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Abstract

In countries which have to deal with the electrical energy supply to several
and small islands, wind farms, oil wells and other users by the sea, a local
power production is often not possible, not convenient or with a low efficiency.
For these reasons in the last century, and above all in the last decades with a
growing interest from the research field, the employment of submarine power
cables to provide electrical power to the less accessible users is increasing. After
the installation, the main problem for these systems is their life expectation,
thus the study of their creep-fatigue behaviour. The life of these cables, which
is determined by the most critical layer (the water-blocking Pb sheath) was
incremented in several ways: from the alloys’ composition choice to the realization
of other supporting layers. In a previous work was demonstrated the beneficial
effect of the application of a galvanized steel tape, which limits the radial
expansion, thus deformations, owing to the warming up for Joule effect. Despite
of that, during its winding, several irregularities arise on the underlying lead
sheath and their effect on the fatigue life expectation is the main topic of this
work. In particular, an irrelevant damaging impact was shown.
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Chapter 1

Introduction

The main target of this work is the life loss estimation of a submarine power
cable, owing to the presence of geometrical irregularities on the lead sheath.
This consists in the usage of a constant geometrical factor q (notch sensitivity),
which for practical reasons was computed from simplified fatigue tests performed
on hourglass-shaped lead specimens. for this reason, the first part of the work
is focused on the study of the fatigue results of lead specimens. This allows to
estimate q, which was then used in order to evaluate the percentage life loss in a
real power cable configuration.

The submarine power cables have been used since the last century in different
applications. Their design elements and the materials choice had been mainly
done on the experience foundations and only in the last decades a research
literature is growing upon this topic. In this chapter, a brief introduction about
the main applications and construction elements of these systems is faced, with
a more in deep discussion about the water-blocking Pb sheath and on the lead
alloys’ properties. The submarine power cables can be used in several situations
and few examples are introduced [24]:

• Power supply to islands, where if the distance is closer than 30 km this
cables are generally of medium voltage (≤ 52 kV );

• Offshore wind farms (OWP), where the distance between each wind turbine
generators is near to 300− 800 m (see Figure 1.1);

• Supply of marine platforms, where the power is usually produced from a
local gas turbine at rather low efficiency.

In this work, the cables of interest are called HVDC (High Voltage Direct Current).
These are in general characterised by a power transmission up to 600 MW with a
voltage of about 500 kV . For this reason, these cables are subjected to remarkable
warming owing to Joule effect, since a current of ≈ 1 MA flows on the conductor.
Thus, starting from the power cable configuration studied in this thesis, the main
construction elements are discussed and few other technological alternatives are
introduced.

8
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Figure 1.1: Layout of an offshore wind farm [24]

1.1 Cable Construction Elements
In the last decades a lot of different submarine power cable types have

been used and tested in several context. Despite some differences between each
configuration in terms of number of layers, geometries and materials, each of
them has the same primary elements indicated in Figure 1.2 (which is the studied
one in this thesis work). Here, only the most relevant layers are labelled, even if
in between of each of them secondary layers and tapes are winded. In particular,
the studied cable is made by 15 elements, which are listed in the following,
starting from the most internal one [16]:

1. Conductor;

2. Carbon black paper tapes;

3. Insulation, which is the thicker layer after the conductor;

4. Carbon black paper and metallized paper tapes;

5. Copper woven fabric tape;

6. Lead sheath E-alloy;

Figure 1.2: Nexans Norway cable section
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Figure 1.3: Conductor design [24]

7. Polyethylene (PE) layer;

8. Semi conductive nylon tape;

9. Galvanized Steel tape;

10. Semi conductive nylon tape;

11. Armour, galvanized Steel GR34;

12. Semi conductive nylon tape;

13. Armour, galvanized Steel GR34;

14. Plastic coated polyester tape;

15. High Density Polyethylene (HDPE).

Thus, a brief description of the main important of them is provided:

Conductor The conductor can be made of copper or aluminium. The last one
has an higher electrical resistivity, a limited corrosion resistance and a
lower density with respect to copper. On the sea floor, an heavier cable
can be more stable and less excited by waves and currents, for which an
high purity copper core is generally preferred.

The conductor is always placed at the cable centre and protected by the
external layers, but depending on the specific application it can be made
by wires of different shapes and profiles, as plotted in Figure 1.3.
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Figure 1.4: Mass impregnated paper tapes [8]

Insulation The conductor is always protected by an electrical insulation system,
which avoids short circuits occurrence, that must be mechanically robust
and resistant to the temperature, humidity and ageing. In the Nexans
Norway’s power cable this layer consists in impregnated paper tapes, also
calledmass impregnated paper tapes (MI), thus a mixture of Kraft paper and
high viscosity impregnant (mineral oil T2015, which has a non-Newtonian
rheological behaviour) [11]. This is the most common choice when HVDC
cables are manufactured and a graphical representation of this layer is
reported in Figure 1.4, where the paper tapes are winded in two different
configurations. This is a delicate layer, "since strong thermal expansion
could lead to high stress levels, while the pressure drops occurring during
cable cooling might reduce the dielectric strength by introducing voids"
[11]. Furthermore, in the operating conditions the dielectric strength is
much higher than for the cold cable [24].

Another usual choice for the insulation layer consists in the cross-linked
polyethylene (XLPE) layer. In any case, in order to obtain a smooth
interface between the copper conductor and the insulation layer, the
external Carbon black paper tapes are used. This, such as the other tapes,
allows to reduce stress enhancement owing to local irregularities, which
would reduce the dielectric strength. Other solutions can be more suitable
for other specific applications [24].

Lead layer Externally to the insulation layer, the Water-Blocking Sheath is
placed. As well as for the other layers, also in this case there are few
different material choices, which are mainly:

• Lead (Pb);

• Aluminium (Al);

• Copper (Cu).

In particular, this thesis is focused on the study of this water-blocking
layer, which is made by a lead alloy called E-alloy. Its composition and
mechanical properties are a discussion topic of the next subsection.

Steel tape The galvanized steel tape is used in order to provide radial sustain-
ment, which is necessary during the thermal expansion of the inner layers.
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Figure 1.5: Three-phase submarine cable with double-layer round wire rock armor-
ing [24]

In particular, the MI-paper has an high thermal expansion coefficient,
which would lead to unbearable deformations especially for the lead layer.

Among this and the other steel components the semi conductive nylon tape
allows to reduce the stresses from a direct contact, further than reducing
the frictional coefficient.

Armoury Finally, the tension stability (mainly during installation, where ten-
sional forces owing to the cable weight could exceed lead resistance) and
mechanical protection are provided by the armoury. This consists in a
series of steel wires with helical disposition placed externally to the steel
tape, and an example of a cable with a combination of layers called rock
armouring is reported in Figure 1.5. Several solutions in terms lay length
and consequences can be found [24]. In particular, in the Nexans Norway
cable, a rock armoury is used, where the first set of galvanized wire steels
(thus the most internal one) has an angle of 12.7◦ with respect to the axial
direction, while the second layer has an angle of −10.5◦ [16].

Finally, a brief description of the main lead alloys and of the used one for the
water-blocking layer is faced.

1.2 Lead Alloys
In order to improve the fatigue performances of the submarine power cables,

the usage of the steel tape was demonstrated to be useful [16]. Despite of that,
the tape winding origins some irregularities on the lead sheath, which is a very
soft and ductile material. This thesis faces the influence of these irregularities
upon the fatigue life of the power cable, thus is focused on the lead layer. For
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Table 1.1: E-alloy composition [12]

Pb Sn Sb

99.3 0.45 0.25

this reason, a brief section is dedicated to the description of the main lead alloys
properties, further then a more in deep discussion about PbSnSb alloy (also
called E alloy), which is the adopted one. In particular, its composition is
reported in Table 1.1.

Pure lead is never used and it’s commonly alloyed with other elements in
order to improve its mechanical and electrochemical properties. Usually binary
phase diagram are introduced, thus tertiary alloys are discussed. All the following
figures, data and discussions were resumed from Reference [10].

Pb Binary Alloys
Pb binary phase diagrams are classified into four main groups, in function of

the compatibility between lead and the alloying elements in terms of atomic size,
electronegativity and valence. In particular, the group of interest (called Group
2 ) involves alloys mainly made by Sn, Sb, As and Ag.

Since the used lead alloy contains tin (Sn) and antimony (Sb), their binary
phase diagrams and main properties are discussed:

• Antimony is used in order to create Pb-Sb alloys with high tensile strength,
resistance to fatigue and high hardness with respect to the pure lead.
Usually, the adopted Sb percentage is in between 1÷ 13%. Owing to their
properties, these alloys are usually used for pipe and cable sheathing.

The phase diagram is plotted in Figure 1.6, while more in-deep discussions
about the mechanical (such as age hardening for alloys with greater than
3.5% Sb) and material properties can be found in Reference [10];

• Pb-Sn alloys containing up to 3% Sn are used in cable sheathing and its
phase diagram is reported in Figure 1.7 [10]. Furthermore, lead alloys low
in tin are used for their higher corrosion resistance. Further informations
can be found in Reference [10].

Antimony and tin effect can be combined in order to create ternary alloys.

Pb Tertiary Alloys
Pb-Sb-Sn alloys are the mostly used in cable sheathing (owing to their fatigue

and corrosion resistance) and its phase diagram is plotted in Figure 1.8. In
particular, alloys E are the most common and their chemical composition is
around 0.4% Sn and 0.2% Sb, together with a negligible percentage (usually
< 0.01%) of other elements like Cu, Bi, and Ag [10]. The mechanical behaviour
of this alloy is characterised by a significant thermal activated plastic flow
(creep). Indeed, even when its working at room temperature conditions, it
has an homologous temperature around 0.5 [10]. Furthermore, recovery and
recrystallization (which is sensitive to the amount of prior deformation and
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Figure 1.6: Pb-Sb phase diagram [10]

Figure 1.7: Pb-Sn phase diagram [10]
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Figure 1.8: Pb-Sb-Sn phase diagram [10]

operating temperature, and it can be slowed by the presence of Sn) are the
other main peculiarities of lead alloys. Since the lead behaviour is strongly time
dependent, tensile and fatigue tests are usually performed at different strain
rates. Again, further informations can be found in Reference [10].

After this brief introduction to the topic of the thesis, a review of the main
important theoretical aspects is introduced. In the next section, all the arguments
which were useful during the thesis development are contained.



Chapter 2

Theory Review

The aim of this brief section is not to explain and resume every aspect of
fatigue theory, but to review elements and topics which were faced during the
thesis development. In particular, the following sections are introduced:

• Fatigue phenomenon:

– Tests peculiarities;
– Local behaviour;
– Main fatigue laws;
– Notch effect.

• Creep phenomenon:

– Creep stages;
– Main traditional creep laws;
– Time-hardening and strain-hardening problems.

2.1 Fatigue Phenomenology
Seeing as in the real-word service components are always subjected to cyclic

loads (which can vary in amplitude and frequency), thermal stress and other
conditions, a statical design is almost never enough. Thus, in order to describe
the materials behaviour and their response in the most recurrent set of variables
a new theory must be studied and fitted for each occasion. Creep is an example,
which theory tries to describe how materials are behaving when they are working
in high temperature conditions. Fatigue is another main theory which describes
how materials are behaving when they are not solicited by monotonic loads.
Indeed, their response is always time dependent and, if this peculiarity has
enough time to show up, new breakdown phenomenon are arising. Furthermore,
the fatigue failure is apparently brittle as it is not preceded by large plastic
deformations. Since few signs of failure are evident in this phenomenon, several
studies during the last centuries were conducted, in order to understand which is
the failure cause and how to predict fatigue failure in several working conditions.

Starting from a brief explanation of the fatigue testing conditions, few main
aspects of theory were described, like S-N curve and Coffin-Manson-Basquin

16
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Figure 2.1: Random load example [3]

equation, crack propagation stages, hysteresis loop and notch effects in fatigue
life.

2.1.1 Fatigue Test
During production, installation and service, the submarine power cable is

excited by axial forces, bending, torsion and contact loads with a random
sequence and amplitude. Since each kind of load has a different effect in fatigue
life, it would be useless to test a cable’s section by means of a random excitation.
Thus, in order to understand fatigue physics, tests are usually conducted in
more simplified situations, in which a single load type is considered. In this
case axial fatigue test is used. This is useful to describe locally both axial and
bending loadings, since also in bending the lead fibres are solicited by traction
and compression.

Depending on the stress and strain amplitude, fatigue can be distinguished
in two main fields:

• HCF & VHCF are high cycle fatigue and very high cycle fatigue. These
conditions occur when the stress is small and minor then yield stress, thus
when the plastic deformation is negligible and the elastic one predominant.
In this case the reference entity for studying the fatigue life is usually the
stress;

• LCF is, in the opposite, the low cycle fatigue. In this case, the strain
becomes the reference variable since a non linear relation between stress
and strain arises and, in plastic field, the strain allows to clearly distinguish
different stress conditions.

A generic cyclic load in the HCF domain (represented in Figure 2.2) is generally
characterised by the minimum stress σmin, the maximum stress σmax, the mean
stress σm, the stress amplitude σa:

σa =
σmax − σmin

2
(2.1)

(or sa in the case of engineering stress), the stress range ∆σ and the period T .
Furthermore, the stress ratio R = − σmin

σmax
is usually used to distinguish different
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Figure 2.2: Cyclic load [22]

fatigue tests. In the case of lead alloys, which behaviour is better described
by LCF domain (being lead characterised by a wide plastic field and a low
yield point), the strain ratio is more used and the case of Rε = −1 is the most
frequently adopted. In LCF cases, where the predominant strain consists in the
plastic strain, the fatigue tests are performed in deformation control. For this
reason ε becomes the reference entity in the fatigue behaviour at LCF conditions.

If, like for lead (Pb), the material response is also time-dependent (for
instance owing to creep phenomenon influence), several tests are usually carried
on at different applied global strain range and strain rates. In this way also
time dependency can be highlighted. During a single test, several entities are
generally collected:

• s is the engineering stress, which can be computed by the load cell on the
narrowest specimen’s section A0;

• ε is the real strain. Depending on the testing conditions and on the specimen
geometry it can be computed locally, as it was done in the following for
the smooth specimen, or on a longer segment (like for the specimen with
irregularity). In these experiments the Digital Image Correlation (DIC)
was used (see Appendix A.4). Indeed, owing to the wide plastic field which
characterises the lead, the measurements performed by the testing machine
could be not accurate;

• ε̇ is the strain rate and it can be measured by DIC technique on the same
region where ε is considered. For the same reason discussed for ε, this
could be different from the strain rate imposed by the testing machine;

• N is the number of cycles in which the failure has occurred. Conventionally,
failure means a stress which is usually in between 20% and 40% of the
nominal stress measured at half life (thus for the stabilised conditions) [20,
23];

• R, which is the last collected parameter and must be distinguished by the
stress or strain ratio, means run-out. This is 0 if specimen has failed during
the test, 1 if it has survived and the test was stopped at a certain number
of cycles.

