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Abstract 

Scalable routing and wavelength assignment in large optical networks 
 

Recent advances in Graph Neural Networks (GNN) have shown a dramatic improvement in the 
solution of computer networks problems. GNN seems promising to solve many relevant network 
optimization problems (e.g., routing) in self-driving software-defined networks. However, most 
state-of-the-art GNN-based networking techniques fail to generalize, which means that they 
perform well in network topologies seen during training, but not over large topologies. The reason 
behind this important limitation is that existing GNN networking solutions use standard graph 
neural networks that are not suited to learn large graph-structured information in routing purposes. 
In this thesis, we propose to use Massage Passing Neural Networks (MPNN). 

MPNN is tailored to learn and model information structured as graphs and as a result, our model 
is able to generalize over arbitrary topologies and variable traffic intensity. To showcase its 
generalization capabilities, we evaluate it on a SDN-based Optical Transport Network (OTN) 
scenario, where traffic demands need to be allocated efficiently. Our results show that our model 
is able to achieve outstanding performance in large topologies never seen during training. 
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Chapter 1 

Introduction 

1.1 Motivation 
Applying machine learning (ML) to computational challenges is prevalent in numerous areas 

in computer science (AI, computer vision, graphics, NLP, comp-bio, and beyond). Computer 
networking, in contrast, has largely withstood the ML tide until recently. Recent advances suggest 
that this might be changing and recently, leveraging the methodologies of ML, several complex 
networking tasks can be performed with high accuracy and with limited or even without any human 
intervention. 

Such a disruptive concept is expected to extend to any form of telecommunications network, 
irrespective of its topology, implementation or underlying technology, and may also benefit from 
network automation as allowed by the SDN principle [1]. Software-Defined Networking (SDN) is 
gradually becoming a reality and provides the ability to rethink and create highly programmable 
networks. SDN allows global-view networked datasets comprising routing, output, and 
configuration states to be collected and further optimized with ML / AI algorithms, providing a 
new range of opportunities to continuously enhance how network services are delivered and 
network resources allocated.  

A detailed tutorial on Machine Learning algorithms, frameworks and applications to 
networking, including open challenges and concrete examples of Intelligent Networking can be 
found in [2]. 

SDN technology is ideally suited for implementing ML algorithms, or more precisely smart 
algorithms to speed up control behavior on the network. The key strength of this new paradigm is 
the possibility of applying various network optimization algorithms, each of which targets a 
different cost function. Furthermore, according to the centrality of the control plane, it is possible 
to train various ML algorithms simultaneously in off-line mode, and this can only be implemented 
after generalization and testing of the model. This process can be repeated if the model needs 
retraining, following the evolution of the network behavior itself. SDN, in short, allows smart 
control and configuration activities in a very short time and is a core component of future 
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telecommunications networks. In fact, 5G and the rise of new services ( i.e., IoT, connected 
vehicles, Augmented and Virtual Reality AR / VR, etc.) are expected to make traffic matrices 
much more dynamic than they are today, thus requiring frequent network reconfiguration to better 
adapt the network resources to the actual traffic needs. 

In this Thesis, we explore how to use ML in the context of optical WDM networks to target the 
Routing and Wavelength Assignment (RWA) problem. Performing RWA corresponds to 
assigning resources to each of the demands in a given traffic matrix, consisting of dedicated 
wavelength(s) along a physical pathway between two end-points. Usually RWA is solved in two 
key uses: 1) the architecture of an optical network to assess the amount of resources needed to be 
deployed under certain traffic forecasts; 2) The reconfiguration of the optical network, where the 
distribution of current network resources is re-optimized, caused by some complex changes in 
traffic, following some optimization goal usually aimed at preventing traffic congestion, underuse 
of resources, improved energy efficiency, etc.  

RWA is formulated and solved in small or medium-sized network topologies using Integer 
Linear Programming (ILP), which provides optimal (e.g., cost-minimized) solutions to the 
detriment of complex, time-consuming, and intensive computations since the problem is known to 
be NP-hard. The literature has proposed suboptimal heuristic algorithms in large network 
topologies to speed up the RWA procedure. 

In this Thesis, we transform the RWA problem into an ML-based classification problem, where 
the routing solution is provided by a classifier in response to a given input graph. To this end, a 
Message Passing Neural Network which is a type of Graph Neural Network (GNN) is trained 
based on various types of graphs. Once trained, such a classifier is able to provide a route for 
newly-incoming traffic requests in an online fashion, offering an RWA configuration within a few 
milliseconds, thus allowing to perform dynamic network adaptation and reconfiguration in 
response to frequently changing traffic patterns. 

1.2 Thesis outline 

The remainder of this work is organized as follows: 
Chapter 2 provides a summary of the literature that by other researchers from Machine learning 

prospective and its application in optical networks for routing. It provides a general overview of 
the current research directions and highlights similarities and dissimilarities with respect to our 
work.  

Chapter 3 reviews a summary of the key concepts to understand the theory on which the 
methods, approaches and models we use to perform experiments are based. We provide a basic 
overview about Graphs and explanation about basic Path finding algorithms. In the following, we 
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have a summary of ML and introduce its various methods. Then we study the topic of Graph neural 
networks (GNN) and Embedding methods in more detail. At the end of the chapter, we describe 
the message passing neural network (MPNN) used in our proposed method and review different 
routing and wavelength assignment approaches. 

Chapter 4 describes the framework which is exploited in our experiments in detail. We discuss 
the assumptions on the creation of the graphs in the training and testing datasets. 

Chapter 5 surveys the outcomes got from the numerical examination, first giving a portrayal of 
the datasets and afterward concentrating on the assessment of the metrics in the diverse considered 
scenarios. 

Chapter 6 concludes this thesis with a summary of its main contributions. Furthermore, it 
contains other considerations based on the developed experiments. 

Chapter 7 gives some prospective points for the future work of this research. 
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Chapter 2 

Related works 

This chapter describes recent studies focusing on the use of machine learning techniques in op
tical network routing and wavelength assignment. As the thesis constitutes two parts shortest path 
finding problem and wavelength assignment. In the first part we provide the description of recent 
studies that focus on ML-based solutions for the shortest path problem and then we present the 
studies that are using Machine Learning techniques in routing and wavelength assignment. A short 
comparison of the mentioned techniques in relation to the work developed in this thesis will 
be underlined at the end of this chapter. 

2.1 ML-based shortest path computation 
The base of many graph algorithms and applications lies in finding the shortest path between 

nodes. Traditional specific approaches like breadth-first-search (BFS) do not scale up to 
contemporary, rapidly emerging vast networks of today. Therefore, approximation methods must 
be found to allow scalable graph processing with a significant speed-up. 

Here we review some ML-based methods to compute shortest path between two nodes in a 
graph. 

2.1.1 Auto Computed Neural Network (ACNN): 
In [3], a neural network model called auto-wave competed neural network (ACNN) for the SP 

problem has been proposed. 
Firstly, in this study, the proposed algorithm synchronously updates the threshold of all neurons, 

i.e., it is a parallel algorithm. Secondly, only the maximum M paths are allocated at each neuron's 
threshold, which significantly reduces the memory space and the computation needed. Thirdly, 
while the M-paths limited scheme may often discard the optimal paths due to the randomness of 
the constraints and the rigidity of the cost function, the proportional selection scheme will provide 
ample opportunity to revive or survive the search process with the optimal auto-waves (i.e., paths). 

The ACNN neuron consists of three parts, i.e., the minimum selector, the auto-wave generator 
and the threshold updater, see Figure 1. 
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Figure 1. Neuron model of ACNN [3]. 

The ACNN neuron can be described with the following equations, 
Zi(t) =  {j│Wji ≠ ∞  &       yj(t − 1) > 0} Eq. 1 

ui(t)  =  {
0                                                 Zi(t) =  ∅

(yj(t − 1) + wji)         otherwise
j∈Zi(t)

min  
Eq. 2 

yi(t) = f[ui(t), θi(t − 1)] =  {
ui(t)         ui(t) < θi(t − 1)
0                            otherwise

 
Eq. 3 

θi(t) = h[yi(t), θi(t − 1)] =  {
θi(t − 1)          yi(t) = 0

yi(t)               otherwise
 

Eq. 4 

 
Where 𝑖 is the index of neuron, 𝑡 is the time (or gives the iterations). 𝜃𝑖(𝑡), 𝑢𝑖(𝑡)  and 𝑦𝑖(𝑡) are 

the threshold, internal activity the output of neuron 𝑖 at time 𝑡 respectively. 𝑤𝑗𝑖  is the weight of the 
connection from neuron 𝑖 to 𝑗. 𝑍𝑖(𝑡) is the set of neurons that are fired at time 𝑡  and is reachable 
to neuron 𝑖. 

An ACNN isomorphic for the weighted graph G should be constructed when applied to the SP 
problem, i.e., every G-node corresponds to a single network neuron, then 𝑤𝑖𝑗  is related to the 
weight of the edge(𝑖, 𝑗) in G, see Figure 2. 

 

Figure 2. ACNN topology for SP problem. (a) A weighted digraph. The circles with numbers inner are the nodes, 
and the numbers on edges are the costs related to the corresponding edges. (b) The ACNN model for the SP 
problem of the graph is shown in (a). The circles with numbers inside are the neurons, and the squares with 

“ ∑   ” inside are the aggregators on the Corresponding links. 
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All neurons have infinite threshold and zero-internal-activity initializations. Fire the source 
neuron to run the network, and the firing would inspire a few propagating auto-waves across the 
entire network. When passing through the neuron i if it is the closest one, an auto-wave 's traveling 
distance would be recorded at the 𝜃𝑖(𝑡)  threshold. All neurons gradually decrease their levels until 
the algorithm ends. 

When the algorithm stops, the threshold 𝜃𝑖(𝑡) is equal to the distance from the source neuron 
to the neuron i of the shortest path. 

The ACNN based shortest path algorithm is parallel, non-parameterized. For more detail about 
ACNN, the reader can refer to the reference [4]. 

 

2.1.2 Stochastic Shortest Path-based Q-learning (SSPQ) 
In [5], a method based on reinforcement learning (RL) is used to find the shortest path for 

autonomous robots. RL has been recently used as a mechanism for autonomous robots to learn 
pairs of state-action by interacting with their environment. Most RL methods, however, usually 
suffer from slow convergence in practical applications when deriving optimal policies. A 
stochastic, shortest path-based Q-learning (SSPQL) approach is proposed to solve this problem, 
integrating a stochastic shortest path-finding approach with Q-learning, a well-known model-free 
RL method. 

A learning method combining model-free and model-based RL methods is proposed in this 
paper to enhance both speed of learning and adaptability in dynamic environments. The Q-
learning algorithm was adopted as the model-free RL method, and the model-based learning 
method used an addition of the SSP finding method. 

Stochastic shortest path-finding method: 

It may be useful for an external trainer to raise the probabilities of important state-action pairs 
to overcome the slow learning speed of model-free Qlearning. Although the trainer has only 
limited knowledge of the working environment, this can still be useful for improving speed of 
learning. A robot can learn incrementally from an internal state-transition model, and can infer 
from the model the essential state action pairs that make up the optimum local strategy. Then these 
essential state-action pairs will serve as the external trainer and be used to improve speed of 
learning. An SSP-finding method has been employed in the SSPQL to obtain these essential state-
action pairs. The stochastic shortest path-finding method can then propose optimal local state-
action pairs by using an internal state-transition model that has been incrementally learned by the 
robot.  In the SSPQL these optimum local state-action pairs can be given greater selection 
probability by increasing the respective Q-value for each state-action pair. Given an experienced 
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state-transition model shown in Figure 3(a), the single-pair shortest path from the initial state, 𝑠0 , 
to the goal state, 𝑠𝐺, is shown by Figure 3(b). 

