
POLITECNICO DI TORINO
M. Sc. in Mechanical Engineering

Master Thesis

Dynamic parameters identification of a UR5

robot manipulator

Advisor Candidate
Massimo Sorli Gabriele Porcelli

Co-Advisors
Stefano Mauro
Andrea Raviola
Stefano Pastorelli

July 2020



Abstract

Due to the importance to model-based control, an exact dynamic model of the
manipulator is required. While the geometry structure of robot manipulators
is well known, the involved dynamic parameters are not always available,
since exact values are rarely provided by the robot manufacturers and often
not directly measurable. Therefore, dynamic parameter identification of robot
manipulators has aroused increasing interest from researchers. In this thesis
project a UR5 robot manipulator from Universal Robots is used as case study
for the identification scheme developing. The purpose is to provide Polytechnic
University of Turin with a resource which can be used to determine dynamic
parameters of robots in future works. Moreover, the complete identification
of a robot is of particular interest in Prognostic and Health Management
(PHM) applications. Starting from Euler-Lagrangian equations, the dynamic
model of the UR5 is determined and and rewritten in linear form with
respect to the dynamic parameters of the robot. However, each parameter
can not be separately identified but only linear combinations of them. The
procedure for determination of base parameters is explained and the base
set of parameter is obtained. In order to obtain an accurate approximate
solution for the parameter identification problem a specially chosen trajectory
must be adopted. This trajectory must persistently excite the system. An
optimality criteria is introduced to find this persistent trajectory. Then, the
base set of dynamic parameter is identified using the Least Mean Square
method. Another persistent trajectory is generated for validation of the
obtained parameter vector. In order to check the quality of the calculated set
of base parameters, predicted torques are compared with the measured ones.
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Chapter 1

Introduction

The importance of having an appropriate set of inertial and friction parameters
of a robot manipulator lies in their application for advanced model-based
control algorithms. The accuracy of dynamic parameters plays an important
role in the precision, performance and robustness of these control algorithms.
A real mechanical system can be substituted with a simulated one allowing to
obtain reliable results without expensive experimental tests. Moreover, a deep
knowledge of the dynamic parameters is needed in path planning algorithms
that take into account robot dynamics. Especially in the mechatronics area
of robotics, model-based control is crucial for the increase of the system
precision and reliability. For these reasons, the problem of finding a method
to achieve accurate dynamic parameters of a robot manipulator has been
widely discussed.

State of the Art
Dynamic properties which are provided by manufacturers are normally gen-
erated from CAD data by using the geometric and material characteristics
of the robot, but due to manufacturing error, the CAD model is not iden-
tical with the real robot. One way to identify the dynamic parameters is
to dismantle the robot and to measure them link by link. However, this
approach is not feasible in practice and it doesn’t takes friction into account.
Better results can be obtained with identification approaches which are based
on the analysis of the input/output behavior of the robot on some planned
motion and on estimating the parameter values. In literature indirect and
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direct identification methods have been proposed. The former one is per-
formed sequentially in multiple steps moving one or two joints at the same
time with special designed motions [7–9]. This method offers a less complex
model which generally implies a better numerical conditioning of the problem
and permits the use of motions specifically designed for the identification
of dynamic parameters of a particular link. The drawbacks lie on the fact
that eventual errors in the results are propagated from one step to the next
one and the variability of the friction phenomena adds uncertainties to the
results. The second methods perform the determination of the totality of
the parameters defining the dynamic model in a single step. In order to
obtain reliable results, the robot motion must be accurately designed. This
can be achieved through the optimization of the robot trajectory according
to certain optimality criteria. This method is less time consuming than the
previous one and the error propagation is limited by the fact the all base
parameters 1 are identified in a single step. Researchers have focused their
attention on this method since it gives better results than the previous one
and several approaches [10] have been proposed. Most of them have the
following structure:

• the dynamic model is obtained with the well-known Newton-Euler
method or with the energy based Euler-Lagrange method. Dynamic
equations are written in linear form with respect to the dynamic param-
eters to be found. This permits the application of numerical approaches
such as the Least-Square minimization for the evaluation of the param-
eters values;

• since not all the parameters are identifiable, the system is reduced either
symbolically [11] or numerically [12];

• a persistent trajectory is accurately designed according to some opti-
mality criteria in order to evenly excite the dynamic parameters of the
robot;

• data acquisition and signal processing are performed;

• dynamic parameters are numerically estimated;
1Some links parameters can not be excited or don’t play a role in robot dynamics. Those

parameters are not identifiable. The matrix reduction aims to remove the unidentifiable
parameters. The remaining set of parameters is called Base parameters
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• the model is validated. In this step the user verifies the accuracy of the
proposed method.

Authors in [13] used a Finite Fourier Series (FFS) as exciting trajectories and
the optimal one is found by minimizing the determinant of the covariance
matrix obtained from the dynamic model. System parameters are evaluated
with the Maximum-Likelihood estimation. In [14] FFS are used as exciting
trajectories for a 7 axis robot manipulator and the parameters are identified
with the Weighted Least Square (WLS). Authors in [15] proposed a modified
Fourier Series (MFS) to guarantee the imposed boundary conditions are
respected and the optimal trajectory is found using Genetic Algorithm (GA).
Maximum-likelihood method is proposed again to estimate parameter values.
Optimal trajectories based on a finite sum of harmonic sine functions are
found using GA also in [16], where particular attention to physical boundary
conditions to the joints motion is given. Artificial Bee Colony (ABC) algorithm
is used in [17] in order to find the optimal trajectory based on a standard
FFS. Different optimization criteria are discussed in [18] and a comparison
between them is performed in the article. Particle swarm optimization is used
in [19] to find the optimal persistent trajectory minimizing a cost function
which combines the condition number and the minimum eigenvalue of the
regression matrix. An alternative to FFS is found in [7,20,21] where a fifth
order polynomial is used as exciting trajectory, while in [22] trajectory is
built with B-splines and the optimal one is found with a Squential Quadratic
Programming algorithm from Matlab. Two matrix reduction methods are
mainly used. The first one is the QR decomposition [23] and the second
one is the SVD decomposition [7, 21]. A complete description of the QR
decomposition is provided in Chapter 3. Online identification was studied
in [24] where the dynamic parameters are evaluated and updated in the
controller of the robot in real-time.

Goal of the Thesis
Polytechnic of Turin recently came into possession of a UR5 robot arm
from Universal Robots. It is of particular interest to obtain an accurate
dynamic model in order to be able to simulate and predict the behavior of
the manipulator. The Robotics Toolbox for MATLAB by Peter Corke [25]
is used to obtain an equivalent simulated robot. In order to evaluate the
robustness of the model, joint torques of the real robot are compared with the
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simulated one along a designed trajectory. Simulated torques were evaluated
with the recursive Newton-Euler algorithm while the real ones were calculated
multiplying the motor currents of each robot joints by the torque constant
and the transmission ratio of the gearbox. The comparison between the two
torques during a pick and place operation is presented in figure 1.1. In the
images T_sim are the simulated torques while T_UR are the real ones.
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Figure 1.1: Modeled and real robot torque comparison

Some of the dynamic parameters which are used to build the dynamic
model are provided by Universal Robots. Their values are obtained from
the CAD drawings considering geometry and density of material of joints
and the resulting model is inaccurate. These errors in the model lead to
the necessity of the dynamic parameter of the UR5 to be evaluated and an
identification scheme must be built. In this thesis project an identification
scheme is proposed which is suitable for every kind of anthropomorphic
robot. The methods is validated using as case study the UR5 manipulator.
The dynamic model of the manipulator is obtained with the Euler-Lagrange
formulation and written in linear form with respect to the robot parameters.
The QR decomposition is performed to reduce the identification problem
to the set of identifiable parameters (Chapter 3). Finite Fourier series are
used as joint exciting trajectories and the optimal ones are found using the
Genetic Algorithm. The condition number of the regression matrix is used
as optimality criteria (Chapter 4). Finally, the parameters are numerically
evaluated with Least Square minimization technique and a second exciting
trajectory is designed to validate the results (Chapter 5). The entire scheme
is developed in MATLAB environment.
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Chapter 2

UR5 industrial manipulator

The robotic arm UR5 is the key component of this research and therefore
it is important to have a closer look at this manipulator. In this chapter
an overview of all specifications and capabilities of the real robot is given
and the equivalent model is presented. The UR5 has been chosen as a case
study for this research campaign because the robot is physically present in the
university laboratory and there is the necessity to build an accurate model to
describe it. However, the entire analysis performed with the aid of MATLAB
is suitable for all kinds of serial robotic manipulator.

Analysis of the collaborative robot UR5
As showed in figure 2.1, a Universal Robots UR5 is made up by three parts:
Control Unit, the operative center of the robot, Teach Pendant, a kind of
tablet, with Linux as operative system, which is used as an interface between
the operator and the robot and the Robot Arm. The programming interface
constraints the options of control to Point-To-Point (PTP) movement in
either joint-space or operative space. The default of this kind of movement is
that the robot accelerates to the defined velocity, keeps the velocity constant
for the maximum time allowed and decelerates to a halt when it reaches
the target point in space. This results in a trapezoidal velocity trajectory.
Alternatively a blend radius can be set which gives the robot the freedom
to deviate from the original path within the circle around the programmed
point. This allows the robot to keep a constant speed and drive through the
desired path faster without stopping. An alternative way to control the robot
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is to write programs in a scripting language called URScript. The programs
can be saved directly on the robot controller or commands can be sent via
a TCP/IP socket to the robot. Communication is executed at 125 Hz and
among physical information which can be read with the sensors mounted on
the robot there are:

• Tool Center Point pose and speed;

• joints position and angular speed;

• motor currents.

All these data are given as input in MATLAB for being used in the identifica-
tion algorithm.

Figure 2.1: Robot Arm, Control Unit and Teach Pendant [1]
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Figure 2.2: Experimental setup in the university laboratory

The setup in the university laboratory is showed in figure 2.2. The robot is
mounted on a horizontal setup where the Control Unit and the Teach Pendant
are situated. A PC for simulations and data processing is present.

Technical specifications

The UR5 is a robot developed by the danish company Universal Robots.
There are also a smaller and a bigger version of the robot: the UR3 and
the UR10 which are able to handle a maximum of three and ten kilograms
respectively. They are all regarded as collaborative robot. It means that they
are safe because they will stop as soon as they hit an object sensed by a force
sensor in one of the joints. Therefore a cage is not necessary if the working
area is shared with human operators. Nevertheless, a UR robot can still do
severe harm when not handled carefully or without the right measures. In
the table 2.1 the specifications given by Universal Robots are stated. One
important statement from the specifications is the repeatability of 0.1 mm.
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Other comparable robots, in terms of size and payload, do much better. Both
the IRB1200 of ABB and the TX60 of Stäubli have a repeatability of 0.02
mm. However, the 0.1 mm of repeatability has been considered enough for
research purposes in the safety of the human-robot collaboration, diagnostic
and prognostic and studies on maintenance procedures with robots. Moreover,
the choice of the UR5 has been considered more appropriate for a university
laboratory where non-specialized operators can be present.

Weight 18.4 kg
Payload 5 kg
Reach 850 mm

Joint ranges ± 360°
Joint max speed 180 °/s
TCP max speed 1 m/s
Degree of freedom 6 rotating joints

Repeatability ± 0.1 mm
I/O Power supply 12 V/24 V 600 mA
Communication TCP/IP, Ethernet socket & Modbus TCP
Programming Polyscope graphical user interface
IP classification IP54

Power consumption 150 W
Power supply 10-240 VAC, 50-50 Hz
Materials Aluminium, ABS plastic

Temperature Working range of 0-50°C
Operating life 35000 hours

Table 2.1: Technical specification of UR5 robot arm

The robotic arm consists of six revolute joints. In this report these joints
will be referred to as Base, Shoulder, Elbow, Wrist1, Wrist2 and Wrist3. The
Shoulder and Elbow joint are rotating perpendicular to the Base joint. These
three joints are connected with long links. The wrist joints control the Tool
Center Point (TCP) in the right orientation.
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Jacobian matrix and singularities

A Universal Robots robot has a not-monocentric wrist which means that
there is not a wrist center point defined as the common point of all the three
rotations axes of joints 4, 5 and 6. This solution is due to the fact that each
joint has its own motor. In fact, there are not any transmission organs such
as belts or gearboxes. A not-monocentric wrist configuration does not allow
to split arm and wrist singularities because the out of diagonal components of
the Jacobian matrix in 2.1 are not equal to zero because the wrist rotations
q4, q5 and q6 affect the End Effector1 (EE) velocity.

Figure 2.3: Sketch of the UR5 [2]

In figure 2.3 it is possible to see that wrist joints axes do not converge
1the ending part of the robot
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in a single point, but axes of joints 4 and 6 are parallel. An example of
monocentric wrist and non-monocentric wrist are depicted respectively in
figures 2.4 and 2.5.

Figure 2.4: Monocentric wrist sketch [3]

Figure 2.5: Non-monocentric wrist sketch [3]

A singularity is a particular condition where the robot loses mobility in
some directions and has to provide an almost infinite velocity to joints in order
to achieve a certain trajectory in the operative space. From a mathematical
point of view a singularity corresponds to a condition where the robot Jacobian
matrix lowers its rank or, in other terms, its determinant is very close to zero.

JEE =

[
[J11] [J12]
[J21] [J22]

]
(2.1)
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For this reason it is not possible to look for singularities configurations of the
robot by writing: det[JEE] = det[J11] · det[J22] = 0. This equation allows to
consider wrist singularities separately from those ones of the arm, but it can
be applied only with monocentric wrist configurations.

Harmonic drive

In robotics, joint speeds are usually much slower than the ones of motors.
For this reason a gearbox with a transmission ration of around 100-150 is
mounted on each motor to reduce the angular velocity and increase the torque
on the joint. In robotic applications, classical configurations of gearboxes,
such as serial or planetary gears, are not the right solution because they are
too heavy, too big and with a very low efficiency. For these reasons, in the
Universal Robots cobots a different kind of gearboxes is used: the harmonic
drive with ratio 101 : 1, whose scheme is reported in figure 2.6.

Figure 2.6: Harmonic drive gearbox [4]

Three different components compose the harmonic drive:

• Wave generator: it has an elliptic shape with a ball bearing and it is
directly connected to the motor;

• Flexspline: a component with a significant flexibility of the walls at
the open side and in a closed side being quite rigid. It fits tightly over
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the wave generator, so that when it rotates the flexspline deforms to the
shape of a rotating ellipse. The ball bearing lets the flexspline rotate
independently to the wave generator shaft;

• Circularspline: a rigid circular ring with teeth on the inside, connected
to the joint.

Because the flexspline is deformed into an elliptical shape when the wave
generator is inserted, its teeth only actually mesh with those of the circular
spline in two regions on opposite sides of the flex spline. Since the flexspline
has less teeth than the circularspline, by rotating the wave generator, a relative
movement, in opposite direction, between the flexspline and the circularspline,
is created.

Mathematical model of the UR5
The use of modeling and simulation is of fundamental importance in robotics.
Such mathematical models avoids actual experimentation, which can be
costly and time consuming. Moreover, modeling can be useful to better
understanding the behavior of real systems. Because the results of a simulation
are as good as the the model is accurately designed, it must be constantly
updated and improved in order to be applicable to real robots. In this research
campaign, the Robotics Toolbox by Peter Corke is used as modeling tool in
MATLAB environment. It provides a rich collection of functions that are
useful for the study and simulation of robots: arm-type robot manipulators
(including kinematics, trajectory generation, dynamics and control functions),
mobile robots (including path planning and kinodynamic planning, localization
and map building functions) and flying quadrotor robots. The Toolbox also
has a variety of functions for manipulating rotation matrices, homogeneous
transformation and twists which are necessary to represent position and
orientation in 2- and 3-dimensions.
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Figure 2.7: UR5 represented in MATLAB with the Robotics Toolbox in an
arbitrary position

The Toolbox gives the user complete freedom in creating the robot object
starting from the geometrical parameters which are expressed through the
Denavit Hartenberg (DH) parameters and the dynamic parameters, such
as link masses and center of mass position. A description of the Denavit
Hartenberg convention is described in the next section.

Denavit-Hartenberg convention of the UR5

It is a method which defines four parameters associated to each link in order
describe the position of the reference frames of each joint of the robotic
arm. As showed in figure 2.8, Universal Robots uses the standard convention,
instead of the modified one [26], according to which the joint i connects the
links i and i+ 1 and the axis zi is aligned with the axis of joint i+ 1. Four
parameters are defined for each link i :

• Offset Distance ai: distance between zi and zi−1 measured along xi;
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• Translation distance di: distance between axes xi and xi−1 measured
along the positive direction of zi−1;

• Twist angle αi: between axes zi−1 nad zi. It is the angle required to
rotate the axis zi−1 into alignment with the axis zi in the right-hand
sense about axis xi;

• Joint angle θi: between axes xi−1 and xi. It is the angle required to
rotate the axis xi−1 into alignment with the axis xi in the right-hand
sense about axis zi−1.

It is possible to define, for each link of the UR5, the DH parameters of the
robot that are reported in table 2.2, which are taken from the Universal
Robots website. With the letter q are indicated the degrees of freedom of the
robot arm which change according to the configuration of the robot arm at
a specific time frame of the trajectory. These values, moreover, have to be
summed to the offset angles, defined by the manufacturer of the robot, to
define the joint angles as: θi = qi + offseti

Figure 2.8: Standard Denavit Hartenberg convention representation [5]
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Joint qi [°] di [m] ai [m] αi [°] offseti [°]
Base q1 0.089159 0 90 0

Shoulder q2 0 -0.425 0 0
Elbow q3 0 -0.39225 0 0
Wrist 1 q4 0.10915 0 90 0
Wrist 2 q5 0.09465 0 -90 0
Wrist 3 q6 0.0823 0 0 0

Table 2.2: UR5 default Denavit Hartenberg parameters [5]

It is possible to build the roto-translation 4x4 homogeneous matrix i−1Ai,
reported in 2.2, between the reference frames i− 1 and i, by multiplying, as
showed in 2.3, the rotation and translation matrices.

i−1Ai =


cos(θi) sin(θi) · cos(αi) sin(θi) · sin(αi) aicos(θi)
sin(θi) cos(θi) · cos(αi) −cos(θi) · sin(αi) ai · sin(θi)

0 sin(αi) cos(αi) di
0 0 0 1

 (2.2)

i−1Ai = Tras(zi−1, di) ·Rot(zi−1, θi) · Tras(xi, ai) ·Rot(xi, αi) (2.3)

18



Available parameters

Universal Robots provides the user with a few parameters about the UR5
which are necessary for the modeling of the robot. Some of them are accessible
on the producer website such as link masses and centers of mass (table 2.3).

Link m [kg] irmi [m]
1 3.7 1rm1=[0,-0.02561,0.00193]
2 8.393 1rm2=[0.2125,0,0.11336]
3 2.33 1rm3=[0.15,0,0.0265]
4 1.219 1rm4=[0,-0.0018,0.01634]
5 1.219 1rm5=[0,0.0018,0.01634]
6 0.1879 1rm6=[0,0,0.001159]

Table 2.3: Information about the mass and center of mass of links. The
position of the center of mass is calculated with respect to i-th link reference
frame

Links inertia matrices are evaluated with good approximation in [2] con-
sidering link as cylinders with varying density (table 2.4).

I1 =

0.0067 0 0
0 0.0064 0
0 0 0.0067

 I2 =

0.0149 0 0
0 0.3564 0
0 0 0.3553


I3 =

0.0025 0 0.0034
0 0.0551 0

0.0034 0 0.0546

 I4 =

0.0012 0 0
0 0.0012 0
0 0 0.0.0009


I5 =

0.0012 0 0
0 0.0012 0
0 0 0.009

 I6 =

0.0001 0 0
0 0.0001 0
0 0 0.0001



Table 2.4: Link inertia matrices referred to the i-th link reference frame. Unit
of measure is [kgm2]. The evaluation of the inertia matrix is performed in [2]
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Link Jm [kgm2] f [Nm] τ Tmax [Nm] KT [Nm/A]

1 1.87 · 10−8 [0.076 -0.076] 101 150 0.125
2 1.87 · 10−8 [0.083 -0.082] 101 150 0.125
3 1.87 · 10−8 [0.078 -0.077] 101 150 0.125
4 2.07 · 10−5 [0.014 -0.014] 101 28 0.0922
5 2.07 · 10−5 [0.020 -0.019] 101 28 0.0922
6 2.07 · 10−5 [0.020 -0.021] 101 28 0.0922

Table 2.5: Jm: motor inertia. f : static friction coefficient. τ : transmission
ratio. Tmax: maximum torque. KT : torque constant

Other parameters were provided in the robot documentation such as motor
inertia, friction coefficients, transmission ratio, maximum torque and torque
constant(table 2.5) and joints position, velocity and acceleration limitations
(table 2.6).

Link q [rad] q̇ [rad/s] q̈ [rad/s2]
1 ±2π ±π ±π
2 ±2π ±π ±π
3 ±2π ±π ±π
4 ±2π ±π ±π
5 ±2π ±π ±π
6 ±2π ±π ±π

Table 2.6: Joints position, velocity and acceleration limits

Calibration of the UR5

Denavit Hartenberg parameters, which are accessible on the Universal Robots
website, are equal for all UR5 manipulators. It is fundamental to substitute
them with the ones specific for the UR5 used in this project. This procedure is
called calibration and gives the operator corrections of the four DH parameters
for each link. These corrections are applied to the standard values in order to
obtain the set of parameters which is used in the control unit of manipulator,
which is different from robot to robot. Correction which need to be applied
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to the standard DH values are listed in table 2.7.

Joint qi [°] 4di [m] 4ai [m] 4αi [°] 4offseti [°]
1 q1 −7.5e−5 1.1e−4 1.6e−3 6e−5
2 q2 1.7e3 0.3 2.4e−4 1.3
3 q3 −1.7e3 1.7e−2 −4.2e−3 −1.6
4 q4 −26.9 2.5e−5 5.9e−4 0.3
5 q5 2.3e−4 −6.9e−5 2.2e−4 1.6e−4
6 q6 1.9e−4 0 0 −1.1e−4

Table 2.7: DH parameters calibrated corrections

The calibration procedure consists, as showed in figure 2.9, to position
the tool flange of the UR5 inside holes, whose position relatively to the robot
base frame are known, on a plate on which the UR5 itself is mounted. The
UR5 tool flange is positioned in each hole and the control unit of the robot
saves the joints configuration. When enough data are collected (according to
Universal Robots at least 30), a Universal Robots software calculates the DH
parameters of the robot arm. Parameters obtained applying the correction
do not have any physical relevance, in fact, they can assume values which do
not fit with the real geometry of the robot. However, using the calibrated
parameters does not affect negatively the robot behavior because they are the
same values used by the control unit of the UR5 to execute the forward and
inverse kinematics. A realistic dynamic calibration of parameter is needed, so
if numerical corrections of DH parameters which do not have a physical sense
are used in the rne algorithm in MATLAB, evaluated joint torques would
not have realistic values. For this reason, it the thesis work non-calibrated
DH parameters are used.
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Figure 2.9: Calibration rig [6]

Calibration is a fundamental procedure in order to improve accuracy and
repeatability of the manipulator. Nevertheless, in this work, the standard
Denavit Hartenberg parameters are used for simplicity and to keep a realistic
meaning to the used values.
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Chapter 3

Identification algorithm

Euler-Lagrange method or Recursive Newton-Euler methods are usually used
to obtain the equations of motion of a robot arm. Manipulator dynamics
is usually described by the well-known expression 3.1 for a generic n-DOF
manipulator

B (q) q̈ + C (q, q̇) q̇ +G (q) = τ (3.1)

where B (q) ∈ Rn×n is the inertia matrix, C (q, q̇) ∈ Rn×n is the Coriolis
matrix and G (q) ∈ Rn×1 is the gravitational force vector; q, q̇ and q̈ ∈ Rn×n

are respectively joints position, velocity and acceleration. The right hand
side of 3.1 is the input torque/force vector τ ∈ Rn×1. It is possible to rewrite
the equations of motion in a linear form with respect to a properly defined
dynamic parameter vector p ∈ R r×1 as showed in 3.2

Y p = τ (3.2)

where Y (q, q̇, q̈) ∈ Rn×r is the coefficient matrix of the dynamic equations,
called regression matrix.
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Manipulator regressor Y 
construction

Matrix reduction with QR 
decomposition

Exciting trajectory 
optimization

Dynamic parameter 
identification

Model validation

START

END

Figure 3.1: Identification scheme general flow chart

Figure 3.1 shows briefly each step of the identification scheme. In this
chapter the blocks are explained: a systematic method to build the dynamic
model based on the one proposed in [5] is described. Using the Euler-Lagrange
method, dynamic equations in the form 3.2 are written and the system is
reduced with the QR decomposition. The optimization algorithm to find the
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persistent exciting trajectory is designed. The optimum trajectory needs to
be executed on the manipulator, so some constraints are applied in order to
build a physically feasible movement. While the trajectory is executed by the
robot, motor currents are collected by mounted sensors and joints torques are
evaluated. Least-Squares minimization is then used to obtain the identified
dynamic base parameters. The entire identification algorithm is implemented
in a MATLAB code.

Lagrangian equations of robot dynamics
The dynamic model of a robot arm can be described with the Euler-Lagrange
equations. In order to obtain the motion equation of the manipulator it is
necessary to build the Lagrangian for each link which is defined as the differ-
ence between the link kinetic energy and potential energy. The Lagrangian of
the link i is defined as

L (q, q̇) = T (q, q̇)−U (q) =
n∑
i=1

(
T (i) (q, q̇)− U (i) (q)

)
=

n∑
i=1

L(i) (q, q̇) (3.3)

because L (q, q̇) is link-wise additive. U (i) and T (i) are, respectively, the
potential and kinetic energy associated to the link i and q,q̇ ∈ Rn×1 are,
respectively, joints position and velocity vectors.

From the definition of Lagrangian equations, the dynamic of the manipu-
lator can be described by[

d

dt

∂L

∂q̇
− ∂L

∂q

]T
=

n∑
i=1

[
d

dt

∂L(i)

∂q̇
− ∂L(i)

∂q

]T
= τ (3.4)

where τ is the n× 1 vector of the applied joint torques. The key feature of
the robot dynamics is that it must be expressed in a linear form with respect
to a vector p ∈ R r×1

Y (q, q̇, q̈) p = τ (3.5)

where the regressor matrix Y (q, q̇, q̈) depends on the geometry of the robot
and on the trajectory.
Combining equations 3.5 and 3.4, equation 3.6 is obtained[

d

dt

∂L

∂q̇
− ∂L

∂q

]T
=

n∑
i=1

[
d

dt

∂L(i)

∂q̇
− ∂L(i)

∂q

]T
=

n∑
i=1

Y (i)p(i) (3.6)
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Thus, for a n-link manipulator, the complete regressor is written as Y =[
Y (1). . . .Y (n)

]
∈ Rn×r and the complete dynamic parameters vector is defined

as p =
[
p(1). . . .p(n)

]
∈ Rr×1.

Considering the definition of Lagrangian in 3.3 and noting that d
dt
∂U(i)

∂q̇
= 0,

because the link potential energy does not depend on joints velocity, equation
3.6 can be rewritten as[

d

dt

∂T (i)

∂q̇
− ∂T (i)

∂q
+
∂U (i)

∂q

]T
= Y (i)p(i) (3.7)
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Direct formulation of the manipulator regressor
In this section the manipulator regressor is built starting from the dynamic
equations obtained with the Euler-Lagrange method. The steps are summa-
rized in figure 3.2

Dynamic model 
construction from 

Lagrange equations

Extraction of dynamic 
parameters for each link

Construction of the entire 
manipulator regressor

START

YY

END

Figure 3.2: Regressor construction scheme
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Kinetic Energy Terms

Applying the König theorem with respect to the global frame O, the kinetic
energy T (i) of the link i is expressed as

T (i) =
1

2
miv

T
GivGi +

1

2
iωTi IGi

iωi (3.8)

where the subscript Gi refers to the center of mass of the i-th link, mi is the
mass of the link, vGi

is the linear velocity; iωi is the angular velocity, while
IGi

represents the link inertia tensor about the center of mass Gi. Using the
rotation matrix 0Ri from the global frame to the link i frame it is possible to
write

iωi = iR0
0ωi = 0RT

i
0ωi (3.9)

The center of mass linear velocity with respect to the global frame can be
expressed as

0vGi
= 0vi + 0ωi × 0piGi

(3.10)

Introducing the relationship between generalized velocities and joints velocities
through the Jacobian matrix 1, it is possible to write

0vGi
= Jvi q̇ + Jωi

q̇ × 0RipiGi
(3.11)

and
0ωi = Jωi

q̇ (3.12)

being Jvi and Jωi
respectively the linear and the angular part of the Jacobian

matrix Ji such that

Ji =

[
Jvi
Jωi

]
(3.13)

Thus, substituting equation 3.11 and 3.12 into equation 3.8, kinetic energy of
the link i can be expressed in a form which depends on joints velocity only

T (i) =
1

2
mi

(
Jvi q̇ + Jωi

q̇ × 0RipiGi

)T (
Jvi q̇ + Jωi

q̇ × 0RipiGi

)
+

+
1

2
q̇T
(
JTωi

0Ri
iIGi

0RT
i Jωi

)
q̇

(3.14)

1In robotics it is a matrix which provides the relation between joint velocities q̇ and
velocities v in the Cartesian space of the manipulator links
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Let S be an operator such that

S (x) =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 (3.15)

is a skew-symmetric matrix which allows to pass from equation 3.14 to

equation 3.16, being x =
[
x1 x2 x3

]T
T (i) =

1

2
miq̇

T
(
JTviJvi

)
q̇ − 1

2
miq̇

T
{
JTviS

(
0RipiGi

)
Jωi

}
q̇+

+
1

2
miq̇

T
{
JTωi

S
(

0RipiGi

)
Jvi

}
q̇+

+
1

2
q̇T
{
JTωi

0Ri

[
iIGi

+miS
(
piGi

)T
S
(
piGi

)]
0RT

i Jωi

}
q̇

(3.16)

Taking the partial derivative with respect to q̇ of the previous equation,
equation 3.17 is obtained

∂T (i)

∂q̇
= miq̇

T
(
JTviJvi

)
−miq̇

T
{
JTviS

(
0RipiGi

)
Jωi

}
+

+miq̇
T
{
JTωi

S
(

0RipiGi

)
Jvi

}
+ q̇T

{
JTωi

0Ri
iIi

0RT
i Jωi

} (3.17)

It can be rearranged thanks to symmetric matrices and skew-symmetric
matrices properties as explained in [5][

∂T (i)

∂q̇

]T
=
(
JTviJvi

)
q̇mi +

{
JTviS

(
Jωi

q̇
)

0Ri − JTωi
S
(
Jvi q̇

)
0R0

}
mipiGi

+

+JTωi

0Ri
iIi

0RT
i Jωi

q̇

(3.18)

In order to build the matrix Y (q, q̇, q̈) and the vector p, it is necessary to
isolate the dynamic parameters from equation 3.18. The right-hand side of
the equation is composed by three terms: in the first two terms it is possible
to extract, respectively, the terms mi and mipiGi

. From the third one the
inertia tensor iIi must be isolated and it can be written as

iIi = EJ̄i (3.19)
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where E ∈ R3×3×6 is a third-order tensor and the vector of parameters
J̄i =

[
J̄ixx J̄ixy J̄ixz J̄iyy J̄iyz J̄izz

]
where

E = [E1E2E3E4E5E6] ,

J̄ixx J̄ixy J̄ixz
J̄iyx J̄iyy J̄iyz
J̄izx J̄izy J̄izz

 (3.20)

with

E1 =

1 0 0
0 0 0
0 0 0

 E2 =

0 1 0
1 0 0
0 0 0



E3 =

0 0 1
0 0 0
1 0 0

 E4 =

0 0 0
0 1 0
0 0 0



E5 =

0 0 0
0 0 1
0 1 0

 E6 =

0 0 0
0 0 0
0 0 1



(3.21)

With this procedure, the third term of equation 3.18 becomes

JTωi

0Ri
iIi

0RT
i Jωi

q̇ =
[
JTωi

0RiE
0RT

i Jωi
q̇
]
J̄i =

=
[
JTωi

0RiE1
0RT

i Jωi
q̇| . . .|JTωi

0RiE6
0RT

i Jωi
q̇
]
J̄i

(3.22)

In this way, equation 3.18 can be split in three terms after taking the time
derivative

d

dt

[
∂T (i)

∂q̇

]T
= Ẋ

(i)
0 p

(i)
0 + Ẋ

(i)
1 p

(i)
1 + Ẋ

(i)
2 p

(i)
2 (3.23)

with

p
(i)
0 = mi ∈ R

p
(i)
1 =

[
mipiGix

mipiGiy
mipiGiz

]T
∈ R3

p
(i)
2 = J̄i ∈ R6

X
(i)
0 =

(
JTviJvi

)
q̇ ∈ Rn×1

X
(i)
1 =

{
JTviS

(
Jωi

q̇
)
− JTωi

S
(
Jvi q̇

)}
0Ri ∈ Rn×3

X
(i)
2 =

[
JTωi

0RiE1
0RT

i Jωi
q̇, . . . , JTωi

0RiE6
0RT

i Jωi
q̇
]
∈ Rn×6

(3.24)
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It is important to notice that it is not possible to evaluate directly the center
of mass vector of each link but a function of this vector and mass link. Time
derivatives of terms X(i)

1 , X(i)
2 and X(i)

3 are performed term by term thanks
to relationship 3.25 where D is generic first or second order tensor

d

dt

∂D

∂q̇k
=

n∑
j=1

Dkj q̈j +
n∑
i=1

n∑
j=1

∂Dkj

∂qi
q̇iq̇j (3.25)

The second term of equation 3.7 is the partial derivative of the kinetic energy
with respect to q vector. Hence[

∂T (i)

∂q

]
=

1

2

{
q̇T
[
∂

∂q
(JTviJvi)

]
q̇

}T

mi+

+
1

2

{
q̇T
[
∂

∂q
(JTviS(Jωi

q̇)0Ri − JTωi

(
Jvi q̇)

0Ri

)]}T

mipiGi
+

+
1

2

{
q̇T
[
∂

∂q
(JTωi

0Ri
iIi

0RT
i Jωi

)

]
q̇

}T

(3.26)

Looking at equation 3.26, it is possible to notice that term J̄i must be extracted
again by using 3.19

{
∂

∂q

(
JTωi

0Ri
iIi

0RT
i Jωi

)}T
=



∂
∂q

(
JTωi

0RiE1
0RT

i Jωi

)
∂
∂q

(
JTωi

0RiE2
0RT

i Jωi

)
∂
∂q

(
JTωi

0RiE3
0RT

i Jωi

)
∂
∂q

(
JTωi

0RiE4
0RT

i Jωi

)
∂
∂q

(
JTωi

0RiE5
0RT

i Jωi

)
∂
∂q

(
JTωi

0RiE6
0RT

i Jωi

)


J̄i (3.27)

Thus, equation 3.26 can be written in compact form as[
∂T (i)

∂q

]
= W

(i)
0 p

(i)
0 +W

(i)
1 p

(i)
1 +W

(i)
2 p

(i)
2 (3.28)

where

W
(i)
0 =


1
2
q̇T ∂

∂q1

(
JTviJvi

)
q̇

.

.
1
2
q̇T ∂

∂qn

(
JTviJvi

)
q̇

 ∈ Rn×1 (3.29)
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W
(i)
1 =

1

2


∂
∂q1

(
0RT

i S
T
(
Jωi

q̇
)
Jvi q̇ − 0RT

i S
T
(
Jvi q̇

)
Jωi

q̇
)

.

.
∂
∂qn

(
0RT

i S
T
(
Jωi

q̇
)
Jvi q̇ − 0RT

i S
T
(
Jvi q̇

)
Jωi

q̇
)
 ∈ Rn×3 (3.30)

W
(i)
2 =

1

2
q̇


∂
∂q1

(
JωT

i

0RiE
0RT

i Jωi

)
.
.

∂
∂qn

(
JωT

i

0RiE
0RT

i Jωi

)
 ∈ Rn×6 (3.31)
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Potential Energy Terms

The last term of equation 3.7 comes from the potential energy. The potential
energy U (i) associated to the link i can be written as

U (i) = −mig
T
(

0pi + 0RipiGi

)
(3.32)

where g =
[
0 0 −9.81

]
is the gravitational acceleration vector with respect

to the global frame while 0pi is the position vector from the origin O to the
i-th link DH reference frame fixed at Oi. The real robot considered as case
study in this work is mounted on a horizontal support as depicted in figure
2.2. To obtain the form which appear in 3.7 the potential energy must be
derived as follows[

∂U (i)

∂q

]T
= −mi

{
gT
∂0pi
∂q

+ gT
∂0Ri

∂q
piGi

}T

=

= −JTvigmi −

[
∂
(
gT 0Ri

)
∂q

mipiGi

]T (3.33)

The last term of the previous equation can be reformulated as[
∂
(
gT 0RimipiGi

)
∂q

]T
=

[
∂

∂q

{
(mipiG−i)

T 0RT
i g =

}]T
=

(
∂(0RT

i g)
∂q1

)T
.
.(

∂(0RT
i g)

∂qn

)T


mipiGi

(3.34)

The third term of equation 3.7 associated to potential energy in the Lagrange
equations can be expressed in a more compact way as[

∂U (i)

∂q

]T
= Z

(i)
0 mi + Z

(i)
1 mipiGi

(3.35)
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where

Z
(i)
0 = −JTvig ∈ Rn×1 Z

(i)
1 = −



(
∂(0RT

i g)
∂q1

)T
.
.(

∂(0RT
i g)

∂qn

)T


∈ Rn×3 (3.36)

Now, recalling expression 3.7 and combining the quantities previously evalu-
ated

Y
(i)

0 = Ẋ
(i)
0 −W

(i)
0 + Z

(i)
0 ∈ Rn×1 (3.37)

Y
(i)

1 = Ẋ
(i)
1 −W

(i)
1 + Z

(i)
2 ∈ Rn×3 (3.38)

Y
(i)

2 = Ẋ
(i)
2 −W

(i)
2 ∈ Rn×6 (3.39)

the i-th link regressor can be built

Y (i)p(i) =
[
Y

(i)
0 Y

(i)
1 Y

(i)
2

]
p

(i)
0

p
(i)
1

p
(i)
2

 (3.40)

The entire manipulator regressor is obtained putting together regression
matrix of each link

Y (q, q̇, q̈) =
[
Y (1), . . . , Y (n)

]
(3.41)
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Adding friction and motor inertia

Presence of friction phenomenon and motor inertia can be addressed in future
works and it can be easily added to the already existing model together with
the motor inertia. To introduce these effects the i-th joint regressor must be
modified as depicted in 3.42

Y (i)p(i) = τci + τvi + τI,mi
+ τi (3.42)

where τci represents the joint torque contribution due to Coulomb friction,
τvi is the viscous friction torque, τI,mi

is the motor inertia contribution and
τi is the total joint torque as it has been evaluated in this work. Equation
3.42 can be rearranged as

Y (i)p(i) − τci − τvi − τI,mi
= τi (3.43)

Relations in 3.44 are introduced to reformulate equation 3.43

τci = −Y (i)
c p

(i)
c = −sign (q̇i) fciG

τvi = −Y (i)
v p

(i)
v = −q̇ifviG2

τI,mi
= −Y (i)

I,mp
(i)
I,m = −q̈iJmi

G2

(3.44)

with fci the Coulomb friction coefficient, fvi the viscous friction coefficient and
JI.m the motor inertia. G is the motor transmission ratio. For the i-th link,
the added dynamic parameters to be identified are p(i)

c = fciG, p
(i)
v = fviG

2

and p(i)
I,m = Jmi

G2. So, relation 3.2 for each link becomes

τi =
[
Y (i) Y

(i)
v Y

(i)
c Y

(i)
I,m

]
p(i)

p
(i)
c

p
(i)
v

p
(i)
I,m

 = Yi,newpi,new (3.45)

with Yi,new the n × 13 link regression matrix of the i-th link and pi,new the
13×1 dynamic parameter vector of the i-th link. In future works this addition
must be done in order to have a more accurate dynamic model. Moreover, to
solve the MATLAB limitation problem about the symbolic calculations, the
code must be revised and improved. It is important in order to perform the
identification of the entire manipulator in one step. In fact, the approximation
which is used in this project can be accepted in order to test the validity of
the algorithm, but must be removed.
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QR decomposition
The computation of the base parameters is based on the determination of
independent columns of the regressor Y by the use of the QR decomposition.
The reduction procedure is explained in detail in [12]. In figure 3.3 the
reduction steps are summarized. M is the determined number of random
trajectory points used to determine the matrix that is analyzed.

Matrix reduction with QR 
decomposition

Exciting trajectory 
optimization

Dynamic parameter 
identification

Model validation

YY

Reduced 
matrix

Reduced 
matrix

END

START

Figure 3.3: QR procedure
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Not all the dynamic parameters of the manipulator can be identified
because some of them do not play any role in the robot dynamics. In general,
they can be classified as follows:

• totally identifiable;

• identifiable with linear dependency;

• totally unidentifiable.

According to the previously proposed model, each link has ten dynamic
parameter to be identified as listed in 3.40. Thus, a n-link manipulator has
r = 10 × n parameters. Before determining the fundamental identifiable
parameter, which are also called base parameters, zero columns in the n× r
regressor matrix are identified and eliminated. The resultant n× q matrix
is evaluated M times with random joint values (q, q̇, q̈) as done in [14], with
M >> n, and stacked into a new matrix YQR. This is necessary in order
to have a matrix with more rows than column to The QR decomposition is
applied to this matrix obtaining

QTYQR =

[
R

0(Mn−q)×q

]
(3.46)

where YQR is a Mn× p matrix, Q is a Mn×Mn orthogonal matrix and R is
a q × q upper-triangular matrix. 0(Mn−q)×q is a matrix of zeros. The main
diagonal of matrix R is analyzed:

• |Rii|< 0: i-th parameter is not identifiable and the corresponding
columing of YQR is collected in the matrix Y2;

• |Rii|> 0: the i-th column of YQR is independent and it is associated to
an identifiable parameter. The column is collected in the matrix Y1.

where Y1 is aMn×b matrix containing the independent columns of Y and, Y2

is a Mn× q−b matrix containing the dependent columns of Y . Relationship
3.47 can now be obtained

YQRp = [Y1 Y2]

[
p1

p2

]
(3.47)
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and introducing the dependency between Y1 and Y2 through the β matrix

Y2 = Y1β (3.48)

as a consequence 3.47 becomes

Y p = [Y1 Y2]

[
pB
0

]
= Y1pB (3.49)

where the base parameter vector pB is given by pB = p1 + βp2. Thus, the β
matrix allows the grouping equations of the parameters p1 and p2. Let b the
number of independent columns of Y collected in Y1 and q− b the numbers of
dependent columns of Y collected in Y2. In order to specify the β matrix, it
is necessary to compute the QR decomposition of the matrix [Y1 Y2] leading

[Y1 Y2] = [Q1 Q2]

[
R1 R2

0(Mn−b)×b 0(Mn−b)×(q−b)

]
=
[
Q1R1 Q1R2

]
(3.50)

where R1 is a b× b upper-triangular matrix and R2 is a b× (q − b) matrix.
From relation 3.50 it is possible to obtain

Q1 = Y1R
−1
1

Y2 = Q1R2 = Y1R1−1R2

(3.51)

and recalling equation 3.48
β = R−1

1 R2 (3.52)

The regression matrix associated to the base parameters vector pB is YB = Y1

which means that the robot dynamic behavior can be described by the
relationship

YBpB = τ (3.53)

being τ the joint forces/torques vector.
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Trajectory optimization algorithm
The procedure to obtain the persistent trajectory for each link is summarized
by the scheme in figure 3.4. In this work a 5th order Finite Fourier Series is
chosen as trajectory as proposed by authors in [27]. The use of a periodic
function allows an easy data processing and noise error prediction.

START

Design of exciting 
trajectories

Cost function 
costruction

Optimization of the 
trajectory with 

Genetic Algorithm

END

Reduced 
regressor
Reduced 
regressor

Optimal 
exciting 

trajectory

Optimal 
exciting 

trajectory

Figure 3.4: Trajectory optimization steps
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The minimization trajectories for each link take the form:

qi (t) = qi,0 +
N∑
l=1

ai,l sin
(
ωf lt

)
− bi,l cos

(
ωf lt

)
(3.54)

q̇i (t) =
N∑
l=1

ai,lωf l cos
(
ωf lt

)
− bi,lωf l sin

(
ωf lt

)
(3.55)

q̈i (t) =
N∑
l=1

−ai,l
(
ωf l
)2

sin
(
ωf lt

)
− bi,l

(
ωf l
)2

cos
(
ωf lt

)
(3.56)

where N is the order of the series set to 5, ωi is the base frequency which is
equal for each joint to guarantee the periodicity of the movement, qi0 is the
joint position offset, and ai,l and bi,l are the coefficients of the series. Those
are the optimization variables. Thus, for a n-link manipulator there are in
total n× 10 degrees of freedom in the optimization problem: 5 parameters
al and 5 parameters bl with l = 1. . .N . Since a real robot cannot achieve
arbitrary joints position, velocity and accelerations, the following constraints
need to be added to the minimization problem:

qi =
∑N

l=1

√
a2
i,l + b2

i,l +
∣∣qi,0∣∣ < qi,max

q̇i =
∑N

l=1 ωf l
√
a2
i,l + b2

i,l < q̇i,max

q̈i =
∑N

l=1

(
ωf l
)2
√
a2
i,l + b2

i,l < q̈i,max

(3.57)

where qi,max, q̇i,max and q̈i,max are respectively maximum joints position,
velocity and acceleration which the robot can reach. Moreover, if the motion
starts with velocity and acceleration values different from zero, it would cause
unwanted vibrations in the robot arm. This lead to the necessity to add some
boundary conditions to the initial and final points of the trajectories.

q̇i (0) =
∑N

l=1 ai,lωf l = 0

q̈i (0) =
∑N

l=1 bi,l
(
ωf l
)2

= 0
(3.58)

Equations 3.57 and 3.58 are proposed in [28].

f = cond (Γ) (3.59)
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where f is the cost function which has to be minimized, cond is a function
which evaluates the condition number of a matrix and Γ = Y T

B YB, with YB
the regression matrix associated to the base parameters vector evaluated in
the previous chapter. Different cost function have been used in literature such
as in [27] f = λ1cond (Γ) + λ2

1
σmin(Γ)

with λ1 and λ2 are the relative weights
and σmin (Γ) represents the minimum singular value of matrxi Γ, while in [28]
the optimization criteria is maximizing the determinant of Γ matrix. The
point of having a good-conditioned Γ matrix lies in the fact that it measures
the sensitivity of the solution of the least squares problem to the modeling
errors and noise. Thus, a well defined trajectory is one whose point in time
give small condition number of the matrix Γ. The problem of finding the
optimal trajectory can be formulated as:

min
q,q̇,q̈

cond
(
Γ (q, q̇, q̈)

)
(3.60)

Due to the large dimension of the problem, a starting point is difficult to
identify and the Genetic Algorithm is chosen to solve the constrained nonlinear
optimization problem as suggested in [27]. According to this method a
population with a chosen number of individuals is created. Each individual is
randomly generated. The cost function f is selected as fitness function. At
each generation, the fitness value of each individual is evaluated and the one
with the best fitness value are selected. Those undergo recombination under
the action of the crossover and mutation operators. Doing so, after a certain
number of generation, the process converges to an unique individual which
minimizes the cost function.
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Parameter estimation
The last step of the algorithm consists in determining the dynamic parameters.
To do so, the Least-Squares minimization technique is performed. In figure
3.5 the steps for the estimation of the dynamic parameters of the manipulator
are presented

Real robot

Measured torques

Least-square method

Identified base 
parameters 

vector 

Identified base 
parameters 

vector 

Optimal 
trajectory
Optimal 

trajectory

START

END

Figure 3.5: Parameters identification using least-squares algorithm

In order to determine the base parameters vector pB, the system is excited
with the optimized trajectory, and joints position, velocity and acceleration
and the motor currents are measured at m time instance. Due to the fact
that no torque sensors are mounted on the robot, joint torques are measured
using the torque constant and the joint gear ratio using the measured motor
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currents , and the new regressor, called information matrix, is formed
YB|t1
·
·
·

YB|tm

 pB =


τM |t1
·
·
·

τM |tm

 (3.61)

or written in a simpler form as

Y BpB = τM (3.62)

with τM the (mn× 1) measured torques vector and YB the (mn× b). In
order to identify the base parameters, the Least-Squares algorithm is used.
This kind of minimization scheme is applicable only to overdetermined linear
systems. Thus, 3.62 must have more equations than variables. To guarantee
this requirement, a number of trajectory points m, such that the inequality
in equation 3.63 is satisfied, must be designed.

nm ≥ b (3.63)

where n is the number of joints of the manipulator and b is the number of
base parameter to be identified. From equation 3.62, it is possible to obtain
the base parameter vector pB using a Least-Squares technique as done in [23]:

pB =
(
Y
T

BY B

)−1

Y
T
τM (3.64)

An alternative estimation procedure can be find in [18] where the maximum
likelihood technique is used. In relation 3.63 it is possible to notice the
influence of the optimized trajectory on the identification results. In fact,
having a low condition number of matrix Y T

BY B reduces the sensitivity of the
result to noise and measurement errors which are inherent to τM .
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Validation
The final step consists in the dynamic model validation, comparing the
measured torques of the UR5 and the predicted ones.

Real robot

Real robot

Real joint 
torques

START

END

Torque 
comparison

Torque 
comparison

Validation 
trajectory
Validation 
trajectory

Figure 3.6: Validation of the identified dynamic model

Once pB is identified the model is verified by comparing the reconstructed
torques, which are generated from the identified model, and the measured
torques, which are the actual joint torques that are used to control the
manipulator. A different trajectory is designed to excite the manipulator for
this purpose. The validation procedure is represented in figure 3.6.
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Chapter 4

Results

In this section the results obtained in this thesis work are showed. The model
which is actually used is a simplified one. In fact, viscous and static friction
and the motor inertia are not considered in the model for simplicity. Moreover,
in the practice the computational cost of symbolical calculation has been
an obstacle for construction of the reduced regression matrix of the entire
manipulator. For this reason, the identification has been executed separately
for two groups of links: the first composed by Base, Shoulder and Elbow
(BSE) and the second one by the three links of the wrist group (W ). Although
this separation could lead to identification mistakes as explained in [13], it
has been preferred to present the identification of the entire manipulator
performed in two different steps, being aware that this issue has to be solved
in the future. In the following, BSE indicates the first three links of the
robot, Base-Shoulder-Elbow, while with W the three links of the wrist group
are denoted. In figures 4.1 and 4.2 BSE and W groups are represented.
Moreover, the starting intention for this project was to test the algorithm on
the real UR5 situated in the university laboratory, but due to the COVID-19
situation, it has been impossible having access to the manipulator for most
of the time. For this reason, the algorithm has been tested with a simulated
robot, which has been created using the Robotics Toolbox in MATLAB.
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Figure 4.1: BSE joints group

Figure 4.2: W joints group
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Regressor and identifiable dynamic parameters
Starting from the dynamic model of the robot manipulator obtained with the
Euler-Lagrange equations, the regression matrix is built. The two matrices
have an upper triangular form as showed in figure 4.1. In this case of a
3-DOF manipulator with 10 dynamic parameters for each link, both regressor
matrices have dimension 3× 30.

YBSE =

Y11 Y12 Y13

0 Y22 Y23

0 0 Y33

 YW =

Y44 Y45 Y46

0 Y55 Y56

0 0 Y66

 (4.1)

where Yij is the contribution to dynamics of link i produced by link j and 0 is
a zero 1× 10 vector which means that the link corresponding to that column
does not produce any effect on the dynamics of the link of the corresponding
row. In order to have clear the effect of performing the parameter identification
of three links per time, the regressor of the entire manipulator is showed in
4.2

Ytotal =



Y11 Y12 Y13 Y14 Y15 Y16

0 Y22 Y23 Y24 Y25 Y26

0 0 Y33 Y34 Y35 Y36

0 0 0 Y44 Y45 Y46

0 0 0 0 Y55 Y56

0 0 0 0 0 Y66


(4.2)

while combining the two matrices in 4.1, the result is

Y ′total =



Y11 Y12 Y13 0 0 0
0 Y22 Y23 0 0 0
0 0 Y33 0 0 0
0 0 0 Y44 Y45 Y46

0 0 0 0 Y55 Y56

0 0 0 0 0 Y66


(4.3)

So, in 4.3, the effect of the three wrist links on the BSE group dynamic
is neglected and this would lead to estimation mistakes. Nevertheless, the
MATLAB environment which is used to develop the entire algorithm was not
able to manage such a big amount of symbolic variables. For this reason,
this simplification has been accepted for the moment. QR decomposition is
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performed to regressor matrices in 4.1. To do so, the matrices are numerically
evaluated using 25 random points in order to have a matrix with more
rows than columns as proposed in [14]. The resulting reduced matrices have
respectively both 15 independent columns. The correspondent base parameter
vectors in symbolic form are:

pBBSE
=



J1zz + J3yy − J3zz

m2

m2p2G2x

m2p2G2y

J2xy

J2yy − J2zz

J2yz

m3

m3p3G3x

m3p3G3y

m3p3G3z

J3xx − J3yy + J3zz

J3xy

J3xz

J3yz



(4.4)

and

pBW
=



0.2m6p6G6z
− 0.2m5p5G5y

m5p5G5z

m5p5G5z
+m6p6G6z

J5xy

J5xz

0.2m6p5G5z

J5yz

J5zz

m6p6G6x

m6p6G6y

J6xx − J6yy

J6xy

J6xz

J6yz

J6zz



(4.5)
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with mi the mass of the i-th link [kg], piGij
the j-th component of the center

of mass vector of the i-th link [m] and Jijk the element jk of the inertia tensor
of the i link

[
kgm2

]
.

Optimized trajectory
Once the reduced regressor is obtained, it is used to optimize the excitation
trajectory. To do so, the Finite Fourier Series is built according to the model
explained in the previous chapter. The order of the series is fixed to N = 5.
The frequency of the trajectory is chosen as ωf = 0.3π [Hz] equal for all joints
in order to guarantee the motion periodicity of the robot as suggested in [23].
The period is equal to T = 2π

ωf
.67s and the robot arm stops after three periods

are completed. This choice is motivated by the hypothesis of having a better
identification if the robot performs a longer trajectory. A sampling frequency
equal to 125 [Hz] is used to be consistent with the communication frequency
of the UR5. Each joint trajectory presents 10 parameter to be optimized.
Then, for a 6-DOF robot there a total of 60 parameter to be optimized.
Due to the large scale of the problem and the fact that is difficult to obtain
a good approximation of the starting point, the optimization is performed
with Genetic Algorithm. This minimization scheme is present in the Global
Optimization Toolbox in MATLAB. The function has been properly set with
200 individuals for each generation and the boundary conditions defined in
3.58 and 3.57 are used to obtain the constrained optimization problem. The
objective function has been set according to equation 3.59. Optimization
is performed once for the first three joints and the second time for the last
three joints. In the first case, the calculation lasted almost 100 hours, the
algorithm made 5 iterations and the reached cost function was f = 99.9. The
optimization of the wrist group instead, lasted for 118 hours, made 5 iterations
and the obtained minimal cost function was f = 26.6. The parameters which
defined the optimal trajectory can be found in tables 4.1 and in 4.2. It is
possible to notice in figures from 4.3 to 4.8 that trajectories do not exceed the
velocity and acceleration limitations, and for t = 0 the robot is stationary.
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a1,1 0.0094 b1,1 -0.0085
a1,2 0.0482 b1,2 0.1599
a1,3 0.0038 b1,3 -0.0283
a1,4 -0.0024 b1,4 -0.0826
a1,5 -0.0214 b1,5 0.0378
a2,1 0.5765 b2,1 0.1459
a2,2 -0.0032 b2,2 -0.0048
a2,3 -0.0051 b2,3 -0.0093
a2,4 -0.0116 b2,4 0.0120
a2,5 0.1018 b2,5 -0.0094
a3,1 0.0435 b3,1 0.6786
a3,2 -0.0250 b3,2 -0.0274
a3,3 0.0174 b3,3 -0.0145
a3,4 -0.0023 b3,4 -0.0734
a3,5 -0.0074 b3,5 -0.0106

Table 4.1: Parameters of the optimal exciting trajectories for joints 1, 2 and 3

a4,1 0.0642 b4,1 -1.2397
a4,2 -0.0128 b4,2 0.0079
a42,3 0.0186 b4,3 -0.0352
a42,4 0.0029 b4,4 -0.0082
a4,5 -0.0212 b4,5 0.0662
a5,1 -0.6081 b5,1 -0.4490
a5,2 -0.0068 b5,2 0.0036
a5,3 0.0079 b5,3 0.0078
a5,4 0.1485 b5,4 0.0059
a5,5 0.0010 b5,5 0.0108
a6,1 0.6136 b6,1 0.1662
a6,2 -0.0190 b6,2 0.0217
a6,3 -0.1571 b6,3 -0.0068
a6,4 -0.0276 b6,4 -0.0529
a6,5 0.0010 b6,5 0.0022

Table 4.2: Parameters of the optimal exciting trajectories for joints 4, 5 and 6
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Figure 4.3: Joint 1 optimal trajectory

Figure 4.4: Joint 2 optimal trajectory
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Figure 4.5: Joint 3 optimal trajectory

Figure 4.6: Joint 4 optimal trajectory
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Figure 4.7: Joint 5 optimal trajectory

Figure 4.8: Joint 6 optimal trajectory
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Validation of the proposed model
In order to verify the robustness of the identification scheme, different reference
models are considered in this section. The dynamic parameters are evaluated
using the Least-Squares technique, where torque coming from the real robot
are used as explained in relation 3.64. In this work, torques used in the
Least-Square minimization are not real measured torques but modeled ones.
For this reason, different reference models have been adopted.

• Model A: dynamic model without friction and noise;

• Model B: dynamic model with friction;

• Model C: dynamic model with added noise;

• Model D: dynamic model with friction and added noise.

For each model, the base parameter vector pB is numerically evaluated and
used to compute the torques as in relation 4.6

τY B = YBpB (4.6)

The results of the identification of parameters for each of the previous men-
tioned model are listed in the next sections. The torques calculated according
to 4.6 are represented in the graphs with the name Y B, while the torques
calculated with the reference model are name rne in the graphs.
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Model A without friction and noise

At first, the reference model is built with the function rne contained in the
Robotics Toolbox and friction phenomenon is not considered as it is not
considered also in the model built in this work. It is clear in figures from 4.9
to 4.14 that the model resulting from identification procedure is very accurate.
Base parameters pB are correctly evaluated by the algorithm and they are
equal to parameters defined for the construction of the model in the Robotics
Toolbox. This is motivated by the fact that the reference model does not
have any error or unpredictable phenomenon so the validation torques are
exactly overlapping.

Figure 4.9: Joint 1 torque
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Figure 4.10: Joint 2 torque

Figure 4.11: Joint 3 torque
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Figure 4.12: Joint 4 torque

Figure 4.13: Joint 5 torque

57



Figure 4.14: Joint 6 torque
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Model B with friction

In this case, friction phenomenon is considered in the comparison model.
It is clear from images that the parameters obtained by the identification
make the obtained model inaccurate. This is motivated by the fact that
the model which substitutes the real robot in the identification scheme has
been simulated with the friction phenomenon which is not considered in
the dynamic model built in this thesis. For this reason, this result was not
unexpected. Errors are more relevant in the first three joints of the robot and
much less in the last three joints. This is justified by the fact that joints of
the group BSE are bigger than joint of the group W . Moreover, in joint 1, 2
and 3 friction effects are more relevant, as it possible to see from table 2.5.
In fact, friction coefficients in the first three joints of the robot are 3−4 times
higher that coefficients of the last three joints.

Figure 4.15: Joint 1 torque with friction
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Figure 4.16: Joint 2 torque with friction

Figure 4.17: Joint 3 torque with friction
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Figure 4.18: Joint 4 torque with friction

Figure 4.19: Joint 5 torque with friction
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Figure 4.20: Joint 6 torque with friction
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Model C with added noise

In order to simulate a disturbance which is always present during data
acquisition from the real robot, white noise is added to model A. In practice,
fluctuation of the signal is always present in the measured motor currents.
They are measured to calculate joint torques since no torque sensor are
mounted on the robot. This error source is added in the code by calculating
the motor currents as depicted in figure 4.21.

Inverse formula to obtain 
current I

Adding white noise to 
currents and torque constant

Calculating torques

Torques with 
added noise

Torques with 
added noise

START

END

Torques 
calculated with 

RNE

Torques 
calculated with 

RNE

Figure 4.21: Procedure of adding white noise to motor currents

To do so, joint torques are obtained from model A and the motor currents
are obtained with relation 4.7

I =
τ

KTG
(4.7)
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where I is the currents vector, τ is the joint torques vector, and KT and G
are respectively the torque constant and the transmission ratio. Then, white
noise is added with the MATLAB function awgn as showed in equation 4.8

Iwn = awgn (I, AI) (4.8)

where Iwn is the currents vector with white noise added and AI is the Noise-To-
Signal ratio (set to 50) which defines the amplitude of the noise with respect
to the original signal. In order to add also the inaccuracy of the current
transducer, white noise is added to the torque constant KT too. Finally,
the torque vector which is used in the Least-Square algorithm is obtained in
equation 4.9

τwn = Iwnawgn
(
KT , AKT

)
G (4.9)

where G is the gearbox transmission ratio.

Figure 4.22: Joint 1 torque with white noise
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Figure 4.23: Joint 2 torque with white noise

Figure 4.24: Joint 3 torque with white noise

65



Figure 4.25: Joint 4 torque with white noise

Figure 4.26: Joint 5 torque with white noise

66



Figure 4.27: Joint 6 torque with white noise
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Model D with friction and added noise

In this simulation, the previous two models A, B and C are combined and
both the friction effects and a random error are considered in the comparison
torques. As seen in model B, the effect of friction is not predicted in the
identified model and for this reason the accuracy is poor.

Figure 4.28: Joint 1 torque with friction and white noise
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Figure 4.29: Joint 2 torque with friction and white noise

Figure 4.30: Joint 3 torque with friction and white noise
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Figure 4.31: Joint 4 torque with friction and white noise

Figure 4.32: Joint 5 torque with friction and white noise
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Figure 4.33: Joint 6 torque with friction and white noise
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Chapter 5

Conclusions

In this thesis project a complete and systematic identification of robot dy-
namic parameters procedure is developed. It is necessary because dynamic
parameters which are provided by robot manufacturers are not accurate
because they are not measured on the real robot but estimated by the CAD
drawings. Starting from the construction of the dynamic model of the ma-
nipulator UR5 with the Euler-Lagrange equations, it is written in linear
form with respect to some dynamic parameters building a special regressor
matrix. Not all these parameters can be identified, so a QR decomposition
is carried out in order to eliminate those who can not be calculated. In
order to be identified, dynamic parameters must be excited with a persistent
trajectory. This special motion is found with an optimization procedure where
the optimal trajectory is designed as a Finite Fourier Series of order 5 and
it is found using a Genetic Algorithm. The trajectory is executed on the
robot simulated with the Robotics Toolbox in MATLAB and motor currents
are collected to obtain the joint torques. In order to validate the procedure,
different reference models have been simulated to test the robustness of the
algorithm. It resulted in a good accuracy when a random disturbance has
been introduced while, as expected, the results were poor when friction was
added in the reference model. This is due to the fact that, for simplicity,
the developed model does not plan the presence of friction. Moreover, the
validation tests are performed with a simulated reference model due the
inaccessibility of the laboratory during the quarantine period, but as soon as
the real UR5 can be used again, the identification procedure must be tested
using, in the Least Square algorithm, the measured torques collected from
the real robot.
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