Thus, the stabilised hysteresis loop is introduced.
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Figure 2.3: Hysteresis cycle [22]

Stabilised Hysteresis Loop

Usually, the engineering stress and the real strain of a single test are plotted
in a σ − ε plot (see Figure 2.3). The hysteresis loop described by this plot is
covered from the specimen at each stabilised cycle and from it the engineering
stress range ∆s and the real local strain range ∆ε can be computed. Thus,
owing to the strain ratio Rε = −1 , the stress amplitude sa = ∆s

2 and the strain
amplitude εa = ∆ε

2 are known for each fatigue test.
Even if generally a single hysteresis cycle is plotted (which is called stabilised

hysteresis cycle), owing to the crack nucleation and propagation the specimen
or any other component changes its response during its life, as it can be seen
in Figure 2.4. In particular, if the fatigue test is performed at constant strain

Figure 2.4: Fatigue life phases for constant strain amplitude [2]

amplitude εa and the stress is computed on the initial resistant section A0, three
different phases can be observed:
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1. During the first few cycles, the material generally faces cyclic hardening
or softening. These phenomenon are due to the dislocation movement
during the cyclic loads. The first one occurs in metals with an initial low
dislocation density and it’s caused by the multiplication of dislocations.
In the opposite side, an high strength material typically faces softening,
which consists in the dislocation rearrangement and annihilation;

2. After the first phase, the hysteresis cycle generally remains almost the same
for large part of its life (with a light and continuous resistance decreasing).
In these cycles, the crack nucleation is occurring, but the infinitesimal
discontinuities are not affecting the cross section, and so the material
resistance. Further informations about the crack nucleation, which main
stages are summarised in Figure 2.5, can be found [22];

Figure 2.5: Fatigue life stages [22]

3. During the last phase, material’s response is changing rapidly. The crack at
stage II in Figure 2.5 starts propagating as in fracture mechanics (following
Paris’ law) and it causes progressive resistance decreasing owing to the cross
section reduction. For this reason, the material life is mostly characterised
by the crack nucleation, while the crack propagation occurs in a small
percentage of the total number of cycles.

The main interest in the specimen behaviour is covered by the second phase,
where the material properties have an engineering interest and more or less
constant at each cycle. Finally, the specimen life is generally described by the
Coffin-Manson equation, which allows to predict the number of cycles prior to
rupture. These and other aspects are faced in the next subsection.

2.1.2 Main Fatigue Laws
Since the material response is different in all the stress-strain operative

conditions, several tests at different global strain ranges must be performed.
Thus, since time has an influence on the results, for each set of data a constant
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Figure 2.6: Cyclic curve construction by means of different test [2]

strain rate is used. By this way, a different hysteresis cycle for each test is
obtained and all of them are usually plotted on the same chart (one for each
strain rate condition) in order to highlight their relationship, as plotted in
Figure 2.6.

Ramberg-Osgood

In particular, every steady state hysteresis loop can be summarised in a
single curve, called cyclic stress-strain curve. Each point of this curve, which
is generally described by the Ramberg-Osgood Equation 2.2, coincides with the
vertices of a single hysteresis loop, thus it represents one experimental test [22]:

εa =
σa
E

+ (
σa
k0

)1/n0
. (2.2)

Where E is the Young modulus, while k0 and n0 are material constants.
This equation is written in the same format of the monotonic traction curve,

made by Hook’s elastic and Holomon’s plastic components. It was chosen
because it’s able to properly fit the experimental fatigue data, considering
that the material constants k0 and n0 are different from k and n, valid for the
monotonic curve. The reason of that is in the hardening or softening that the
material could face during the first few cycles of its life, which could cause an
arising or decreasing of the cyclic curve with respect to the monotonic one.

Ramberg-Osgood equation is used to perform FEM simulations of cyclic
loadings, since performing the simulation of each hysteresis cycle would request a
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Figure 2.7: Coffin-Manson-Basquin plot (S-N) with elastic and plastic term [20]

huge computational capability. It’s known that this kind of simulations allows to
represent the stress-strain field in the component in a suitable and representative
way. Thus from the cyclic curve it can be extracted the results for all the possible
fatigue testing conditions in terms of applied strain amplitude.

Coffin-Manson-Basquin

When the stress-strain field is known and well represented, it’s usually linked
to the number of cycles to failure of the specimen. In this way, the life estimations
can be performed. This is done thanks to Coffin-Manson-Basquin Equation 2.3,
which links the number of cycles N (or reversal to failure 2Nf ) to the global
strain amplitude εa [22]:

εa =
σ0
f

E
· (2Nf )−a + ε0f · (2Nf )−b. (2.3)

This equation considers that the global strain amplitude consists of two terms,
the elastic and the plastic one. The first term (which is defined by the material
constants σ0

f and a) is predominant for large numbers of cycles (HCF) and it
corresponds to the Basquin equation. The second is the Coffin-Manson term,
which gives a good approximation of the life duration for a small number of
cycles (thus in the LCF domain). Here:

• ε0f is the fatigue ductility coefficient ;

• b is the fatigue ductility exponent, which depends on the material hardening.

An example of CMB interpolation is given in Figure 2.7, where the plastic and
elastic strain components are separately considered. This means that the global
strain amplitude is separated in its two components εg = εel + εpl. These are
plotted with N and separately interpolated. The sum of the two curves obtained
represents the effective fatigue curve. In particular, the plastic contribution is
smaller than the elastic one at high number of cycles, while is predominant in
LCF, where it influences the curve slope.
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The Coffin-Manson-Basquin equation (CMB) as written in Equation 2.3 is
valid in the case of mean stress σm = 0. If this isn’t true, several corrections to
this law were proposed. One of the most used is called Morrow hypothesis. This
consists in considering the effect of the mean stress only in the elastic component
of the CMB equation ε(el)

a =
σ0
f−σm

E (2Nf )−a. In this way, if the mean stress is
positive (traction) the component’s life is reduced, as the crack nucleation and
propagation are facilitated.

Furthermore, all these considerations are valid just in the case of smooth
specimens. If notches are present, the notch effect in terms of notch factors and
notch sensitivity must be considered.

2.1.3 Notch Effect
When a specimen with an irregularity or a generic notch is considered, the

experimental evidence is that its life is reduced with respect to the smooth
specimen in the same testing conditions. For this reason, the notch effect must
be considered in predicting the fatigue life, since it facilitates the crack nucleation
and propagation. This section is organised in the following steps:

• Stress concentration factor kt in statical conditions;

• Fatigue concentration factor kf ;

• Notch sensitivity q.

Stress Concentration Factor

Every notch or irregularity always causes stress and strain redistribution
and intensification at the notch root. This local effect is usually explained and
debated by means of a concentration factor. If the specimen is working in the
elastic field, this is called kt and it’s defined at constant net section stress (or
nominal stress) in the following way:

kt =
σmax
σnss

, (2.4)

where σmax is the maximum stress value in the notch root, while σnss is the
net-section stress, thus the stress computed in the restricted section. If σmax
overcomes the yield point, the stress concentration factor in Equation 2.4 is not
any more valid and the deviation from the linearity of the monotonic curve must
be considered. When the local plastic deformations are involved, but the other
sections are still working in the elastic field, the elastic stress intensity factor is
divided into two different intensity factors:

kσ =
σmax
σnss

, kε =
εmax
εnss

.

Where kσ is the stress intensity factor and kε is the strain intensity factor.
These values are always valid in correspondence to the notch root and their
difference is explained in Figure 2.8, where is evident that the deviation from the
linear-elastic behaviour blocks out the linear proportionality between the stress
and strain. Since in the case study all the specimen is working in the plastic
fields, the stress and strain intensification factors were used in the following with



CHAPTER 2. THEORY REVIEW 24

Figure 2.8: Notch effect on stress-strain distribution [22]

a different definition. Even if in general the stress concentration factor is the
mostly used, when the material has a wide plastic field it could be more relevant
the strain intensity factor in all the stress-strain conditions.

Furthermore, kσ and kε are linked each other by means of the Neuber’s law :

k2
t = kσ · kε. (2.5)

This rule allows, in a first approximation, to compute the maximum stress and
strain values at the notch root, but it’s not an accurate design tool, since it could
overestimate the notch effect. A correction to this law was proposed in the case
of creep loading k0.9÷1.5

t = kσ ·kε [23]. Another reason for which Neuber’s rule is
not an optimal design tool in the fatigue domain resides in the crack nucleation
and propagation mechanics. Indeed, the stress and strain concentration factors
are valid at the notch root. Thus the stress and strain values computed in
this way are perceived by the crack just during its nucleation, while during the
propagation, the crack enters in a less solicited region. This problem can be
considered and studied in a more accurate way by measuring the crack length
during the fatigue tests [20].

Further than the local effect of notches, which is studied by means of the
concentration factors, these irregularities have also a global effect. Material
properties are the same of the smooth specimen and each infinitesimal element
of it is covering the same plastic curve, but (being the volume near the notch
more solicited) each element along the specimen is on a different point of the
plastic curve. For this reason, as shown in Figure 2.10, measuring the global
strain rather than the local one could lead to observe another traction curve,
which is characterised by different RO parameters and by an apparent Young’s
modulus. These are not real parameters, but they are just a consequence of
the localised stress and strain intensification. This curve is obtained when the
measurement segment L0 in Figure 2.9 is enough far away from the notch, so
that the obtained curve becomes a global property of the notched specimen.
This situation is the only one that can be compared with the smooth specimen



CHAPTER 2. THEORY REVIEW 25

Figure 2.9: Different measurement locations for Figure 2.10 [22]

Figure 2.10: Notch effect on global stress-strain curve [22]
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Figure 2.11: Notch effect on the fatigue curve [20]

curve, since both are obtained for the same global strain.
If the notched curve doesn’t change significantly when the strain is measured

on a longer length than L0, the same thing is not true for the shorter ones.
Indeed, being the plastic curve the same of the smooth specimen, if L0 gradually
focus on the notch, the measured curve moves step by step upon the smooth
one. For this reason, when dealing with a notched specimen, it’s important to
measure the strain along an appropriate length (so that the obtained curve is
independent from the measurement point). Otherwise, the notched σ − ε curve
wouldn’t be reliable and comparable with the smooth specimen results, since
the measured strain wouldn’t be equal to the global one.

If when a statical design is needed kσ and kε concentration factors are the
only required, when the target is the notch influence in the fatigue domain new
entities must be introduced.

Fatigue Notch Factor

In the fatigue domain notches generally reduce the number of cycles to failure
N if a comparison between smooth and notched specimens is performed on a
σnss −N plot (see Figure 2.11). Thus, the fatigue notch factor is introduced at
constant number of cycles N:

kf =
σc,smooth
σc,notch

, (2.6)

where σc,smooth is the fatigue limit for the smooth specimen, while σc,notch is
the fatigue limit of notched bodies [22]. This definition is the most used one and
it’s valid in the HCF domain, where a constant kf is introduced and it’s defined
for N = 106 cycles. The fatigue notch factor allows to perform a fatigue design
by means of the real fatigue curve, thus the one of the smooth specimen. Indeed,
the fatigue curve of the notched specimen generally is not provided, since it
existence is hidden behind the kf .
Its meaning is different from the previous stress and strain intensification factor
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kt. Indeed kt describes a local condition (thus it allows to compute the local
maximum stress and strain values), while kf describes the notch perceived effect,
but it doesn’t allow to compute the exact stress and strain values on the notch
root in the fatigue domain.

Even if the two definitions are different, the stress intensification factor kt
applied to the fatigue domain with the same definition of kf has the effect to
overestimate the damage introduced by the irregularities or notches. Thus, the
relation between these notch factors is 1 < kf < kt. Being kf > 1, the life
of notched specimens is anyway always shorter than the life of the analogous
smooth specimen. Using a constant fatigue notch factor for all the number of
cycles means that the fatigue curve of the notched specimen is considered to be
translated by a constant multiplying factor with respect to the smooth specimen
fatigue results. This simplification is not always valid, since the material response
to notch could be different in function of the applied stress and strain. For this
reason, if the specimen or component is working and failing in the Low Cycle
Fatigue domain, the fatigue notch factor can be defined in a different way [4, 18]:

kf,N =
σn,smooth
σn,notch

. (2.7)

In this case kf is defined on the fatigue curve by means of the net section stress
amplitude at a certain number of cycles to failure N , which is different from
N = 106 used in the HCF domain, as shown in Figure 2.11. Generally the value
of N = 103 is a choice for the reference fatigue notch factor in the LCF domain
kf,103 [18]. This choice is arbitrary and it depends also in the material properties.
Indeed, the LCF domain is defined for the occurrence of plastic behaviour in
the fatigue life and this could happen even at an high number of cycles for the
most ductile materials. The lead, for instance, has plastic deformation also at
N = 106, which means that its behaviour is always interested by the so-called
LCF domain.

Even if the notch fatigue factor is defined taking into account the stress
values, in the forward discussions the same definition was used with the strain
values:

kf,N =
εg,smooth
εg,notch

,

being the lead response affected by a wide plastic field, which wouldn’t allow
to clearly see the notch effect from the stress point of view [4]. For this reason,
εg −N plots (where εg is the global strain) are considered instead of σnss −N .

In such plots the fatigue curves are usually described by the Coffin-Manson-
Basquin equation and for this reason the global strain on the notched specimen
must be correctly computed, as discussed in the previous section. Furthermore,
also in this case the fatigue notch factor is defined at constant number of cycles
and it could be different for each N value [18]. Thus, the fatigue curve of notched
specimens in Figure 2.11 in the reality is almost never translated from the
un-notched curve by the same notch factor in every point. Despite of that, the
value at N = 106 is usually chosen as constant since it allows to simplify the
damage computations in all the stress and strain domain. Further discussions
about its computation were faced during the thesis development and they are
gathered in Section 4.3.4 and in Appendix A.3.

In the same way done for the static intensity factor, Neuber’s law can be
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extended to the fatigue notch factor :

k2
f = kσ · kε,

where, being in LCF domain, kf is applied to the global strain amplitude [4]. As
already said, Neuber’s law is not an accurate design tool. Indeed, depending on
the phenomenon involved in the study, it could overestimate or underestimate
the notch effect. Few corrections, considering the underestimation (ζ > 1), were
proposed k2

f = ζ · kσkε [4]. Finally, the linkage between kt and kf is usually
studied by means of the notch sensitivity factor q.

Notch Sensitivity Computation

The notch sensitivity factor q is the geometrical parameter which usually
allows to compute kf from kt and it’s defined in the elastic field as:

q =
kf − 1

kt − 1
, (2.8)

where q = 0 when kf = 1, thus if the specimen is indifferent to the notch presence,
and q = 1 when kf = kt.

As well as kt, also the notch sensitivity factor is usually considered as
dependent only on the notch geometry and material properties. Despite of
that, if the material is working under plastic conditions and the fatigue curve is
described in a wide range of N , q could be dependent both on the global strain
(which takes the place of σnss, through kt and kε) and on the number of cycles
to failure (through kf ). For this reason, the Equation 2.8 was extended to more
general conditions as:

q =
kf,N − 1

kε − 1
,

where kf could be considered anyway constant (see Appendix A.3) and kε can
be computed in all the plastic field by means of FEM analysis. In this conditions
q is depending only on the global strain through kε, even if the computation of
a constant value (which can be easier used) is the target of this work.

Concluded the section regarding to the fatigue phenomenon, a brief section
about creep is introduced.

2.2 Creep Phenomenology
Creep is a phenomenon which explains time-dependent plasticity. This be-

haviour occurs if a metal or a ceramic component is loaded at high temperatures,
usually between 0.3 Tm < T < Tm, where the melting temperature is expressed
as absolute temperature, in K. Thus, it’s evident that a large amount of materials,
as lead (Tm ≈ 600 K [6]), are working in creep field also at room temperature [12].
Since a creep response was highlighted in the following work, a brief review about
the main theoretical aspects of this phenomenon is discussed. In particular, this
section is organised in the following points:

• Creep stages;

• Main traditional creep laws;

• Time-hardening and strain-hardening problems.
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Figure 2.12: Plot of the strain and strain rate versus time [22]

2.2.1 Creep’s Stages
Materials’ behaviour in these conditions is usually introduced with a εp − t

plot, evaluated at constant stress and fixed temperature, as reported in figure 2.12.
These results are the output of the usual constant tensile load creep test, which is
the mostly used in order to provide creep data and it’s the most simple situation
which allows to understand the basic behaviour of different metals, alloys and
ceramics in creep conditions.

