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Abstract 

Arches are structural members which have been developed for a very long time in building 

field. At the beginning, they were designed with limited materials and a conservative criterion, 

on the safety side, that led to material wasting and to a limited maximum span length range. 

Over time, the amount of material used to build them has been considerably decreasing because 

of new structural materials and technologies have emerged such that, nowadays, there is a 

better and proper use of materials related to their strength allowing a greater maximum span 

length range. Currently, engineers deal with a vast range of solutions and materials, therefore, 

they must look for an optimal solution in terms of cost and resistance.  

The aim of this work is to find the optimal shape and cross-section of an arch, subjected to self-

weight and different load conditions, by minimizing the total volume of the arch and satisfying 

the design requirements. To achieve it, a code written in MATLAB, which numerically solves 

the differential equation system of the arch, is proposed in which displacements and internal 

forces can be obtained and thus analyse how stresses change and minimize the arch volume by 

varying the geometrical parameters. 
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Chapter 1 
 

1 Introduction 

1.1 General overview 

Finding the optimal solution between many others is a typical work for engineers nowadays. 

The reason falls in a correct use of the material to avoid elevated costs and resistance waste. 

Currently, the technologies and new materials allow us to have a vast range of solutions which 

is great, but, at the same time, it forces us, as engineers, to design a proper structure minimizing 

cost and highlighting the main attributes of the materials. 

The purpose of this work will not be the final solution for any project that has to be built, but 

it may be a great tool for pre-dimensioning in such a way the designer, knowing the constant 

geometrical constraints of the project, can obtain an optimal design for that values in a quicker 

and efficient way, and start the design with an optimal solution. 

 

1.2 Main objectives 

The main objective is to find the optimal shape and arch cross-section for a given span L, cross-

section external radius r and material. The cross-section to be considered is a steel circular full 

section. Therefore, the parameters to vary are the initial angle θi (with a subsequent variation 

of the radius of curvature R, assumed as constant for sake of simplicity), and the cross-section 

radius r. By varying these parameters, different displacement and internal actions will be 

obtained throughout a MATLAB’s code. Thus, the idea is to minimize the total volume of the 

arch respecting certain design requirements for maximum normal stresses. To achieve the aim, 
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a genetic algorithm was applied which finds the solution in a population of points, and not in a 

single point like standard algorithms. 

A general result can be pursued by plotting dimensionless parameters, therefore an 

independence from the span length is attained. In this way, by fixing all the parameters and by 

varying the load conditions, optimal values for initial angle and radius will be obtained and 

will compose a curve. The dimensionless chart will be plotted with curvature radius-to-span 

length ratio (R/L) in x axis versus rise-to-span length ratio (f/L) in y axis. Then, several curves 

can be obtained by varying the span length.  

 

1.3 Thesis structure 

The thesis is composed of five chapters, without considering this. Firstly, arches and curved 

beam theory will be introduced in Chapter 2 in which will be established the static, kinematic 

and constitutive equations to obtain the differential equations which give the three possible 

displacements of an arch. 

Afterwards, in Chapter 3, the Boundary-Value Problem (BVP) is introduced and the algorithm 

used to solve the differential equations in MATLAB is explained. 

In Chapter 4, an isolated arch is analysed defining the different parameters and transforming 

the differential equations into a first-order differential equation system in order to be able to 

use the solver proposed by MATLAB. 

Then, the optimization process is described in Chapter 5. The idea is to get the maximum 

efficiency between the loads which the arch can carry and its strength by minimizing the total 

volume of the arch as long as the material strength is fulfilled. To this point, a design vector is 

defined containing the initial angle and section radius which will be the values to be varied, 

and the several configurations are evaluated to get the optimum solution in an algorithm.  

Finally, in Chapter 6 the results are discussed, and conclusions are made. 

Moreover, the codes will be attached in the annex part. 
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Chapter 2 
 

2 Arches and curved beam theory 

In this chapter historical and introductory aspects about arches and curved beam theory are 

presented. The idea is to highlight the most important aspects of arches and to obtain the 

differential equations that govern its behaviour. Therefore, static, kinematic, and constitutive 

equations are presented and substituted between them in such a way as to a system of three 

differential equations is obtained in function of the possible displacements (normal, tangential 

and rotation) that the arch can undergo. After that, some simplifications can be performed in 

such a way the differential equations are reduced to a unique equation in function of the 

tangential displacement. 

 

2.1 Introduction 

Arch structures have been used in construction field, for its structural capability and its 

aesthetical purposes, for a long time. The arches are curved structural elements whose 

transversal section is negligible against their length and can cover large spans. Generally, they 

are made of different materials as masonry, concrete, structural steel, among others. 

Today, between different uses one of the most important is the bridge construction. Arch 

bridges are one of the older sorts of bridges and can be found everywhere due to their 

functionality, aesthetic, and their natural strength. At the beginning, they were erected by stones 

and their maximum span was limited. From the past to today, the introduction of new structural 

materials, like concrete and steel, allows arch bridges to cover larger spans. 
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In the following figures, some famous steel arch bridges are presented. In figure 2-1, the Sydney 

Harbour Bridge (1932, Australia) is displayed. It is one of the most famous steel truss arch 

bridge. The arch has a maximum span of 502 m. and a rise from the water to the top of 134 m.   

 

Figure 2-1. Sydney Harbour Bridge (Australia) (taken from https://it.wikipedia.org/wiki/Sydney_Harbour_Bridge) 

In Figure 2-2, it is presented the Chaotianmen Bridge (2009, China) which is, currently, the 

world’s longest through arch bridge with a maximum span of 552 m. It is composed by steel 

truss and tie girders. The arch has a rise of 140 m from middle supports to arch top.  

 

Figure 2-2. Chaotianmen Bridge. (2009) (taken from https://www.ichongqing.info/) 

In Figure 2-3 is shown the world’s longest arch concrete bridge also located in China. It is the 

Qinglong Railway Bridge (2016) which has a maximum span of 445 m and it has a clearance 

of 295 m. 

https://it.wikipedia.org/wiki/Sydney_Harbour_Bridge
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Figure 2-3. Qinglong Railway Bridge (taken from http://www.highestbridges.com/) 

The basic principle of this kind of bridge is its curved shape able to carry the load along the 

curve to the constraints disposed at each end, called bridge abutments. The inclined force 

coming from the arch is supported by the abutments and it is called thrust and it increases as 

the rise of the arch decreases. The thrust must be restrained in order to avoid a collapse of the 

arch and to allow arch to be able to self-supporting. Arches can sustain large vertical loads and 

they mainly work in compression; therefore, the tensile stresses are normally minimized.  

The main feature of an arch from the structural point of view is that even if the structure is 

preferentially subjected to vertical loads, horizontal reactions may take place. Therefore, the 

presence of the horizontal thrust is the main difference in mechanical behaviour between arches 

and beams. 

Depending on the position of the deck, the bridge can be categorized as: 

• Deck arch bridge: The deck is located above the arch and it is supported by columns 

rising from the arch.  

• Through arch bridge: The deck is below the arch and it is suspended by means of 

hangers which are steel members subjected to tension.  

• Half-through arch bridge: The deck is located at an intermediate position, between the 

above solutions, and it is partially connected by columns and partially by hangers. 

The three kind of bridges are shown below in Figure 2-1. 
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Figure 2-4. Types of arch bridge (taken from https://kids.britannica.com/students/) 

There is another solution to absorb the external forces instead of using abutments and it is 

including a tie between the arch ends. In this way, the force is sustained by the tie in tension, 

and it is called tied arch bridge. For this case, the deck by through arch or half-through arch 

can work as a tie by tensile strength. This is a good solution when the soil presents poor 

sustaining characteristics. 

The structural analysis, as in all the cases, is performed to an idealized and simplified shape of 

the structure so that the axial line of the structural components is representing the actual 

geometries. 

2.2 Curved beam theory 

Generally, arch can be studied as a curved beam that is a structural element whose axis is not 

straight, but it has a certain curvature. So, it is defined as a polar unidimensional continuum.  

The different portions composing the beam do not necessarily present the same curvature, it 

will depend on the curvilinear axis, called “s”, defined as the coordinate going along the curved 

beam axis. This coordinate will easily describe the element. As a sake of simplicity, a constant 

radius R will be considered, therefore the increment ds can be expressed as follows: 

ds Rd=           ( 2.1) 

Where R is the radius of curvature of the arch middle line and d  is the angle between the 

normal vectors of belonging to two sections. 
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Figure 2-5. Definition of the curvilinear axis s. 

In order to study the behaviour of the curved beam subjected to different load conditions, it is 

necessary to get the kinematic equations and static ones. Moreover, constitutive relationships 

will be used to relate them. 

 

2.3 Static equations 

The following development to get the differential equations is based on Scienza delle 

Costruzioni (Carpinteri) [2]. 

An infinitesimal element of a curved beam defined with a certain width well described by the 

angle dθ and a constant curvature radius R is considered. 

To make a static analysis is necessary to identify the generalised static quantities N, T and M, 

which makes the static problem satisfying the dual kinematic condition. These quantities are 

shown in Figure 2-64. With C is represented the centre of curvature of the curvilinear axis. 

 

Figure 2-6. Generalized static quantities on the curved geometry described by the axis. 