A * is a well-known successful heuristic search tool for this type of problem. Nevertheless, the 
purpose is to improve the probability of any action from the internal model that can be obtained. 
Here, Dijkstra algorithm [6] is used to find shortest stochastic paths based on the expected cost. 

 

 

 

(a) An example of a state transition 
model. 

(b) A shortest path from 𝑠0 to 𝑠𝐺. (c) Shortest paths from all states to 
a goal state. 

Figure 3. An example of shortest path finding. 

SSP-finding method with Q-learning: 

At the same time, the SSPQL algorithm learns and uses the state transformation model by 
integrating the SSP method with the Q-learning method. 

A prior observed state, a previous action, and a present state must be stored in a probabilistic 
state-transition model at each stage to learn the state-transition model. The state-transition model 
can be nearly empty in the early stages of learning. As a robot uses an exploration strategy 
primarily influenced by the Q-value and the exploration bonus to explore its environment, it will 
begin learning the state-transition model. Using the SSP method with an integrated cost function 
as shown in (2) in the stochastic state-transition model, the shortest paths that reach this goal state 
from all states can be found after the robot reaches a target state. 

In summary, action-selection in SSPQL is based on a linear combination of Q-value, SSP-value, 
and the value of exploration bonus, which is given by 

 
𝑎 =  𝑎𝑟𝑔𝑚𝑎𝑥[𝑤𝑄𝑄(𝑠’, 𝑎’) +  𝑤𝑆𝑆𝑃 𝑄𝑆𝑆𝑃(𝑠’, 𝑎’) + 𝑤𝐸𝑋𝑃 𝑄𝐸𝑥𝑃(𝑠’, 𝑎’) +  𝜀] Eq. 5 

 
Here, 𝑤𝑄is known as weight of Q-learning, 𝑤𝑆𝑆𝑃 is a weight value of 𝑆𝑆𝑃 , 𝑤𝐸𝑋𝑃is a weight of 

the exploration bonus, and ε is a random number for exploration. 𝑄(𝑠’, 𝑎’), 𝑄𝑆𝑆𝑃(𝑠’, 𝑎’) and 
𝑄𝐸𝑥𝑃(𝑠’, 𝑎’) have different training quality characteristics. 

Convergence to optimality can be ensured by using 𝑄(𝑠’, 𝑎’). However, when using only the Q-
value the learning speed is very slow. On the other hand, SSP 𝑄𝑆𝑆𝑃(𝑠’, 𝑎’) will affect a speed of 
rapid convergence. The method of discovering SSP is a batch process while Q-learning is an 
incremental process. Hence, 𝑄𝑆𝑆𝑃(𝑠’, 𝑎’) may have significant value in the early stages of learning 
to achieve the target level. 
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Lastly, 𝑄𝐸𝑥𝑃(𝑠’, 𝑎’) will take an agent to unexplored conditions. If an agent enters a state, 
𝑄𝐸𝑥𝑃 may experience a rapid decline. So in the first episode, 𝑄𝐸𝑥𝑃 mainly affects the learning 
efficiency. 

2.2 ML techniques in routing and wavelength assignment (RWA) 
Programmable optical networks make it possible to create general transport infrastructure 

capable of accommodating a wide range of 5G services [7]. In such a scenario, one of the main 
goals of an Infrastructure Provider (InP) is to maximize profit by making the most efficient use of 
infrastructure resources, e.g. by operating with link utilization values close to the capacity crunch.  
Furthermore, using the same transport network between Connectivity Services (CSs) with different 
Quality of Service ( QoS) constraints ( i.e., priorities) and different revenue values is a daunting 
challenge, i.e. the routing strategy should be able to include as many CSs as possible (to optimize 
revenue) while maintaining the necessary QoS restrictions. 

2.2.1 ML-Based Quality of Service Routing  
The study in [8] proposes a routing policy based on Reinforcement Learning (RL), aimed at 

maximizing an infrastructure provider’s profit. This aim is accomplished by carefully selecting (i) 
whether to accept a new CS request or not, and (ii) which path to assign to those accepted CSs. All 
this is done while taking into account each CS request's QoS constraints and revenue level. Results 
show that the proposed strategy will raise the profit margin by up to 13 % relative to conventional 
heuristics when the network operates under high resource usage conditions. 

This is called a programmable optical network system where a network manager has full 
knowledge of where and how many wavelength resources are being used. The controller is also 
responsible for taking decisions on the provisioning of CS with the goal of optimizing the InP 
benefit. Two types of CSs are considered: (i) HP, i.e. with strict latency specifications that can 
only be supplied over the shortest distance between the source and the destination node, and (ii) 
LP, i.e. best-effort CSs that can be supplied with appropriate communication resources over any 
path. HP CSs generate higher profits than LP ones. 

 

 

Figure 4. (a) Network topology; (b) state space representation and neural network architecture. 



9 
 

The study proposes an RL-based routing strategy modeled on a Policy Network (PN), which 
uses a neural network to reflect a stochastic process. For a certain network state associated with a 
particular CS request, the PN discovers that taking an action would result in a reward, which the 
reward should be maximized. Considering the topology presented in Figure 4(a), Figure 4(b) 
shows how the state space is organized (e.g., for a hypothetic CS request from node E to node F), 
in addition to the NN architecture considered in this study. Assuming link capacity of 16 
wavelengths on each link, the first block of Figure 4(b) indicates how wavelength resources are 
used on each link, where “1” (i.e., black) corresponds to the used wavelength and “0” (i.e., white) 

corresponds to the free wavelength. The following k=3 blocks in Figure 4(b) represent the state of 
the links of each of the candidate paths from node E to node F should they be chosen for 
provisioning the CS. If upon a CS request a route does not have enough wavelength capital, it is 
excluded from the state space. State space is used as an input to the neural network that has a 
convolutional layer with a 3-by-3 2D convolution window with the intention of extracting the best 
features from state space. 

Every output is related to a particular action, i.e., “select” one of the available paths or “reject” 

the CS request. 
To sum up, the paper introduced an RL-based routing strategy, modeled as a PN that can help 

increase an InP's profit margin. Results indicate that it is possible to increase the profit margin by 
up to 13% relative to traditional routing policies by proactively opposing low revenue CS in the 
scenario considered. 

Supervised Machine Learning-Based Routing and Wavelength Assignment 
In [1], a machine learning approach used to develop optical WDM networks has been 

introduced the framework included three phases: data generation, simulation and implementation 
of SDNs. 

The authors have introduced NetGen, a scalable tool for building networking labeled data sets, 
for the data generation process. This tool wraps the Net2Plan tool 's regular functioning to scale 
and speed up its behavior. 

With respect to machine learning, they have turned the well-known problem of routing and 
wavelength assignment into a Supervised Learning problem that can be solved using traditional 
ML algorithms. In particular, a logistic regression and Deep Neural Networks (DNNs) are trained 
with a ground-truth dataset of thousands of traffic matrices and their related RWA solutions given 
by the RWA ILP or First-Fit heuristic (the labels in our classification problem).  

In general, DNNs provide useful non-linear learning structures applicable in the context of an 
optical WDM network for learning RWA structures associated with traffic matrices. For these 
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DNNs to learn to apply RWA configurations effectively, they need to be fed with enough data 
examples and a reduced number of RWA classes to avoid the so-called dimensionality curse. 

 

 

Figure 5. Schematic of the proposed 5-node network for RWA modeling. The network models offline training 
phase and online prediction phase [7]. 

Turning RWA into a Supervised Classification Problem 

Consider 5-node network topology in the Figure 5 and let's presume that each connection is 
fitted with a number of optical transponders allowing each connection to use W wavelengths per 
link (in what follows, W lambdas @ C Gbps). 

Consider a 5 ×  4 Traffic Matrix (TM) where elements 𝑑𝑖𝑗 (in Gbps) denote the traffic request 
from source i to destination node𝑗 (𝑖 ≠  𝑗). The RWA algorithm generates a list mapping each 
traffic request 𝑑𝑖𝑗 (input) to a sequence of links and wavelength assignments (output). In the 
network of Figure 5 . 

For example, demand 𝑑12 from source node 1 to destination node 2 uses the direct edge 𝑒12 and 
the first wavelength 𝜆1. Similarly, demand 𝑑54 continues the route defined by edges 𝑒52  −  𝑒23   −

 𝑒34 and uses the third wavelength 𝜆3. This configuration of routing and wavelengths (RWC) only 
applies to that particular matrix of demand. In other words, the RWA receives a serialized traffic 
matrix with all requests for traffic from source-destination as input and outputs its optimal RWC 
list: 

• Input: 𝑇𝑀1 =  {𝑑12, 𝑑13, . . . , 𝑑54} 

• Output: 𝑅𝑊𝐶1 =  {(𝑒12, 𝜆1), . . . , (𝑒52, 𝑒23, 𝑒34, 𝜆3)} 

For that particular Traffic Matrix 𝑇𝑀1, the output mark 𝑦1 =  𝑅𝑊𝐶1 is obtained by solving the 
RWA ILP. If the ILP is run again for a second 𝑇𝑀2 traffic matrix, then a new optimal RWC should 
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be obtained, namely 𝑦2 =  𝑅𝑊𝐶2, but maybe the previous 𝑅𝑊𝐶1 is still true to satisfy all traffic 
demands while meeting the RWA constraints. In general, if 10,000 different traffic matrices are 
fed to the ILP, the ILP might theoretically generate up to 10,000 different optimal RWCs. In 
realistic situations, however, several RWCs refer to multiple input traffic matrices, thus reducing 
RWC space under consideration. 

Consequentially, the RWA problem can be converted into a multi-class classification problem 
in which the input variables are the elements of an episodic traffic matrix and the output labels are 
the complete network routing and wavelength configuration (RWC) collection as obtained from 
the ILP solution. A classical supervised ML algorithm can then be trained using this dataset. 
Essentially, when fed with enough data examples (both traffic matrices and the corresponding 
optimal RWCs), the ML algorithm should be able to generalize and generate an optimal RWC on 
a new unseen traffic matrix, thus accurately performing RWA without the need to solve the ILP. 
In addition, the ML model should learn from the input data provided, i.e. if the ML model is fed 
with data manually configured from an operator or from some other algorithm (i.e., heuristics) 
instead of supplying RWC solutions from an ILP, the ML algorithm should also be able to replicate 
this way of solving RWA, thereby mimicking the algorithm it learned from. 

As far as the number of RWC classes is concerned, getting too many of them will prevent the 
ML algorithm from learning the data patterns correctly due to the so-called dimensionality curse. 
Therefore, in order to reduce the number of RWCs in use, we carried out a forward evaluation of 
RWC to reduce the number of classes by assigning new TMs with more frequent RWCs as long 
as they provide a feasible solution and satisfy some minimum requirements in terms of average 
network load and hop count. 

The authors have developed the Netgen tool, built on Net2Plan1 planner tool, for database 
generation. Two of the most common ML algorithms have been trained and tested once the datasets 
have been developed, namely: Logistic Regression (LR) and Deep Neural Network (DNN) feed-
forwards. 