If a specimen or a generic component is solicited by an external constant
load at high temperature, its response can be generally distinguished in three
different regions. In the first one, called as stage-1 or primary creep, the plastic
deformation starts from the statical value ε0, owing to the monotonic plastic
response and it increases in time by a decreasing strain rate, also called creep
rate, ε̇ = dε/dt. The creep behaviour arises even if the applied stress is lower
than the yield point measured during the tensile test and, in this case, the plastic
time dependent deformation would start from ε0 = 0. Indeed, also the yield
point measured during the creep tests is strain rate dependent and its value is
decreasing for lower strain rates (as shown in Figure 2.13).

Yield Stress The variation of the yield stress with respect to the strain rate
and the temperature is usually studied by means of the stress sensitivity
exponent N [14]:

N = [
∂lnε̇

∂lnσ
]T,s.

At high temperatures the value ofN decreases, which means that a variation
of the strain rate affect more the flow stress (see Figure 2.14).
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Figure 2.13: Strain rate effect on the creep behaviour [14]

Figure 2.14: Stress sensitivity exponent [14]
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Figure 2.15: Experimental results for the creep rate versus time [22]

The strain rate decreasing experienced in the first creep stage (see Figure 2.12)
occurs because changing in the dislocation substructure bring to harden the
material.

After the first stage, for most of the materials in which the microstructure
doesn’t change during the creep process, thus for instance if no recrystallization is
experienced, the stage-2 is encountered. Here, if the test is performed at constant
stress, the material’s plastic deformation is increasing usually at constant strain
rate. This is also called steady-state creep and in this part of the response, the
strain rate is constant since the hardening and dynamic recovery are balanced [14].

Recovery This phenomenon consists in a thermal activated dislocation re-
arrangement. At high temperature self diffusion is facilitated and edge
dislocations’ climb brings to higher annihilation probability. Furthermore,
the distribution rearrangement in a lower energy content configuration
occurs.

The secondary creep doesn’t exist for all the materials since for some of them,
like nickel super-alloys, after the primary creep, the strain rate directly starts to
increase (see Figure 2.15). Finally, the stage-3 or tertiary creep is the stage in
which massive inner damage occurs in the material and failure of the component
is encountered. Here, the strain rate starts to increase again and intercriystalline
creep fracture grows at high speed.

2.2.2 Traditional Creep Laws
The creep phenomenon is explained by several creep mechanisms, which

weight on the creep deformation depends on the stress and temperature. The
main ones are listed below:

• Dislocation creep. Owing to the major vacancy density at the highest
temperature, the dislocation climb is facilitated and the creep strain rate
is described by [22]:

ε̇ =
Aσ3

kT
DV (T ).
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Figure 2.16: Vacancy diffusion on the grain boundaries [22]

Here, A is a material parameter, k is the Boltzmann constant and DV

is called diffusion coefficient for volume diffusion. Since this equation
doesn’t take into account the possible dislocation density variation (which
is more frequent in the first and tertiary creep stages), it’s more suitable
for describing the material behaviour in the second stage [22].

• Diffusion creep. Mechanism which is dominant at the lower stresses and it
consists in the vacancy diffusion to the grain boundaries less subjected to
tensile stresses, without involving the dislocation sliding or climbing. This
process is generally called Coble creep if the vacancies are moving on the
grain boundaries (see Figure 2.16), and Nabarro creep is the vacancies are
moving inside the grains.

• Grain boundary sliding. Phenomenon in which the grain boundaries can
move against each other. For further discussions and informations see
Reference [22].

From the practical point of view, the material behaviour in the secondary
creep stage (also called steady state creep, SS) is usually studied and a relation
between the creep strain rate and the other variables was found for different
metals and alloys. In particular, this relation is called power law creep and it’s
described by the equation 2.9, where holds a power relation with the stress σ
and an exponential one with respect to the temperature T [14]:

ε̇ss = A0exp[−Qc/kT ](σss/E)n. (2.9)

Here A0 is a material constant, while k is the Boltzmann’s constant and Qc is the
activation energy for creep. This relation is consistent with Norton’s one and it’s
valid only when a constant steady-state stress σss is applied [22]. Furthermore,
this law is called five power-law creep being usually n ≈ 5 and the mechanism
which holds in this field is mainly the dislocation climb [14].

When the temperature decreases below roughly 0.5÷ 0.6 Tm the five power-
law creep doesn’t hold any more and the power-law breakdown (PLB) occurs. In
such situation a different relation could be more suitable in the description of
creep phenomenon, which is called hyperbolic sine equation [14]:

ε̇ss = A1exp[−Qc/kT ][sinhα1(σss/E)]5. (2.10)
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Despite these relations were obtained in the most used tests for creep param-
eters definition, in the real situations the stress is almost never constant. For
this reason, different creep laws were introduced.

2.2.3 Practical Creep Laws
In this subsection a brief description of the main laws of practical interest is

introduced. Then, a more in-deep discussion about the equation implemented in
Abaqus is faced. When the stress is varying during the test, the development of
a creep theory is more difficult. In particular, two equations represent the most
common situations:

• Time hardening. Hypothesis which holds when the creep strain rate is a
function of the stress, time and temperature:

ε̇c = f(σ, t, T ) , ε̇c = f1(σ)
df2(t)

dt
f3(T ).

Where each function can be found elsewhere and depends on the material
and working conditions [21];

• Strain hardening. Law used when the creep strain rate depends also on
the strain, owing to the material hardening:

ε̇c = g1(σ)g2(εc)g3(T ).

In particular, an example of the strain history prediction from this equation
(where the functions have their own expressions) is plotted in Figure 2.17.

If these are the general theoretical expressions, the equation implemented in
Abaqus for the strain hardening format is:

ε̇eq,cr = (Aσneq,d[(m+ 1)εeq,cr]
m)1/(m+1). (2.11)

This standard creep law provides a good fit of the experimental data when used
for modelling the secondary creep [1]:

• ε̇eq,cr is the uniaxial equivalent creep strain rate;

• εeq,cr is the equivalent creep strain;

• σeq,d is the Von Mises equivalent stress or deviatoric stress;

• A, m and n are materials constants. For physically reasonable behaviour
A and n must be positive and −1 < m ≤ 0.

Finally, in general the fatigue and creep phenomenon can occur together and
in this more complex case a new theory called creep-fatigue is studied. The
theory of practical use for this thesis is contained in this chapter, thus the work
development is discussed in the following.
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Figure 2.17: Example of strain history prediction with the Strain-Hardening equation
[21]



Chapter 3

Model Calibration

The specimen reported in Figure 3.1, which is an angular section of the
water-blocking lead sheath of the submarine power cable, was tested in several
axial fatigue tests. In this chapter, the model creation and material calibration
on the base of the experimental data obtained with different strain rates is
discussed, considering that the lead alloy E was used (see Table 1.1 for its
chemical composition). The purpose of this work is the material calibration,
useful for the next analysis which consists in the evaluation of the effect of
macroscopic defects on the lead sheath fatigue life. Indeed, during production,
transport and installation, the power cable is always subjected to fatigue cycles,
which can lead to crack nucleation and breakdown.

Starting from a brief explanation of the acquired data, a deep discussion on
the model construction and the parameters’ assignment is debated. Thus, for
instance, the interpolation of the experimental data, the plastic law and the
creep model choice are faced. The entire modelling work was done on Abaqus,
and Isight was used to optimize the creep parameters choice.

3.1 Experimental Data
Since in the real application, the power cable is subjected to fatigue cycles

occurring with different amplitudes or strain rates, several tests at three different
strain rates were performed. In Tables 3.1, 3.2 and 3.3, the experimental fatigue
results coming from tests at different strain rates order of magnitude are reported,
considering that the specimen is smooth, thus it has not pre-existing defects. In

Figure 3.1: Dimensioned specimen drawing

35
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particular, in each set of data the nominal strain rate imposed by the testing
machine is constant and equal to 1e− 2, 1e− 3 and 1e− 4 (1/s). The collected
data are called, respectively, Set 1, Set 2 and Set 3. In these tables, each
row represents a different fatigue test and the acquired data are referring to
the stabilised hysteresis loop of each of them, thus to the experimental data
measured at half life.
Starting from the first column, the engineering stress of the stabilised hysteresis
loop, expressed in MPa, is reported. After that, is the real strain, computed by
means of DIC technique (see Appendix A.4) in the middle of the specimen from
the convex side, having it a curvature commensurate with the real sheath’s one.

Table 3.1: Experimental data for the smooth specimen, Set 1

s (MPa) ε ε̇ (1/s) N R

4.8 4.30E-04 4.53E-03 1100000 0
6.45 4.65E-04 4.90E-03 486000 0
6.9 5.50E-04 4.32E-03 227838 0
7.45 8.75E-04 5.65E-03 104000 0
8.65 7.10E-04 4.58E-03 101000 0
7.9 7.80E-04 4.21E-03 110000 0
9.7 7.50E-04 4.05E-03 48500 0
8.7 1.10E-03 5.00E-03 62500 0
4.672 2.85E-04 8.14E-03 3570000 1
4.166 2.30E-04 6.57E-03 4200000 1
5.411 3.75E-04 6.75E-03 2207600 1
4.584 2.75E-04 4.24E-03 6297000 1
6.140 4.75E-04 5.00E-03 839000 1

Table 3.2: Experimental data for the smooth specimen, Set 2

s (MPa) ε ε̇ (1/s) N R

5.15 3.90E-04 4.10E-04 231500 0
6.5 5.50E-04 5.79E-04 120000 0
7 7.50E-04 5.88E-04 63373 0
7.55 7.50E-04 4.83E-04 105000 0
7.1 1.20E-03 7.73E-04 55875 0
8.4 1.25E-03 6.75E-04 29000 0
8.1 9.25E-04 4.48E-04 29630 0

10.5 2.10E-03 9.58E-04 18500 0

Table 3.3: Experimental data for the smooth specimen, Set 3

s (MPa) ε ε̇ (1/s) N R

1.1 1.80E-04 5.00E-05 43600 1
1.9 1.70E-04 5.00E-05 52460 1
2.5 2.1E-04 5.00E-05 46260 1
6 6.00E-04 5.00E-05 40000 0
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Figure 3.2: Example of cyclic stress-strain curve [22]

Being the strain measured on the specimen surface, this corresponds to the E22
component. In Figure 3.2, taken as an example, each dot trough which the cyclic
stress-strain curve is passing represents an experimental test. Differently from
the stress, which is given as engineering quantity (being it computed by the load
cell on the centre section), the real strain is provided. Indeed, since the lead has
a wide plastic field, the displacement imposed from the testing machine wouldn’t
be representative of the deformation occurring on each point of the specimen.
So, the strain was directly computed on the point of interest (the central one
from the convex side, as discussed in the following), using DIC technique. Thus,
the strain rate, the number of cycles in which the failure has occurred and the
Run-out (R = 1 if the specimen has survived the test) are the last experimental
data. Data in which R = 1 are usually the ones at lower applied stress. Indeed,
the target of this work was to figure out the strain rate influence, which is not
the main character at the lowest stress conditions (corresponding to the elastic
field). For this reason, tests were interrupted being the duration in terms of
number of cycles to failure N not relevant in those conditions. Again, the strain
rate is different from the one imposed by the tensile testing machine, as it was
computed in the point of interest by means of DIC. The strain ratio Rε = −1
was adopted.

Finally, the Young modulus E = 12000MPa and the Poisson’s ratio ν = 0.431
are known [12]. This values are valid for the static test and in the following
section the Young modulus’ will be changed in order to obtain a better description
of the material behaviour in fatigue conditions.

An example of crack propagation in the smooth specimen is plotted in Figure
3.3, where is evident that the fracture nucleation and propagation took place in
the middle section of the specimen.

3.2 Best Fitting Curves
The experimental data cannot be directly used on the software, being them

generally too scattered. Thus, the average behaviour had to be found for each
fatigue set of data. The best interpolation of experimental results was computed
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Figure 3.3: Fracture on a smooth specimen

by means of the Ramberg-Osgood equation, as discussed in Section 2.1.2 and
that curve was used as target in the Isight simulations, in order to find the creep
parameters:

εro =
σ

E
+ (

σ

k0
)1/n0

. (3.1)

Even if the real stress is requested both in Ramberg-Osgood law and in Abaqus,
the engineering one was used: the difference between them, owing to the low
strain amplitude applied during the fatigue tests, is negligible.

What is needed at this point is just a target, thus a mathematical expression
which fits the experimental data. So, despite recurring values of k0 and n0

can usually be found in the literature for smooth specimens and for several
metals [22], in this case no boundary conditions were imposed and the best
fitting values (which have no physical meaning) were considered. Indeed, for
each strain rate was found the best interpolation considering the Equation 2.2,
where just the elastic and plastic strain are present, despite the creep component
εcr has a wide influence on the specimen behaviour (Tf ≈ 327 ◦C, thus lead
is working in creep conditions even at room temperature). Thus, εel and εpl
computed in Ramberg-Osgood equation have just a mathematical meaning and
don’t correspond to the real plastic and elastic strain components of the global
deformation.

As first step for the identification of the best curve, two first-attempt values
of k0 and n0 of the Equation 2.2 were chosen. Knowing also the Young modulus’
and the engineering stress of each fatigue test (see Tables 3.1, 3.2 and 3.3),
both elastic (εel = σ/E) and plastic strain component (εpl = (σ/k0)1/n0

) were
computed for every test and set of data. Then, the measured strain ε and the
interpolated one (εro = εel + εpl ) were directly compared each other. Between
them, the percentage and absolute error were computed in order to have two
parameters by means of which understand how far the interpolation was from
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Figure 3.4: k influence on best fitting curves, example

experimental data and so how well the data were described by the average curve:

err% = |ε− εro
ε
| , errabs = |ε− εro|. (3.2)

Thus, by an iterative procedure k0 was manually adjusted while n0 was
computed by means of Excel Solver, trying to minimise the errors. The effect
of the parameter k0 (without considering the elastic contribution), after having
optimised the value of n0, can be seen in Figure 3.4. In detail, lower values of k0
allow to obtain a curve with an high slope at small strain values and more flat
at higher ones.

In order to obtain a better interpolation, it was introduced a weight on the
errors, which allowed to partially consider the influence of the most scattered
test data. For instance, the point with σSet1 = 9.7 MPa was rejected (owing
to probable buckling effect) and the weigh of σSet1 = 8.65 MPa considered in
part, since they had a too big influence on the curve’s shape, moving it far away
from the most concentrated data. Even for lowest values of k0, the interpolation
was far away from the experimental data, in particular for tests at smaller stress
and strains. This consideration led to change the Young modulus’ computed
by other authors [12] for smooth specimen and the value E = 15000 MPa was
adopted. This value was chosen as a mean value of the optimal ones for each set
of data, in order to avoid the introduction of the Young modulus’ dependence
on the strain rate. Indeed, as it is possible to see in Figure 3.5 a lower value of
E would have been more appropriate on the Set 3 data, but less for the others.

Finally, the optimal values of k0 and n0 for each Set of data (thus the values for
tests at different strain rates) are reported in Table 3.4, while the interpolation
curve on the experimental data are plotted in Figure 3.5. These will be used
as a target in the Isight simulations and they have been plotted singularly on
Figures 3.6, 3.7 and 3.8.

As already said, data at lower stress (thus in the elastic part) are not
important since in that region the three curves are overlaid. Finally, even if few
data were collected at the nominal strain rate k0 and n0 were chosen in order to
respect the slopes of the other curves. This curve was just used in the material
calibration, but not in the irregularity effect evaluation where the simulations’
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Table 3.4: Best fitting parameters and errors between curves and experimental data

Set k0 n0 errmed,% errmed,abs E (MPa) ν

1 30 0.162 11.2% 6.00E-05 15000 0.431
2 20 0.122 21.8% 2.90E-04 15000 0.431
3 15 0.112 17.8% 4.00E-05 15000 0.431

Figure 3.5: Best fitting curves of experimental data

curve were adopted. An improvement could be to perform more tests obtaining
a more reliable interpolation.

3.3 Creation of the Abaqus Model
In this section, the model construction and properties assignment are dis-

cussed, while the creep parameters computation will be faced in the next section.
The model imported by SolidWorks consists in a fourth of a specimen, which
dimensions are reported in Figure 3.1, without the grabbing parts. This choice
allowed to reduce the computational time, since the symmetry conditions are
used to consider the global size as highlighted in Figure 3.9. Thus, three different
models were created (one for each Set of data, being the strain rates different)
and the lead alloy material properties were assigned to every model:

• Young modulus’ E = 15000 MPa;

• Density ρ = 11340E − 12 ton/mm3, not necessary in this analysis;

• Power law creep parameters, in stress-hardening form as stress is time
dependent, which computation is discussed in Section 3.4;

• Plastic curve with isotropic hardening (stress and material-property plastic
strain εmp), reported in Table 3.6, which computation is discussed in the
following. The choice of the isotropic hardening (instead of the kinematic
one, that would have allowed to simulate the Bauschinger effect) was done
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Figure 3.6: Best fitting curve of Set 1 data

Figure 3.7: Best fitting curve of Set 2 data

Figure 3.8: Best fitting curve of Set 3 data
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Figure 3.9: Symmetry conditions

in order to simplify the analysis, which doesn’t plan to simulate an entire
hysteresis cycle.

3.3.1 Plastic Curve Definition
The plastic curve must have the same shape of the best-fitting curves, but it

must be shifted at higher stress levels in order to assume that it could have been
achieved at an higher strain rate, so without the creep deformation influence
(true plastic curve). Thus, few passages were followed:

1. Definition of the field in which the plastic curve is valid, which should
contain all the experimental test deformations in order to avoid any mistake
during the simulations. So, a limit strain value of εlimit = 0.01 was arbitrary
chosen, as enough higher than the strains involved in the fatigue tests
(order of ε = 0.002, as shown in Tables 3.1, 3.2 and 3.3).

2. Computation of stress values at a deformation as near as possible to
εlimit = 0.01 for each set by means of the best-fitting curves, which results
are reported in Table 3.5. This allowed to understand how high the plastic

Table 3.5: Best fitting, limit points

Set ε σlimit (MPa)

1 0.0099 14
2 0.011 11.5
3 0.011 9

curve should have been, and so to choose the target stress σp for the plastic
curve at the same deformation εlimit. In order to assume that this can
be considered as a true plastic curve, the chosen stress σp must be higher
than the highest σlimit. In this way, the additional deformation between
the plastic curve and experimental ones can be associated to the creep
phenomenon. In Figure 3.10, best fittings compared to plastic curve are
plotted.
Few Isight iterations were done in σp choice. Finally, the optimal value
was defined as σp = 14.5 MPa, which means that the plastic curve passes
from the point P=(0.01,14.5), as shown in Figure 3.10. Indeed, despite the
plastic curve is close to Set 1 best-fitting, higher values of σp would have
led to need more creep contribution and in those conditions Isight Data
Matching wasn’t able to find creep parameters allowing to fit the target
(best fitting curves) with an error less than the 10%.
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Figure 3.10: Plastic curve compared with best fittings

3. Once the target point P was defined, the proper plastic curve’s shape had
to be found. As well as for the best-fitting curves, also the plastic one is
described by the Ramberg-Osgood law, for which k0 and n0 are unknown.
k0 was defined first, while n0 was the free parameter that, using Excel
Solver, allowed the plastic curve to pass from the point P=(0.01,14.5). In
particular, the choice of k’ was made in order to obtain an enough low yield
point, so that also Set 3 curve could feel the plastic deformation influence.
Indeed, after few Isight iterations it was highlighted that the only creep
contribution was not enough to reach the total deformation without a
certain plastic contribution. Abaqus material property must be the only
plastic component, thus the definition of the yield point allows to divide
the global strain and to reject the elastic component.

Yield Point Definition
Since the strain amplitude is small and even less then the deformation for

which Rp02 is defined, a deviation from the elastic behaviour was defined in a
different way. The yield stress σy was computed on the plastic curve as the point
in which the plastic deformation was equal to 1% of the elastic contribution, so
that this plastic term could be negligible. Thus, by choosing the value for k0, by
means of Excel Solver σy was computed from the following equation.

0.01σy/E = (σy/k
0)1/n0

(3.3)

Finally, the values k0 = 30, n0 = 0.154 and σy = 4.2 MPa were found. In
Figure 3.11, few iterations in the choice of σp and k0 are plotted, where the red
one was implemented in Abaqus.

So, considering the Yield Point as the threshold between the elastic and the
plastic field, to that a null plastic strain was assigned. This means that the
plastic properties assigned to the model were found by subtracting the term
(σy/k

0)1/n0
to the true strain for σ > σy in the following way:

ε = εpl − (σy/k
0)1/n0

= (σ/k0)1/n0
− (σy/k

0)1/n0
.

This consists in placing a new x-axis with its origin in the so defined yield point,
and from that point to higher stresses, the plastic deformation was measured.
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Figure 3.11: Iterations on plastic curve choice

Figure 3.12: Result of mesh creation

The plastic curve is reported in Table 3.6, where to the last deformation a value
of 1 is given, in order to avoid errors during the simulations.

3.3.2 Mesh Creation, Loading Step and Outputs
Once the material properties were defined, the mesh on the model with

quadratic brick elements (in order to avoid the description of constant deformation
field on each) was created.
After few iterations, the maximum size of 0.5 mm was defined. This mesh, shown
in Figure 3.12, is considered enough detailed being the stress field uniform, since
there are not important notch effects, and the centre point (where measurements
were done) is well described by a single element. Also an higher size could have
been chosen in order to obtain the same results, but this was selected in order
to have a more detailed solution and a reasonable computational time.

Finally, the correct implementation of the loading step and reading of the
outputs on the element of interest were faced.

Loading Step
After having defined the boundary conditions on symmetrical faces (Fig-

ure 3.9), a displacement field was applied to the upper face along y positive
direction. Since the creep phenomenon is involved in the analysis (time depen-
dent stress distribution), visco load type was selected [1]. Furthermore, to the
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Table 3.6: Lead plastic curve

σ εmp

4.2 0.00
4.5 1.87E-06
5 6.40E-06
5.5 1.42E-05
6 2.71E-05
6.5 4.73E-05
7 7.82E-05
7.5 1.24E-04
8 1.89E-04
8.5 2.82E-04
9 4.09E-04
9.5 5.82E-04

10 8.12E-04
10.5 1.11E-03
11 1.51E-03
11.5 2.01E-03
12 2.65E-03
12.5 3.45E-03
13 4.45E-03
13.5 5.68E-03
14 7.19E-03
14.5 9.03E-03
15 1.12E-02
15.5 1
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Figure 3.13: Boundary conditions

same surface was applied a constraint on displacements along x direction which
emulates the grabbing machine element, as reported in Figure 3.13.

In order to guarantee that the correct strain rate is respected during the
simulations, ramp load shape was defined. This condition doesn’t really respect
the testing situation, since at each peak the material faces a strain rate inversion.
Thus, the load shape should have been modelled with a null derivative at the end.
However, the ramp shape is simpler and it allows to obtain reliable results. Than,
the increment size was chosen in order to have between 50 and 100 iterations,
while the creep strain error tolerance was set equal to 1E−05. The displacement
is then applied with a constant speed from the time t = 0 until the end. Thus,
the cycle duration and the applied displacement value had to be computed:

t = ε/ε̇m. (3.4)

Where:

• t is the duration of a quarter of the fatigue cycle, thus a simulation which
covers the best fitting curves;

• ε = 0.002, is considered as the limit value for each cyclic stress-strain curve,
since the available experimental data are within this interval;

• ε̇m is, for each set of data, the average strain rate of the measured ones in
Tables 3.1, 3.2 and 3.3.

In Table 3.7 the average strain rate for each set of data and the consequent
duration of a quarter cycle, computed by Equation 3.4, are collected. After few

Table 3.7: Average strain rate and duration for each simulation

Set ε̇m (1/s) t (s)

1 5.23E-03 0.38
2 6.14E-04 3.26
3 5.00E-05 40

iterations modifying the applied displacement, the value causing the deformation
ε = 0.002 on specimen centre, which is the point where strain and strain rate
were measured, was found equal to displ = 0.023 mm.
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Outputs
Since the stress and strain for each test were measured by DIC technique

on the specimen centre, the desired outputs are stress S22 and deformation
E22 components on the element 1120, indicated by an arrow in Figure 3.14. 22
corresponds to y direction, thus the vertical one.

Since the mesh is made by quadratic elements, 8 integration points from
which extract the output on each element are available. Despite of that, being
the stress field uniform, the results on each integration node on the element of
interest have a negligible difference and point 1 was chosen. Finally, E22− S22
history during the analysis was compared with the best-fitting curves.

In order to verify that the solution of the simulations was independent from
the increment size chosen in order to have a number of iterations between 50
and 100, few attempts were done forcing Abaqus to perform simulations with a
constant increment size. In all the three models, four simulations were submitted
considering a number of iterations between 32 (avoiding instabilities for a lower
number, which would have led to the simulation abortion) and 400. Considering
the same outputs on the element were measurements are performed, the results
were compared each other and the solution was found to be independent from
the increment size, at least until the third decimal digit for the stress values.

Figure 3.14: Von Mises distribution and element from which output are extracted

3.4 Isight Optimization and Creep Parameters
The calibration optimization was performed by the minimization of few

objectives. In particular, the controlled entities allowed to reduce the difference
between the areas of the simulation and the target curves, together with the
reduction of the squared difference between values at constant strain. Even if two
targets should have been enough for each simulation, a third one was added owing
to the simulation’s error. Indeed the control in terms of difference between areas
was done considering the initial position of the simulation curve (thus computed
with the attempt values A, m and n) with respect to the best-fitting, but during
few attempts a combination of creep parameters could have led to change the
position of the simulation with respect to the target. Thus, both area’s objectives
under target and above target were chosen in order to consider that during few
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loops the position of the simulation curve could have changed with respect to the
best-fitting. This choice consists in the research of a convergence to the target
both from the top and the bottom with respect to the best fitting curves.

After several iterations, the optimal power law creep parameters were found:

• A = 3.94e− 08

• n = 4.218

• m = −0.6103

With these parameters, the simulation run in Abaqus for each model (thus for
the three models) was compared with best-fitting curves until the deformation
ε = 0.002 in order to guarantee the correct strain rate, and the results plotted
in Figures 3.17, 3.18 and 3.19 were obtained. These creep parameters were
considered valid since the maximum error between the simulation and target
curve (computed at constant strain amplitude) is around 8% for the terminal
strains of Set 3 and for the middle ones of Set 2, while the other simulation shows
a better correspondence with respect to Set 1 data. Furthermore, in Figure 3.16
the simulations compared to scattered data for each set were plotted and an
example of wrong interpolation is reported in Appendix A.1.

Even if the best-fitting cyclic stress-strain curves are a little different from
the curves covered by each simulation, all the following studies were performed
by means of the simulations and so supposing that the material have had a
behaviour described by the optimized curves. This means that the role played by
the best fitting curves is hidden behind the optimization and each experimental
data is read through the simulated curves. For this reason, corrected Ramberg-
Osgood parameters were found. These have no physical meaning, but they
are just describing the simulation curves. Indeed, performing interpolations of
simulations’ results by means of best fitting curves instead of optimized curves
would have led to errors, in particular in the next chapter for the interpolation
of fatigue curves.

εro =
σ

E
+ (

σ

k0new
)1/n0

new

Table 3.8: Ramberg-Osgood parameters describing the simulation curves

Set 1 Set 2 Set 3

k0new 30 25 20
n0new 0.166 0.156 0.15

3.5 Data and Results Resume
In this section a brief resume of the procedure and results for the model

calibration is discussed:

• Model geometries are plotted in Figure 3.1;

• The curves used as target in Isight simulations in order to compute the
optimal creep parameters are described by the average behaviour of the
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Figure 3.15: Isight program

Figure 3.16: Comparison between simulations and scattered data
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Figure 3.17: Comparison between Best fitting 1 and Simulation 1

Figure 3.18: Comparison between Best fitting 2 and Simulation 2

Figure 3.19: Comparison between Best fitting 3 and Simulation 3
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experimental tests (collected in Tables 3.1, 3.2 and 3.3). In particular, in
Table 3.4 the best fitting parameters describing these curves (plotted in
Figure 3.5) are collected;

• From the three time-dependent curves plotted in Figure 3.5, a time-
independent one was found. This, plotted in Figure 3.10, corresponds
to an ideal pure plastic response, which Ramberg-Osgood parameters are
k0 = 30, n0 = 0.154 and with yield stress σy = 4.2 MPa. Thus, the plastic
strain component was extracted and the consequent plastic curve reported
in Table 3.6 was assigned to the model as a plastic property;

• The average strain rate was computed from the experimental data for
each strain rate condition and the duration of each simulation was then
computed (see Table 3.7);

• Finally the creep parameters were computed: A = 3.94e−08, n = 4.218 and
m = −0.6103. The simulation curves (which outputs are concerning the
integration point 1 of the central element from the convex side, as plotted
in Figure 3.14) are described by modified Ramberg-Osgood parameters,
collected in Table 3.8.

Once the model was calibrated, the same material properties were used in
order to simulate the response of the specimens with irregularity, which is the
topic of the next chapter.



Chapter 4

Specimens with Irregularity

The main purpose of this and Chapter 3 was to understand and study the
influence of irregularities on the lead sheath fatigue life. These irregularities, as
shown in Figure 4.1, are a consequence on the above polymer tape winding (see
Figure 1.2) which, owing to the high pressure used in his collocation, brings to
wrinkle the underlying lead sheath. Thus, after the studies on smooth specimens

Figure 4.1: Specimens with irregularities

useful for the material calibration (see Section 3.5), its properties were used to
develop further models and to study the irregularities effect on the lead layer. In
particular, the experimental evidence is that these are reducing the lead sheath
life and the main objective of this work was to compute the fatigue intensity
factor, further than the notch sensitivity. These are the two entities which allow
to figure out the relationship between the stress-strain concentrations and the
number of cycles to failure N , at different strain rates, further than allowing the
life loss estimation in the real power cable configuration.

Thus, the procedure followed is resumed in the following sections:

1. Geometrical properties. Discussion on the geometrical data collected;

2. Models creation. Irregularity geometrical modelling, model and material
properties, further than correct strain rate assignment;

52
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Figure 4.2: Irregular specimens geometries

3. Fatigue intensity factor kf . Global strain amplitude εg computation from
the time frames identification and fatigue curves εg −N interpolation by
means of Coffin-Manson-Basquin (CMB) equation;

4. Strain intensity factor kt and kε. Identification of the most solicited point
for smooth and irregular specimen and computation of the intensity factor
in the elastic and plastic field;

5. Notch sensitivity q computation for all the strain rate conditions and
results discussion.

4.1 Geometrical Properties
For each fatigue test, a specimen was directly obtained by the real lead sheath

in correspondence with the irregularity caused by the above polymer tape, where
the nominal thickness of the sheath studied in this chapter is 1.8 mm. In each
specimen (which geometry is sketched in Figure 4.2), irregularities’ geometry is
different and, even if the fatigue results should be compared between data coming
from the same irregularity (in order to avoid the influence of the geometrical
parameter), the high dispersion of geometrical data led to consider each result
as coming from a mean geometry. These specimens had been left for two days
at room temperature, before testing. For this reason it could be said that all
the residual stresses on the irregularity were relaxed, while the local hardening
could had been mitigated by recovery and recrystallization. Therefore, the same
material properties (and in particular the same plastic curve) were used in all
the model, irregularity included.