 Politecnico di Torino 

8 
 

An equilibrium analysis is made to the infinitesimal element regarding the three degrees of 

freedom. The reference system is fixed with the origin at the barycentre centre of the element, 

x-direction tangent to the axis of the beam and radial y-direction.  

The element is subjected to generic forces in x-direction, Px, and y-direction, Py. The 

equilibrium in x-direction, y-direction and to the rotation regarding the barycentre are reported 

in the following. As the angle d  is considered very small, the cosine and sine can be assumed 

as: 

cos( ) 1
sin( )

d
d d


 




 

• Equilibrium in x-direction: 

 

Figure 2-7. Acting forces in x-direction. 

0 ( ) 0
2 2x x

d dF N N dN T T dT P ds 
=  − + + + + + + =  

0x
dN T P
ds r

+ + =          ( 2.2 ) 
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• Equilibrium in y-direction: 

 

Figure 2-8. Acting forces in y-direction. 

0 (N ) 0
2 2y y

d dF T T dT N dN P ds 
=  − + + − − + + =  

0y
dT N P
ds r

− + =          ( 2.3 ) 

 

• Rotational equilibrium respect to the barycenter 

 

Figure 2-9. Moment and forces generating moment around G. 

0 (T ) 0
2 2G
ds dsM M M dM T dT m ds=  − + + + + + +  =  

0dM T m
ds

+ + =          ( 2.4 ) 
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At this point, the indefinite equations of equilibrium were obtained and can be compacted in 

matrix form as: 

1 0

1 0

0 1

x

y

d
ds r N P

d T P
r ds

M md
ds

 
− − 

    
    − =    
        

 − −
  

       ( 2.5) 

 

2.4 Kinematic equations 

Firstly, the possible displacements that can take place respect to the different points constituting 

the curved beam axis will be defined as follows: 

u: displacement along the tangent at the point under examination. 

v: displacement along the normal direction to the point under examination. 

φ: rotation of section passing through the point under examination. 

The element before deformation is described by three points P, Q and C. While after 

deformation, the same point in the changed position will be identified by P’, Q’ and C’. 

 

Figure 2-10. Infinitesimal element before and after deformation. 

It is necessary to find the generalised deformations related to the dual kinematic quantities 

respect the static ones by subtracting the rigid ones from the total displacements of Q, and thus 

obtaining the pure deformations. 

The total displacements of Q are written as: 
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(Q)

(Q)

(Q)

du ds
dsu u
dvv v ds
ds
d ds
ds

 


 
 

     
     

= +     
     

    
 
 

        ( 2.6 ) 

Ergo, they are equal to the sum of the displacements of P plus the infinitesimal displacements 

increasing in PQ. 

By applying the three kind of displacement that a curved beam can undergo, the rigid 

displacements of point Q can be computed.  

Applying a rigid displacement u to point P. 

 

Figure 2-11. Rigid displacement u applied to point P. 

At Q, there will be two contributes of rigid displacement. One of them parallel to ( )Qu  and the 

another one to ( )Qv , defined as: 

( ) cos( )Qu u d=   

( ) sin( )Qv u d=   

Then, a rigid displacement v is applied to point P. 
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Figure 2-12. Rigid displacement v applied to point P. 

This time, the contributes at Q will be: 

( ) sin( )Qu v d= −   

( ) cos( )Qv v d=   

Finally, a rigid rotation is applied to P equal to  . 

 

Figure 2-13. Rigid rotation φ applied to point P. 

As before, there will be two contributes of rigid displacement equal to: 

( ) sin( )Qu ds d = −    

( ) cos( )Qv ds d =    

by approximating QQ' ds  . 

The localisation of point Q, after the application of a generic rigid displacement to point P, is 

easily computed by summing all the contributes above written:   
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( )

( )

( )

cos( ) sin( ) sin( )
cos( ) sin( ) cos( )

Q R

Q R

Q R

u u d v d ds d
v v d u d ds d

   

   

 

   −  −   
   

=  +  +     
   

  

 

As d  is considered very small, the above equations become: 

cos( ) 1
sin( )

d
d d


 




 

And by neglecting infinitesimal of higher order, the total rigid displacements of point Q are 

obtained: 

( )

( )

( ) 0

Q R

Q R

Q R

u u v d
v v u d ds



 

 

  −    
     

= +  +      
     

    

       ( 2.7 ) 

Finally, the deformations are obtained as the difference between the total displacement of the 

generic point Q and the rigid ones: 

( )

( )

( )

( )

( )
Q

Q

Q

du ds v d
dsdu

dvdv ds u d ds
ds

d d ds
ds



 




 
− −  

   
   

= −  +    
   
   

 
 

       ( 2.8 ) 

Expressing dsd
r

 = , the generalized deformations are obtained: 

( )

( )

( )

Q

Q

Q

du v
ds rdu

dv udv ds
ds r

d d
ds






 
+ 

   
   

= − −   
   
   

 
 

  

du v
ds r

dv u
ds r

d
ds



 




 
+ 

   
   

 = − −   
   
   

 
 

        ( 2.9 ) 
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It is possible to make a physical analysis to understand the added terms that do not appear in a 

straight beam.  

The term v r in represents the extensional deformation of the arch. In fact, if a displacement 

v (along the normal direction) is applied at P and Q, as in Figure 2-14, an increasing in the 

length of the arch is appreciated. And it is equal to the difference between the length of the 

deformed arch and to the non-deformed one divided by the initial length:  

 

Figure 2-14. Axial deformation ε 

( )r v d r d v
r d r
 




+  − 
= =


 

So, as it is observed,  does not depend on the displacement tangent to the axis. Anyways, it 

depends on v and represents the elongation of the arch. 

While the term u r in  represents the shear deformation of the arch. In fact, if a displacement 

u (along the axis) is applied at P and Q, as in Figure 2-15, it is observable the arch does not 

change his length, but it suffers a rotation equal to /u r = . Concluding, the arch undergoes a 

shear deformation. 
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Figure 2-15. Shear deformation γ. 

The dual condition between both analyses, static and kinematic, is verified. Since the static 

matrix is the transpose of the kinematic one, excepting for the signs of the terms that appear 

with an odd derivative order. 

1 0

1 1

0 0

d
ds r u

dD u v
r ds

d
ds



 

 

 
 

    
    =   = − −    
       

 
  

      ( 2.10 ) 

*

1 0

1 0

0 1

x

y

d
ds r N P

dD b T P
r ds

M md
ds



 
− − 

    
     =  − =    
        

 − −
  

     ( 2.11) 

2.5 Constitutive relationships and boundary conditions 

The constitutive relationships between the strains of the curved beam and the static quantities 

are expressed by the Hooke’s law as follows: 

0 0
0 0
0 0

T

N EA
E T GA

M EI



  



     
    

=   =    
         

     ( 2.12) 
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The boundary conditions must be defined and are the same imposed to the polar unidimensional 

continuum. The conditions are imposed to the constrained boundary (kinematic) and to the free 

boundary (mechanical). 

u u

v v

 

=

=

=

  
x

y

N f
T f
M 

 =

 =

 =

       ( 2.13) 

 

2.6 Elastic equilibrium problem 

The elastic equilibrium problem is defined throughout the above obtained equations that are 

the equilibrium equations (2.5), the congruence equations (2.9) and the constitutive 

relationships (2.12). 

The system of differential equations is obtained by substituting the Eq. (2.9) into Eq. (2.12). 

T

du vN EA
ds R

u dvT GA
R ds

dM EI
ds





 
= + 

 

− 
= + − 

 

=

        ( 2.14) 

Finally, the Eq. (2.14) is substituted into (2.5). So, the system of differential equation that 

describes the behavior of a curved beam is the following: 

2

2 2

2

2 2

2

2

1 1

1 1

T x

T y

T

d u dv u dvEA GA P
ds R ds R R ds R

du v du d v dEA GA P
R ds R R ds ds ds

u dv dGA EI m
R ds ds








   
− + − − + − =   

  

  
+ − − + − =  

   

 
− − + − − = 

 

    ( 2.15) 

It is a 6th order differential equation system as the three variables u , v  and   are derived 

twice with respect to s. Therefore, six boundary conditions are required to obtain the desired 

solution. 
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2.7  Approximations: Negligible shear effect and inextensibility condition 

It can be possible to reduce the problem to one variable-dependence by means of some 

simplifications.  

The displacement method gives a differential equations system which cannot be analytically 

solved. Therefore, a few simplifications will be applied. The first one is to consider the radius 

R constant and equal to R (arch). This means a condition of non-shear strain. 

Imposing the non-shear strain condition means: 

0 =  

So, the second equation of Eq. (2.9) becomes: 

dv u dv u
ds R ds R

  = − −  = −        ( 2.16 ) 

For simplicity issues, a curved beam with a constant radius R is considered. This simplification 

does not carry to important losses in the model. 