Logistic Regression [9] is a simple linear classifier that, together with a softening sigmoid 
function, adjusts a linear regression to the data. Because of their linear nature, logistic regression 
classifiers are very fast to train and interpret but prone to underfitting. In comparison, Deep Neural 
Networks [9] showed great success in a wide range of scenarios due to the fact that they stack 
linear neuron layers coupled with non-linear activations, thereby generating non-linear classifiers. 
The Machine learning Routing Computation workflow module can be seen in the figure below. 
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Figure 6. Machine learning Routing Computation module workflow [7]. 

 

The authors have finally shown how SDN and ML can come together through the Machine 
Learning Routing Computation Module (MLRC) to push path provisioning through an SDN 
network. Using this module, the Routing and Wavelength Configurations obtained via ML can be 
delivered quickly into an SDN network. As a result, the combination of Machine Learning and 
SDN paradigms to facilitate traffic-aware and responsive networks, the ability to react very quickly 
to changes and implement such changes in configuration easily through SDN has advanced. Their 
findings demonstrate how their approach reduces the upgrade time needed for the network 
configuration. 

2.3 Comparison to related work 
In this thesis, we divide the RWA problem into routing and wavelength assignment problem. 

ML-based routing has been used in our work which showed good performance in large optical 
networks where heuristic algorithms have not been so fast, then we used some conventional 
algorithm in order to assign wavelength to each traffic request.  

In the routing part we have exploited a Node and Edge Embedding model and our model 
includes three components: An "Encoder" graph net, which independently encodes the edge, and 
node attributes. A "Core" graph net, which performs N rounds of processing (message-passing) 
steps. A "Decoder" graph net, which independently decodes the edge, node attributes (does not 
compute relations etc.), on each message-passing step.  

The model is trained by supervised learning. Input graphs are procedurally generated, and 
output graphs have the same structure with the nodes and edges of the shortest path labeled (using 
2-element 1-hot vectors). Therefore at the output of the model we will have labeled nodes and 
edges showing whether they are part of shortest path or not. Then we check the correctness of the 
path detected by the model and execute an extra processing for undetected paths in order to have 
a valid path between node pairs. 
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For the wavelength assignment sub-problem, a number of heuristics have been proposed such 
as Random Wavelength Assignment (Random Fit), first-fit, least used, most used, least loaded. 
The aim of this step of processing is allocating wavelength to each traffic request to minimize 
blocking probability and maximize the network utilization. 

In [4] [5] the authors have used machine learning in order to find a path between a pair of nodes 
and they can work well for the small networks, But their algorithms is not well suited for large 
networks. 

In [8] the authors have used RL-based RWA for different connectivity services with different 
priority levels. Here we try to balance the traffic load over the whole network using conventional 
algorithms. 

In the Table 1 we have summarized the different scenarios illustrated in the previous 
subsections and underlined their methods in order to solve the shortest path (SP) problem or 
routing and wavelength assignment problem (RWA).  

Table 1: Solved problems and ML models  

Authors problem ML model 
Jiyang Dong et al. [4] SP  Artificial Neural Network 

Woo Young Kwon et al. [5] SP  Reinforcement learning (RL) 
Carlosns Natalino et al. [8] RWA  Convolutional Neural Network (CNN) 

 Reinforcement Learning (RL) 
Ignacio Martín et al. [1] RWA  Deep Neural Network 

 Logistic Regression 
Our work RWA  Graph Neural Network 

 Heuristic Algorithms 
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Chapter 3 

Background 

In this chapter we provide detailed information about the algorithms and methods which we 
will be adopted in our framework. 

3.1 Network Graphs 

Let 𝐺 =  (𝑉, 𝐸) denote a graph with node feature vectors 𝑋𝑣 for 𝑣 ∈  𝑉 and with edge feature 
vectors 𝑋𝑒 for  𝑒 ∈  𝐸. 
There may be different types of Graphs: 

 Connected Graph 
 Unconnected Graph 
 Directed Graph 
 Undirected Graph 

3.1.1 Connected Graph 
If there exists at least one branch between any of the two nodes of a graph, then it is called as a 

connected graph. That means, each node in the connected graph will be having one or more 
branches that are connected to it. So, no node will be isolated or separated.  

3.1.2 Unconnected Graph 
When there is at least one node in the network where even a single branch remains unconnected, 

then it is called as an unconnected network. Therefore, an unconnected graph may contain one or 
more isolated nodes. 

3.1.3 Directed Graph 
If all the branches of a graph are represented with arrows, then that graph is called as a directed 

graph. These arrows indicate the direction of current flow in each branch. Hence, this graph is also 
called as oriented graph. 

3.1.4 Undirected Graph 
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When a graph's branches are not represented with arrows, the graph would then be called as an 
undirected graph. Because current flow directions do not exist, this graph is often named as a non-
oriented graph. 

3.2 Shortest Path Problem  
The shortest path problem consists in finding the shortest path or route from a source point to a 

final destination. In general, we use graphs in order to represent the shortest path problem. A graph 
is an abstract mathematical entity, containing collection of nodes and edges. Edges connect pairs 
of nodes. Along the edges of a graph it is possible to move from one node to other nodes. Based 
on whether or not one can walk either sides around the edges, or only one side decides whether 
the graph is a directed graph or an undirected graph. In addition, edge lengths are sometimes 
referred to as weights, and the weights are typically used to measure the shortest path from one 
point to another. [10] 

3.2.1 Conventional shortest path algorithms 

Dijkstra Algorithm  

For each node within a graph we assign a label that determines the minimal length from the 
source point 𝑠 to other nodes 𝑣 of the graph. In a computer we can do it by defining an 
array 𝑑[].The algorithm works sequentially, and tries to decrease the node label value in each step. 
The algorithm stops when all nodes have visited. The label at the source point 𝑠 is equal to  (𝑑[𝑠] =

0); hence, labels in other nodes 𝑣 are equal to infinity (𝑑[𝑣] = ∞), which means that the length 
from the starting point 𝑠 to other nodes is unknown. We may use a very large number on a machine 
simply to represent infinity. Furthermore, we will define for each node v whether or not it has been 
visited. For this reason, we declare an array of Boolean type called 𝑢[𝑣], where initially, all nodes 
are assigned as unvisited (u[v] = false). [11] 

The algorithm of The Dijkstra consists of n iterations. Once all nodes are visited, the algorithm 
ends; otherwise, from the list of unvisited nodes, we have to pick the node with the lowest 
(smallest) value on its label (we must choose a starting point s at the beginning). Before that, we 
will consider all the neighbors of this node (Neighbors of a node are those nodes with the initial 
node having similar edges). We will consider a new length for each unvisited neighbor equal to 
the sum of the value of the mark at the initial node v (d[v]) and the length of edge l connecting 
them. If the resulting value is less than the label value, then with the newly obtained value [3] we 
have to change the value in that label. 

𝑑[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ]  =  𝑚𝑖𝑛 ( 𝑑 [ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ] , 𝑑[ 𝑣 ]  +  𝑙 ) Eq. 6 
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After repeating this step n times, all graph nodes are visited, and the algorithm begins or 
continues. The nodes that aren't linked to the starting point will remain assigned to infinity. To 
restore the shortest path from the starting point to other nodes, we need to identify array p[] where 
the number of nodes p[v], which penultimate nodes in the shortest path, will be stored for each 
node. In other words, a complete path from s to v is equal to the statement below [5]. 

𝑃 =  ( 𝑠 , … , 𝑝 [ 𝑝 [ 𝑝 [ 𝑣 ] ] ] , 𝑝 [ 𝑝 [ 𝑣 ] ] , 𝑝 [ 𝑣 ] , 𝑣 )  Eq. 7 

Floyd-Warshall Algorithm  

Consider the graph 𝐺, where nodes were enumerated from 1 to n. 𝑑𝑖𝑗𝑘 means the shortest path 
from 𝑖 to 𝑗, which also passes through node 𝑘. Obviously if there is a edge between nodes 𝑖 and 𝑗 
it will be equal to 𝑑𝑖𝑗0, otherwise it will be set to infinity. However, there can be two choices for 
other values of 𝑑𝑖𝑗𝑘: (1) If the shortest path from 𝑖 to 𝑗 doesn’t pass from the node 𝑘 then value of 
𝑑𝑖𝑗𝑘will be equal to 𝑑𝑖𝑗𝑘1. (2) If the shortest path from 𝑖 to 𝑗 passes from the node 𝑘 then first it 
goes from 𝑖 to 𝑘, after that goes from 𝑘 to  𝑗. In this case the value of 𝑑𝑖𝑗𝑘 equals to 𝑑𝑖𝑘𝑘−1  +

 𝑑𝑘𝑗𝑘−1. And to determine the shortest path we just need to find the minimum of these two 
statements [11]:  

 
𝑑𝑖𝑗0 =  𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗  Eq. 8 

𝑑𝑖𝑗𝑘 = min(𝑑𝑖𝑗𝑘 − 1, 𝑑𝑖𝑘𝑘 − 1 + 𝑑𝑘𝑗𝑘 − 1) Eq. 9 

Bellman-Ford Algorithm  

The Bellman-Ford algorithm admits edges with negative weights as compared with the Dijkstra 
algorithm. A graph may therefore contain loops of negative weights which will produce multiple 
paths from the starting point to the final destination, where each cycle will minimize the length of 
the shortest path. 
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3.3 Machine Learning 
This section summarizes some of the most popular algorithms commonly classified as machine 

learning. The literature on ML is so vast that the possibilities of this section go far beyond just a 
brief description of all the major ML approaches. In this section, however, we provide a detailed 
view of the main ML techniques that are used in the work we refer to in the rest of this thesis. Here 
we provide some basic insights for the reader that might help better understand the remaining parts 
of this thesis. 

3.3.1 Machine learning techniques  
We categorize the algorithms in three main classes, described in the next sections: supervised 

learning, unsupervised learning and reinforcement learning. Semi-supervised learning, and 
unsupervised learning, are also introduced. ML algorithms have been applied successfully to a 
large range of problems. Before delving into the different ML methods, it is worth pointing out 
that more than a decade of research on the application of ML techniques to wireless networks has 
taken place in the context of telecommunication networks. 

3.3.2 Supervised learning 
Supervised learning is used in a variety of applications including speech recognition, spam 

identification, and object recognition. The goal is to predict the value of one or more output 
variables given the value of an input variables vector x. The output variable may be either a 
continuous (regression problem) or a discrete (classification problem). A training data set contains 
N samples of the input variables and the related output values. Different methods of learning build 
a function y(x) which allows to predict the value of the output variables in corresponding to a new 
input value [12]. 

Supervised learning is simply a formalization of the learning process through examples. The 
learner (typically a computer program) is learning in supervised learning, supplied with two data 
sets, a training set and a test set. The idea is to "learn" from a set of labeled examples in the training 
set to identify unlabeled examples in the test set with the highest possible accuracy [9]. 

3.3.3 Unsupervised learning 
Unsupervised learning is based on the method that can be viewed as a teacher's absence, and 

thus absolute error steps. It's useful when learn how to cluster or group elements is needed. 
Elements can be grouped (clustered) according to their similarity. Data is unlabeled, not classified 
in unsupervised learning and the algorithms of the program operate upon the data without prior 
training. Unsupervised learning algorithms can perform tasks that are more complex than 
supervised learning algorithms. They includes clustering that can be done by K means clustering, 
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hierarchical, and hidden Markov model. Network analysis, and market research are among the 
most successful applications of unsupervised learning methods. 