In order to compare the experimental results between the smooth and irregular
specimens (thus, to compute kf and q), several fatigue experimental tests were
performed at two nominal strain rates: 1e − 2 and the slowest 1e − 3 (1/s).
These, as discussed in Section 3.1 don’t correspond to the real strain rate locally
perceived by the material. As well as it was done for the smooth specimen, Set
1 is used to indicate the acquired data at the nominal strain rate 1e− 2, while
Set 2 is used for the other results, collected from a nominal input strain rate
of 1e− 3. No experimental tests were performed at the nominal strain rate of
1e− 4.

In Table 4.1 are collected the geometrical dimensions of all the specimens,
referring to Figure 4.2. Each one is identified by the ID code; thus the maximum
grabs thickness was measured, together with the irregularity thickness and
the parameter m, which is the offset between the sheath convex part and the
irregularity lower surface. Finally, the difference between left and right grabs
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Table 4.1: Irregular specimens’ geometries (mm)

ID t1,max t2,max tirreg m tmax − tmin
1a 2.00 1.97 2.05 0.15 0.03
1b 1.93 1.93 1.93 0.16 0
1c 2.03 2.01 2.01 0.24 0.02
2a 1.87 1.85 1.88 0.19 0.02
2b 1.95 1.96 1.92 0.24 -0.01
2c 1.88 1.89 1.89 0.21 -0.01
3a 1.81 1.88 1.80 0.20 -0.07
3b 1.86 1.84 1.81 0.19 0.02
3c 2.01 2.05 2.03 0.13 -0.04
3d 2.05 2.03 2.01 0.16 0.02
4a 1.83 1.85 1.90 0.20 -0.02
4b 1.84 1.81 1.86 0.15 0.03
4c 1.85 1.91 1.91 0.13 -0.06
5a 2.05 2.08 2.05 0.23 -0.03
5b 2.02 2.01 2.01 0.12 0.01
5c 2.14 2.15 2.21 0.09 -0.01

mean values 1.95 1.95 1.95 0.17

thickness was computed, while the test conditions in terms of strain rate and
global strain amplitude - stress amplitude will be specified forward.

On the base of these geometrical properties, a new model was created for
each nominal strain rate.

4.2 Models creation
In this section the geometrical modelling, the model properties assignment

and the calibration verification are faced, further than a discussion on the fatigue
experimental data. This was useful in order to obtain a model from which
reliable results could be computed.

4.2.1 Geometrical Modelling
Once the geometrical properties were known, a new model was created for

each nominal strain rate, in order to have the irregularity in its restricted section.
Thus, referring to Figure 4.2, the following geometrical properties were defined:

• Thickness value t, constant along all the model;

• Offset m value.

Firstly, owing to the high dispersion of t and m data, the mean value for
each significant entity was computed. Thus, from Table 4.1, the three average
thickness, further then the average of m = 0.17 mm, are known.

The mean thickness of 1.95 mm is different from the nominal one of t =
1.8 mm. Since no geometrical data were available, the nominal value was used
for the material calibration in the smooth specimen models. Thus, in order to
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Figure 4.3: Dimensioned irregular specimen drawing, modelled on SolidWorks

compare the results between the irregular models simulations and the smooth
ones (analysed in Chapter 3) the same thickness had to be used and the constant
nominal value of 1.8 mm was assigned also in this case.

The model used in order to study the irregularity influence is plotted in
Figure 4.3, which represents a fourth of the specimen. Further than t = 1.8 mm
and m = 0.17 mm, also the four radius defining the irregularity severity (2 for
the convex side and 2 for the concave one) were chosen as representative of a
mean-high irregularity severity. This means that the irregularity was modelled
considering that it was more concentrated near the mean section, thus the four
radius had to be small enough to allow a rapid changing of the section direction.

Radius of Irregularity

The value for each of the four radius was obtained by means of a Matlab
file, reported and discussed in Appendix A.2. Its purpose was to define the
four radius values in order to obtain a shape with tangent curvatures, avoiding
arising edges which could have led to unreal local intensification factors during
the simulations. This choice (which represents an approximation) was critically
discussed in the Chapter 6.

The irregularities longitudinal dimensions were extracted form Figure 4.1,
owing to the impossibility of accessing to the laboratory for coronavirus pandemic.
For values of start = 10 mm and irr = 3 mm (explained in Appendix A.2), the
following radius were computed, while approximations had been implemented:

• R1,int = 13.7 ≈ 15 mm;

• R1,ext = 15.5 ≈ 15 mm;

• R2,int = 22.4 ≈ 22 mm;

• R2,ext = 20.6 ≈ 21 mm.

Ext refers to the convex side of the specimen, while int to the concave one. The
model created was exported in IGES format and opened in Abaqus, where the
model properties were assigned.
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4.2.2 Model Properties
Since the purpose of this analysis is to highlight the irregularity effect on the

fatigue life of the lead sheath, experimental tests were performed in order to
allow a comparison with smooth specimen fatigue tests. Thus, the experimental
data are introduced.

In the case of the smooth specimen, the model fitting and calibration was
done verifying that the longitudinal deformation on the restricted section from
the convex side, in the element pointed in Figure 3.14 was corresponding to the
experimental measured values. Regarding to the irregular model, using DIC
technique on the same region of the smooth specimen led to data affected by
uncertainty (owing to the presence of the irregularity). Thus, Digital Image
Correlation was used on a different region, identified with the three longest green
segments which extremities are highlighted in Figure 4.4. To the average of
them, the deformation data in Tables 4.2 and 4.3 are referred. These tables are

Figure 4.4: DIC on irregular specimen. Computations on three short segments were
affected by uncertainty, thus the longest had been used.

distinguished in relation to the strain rate and, as it was done for the smooth
specimen for Tables 3.1, 3.2 and 3.3, the main data are discussed.

The ID code allows to link the available fatigue results with the previous
geometries measurements (the fatigue data are not available for each specimen).
Then, being the simulation performed on a fourth of the entire hysteresis loop, the
stress-strain data are indicated in terms of amplidue, even if they were collected



CHAPTER 4. SPECIMENS WITH IRREGULARITY 57

Table 4.2: Experimental data of irregular specimen, Set 1

ID Globalε εDIC,in εDIC,rel N σin σrel

1a 0.06 0.064 0.0675 97181 8.125 8.07
1b 0.065 0.0665 0.069 98359 8.45 8.25
2a 0.05 0.048 0.0515 130051 7.925 7.925
3c 0.10 0.105 0.1025 37129 10.1 10.05
4b 0.09 0.0975 0.0875 23829 10.45 10.15
4c 0.09 0.095 0.110 48421 10.6 10.35

Table 4.3: Experimental data of irregular specimen, Set 2

ID Globalε εDIC,in εDIC,rel N σin σrel

2b 0.065 0.06 0.062 50114 8.35 8.075
2c 0.05 0.04 0.0425 265882 6.175 6.15
3a 0.09 0.0925 0.096 26595 9.1 8.99
3b 0.08 0.081 0.07 33516 9.05 8.85
3d 0.06 0.055 0.0565 63854 7.925 7.75
5b 0.075 0.072 0.0785 32885 8.75 8.075

expressed in range. The global strain amplitude Globalε imposed by the testing
machine at each cycle (expressed in %) is indicated. This is different from the
DIC measured strains, reported in the following columns and expressed in %,
and is different from the following global strain εg. In particular, εDIC,in refers
to the strain amplitude measured during the first few cycles of the fatigue test,
while εDIC,rel is the relaxed strain amplitude, which was used in the following
as representative of each stabilised hysteresis loop. Finally, the number of cycles
N to failure, the initial stress amplitude and the relaxed stress amplitude, both
expressed in MPa, are reported. These stresses were computed by the load cell
on the reduced section, thus they are nominal engineering values.

Since the simulations are reliable if they fit the calibration state, few conditions
had to be respected in the properties assignment to the model:

• Material properties are the same obtained after the material calibration in
Chapter 3, and resumed in Section 3.5;

• The duration of both the simulations was maintained constant (see Ta-
ble 3.7). t = 0.38 s was assigned to the model concerning to data Set 1,
while t = 3.26 s to data Set 2 (see Tables 4.2 and 4.3);

• Finally, since the exact value of the strain rate for each test was not
experimentally computed, the same average values obtained for the smooth
specimens were used. In order to respect the average strain rate ε̇m,
reported in Table 3.7, the suitable displacement on the grabbing part
had to be verified. Indeed, owing to the presence of the irregularity, the
displacement which allows to simulate the same strain rate could have
been changed.

In Table 4.4 these conditions are resumed.
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Table 4.4: Average strain rate and duration for each simulation for the irregular
specimens

Set ε̇m (1/s) t (s)

1 5.23E-03 0.38
2 6.14E-04 3.26

Figure 4.5: Selected points for displacement comparison. On the left smooth specimen,
on the right irregular specimen

Displacement Verification
The results of the irregular specimen simulations can be compared with the

smooth ones just if the models respect the applied strain rate (nominal value
1e − 2 and 1e − 3 (1/s)), thus if the global displacement and the simulation
duration are identical.

The global size of the mesh elements was left equal to the smooth specimen
one (0.5 mm). This choice was done in order to have the same number of elements
and the same spatial point from which outputs were extracted. Thus, being the
deformation in the specimen with irregularity measured at a point near to the
grabbing part, as explained in Figure 4.4, from simulations of both irregular
and smooth specimen, the displacement of the same point (see Figure 4.5) was
extracted as output. This, as the one where measurements on the irregular
specimens come from, has a longitudinal coordinate of l0

2 ≈ 10.5 mm with
respect to the restricted section. Also this dimension was directly computed
from the Figure 4.4, where the length of the longest green segments was found
l0 ≈ 21.0 mm. The identified point will be considered as the point to which
the global entities are assigned, since it is close to the grabbing part, but still
on the specimen. For this reason it is exempt from data that would have been
measured by the testing machine.

Having as target the displacement of the pointed node of the smooth specimen
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(which results are reliable as the model was calibrated) the proper displacement
was applied to the irregular model, with a boundary condition already shown in
Figure 3.13. Applying a load amplitude with the ramp shape, which allows to
obtain a constant strain rate along all the simulation, the displacement boundary
condition to the irregular specimen was found equal to 0.023 mm both for Set
1 and Set 2 models. This is the same value applied in the smooth specimen
model and it was chosen in order that all the experimental data, and so all the
test conditions, were included in the simulation with an acceptable deformation
margin.

Thus, after having assigned all the necessary properties to the model, the
computation of the fatigue intensity factor could be performed.

4.3 Fatigue Intensity Factor
From the definition given in Section 2.1.3, in order to compute the fatigue

intensity factor, εg −N fatigue plots are necessary. Indeed, the experimental
stress values, owing to the distinct plastic behaviour which characterises lead,
are not suitable for the most common σn−N fatigue plots. In these, the smooth
and irregular experimental results wouldn’t be sufficiently different each other.

Since the purpose of this work was to study the irregularity influence in all
the global strain εg domain, the following steps were faced:

• Identification of εg values concerning to the experimental conditions for
both the smooth and irregular models:

– Recognition of the simulation time frames corresponding to the ex-
perimental tests;

– Output selection and εg computation;

– Scattered plots εg −N with experimental results.

• εg −N scattered plots interpolation with CMB equation:

– Interpolation parameters.

• kf computation from the εg −N interpolation curves.

First of all, the point shown in Figure 4.5, which is close to the grabbing part,
was selected as reference point for the global strain computation. This was chosen
since it well represents global conditions, avoiding the influence of the inaccurate
measurements performed by the testing machine. Then, its displacement was
selected as output in the Abaqus simulations for every time frame and in this
way the global strain along all the simulation could be computed:

εg = ln(1 +
2d

l0
).

Where l0 = 21.0 mm is the average length of the longest segments in Figure 4.4,
at the tip of which the output displacement was selected.

Since the number of cycles to failure N (useful for εg −N plots) is known
only for the experimental conditions, from the simulation the time frames which
are able to represent the experimental tests must be selected. These are the
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Table 4.5: Time frame identification for the smooth specimens, Set 1

time (s) time frame E22DIC E22sim

0.094 22 4.30E-04 4.38E-04
0.099 23 4.65E-04 4.63E-04
0.114 26 5.50E-04 5.39E-04
0.179 39 8.75E-04 8.83E-04
0.149 33 7.10E-04 7.22E-04
0.159 35 7.80E-04 7.77E-04
0.154 34 7.50E-04
0.219 47 1.10E-03 1.10E-03
0.064 16 2.85E-04 2.94E-04
0.049 13 2.30E-04
0.079 19 3.75E-04 3.65E-04
0.059 15 2.75E-04 2.70E-04
0.104 24 4.75E-04 4.88E-04

time frames which are describing the experimental conditions and from which
the εg can be associated with the experimental N . For this reason, the proper
time frames had to be identified.

4.3.1 Time Frames Identification
As already discussed for the smooth specimen in Chapter 3, the simulation

is generally solved in a number of time frames between 50 and 100. Step by
step, a new point on the cyclic stress-strain curve is covered and for each of
them all the requested outputs are computed. For this reason, comparing the
results with every experimental data, each of them can be described by a point
on the simulation curve, so by a certain time frame. Their correct identification
is determinant to be representative of that experimental data.

The proper time frames on the stabilised cyclic curve for the smooth and
irregular specimen were found in two different ways.

Smooth Specimen

In the case of the smooth specimen, the experimental data collected by DIC
technique were referred to the strain measured in the central part of the specimen
from the convex side (see Figure 3.14). Thus, this is the same point from which
the simulation results were considered. Being DIC measurements performed
on the specimen surface, the experimental results are referring to E22 strain
component, which was extracted as output in the simulation from one arbitrary
node of the same element at every time frame. The integration node 1 was used
and this choice is arbitrary since in these simulations the stress and strain field
is uniform. Then, E22 value was compared to the experimental strain amplitude
values, collected in Tables 3.1 and 3.2. Choosing the closest results from the
simulation, time frames in Tables 4.5 and 4.6 were found.

In these, E22DIC are the same experimental strain amplitudes collected in
Tables 3.1 and 3.2, while E22sim are the deformation values extracted from the
proper time frames of the simulation. It was chosen the closest value to the
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Table 4.6: Time frame identification for the smooth specimens, Set 2

time (s) time frame E22DIC E22sim

0.73 22 3.90E-04 3.94E-04
1.01 29 5.50E-04 5.58E-04
1.33 37 7.50E-04 7.52E-04
1.33 37 7.50E-04 7.52E-04
2.05 55 1.20E-03 1.20E-03
2.13 57 1.25E-03 1.26E-03
1.61 44 9.25E-04 9.26E-04

Figure 4.6: Time frames identification. Example for the smooth specimens (see
Figure 3.16)

experimental data, so that the selected time frame could be suitable for the
description of the experimental hysteresis loop. The same values rejected during
the model calibration were not considered in this case, as time frame 34 for Set
1. Furthermore, for problems explained in the next section, the time frame 13
for Set 1 data wasn’t considered.

As shown in Figure 4.6, the approximation point, owing to the choice of
entities for the comparison, was found by the intersection of the simulation
curve and a vertical line passing trough the experimental data. In this way, if
the simulation results are considered, the experimental stress loose its meaning
because it is usually far away from the value computed by the simulation at
the same strain amplitude. Since each experimental point is interpolated by
the simulation curve, a more accurate work should have been to identify each
time frame considering both the stress and strain values, thus projecting the
experimental point on the closest point of the cyclic curves, with an oblique
line (see Figure 4.6). Being the cyclic stress-strain curve quite flat and the
experimental data not too much scattered, no big errors are committed by using
a vertical line for the time frames identification.
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Table 4.7: Time frame identification for the irregular specimens, Set 1

time (s) time frame dDIC dsimulation

0.157 32 7.29E-03 7.29E-03
0.162 33 7.45E-03 7.52E-03
0.122 25 5.56E-03 5.65E-03
0.237 48 1.11E-02 1.11E-02
0.202 41 9.45E-03 9.42E-03

Table 4.8: Time frame identification for irregular specimens, Set 2

time (s) time frame dmeasured dsimulation

1.000 35 6.70E-03 6.73E-03
0.885 26 4.59E-03
1.925 52 1.04E-02 1.05E-02
1.405 39 7.56E-03 7.60E-03
1.125 32 6.10E-03 6.07E-03
1.565 43 8.48E-03 8.48E-03

Irregular Specimen

Regarding to the irregular specimen, the DIC technique was used in order to
measure the specimen deformation along the average of the longest segments
in Figure 4.4 (as already discussed in Section 4.2.2). Thus, the experimental
deformations collected in Tables 4.2 and 4.3 and called relaxed strain amplitudes
are already the needed global strains. However, the time frames identifica-
tion was performed, since the point highlighted in Figure 4.5 can’t be exactly
correspondent to that coordinate (even if a negligible error would be done).

Since in this case the measured deformation couldn’t be directly used as
comparison parameter between the experimental data and the simulations, it
was converted in the displacement of the extreme point of the same segments
(highlighted in Figure 4.5). Then, this entity was used in order to find the
correspondent time frames, computing the output displacement in the same
point.

The output displacement d is computed on an half of the total measurement
segments:

εDIC,rel = ln(
l0 + 2 · d

l0
) , d = (eεDIC,rel − 1)

l0
2
. (4.1)

From the Equation 4.1, the entities dDIC (mm) were computed and collected
in Tables 4.7 and 4.8, where the closes simulation time frames were chosen and
the proper time frames were identified. In this case, for Set 1 the last data
(not included in the table) was rejected since it has a deformation which exceed
the field covered by the simulation. For Set 2, the time frame 25 was rejected.
Indeed, it would have worsened εg −N curves and elaborations in the following
sections.

Once each experimental data was identified in a certain time frame, stress-
strain conditions in all the specimen for each experimental test were known, thus
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Table 4.9: Data for εg −N plots, Set 1

Smooth Irregular
time frame εg N time frame εg N

22 4.14E-04 1100000 32 6.94E-04 97181
23 4.37E-04 486000 33 7.16E-04 98359
26 5.04E-04 227838 25 5.38E-04 130051
39 7.97E-04 104000 48 1.06E-03 37129
33 6.61E-04 101000 41 8.97E-04 23829
35 7.06E-04 110000
47 9.78E-04 62500
16 2.82E-04 3570000
19 3.48E-04 2207600
15 2.60E-04 6297000
24 4.59E-04 839000

Table 4.10: Data for εg −N plots, Set 2

Smooth Irregular
time frame εg N time frame εg N

22 3.73E-04 23150 35 6.40E-04 50114
29 5.18E-04 120000 52 9.97E-04 26595
37 6.86E-04 63373 39 7.24E-04 33516
37 6.86E-04 105000 32 5.78E-03 63854
55 1.07E-03 55875 43 8.08E-04 32885
57 1.11E-03 29000
44 8.33E-04 29630

the global strain εg could be computed.

4.3.2 Global Strains
Regarding to the smooth specimen, from the identified time frames the

displacement of the point highlighted in Figure 4.5 was extracted. Then, the
global strain was computed:

εg = ln(
l0 + 2 · d

l0
).

Finally, from the definition of the global strain, the values concerning to the
irregular specimen were computed in the same way from the output displace-
ments.

The global strains for both the specimens, together with the number of cycles
to failure N (taken from Tables 3.1 and 3.2 for the smooth specimen, from
Tables 4.2 and 4.3 for the irregular one) are resumed in Tables 4.9 and 4.10.
These data were used in order to plot the scattered Figures 4.7 and 4.8. From
these figures is evident that all the data concerning to the irregular specimen are
under the scattered data coming from the smooth one. This behaviour can be
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Figure 4.7: εg −N plot, Set1 data

Figure 4.8: εg −N plot, Set2 data
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Figure 4.9: Nominal stress range - N, Set1 data

Figure 4.10: Nominal stress range - N, Set2 data

associated to the notch effect on the specimen, thus in the following the CMB
interpolation of the experimental data was performed.

Finally, in order to confirm the choice made in the study of εg−N plots, rather
than σg −N , the Figures 4.9 and 4.10 have been plotted. A clear distinction
between the smooth and irregular specimen’s experimental data couldn’t be
done and for this reason the global strain was chosen as reference entity. Thus,
the εg −N plots were interpolated, in order to obtain an average behaviour of
the experimental data.

4.3.3 Coffin-Manson-Basquin Interpolation
The more suitable interpolation equation for plots like εg −N is the Coffin-

Manson-Basquin (CMB) equation. This, as explained in Section 2.1.2, is given
by a summation of two exponential terms:

εBa = Ael ·N−bel ; εCo−Ma = Apl ·N−bpl .
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Figure 4.11: Example of wrong Coffin-Manson interpolation, with a single exponential
term

Where εBa contains the effect of the elastic strain components εel, while εCo−Ma

is given by the interpolation of the plastic strain components εpl with respect to
the number of cycles to failure.

Since the lead behaviour is mainly characterised by the plastic field, the
elastic term εBa could have been considered piecewise constant (on a logarithmic
plot) with respect to N . This would have consisted in using a single exponential
term for the interpolation of the εg−N fatigue curves. In this way, not negligible
errors were obtained, in particular on Set 1 data for the smooth specimen. In
detail, an example of this wrong interpolation is plotted in Figure 4.11. Here is
evident that, for the smooth specimen (Set 1) data at higher number of cycles
have a huge weight on the curve slope and they are leading to obtain a wrong
slope on the region of interest, which is the one at lowest number of cycles (where
the comparison between the results had to be performed). This problem could
have been solved by performing an interpolation just with the experimental
data at the lowest number of cycles, but this would have led to a not enough
robust fatigue curve. Indeed, rejecting or considering a single different data,
interpolation parameters were changing radically. For these reasons, a complete
interpolation was performed, with few distinctions between smooth and irregular
specimens.

Smooth Specimen

In order to perform the CMB interpolation, the global strain in Tables 4.9
and 4.10 must be separated in its elastic and plastic components εg = εel + εpl
considering that, from the Ramberg-Osgood (RO) relationship:

εel =
σ

E
∧ εpl = (

σ

k0
)1/n0

.

Even if εg is not a local strain (thus the σ − ε curve on which is lying
couldn’t be the local one found in Figure 3.16, as discussed in Section 2.1.3),
the simulation curve was used. Later it was verified that the stress and strain
intensification on the smooth specimen (which is due to its hourglass shape) is
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not influential and that also the global entities are well described by the local
curves. Thus, few conditions must be specified:

• RO parameters k0 and n0 are describing the simulation curve, rather than
best fitting ones. For this reason, the modified parameters k0new and n0new
in Table 3.8 were used;

• The stress σ linked to the global strain is unknown. Indeed, the experimen-
tal data (collected in Tables 3.1 and 3.2) have the same εg as a consequence
of the time frames selection (see Figure 4.6), but using the nominal stress
in order to compute εel + εpl would lead to a global strain given by the
intersection between the simulation curve and an horizontal line passing
through the σn.
Thus, an iterative procedure was performed in order to compute the stress
value associated to the global strain. This means that, knowing εg values,
the σ which respects the condition εg = εel + εpl was computed. In
particular, σ was found for each global strain by means of Excel Solver, in
order to respect the following equation:

σ
E + ( σ

k0new
)1/n0

new

εg
= 1.

These computations were done neglecting the fact that in the reality also the
creep deformation is present. Therefore, this means that these are not the real
elastic and plastic components (as creep is just divided between them), but they
are assumed to be that only for the interpolation purpose. Thus, the interpolation
of elastic and plastic strain components was separately performed for both Set 1
and Set 2 data. In Figure 4.12 is plotted the example of interpolation for the
strain components in Set 1 data for the smooth specimen, while in Figure 4.13
is plotted an example of why few experimental data were rejected. They had
a huge weight on the slope of the interpolation curve, which would have led to
errors in the computation of kf .

In conclusion, the interpolation parameters of the equation

εCo−Ma−Ba = Ael ·N−bel +Apl ·N−bpl

are collected in Table 4.11. A detail of the fitting curve overlaid to the experi-

Table 4.11: Global displacement curve interpolation parameters for smooth specimen

Set 1 Set 2

Ael 0.0029 0.0033
bel -0.153 -0.18
Apl 10.168 85.863
bpl -0.922 -1.153

mental values is plotted in Figure 4.14, where is evident that the interpolation
gives a good approximation of the experimental fatigue results. Thus, even if also
in the smooth specimen the strain field is not perfectly uniform (see Figure 3.14),
considering the global σ − ε curve as if it were overlaid to the local one, led to
negligible errors. All the interpolations are plotted at the end of this section.
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Figure 4.12: Interpolation of strain elastic and plastic components for the smooth
specimen

Figure 4.13: Effect of the rejected data on the interpolation curve

Figure 4.14: Interpolation of scattered data for smooth specimen, Set 2
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Table 4.12: Global displacement curve interpolation parameters for irregular specimen

Set 1 Set 2

Ael 0.0021 0.0025
bel -0.153 -0.18
Apl 7.4 66
bpl -0.922 -1.153

Irregular Specimen

In the case of the irregular specimen the εg − N interpolation had a com-
plication. Indeed, as explained in section 2.1.3, the strain intensification owing
to the notch presence lead to have a global σ − ε curve which is not any more
correspondent to the simulation curve (see Appendix A.3 for further discussions).
For this reason, the εg collected in Tables 4.9 and 4.10 were not divided into the
elastic and plastic strain components (since the simulation or best fitting RO
parameters were not representing the global curve), but the CMB interpolation
parameters for the εg −N curve were manually adjusted.

This is the simplest way which allows to obtain an acceptable interpolation
when few and scattered data are considered. It consists in using the same
elastic and plastic slope parameters b of the smooth specimen interpolation (see
Table 4.11), changing manually the intercepts A. In particular, the ratio of the
elastic and plastic parameters A was maintained constant between the smooth
and irregular specimens. This means that the degrees of freedom were not any
more two (Ael and Apl) but just one of them. Indeed, the second allows to
maintain a constant proportion between the smooth and irregular fatigue curves:

Ael,irr =
Ael,smo
Apl,smo

·Apl,irr.

Even if this is not an accurate procedure, it can be considered satisfactory since
the irregular specimen’s data are too less to obtain a good interpolation.

This choice led to compute a constant fatigue notch factor kf and, even if it
could have been supposed a variation of it with respect to the number of cycles to
failure N , this expectation couldn’t be verified with the few available data. The
solution of the problem can be optimised in this direction, performing an higher
number of tests, which would allow to perform a more correct interpolation of
the irregular fatigue curve, thus to analyse an eventual variation of kf with
respect to N . In particular, the scattered data σ − εg could be plotted and
the interpolation curve (see Figure 2.9) would allow to find its RO parameters,
further than the apparent Young modulus (generally higher than the real one).
By means of these data the stress correspondent to the global strain could
be computed, allowing the decomposition of the strain in its apparent elastic
and plastic components, useful for a more correct CMB interpolation. Finally,
the interpolation parameters for the εg − N curve for the irregular specimen
(εCo−Ma−Ba = Ael ·N−bel +Apl ·N−bpl) are collected in Table 4.12. The choice
of the free parameter Apl,irr was driven by a safety consideration, thus giving a
bigger weigh to the experimental data under the final fatigue curve.

At the end, the obtained interpolation for the scattered data in Figures 4.7
and 4.8, were plotted in Figures 4.15 and 4.16. It can be deduced that the fatigue



CHAPTER 4. SPECIMENS WITH IRREGULARITY 70

Figure 4.15: Global strain - N smooth and irregular specimen interpolation, Set 1

life is lower for the irregular specimens, being them subjected to a stress and
strain intensification. Even if in Figure 4.15 the interpolation of the irregular
fatigue curve could fit better the experimental data, they are too less to pretend
that this is not the actual interpolation curve. Since a choice in the selection of
CMB parameters had to be done, the same was performed for both the set of
data.

Concerning to the smooth specimen fatigue curves, the Ramberg-Osgood
new parameters were then verified, being the interpolations for the smooth
specimen adequate. Thus, the global curve for the smooth specimen is effectively
corresponding to the local one. These are the plots from which the fatigue
notch factor was computed. Indeed, even if the crack nucleation and propaga-
tion are associated to the most solicited point, the study of εmax,eq −N plots
(where εmax,eq is the equivalent strain in the most solicited point) wouldn’t be
representative for two reasons:

• Historically global plots are used for studying fatigue problems, since in
this way a direct comparison with the smooth specimens results can be
performed;

• The local stress and strain values coming from the simulations are affected
by the kt-kσ-kε, as it will be explained later. Thus, it has no sense to
study the fatigue intensity factor kf on εmax,eq − N plots, being the N
dependence on εmax,eq not realistic from the fatigue point of view.

4.3.4 kf Computation
Once the fatigue curves in Figures 4.15 and 4.16 were known, the difference

between the smooth and irregular behaviour (with respect to the number of
cycles to failure N) was associated to the fatigue notch factor. This, from
Equation 2.6, is defined at constant number of cycles N as:

kf =
σn,smooth
σn,irregular

,
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Figure 4.16: Global strain - N smooth and irregular specimen interpolation, Set 2

Table 4.13: Fatigue notch factors for Set 1 and Set 2 data

Set 1 Set 2

kf 1.37 1.30

where n represents the net section stress. Even if usually the computed value of
kf could depend on the number of cycles N , when a design for unlimited life
is performed, the reference number of cycles N = 106 is usually chosen, while
if the planned life is in the LCF domain kf can be defined for N = 103. The
reason why a constant kf is usually chosen is discussed in Appendix A.3.

Since in this case the stresses hadn’t been taken into account, the same
definition of the fatigue notch factor was used for the global strain amplitudes:

kf =
εn,smooth
εn,irregular

.

Being the fatigue curves described both in the HCF and LCF domains, kf was
computed for each N (rather than for a reference value). However, owing to the
choice made for the interpolation of the fatigue curves, the fatigue notch factor
has a constant value.

Fixing the number of cycles N and computing εg for both the specimens with
the CMB interpolation curves in Figures 4.15 and 4.16, kf was computed. The
results for both Set 1 and Set 2 data are plotted in Figure 4.17. Other choices
during the interpolation (as same slope parameters b, but independent intercepts
A) would have led to a sharply decreasing kf from a value near to kt (elastic
intensification factor) at the lowest number of cycles and to an asymptotic value
at high N between 1 and 1.2. This could be the reason why, in HCF domain
(thus when only the elastic field is present) a constant value of kf is always given.

Again, the values in Table 4.13 are valid just in the case of lead working near
the tests conditions, thus where the interpolation of fatigue curves is reliable.
From the definition of notch sensitivity, which computation is the target of this
work, the Strain intensity factor must be computed.
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Figure 4.17: Fatigue intensity factor for Set 1 and Set 2 data

4.4 Strain Intensity Factor
To simulate in the computer a complete fatigue test with each cyclic loading,

it would request a huge amount of computing time, further than a more complex
and complete description of the material behaviour along its life (as hardening
or softening properties, number of cycles computation. . . ). For these reasons the
flow monotonic curve can be substituted with the cyclic stress-strain curve, as it
was done until now for all the models. In this way, every point on the covered
curve well represents the stress-strain conditions for a fatigue test with that
stress and strain amplitudes. Thus, the cyclic curve can be used in the model in
order to resume all the possible fatigue stabilised conditions in one simulation.