The kinematic problem becomes only function of translational variables. Thus, it is reduced 

into a two equations system: 

2

2

1

du v
ds R
d d v du
ds ds R ds






= +

= = −

        ( 2.17 ) 

where the second and third equation of Eq. (2.9) have been reduced into a one by derivation of 

the Eq. (2.16). The equation system can be written in operational form: 

2

2

1

1

d
uds R
vd d

R ds ds





 
    

=     
    
−
  

        ( 2.18 ) 

Regarding the static part, the condition of non-shear strain does not mean that the shear 

contribution will be equal to zero, since in order to get a non-deformable beam, there must be 

an effort such to undo the eventual deformations. Analytically, there is the constitutive 

relationship: 

TT GA =            ( 2.19 ) 
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where the deformation is 0 =  but the stiffness TGA =  . So, now it is possible to reduce, 

with respect to the variable T, the undefined equilibrium equations. From the third equation of 

Eq. (2.5):  

2

2

dM dT d MT
ds ds ds

= −  = −         ( 2.20 ) 

substituting into the firsts two equations of Eq. (2.5): 

2

2

1
x x

y y

dN T dN dMP P
ds R ds R ds

N dT N d MP P
R ds R ds

− − =  − + =

− =  + =

      ( 2.21 ) 

And in operational form: 

2

2

1

1
x

y

d d
PNds R ds
PMd

R ds

 
−    

=     
     
  

        ( 2.22 ) 

In the constitutive relationship, the equation relating the shear to its deformation is eliminated. 

0
0

N EA
M EI





     
=    

     
        ( 2.23 ) 

 

There is another simplification to apply in order to reach an analytical solution and that is 

consider the axial deformation equal to zero. This is called inextensibility. 

Inextensibility can be written, formally, as: 

0 =  

It implies 

0du v duv R
ds R ds

 = + =  = −          ( 2.24 ) 

Operating and substituting in the second equation of Eq. (2.17): 

 
3

3

1d d u duR
ds ds R ds


 = = −  −         ( 2.25 ) 

In the matrix form 
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   
3

3

1d dR u
ds R ds


 

= − − 
 

        ( 2.26 ) 

Regarding the static part, as in the implicit equations of congruence, there are some 

implications in the undefined equations of equilibrium caused by inextensibility. To get it, it is 

only necessary to reduce the Eq. (2.21) with respect to N: 

1
x

dN dM P
ds R ds

= −          ( 2.27 ) 

By deriving the second equation of Eq. (2.21) and substituting it into Eq. (2.27): 

3

3

1 0y
x

PdM dMR P R
ds R ds ds

+ − − =        ( 2.28 ) 

In matrixial form 

 
3

3

1 y
x

dPd dR M P R
ds R ds ds

  
= +  

   
       ( 2.29 ) 

Finally, the constitutive relationship will be 

    M EI =          ( 2.30 ) 

The problem is solved through the displacement method. Substituting into Eq. (2.30), the Eq. 

(2.26): 

3

3

1d u duM EI R
ds R ds

 
= − + 

 
        ( 2.31 ) 

Then, substituting the latter equation into Eq. (2.28) and operating some mathematical 

simplifications: 

6 4 2
2

6 4 2 2

12 y
x

dPd u d u d uEI R P R
ds ds R ds ds

 
− + + = + 

 
     ( 2.32 ) 

Six boundary conditions are necessary to solve the problem since the differential equation has 

six orders of derivation. Taking the boundary conditions previously defined and replacing the 

relations resulting by the imposition of the simplifications, the conditions on the constrained 

boundary are obtained: 
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2

2

u u
duv v R
ds

d u uR
ds R

 

=

= = −

= = −  −

        ( 2.33 ) 

While regarding the free boundary:  

5 3
2

5 3

4 2

4 2

3

3

1

1

y x

y

d u d uN EI R R P f
ds ds

d u d uT EI R f
ds R ds

d u duM EI R
ds R ds



 
= + +  =  

 

 
= + =  

 

 
= − + =  

 

       ( 2.34 )   
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Chapter 3 
 

3 Boundary-value problem: Theory and the proposed algorithm 

This chapter will introduce some theorical aspects regarding to the Boundary Value problem. 

Firstly, some mathematical theorems are presented in order to introduce the issue. Afterwards, 

the algorithm utilized by MATLAB is described and explained and the syntax used in the code 

for solving our problem is shown. 

 

3.1 Introduction  

According to Shampine [3], ordinary differential equations (ODEs) appeared in many 

applications of different engineering fields. They are so useful to explain and reproduce a 

mathematical description of complex phenomena occurring in real life. A system of ODEs 

admits many solutions; hence it is necessary to specify the values of all its components at a 

single point x=a in order to get an expected result. This is the so-called Initial Value Problem 

(IVP). Nevertheless, a solution is determined at more than one single point. A Boundary-value 

problem (BVP) is a system of ordinary differential equations subjected to specified boundary 

condition at more than one point. Therefore, the main goal is to find a solution to the ODEs 

which also satisfies the boundary conditions. This kind of problem may have no solution, a 

finite number or infinite solutions. There are programs for solving BVPs, and due to the last 

fact, an initial guess must be provided by the user to get a solution and the solver performance 

will depend on the quality of the guess. 
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In this research paper, solutions to the 6th order differential equation, above developed, are 

exposed by using bvp4c Method (MATLAB). An explanation about BVP mathematical theory 

and the solver’s algorithm will be given in this section. 

 

3.2 Boundary-value problem 

Before talking about the algorithm used by MATLAB program, some theorems will be 

introduced regarding the two-point boundary-value problem, such as the existence and 

uniqueness of solution, and after that, also a numerical method will be briefly introduced. 

3.2.1 Mathematical theories 

Consider, for instance, the following 2nd order differential equation with boundary conditions 

in the form: 

'' ( , , ')
( ) ,       ( )     

y f x y y
y a y b 

=


= =
        ( 3.1 ) 

• Theorem 1 

Suppose that f  in (3.1) is continuous on the set 

( )  , , ' |  y ,     ' ,y,  D x y y a x b=   − −       

and that 
f
y



 and 

'
f
y



 are also continuous on D. If 

1. , , 0( ')f x y y
y





 for all ( , , ')x y y D , and  

2. A constant M  exists, with ( , , ') ( , , '), D
'

f x y y M x y y
y

 





, 

then (3.1) has a unique solution. 

When the function ( , , ')f x y y  has the special form 

( , , ') ( ) ' ( ) ( )f x y y p x y q x y r x= + + , 

the differential equation become a so-called linear problem. The previous theorem can be 

simplified for this case.  
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• Corollary 1 

If the linear two-point boundary-value problem 

'' ( ) ' ( ) ( )
( ) ,           ( )

y p x y q x y r x
y a y b 

= + +


= =
 

satisfies 

( ), ( ),   ( )p x q x and r x  are continuous on  ,a b , and 

( ) 0q x   on  ,a b , 

then, the problem has a unique solution. 

• Theorem 2 

The boundary-value problem 

'' ( , )
(0) 0,           (1) 0

y f x y
y y

=


= =
 

has a unique solution if 
f
y



 is continuous, non-negative and bounded in the strip 0 1x   and

   y−  . 

3.2.2  Numerical methods: Shooting method 

The solutions of BVPs are not easy to obtain analytically. This implies the use of numerical 

methods to give numerical estimations to the solutions. There are many methods to 

approximate the solution. In the present thesis the work is focused on the Shooting method. 

Consider the Eq. (3.1). The idea of shooting method is to solve a related initial-value problem 

with a guess for '( )y a , say z. The corresponding IVP 

'' ( , , ')
( ) ,           '( )

y f x y y
y a y a z

=


= =
        ( 3.2 ) 

can then be solved by, for instance, Runge-Kutta method. This approximate solution can be 

denoted as zy and hope ( )zy b = . If not, another guess must be used for '( )y a , and try to solve 

an altered IVP (3.2) again. This process is repeated and can be done systematically. 
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3.3  The proposed algorithm (MATLAB’s code) 

MATLAB possesses many differential equation solvers that cover a wide range of application 

in science and engineering fields. There are solvers for EDOs posed as initial-value problem 

as boundary-value problem.  

For BVPs, there are two solvers bvp4c and bvp5c working on problems that have two-boundary 

conditions, multipoint conditions, singularities in the conditions and unknown parameters. 

After the explanation of the method, a syntax utilized in the code is provided. 

3.3.1 Bvp4c method 

The following explanation of bvp4c methodology is based on the development of Shampine 

[3]. 

Consider, again, the 2nd order differential equation (3.1). In order to run the solver, it is 

necessary to reduce the equation to a system of first order equations, since the solvers 

implement a collocation method to approximate the solution of BVPs subjected to general non-

linear, two-point boundary conditions of the form: 

' ( , ),          ,
( ( ), ( )) 0

y f x y a x b
g y a y b
=  

=
        ( 3.3 ) 

The approximate solution S(x) is a continuous function that is a cubic polynomial on each 

subinterval  1,n n nI x x +=  of a mesh 0 1 ... Nx ba x x   == . It satisfies the boundary 

conditions applied to y: 

(S( ),S( )) 0g a b =  

and, likewise, the solution S(x) satisfies the differential equations (collocates) at both ends and 

the midpoint of each subinterval nI  

1 1 1

1 1 1

           '( ) ( , ( )),

' , ,
2 2 2

         '( ) ( , ( ))

n n n

n n n n n n

n n n

S x f x S x

x x x x x xS f S

S x f x S x

+ + +

+ + +

=

+  + +    
=     

    

=

 

These conditions imply a system of non-linear algebraic equations for the coefficients defining 

S(x). Conversely to shooting method, the solution y(x) is approximated over the whole interval 

 ,a b and the boundary conditions are always considered. The non-linear algebraic equations 
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are solved iteratively by linearization. The approximated solution S(x) will be a fourth order 

approximation or fifth order one (this will depend on the choice between bvp4c or bvp5c) to an 

isolated solution y(x), i.e., 4|| ( ) ( ) ||   y x S x Ch−  . h  is the maximum of the step sizes  

1n n nh x x+= − and C is a constant. 

As previously said, BVPs can have more than one solution. For this reason, in order to reach 

the solution desired is necessary that the user proposes a good guess. The guess considers a 

deduction for an initial mesh that expose the behavior of the desired solution. This method 

adapts the mesh to obtain an accurate numerical solution with a modest number of mesh points. 

The quality of the solution will depend on the accuracy of the supplied guess, and this is often 

the hardest part of solving a BVP. The continuity of S(x) on [a,b] and collocation at the ends 

of each subinterval imply that S(x) also has a continuous derivative on [a,b]. 

Bvp4c method controls the error made when approximating y(x) using S(x) that helps it deal 

with poor guesses. For the approximation S(x), the residual r(x) in the ODEs can be defined as 

( ) '( ) ( , ( ))r x S x f x S x= −  

'( ) ( , ( )) ( )S x f x S x r x= +  

The residual in the boundary conditions is (S( ),S( ))g a b . Bvp4c controls the size of these 

residuals. If these ones are uniformly small, S(x) is a good solution (this means that S(x) is 

close to y(x)).  

Shooting codes also control the size of these residuals. At each step an IVP code controls the 

local error, which is equivalent to controlling the size of the residual of an appropriate 

continuous extension of the formula used, and the nonlinear equation solver is used to find 

initial values for which the residual in the boundary conditions is small.  

There are some benefits for residual controlling. Residuals are well-defined no matter how bad 

the approximate solution, and residuals can be evaluated anywhere simply by evaluating 

( , ( ))f x S x  or ( ( ), ( ))g S a S b . 

Bvp4c is based on algorithms that are plausible even when the initial mesh is very poor yet 

furnish the correct results as 0h→ . 

The MATLAB User Guide provides the following definition for the command: “bvp4c is a 

finite difference code that implements the 3-stage Lobatto IIIa formula. This is a collocation 

formula, and the collocation polynomial provides a C1-continuous solution that is fourth-order 
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accurate uniformly in the interval of integration. Mesh selection and error control are based 

on the residual of the continuous solution. 

The collocation technique uses a mesh of points to divide the interval of integration into 

subintervals. The solver determines a numerical solution by solving a global system of 

algebraic equations resulting from the boundary conditions and the collocation conditions 

imposed on all the subintervals. The solver then estimates the error of the numerical solution 

on each subinterval. If the solution does not satisfy the tolerance criteria, then the solver adapts 

the mesh and repeats the process. You must provide the points of the initial mesh, as well as 

an initial approximation of the solution at the mesh points.” [4] 

3.3.2 Syntax 

As said previously, bvp4c solves boundary value problems for ODEs by collocation. The basic 

syntax used in MATLAB is written as follows 

sol = bvp4c (@odefun, @bcfun, solinit, options) 

where,  

• @odefun is a function handle that evaluates the differential equation expressed as a 

system of first-order equations of the form ' ( , )y f x y= . It generally is written as 

dydx = odefun(x,y,p1,p2…) 

where p1, p2, ... are known parameters. The output is a column vector representing 

( , )f x y . 

• @bcfun is, also, a function handle that compute the residual in the boundary conditions. 

It has the following form 

res = bcfun (ya, yb, p1, p2, …) 

 The output is a column vector representing ( ( ), ( ))bc y a y b .  

• solinit forms the initial guess for the solver by using bvpinit(x,v) where x is a vector 

that specifies an initial mesh whereas v is a guess for the solution and can be either a 

vector or a function. The output is a structure with fields 

x: ordered nodes of the initial mesh with SOLINIT.x(1) = a and SOLINIT.x(end) = b. 

y: initial guess for the solution with SOLINIT.y(:,i) a guess for y(x(i)) at the node 

SOLINIT.x(i) 
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• options is an optional integration argument. It changes the default integration properties 

by naming the property and establishing the value. If it is not called in SOL, the solution 

is computed by the default parameters. 

Finally, the bvp4c solver integrates a system of first-order ordinary differential equation on the 

interval[a,b] , subject to general two-point boundary conditions. The solution is continuous on 

[a,b]  and has a continuous first derivative there. The output SOL will be a structure with the 

following fields 

• SOL.solver : It will be the chosen solver that can be bvp4c or bvp5c 

• SOL.x : Mesh selected by bvp4c and formed by bvpinit. 

• SOL.y : Approximation to y (x) at the mesh points of SOL.x 

• SOL.yp : Approximation to y’ (x) at the mesh points of SOL.x 

• SOL.stats : Computational cost statistics 

 

  



 Politecnico di Torino 

28 
 

  



 Politecnico di Torino 

29 
 

 

 

 

 

Chapter 4 
 

4 Arch structural analysis 

This chapter will present a structural analysis of an arbitrary arch subjected to its self-weight 

and to a load condition q0. The idea is to try the bvp-solver and to analyze how internal actions 

and stresses change along the arch by varying the initial angle which will be the one to optimize 

, together to the section radius, in the next chapter to obtain a proper solution for a given fixed 

parameters like span length, material, among others. 

A briefly introduction about how to insert the differential equation system of the arch in the 

code is given. Then, some charts and results are shown to differentiate between the different 

cases. Finally, the coupled problem between arch and deck connected by means of hangers is 

intended to be evaluated, however due to the limitations given by the bvp-solver, this aim was 

not reached. 

 

4.1 Isolated arch  

Firstly, an isolated arch was analyzed by means of a first simple code written in MATLAB 

which is based on the method previously developed. Some solutions were performed to a fixed 

span L in order to compare the behavior of the arch by varying the initial angle, and to verify 

if the solver works fine. 

The arch was subjected to its dead load A   and to an arbitrary load condition q0. The load 

condition can represent the deck weight and any considered variable load. 
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Figure 4-1. Representation of arch. 

In Figure 4-1 is shown a representation of the arch whose span length is L. The considered 

configuration will have a certain initial angle i  (angle measured from the horizontal axis to 

the section where the arch starts), and a certain radius R, taking as constant, whose curvature 

center is C. These parameters are related as follows 

2sin

2 i

LR



 

=

= −

         ( 4.1) 

  is the angle measured from the vertical axis to the section where the arch starts. 

These values are considered as Input data, but they are not enough, so it is also necessary to 

insert data about the cross-section like the radius r and kind of material, therefore Young 

Modulus E, shear modulus G and specific weight  . 

Once defined these parameters, the section properties must be computed. As a full circular 

section is taken under consideration, the section properties are computed as 

2A r=           ( 4.2) 

4

4
rJ 

=           ( 4.3) 

0.9sA A=           ( 4.4) 
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3

4
rW 

=           ( 4.5) 

Where A is the section area, J is the inertia, As is the shear area and W is the section modulus. 

As previously introduced, this problem is a boundary value problem in which boundary values 

are imposed on each end of the arch by means of restraints. 

The bvp4c method solves equations of the form ' ( , )y f x y= . Therefore, the obtained system 

of differential equations must be reduced to a system of first-order equations. 

This transformation is easy to do, and it is based on [5]. Suppose an n-th order equation as 

follows: 

( )(n) (n 1), , ',...,y f x y y y −=         ( 4.6) 

The dependent variables 1 2, ,..., ny y y  can be defined as  

1y y= , 2 'y y= ,…,
( 1)n

ny y −=        ( 4.7) 

Notice that 1 2' ' yy y= = , 2 3' ''y y y= = , and so on. So, the substitution of Eq. (4.7) into Eq. 

(4.6) gives the following system of n first-order equations: 

1 2

2 3

1

1 2

' y ,
' y ,

' y ,
' ( , , ,..., )

n n

n n

y
y

y
y f x y y y
−

=

=

=

=

        ( 4.8) 

Thus, remembering the complete set of equations 

2

2 2

2

2 2

2

2

1 1

1 1

T t

T n

T

d u dv u dvEA GA P
R ds R ds Rds R

du v du d v dEA GA P
R ds R ds dsR ds

u dv dGA EI m
R ds ds








   
− + − − + − =   

  

  
+ − − + − =  

   

 
− − + − − = 

 

    ( 4.9) 

and defining the dependent variables as 
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the following system of first-order equations is produced: 

1 1
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 ( 4.11) 

where sGAD
EA

= , ´ sGAD
EI

=  (only to simplify the computation). 

The forces are evaluated in the local system, so the self-weight and the considered load will be 

projected to the tangential and normal direction of the section under consideration. 

0( )sinn i
sP A q
R

 
 

= + + 
 

       ( 4.12) 

0( )cost i
sP A q
R

 
 

= + + 
 

       ( 4.13) 

A more compact form can be written for the above system as: 

      Z' A Z f= +         ( 4.14) 

where [A] is a matrix that taking into account the mechanic properties of the arch together with 

the geometrical ones, {Z} is a vector that contains the dependent variables previously defined, 

{Z´} is a first-order vector of the dependent variables and {f} is an independent vector that 

contains the forces. 

Moreover, the boundary conditions must be given. For all the cases, the arch was considered 

fully fixed at each end, so the boundary conditions are: 
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0
0
0

u
v


=

=

=

  for s=0 and s=Smax. 

where Smax is the final coordinate of the arch. 

Finally, the number of nodes of the initial mesh must be defined. For all the cases, the number 

was 200. Additionally, the relative tolerance for the residual RelTol was set by default and it 

applies to all components of the residual vector with 0.1% accuracy. 

Once the code has run, the output of bvp4c is a structure element (MATLAB’s notation) in 

which the three first rows of the solution are the displacements u , v ,   and the following 

three are their first derivatives for each point of the mesh. With them, it is possible to compute 

the internal forces acting at each section of the arch as previously said: 

1
T

du vN EA
ds R

u dvT GA
R R ds

dM EI
ds





 
= + 

 

− 
= + − 

 

=

        ( 4.15) 

In this way, the maximum stress at each section can be evaluated according to Navier. 

max
N M
A W

 = +          ( 4.16) 

4.1.1 Case study 

Considering the following values for each parameter, the following results were obtained. The 

results have been compared to the ones obtained by FEM in SAP2000, and they were similar 

with a minimum difference. 

For this case, a hollow section made of steel was taken under consideration. In the following, 

the fixed parameters are presented: 

Cross-section: Full circular section 

• r = 0.5 m 

Material: Steel 

• E = 200000 MPa 

• γ = 78.5 kN/m3   
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• G = 76903069 MPa 

Geometrical constraint 

• Span length = 80 m 

The last parameter to be defined is the initial angle θi which different values were considered. 

Consequently, the curvature radius of the arch also changes. 

• θi = 0°, R = 40 m.   (a) 

• θi = 30°, R = 46.19 m.  (b) 

• θi = 60°, R = 80 m.   (c) 

• θi = 90°, R =              (d) 

Moreover, a design load equal to 150 kN/m was considered. 

Once defined the values, the following results were obtained by running the code. 

For the case a): 

 

Figure 4-2. Displacement for case a) 
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Figure 4-3. Internal actions for case a) 

 

Figure 4-4. Normal stresses for case a) 
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For case b) 

 

Figure 4-5. Displacement for case b) 

 

Figure 4-6. Internal actions for case b) 
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Figure 4-7. Normal stresses for case b) 

For case c) 

 

Figure 4-8. Displacements for case c) 
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Figure 4-9. Internal actions for case c) 

 

Figure 4-10. Normal stresses for case c) 
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For case d) 

 

Figure 4-11. Displacements for case d) 

 

Figure 4-12. Internal actions for case d) 
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Figure 4-13. Normal stresses for case d) 

It can be seen that by lowering the arch, i.e. increasing the initial angle or diminishing the rise 

f, the normal stresses start to decrease. They pass from tensile stresses to compressive ones. 

However, in the limit, case d), the negative values are also so high overpassing the design 

requirements and increasing the possibility of instability problem. As θi increases, the axial 

force increases too (in negative values) and the bending moment decreases. Consequently, the 

idea is to obtain a momentless configuration in order to have a purely compressed arch. 

In this way, the aim of the next chapter will be to find the optimal value of the initial angle in 

such a way the arch volume is minimized and the design requirements are fulfilled, but, besides 

the initial angle, also will be modified the radius of the cross-section.  

It can be noted also that in the limit, where the curvature radius is infinite, the results are the 

same as a fully fixed straight beam. 

A variation of the stresses respect to the initial angle θi is displayed in the following figure. It 

can be observed that for an initial angle lesser than 45°, tensile stresses will govern the 

behavior. Whereas for initial angles greater than 45°, the arch will be governed by compressive 

stress. 
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Figure 4-14. Variation of stresses respect to the initial angle. 

 

4.2 Coupled problem between arch and deck 

As previously said, in the case of tied-arch bridges, the arch can be connected to the deck by 

means of steel elements, known as hangers, working completely in tension. So, at this point, it 

is our interesting to analyze how the arch behaves when it is connected to the deck through the 

hangers. This carries us to a coupled problem between both elements. 

 

Figure 4-15. Arch and deck connected by hangers. 

The main idea is to consider the hangers as an equivalent spread membrane, with unitary depth, 

acting between the arch and the deck. Hence, by meshing the structure, a strip will be obtained 

containing an arch and beam differential linked by a portion of the membrane. 



 Politecnico di Torino 

42 
 

 

Figure 4-16. Arch and deck connected by an equivalent spread membrane. 

Therefore, a new system of equations is generated by adding the, well-known, beam equation 

of 4th order into the latter system Eq. (4.11). The equation to be added is the following one: 

( ) IV
D D HEI q f = +         ( 4.17) 

( )H A Hf y K= −          ( 4.18) 

where   is the beam deflection, EI its flexural stiffness and q its self-weight. The subscript D 

refers to the deck to not confuse parameters.  

Besides the general load q, a new term is introduced. fH is a force taking into account the 

coupling condition of the problem. So, the coupling can be performed considering an extra 

force acting on the beam equal to the difference between arch and beam displacements, in the 

global reference system, multiplied by the stiffness of the hanger KH. yA is the arch vertical 

displacement obtained by projecting u and v into the global reference system. 

As reported before, it is necessary to convert the 4th order equation into a first-order system of 

equations. This is 

1

2 1

3 2

4 3

5 4 ( )

I I

II I

III I

IV I D H

D

q f
EI

 

  

  

  

  

=

= =

= =

= =

+
= = =

        ( 4.19) 

Once obtained the beam system Eq. (4.19), now it is possible to add it into the Eq. (4.11) and 

thus obtain the complete coupled system of 1st order equation between both problems. 
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 ( 4.20) 

Where sGA
D

EA
=  and ' sGA

D
EI

= . 

As before, it can be written in a more compact form: 

      'Z A Z f= +         ( 4.21) 

4.2.1 Limitations 

The system of equation Eq. (4.20) is ready to be inserted in the code, however, the function 

bvp4c only admits the definition of mesh in 1D. It means that, in this case, the user can only 

define the mesh subdivision either only to the arch or only to the beam one as both problems 

are deducted in different coordinates reference system. Because of this, it is necessary to deduct 

the differential equations in the same reference system to be able to run the program with only 

one variable. In this thesis we have chosen to focus on the problem of the isolated arch 

considering the solution for the coupled solution subject to future developments. 

 

  



 Politecnico di Torino 

44 
 

 

  



 Politecnico di Torino 

45 
 

 

 

 

 

Chapter 5 
 

5 Shape and arch cross-section optimization 

This is the main chapter of the work as the optimization aspects are introduced and an 

application of an algorithm in order to get the best solution for our problem is performed. 

Consequently, some concepts regarding the structural optimization will be given and, 

moreover, a briefly explanation of the utilized algorithm. Afterwards, the algorithm is applied 

to our case and the results will be shown. Finally, the problem will be generalized introducing 

some dimensionless parameters which will be plotted in such a way the problem will be 

independent from certain parameters like span length, material, among others. 

 

5.1 Introduction 

In the previous chapter, a structural analysis of an arch with an arbitrary configuration was 

performed in which its behavior under determined load was obtained. However, it is possible 

to obtain an improve of the response by taking the correct shape and dimensions of the 

structure. Here, an optimization process will be exposed. This topic has emerged over the past 

years, and, perhaps, it is one of the most important due to it tries to reduce costs and to exploit 

the material properties, two fundamental pillars of engineering. The subject can be described 

as: 

“Structural optimization may be defined as the rational establishment of a structural design 

that is the best of all possible designs within a prescribed objective and a given set of 

geometrical and/or behavioral limitations”. [8] 
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In structural optimization, the set of parameters is split into preassigned parameters and design 

variables. So, the problem consists in determining the optimal values of the design variables 

such that they maximize or minimize a specific function called objective function while 

satisfying a set of geometrical and/or behavioral requirements called constraints, specified 

prior to design [7]. 

The design variables can be classified, according to [8], in: 

a) Configuration of a structure (Constructive layout and topology) 

b) Material properties  

c) Geometry – shape 

d) Supports – loading 

e) Cross-section  

The i-th design variable is denoted by xi and all n design variables are composed in a vector x 

called design vector, which lies in the design space. 

1 2[ , ,..., ]T
nx x x=x          ( 5.1) 

Any set of design variables represents a point in the design space which is an n-dimensional 

Euclidean space. 

Regarding the preassigned parameters, they can differentiate between independent and 

dependent variables. It means that, for instance, by defining certain cross-section parameters 

like radius (independent), the cross-section properties, like area (dependent), can be evaluated 

with it. Generally, these values are obtained in structural design.  

There may be infinite possible solutions, but they are also subjected to certain design 

requirements by the normative. Therefore, many of them do not verify conditions. In order to 

omit such design, the design requirements are expressed as constraints prior to optimization. 

There are two kind of constraints: 

a) Geometrical constraints 

b) Behavioral constraints 

The constraints are formulated in the form of equality and/or inequality constraints: 

( ) 0         ( 1,..., ),ih x i q= =         ( 5.2) 

( ) 0         ( 1,..., ).jg x i p =        ( 5.3) 
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Each inequality constraint is represented by a surface in the design space which encompass all 

points x for which the condition is verified as an equality constraint gi (x)=0. It differentiates 

from admissible, or feasible, to inadmissible, or infeasible, designs. In the end, a subdomain of 

the design space will be created limited by the constraint surface. 

Finally, the objective function is expressed in terms of the design variables in such a way that 

its value can be evaluated for any point in the design space. This function is our interest, and it 

will be minimized or maximized by the optimal set of design variables withing the feasible 

design space. Generally, it is a scalar function defined as: 

: ( )f f= x           ( 5.4) 

Eventually, the problem formulation consists in determining the values of the design variables 

xi such that the objective function f attains an extreme value while, simultaneously, all 

constraints are verified. 

 min ( ) | ( ) 0 ,  ( ) 0               nf g=   x h x x x     ( 5.5) 

Where n  is the n-dimensional set of real numbers, x is the design vector of n variables, f(x) 

is the objective function, g(x) is the vector of the p inequality constraints and h(x) is the vector 

of the q equality constraints. 

All above described is related to the mathematical formulation, however an extra tool is 

required and that is the computational algorithm. In this way, the optimization problem can be 

divided in two phases 

1) Mathematical formulation where design vector, objective function and constraints are 

defined 

2) Application of an optimization algorithm  

There are many kinds of optimization algorithm like classical (derivative-based), genetic, 

among others. In particular, the genetic algorithm can be more suitable for a variety of 

problems, regardless if the objective function is discontinuous, nondifferentiable, stochastic, or 

highly nonlinear. In this way, for the second phase, the genetic algorithm was selected. 

 

5.2 Genetic Algorithm 

According to MATLAB User Guide [4] and Goldberg [9], the Genetic Algorithm (GA) is a 

method for solving both constrained and unconstrained optimization problems. It is a search 
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algorithm based on the mechanics of natural selection and natural genetics, process that drives 

biological evolution. The genetic algorithm repeatedly modifies a population of individual 

solutions. At each step, the genetic algorithm selects individuals at random from the current 

population to be parents and uses them to produce the children for the next generation. Over 

successive generations, the population "evolves" toward an optimal solution. 

There are some differences between a standard optimization algorithm and the genetic one. 

Genetic algorithms differ in two main ways: 

1. The GA generates a population of points at each iteration in which the best point in the 

population approaches an optimal solution. Whereas the standard one generates a single 

point at each iteration and the sequence of points approaches an optimal solution. 

2. The GA selects the next population by computation which uses random number 

generators (probabilistic transition rules). While the standard one selects the next point 

in the sequence by a deterministic computation. 

There are other differences like GA uses the objective function information, not derivatives, 

and, finally, the GA works with a coding of the parameter set, not the parameters themselves. 

The GA uses three main types of rules at each iteration to create the next generation from the 

current population: 

1. Reproduction: This rule selects the individuals, called parents, that contribute to the 

population at the next generation.  

2. Crossover: This rule combines two parents to form children for the next generation. 

3. Mutation: This rule applies random changes to individual parents to form children. 

Following these rules, the new population is ready to be tested, i.e. the objective function is 

computed. 

Basically, the following outline [4] shows how the genetic algorithm works: 

1. The algorithm begins by creating a random initial population. 

2. The algorithm then creates a sequence of new populations. At each step, the algorithm 

uses the individuals in the current generation to create the next population. To create 

the new population, the algorithm performs the following steps: 

a. Scores each member of the current population by computing its objective value. 

These values are called the raw fitness scores. 
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b. Scales the raw fitness scores to convert them into a more usable range of values. 

These scaled values are called expectation values. 

c. Selects members, called parents, based on their expectation. 

d. Some of the individuals in the current population that have lower fitness are 

chosen as elite. These elite individuals are passed to the next population. 

e. Produces children from the parents. Children are produced either by making 

random changes to a single parent—mutation—or by combining the vector 

entries of a pair of parents—crossover. 

f. Replaces the current population with the children to form the next generation. 

3. The algorithm stops when one of the stopping criteria is met. 

In the following, the optimization process is applied to the arch. 

 

5.3 Arch structural optimization 

After the introduction about structural optimization, for our case, finding the optimal shape and 

cross-section that minimizes the arch volume is the objective.  

Therefore, the three components, previously mentioned, are: 

• Design variables: Initial angle θi which measure how lowered, f(θi), is the arch (Figure 

5-1), and section radius r for a full circular section (Figure 5-2). 

• Objective function: The volume of arch which must be minimized 

• Constraint: The normal stress max  at each section must be lesser than the design 

strength of the material. 

Where f is the rise of the arch. 

According to the used initial angle which goes [0; π/2], a certain radius of curvature will be 

obtained. Thus, as the initial angle increases, a more lowered arch is obtained (the rise f 

decreases), and consequently, a greater outward force. The extreme case will be an arch of 

infinite radius, that is to say a straight beam. 
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Figure 5-1. Possible initial angles for a fixed span showing how the rise f is lowered 

 

Figure 5-2. Radius variation. a) Small radius, b) Medium radius, c) Large radius 

So, the problem formulation is the following: 

( )maxmin ( , ) ( ) ( )iVol t S A r =   according to max ydf   

Where Vol is the arch volume computed as the total length of the arch multiplied by the section 

area, ydf  is the design strength of the material calculated as 
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yk
yd

s

f
f


=  

Whereas max  is the maximum normal stress along the arch and it is computed according to 

Navier’s equation as seen before 

max
N M
A W

 = +  

Where N and M are the axial force and bending moment, respectively. And, A and W are the 

section area and the section modulus, respectively. 

A generalized code is provided in which defining the input data, and by applying the genetic 

algorithm, returns a series of dimensionless plots considering the span length, rise, and load 

conditions. 

5.3.1 Code 

The code is composed by four files:  

• Arch_optimization.m: general file. 

• Arch.m: function file. 

• Arch_analysis.m: function file. 

• OF.m: function file. 

In the general file Arch_optimization.m, the constant input data is inserted which are the span 

length L, the material properties (E, G, γ and fyd), the number of nodes n and the design load 

q0. All these data will be saved in a structure called Data.arch. 

The initial angle θi and the section radius r will vary for each evaluation, so the number of 

design variables nvar is equal to 2. They will compose the design vector called x in the code. 

According to the syntax used for the genetic algorithm in MATLAB, the lower and upper 

bounds will be defined and they will go from LB = [0, 0.2] to UB = [π/2, 1.5] where the first 

column corresponds to the initial angle whereas the second one to the radius. 

After that, the constraint function must be called, and it corresponds to the second file Arch.m. 

It will be defined as a handle function of the design vector x. Moreover, the constant data must 

be evaluated there, so it will also be dependent of it. Then, the objective function is also called, 

and it corresponds to the fourth file OF.m. It is called in the same form as the constraint 



 Politecnico di Torino 

52 
 

function, i.e. depending on the design vector and on the constant data. Therefore, in the code, 

they can be seen as 

% Constraint function 

Const_fun = @(x)Arch (x, Data); 

%Objective function 

OF_fun    = @(x)OF   (x, Data); 

 

Finally, the function ga which contains the genetic algorithm is called. It will return the optimal 

values of the design vector as x_opt and OF_opt. The syntax is  

% Optimization with GA 

 [x_opt,OF_opt]=ga(OF_fun, nvars,[],[],[], [], LB, UB, Const_fun); 

 

The second file calls the input data and receive certain values for the design vector according 

to the genetic algorithm. With them, the section properties are evaluated and utilized for the 

solver function which is the third file Arch_analysis.m. It returns the internal actions and 

displacement and with them, the normal stresses are calculated and the maximum one is taken 

away in order to perform the strength verification. As steel has similar behavior either 

compressive strength and tensile one, the absolute value of the maximum stresses is compared 

to the design yielding strength. The constraint is evaluated as 

constraint      = sigma_max/fyd - 1; 

 

As previously said, the third file is the solver function which is based on the algorithm 

explained in Chapter 3. So, it contains the bvp4c solver, the first-order differential equation 

system and the boundary conditions and will return an output of internal actions and 

displacements. 

Finally, the last file is the objective function OF.m. in which the volume of the arch is 

evaluated, and it is tried to be minimized. It is computed as 

vol = s(end)*A*gamma; 

 

This is done for a determined load condition and span length. Nevertheless, a for-loop can be 

applied containing different values for the span length and for the load conditions in such a 

way several optimal solutions for different values of these can be obtained. Therefore, a for-

loop was run with varying the load condition q0 from 100 kN/m3 to 1000 kN/m3 and span length 

varying from 80 m to 200 m. 
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Moreover, a more generalized chart can be reached by taking dimensionless parameters. Thus, 

a radio-to-span length ratio and rise-to-span length ratio were evaluated, and several curves 

were plotted. 

5.3.1.1 Structural steel 

For steel, the following constant data was used 

Cross-section: Full circular section 

• r = 0.5 m 

Material: Steel 

• E = 200000 MPa 

• γ = 78.5 kN/m3   

• G = 76903069 MPa 

The section properties were evaluated as in the previous chapter. 

The following dimensionless parameters are now introduced in order to generalize the problem, 

in this way, it can be considered any material, span length and load condition.  

• Rise-to-span ratio f
L

 

• Curvature radius-to-span ratio R
L

 

In the following figures, results for Rise-to-Span ratio vs Curvature radius-to-Span ratio, and 

Volume vs Initial angle are presented. 
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Figure 5-3. Dimensionless curves 

 

Figure 5-4. Minimum volume vs Initial angle curves 

The arrow indicates the direction of load increment.  

As can be seen in the last chart, there are some points breaking the curves in different slopes. 

This may be since the algorithm did not find the global minimum but a local one (in Figure 5-

4). In order to obtain a smoother graph, the population size of the algorithm should be increased 

q0 

q0 
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in order to the algorithm being capable to localize the global minimum. Nevertheless, this 

would imply a greater computational cost. 

5.3.1.2 Concrete 

Finally, the same can be performed for concrete. Therefore, by changing the constant data for 

the concrete properties, similar charts can be provided. 

Besides the material properties, the constraint function must be also changed. As the concrete 

has different behavior for tensile stresses and compressive ones, an additional constraint 

regarding the tensile strength must be added. It can be simplified to no tensile strength; 

therefore, tensile stresses must be lesser than zero. This constraint must be added to the 

compressive strength verification. So, in the code will be written as a vector containing both 

verification 

constraint      = [sigma_min/fcd - 1; sigma_max] 
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Chapter 6 

 

6 Discussion of results and conclusion 

Finally, conclusions about the work are performed in this chapter and the future works to be 

done are suggested. 

6.1 Conclusions 

To conclude, in the present work analytical solutions for the optimal shape and arch cross-

section have been presented. They were obtained for a particular case of full circular section, 

constant along the arch, and for constant radius of curvature (circular arch). Anyway, the code 

can be re-written for other kinds of section and for parabolic arch, for instance. To this point, 

it is only necessary to change the calculation of the properties and to establish a law for the 

variable radius. 

The total volume of the arch was used as objective function, i.e. the provided solutions are the 

minimum ones for certain fixed variables. Moreover, strength constraints were also established 

in order to satisfy the design requirements. 

Some sensitivity analyses were carried out to obtain the optimal solutions in a dimensionless 

formulation. Different values for the design load and span length were considered to plot 

different curves and to adapt the problem to different constraints. 

Beyond the particularities of the considered configuration, the results allow to underline how 

the design variables govern the solution.  
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From the first chart, the dimensionless one, it can be seen that the rise and the curvature radius 

are not sensitive to different span length. That is to say, whichever is the span length, the ratio 

between the rise and the span, for different values of span length, will have the same slope. If 

rise-to-curvature radius is plotted, the curves will be parallel with the same inclination. The 

dimensionless formulation allows us to obtain a general behaviour whichever is the span 

length. 

Moreover, it can be noted that by decreasing the load conditions (right zone), there is a 

decreasing of the rise-to-span ratio with respect to the curvature radius-to-span ratio. It means 

that the arch will be more lowered, and consequently the curvature radius will be higher, as the 

load is very low. 

From the second chart, Volume vs Initial angle, for lower loads (right zone), the volume needed 

to bear the actions is minimized, because there is an initial angle too high, i.e. a small rise, and 

therefore, the arch length becomes shorter. For high loads (left zone), a greater amount of 

volume is needed either for the bigger rise as for the needed area to bear the loads. 

In this case, the needed volume will depend on the span length. Greater is the span length, the 

more amount of steel has to be provided.  

These charts can be a useful tool for a first stage of design. Starting the pre-dimensioning with 

the optimal solution for certain constraints accelerates the design procedure in a proper way. 

Thus, by fixing material properties and span, length optimal values for rise, radius of curvature 

and volume can be achieved. In this way, the design variables are obtained very quick, and they 

can be inserted in a finite element model for a more refined analysis in order to get the 

corresponding optimal cross-section dimensions and an estimation of the costs. 

 

6.2 Future works 

So far, the optimization was applied to a constant cross-section, nevertheless, in order to expand 

the optimization process and to perform a deeper evaluation about the shape and arch cross-

section, a variable cross-section along the arch can be considered. In this way, a more proper 

use of material can be achieved. To this point, the differential equation must be re-defined 

considering the area, shear area and inertia varying along the curvilinear axis. 
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Future works regarding these aspects can be evaluated and, thus, the material properties can be 

exploited in a more efficient way. 

Further works can be also performed regarding the coupled problem between the deck and the 

arch. For this issue, other alternatives, like using other type of solver or deducting the equations 

in a same reference system, can be evaluated in order to generalize the problem. 
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Appendix A 

In the following, the code utilized in Chapter 4 is presented. 

%% Arch structural analysis for a full circular section 

clc 

clear all 

  

  

%% Input data 

  

n=200;                   % Number of nodes along the arch 

  

% Arch configuration 

  

L=80;                    % Span               [m] 

thetai_deg=30;           % Initial angle      [degrees] 

thetai=thetai_deg*pi/180;% Initial angle      [rad] 

beta=pi/2-thetai;        % Beta angle         [rad] 

R=L/(2*sin(beta));       % Curvature radius   [m] 

  

theta=linspace(0,2*beta,n);% Angle running the curvilinear axis[rad] 

s=R*theta;               % Curved axis        [m] 

  

  

% Material properties 

  

gamma=78.5;              % Steel weight       [kN/m3] 

E=1.999*10^8;            % Young modulus      [kN/m2] 

G=76903069;              % Shear modulus      [kN/m2] 

  

% Cross-section properties 

  

r1=0.5;                  % Section radius        [m] 

J = pi*r1^4/4;           % Inertia               [m4] 

A=pi*(r1^2);             % Section area          [m2] 

As = 0.9*A;              % Shear section area    [m2] 

W=pi*(r1^4)/(4*r1);      % Section modulus       [m3] 

  

%Dead weight 

  

P1=-gamma*A;             % Self-weight           [kN/m] 

  

vol=2*beta*R*A*gamma;    % Arch volume           [m3] 

  

%% Boundary value solver 

  

options = bvpset('stats','on','RelTol',1e-3); 

solinit=bvpinit(s,[0 0 0 0 0 0]);  

sol = bvp4c(@odefun,@bcfun,solinit,options); 

  

u0=deval(sol,s); 

  

%Displacements 
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u=sol.y(1,:);             % Tangential displacement   [m]                               

v=sol.y(2,:);             % Normal displacement       [m] 

phi=sol.y(3,:);           % Rotation of section       [rad] 

u1=sol.y(4,:);            % 1st derivative of u 

v1=sol.y(5,:);            % 1st derivative of v 

phi1=sol.y(6,:);          % 1st derivative of phi 

  

  

% Internal actions 

  

N=E*A*(u1+v/R);           % Axial force              [kN] 

T=G*As*(-u/R+v1-phi);     % Shear force              [kN] 

M=E*J*phi1;               % Bending moment           [kNm] 

  

N0=N(1);                  % Axial force at s = 0 

N3=N(n/2);                % Axial force at s = Smax/2 

N1=N(n);                  % Axial force at s = Smax 

M0=M(1);                  % Bending moment at s = 0 

M3=M(n/2);                % Bending moment at s = Smax/2 

M1=M(n);                  % Bending moment at s = Smax 

T0=T(1);                  % Shear force at s = 0 

T3=T(n/2);                % Shear force at s = Smax/2 

T1=T(n);                  % Shear force at s = Smax 

  

%Stresses 

  

sigma=(M/W+N/A)/1000;     % Normal stress [MPa] 

maxsigma=max(abs(sigma)); % Maximum normal stress 

  

  

%% Plotting 

  

figure 

  

subplot(3,1,1); 

plot(s,u,'LineWidth',2); 

title('Tangential displacement') 

xlabel('s [m]'); 

ylabel('u [m]'); 

grid on 

xlim([0 s(n)]) 

ax=gca; 

ax.XAxisLocation = 'origin'; 

  

subplot(3,1,2); 

plot(s,v,'LineWidth',2); 

title('Normal displacement') 

xlabel('s [m]'); 

ylabel('v [m]'); 

grid on 

xlim([0 s(n)]) 

ax=gca; 

ax.XAxisLocation = 'origin'; 

  

subplot(3,1,3); 

plot(s,phi,'LineWidth',2); 
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title('Rotation of section') 

xlabel('s [m]'); 

ylabel('\phi [rad]'); 

grid on 

xlim([0 s(n)]) 

ax=gca; 

ax.XAxisLocation = 'origin'; 

  

figure 

subplot(3,1,1); 

plot(s,N,'LineWidth',2); 

title('Axial force') 

xlabel('s [m]'); 

ylabel('N [kN]'); 

grid on 

xlim([0 s(n)]) 

ax=gca; 

ax.XAxisLocation = 'origin'; 

  

subplot(3,1,2); 

plot(s,T,'LineWidth',2); 

title('Shear') 

xlabel('s [m]'); 

ylabel('T [kN]'); 

grid on 

xlim([0 s(n)]) 

ax=gca; 

ax.XAxisLocation = 'origin'; 

  

subplot(3,1,3); 

plot(s,M,'LineWidth',2); 

title('Bending Moment') 

xlabel('s [m]'); 

ylabel('M [kNm]'); 

grid on 

xlim([0 s(n)]) 

ax=gca; 

ax.XAxisLocation = 'origin'; 

  

figure 

plot(s,sigma,'LineWidth',2); 

title('Normal Stress') 

xlabel('s [m]'); 

ylabel('\sigma_m_a_x [MPa]'); 

grid on 

xlim([0 s(n)]) 

ax=gca; 

ax.XAxisLocation = 'origin'; 

  

  

  

%% Local functions 

  

% Differential equation system 

  

function dzds=odefun(s,z) 
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% Arch configuration 

  

L=80;                         % Span                [m] 

thetai_deg=30;                % Initial angle       [degrees] 

thetai=thetai_deg*pi/180;     % Initial angle     [rad] 

beta=pi/2-thetai;             % Beta angle          [rad] 

R=L/(2*sin(beta));            % Curvature radius    [m] 

  

% Material properties 

  

gamma=78.5;                   % Steel weight        [kN/m3] 

E=1.999*10^8;                 % Young modulus       [kN/m2] 

J=(pi*(r1^4))/4;              % Inertia             [m4] 

  

% Cross-section properties 

  

r1=0.5;                       % Section radius      [m] 

A=pi*(r1^2);                  % Section area        [m2]               

As=0.9*A;                     % Shear section area  [m2] 

G=76903069;                   % Shear modulus       [m3] 

q0=-50;       % Design load     [kN/m] 

  

  

P1=-gamma*A;                 % Self-weight      [kN/m] 

  

Pn=(P1+q0)*sin(thetai+s/R);  % Normal projection to the arch of P1 

Pt=(P1+q0)*cos(thetai+s/R);  % Tangential projection to the arch of 

P1 

  

% 1st order differential equation system 

  

dzds=[z(4) 

      z(5) 

      z(6) 

      (-G*As*(-z(1)/R^2+z(5)/R-z(3)/R)-Pt)/(E*A)-z(5)/R 

      (-Pn+E*A*(z(4)/R+z(2)/R^2))/(G*As)+z(4)/R+z(6) 

      -G*As*(-z(1)/R+z(5)-z(3))/(E*J)]; 

end 

  

%Boundary conditions 

  

function res=bcfun(za,zb) 

  

res= [za(1)         % u(0)      = 0 

      za(2)         % v(0)      = 0 

      za(3)         % phi(0)    = 0 

      zb(1)         % u(Smax)   = 0 

      zb(2)         % v(Smax)   = 0 

      zb(3)];       % phi(Smax) = 0  

end 
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Appendix B 

The following code was utilized in Chapter 5. 

1. File: Arch_optimization.m 

 

%% Shape and arch cross-section optimization  

  

tic 

  

clear all 

clc 

  

L = 60:20:200; 

  

x_opt = zeros(length(L),2); 

OF_opt = zeros(length(L),1); 

  

     

for ii=1:length(L) 

  

% Elaboration Data 

  

Data.elaboration.n = 200;                    % Mesh 

     

% Constant values 

  

Data.arch.L     = L(1,ii);            % Span, in meters     [m] 

Data.arch.gamma = 78.5;               % Specific weight     [kN/m3] 

Data.arch.E     = 1.999*10^8;         % Young modulus       [kN/m2] 

Data.arch.G     = 76903069;           % Shear modulus       [kN/m2] 

Data.arch.q0    = -150; %q(1,ii);     % Design load         [kN/m] 

Data.arch.fyd   = 275/1.15;           % Design strength     [MPa] 

  

% Design variables 

  

nvars = 2;          % Number of variables (Initial angle and radius) 

  

thetai_max = 89*pi/180; 

  

LB    = [0 0.2];   % Lower bound (1st column thetai, 2nd one radius) 

UB    = [thetai_max 1.5];  % Upper bound 

  

% Constraint function 

  

Const_fun = @(x)Arch(x,Data); 

  

 

%Objective function 

  

OF_fun    = @(x)OF(x,Data); 

  

% Optimization with GA 
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options = 

optimoptions('ga','PlotFcn','gaplotbestf','PopulationSize',100); 

  

[x_opt(ii,:),OF_opt(ii,:)]=ga(OF_fun, nvars,[],[],[],[], LB, UB, 

Const_fun); 

  

  

end 

  

% Dimensionless plot 

  

beta = pi/2 - x_opt(:,1); 

R    = Data.arch.L./(2*sin(beta));   

rise = R.*(1 - cos(beta)); 

  

rise_to_span  = rise/Data.arch.L; 

radio_to_span = R/Data.arch.L; 

  

figure 

plot(radio_to_span,rise_to_span,'LineWidth',2) 

xlabel('R/L [adimm]');ylabel('f/L [adim]'); 

title('Steel') 

grid on 

  

timeElapsed = toc; 

 

 

2. File: Arch.m 

%% Evaluation of constraint function 

function [constraint, ceq] = Arch(x, Data)  

  

n                   = Data.elaboration.n; 

  

% Design variables 

  

thetai              = x(1); 

r1                  = x(2); 

  

% Constant data 

  

L                   = Data.arch.L;                       

gamma               = Data.arch.gamma;                   

E                   = Data.arch.E;                                

G                   = Data.arch.G;                         

q0                  = Data.arch.q0;                     

fyd                 = Data.arch.fyd;                     

     

 

% Geometrical parameters 

   

J                   = (pi*(r1^4))/4;      % Inertia             [m4]                  

A                   = pi*(r1^2);          % Section area        [m2]                 

As                  =0.9*A;               % Shear area          [m2] 

W                   = pi*(r1^4)/(4*r1);   % Resistant modulus   [m3]         
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beta                = pi/2 - thetai;        

R                   = L./(2*sin(beta));   % Curvature radius    [m] 

  

  

[s_vec, u0_vec, v0_vec, phi0_vec, u1_vec, v1_vec, phi1_vec] = 

arch_analysis(thetai, R, r1, gamma, E, G, n, q0); 

  

%Results of arch analysis and evaluation of internal actions and 

stresses 

  

s_vec        = s_vec;        % Curvilinear axis        [m] 

  

u0_vec       = u0_vec;       % Tangential displacement [m] 

v0_vec       = v0_vec;       % Normal displacement     [m] 

phi0_vec     = phi0_vec;     % Rotation                [rad] 

  

  

M_vec        = E*J*phi1_vec;                  % Bending moment [kNm] 

V_vec        = G*As*(-u0_vec/R + v1_vec - phi0_vec);% Shear     [kN] 

N_vec        = E*A*(u1_vec + v0_vec/R);        % Axial force    [kN] 

sigma_Max_vec= (M_vec/W + N_vec/A)/1000;      % Normal stress  [MPa] 

  

sigma_max       = max(abs(sigma_Max_vec));       % Maximum stress 

  

% Constraint function 

  

constraint      = sigma_max/fyd - 1;        % Strength verification  

  

ceq             = []; 

  

end 

 

3. File: Arch_analysis.m 

function [s_vec, u0_vec, v0_vec, phi0_vec, u1_vec, v1_vec, phi1_vec] 

= arch_analysis(thetai, R, r1, gamma, E, G, n, q0) 

  

% Boundary value solver 

     

beta1   = pi/2 - thetai; 

theta   = linspace(0,2*beta1,n);  %Angle running the curvilinear 

axis [rad] 

s       = R*theta;                %Curvilinear axis              [m] 

     

options = bvpset('stats','on','RelTol',1e-3); 

solinit = bvpinit(s,[0 0 0 0 0 0]);  

sol     = bvp4c(@odefun,@bcfun,solinit,options); 

  

  

u0_vec  = sol.y(1,:); 

v0_vec  = sol.y(2,:); 

phi0_vec= sol.y(3,:); 

u1_vec  = sol.y(4,:); 
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v1_vec  = sol.y(5,:); 

phi1_vec= sol.y(6,:);  

  

s_vec = s; 

 

%% EDO to solve 

  

function dzds=odefun(s,z) 

  

thetai_rad = thetai*pi/180;      

beta       = pi/2 - thetai_rad;  

  

J  = (pi*(r1^4))/4;              

A  = pi*(r1^2);                  

As = 0.9*A;                      

  

P1 = -gamma*A; %[kN/m] 

  

% Projection of forces to normal and tangential dir 

  

Pn = (P1+q0)*sin(thetai+s/R);   

Pt = (P1+q0)*cos(thetai+s/R);   

  

% 1st order differential equation system 

  

dzds=[z(4) 

      z(5) 

      z(6) 

      (-G*As*(-z(1)/R^2 + z(5)/R - z(3)/R) - Pt)/(E*A) - z(5)/R 

      (-Pn + E*A*(z(4)/R + z(2)/R^2))/(G*As) + z(4)/R   + z(6) 

      -G*As*(-z(1)/R + z(5) - z(3))/(E*J)]; 

end 

  

%% Boundary conditions 

  

function res=bcfun(za,zb) 

  

res= [za(1)   % u(0)      = 0 

      za(2)   % v(0)      = 0 

      za(3)   % phi(0)    = 0 

      zb(1)   % u(Smax)   = 0 

      zb(2)   % v(Smax)   = 0 

      zb(3)]; % phi(Smax) = 0 

end 

end 
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4. File: OF.m 

function vol = OF(x,Data) 

  

% Constant data 

  

n     = Data.elaboration.n; 

L     = Data.arch.L; 

gamma = Data.arch.gamma; 

  

% Design variables 

  

r1    = x(2); 

A     = pi*(r1^2);    

  

beta      = pi/2 - x(1); 

R         = L./(2*sin(beta));                   

theta     = linspace(0,2*beta,n);                 

s         = R*theta;                              

  

% Objective Function 

  

vol = s(end)*A*gamma;      % Volume of arch [m3] (To be minimized) 

  

end 

 

 