3.3.4 Semi-supervised learning 
Semi-supervised learning blends labeled and unlabeled examples to construct a function or 

classifier relevant to it.  

3.3.5 Reinforcement learning 
The RL model encourages agents to learn using only an evaluative input, referred to as the 

incentive, to explore the available behaviors and improve their behavior. The agent's goal is to 
optimize its output over the long term. The agent therefore not only takes the immediate benefit 
into account, but considers the impact of his actions on the future. The two most critical features 
of RL are delayed reward and trial-and - error [12]. 

3.4 Artificial Neural Network Algorithms 

 
Figure 7. Diagram of a multilayer network [9] 

Like the human brain, artificial neural networks are built, with neuron nodes interconnected 
like web. The human brain comprises hundreds of billions of neurons called cells. Each neuron 
consists of a cell body responsible for information processing by transferring information to 
(inputs) and (outputs) from the brain [9]. 

An ANN may have hundreds or thousands of artificial neurons, called processing units, linked 
via nodes. These processing units are composed of units for input and output. The input units 
obtain different types and knowledge structures based on an internal weighting scheme, and the 
neural network aims to learn about the information provided in order to generate one output result. 
Just as humans need rules and guidelines to produce a result or output, ANNs also use a set of 
learning rules called back-propagation, an abbreviation for backward error propagation, to improve 
the results of their output. 
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An ANN initially goes through a phase of training where it learns to recognize patterns in the 
data, whether visually, aurally or textually. During this supervised phase, the network compares 
its actual output to what it was supposed to produce the desired output. Through back-propagation 
the difference between the two tests is balanced. This means the network works backwards, going 
from the output unit to the input units to adjust the weight of its connections between the units 
until the difference between the actual and desired result produces the lowest error possible. 

3.5 Graph neural network (GNN) 
GNNs have originally been proposed for learning on graph structures [13]. Their structures 

consists of a message passing scheme [14], where the representation ℎ𝑠
(𝑘)  of each node 𝑠 (in 

iteration 𝑘) is recursively updated by aggregating the representation of neighbor nodes. GNNs can 
be adopted for reasoning by considering objects as nodes and assuming all objects pairs are 
connected, i.e., a complete graph [15]: 

ℎ𝑠
(𝑘)

 =  ∑ 𝑀𝐿𝑃1
(𝑘)

(ℎ𝑠
𝑘−1, ℎ𝑡

𝑘−1

𝑡∈𝑆

), ℎ𝑠 = 𝑀𝐿𝑃2 (∑ ℎ𝑠
(𝑘)

𝑠∈𝑆

), 
Eq. 10 

 

Where ℎ𝑠  is the answer/output and 𝐾 is the number of GNN layers. Each object’s representation 
is initialized as ℎ(0)  =  𝑋𝑠. Although other aggregation functions are proposed, we use sum in our   
experiments. Each node aggregates feature vectors of all its neighbors to compute its new feature 
vector. After k number of iterations of aggregation, a node will be represented by its transformed 
feature vector, which shows the structural information within the node’s k-hop neighborhood. The 
representation of a complete graph can then be obtained through pooling, for instance, by summing 
the representation vectors of all nodes within the graph. 

In the rest of the sub-segments, we present our graph networks framework, which sums up and 
expands a few professions around there. 

3.5.1 Graph network (GN) block 
A motivating example is introduced to help make more concrete formalism to the GN. Imagine 

a collection of rubber balls in an arbitrary gravitational field predicting the motions, which rather 
than bouncing against each other, each has one or more springs linking them to some (or all) of 
the others. 

One graph is represented as a 3-tuple G = (u; V; E) within our GN system. The u is a global 
attribute; here, u could represent the gravity field. The 𝑉 =  {𝑣𝑖 }(𝑖 = 1: 𝑁𝑣) is the set of nodes 
(of cardinality𝑁𝑣), where the element of each v i is a node. V might represent each ball, for 
example, with attributes for position, velocity, and mass. For instance, V can represent each ball, 

with attributes for position, velocity, and mass. The E={(𝑒𝑘 , 𝑟𝑘, 𝑠𝑘)}
𝑘=1:𝑁𝑒 is the set of edges (of 
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cardinality𝑁𝑒 ), and each 𝑒𝑘 is the edge's attribute, 𝑟𝑘 is the index of the receiver node, and 𝑠𝑘 is 
the index of the sender node. For example, E might represent the presence of springs between 
different balls, and their corresponding spring constants. [16] 

Internal structure of a GN block 

A GN block is based on three update" functions, ∅ which are implemented by Multi-Layer 
Perceptron (MLP) (Table 2). 

Table 2: Update functions and their implementations 

Update functions Implementation 

𝐞’𝐤 = ∅𝒆( 𝒆𝒌, 𝒗𝒓𝒌
, 𝒗𝒔𝒌

, 𝒖) 𝑀𝐿𝑃𝑒([𝑒𝑘, 𝑣𝑟𝑘
, 𝑣𝑠𝑘

, 𝑢]) 

𝒗𝒊
′ = ∅𝒗( 𝒆̅𝒊

′, 𝒗𝒊, 𝒖) 𝑀𝐿𝑃𝑣([𝑒̅𝑖
′, 𝑣𝑖 , 𝑢]) 

𝒖′ = ∅𝒖(𝒆̅′, 𝒗̅′, 𝒖) 𝑀𝐿𝑃𝑢(𝑒̅′, 𝑣̅′, 𝑢) 
And three aggregation" functions, 𝜌 which are implemented by Sum function (Table 3). 

Table 3: Aggregation functions and their implementations 

Aggregation functions Implementation 
𝒆̅𝒌 =  𝝆𝒆→𝒗(𝑬𝒊

′) ∑ 𝑒𝑘
′

{𝑘:𝑟𝑘=𝑖}

 

𝒆̅′ = 𝝆𝒆→𝒖(𝑬′) ∑ 𝑣𝑖
′

𝑖

 

𝒗̅′ =  𝝆𝒗→𝒖(𝑽′) ∑ 𝑒̅𝑘
′

𝑘

 

 

Where 𝐸𝑖
′ = {(e′𝑘 , 𝑟𝑘, 𝑠𝑘)}

𝑘=1:𝑁𝑒  , 𝑉′ = {𝑣𝑖
′}

𝑖=1:𝑁𝑣  and 𝐸′ =  𝑈𝑖 𝐸𝑖
′ = {(e′𝑘 , 𝑟𝑘, 𝑠𝑘)}

𝑘=1:𝑁𝑒 . 

The ∅𝑒 is applied for all the edges in the graph to update, and the ∅𝑣 function is mapped over 
all nodes in the graph to compute per-node updates, but the ∅𝑢  is just applied once for the global 
update. The 𝜌 functions take a set of inputs, and reduce it to a single element that represents the 
aggregated information. The 𝜌 functions should be invariant to permutations of their inputs, and 
should take variable numbers of arguments as input (e.g., element wise summation, mean, 
maximum, etc.). 
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Computational steps within a GN block 

When a graph, 𝐺, is given as input to a GN block, the computations starts from the edge, then 
the node, and finally the global level. Algorithm 1 shows the following steps of computation: 

 
Algorithm 1. Computational steps within a GN block 

 

Edge Update and Aggregation: 

Step 1: ∅𝑒 Is applied over all the edges in the graph, and its arguments are(e𝑘 , 𝑣𝑟𝑘
, 𝑣𝑠𝑘

, u). It 

returns 𝑒𝑘
′  in our work, this might correspond to the information about each node (position and 

etc.). The set of resulting per-edge outputs for each 𝑛𝑜𝑑𝑒𝑖 , is 𝐸𝑖
′ = {(e′𝑘 , 𝑟𝑘, 𝑠𝑘)}

𝑟𝑘,=𝑖 ,𝑘=1:𝑁𝑒  . 

And 𝐸′ =  𝑈𝑖 𝐸𝑖
′ = {(e′𝑘 , 𝑟𝑘, 𝑠𝑘)}

𝑘=1:𝑁𝑒  is the set of outputs for all edges.  

Step 2: 𝑝𝑒→𝑣 applies over 𝐸𝑖
′ 𝑠𝑒𝑡. It aggregates the edge updates for edges that project to 𝑛𝑜𝑑𝑒𝑖, 

into 𝑒̅𝑖
′. It will be used in the next step's node update.  

 
 

Figure 8. Updates in a GN block. Blue indicates the element that is being updated, and black indicates other 
elements which are involved in the update [17]. 
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Node Update and Aggregation: 

Step1: ∅𝑣 Is applied over all the 𝑛𝑜𝑑𝑒𝑖 in the graph, in order to compute an updated node 
attribute. 𝑉′ is the set of resulting outputs for each 𝑛𝑜𝑑𝑒𝑖, 𝑉′ = {𝑣𝑖

′}
𝑖=1:𝑁𝑣 . 

Step2: 𝑝𝑒→𝑢 applies over 𝐸′, and aggregates all of the edge updates, into 𝑒̅′. Then it used in 
the next steps in order to global update.  

Step3: 𝑝𝑣→𝑢  applies over 𝑉′. It aggregates all of the node updates, into 𝑣̅′ , then it used in the 
next step in order to global update.  

Global Update: 

 ∅𝑢 Computes an update for the global attribute (𝑢′). It is applied one time for the graph. 

3.6 Graph embedding  
Across different real-world applications, graphs such as social networks, word co-occurrence 

networks, and contact networks arise naturally. Analyzing those gives insight into the nature of 
culture, vocabulary and different communication patterns. Many approaches for carrying out the 
analysis have been proposed. Methods which use graph node representation in vector space have 
recently gained traction from the research community [18]. 
Graph analytical tasks can be abstracted broadly into the following four categories:  

(a) Node or link classification:  helps to evaluate the classification of nodes depending on 
other classified nodes and the network topology. 

(b) Link prediction: Connection prediction refers to the role of forecasting missed connections 
or ties that might exist in the future  

(c) Clustering: Is used to search, group and group subsets of related nodes 
(d) Visualization: Gives insights into network structure. 

Within the literature the term graph embedding was used in two ways:  

1. To describe a whole graph in vector space. 
2. To describe each particular node in vector space. We use this concept in our study as these 

representations can be used for tasks such as nodes and edges classification, differently 
from the previous interpretation (Figure 9) [18]. 
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Figure 9. Each node embeds to d-dimensional embedding space [18] 

An embedding therefore maps each node to a low-dimensional feature vector and tries to 
preserve the connection strengths between vertices (Figure 10). [17] 

 

Figure 10. Each node mapped to a low-dimensional feature vector [17] 

 

3.6.1 Graph Embedding Types  
Position-aware node embedding: If the embedding of two nodes can be used to 

(approximately) recover their shortest path distance in the network, we call the node embeddings 
“position-aware”. This property is crucial for many prediction tasks. 

Structure-aware node embedding: A node embedding is structure-aware if it is a function of 
up to q-hop network neighborhood of node 𝑣𝑖.  
Graph neural Networks (GNNs) are Structure-aware node embedding. [17] 

  

Figure 11. A sample graph (Left). Mapping of the sample graph which shows the nodes that have close structure, 
are mapped close to each other in the embedding space (Right). 

As we can see in the above image, nodes 𝑣1 and node 𝑣2 have the same structure and their 
connections are close to each other, therefore by using Structural node embedding methods, they 
will map close to each other in the embedding space, but in fact their positions are not close to 
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each other and we cannot use this kind of node embedding methods to find shortest path, which 
is our main goal to route nodes in a network. 
 

3.7 Message Passing Neural Network (MPNN) 
Message passing Graph Neural Networks are a well-known type of GNNs that apply an iterative 

message-passing algorithm to propagate information between the nodes of the graph. MPNNs 
generalizes the concepts of Graph Neural Networks with two key insights. 
Next, when computing the node embedding, instead of just aggregating computed messages from 
the local network neighborhood of a node, we require MPNNs to aggregate messages from others, 
which are neighbor nodes. 
Second, when conducting message aggregation, the aggregation is clustered across all nodes 
instead of allowing each node to accumulate information individually, in order to differentiate 
nodes with different locations in the network. We construct MPNNs in such a way that each node 
embedding parameter corresponds to computed messages with respect to other nodes, thereby 
rendering the computed node embed position-aware. 

3.8 Routing and Wavelength Assignment (RWA) 
The problem of setting up lightpaths by routing and assigning a wavelength to each connection 

is called the Routing and Wavelength Assignment (RWA) problem.  
Wavelength-Division Multiplexing (WDM) has increasingly gained popularity in optical fiber 

networks as a way of meeting the ever-increasing bandwidth demands of network users. End-users 
communicate with each other in a wavelength-routed WDM network via all-optical WDM 
channels, which are called lightpaths. In a wavelength-routed WDM network a lightpath is used 
to carry a traffic request, and it can span several fiber links. In the absence of wavelength 
converters, a light path will use the same wavelength over all the fiber connections it traverses; 
this property is known as the restriction of wavelength-continuity [1]. 

The problem concerns a network G = (V, E) where V is the set of nodes representing the 
physical network switches and E is the set of edges representing the physical network's fiber 
connections. Because of a set of requests for all-optical connections or lightpaths between node 
pairs and a collection of available wavelengths, the challenge is to find routes to their respective 
destination nodes from the source nodes and allocate wavelengths to those routes. 
In WDM networks, the RWA issue can be classified into two forms based on traffic arrivals [19]. 

1. Static Lightpath Establishment (SLE): Traffic is static and the set of connection requests 
is identified beforehand. This sort of issue relates to the WDM network's planning 
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process. The proposed algorithms for solving the static RWA problem are called Offline 
algorithms. 

2. Dynamic Lightpath Establishment (DLE) in the case of dynamic traffic: The traffic 
patterns change, and requests for connections arrive sequentially at random times over 
an infinite time period, one by one. A lightpath is set up when the traffic request arrives 
and released after a limited period of time. The DLE problem occurs in the operational 
process, in which each network resource needs to be handled effectively. The proposed 
algorithms to solve the dynamic RWA problem are called online algorithms. 

3.8.1 Wavelength-Assignment Heuristics  
The following heuristics for wavelength assignment have been proposed in the literature: 
Random, First-Fit, Least-Used/SPREAD, Most-Used/PACK, Min-Product, Least Loaded. 

These heuristics can all be implemented using online algorithms and can be combined with 
different routing schemes as well. We describe the wavelength-assignment heuristics below [7]. 

Random Wavelength Assignment (R) 

This scheme first scans the space of the wavelengths to identify the range of all usable 
wavelengths on the appropriate path. A wavelength is chosen randomly (usually with uniform 
probability) from the available wavelengths and assigned to the traffic request to be served. 

First-Fit (FF) 

All wavelengths are enumerated in this scheme. A lower-numbered wavelength is considered 
before a higher numerated wavelength when looking for available wavelengths. No global 
information is required in this scheme. Compared with Random Wavelength Assignment, this 
scheme's calculation cost is lower because there is no need to search the entire wavelength space 
for each route. The concept behind this scheme is to stack all of the in-use wavelengths into the 
lower end of the wavelength space, so that continuous longer paths to the higher end of the 
wavelength space are more likely to be available. This scheme works well in terms of blocking 
probability and fairness and is favored in practice because of its limited overhead computation and 
low complexity. As with Random, FF does not implement overhead communication since it needs 
no global information. 

Least-Used (LU)/SPREAD 

Least-Used chooses the least used wavelength in the network, thereby seeking to balance the 
load for all the wavelengths. This scheme easily splits the long-wavelength paths; hence, only 
traffic requests that cross a limited number of links will be serviced in the network. In terms of 
additional overhead communication (e.g., global information is required to measure the least-used 
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wavelength) LU output is worse than Random. The scheme also requires additional expense for 
storage and computation; thus, in practice, LU is not favored. 

Most-Used (MU)/PACK 

MU is the opposite of LU in attempting to find the most widely-used wavelength in the network. 
It greatly outperforms LU [7]. The overhead of communication, storage, and cost of computation 
are all close to those in LU. MU also outperforms FF marginally, packing links into fewer 
wavelengths and retaining the spare power of less-used wavelengths works more. 

Min-Product (MP) 

In multi-fiber networks Min-Product is used [7]. Min-Product is FF in a single fiber network. 
MP 's aim is to pack wavelengths into fibers so that the number of fibers in the network is 
minimized. MP computes first Eq. 11 

∏ 𝐷𝑙𝑗

𝑙∈𝜋(𝓅)

 Eq. 11 

Where 𝜋(𝓅)is the set of ties comprising path 𝓅 and matrix 𝐿 − 𝑏𝑦 − 𝑊, where 𝐷𝑙𝑗indicates 
the number of fibers assigned to bind l and wavelength 𝑗. For wavelengths 𝑗, i.e., 1 ≤  𝑗 ≤  𝑊. 
If we allow 𝑋 to denote the set of wavelengths 𝑗 decreasing the above value, then MP will select 
the lowest numbered wavelength in 𝑋. 

Least-Loaded (LL).  

Unlike MP, the LL heuristic is designed for multi-fiber networks [20], too. This heuristic selects 
the wavelength with the greatest residual capacity on the most charged contact along route p. The 
residual capacity is either 1 or 0 when used in single-fiber networks; thus, the heuristic selects the 
lowest indexed wavelength with residual capacity 1. Thus, in single-fiber networks, it reduces to 
FF. 

 𝑗∈𝑆𝓅 
𝑚𝑎𝑥 𝑀𝑙 − 𝐷𝑙𝑗𝑙∈𝜋(𝓅)

𝑚𝑖𝑛  Eq. 12 

 
Where 𝑀𝑙 is Number of fibers on link 𝑙. 
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Chapter 4 

GNN framework for Routing and 
Wavelength Assignment (RWA) 

There are basically two generic approaches to RWA. The first is to consider RWA as a 
combined problem consisting of wavelength assignment and routing problem. Generally, this is 
an NP-hard problem. To reduce the complexity of the problem, it can be decoupled into two 
separate sub-problems, the routing sub-problem, and the wavelength assignment sub-problem. 

In this chapter, we provide a detailed description of the graph neural network framework which 
is used in routing sub-problem. Then we present information about the graph generation algorithm 
which is adopted in our work in order to train and test our network. Post-processing is done to 
make sure that there a path between the pair of nodes is always found, and if the output of the ML 
framework turns out to be a valid path, it creates a path based on the output of the framework.   

Finally, we provide a detailed description of the wavelength assignment algorithms that we 
have implemented in order to make a comprehensive study.  

The framework and other process development are written in the programming 
Python language, and we use the Networkx library to create network structures. Graph net and 
Tensorflow libraries are used to implement all learning algorithms. 

4.1 Network Routing Workflow (Train Phase) 

In this thesis, we exploited the framework proposed in [16]. We use this framework to classify 
all nodes and edges in the network into two classes: Nodes and edges which are part of the shortest 
path between two nodes and the nodes and edges that are not in the path. 

Figure 12 shows the workflow of the routing process and gives information about the steps we 
run to have a valid path between the pair of nodes. 
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Figure 12: Model training blockdiagram  

 
In order to train the network, since the learning algorithm is supervised, we need target graphs 

(labeled data) and input graphs (unlabeled data). Target graphs are used in the process of error 
computation and optimization. And the input graphs are used as part of instruction. The graph is 
illustrated by attributes of the node and attributes of edge according to the graph definition. 

Graph Generation 
We used the algorithm proposed in [21]. In this method, two graphs with the same number and 

position of nodes combine to generate a fully connected graph. The graphs are geographic 
threshold graphs, but with added edges via a minimum spanning tree algorithm, to ensure all nodes 
are connected (Figure 13). 

   
Figure 13. Graph generated by proposed algorithm in [21]. Geographical graph(right) with separated nodes, 

minimum spanning tree(middle), combined graph(left) 

 

Target graph attribute vector 
Dijkstra algorithm for the shortest path problem is used to label the nodes and edges that are 

part of the shortest path. Distance is used as a weight in the Dijkstra algorithm in order to find the 
shortest path. It labels each node and edge as following (Figure 13): 
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The node/edge that belongs to the shortest path is associated with labels [0, 1]. We call them 
solution nodes and solution edges.  

The node/edge that does not belong to the shortest path is associated with labels [1, 0]. We call 
them non-solution nodes and edges. 

   
Figure 14: The original graph that the source and destination nodes are marked (Right graph), Routed path graph 
(middle graph), labeled graph showing the nodes and edges that are part of the path with “T” and others with “F”  

The labels of each node are shown in the Table 4. The same is done for attribute vectors. We 
use this labels as attribute vector. 

Table 4: Labeling of nodes in target graph  
 

Nodes 
ID 

Label Attribute 
vector 

0 False [1,0] 

1 False [1,0] 

2 True [0,1] 

3 False [1,0] 

4 False [1,0] 

5 True [0,1] 

6 True [0,1] 

7 True [0,1] 

  

Input graph attribute vector 
We use input graphs to feed the MPNN. We represent each node and edge in the graph based 

on its attributes. The attributes of the node in the input graphs consist of a five-element vector that 
is as: 

 Node x-coordinate position 
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 Node y-coordinate position 
 Weight 
 Start node 
 End node 

Weight is an exponential random value that specifies there is a connection between the nodes 
or not. 

The edge attribute is Distance. 

ML output 
Nodes and Edges in the input graph are labeled at the output of the MPNN. The labels are two-

element vectors with different values from 0 and 1 (Table 4). To classify them we interpret the 
labels and form the output classes. The Eq. 13 is applied in order to define the class. 

𝑐𝑙𝑎𝑠𝑠𝑜𝑢𝑡𝑖
=  𝑎𝑟𝑔𝑚𝑎𝑥(𝐿𝑎𝑏𝑒𝑙𝑀𝑃𝑁𝑁𝑖

) Eq. 13 

 

Table 5: Labeling in MPNN 
 

Nodes ID  Node Labels at the MPNN Output 
0 [ 6.0417661  -2.23854092] 
1  [ 3.35104672 -2.1593072 ] 
2  [-4.89505307 3.83677993] 
3  [ 5.43695683 -2.35722765] 
4  [ 0.72520728 -0.88029439] 
5  [-0.90006829 0.30690665] 
6  [-4.14749179  3.46277   ] 
7  [-4.68965861  3.7333144 ] 

 

 

Loss Computation and optimization 
The Loss function used is Softmax Cross-Entropy. This softmax function 𝑆 takes as input 

a 𝐶 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 vector 𝑧 . It outputs a 𝐶 − 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙 vector 𝑦 of real between 0 and 1. 
This function is a normalized exponential and is defined as: 

𝑦𝑐 = 𝑆(𝑧)𝑐 =
𝑒𝑍𝑐

∑ 𝑒𝑍𝑑𝑐
𝑑=1

           𝑓𝑜𝑟𝑐 = 1 ⋯ 𝐶 
Eq. 14 

The optimization process for the training phase has performed using Tensorflow’s ADAM 

optimizer in order to minimize softmax cross-entropy as the classification loss function. The Adam 
optimization algorithm is an extension of stochastic gradient descent. It is a popular algorithm in 
the field of deep learning because it achieves good results quickly.  
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In particular, our GNN configuration in encoder and decoder comprises a fully connected MLP 
with two hidden layers with 32 neurons and in the core for each message passing step three 
independent MLP with two hidden layers with 32 neurons perform for edge block, node block, 
and global block respectively (Figure 15).  

 
Figure 15. A fully connected MLP with two layers and 32 neurons in each layers 

Specifically, the network performs 15,000 training steps (each step uses 32 training graphs as 
one batch size) with an adaptive learning rate with a starting rate of 0.02. 10 rounds of message 
passing performed. Such a GNN architecture has been obtained after the number of trial and error 
experiments until satisfactory generalization results were obtained by checking the classification 
error in the train, test, and validation sets, along with stable accuracy and loss results. Such a 
manual inspection process allowed us to identify the best configuration of the parameters of the 
GNN architecture. 

4.2 Network Routing Workflow (Test Phase) 
Once the datasets have been generated and the GNN has been trained, in the test phase, we feed 

the trained network with a graph. The network labels all the nodes and edges at the decoder output. 
Since node and edges are labeled independently we must ensure the solution constitutes a 
connected and valid path, so a path checking mechanism is applied. The workflow of the test phase 
is shown in Figure 16. 
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Figure 16: Blockdiagram of proposed algorithm for routing  

According to our model, the graph network consists three parts [21] that are shown in Figure 
17. 

 

Figure 17. Graph network block 

 Encoder: Encodes the edge and node vectors independently. That means two separate 
MLPs independently map edge and node vectors into a vector with 32-elements. 

 

Figure 18. Decoder and Encoder block are using two independent MLPs for edges and nodes of the graph 

 
 Decoder: Decodes the edge and node vectors independently on each message-passing 

step. So, in the encoder, we have two separate MLPs that independently map edge and 
node vectors to a 32-elements vector. 
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 Core: applies massage passing steps N times. The input of core is a concatenation of 
the core’s output at the previous step and the encoder output. The Core block is the 
Graph Network block which is proposed in [16]. It is consist of three blocks (Figure 
17): 

 

Figure 19: Core block 

 Edge Block: Edge features will be updated using an MLP in this block. The MLP input 
is a concatenation of the preceding of edge features, and of the adjacent node features 
which are called the sender node and receiver node. 

 Node Block: Node features will be updated using an MLP in this block. Firstly, it 
aggregates the features of adjacent edges. Then a concatenation of the aggregated 
adjacent edge and the previous node features is used as the input of MLP. 

 Global Block: Global features will be updated in this block. Using the MLP a 
concatenation of aggregated edge features and aggregated node features will be updated. 

Check mechanism 
At the output of the decoder, we may have an incorrect node or edge labeled as a solution, or 

the path may be not continuous or be disconnected from source to destination nodes (Figure 20). 
So we propose a check mechanism over the path composed by node and edge independently 
labeled to verify whether the solution is a path. We will explain the pseudocode of the mechanism 
in the following.  
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Figure 20 Nodes 3 and 4 are labeled incorrectly, But the path has been obtained. 

A graph is defined by 𝐺 = (𝑉, 𝐸), where V is the set of graph nodes and E presents edge set. In 
the shortest path problem, the aim is finding a path between the source node (𝑣𝑠𝑟𝑐) and destination 
node (𝑣𝑑𝑠𝑡). The check mechanism starts from 𝑣𝑠𝑟𝑐 and traverses the solution labeled nodes, at 
each step it defines the number of possible outgoing nodes. If the number of outgoing nodes is 
zero and the current node is the destination node, it supposes that the current node is a dead-end 
node and removes it from the searching domain. If the number of outgoing nodes is equal to 1, it 
means that it has just one choice to move, so it selects that node as the next step. If the number is 
more than one, meaning that there is a multi-way or branch, it adds the node to the branch list and 
selects one of the possible nodes as the next node. The Branch list helps the algorithm to go back 
and choose the right way in case of a dead-end or wrong selected path.   
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The algorithm stops only in the case of reaching destination node or discontinuity of the path.  
Algorithm 2. Check the validity of path using node labels 

𝐺 =  (𝑉, 𝐸) 

𝐵𝑟𝑎𝑛𝑐ℎ 𝑙𝑖𝑠𝑡 =  [] 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 =  𝑣𝑠𝑟𝑐  

𝑊ℎ𝑖𝑙𝑒 𝑝𝑎𝑡ℎ =  𝑛𝑜𝑡 𝐹𝑜𝑢𝑛𝑑 

          𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠, 𝑛𝑜𝑑𝑒 𝑖𝑑 =  𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝑁𝑜𝑑𝑒𝑠(𝐺, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, 𝑛𝑜𝑑𝑒 𝐿𝑎𝑏𝑒𝑙𝑠) 

          𝐼𝑓 (𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠 =  1) 

                   𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 =  𝑛𝑜𝑑𝑒 𝑖𝑑 

          𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠 =  0) 

                   𝐷𝑒𝑙𝑒𝑡𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

                   𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒  =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑏𝑟𝑎𝑛𝑐ℎ 
                 If (branch list = empty) 
                           break 

          𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑛𝑜𝑑𝑒𝑠 >  1) 

                    𝐵𝑟𝑎𝑛𝑐ℎ_𝑙𝑖𝑠𝑡 +=  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 

                    𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 =  𝑟𝑎𝑛𝑑𝑜𝑚_𝑛𝑜𝑑𝑒 𝑓𝑟𝑜𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑛𝑜𝑑𝑒𝑠 

          𝐼𝑓(𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 =  𝑣𝑑𝑒𝑠) 

                    𝑃𝑎𝑡ℎ =  𝐹𝑜𝑢𝑛𝑑 
         Current node =  𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 

𝑒𝑛𝑑 
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For the edge labels, the same is done but the algorithm traverses solution edges to reach 𝑣𝑑𝑠𝑡 . 
Then the paths detected using both methods will be combined to get a path with more certainty. 

Algorithm 3. Check the validity of path using edge labels 
𝐺 =  (𝑉, 𝐸) 

𝐵𝑟𝑎𝑛𝑐ℎ 𝑙𝑖𝑠𝑡 =  [] 

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒 =  𝑣𝑠𝑟𝑐  

𝑊ℎ𝑖𝑙𝑒 𝑝𝑎𝑡ℎ =  𝑛𝑜𝑡 𝐹𝑜𝑢𝑛𝑑 

          𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠, 𝑛𝑜𝑑𝑒 𝑖𝑑 =  𝑂𝑢𝑡𝑔𝑜𝑖𝑛𝑔𝐸𝑑𝑔𝑒𝑠(𝐺, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑛𝑜𝑑𝑒, 𝑒𝑑𝑔𝑒 𝐿𝑎𝑏𝑒𝑙𝑠) 

          𝐼𝑓 (𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠 =  1) 

                   𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 =  𝑛𝑜𝑑𝑒 𝑖𝑑 

          𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠 =  0) 

                   𝐷𝑒𝑙𝑒𝑡𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛) 

                   𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒  =  𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑏𝑟𝑎𝑛𝑐ℎ 
                 If (branch list = empty) 
                           break 

          𝐸𝑙𝑠𝑒 𝑖𝑓(𝑁𝑢𝑚 𝑒𝑑𝑔𝑒𝑠 >  1) 

                    𝐵𝑟𝑎𝑛𝑐ℎ_𝑙𝑖𝑠𝑡 +=  𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑛𝑜𝑑𝑒 

                    𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 =  𝑟𝑎𝑛𝑑𝑜𝑚_𝑒𝑑𝑔𝑒 𝑓𝑟𝑜𝑚 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑒𝑑𝑔𝑒𝑠 

          𝐼𝑓(𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 =  𝑣𝑑𝑒𝑠) 

                    𝑃𝑎𝑡ℎ =  𝐹𝑜𝑢𝑛𝑑 
         Current node =  𝑁𝑒𝑥𝑡 𝑛𝑜𝑑𝑒 

𝑒𝑛𝑑 
 
In the check mechanism one of the following states will be reached. 

1. The shortest path will be detected by tracking the node labels or edge labels (Figure 21). 
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Figure 21: The shortest path is detected by both edge labels and node labels (Large nodes are solution 

labeled nodes, thicker edges are solution labeled edges). 

2. The shortest path will be detected by tracking one of the node/edge labels and will not be 
detected by the other (Figure 22). 

 
Figure 22: The Shortest Path is detected by tracking node labels, while by following edge labels the shortest 
path will not be achieved (large nodes are solution labeled nodes, thicker edges are solution labeled edges). 

3. The path (not shortest) will be detected by tracking the node labels or edge labels (Figure 23). 



39 
 

 
Figure 23: The real shortest path(Left), the path detected by following the node/edge labels which is not the 

shortest one (Right)    

4. The path (not shortest) will be detected by tracking one of the node/edge labels and will not be 
detected by the other (Figure 24). 

 
Figure 24: The Path (not shortest) is detected by tracking node labels, while by following edge labels the 

path will not be achieved (large nodes are solution labeled nodes, thicker edges are solution labeled edges). 

5. The path will not be detected (Figure 25). 
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Figure 25: The path is not detected neither by following node labels nor edge labels. (large nodes are 

solution labeled nodes, thicker edges are solution labeled edges) 

Path recovery 

When the check algorithms do not succeed in finding a path, we proposed the Path recovery 
algorithm in order to find a path (Figure 26). The algorithm is implemented as follows: 

1. It builds a graph using as link lengths (weights) the labels provided by the neural network as 
output as follows: 

 If the link is in the solution (label 1) then the link length is 0. 
 If the link is not in the solution (label 0), then the link length is 1. 

2. Runs the Dijkstra algorithm on such a graph to find the shortest path between source and 
destination based on the new weights (Figure 27). 
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Figure 26: Path recovery  

 

 
Figure 27: The real shortest path is in left graph, the output labels of our model is in middle image which shows 
the path has not detected using both node/edge labels. Path is recovered using path recovery algorithm (Right). 

4.3 Wavelength Assignment 
In our study, we focus on the Dynamic RWA problem and the online algorithms that are 

proposed in the literature to solve this kind of problem. Also, we assume dynamic path operation 
in WDM transparent optical networks where each path setup/teardown request will be processed 
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immediately upon its arrival. No wavelength conversion or signal regeneration is applied 
(wavelength-continuity constraint).  

For the case in which lightpaths arrive one at a time (either incremental or dynamic traffic), 
heuristic methods must be used to assign wavelengths to lightpaths. For the dynamic problem, 
instead of attempting to minimize the number of wavelengths as in the static case, we assume that 
the number of wavelengths is fixed (this is the practical situation), and we attempt to minimize the 
connection blocking probability [19]. 

 

4.3.1 Traffic generation 
Traffic requests are generated in accordance with a Poisson process and their holding times 

follow a negative exponential distribution.  Each traffic request consists of a source node (𝑣𝑠𝑟𝑐), 

destination nodes (𝑣𝑑𝑠𝑡), and one channel to be allocated on one lambda. A lightpath is set up for 
each connection request as it arrives, and the lightpath is released after some of the holding time 
of the traffic request. 

Traffic request = (𝑣𝑠𝑟𝑐 , 𝑣𝑑𝑠𝑡 , 𝑐ℎ𝑎𝑛𝑛𝑒𝑙) Eq. 15 

4.3.2 Layered Graph Generation 
In order to implement the RWA in optical networks, we use the Dynamic routing algorithm 

based on the layered–graph model. This method consists e in the following steps: 
1. Consider we have an optical network 𝐺 (V, E, W) 

Transform G into a layered graph 𝐺’(𝑉’, 𝐸’). Means that we create a copy of the network for each 
wavelength. 

2. Wait for a request. 
If it is a lightpath connection request from access Node s to access Node d, s, d ∈V, 
Go to Step 3, 

3. Find a shortest (i.e., cheapest) path p in 𝐺 from Node s to Node d (e.g., by Dijkstra’s algorithm 
or our method). 

4. Find the appropriate wavelength along the path. By checking all the layers and looking at the 
available capacity of every individual link in the selected path 𝑝.  If the cost of the path 𝐶𝑝 =

 ∞, block the request; 

Otherwise, accept the request and set up the lightpath along the shortest path. 
Update the cost of the intra–layer edges on path p to ∞. 

5. Hold the path for the connection for the requested hold time, then release the path and set the 
cost of the intra–layer edges on the to 𝐶𝑝 =  0. 
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4.3.3 Implementation of Heuristic Wavelength assignment methods 
To evaluate the efficiency of our implemented RWA using GNN, the following experiments 

has been designed: 
We generate requests and try to accommodate them using Random wavelength assignment, 

first-fit (FF), and Least Used (LU) schemes. In order to route the traffic requests, we exploit our 
proposed method and the Dijkstra algorithm. Finally, we make a comparison between the 
aforementioned schemes and routing methods and report the blocking probability for each method. 

The way we implemented the experiments is described in the following. 

Dijkstra routing, Random Wavelength assignment scheme 

According to Figure 28 we generate the traffic requests and route each traffic request using 
the Dijkstra algorithm in order to have the shortest path. We then assign the wavelength 
randomly between available wavelengths. 

 
Figure 28: Random WA and Dijkstra routing block diagram 

GNN routing, Layered graph, Random Wavelength assignment scheme 

To compare the aforementioned method with our proposed method, we implement the 
following process (Figure 29). In this case, we use the ML-based routing instead of Dijkstra and 
we used Random wavelength assignment over the layered graph in order to assign an available 
wavelength to the request [22]. 
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Figure 29: GNN routing, Layered graph, Random Wavelength assignment block diagram 

Dijkstra routing, First-Fit Wavelength assignment scheme 

 In this experiment, to route a path between sender and receiver nodes we have exploited 
Dijkstra and used the FF wavelength assignment method (Figure 30). 

 
Figure 30: First-fit WA and Dijkstra routing block diagram 

GNN routing, Layered graph, First-Fit Wavelength assignment scheme 

In This experiment, to obtain first-fit approach, we add to the link weights a term 𝑙𝑎𝑚𝑏𝑑𝑎 ∗

𝑒𝑝𝑠𝑖𝑙𝑜𝑛 (normally the link weights are distances), where epsilon is a small quantity (e.g. 0.1) and 
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lambda is the index of the considered wavelength (i.e., the leftmost wavelength has lambda=0, the 
first one has lambda =1 etc.). This way, the leftmost wavelengths should be preferentially used. 

If a feasible assignment is found, allocate the traffic request, otherwise, the request is blocked. 

 
Figure 31: GNN routing, Layered graph, First-fit Wavelength assignment block diagram 

Dijkstra routing, Least Used Wavelength assignment scheme 

 In this experiment, to route a path between sender and receiver nodes we have exploited 
Dijkstra and used LU wavelength assignment method (Figure 32). In the LU we choose the 
wavelength that the least used in the network. 

 
Figure 32: Least-used WA and Dijkstra routing block diagram 
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GNN routing, Layered graph, Least-Used Wavelength assignment scheme 

In this experiment, the RWA is done using GNN and Least Used scheme over layered graph 
(Figure 33). 

  
Figure 33: GNN routing, Layered graph, Least-used Wavelength assignment block diagram 

4.4 Performance evaluation metrics 

The last subsection is characterized by the description of the metrics involved in the routing 
accuracy measurements (node and edge classification problem) and the explanation of the metrics 
that are used in the evaluation of wavelength assignment algorithms. 

4.4.1 Routing performance evaluation 
Our routing solution is divided into two subsections, first is the evaluation of the performance 

of the node/edge classifier. Second related to the path detection algorithm. 
 
Node/edge classifier performance metrics are as following. 

STR (training fraction examples solved correctly):  

𝑆𝑇𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑜𝑙𝑣𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Eq. 16 

STR is the `float` fraction of training graphs that are completely correctly labeled. 
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SGE (test/generalization fraction examples solved correctly): 

𝑆𝐺𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑠𝑜𝑙𝑣𝑒𝑑 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Eq. 17 
 

SGE is the `float` fraction of test/generalization graphs that are completely correctly labeled. 

CTR (training fraction of nodes/edges labeled correctly): 

𝐶𝑇𝑅 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Eq. 18 
 

CTR is the `float` fraction of correctly labeled nodes/edges in training dataset. 
  

CGE (test fraction of nodes/edges labeled correctly): 

𝐶𝐺𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑙𝑎𝑏𝑒𝑙𝑒𝑑 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠/𝑒𝑑𝑔𝑒𝑠 𝑖𝑛 𝑡𝑒𝑠𝑡 𝑑𝑎𝑡𝑎𝑠𝑒𝑡
 

Eq. 19 
 

CGE is the `float` fraction of correctly labeled nodes/edges in test dataset. 
 

SG (fraction of graphs solved correctly): 

To evaluate the path detection algorithm, we define the Solved Graph (SG) metric: 
This metric is the `float` fraction of correctly solved graphs. The correctly solved graphs are the 
graphs where a feasible path between pair of sender and receiver nodes has detected. 

𝑆𝐺 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 correctly solved graphs

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑒𝑠𝑡𝑒𝑑 𝑔𝑟𝑎𝑝ℎ𝑠
 

Eq. 20 
 

 

4.4.2 Wavelength assignment performance evaluation 
Consider a WDM optical network architecture in which the lightpaths between the access nodes 

are set up dynamically, i.e., on-demand. Whenever a new lightpath is requested, the dynamic 
routing scheme either selects an available path, or it blocks the request if no such path can be 
found. However, if multiple paths exist, the “best” path that is likely to minimize blocking in the 

future should be selected. Unfortunately, finding the “best” path is not straightforward. In fact, it 
has been proved to be an NP-complete problem. So to evaluate the wavelength assignment 
algorithm we use the Blocking Probability metric.  
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𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑢𝑠𝑒𝑑 𝑝𝑎𝑡ℎ𝑙𝑖𝑔ℎ𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑡ℎ𝑙𝑖𝑔ℎ𝑡 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
∗ 100 

Eq. 21 
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Chapter 5 

Results 

In this chapter, both the results of the routing algorithm and wavelength assignment technique 
are reported. In the first section, the results obtained in the routing algorithm on the variety of 
network topologies are shown. The second section reports the results achieved by different 
wavelength assignment techniques which we have implemented in this study. 

 

5.1 ML Based Routing Results 
In this section, we first look at how dataset graphs are generated and give a complete description 

of the dataset. Then we report the performance of the proposed method for the routing problem.  

5.1.1 Dataset Generation 
We perform experiments on synthetic datasets. In the database, graphs are a superposition of 

geographical threshold graphs and minimum spanning tree graphs.  
The geographical threshold graph model allocates n nodes uniformly at random in a rectangular 

domain. Every node u is assigned a weight 𝑤𝑢. An edge connects two nodes u and v if: 
𝑤𝑢 +  𝑤𝑣 ≥ 𝜃𝑟{𝛼} Eq. 22 

Where 𝑟 is the Euclidean distance between u and v, and 𝜃, 𝛼 are parameters. 
Then we compute a minimum spanning tree over the nodes. A minimum spanning tree (MST) 
or minimum weight spanning tree is a subset of the edges of a connected graph that connects all 
the nodes together, without any cycles and with the minimum possible total edge weight. 
In the case of the geographical threshold graph, we may have some graphs with disconnected 
portions, so in order to avoid the presence of disjoint nodes and having connected graphs, we 
combine these two graphs. 

5.1.2 Dataset Statistics 
In this study, we train our GNN with different sizes of network topology and we test the GNN 

in order to evaluate the scalability and the ability of generalization of our method. 
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We train the network with graph topologies with 10~200 nodes and test with graphs with 
10~400 nodes. 

5.1.2 GNN Hyperparameters 
To optimize the hyperparameter, a grid search has been used and the optimal parameters have 

been obtained by searching exhaustively through a specified subset of hyperparameters.  
Optimized parameters are as following: 

 Number of Message Passing Steps  
 Number of  Iterations 
 Learning rate 
 Number of hidden Layers  
 Number of Neurons in each layer 

To analyze the parameters, we used the same set of graph topologies to make the results 
comparable.  

Change of the Number of Message Passing Steps  

Here we changed the Number of Message Passing Steps (Table 6) in the framework and we 
analyzed the effect of changing this parameter over the GNN performance.  

 Table 6: Change the MP steps 

Iterations 
Message 

Passing 
steps 

Learning 
Rate 

Number 
of  Layers 

Number 
of  

Neurons 

Time  
(Hours) STR 

10000 8 1e-3 2 16 0.58 0.9233 
10000 10 1e-3 2 16 0.67 0.9433 
10000 12 1e-3 2 16 0.73 0.9437 
10000 14 1e-3 2 16 0.79 0.9509 
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Change the Learning rate 

 Table 7: Change the learning rate 

Iterations Message 
Passing 

steps 

Learning 
Rate 

Number 
of  Layers 

Number 
of  

Neurons 

Time  
(Hours) 

STR 

10000 10 1e-1 2 16 1.04 0.8333 
10000 10 1e-2 2 16 0.79 0.9397 
10000 10 1e-3 2 16 0.67 0.9433 

 

Change the Number of hidden Layers and neurons in each layer 
 Table 8: Change the number of neurons 

Iterations Message 
Passing 

steps 

Learning 
Rate 

Number 
of  Layers 

Number 
of  

Neurons 

Time  
(Hours) 

STR 

10000 10 1e-3 2 16 0.67 0.9433 
10000 10 1e-3 2 32 0.9 0.9570 
10000 10 1e-3 2 64 1.7 0.9627 
10000 10 1e-3 3 16 0.78 0.9085 
10000 10 1e-3 3 32 0.99 0.9310 
10000 10 1e-3 3 64 1.89 0.9528 

Adaptive learning rate (LR) 

In this test, we assume the same values for all the parameters in the framework, and we used 
both fixed and adaptive learning rate. Two tables (Table 9, Table 10) show that adaptive LR instead 
of fixed LR has a better STR factor. 
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 Table 9: Fixed and Adaptive LR with 2 hidden layers 

Iterations Message 
Passing 

steps 

Learning 
Rate 

Number 
of  Layers 

Number 
of  

Neurons 

Time 
in Hours 

STR 

10000 10 Fixed 2 32 0.9 0.9570 
10000 10 Adaptive 2 32 0.93 0.9840 

 

 Table 10: Fixed and Adaptive LR with 3 hidden layers 

Iterations Message 
Passing 

steps 

Learning 
Rate 

Number 
of  Layers 

Number 
of  

Neurons 

Time  
(Hours) 

STR 

10000 10 Fixed 3 32 0.99 0.9310 
10000 10 Adaptive 3 32 1.0 0.9632 

 
By tuning the above parameters, the following settings achieved. 
We used 10 rounds of message passing, Adaptive learning rate, 10000 for the iterations, Although 
the model with 3 hidden layers has shown slightly better results in terms of factor STR, it 
significantly increases the time complexity in the model, so we used two hidden layers and 32 
neurons in each layer in the model configuration for further experiments.  

Node/Edge classifier performance evaluation 
To evaluate the performance of the GNN classifier and routing algorithm we have conducted 

different experiments. 

Experiment 1 

In the first experiment, we have trained the classifier with graphs with 10~15 number of nodes. 
After every 20 iterations (total number of iterations is 10000), we run the validation process and 
feed the classifier with the same size graphs, then we compute the performance metrics. These 
metrics will be presented in the following.  
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Figure 34: Fraction of correct labels (CTR/CGE) during train phase and validation test in Exp1. 

 
Figure 35: Fraction of solved graphs (STR/SGE) during train phase and validation test in Exp1. 

In Figure 34, it is shown that only a few labels are incorrect at the end of the training. 
Remember that, this metric does not capture whether or not the shortest path is found and we 
consider both solution and non-solution labels. Because the majority of nodes/edges are 
correctly labeled as non-solution in this metric, the value closely approaches to 1. 

Figure 35 shows that after training, the classifier has correctly classified nodes/edges labels 
and 98% of the shortest paths are identified correctly. 

Experiment 2  

Train with Graphs with 10~15 number of nodes. 
Validation with Graphs with 15~30 number of nodes, 
In this experiment we evaluate how well the models generalize to graphs which are up to twice 

as large as those on which they were trained.  
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Figure 36: Fraction of correct labels (CTR/CGE) during train phase and validation test in Exp2. 

 
Figure 37: Fraction of solved graphs (STR/SGE) during train phase and validation test in Exp2. 

The Figure 36 shows that the classifier in the training phase could correctly classify almost all 
of the nodes/edges in the training graphs at the last iterations and about 90% of the validation 
graphs (Figure 37).  

Experiment 3 

Train with Graphs with 30~40 number of nodes. 
Validation with Graphs with 30~40 number of nodes, 
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Figure 38: Fraction of correct labels (CTR/CGE) during train phase and validation test in Exp3. 

 
Figure 39: Fraction of solved graphs (STR/SGE) during train phase and validation test in Exp3. 

In the Figure 38, the classifier in the training phase could correctly classify almost all of the 
nodes/edges in the training graphs. In Figure 39, in the last iterations the classifier’s accuracy 
reaches to about 98% of the train/validation graphs.  

 

Experiment 4 

Train with Graphs with 30~40 number of nodes. 
Validation with Graphs with 60~80 number of nodes, 
In this experiment, we also evaluate how well the models generalize to graphs which are up to 

twice as large as those on which it was trained.  
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Figure 40: Fraction of correct labels (CTR/CGE) during train phase and validation test in Exp4. 

 
Figure 41: Fraction of solved graphs (STR/SGE) during train phase and validation test in Exp4. 

This experiment shows the model can be generalized for the graphs which are larger than the 
graphs that were it has seen during training time.  

Experiment 5 

Train with Graphs with 120~150 number of nodes. 
Validation with Graphs with 120~150 number of nodes, 
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Figure 42: Fraction of correct labels (CTR/CGE) during train phase and validation test in Exp5. 

 
Figure 43: Fraction of solved graphs (STR/SGE) during train phase and validation test in Exp5. 

In the Figure 42, the classifier in the training phase could correctly classify almost all of the 
nodes/edges in the training graphs. In Figure 43, in the last iterations the classifier’s accuracy 

reaches to about 98% of the train/validation graphs.  

Experiment 6 

Train with Graphs with 120~150 number of nodes. 
Validation with Graphs with 240~300 number of nodes, 
In this experiment, we also evaluate how well the models generalize to graphs which are up to 

twice as large as those on which it was trained.  
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Figure 44: Fraction of correct labels (CTR/CGE) during train phase and validation test in Exp6. 

 
Figure 45: Fraction of solved graphs (STR/SGE) during train phase and validation test in Exp6. 

According to the results, it can be concluded that the classifier has performed well in identifying 
the label of nodes and edges in train dataset graphs and the shortest path has not been found except 
for a few graphs in the database. However, in graphs where all of the nodes/edges have not labeled 
correctly and we have reported them as not solved graphs, it is possible that solution node labels 
or edge labels indicate the shortest path or solution node/edges may provide a valid path between 
the sender and receiver, which we will examine in the next section. 

Routing performance evaluation 
In this section, we used the models which we had trained in the previous section, to define the 

detected path performance we run the check mechanism over the output of the classifier. We do 
some experiments over the models which are trained in the previous sub-section and the SG metric 
will be reported. This metric shows the ability of our method in the case of routing. 

To have reliable results, we generate a test dataset containing 1000 graphs with different sizes 
as follows. 
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Test 1 

 In this experiment, we have leveraged the trained network in the Experiment 1 and we generate 
1000 graphs, each graph has 15 ~ 30 number of nodes. 

SG = 1.0 
This experiment shows that the framework can solve the shortest path problem for the graphs 

which are two times bigger than the graphs we used in the training phase. 
According to Figure 37, we can see that the network solves about 90% of all tested graphs with 

sizes bigger than training graphs, But here we get 100% solved graphs. It shows that even if we 
cannot solve the problem by node labels, the problem can be solved by tracking edge labels or vice 
versa. 

Test 2 

 In this experiment, we have leveraged the trained network in Experiment 3 and we generate 
1000 graphs, each graph has 60 ~ 80 number of nodes. 

SG = 1.0 

Test 3 

In this experiment, we have leveraged the trained network in Experiment 5 and we generate 
1000 graphs, each graph has 300 ~ 400 number of nodes. 

SG = 0.998 
The obtained value of SG shows that the model could find the path in 998 graphs out of 1000 

input graphs.   
As we can see, in some cases that the shortest path has not been correctly detected by the model. 

A valid path (not shortest) is detected by edge labels or node labels and just about less than one 
percent of the whole test dataset that the path has not achieved. For these cases we run the Path 
recovery to get a valid path, this algorithm uses Dijkstra [6] and guarantees the path. 

5.2 Wavelength assignment numerical results 

In this section performance of the dynamic routing algorithm has been studied via simulations. 
The simulations are conducted on randomly generated networks of different sizes. For each 
network configuration, the simulations results are averaged over ten random network topologies. 
Lightpath requests are assumed to arrive according to a Poisson process with mean arrival rate r, 
this rate has been set in our following experiment equal to 10. Holding times of the lightpaths are 
exponentially distributed with the 𝜇 = 3.0. The probability distribution of the arrival time and the 
holding time of the lightpath requests have been shown in Figure 46 and Figure 47 respectively. 
Also, once a lightpath request is blocked, it is removed from the lightpath – request queue. The 
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traffic pattern is assumed to be uniform, that is, the lightpath requests are uniformly distributed 
over all the access node pairs. 

 
Figure 46: PDF of arrival times of the lightpaths 

 
Figure 47: PDF of holding times of the lightpaths 

To evaluate the performance of the implemented algorithms which are explained in previous 
chapter, we performed the following experiment. 

In this experiment, a graph with 100 nodes is generated, the number of wavelengths is set to 8. 
In each run of the experiment, a number of requests with the aforementioned specifications have 
been generated. Each lightpath request asks for a route from a sender node to a receiver node over 
a wavelength. Once a request arrives, either it will be accommodated in the graph by the 
wavelength assignment algorithm or it will be blocked. We analyze the blocking probability 
related to each wavelength assignment algorithm by a different number of lightpath requests 
(Figure 48). 
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In order to accommodate lightpath requests, we have exploited two different methods for 
routing in addition to random (R), First-fit (FF), and Least-used (LU) heuristic methods for 
wavelength assignment. In our suggested method we have exploited layer-graph model. 

 
Figure 48: Blocking probability against number of requests 

 
The performance of 100–node graphs with 8 number of wavelengths per link is shown in Figure 

48. The figure shows the average blocking probability of the lightpath requests as a function of the 
number of arriving lightpath requests. 

According to the results, we obtain that the layer graph model can improve the blocking rate 
slightly. For example, when the number of lightpath requests is 700, blocking probability in the 
set of lightpath requests that served by our method is lower than the other methods. The reason for 
the decrease in the blocking probability is that whenever a request arrives we may have different 
paths in each layer and if a route between the sender node and receiver node is busy, the algorithm 
tries to find another path. So this reduces the blocking probability in our method. 
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Chapter 6 

Conclusion 

Recently, much attention has been devoted to the question of whether/when traditional network 
protocol design, which relies on the application of algorithmic insights by human experts, can be 
replaced by a  data-driven (i.e., machine learning) approach. We explore this question in the 
context of the arguably most fundamental networking task: routing and wavelength assignment.  

RWA is conceived and solved in small to medium-sized network topologies using Integer 
Linear Programming (ILP), which offers efficient (e.g., cost-minimized) solutions to the detriment 
of complicated, time-consuming, and expensive computations because the problem is understood 
to be NP-hard. Throughout the literature, suboptimal heuristic algorithms are proposed for 
speeding up the RWA process throughout large network topologies. 

In our study, we divide the routing and wavelength assignment into two problems. In this thesis, 
we have tried to exploit graph neural networks to solve the routing problem in large optical 
networks. Graph neural networks are new techniques of machine learning which are recently 
becoming very popular among researchers in solving network optimization problems. Existing 
graph Neural Network (GNN) architectures have limited power in capturing the position / location 
of a given node with respect to all other nodes of the graph while in the problems such as finding 
the shortest path between a pair of nodes in a graph capturing the position of the nodes is very 
crucial. In order to address this issue, we have exploited the message passing neural network 
(MPNN) which is the new class of GNN. In the wavelength assignment, we implemented various 
heuristic methods and make a comprehensive study. Our results showed that the proposed method 
can work well for large optical networks and showed reliable results for any kind of network 
topology and provide the solution in an acceptable time in comparison to heuristics.  
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Chapter 7 

Future Work 

Although the provided analyses and methodologies are quite good, there are some 
improvements that can still be made.  

In this context we will survey some of the provided results which can be improved or extended 
further. This section also briefly describes some interesting research topics, which are worth 
investigating further. Here are these points:  

1. As we have mentioned in the thesis, we divided RWA problem into two separated problems 
that decreases the complexity of the solution. Our suggested framework to solve the routing 
problem can also be used for wavelength assignment problem just by adding some other 
features to the links and nodes. These features can be link betweenness, available capacity 
in each link and number of connections that are passing across each node. Merging the two 
steps, can significantly increase the speed of RWA. 

2. We have used 10 rounds of message passing in order to get information from others nodes 
and links in the network in our experiments. Although it has good and satisfying results, but 
because of large number of computations it increases the computational complexity of the 
solution. This can be improved if we get the information from randomly selected 
neighboring nodes and links. It can provide a good overview of the whole network for each 
node and link. This method called PGNN which is comprehensively described in [17].  
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