Being clear the reason why a monotonic simulation can be associated to
several fatigue tests, also the conditions in which the results are not any more
reliable should be known. Indeed, even if the cyclic stress-strain curve is covered
by the simulation, Abaqus still considers it as a monotonic flow curve. Thus,
the element which is missing in order to compute the notch sensitivity is the
distinction between the statical notch factor kt and fatigue notch factor kf . Since
the fatigue notch factor was computed from the global strain values, rather than
the stresses, also the stress intensity factor (which is the commonly used in the
High Cycle Fatigue HCF domain) was not considered relevant. For this reason,
the strain intensity factor was used in the local irregularity effect evaluation.

If the fatigue notch factor was computed from the fatigue curves considering
the global strain εg, the strain intensity factor concerns the local effects of the
irregularity. Thus, it was computed considering the comparison between the local
maximum strain for the irregular and smooth specimens by means of εmax,eq−εg
plots. Indeed, kt in the elastic field and kε in the plastic one are defined at
constant global strain as:

kt =
εmax,eq,irr
εmax,eq,smo

.

Even if the stress and strain intensification factors are usually computed with
respect to an ideal linear-elastic behaviour, in this case the reference situation
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Figure 4.18: Most solicited points. On the left smooth specimen, on the right irregular
specimen

was associated to the stress-strain history of the smooth specimen. This choice
was done since the kε historical definition is valid when the component is globally
in its elastic field and a plastic deformation is locally encountered owing to the
notch effect, while in this case all the specimen faces a plastic deformation. Thus,
in order to compute the strain intensity factor in all the global strain domain,
few steps were faced:

• Extrapolation of the global strain εg from all the time frames of the
irregular and smooth specimens simulations;

• εmax,eq computation:

– Identification of the most solicited point.

• kt computation in all the global strain domain.

In the same way done in Section 4.3.2 for the global strain computation, in
this case the displacement of the node highlighted in Figure 4.5 was extracted
as output from each time frame of the simulations. Then, the most solicited
point, useful for the computation of the maximum equivalent strain amplitude
was found.

4.4.1 Most Solicited Point
The most solicited point was found running a simulation and identifying

the highest Von Mises stress values with the Probe values command. Several
nodes were selected and, as a result, the element containing the nodes with
the highest stress values are pinpointed in Figure 4.18. In both the models,
this element corresponds to the external one from the concave side. Values
plotted in this figure are corresponding to the last time frame covered by the
simulation and their only purpose was to determine the most solicited point.
This is considered guilty for the fatigue failure in each time frame (thus in each
experimental test) as, being the most solicited one, it’s probably the point from
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Figure 4.19: Stress intensification on the back side. On the left smooth specimen, on
the right irregular specimen

where the crack starts nucleating and propagating. In particular, the integration
node 2 of element 1120 was chosen for smooth specimen, while the node 2 of the
element 2040 for the irregular one.

For the irregular model simulation it can be seen clearly the intensification
effect of the irregularity in the mean section from the concave side. From
the convex one, another less damaging intensification effect is present and the
comparison between the two geometries was plotted in Figure 4.19. Finally the
equivalent maximum strain range and the equivalent stress were computed.

Equivalent Stress and Strain
The maximum equivalent strain amplitude εmax,eq in the most solicited point

was defined by means of the following equation [7]:

εeq =
2

3
·
r

3(e2
xx + e2

yy + e2
zz)

2
+

3(γ2
xy + γ2

yz + γ2
zx)

4
. (4.2)

Other equations valid for the equivalent strain rate computation were found
elsewhere [5, 19]. Despite of that, the results were differing by a negligible value
(under 5%) and the Equation 4.2 was used.

Extracting all the six entities exx, eyy, ezz, γxy, γyz and γzx from the most
solicited point at each time frame, the maximum equivalent strain amplitude was
computed. Then, from the same point also σmax,eq = σVM was known. When
local effects are considered, it has no meaning to compare them with respect to
the number of cycles. Indeed, even if the fatigue failure starts from the most
solicited point, which (for this reason) could be taken as reference point in the
fatigue curves, it must be reminded that simulations results are corresponding
to a monotonic curve. Thus, the maximum values have no meaning from the
fatigue point of view, but they are just highlighting the presence of an intensity
factor kt and kε. Finally, εmax,eq and εg were plotted together in Figures 4.20
and 4.21. Considering the smooth specimen as the nominal condition, the ratio

kt =
εmax,eq,irr
εmax,eq,smo
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Figure 4.20: εmax,eq - Global strain, Set1

Figure 4.21: εmax,eq - Global strain, Set2
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Figure 4.22: Strain intensity factors in all the global strain field, for both nominal
strain rates tests

was computed at constant global strain. In this way, the Figure 4.22 was obtained,
were:

• kt is constant in the elastic field and is equal to kt ≈ 1.5 for the data Set 1
and Set 2. Indeed, as it can be seen in Figure 3.5, the simulation curves
are overlaid in the elastic field, thus there is no reason for which kt should
be different. If this doesn’t occur its probable that a mistake was done in
pasting the strain components or in the selection of the integration point
from which consider the outputs;

• In the plastic field, kε is arising owing to the shape of the plastic curve.
Its values tend asymptotically to kε ≈ 2.3 for data Set 1 and kε ≈ 2.2 for
data Set 2. Even if the simulation curve is lower for the strain rates (thus
an higher kε would be expected) kε,1 > kε,2 since the strain intensification
factor was computed at constant global strain. In this way the specimen at
higher strain rate is more solicited in terms of stress and the most solited
point is ahead on the plastic curve with respect to the one of the irregular
specimen;

• Since the strain concentration factor is a geometrical property, its variation
with respect to the strain rate was historically studied in a different way [23].
In particular, in Figure 4.23 is shown the effect of frequency for tests at
different kt, which are considered as constant values. This was done when
the computational efforts were not sustainable. Since in these years the
trend of kε can be computed easily, the proper kε was adopted for each
strain rate condition.

Finally, after having computed the fatigue intensity factor and the strain
intensity factor, the notch sensitivity could be computed.
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Figure 4.23: Example of frequency dependency on failure at constant kt, for four
different geometries [23]

4.5 Notch Sensitivity
From the definition of notch sensitivity (see Equation 2.8):

q =
kf − 1

kt − 1
,

where generally q is depending on the global strain (owing to the strain intensity
factor) and on the number of cycles to failure (owing to the fatigue intensity
factor). Despite of that, in this case kf is constant, thus q has only a variation
with respect to the global strain. Furthermore, the proper kε was considered at
each strain rate condition, so that q =

kf−1
kε−1 . In Figure 4.24 its trend is plotted

for both nominal strain rates. At the lowest global strain, thus in the elastic
field, q is constant and its variation il linked to uncertainty in kt computation.
At higher global strain its value decreases until it stabilises near values q = 0.3
for Set 1 data and q = 0.25 for Set 2 data.

The last observations concerns to the difference between curves obtained
at different strain rates. At lower strain rates, where the creep phenomenon
let the plastic component arising, the notch severity is always lower and this
consideration fits the expectations: materials with higher plastic behaviour are
always less damaged by notch presence. Finally, in order to obtain a single value
which could be used faster for design purpose, the average values were computed
near testing global strain conditions. In particular, time frames from 3 before the
lower experimental εg to 3 after the higher one were considered for the average
computation. In this way constant values of notch sensitivity were computed for
both data Set 1 and Set 2 and collected in Table 4.14.

All the obtained results are valid just in the following three conditions. First
of all, the crack must start nucleating where the simulation shows the most
solicited point (which means that the points taken into account and represented
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Figure 4.24: Notch sensitivity variation with respect to the global strain.

Table 4.14: Average notch sensitivity for Set 1 and Set 2 data

Set 1 Set 2

q 0.36 0.32

by kt are effectively responsible for fatigue failure). Otherwise, it means that the
influence of the irregularity on the lead sheath is even lower than the computed
one. Furthermore the results can be considered as accurate just were supported
by experimental data. Indeed, they are few and too scattered to extend their
interpolation to completely different strain conditions. Finally, even if in the
smooth specimens the stress is not uniform in all the notched section (see
Figure 3.14), this condition was considered as nominal distribution in the notch
sensitivity computation.

In the end kf , q and kt were resumed in the same plot for both strain
conditions in Figures 4.25 and 4.26.

4.6 Data and Results Resume
In this section a brief resume of the procedure and results for the irregularity

effect on the lead specimen is discussed.

• The geometrical measured properties of the irregular specimens are col-
lected in Table 4.1, while the dimensions assigned to the model are plotted
in Figure 4.3. Experimental fatigue data are then collected in Tables 4.2
and 4.3, each for the corresponding nominal strain rate;

• The material and model properties are the same used for the model
calibration and they are resumed in Section 3.5;

• The fatigue intensity factor was computed for both the data set (see Table
4.13). This was found following few steps:
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Figure 4.25: kf , q and kt plot for Set 1 data

Figure 4.26: kf , q and kt plot for Set 2 data
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– Identification of the time frames of the simulations, which are corre-
sponding to the experimental conditions for the models of smooth
(see Tables 4.5 and 4.6) and irregular specimens (see Tables 4.7 and
4.8);

– Computation of the global strain amplitudes (collected in Tables 4.9
and 4.10) from the identified time frames, useful for plotting the
εg −N fatigue curves in Figures 4.7 and 4.8;

– Interpolation of the fatigue curves by means of Coffin-Manson-Basquin
equation, which coefficients are collected in Tables 4.11 for the smooth
specimen and 4.12 for the irregular one. Thus, the interpolation curves
are plotted in Figures 4.15 and 4.16.

• The strain intensity factor was then computed (see Figure 4.22). For
this purpose, the most solicited point in the model was found for both
the models and plotted in Figure 4.18. From this, the equivalent strain
was computed in every time frame and plotted against the global strain
amplitude in Figures 4.20 and 4.21, which were used in order to compute
the intensity factor;

• Finally, the notch sensitivity was computed and plotted in Figure 4.24.
The average values in the field of interest (thus the one where experimental
results of the irregular specimen are coming from) were computed and
collected in Table 4.14. Lastly, kε, kf and q were plotted together in
Figures 4.25 and 4.26.

In order to compute q the fatigue tests on the smooth and irregular specimens
were necessary. Once it was known, its value could be considered as a geometrical
property and it could be used for considerations regarding to the real configuration
of the power cable. For this reason, a section of the power cable (with a smooth
and irregular Pb layer) was created and studied in the following chapter.



Chapter 5

Irregularity Influence on the
Real Configuration

Once the axial fatigue tests were performed both for the smooth and irregular
specimens, the influence of the irregularity in the test conditions was defined and
computed in terms of strain intensity factor and notch sensitivity (see Chapter
4). In particular, the notch sensitivity can be considered as a geometrical
property and its values can be generally extended also outside from the testing
conditions in which it was computed. From the other side, even if the irregularity
effect in fatigue conditions was characterised, these results (in terms of kε and
kf ) could be not enough accurate in the real cable configuration. Indeed, the
experimental fatigue analysis were performed with specimens surrounded by air,
even if in the assembled power cable the contact between lead sheath and the
surrounding layers could have some effect in the lead behaviour. Furthermore,
in working conditions each layer is subjected to a multiaxial stress field with an
high hydrostatic component (rather than the uniaxial stress applied as in the
experimental tests) which could affect the irregularity influence on fatigue life.

In order to highlight a possible difference in terms of notch effect between the
experimental tests and the real working conditions, an axisymmetric 2D model
(representing the cable’s section) was created with and without the irregularity
on the lead layer. In this situation, the qualitative effect of the irregularity was
studied by the computation of the intensity factor in the real configuration.
Indeed, it’s well known that the stress and strain intensity factors depend on
the nature of the load, further than the notch geometry. In particular, the load
condition was simulated by means of a thermal cycle, which is caused by the
cable warming owing to the Joule effect.

This chapter is organised in the following few sections:

• Models creation:

– Power cable section geometry and description of each layer;

– Material properties assignment to each section. Definition of the
characteristics and of the layers orientation;

– Mesh creation;

– Internal contact and boundary conditions assignment;

81
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Table 5.1: Cable section geometries for a lead thickness of t = 3.3 mm [16]

Part Components Description t (mm) Rint (mm) Rext (mm)

A 1 Conductor 23.15
2 Conductor screen 0.4 23.15 23.55

B 3 Insulation 20.15 23.55 43.7
4 Insulation screen
5 Serving 44.6

C 6 Lead Sheath 3.3 44.6 47.9
D 7 PE Sheath 3.3 47.9 51.2

8 Bedding
E 9 Reinforcement 0.8 51.2 52

10 Bedding
F 11 Armor wires 3 52 55

12 Bedding
G 13 Armor wires 3 55 58

14 Bedding
H 15 Outer Sheath 6 58 64

– Loading step definition.

• Calibration of the thermal step duration;

• Outputs selection and jobs creation;

• Notch intensity factor computation and estimation of the fatigue life loss.

5.1 Cable Section Geometry
The considered submarine power cable (see Figure 1.2 for an example section)

is made by several layers, which dimensions (thickness, internal and external
radius) were collected in Table 5.1 [16]. The description and function of each
layer was faced in Chapter 1.

Since the purpose of this chapter was to figure out the irregularity effect in
terms of intensity factor (thus from a stress and strain point of view), even if
each layer has its own mechanical properties, only few of them were modelled.
These are the most relevant from the structural point of view. Indeed, the
thinnest layers (such as the semi conductive nylon tapes 8, 10 and 12, further
than the carbon black paper tapes) are useful for other purposes rather than the
structural one, thus their influence on the stress and strain field is negligible.
For this reason, only the layers collected in Table 5.2 were modelled, where
the equivalent dimensions were computed taking into account also the small
contributions coming from the neglected layers. Furthermore, the dimensions
collected in Table 5.1 are concerning to a power cable in which the lead sheath
has a thickness of t = 3.3 mm, rather than t = 1.8 mm (which is the nominal
dimension studied in this entire work). Thus, the internal and external radius of
each layer in Table 5.2 were adjusted considering that the lead sheath dimensions
(plotted in Figure 3.1) were fixed. In particular, the radius of the internal layers
with respect to the lead one were reduced proportionally to the dimensions
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Table 5.2: 2D model section geometries

Part Components t (mm) Rint (mm) Rext (mm)

A 1 20.35
B 3 18.85 20.35 39.2
C 6 1.8 39.2 41
D 7 3.3 41 44.3
E 9 0.8 44.3 45.1
F 11 3 45.1 48.1
G 13 3 48.1 51.1
H 15 6 51.1 57.1

Figure 5.1: Irregularities example on the lead sheath [12]

in Table 5.1, while the external layers were maintained of the same thickness.
Indeed, owing to the available data, only a qualitative analysis was possible, thus
it was useless to know the exact thickness of each layer.

Thus, the geometrical data collected in Table 5.2 were used in order to create
two 2D axisymmetric models: one with a smooth lead sheath, the second with
the same irregularity studied in the previous chapter. The 2D axisymmetric
model was chosen in order to reduce the computational time. Indeed since this
is a complex problem, a first simplified model was created even if this choice has
some limitations in the applicable loads. This allowed to produce a refined mesh,
which is able to describe a more accurate stress and strain field in all the cable
section and in particular near to the irregularity.

The distance between each irregularity was not known and from Figure 5.1
an approximate longitudinal distance of 10 cm was considered. Even if in some
cases the distance could be lower, it was demonstrated that the irregularities
have a null or negligible influence on each other and the maximum distance at
which a noise on the stress field was visible was of ≈ 3 cm. For this reason it was
sufficient to model only one irregularity. Thus, a model with a longitudinal length
of 5 cm and periodical boundary conditions was created. An example regarding
to the geometry of the model with irregularity was plotted in Figure 5.2, where
it was chosen that the irregularity of the lead sheath was entirely absorbed by
the surrounding layers (rather than being transmitted and perceived through
more of them). Finally, after the geometry creation, the material properties were
assigned to each layer.
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Figure 5.2: Axisymmetric model of the cable with irregularity on the lead sheath. x
radial direction, y axial direction

5.2 Material properties
In this section, the material properties definition and assignment were faced.

Starting from the most internal layer all the sections were defined, considering
that the following material properties were given by Reference [16]. In addiction
to the elastic properties, also the plastic and creep ones were assigned where
necessary. Then, considering that in this model the irregularity effect was studied
with a thermal cycle loading condition, also the thermal volumetric expansion
coefficient αv was assigned to few layers.

During the working conditions, the cable can expand owing to the warming
up for Joule effect. Presuming that at a maximum of ≈ 500 m depth the
seawater temperature is around 4 ◦C and that at stationary working conditions
the temperature at the interface between lead and insulation layers can reach
50 ◦C, a ∆T = 50 ◦C was considered as reference gap for the two layers A and
B [16]. Even if in a more complex and correct model the temperature gradient
should be considered and the expansion of each layer should be studied, in a first
approximation the only expansion of the two most internal layers was considered.
This approximation holds for the following reasons:

• Owing to the conduction between the adjacent layers and convection with
the surrounding water, the other layers are subjected to a significant lower
temperature gap [11];

• The thermal expansion coefficient of the other layers is negligible with
respect to αv of the MI insulation layer;

• A more accurate model would request extra informations, useless for a
qualitative estimation.

Thus, a brief description of the characteristics of each layer is faced.
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Layer A
High purity copper conductor, isotropic material which is supposed to work

only in its linear elastic field. The Young’s modulus, Poisson’s ratio and the
thermal expansion coefficient were assigned.

Table 5.3: Layer A material properties

E (MPa) ν αv (1/K)

120000 0.34 5.1E-05

Layer B
Insulation system, which is made by Kraft paper impregnated by high viscosity

oil. Since the temperature field explored by the cable during the service is low, for
simplification, the insulation is assumed to be isotropic and elastic [11]. About
this layer, being the insulation a complex system composed by paper and oil
(see Figure 1.4), few clarifications are necessary:

• The definition of the mechanical and thermal properties is difficult and
several assumptions were made. In particular, the equivalent mechanical
and thermal properties were used [11]. Regarding to the mechanical
properties, the equivalent values Eeq = 10 GPa and νeq = 0.45 were given,
while the equivalent expansion thermal coefficient is αeq = 2.52E−04 1/K.
This was computed considering that only the oil gives a contribution to
the thermal expansion, thus its expansion coefficient αv = 6.3E − 04 1/K
was multiplied by the typical volume fraction fv = 0.4 occupied by the oil
in the mass impregnated layer [16].

• Even if only eight layers were modelled, in the sections created are merging
the material properties of the neglected components. Thus, since the copper
tape (component 3) has in general not negligible structural properties, an
equivalent Young’s modulus and Poisson’s ratio were computed for the
layer B taking into account the copper tape and the Kraft paper [16]:

EB =

X
(Ei · If,i)
IB

, νB =

X
(νi · Vi)
VB

.

Where EB and νB are the equivalent Young’s modulus and Poisson’s ratio,
computed considering that the components merged in the layer B are in
parallel each other. In particular, they were computed considering an
average of the flexural stiffness and an average computed on the volume
occupied by each component in the modelled layer. Thus, Ei and If,i are
the elastic modulus (for an isotropic material) and the flexural inertia of
the i-component, while νi and Vi are the Poisson’s ratio and volume of
each component per unit length. This choice consists in another approxi-
mation, since the copper woven taper (being it a woven) should introduce
negligible isotropic properties. Anyway, the same procedure adopted from
the reference was repeated.
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Even if these equivalent values were computed for studying the flexural
behaviour of the cable (which is excluded by an axisymmetric model),
they were still used since they would have been anyway affected by error.
Indeed, already the value Eeq for the insulation is a rough estimation and,
owing to the thermal cycle, this layer is subjected to a triaxial stress which
is not easily definable for a more appropriate computation of EB . Thus,the
equivalent values for the layer B are collected in Table 5.4 and they were
corrected considering the modified dimensions of each section, which are
collected in Table 5.2.

Table 5.4: Layer B material properties

E (MPa) ν αv (1/K)

20524 0.44 2.52E-04

From a comparison between the thermal expansion coefficients, it’s obvious
why the expansion of the other layers was neglected. The MI paper has an
αv which is one order of magnitude higher.

• The mass impregnated paper is not a continuum body, since it’s char-
acterised by the presence of cavities in which the oil is contained. In
particular, a fraction of these cavities is free of oil at the lowest tempera-
tures. Then, owing to the warming up, they become filled by oil when the
insulation layer reaches a threshold temperature called cavity free tempera-
ture. Above this temperature, which is usually of 30◦C, the insulation layer
starts expanding [11]. For this reason, being the ∆T = 50◦C between the
starting and stationary conditions, a reasonable temperature gap which
causes thermal expansion can be considered of ∆T = 20◦C (which is the
applied one in the model). In order to simplify the step definition, the
same final temperature was applied to the copper conductor, which gives
anyway a negligible contribution.

Layer C
The lead sheathing was modelled considering an isotropic elastic, plastic and

creep behaviour (by means of the strain hardening power law). In particular, the
properties collected in Section 3.5 were used, thus considering that after the cable
immersion in the seawater the lead layer is facing already the stabilised conditions.
This approximation was done considering the complexity of the problem and the
target, which is just a qualitative understanding of the irregularity effect on the
fatigue life.

Layer D
This layer is made by polyethylene (PE) and its behaviour is considered to be

strain-rate and temperature independent (for lack of data). The isotropic elastic-
plastic properties were given by Nexans Norway [16]. Since the temperature gap
is lower outside form the insulation, no thermal expansion was considered. Thus,
in the Tables 5.5 and 5.6 are collected the properties assigned to this layer.
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Table 5.5: Layer D elastic material properties

E (MPa) ν

600 0.46

Table 5.6: Layer D plastic material properties

σ (MPa) εpl

2.0 0.00
3.0 1.50E-02
4.0 2.33E-02
6.0 4.00E-02
7.5 9.00E-02
9.0 1.90E-01
9.5 2.90E-01
10.0 3.90E-01
10.5 4.90E-01
11.0 5.90E-01
11.5 6.90E-01
12.5 7.90E-01
13.0 8.90E-01
13.5 1.00

Layer E
Above the polyethylene is winded up a galvanized steel tape, which purpose

is to produce a tangential reinforcement in opposition to the radial deformations
of the power cable (usually caused by the thermal expansion of the inner layers).
Being it a tape, the provided strength acts only along the winding direction,
otherwise it would slip on the adjacent layers. For this reason, this layer was
modelled by means of orthotropic linear elastic properties (rather than isotropic).

Even if this tape is wind up with a direction of ≈ 20◦ with respect to the
tangential one (see Figure 5.3), that material orientation couldn’t be used in an
axisymmetric model. For this reason, the steel Young’s modulus ans Poisson’s
ratio were assigned along the pure tangential direction. In particular, if the
local coordinate system is equal to the global one, plotted in Figure 5.2, these
are E3 = Et = 200000 MPa and ν12 = νtp = 0.3 as reported in the Abaqus
guide [1]. Then, the elastic modulus along the other directions Ep = E1 = E2

were arbitrary chosen equal to 1%E3 in order to have an enough low value
representative to the fact that no strength can be provided by the tape in those
directions [11]. Since the elastic matrix [E] must respect the symmetry condition,
ν13 = νpt =

Ep·νtp
Et

= 0.003 was computed, then ν23 = νp = ν13 was arbitrary
chosen, being the directions orthogonal to the tangential one negligible from the
structural point of view. Finally G23 = Gp =

Ep

2(1+νp) = 997 MPa was computed
and the G12 = G13 = G23 were arbitrary chosen. These values are respecting
the stability conditions of the Abaqus guide and they are resumed in Table 5.7,
where Ei and Gij are reported in MPa [1].

A peculiarity of this layer is that it is usually winded up with a preload. In
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Figure 5.3: Tape winding, example

Table 5.7: Layer E orthotropic elastic material properties

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23 αv (1/K)

2000 2000 200000 0.3 0.003 0.003 997 997 997 3.5E-5

order to model this condition an initial thermal step, which is discussed in the
next section, was applied until the stress along the tangential direction (which
is more or less equal to the Von Mises equivalent stress) reached the value of
≈ 200 MPa [16]. Thus, also the thermal expansion coefficient was assigned (see
Table 5.7). Finally, it was also verified that this layer was in its elastic field along
all the simulation and a discussion about this topic is faced in the next section.

Layers F and G
Above the steel tape, two galvanized steel armours made by wires are winded.

Since also in this case a detailed model would be too complex (modelling each
wire as separated from the other would request a 3D model, further than more
data which are not available), these armours were considered as continuum
bodies with orthotropic linear elastic behaviour [16]. This approximation, as
for the steel tape, allows anyway to perform a qualitative investigation of the
irregularity effect on the power cable fatigue life.

In particular, the steel wires (which are used in order to provide strength
along the axial direction, useful in order to sustain the cable weight during the
installation) have an orientation with respect to the longitudinal one which is
12.7◦ for the most internal armour and −10.5◦ for the external one [16]. Since
in an axisymmetric model the local material orientation must be concordant to
the global reference frame, being the angle orientation small with respect to the
longitudinal direction, the two layers were modelled considering them as laying
along the axial direction. Thus, the same considerations of the layer E are valid,
except for the fact that the elastic orthotropic properties were assigned in order
to have the maximum strength along the axial direction (which is the direction
2). Finally, these properties (valid for both the layers F and G) were collected
in Table 5.8.
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Table 5.8: Layers F and G orthotropic elastic material properties

E1 E2 E3 ν12 ν13 ν23 G12 G13 G23

2000 200000 2000 0.003 0.3 0.003 997 997 997

Layer H
The most external layer consists of an High Density Polyethylene (HDPE),

which is characterised by an isotropic elastic-plastic behaviour. For lack of data
it’s considered to be strain-rate independent. In Tables 5.9 and 5.10 are collected
its mechanical properties [16].

Table 5.9: Layer H elastic material properties

E (MPa) ν

780 0.46

Table 5.10: Layer H plastic material properties

σ (MPa) εpl

10 0
10.5 1.7
11.75 2
14 3
17 4
20 5

The plastic curve in Table 5.10 was partially considered, since intermediate
points between the first two had the same stress value and this would have
brought to errors during the simulations. Then, after having assigned the
material properties to each section, all the layers were assembled together and
the mesh on each of them was defined.

5.3 Mesh Creation
Since the target of the following simulations is to figure out the irregularity

effect on the stress and strain field, the mesh should be enough detailed and
refined in order to allow a local evaluation. For this reason, further than a small
size of each element, quadratic elements were chosen. Then, in order to focus
on the region of interest and to reduce the computational time, a mesh with a
variable seed along the radial direction was created on each layer (rougher far
away from the lead sheath and more refined closer to the irregularity).

The same size of the mesh on each section was used for both the models (the
first with a smooth lead sheath, the second with the presence of the irregularity)
and an example of the mesh dimensions is plotted in Figure 5.4, where a detail
on the irregularity of the lead sheath is highlighted. The maximum size of the
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Figure 5.4: Mesh on the cable section.

elements on the lead section and closer to it is equal to 0.25 mm, while on the
most internal and external layers the mesh is less detailed. These dimension
were chosen after few simulations, in order to describe in a more appropriate
way the stress distribution nearby to the irregularity and to demonstrate that
the noise which introduces isn’t affecting the other irregularities. Once the mesh
was defined, the boundary conditions definition was faced.

5.4 Boundary Conditions
The boundary conditions must be able to describe a cable with infinite length,

with the presence of one irregularity every 10 cm (which is the approximated
axial distance between each of them). Thus, the following boundary conditions
were applied independently to each external surface of the model:

• The first boundary condition was applied in order to describe a complete
irregularity (since in the model just an half of it was sketched, as plotted in
Figure 5.4). Therefore, an Y-symmetry boundary condition was adopted
on the lowest side;

• Then, the choice of creating a 2D axisymmetric model represents itself a
boundary condition on the cable’s axis (which is represented in Figure 5.4
by the dotted line on the left side). Since the model is bidimensional each
node allows a displacement only on the plane xy and, being the analysis
axisymmetric, no torsional and flexural behaviour are admitted. Thus, the
stress and strain components r − c and r − z are equal to zero (where r
is the radial direction, c the circumferential and z the axial one in Figure
5.5).

• The model must be able to move along x and y directions without loosing
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Figure 5.5: Axisymmetric stress components [9]

Figure 5.6: Comparison between boundary conditions on the upper surface. The lowest
one represents the correct periodic boundary condition application.

the contact between the adjacent layers and these conditions are separately
managed:

– During the thermal expansion, the cable hasn’t constraints along the
axial direction (except from the other side of the cable which is not
modelled). For this reason, a periodic boundary condition was applied
in order to guarantee that each layer could move along the y direction
(for which the symmetry condition couldn’t be applied), each with
the same displacement. Indeed, owing to the fact that the model
consists in a single section of the cable it would make no sense to
allow different displacements for each layer along the axial direction.
Since the insulation layer is the one with the highest thermal expansion
coefficient, it’s also the one which would like to expand the most.
Instead of expanding more than the other layers along the y direction,
it acts like a stretching load. A comparison between the wrong
situation (thus without the periodic boundary condition) and the
realistic one is plotted in Figure 5.6. The periodic boundary condition
was defined by a constraint called equation imposing that each node
of the mesh for the upper surface had a fixed displacement along the
desired direction with respect to a reference point.

– The compatible displacement along the x direction was allowed by
the imposition of a contact condition between each layer. Even if it
would have been enough to use a tie constraint between each inner
adjacent surfaces (being the displacements along y direction fixed
on the upper surface, thus in all the possible intermediate sections)
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Figure 5.7: Boundary conditions resume

a contact was defined using an Hard contact normal behaviour and
a Penalty tangential behaviour. In particular, the normal one was
defined avoiding the separation of the surfaces after the contact,
while the tangential behaviour was described by an arbitrary medium
isotropic frictional factor equal to µ = 0.3. This is lower than an
usual contact between plastic materials or steel, since nylon and other
tapes are used between each layer. The contact effect is visible in the
σ12 component, which isn’t null (even if negligible) in the model with
irregularity, as discussed in the next Sections.

• The last boundary condition consists in the water pressure on the external
surface (thus the right one in Figure 5.4). Even if its effect is negligible it
was arbitrary chosen a maximum depth of 500 m, where the pressure is
equal to p = 5 MPa.

If the geometrical boundary conditions are applied during all the simulation, the
water pressure was defined in a different step, which is introduced in the next
section. Finally, all the boundary conditions were resumed in Figure 5.7.

5.5 Load Steps Definition
The submarine power cables are subjected to several loads in the different

stages of their life (from the production, to transportation, installation and in
working conditions). In general they have different origins and this work is
focused on the effect of the load caused by the thermal expansion of the inner
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layers (such as the conductor and the insulation system). Thus, in order to
represent the real working conditions, few loading steps were created:

Initial step During the initial step (which is the default one) all the pre-
existing conditions were implemented. In this case, the initial temperature
(arbitrary, since the target is to obtain the wanted gap ∆T ) for the layers
A, B and E was set equal to T0 = 0◦C. If for the first two layers the
thermal expansion is useful in order to study the stress field evolution in all
the power cable section, for the steel tape E the thermal load is used just
in order to model a preload which is provided during the cable production.

Preload The first step, which was called Preload, was created in order to obtain
a preload of about 200 MPa on the steel tape, thus on the layer E (which
is represented in Figure 5.2) [16]. