, the UserDetailsService is assigned to it
together with a password encoder. The password encoder originally chosen for the
application was BCrypt but, after the introduction of MQTT in the architecture
with the go-auth plugin (details on subsection 5.1.2), the algorithm has been changed
in favor of PBKDF2, with a custom encoder to meet the go-auth specifics.

The main method of the class is the configure(HttpSecurity http) method.
This method accomplish several security functions:

• Defines a CORS filter;

• Defines a CSRF Token filter;

• Specifies authorization rules;

• Ensures that any request to the application requires the user to be authenti-
cated;

• Sets the authentication details.

The CORS filter CORS is a mechanism that uses additional HTTP headers to
allows a web application that runs on a certain origin1 to access selected resources
from a different origin. For security reasons, browsers restrict cross-origin HTTP
requests initiated from scripts, such as XMLHttpRequest.

CORS mechanism supports secure cross-origin requests and transfers between
browser and server. If a request is considered a simple request, e.g. a GET or a
HEAD without custom header, the request is performed without additional actions.
Other requests, that may have implications to user data, are called preflighted,
since before the actual request a call with OPTIONS method is performed by the
client to determinate if the cross-origin request is allowed [4].

In I-Da, CORS requests are managed through a dedicated class which import
from a property file the list of originsAllowed.

This list varies according to the configuration file of each installation. If a pre-
lighted request origin is in the list, I-Da will send a response with a 202 - Accepted
status code together with Access-Control-* headers of allowed credentials, headers
and methods.

1An origin is formed by a schema and a host.

32

4.2 – IEnergyDa REST API

Figure 4.1. Example of a request with a previous preflight[4]

CSRF A CSRF attack force a logged victim’s browser to execute unwanted actions
on a web application. This is due to the fact that, for most sites, browser requests
automatically include any credentials associated with the site, including session
cookies and IP addresses.

An attacker can send a hyperlink to an end-user and convince him to open it
through social engineering techniques. Once the user clicks on a mock form or,
with an automated request, simply opens the malicious link a forged HTTP request
is sent by the attacker’s site to the attacked web site[19]. Even if the attacker
can’t access to the response of that request, a state-changing request sent with this
method can be a serious threat, allowing operations such as money transfers.

Spring offers several countermeasures against CSRF attack: in Spring MVC, with
@EnableWebSecurity, a default CSRF token protection is provided. This solution,
known as Synchronizer Token Pattern, is based on a randomly generated token as
an HTTP parameter, in addition to the session cookie. When a request is submitted
the server will compare the generated token with the one in the request. If the
value doesn’t match, the request will be refused.

33

4 – HTTP implementation

Nevertheless, as I-Da use JSON requests, it is not possible to submit the CSRF
token with an HTTP parameter. It is instead possible to use HTTP headers. On
the initial visit to the web site, and without an associated session, a user retrieves
with a safe method a cookie containing a randomly generated token. This token is
sent in the X-CSRF-TOKEN and will be used for every state-changing request. The
attacker can only guess the value of the token and this strongly mitigates the attack
because a right guess is highly unlikely.

CsrfFilter class handles the CSRF token mechanism as discussed above, creates
the X-CSRF-TOKEN, check and filters the requests with a correct token. CsrfFilter
token retrieve use a GET request, as this method is considered safe. This assumption
is true only if HTTP verbs are used properly and GET request is used only to retrieve
information and works without a CSRF token. Otherwise, GET request cannot be
considered safe as private information in an HTTP GET could be leaked[18].

Authorization I-Da authorization policy is handled with a RBAC (Role-Based
Access Control) approach. As described for the database structure, there are three
active roles within the application:

• ADMIN ;

• USER;

• USER_RO.

Every role has the prefix ROLE_ and can access only certain URLs. Custom
requirements for URLs shall be specified by adding multiple antMatchers() to the
http.authorizeRequests() method.

Children of authorizeRequests(), also called matchers, are considered in the
order of their declaration and can use regular expression pattern, starting from
the most specific to the most generic pattern. The Admin user can access every
resource:

.antMatchers("/**").hasRole("ADMIN")

while the access to the token for the CSRF protection and to the swagger
interface is allowed to anyone by the .permitAll() method.

Requests authentication The last part of the security configuration sets au-
thentication details. In this section of code is specified that every request to the
application must be authenticated and specify the URL to validate username and
password. There are also specifications of handlers for successful and failed Login,
successful logout, and for authentication method which is HTTP Basic authen-
tication. As already addressed in chapter 2, Basic authentication is not a safe
authentication method unless the communication is under HTTPS, which must be
used (the mandatory redirection from HTTP to HTTPS is handled in the Apache
Web Server configuration).

34

4.2 – IEnergyDa REST API

4.2.2 Measures handling
The controller dedicated to managing the incoming measures from Wolf is named
WolfController. It is divided into two sections, one for the admin, and one for the
user roles, which perform similar functions but map different URLs.

For every section, there are two methods POST, one to handle a JSON file of
measures for a certain client in a certain timestamp called PostMeasures, and one
to handle a matrix of measures for the same or for several clients with a different
timestamp and called PostMeasuresMatrix.

During the trial, PostMeasuresForUser, which is the single client POST method
for users, has been used for the sake of simplicity, but there is no substantial
difference in the choice between the two methods ahead of trial’s goals.

postMeasure method is preceded by a @RequestMapping annotation. This an-
notation is used to map web requests onto specific handler classes or methods. A
@RequestBody annotation is used to indicate a method parameter that should be
bound to the body of the web request. For I-Da, the method parameter is a JSON
file containing measures and mapped with the class CsvMeasuresJson.

In the body of the method, the authenticated user will be retrieved through
SecurityContextHolder class, with getAuthentication() method. Even if the
RBAC authorization approach filters user roles, postMeasure performs another
check on the user to verify if it has the right to access that client (through its
jobs). If the user cannot access that client a 404 - Not Found status code will
be returned to the user. The response is a 404 and not a 401 - Unauthorized
because this message could give information not needed to the user on the presence
(or not) of certain clients onto the database.

If the user can access the client, measures will be collected into the Postgres
database through service and DAO interfaces. After a correct insertion of measures,
a response with a 201 - Created HTTP status code will be returned.

35

36

Chapter 5

MQTT implementation

The implementation of MQTT in Myna architecture has been designed to be an
alternative to the REST implementation. It has been tried to integrate as much as
possible MQTT with the existing architecture, complying with its principles.

An example of this approach (that will be further discussed on section 5.1) is the
name of the topics where measures are sent: a topic is created for every user linked
to a specific installation, and that user can only send measures on its topics.

An MQTT broker has been placed between Wolf and IEnergyDa to allow a unidi-
rectional communication from the publisher (Wolf), and the subscriber (IEnergyDa).

The chosen MQTT broker is Mosquitto, which offers not only message broker
capabilities, but also security functions, like TLS communication, and Access Control
Lists. The broker, by means of the Go Auth plugin, is also directly connected to
the same Postgres database used by IDa.

In the next Mosquitto will be analyzed in the details, while Wolf and IEnergyDa
parts will be analyzed in section 5.2 and section 5.3 respectively.

5.1 Mosquitto Broker
Mosquitto1 is an open-source message broker developed by Eclipse Foundation.

In Debian, Mosquitto can be installed from its repository on APT2:

apt-get install mosquitto

1https://mosquitto.org/

2Advanced Packaging Tool, a command-line package manager for Debian

37

https://mosquitto.org/

5 – MQTT implementation

Once installed, Mosquitto must be configured. The configuration file is located on
/etc/mosquitto/mosquitto.conf and in our case it will have two parameters:

acl_file /etc/mosquitto/auth/acls
allow_anonymous false

the first parameter specifies the location of the ACLs file, while the second
parameter blocks anonymous users. In fact, Mosquitto allows anonymous users
so it must be specified that this option is unwanted to make the authentication
mandatory.

5.1.1 ACLs
In ACLs file the access rights on a specific topic are defined with the topic parameter
in the following way:

topic [read|write|readwrite] <topic>

where the access type is one of the three defined in the brackets and <topic> is
the topic name.

The first set of topics in the file are applied to anonymous clients, if allow_anonymous
is set to true in Mosquitto configuration. User-specific topics can be defined after
the user parameter.

It is also possible to define ACLs based on pattern substitution within the topic.
In this case, the form is the same of topic parameter which is substituted with
the word pattern and with %c and %u to indicate the client or the user in the
topic[20].

An example of a working configuration for Myna architecture is the following:

pattern read wolf/%u/#
pattern write wolf/%u/#
user admin
topic write #
topic read #

In this example, the user admin (which is defined in I-Da MQTT configuration)
can write (publish) and read (subscribe) any topic, while every other user could
write and read on its wolf/username/# topics.

It is worth noting that, while an anonymous user cannot connect to the broker, an
authenticated user can publish and subscribe to any topic. In fact, the authorization
policy of Mosquitto is not explicit. If an authenticated user tries to publish on a
topic without the right authorization, the message will be discarded by Mosquitto
without notifications to the user. Similarly, if a user subscribes to a topic for which
is not authorized, it will never receive messages.

38

5.1 – Mosquitto Broker

5.1.2 Authentication plugin
Mosquitto, in addition to its authentication features, has basic built-in authentica-
tion mechanisms. These mechanisms are based on textual password files configured
by the user. However, we preferred an authentication system that can connect a
back-end database.

Mosquitto functions can be integrated with plugins and for authentication the
Mosquitto Go Auth plugin has been chosen. Mosquitto Go Auth3 is a mosquitto
plugin almost written in Go which implements several back-end authentications,
including:

• Files;

• PostgreSQL;

• JWT (with local DB or remote API);

• HTTP;

• Redis;

• Mysql;

• SQLite3 ;

• MongoDB;

• gRPC.

The Postgres back-end has been used to integrate the preexisting IDa authentica-
tion with mosquitto. With this connection, it is possible to use I-Da users also on
the broker.

An example of a Go Auth configuration (located on /etc/mosquitto/conf.d/
auth.conf) is the following:

auth_plugin /usr/lib/mosquitto-auth-plugin/go-auth.so
auth_opt_backends postgres
auth_opt_pg_host localhost
auth_opt_pg_port 5432
auth_opt_pg_dbname ienergy
auth_opt_pg_user ienergy
auth_opt_pg_password ienergy_pwd
auth_opt_pg_userquery select password from users where

username = $1 and enabled = 1 limit 1
auth_opt_log_dest file
auth_opt_log_level debug

3https://github.com/iegomez/mosquitto-go-auth

39

https://github.com/iegomez/mosquitto-go-auth

5 – MQTT implementation

auth_opt_log_file /var/log/mosquitto/auth.log

Besides database configuration (host, port, database name etc.) and logs param-
eters, the userquery parameter is used to retrieve the user’s password from the
Postgres database.

Go Auth plugin requires PBKDF2 hash. PBKDF2 (Password-Based Key Deriva-
tion Function 2), is a deterministic algorithm used t derive cryptographic keys from
a secret value (e.g. a password). The key derivation is obtained from the secret
value itself, a salt and an iteration count.

A salt is a non-secret binary value used as an input to the key derivation function.
Salt should be large and sufficiently random to assure that the generated key is
difficult to compute and unlikely to be selected twice. An iteration count is a
method to increase the cost of producing keys from a password through algorithm
iterations. From a mathematical point of view, an iteration count will increase the
security of the password of log2(c). Another important parameter for PBKDF2
is the underlying hash function used by the algorithm (e.g. SHA-256 and SHA-
512)[21, 22].

The PBKDF2 hash required by Go Auth contains the word PSKDF2, the hash
function, the iteration counter, the salt and the password hash separated by the $
symbol. An example of the hash is the following:

PBKDF2$sha512$100000$znG9i0H+a2o0SgoSyec56A==$4+GzKfvFd3cYszjwTesu
DYbIiPh5GUCVpl/2Nbq8y+97eSocqWj5t6IF4xbyiZgC60Fe1GdctZ/QBfLd0starA==

Debian installation The plugin does not provide an installation packet for
Debian (or other distribution/architecture). Only the source code of Go Auth is
available to be compiled. To compile the plugin, mosquitto sources are needed.
In Debian 10 it is possible to obtain these sources, after enabling them on ATP
sources.list, with the command:

apt-get source mosquitto

Then, to compile (for mosquitto v. 1.5.7):

export CGO_CFLAGS = -fPIC -I../mosquitto-1.5.7 -I../mosquitto-1.5.7/lib
export CGO_LDFLAGS = -shared
make

The file obtained, go-auth.so, is the plugin, and will be moved to /usr/lib/mosquitto-
auth-plugin folder.

Myna created a fork of the plugin4 which presents two patches. One is for
is to solve the unavailability of the accessory functions mosquitto_client_id()

4https://github.com/myna-project/mosquitto-go-auth

40

https://github.com/myna-project/mosquitto-go-auth

5.2 – Wolf MQTT output plugin

and mosquitto_client_username(). The other patch execute a formal control on
password hashes to avoid plugin’s exemptions and crashes.

5.1.3 TLS on Mosquitto
Besides authentication and authorization functionalities, a TLS configuration (on
/etc/mosquitto/conf.d/ssl.conf) has been added. A secure TLS communication
must be used for a public message broker. The configuration parameters are:

• port. The default port used by mosquitto listener;

• listener. This parameter can be used multiple times, indicates other listener
ports. The port 8883 is the one used for MQTTS;

• cafile. Used to define the path to a file containing the PEM5 encoded CA
certificates that are trusted;

• keyfile. Used to define the path to the PEM encoded keyfile;

• certfile. Used to define the path to the PEM encoded server certificate;

• tls_version. Configure the version of the TLS protocol to be used for the
listener[20].

5.2 Wolf MQTT output plugin
The Wolf MQTT output plugin an REST output protocol work in a similar way.
Both protocols send measures to I-Da with an interval set in Wolf configuration. The
plugin is developed with Eclipse Paho library and supports the following parameters:

• host. The IP address or the hostname of the MQTT broker;

• port. The port of MQTT broker (default is 1883, 8883 when it is on TLS;

• username. The username of the sender;

• password. The password of the sender;

• transport. The transport protocol between tcp and websocket;

• protocol. Select the protocol version between MQTTv31 and MQTTv311;

• keepalive. Used to keep a session with the broker open for a certain period of
time (default is 60 seconds);

• topic. The name of the topic in which the plugin publish (topic should possibly
be authorized on mosquitto for the publisher user);

5PEM (Privacy-Enhanced Mail) is the de-facto standard file format used to store and send
ciphered data.

41

5 – MQTT implementation

• qos. The quality of service. Values are 0, 1 and 2 with 0 default;

• cacert. The CA certificate, required only with TLS;

• tlsversion. Minimum TLS version. Available versions are: TLS1.0, TLS1.1
and TLS1.2 (default);

• tlsverify. Server certificate validation (default disabled);

• retain. Flag MQTT for message retain (default disabled).

The body of Wolf MQTT plugin is very simple. It use functions post_config()
and post to send client’s configuration an measures to IDa, similarly to its REST
counterpart.

There are also four functions that manage the connection with the broker:

1. on_connect(), notify a successful connection in the log and an associated rc
(result code);

2. on_disconnect(), notify a disconnection when the rc is not 0;

3. on_pubblish(), notify that a message has been successfully published on
broker and the mid (message identifier);

4. stop(), disconnect Wolf from the broker.

There are six defined result codes in Eclipse Paho:

• 0. Connection successful;

• 1. Connection refused - incorrect protocol version;

• 2. Connection refused - invalid client identifier;

• 3. Connection refused - server unavailable;

• 4. Connection refused - bad username or password;

• 5. Connection refused - not authorised.

Result codes from 6 to 255 are currently unused[23].

If QoS>0, the plugin also logs message delivery, but there is only a guarantee
that the message arrived to the broker. There is no way to know if the message
also arrived to I-Da.

5.3 IEnergyDa MQTT API
I-Da MQTT API has been introduced with the class MqttStarter and the related
component. The MqttStarter component is executed through Application Context
on IEnergyDa startup.

42

5.3 – IEnergyDa MQTT API

As for Wolf, also I-Da implements MQTT with the Eclipse Paho library, in its
Java version. When the components starts, it requires from the config.properties
file all the necessary parameters:

• mqttTopics. Optional topics that can be manually added to be subscribed ;

• mqttServerURI. the URI of the server and the port, in the form tcp://address:1883
for insecure connections and ssl://address:8883 for TLS connections;

• mqttCaCert. The path of CA certificate (mandatory for TLS connections);

• mqttCert. The path of user certificate (optional for TLS connections);

• mqttKey. The path of user private key (optional for TLS connections);

• mqttQos. The QoS level for messages (default is 0);

• mqttUser. The username of the administrator;

• mqttPassword. The password of the administrator.

As “administrator” is intended the user, defined in mosquitto ACLs, with the
right to read and write on any topic.

When properties parameters are set the method afterPropertiesSet() is ex-
ecuted. In this method, all the users with the role ROLE_USER are collected and
for every user a topicwolf/username/config and a topicwolf/username/measures
are added to the topics list.

At this point, an MqttClient is created with all the related properties (username,
password, and TLS configuration, if any). Then, the client connects to the broker
and all the topics in the topics list are subscribed.

The method destroy() is used to close the connection to the I-Da from the
broker if it is connected.

The methods subscribeUser(User u) and unsubscribeUser(User u) are used
respectively to create and unsubscribe config and measures topics when a used is
created or deleted. The method unsubscribeUser(User u) is also called when the
role is changed for a user because topics are created only for the ROLE_USER.

If the connection between IDa and mosquitto is interrupted, the method
connectionLost(Throwable throwable) is executed. This method tries, if it is
possible, to disconnect the client and then tries to connect it again and to subscribe
to the topics list.

Incoming messages To handle the messages received from the subscribed top-
ics, the method messageArrived(String topic, MqttMessage mqttMessage) is
used.

This method has two input parameters: the topic of the received message and an
MqttMessage object, that contains the payload and the options of the message.

43

5 – MQTT implementation

The message received has the same JSON file sent with REST as payload. This
file has, for measures messages, the following form:

{"device_id": "SN20200411084541", "at": "2020-04-17T15:03:00+0200",
"measures": [{"value": 123.4, "measure_id": "M1"},

{"value": 123.4, "measure_id": "Mi"},
{"value": 123.4, "measure_id": "Mn"}],

"client_id": 282}

In this JSON, device_id is the asset measured, at is the timestamp, client_id
is the Wolf client that handles the asset and measures is an array of measures
identified by measure_id which is the identifier for the drain of the measure and
value which is the measured value.

The config JSON file, is instead an array of configuration for every drain, with
the form:

[{
’client_id’: ’1234’, ’device_id’: ’1234’, ’measure_id’: ’M1’,
’plugin_id’: ’modbus_tcp.1’, ’device_descr’: ’solar_panel07’,
’measure_descr’: ’RMS sum active power’, ’measure_unit’: ’kW’,
’measure_type’: ’f’},
...
’client_id’: ’1234’, ’device_id’: ’1234’, ’measure_id’: ’Mn’,
’plugin_id’: ’modbus_tcp.1’, ’device_descr’: ’solar_panel07’,
’measure_descr’: ’RMS sum apparent energy’, ’measure_unit’: ’kWh’,
’measure_type’: ’f’
}]

In addition to the already described client_id, device_id and measure_id,
the config JSON file contains a plugin_id which is the input plugin used to retrieve
that measure, the device_desc which is the client name, the measure_desc that
is the name of the drain and the measure_unit that corresponds to the the unit of
measure. The parameter measure_type is the type of data which, in the example,
is (f)loat. This field is actually unused in IDa.

As described in the REST part, JSON files are mapped on CsvMeasuresJson class
(for measures) and ConfigMeasureJson (for config) through the Spring annotation
@RequestBody. For MQTT, where Spring is not used, the open-source JSON parser
Jackson6, with its ObjectMapper class, has been used.

The method readValue() parse and convert the JSON into a Java object that, for
measures, will be used in the method createMeasuresFromJson(). This method
is the same method called from the REST controller of IDa. It takes in input the
JSON file and the user who sent the measures, to ensure that it has the right to

6https://github.com/FasterXML/jackson

44

https://github.com/FasterXML/jackson

5.3 – IEnergyDa MQTT API

save those measures. The user is obtained from the topic name, and the identity of
the user is proved by the ACLs mechanism of mosquitto.

5.3.1 IEnergyDa MQTT Security
The TLS connection between mosquitto and IDa is handled with the Java SSLSocketFactory
class and the security API Bouncy Castle7.

SSLSocketFactory is used to load the CA certificate from the file-system. When
client certificates and keys are needed, to read the PEM format of the private keys,
BouncyCastle methods are used.

After the setup of CA certificates and, eventually, client certificates and keys,
a SSLSocketFactory object is created with a specified TLS version (default is
TLS1.2).

7https://bouncycastle.org/

45

https://bouncycastle.org/

46

Chapter 6

Protocols comparison

To compare behaviors and performances of the two protocols with the implementa-
tions described in previous chapters, several tests has been executed.

Starting from a basic configuration, which reflect an hypothetical real case scenario,
variations on payload size and clients number have been tried. Those tests have
been executed over the Internet, both with a normal HTTP or MQTT connection
(without security) and with TLS.

In this chapter will be also shown two 24 hours tests on two particular industrial
use cases involved in the H.O.M.E.1 project. H.O.M.E. is an open-source project to
interconnect and automate factories following Industry 4.0 principles.

One of these use cases is characterized by a very limited bandwidth, while the
other uses websockets to establish the MQTT connection due to the impossibility
to use a public MQTT broker on the customer data center.

Time synchronization Time synchronization between the sender and the re-
ceiver represented one of the main issues in order to report correctly the performance
of the protocols. To evaluate those performances, a timestamp is reported on the
sender machine logs just before the post() operation, and another timestamp is
stored on the receiver machine just after the message’s arrival.

Most of the packets sent in the various tests required from 100 milliseconds
to a few seconds to be completed so, the delay between the two clocks must be
minimum. To do so both sender and receiver, in every configuration tested, have
been connected to the same NTP server.

1https://www.home-opensystem.org/index.php/en/home-3/

47

https://www.home-opensystem.org/index.php/en/home-3/

6 – Protocols comparison

Through the use of the command ntptime it is also possible to evaluate the
estimated error between a client and the NTP server. In every machine involved
the maximum estimated error between the client and the NTP server has been 3120
µs ≈ 3.1 ms. This value represents only half of the uncertainty.

Considering the time t taken by a measure to go from a sender s to a receiver r
as:

t = tr − ts

The uncertainty of the difference is given by the formula:

δt =
ð

(δtr)2 + (δts)2

It is also possible to consider an approximation of the formula above, to maintain
larger the confidence interval:

δt = δtr + δts = 3.1ms+ 3.1ms ≈ 6.2ms

So, every measure in the test is considered with an absolute uncertainty δt of
±6.2ms.

Figure 6.1. Time captures schema.

48

6.1 – Payload tests

6.1 Payload tests
In this section will be reported the results of 16 payload tests, 8 tests on HTTP
and MQTT without a secure connection, and 8 tests with TLS.

The average payload size of a packet sent from Wolf to I-Da is about 2-3 kB
(kilobyte). However, this average packet size reported is merely indicative, because
it varies widely in the various installation depending on the number of sensors
connected to Wolf.

The starting payload for every test is 10 times an average packet (25 kB) and is
doubled for any subsequent test. For each test, Wolf sends a packet every 5 seconds
to I-Da for a total of about 300 packets in each trial. MQTT tests used a QoS of 1
which ensures that almost a packet arrives. This QoS level does not protect from
duplicated packets which, however, can be handled from I-Da.

6.1.1 Payload tests without TLS
As shown from Figure 6.2, with the increasing of the payload an increase in the
delivery time can be observed both for MQTT and HTTP.

Figure 6.2. Payload tests without a secure connection

49

6 – Protocols comparison

Is it also possible to observe that MQTT performance better than HTTP for
every payload. The reason for this difference can be sought in the architectural
differences between the two protocols.

Message overhead is one of these differences, as can be noticed from Figure 6.3,
which shows the two protocols headers captured with the 2, HTTP header is more
than 6 times bigger than MQTT header.

Figure 6.3. Header differences in message delivery between HTTP (left) and
MQTT (right). The blue highlight indicates the end of the header

However, overhead by itself does not completely explain why this difference
increase with message size increasing. In this case, the difference could be not in
the protocols themselves but in the actual implementation. JSON deserialization is
performed manually for MQTT and through Spring MVC for REST. Even if in
the first case the deserialization requires 10 ms, with Spring mapping it could take
longer for huge JSON files, justifying the increasing difference in the arrival time
measurement.

2https://www.wireshark.org/

50

https://www.wireshark.org/

6.1 – Payload tests

It can also be noticed that, from time to time, HTTP had some spikes in the
measures, particularly for 50 kB and 200 kB tests. These anomalies could be caused
by temporary network instabilities but, overall, given the high number of sample
packets, there is not a significant influence (the difference is about 10-20 ms) of
these spikes in the average delivery time reported (Table 6.1).

Payload size MQTT avg HTTP avg
25 kB 0.214 s 0.389 s
50 kB 0.586 s 0.857 s
100 kB 0.773 s 1.042 s
200 kB 0.979 s 1.29 s

Table 6.1. Payload tests average delivery times

6.1.2 Payload tests with TLS
The same payload tests executed with a secure connection, represented in Figure 6.4,
show that the average message delivery in every test, compared to the previous
connection tests, is almost halved.

Figure 6.4. Payload tests with TLS

51

6 – Protocols comparison

This result appears counter-intuitive, as TLS handshake and message encryption
require additional time to complete a transaction.

However, there are some cases in which a TLS connection could perform better
than a normal one. For example with HTTP/2, browser optimization[24] or with
TLS 1.3 proposed mechanisms, such as 1-RTT and 0-RTT3. The performance
improvement can also be given by the compression that TLS could apply to the
messages. In fact, in addition to the encryption provided by TLS, the security
layer also provide data compression with an algorithm indicated in the Compression
Method field.

Figure 6.5. Encryption settings and the agreed Compression Method indicated in
the Server Hello message of HTTPS handshake

Analyzing the TLS handshake messages with Wireshark (Figure 6.5), it can be
observed that the Compression Method field is set to 1 for both algorithms, which
means that DEFLATE compression algorithm has been used, leading to the better
performance collected.

Even for these tests, MQTT performed slightly better (Table 6.2) and some time
spikes can be observed in the HTTP curves. Even in this case, the average is poorly
affected by these peaks.

Payload size MQTT-S avg HTTPS avg
25 kB 0.333 s 0.462 s
50 kB 0.329 s 0.43 s
100 kB 0.35 s 0.437 s
200 kB 0.359 s 0.446 s

Table 6.2. TLS payload tests average delivery times

3https://hpbn.co/transport-layer-security-tls/

52

6.2 – Multithread tests

6.2 Multithread tests
Multithread tests have been executed in conditions similar to those applied for
payload tests. In this case, a standard payload of around 2 kB has been used for
every test. Even in this case, 16 tests have been executed, 8 with TLS and 8 without
the security layer.

The other 8 tests have been performed and reported on subsection 6.2.3, to prove
a suspected architectural bottleneck observed during previous tests.

The simultaneous delivery has been performed with 3, 5, 8, and 10 concurrent
users, every 15 seconds for approximately 1 hour on each test. To measure the
performance the “time window” between the dispatch of the first message and the
arrival of the last message of the thread pool.

6.2.1 Multithread tests without TLS
The first group of tests (Figure 6.6 reports the trace of time windows without TLS.

Figure 6.6. Multithread tests without TLS

Unlike single-thread tests, it can be observed that, excluding the tests executed

53

6 – Protocols comparison

with 3 threads that show comparable results, there is a significant gap between
MQTT and HTTP, but this time in favor of the second one.

HTTP performs a 17% better than MQTT on average, with 5 threads, 20% better
with 8 threads, and 25% better with 10 threads. Time peaks are present for both
protocols. Table 6.3 shows in detail the average of the trials.

Threads number MQTT avg HTTP avg
3 threads 0.922 s 0.81 s
5 threads 1.555 s 1.291 s
8 threads 2.542 s 2.038 s
10 threads 3.639 s 2.715 s

Table 6.3. Multithread tests average time windows results

6.2.2 Multithread tests with TLS
TLS multithread tests show a similar trend of the equivalent tests without security
(Figure 6.7.

Figure 6.7. Multithread tests with TLS

54

6.2 – Multithread tests

Also in this case TLS compression improved performances but without a great
time range, as packet size is very small if compared with payload tests.

The differences between the two protocols are less pronounced in these tests and,
even with a notable floundering, MQTT performs slightly better for 3 threads an 5
threads tests.

With 8 threads there is an important gap between MQTT performance and
HTTP, but a fall in the last part of the test affected the average value which resulted
to be almost the same for the two protocols (Table 6.4). 10 thread tests show
instead of a better performance of HTTP of about 14%.

Threads number MQTT-S avg HTTPS avg
3 threads 0.923 s 0.995 s
5 threads 1.333 s 1.419 s
8 threads 1.863 s 1.87 s
10 threads 3.013 s 2.591 s

Table 6.4. TLS multithread tests average time windows results

6.2.3 Authentication plugin bottleneck
After the result reported in the previous two chapters, multithread tests have been
repeated several times and analyzed in-depth both with Wireshark and file logging.

Given the better MQTT performances in single-thread tests, it could be supposed
that multithreads tests would have confirmed these findings, on equal multithread
handling, as also reported in previous multithread studies[13, 14].

However, subsequent tries showed the same results of the previously reported
data, with better performance for MQTT and worse swinging behavior for MQTT.

For both protocols, the multithread handling is managed by Tomcat servlets so
the only possible difference should have been in the Mosquitto Broker.

Even if, compared with other broker, MQTT can be slower in multithread message
dispatching, the study conducted by Pipatsakulroj et al.[25] shows that Mosquitto
can handle a huge number of subscriber connected.

However, after an in-depth analysis of mosquitto log, a huge bottleneck in dispatch
time has emerged. Even if for n threads in a test all the connections take place
almost simultaneously, the authentication of each user requires an important amount
of time. The authentication mechanism is managed by the external Mosquitto auth
plugin, covered on subsection 5.1.2, and implemented to use the same authentica-
tion database for both protocols, which was not possible with normal Mosquitto
authentication.

In Figure 6.8 is reported a part of the Mosquitto log for 10 threads test, which
shows how long it took the plugin to authenticate all clients.

55

6 – Protocols comparison

Figure 6.8. Part of mosquitto.log file which shows the authentication bottleneck

As shown, the last thread is authenticated in more than 3 seconds, which is more
than the 80% of the average time elapsed to send messages from Wolf to IDa in
MQTT.

To have more consistent prove of the slowdown caused by mosquitto authentication
plugin, MQTT tests have been repeated again without authentication. Some
adjustment of mosquitto configuration has been necessary to allow unauthenticated
users to publish messages, such as the allow_anonymous flag set to true and specific
write rule in the ACLs file.

Figure 6.9 and Figure 6.10 show the performances improvement of MQTT without
authentication.

56

6.2 – Multithread tests

Figure 6.9. Multithread tests without MQTT authentication

Figure 6.10. TLS multithread tests without MQTT authentication

57

6 – Protocols comparison

In the previous figures, MQTT sessions are compared with the previous HTTP
just to emphasize the performance gain without the bottleneck, as to perform
a correct comparison between the two protocols also HTTP sessions should be
unauthenticated.

Table 6.5 compares all MQTT multithread tests, highlighting a better performance
of MQTT without authentication of about 10 times the authenticated version.

Threads n. MQTT avg MQTT no-auth avg MQTT-S avg MQTT-S no-auth avg
3 threads 0.922 s 0.09 s 0.923 s 0.102 s
5 threads 1.555 s 0.131 s 1.333 s 0.159 s
8 threads 2.542 s 0.204 s 1.863 s 0.226 s
10 threads 3.639 s 0.246 s 3.013 s 0.289 s

Table 6.5. MQTT tests average time windows results with and without authentication

6.3 Industrial use cases tests

6.3.1 Limited bandwidth
The first use case represents a factory local in a rural area of Piedmont, with several
bandwidth problems, due to the high distance from the nearest ADSL cabinet and
cables abrasion.

The factory sends data through the Internet to Myna Data Center. Using the
Ping command from the factory to the Data Center it can be observed latency
values that could be higher than 150ms. Upload speed from the factory to the
Data Center is highly variable, with values ranging from 7-8 kB/s to 60-65 kB/s.

Every three minutes the Wolf installed on the factory microserver sends energy
measures to the IEnergyDa placed on Myna Data Center and reachable through
Internet through Apache reverse proxy. The connection uses TLS, to protect
confidential data over the web.

Figure 6.11 shows the two curves. HTTP delivery times vary from a minimum of
141 ms to a maximum of 324 ms, aside from a peak of 1.6 seconds. The average
value, indicated with the green line, is 172 ms.

MQTT minimum delivery time is 97 ms, and the plot displays some time spikes
with a maximum value of 1 second.

The MQTT average, indicated with the red line, is 112 ms, which is a 34.9%
better of the HTTP average.

58

6.3 – Industrial use cases tests

Figure 6.11. Limited bandwidth 24 hours test

6.3.2 MQTT over websockets
The second use case, and the last trial analyzed in this work, is a connection between
a Wolf microserver on a paper industry connected to a remote Customer Data Center
with IDa.

However, it was not possible to expose Mosquitto broker over the internet in the
Customer Data Center, because, for company policy, all incoming Internet traffic
must pass through the firewall reverse proxy.

To overcome this issue, as it was not possible to directly send MQTT packets
through the reverse proxy, MQTT over Websockets has been used.

Websocket is a communication protocol that allows to create a full-duplex com-
munication on top of a single TCP connection4.

MQTT offers the possibility to send messages encapsulated in Websocket also with

4https://en.wikipedia.org/wiki/WebSocket

59

https://en.wikipedia.org/wiki/WebSocket

6 – Protocols comparison

TLS, and these messages are able to pass through the customer firewall reverse-proxy.
The initial connection with this approach uses HTTP to establish the communication
and then MQTT messages are packed and send over websocket.

To use websockets in Mosquitto it is needed to download the source code of the
broker, enable WITH_WEBSOCKETS option in config.mk and build it separately, as
websocket is disabled by default at compile time[20]. The library libwesockets is
also needed to support websockets. Finally, to enable websockets the configuration
has been modified as follows:

listener 1883
listener 9001
protocol websockets

The first listener is on the standard MQTT port and it is used to the IEnergyDa
subscriber to receive data, as for other cases. The second listener on port 9001 is
instead for websocket, which should be also declared with the protocol option.

Figure 6.12. Use case with MQTT over Websockets 24 hours test

60

6.3 – Industrial use cases tests

From the client point of view instead, the only difference to the MQTT configura-
tion has been made on Wolf output plugin, by setting the new endpoint and port indi-
cated for the Customer Data Center (instead of the broker address which is remapped
from the reverse-proxy) and the protocol parameter as protocol=websockets to
enable websockets communication.

Figure 6.12 shows the result of a 24 hours test with the same parameters of the
first use case, one measure every 3 minutes, a payload of around 2 kB and TLS
connection. This time, between the sender and the receiver the latency is low and
stable, with an average of 30 ms.

MQTT average is 70 ms and it is indicated with the red line on the plot. MQTT
values range from a minimum of 30 ms to a maximum of 290 ms-

HTTP average is 145 ms, about twice the MQTT average, and it is indicated
whit the green line on the plot. HTTP minimum value is 89 ms and the peak value
is 755 ms, while over the 98% of HTTP values are under 270 ms.

Both values curves show an increment in the last part of the day, potentially due
to a connection slowdown.

61

62

Chapter 7

Conclusion and future works

The aim of this work was to study and compare HTTP and MQTT, the two most
used IoT application protocols, and to implement them in a industry-oriented
software architecture.

The differences in the structure of the two protocols have been highlighted in
the theoretical part, with an in-depth analysis of the security aspects and the most
common vulnerabilities. The different architectures have exposed their positive and
negative aspects.

While the lean implementation of MQTT makes this protocol less affected by
overhead and performance issues, its publish-subscribe approach with message
broker adds a third component in the communication, leading complexity in some
aspects such as the awareness of the publisher on what message is received by the
subscriber on certain levels of QoS.

On the other side, HTTP with its important overhead can lead to worse perfor-
mances but offers better feedback with its detailed status codes on response.

These differences have been validated in the implementation and tests part, where
MQTT performances confirmed the results already reported in literature both for
payload tests and with a use case affected by high latency problems.

MQTT, with the websockets implementation, has also proved to be a flexible
protocol, able to fit particular cases such as the impossibility to communicate
directly with the message broker as addressed in subsection 6.3.2 use case.

The main performance difference has been observed in the multithread tests. After
an in-depth analysis of the communication, it has been found that this difference
has been caused by an implementation bottleneck, due to the authentication plugin
for mosquitto broker, used to maintain the authentication part on the Postgres
database.

63

7 – Conclusion and future works

The normal authentication provided by the broker is however inapplicable to the
architecture used in the Myna suite, as it is based on a plain text password file that,
besides the related security risks, results too static to be used, because every time
a new user is registered it should be reported on the password file, and a similar
procedure should be done to delete a user when it is removed from the database.

For these reasons, Myna-Project will maintain the authentication plugin in its
architecture, reporting the issue to the plugin developer and cooperating with him
to provide multithread handling to the application, also through the company’s
GitHub fork of the project.

In future developments, MQTT will be further integrated into the Myna suite,
also in other parts of the architecture, to use it for a certain context or in certain
moments of the day, during network stressing operations (e.g. remote backups) and
in the interface between IEnergyDa and the GUI through websockets.

64

Bibliography

[1] A. Bosche, D. Crawford, D. Jackson, M. Schallehn, and C. Schorling.
“Unlocking Opportunities in the Internet of Things”, 2018.
https://www.bain.com/contentassets/5aa3a678438846289af59f62e62a3456/

bain_brief_unlocking_opportunities_in_the_internet_of_things.

pdf.

[2] Eclipse Foundation. “IoT Developer Surveys 2018”, 2018.
https://iot.eclipse.org/resources/iot-developer-survey/

iot-developer-survey-2018.pdf.

[3] R. Johnson et al. “Spring Framework Reference Documentation”, 2016.
https://docs.spring.io/spring/docs/4.2.x/

spring-framework-reference/pdf/spring-framework-reference.pdf.

[4] Mozilla Foundation. “Cross-Origin Resource Sharing (CORS)”, 2019.
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS.

[5] Eclipse Foundation. “IoT Developer Surveys 2019”, 2019.
https://iot.eclipse.org/resources/iot-developer-survey/

iot-developer-survey-2019.pdf.

[6] J.C. Mogul. “Clarifying the fundamentals of HTTP”. Software Practice and
Experience, pages 103–134, 2004.

[7] D. Gourley and B. Totty. “HTTP: The Definitive Guide”. O’Reilly, 2002.

[8] Mozilla Foundation. “Evolution of HTTP”, 2019.
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_

HTTP/Evolution_of_HTTP.

65

https://www.bain.com/contentassets/5aa3a678438846289af59f62e62a3456/bain_brief_unlocking_opportunities_in_the_internet_of_things.pdf
https://www.bain.com/contentassets/5aa3a678438846289af59f62e62a3456/bain_brief_unlocking_opportunities_in_the_internet_of_things.pdf
https://www.bain.com/contentassets/5aa3a678438846289af59f62e62a3456/bain_brief_unlocking_opportunities_in_the_internet_of_things.pdf
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2018.pdf
https://docs.spring.io/spring/docs/4.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
https://docs.spring.io/spring/docs/4.2.x/spring-framework-reference/pdf/spring-framework-reference.pdf
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/Evolution_of_HTTP

BIBLIOGRAPHY

[9] P. Jung. “On the Security of the TLS Protocol”. Software Practice and
Experience, 2015.

[10] G.C. Hillar. “MQTT Essentials - A Lightweight IoT Protocol”. Packt
Publishing, 2017.

[11] OASIS Standard. “MQTT Version 3.1.1”, 2014.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.

pdf.

[12] P. E. Naeini, S. Bhagavatula, H. Habib, M. Degeling, L. Bauer, L. Cranor,
and N. Sadeh. “Privacy Expectations and Preferences in an IoT World”.
Symposium on Usable Privacy and Security, 2017.

[13] T. Yokotani and Y. Sasaki. “Comparison with HTTP and MQTT on Required
Network Resources for IoT ”. International Conference on Control, Electronics,
Renewable Energy and Communications, 2016.

[14] N. Naik. “Choice of Effective Messaging Protocols for IoT Systems: MQTT,
CoAP, AMQP and HTTP”. IEEE International Systems Engineering Sympo-
sium, 2017.

[15] B. Wukkadada, K. Wankhede, R. Nambiar, and A. Nair. “Comparison with
HTTP and MQTT In Internet of Things (IoT)”. International Conference on
Inventive Research in Computing Applications, 2018.

[16] S. W. Chan and E. Burns. “Java™Servlet Specification”, 2017.
https://javaee.github.io/servlet-spec/downloads/servlet-4.0/

servlet-4_0_FINAL.pdf.

[17] R.T. Fielding. “Architectural Styles and the Design of Network-based Software
Architectures”. PhD thesis, University of California, Irvine, 2000.

[18] B. Alex, L. Taylor, R. Winch, and G. Hillert. “Spring Security Reference”,
2015.
https://docs.spring.io/spring-security/site/docs/4.2.11.RELEASE/

reference/pdf/spring-security-reference.pdf.

[19] The Open Web Application Security Project (OWASP). “OWASP Top 10
2013”, 2013.
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf.

66

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
https://javaee.github.io/servlet-spec/downloads/servlet-4.0/servlet-4_0_FINAL.pdf
https://javaee.github.io/servlet-spec/downloads/servlet-4.0/servlet-4_0_FINAL.pdf
https://docs.spring.io/spring-security/site/docs/4.2.11.RELEASE/reference/pdf/spring-security-reference.pdf
https://docs.spring.io/spring-security/site/docs/4.2.11.RELEASE/reference/pdf/spring-security-reference.pdf
https://owasp.org/www-pdf-archive/OWASP_Top_10_-_2013.pdf

BIBLIOGRAPHY

[20] R. A. Light. “mosquitto.conf man page”, 2013.
https://mosquitto.org/man/mosquitto-conf-5.html.

[21] K. Moriarty, B. Kaliski, and A. Rusch. “PKCS #5: Password-Based Cryptog-
raphy Specification Version 2.1”, 2017.
https://tools.ietf.org/html/rfc8018.

[22] M. Sönmez Turan, E. Barker, W. Burr, and L. Chen. “NIST Special
Publication 800-132 - Recommendation for Password-Based Key Derivation
Part 1: Storage Applications ”, 2010.
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-132.pdf.

[23] Eclipse Foundation. “Eclipse Paho Python Client - documentation ”.
https://www.eclipse.org/paho/clients/python/docs/.

[24] B. Jackson. “Analyzing HTTPS Performance Overhead”.
https://www.keycdn.com/blog/https-performance-overhead.

[25] W. Pipatsakulroj et al. “muMQ: A Lightweight and Scalable MQTT Broker”.
2017 IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), 2017.

67

https://mosquitto.org/man/mosquitto-conf-5.html
https://tools.ietf.org/html/rfc8018
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://www.eclipse.org/paho/clients/python/docs/
https://www.keycdn.com/blog/https-performance-overhead

	Summary
	Introduction
	Objectives
	Document structure

	Protocols analysis
	HTTP structure
	HTTP Security

	MQTT structure
	MQTT Security

	Related works

	The energy management system
	Network & Hardware Components
	Software Components
	Wolf
	IEnergyDa

	HTTP implementation
	Wolf REST output plugin
	IEnergyDa REST API
	Authentication & Authorization
	Measures handling

	MQTT implementation
	Mosquitto Broker
	ACLs
	Authentication plugin
	TLS on Mosquitto

	Wolf MQTT output plugin
	IEnergyDa MQTT API
	IEnergyDa MQTT Security

	Protocols comparison
	Payload tests
	Payload tests without TLS
	Payload tests with TLS

	Multithread tests
	Multithread tests without TLS
	Multithread tests with TLS
	Authentication plugin bottleneck

	Industrial use cases tests
	Limited bandwidth
	MQTT over websockets

	Conclusion and future works

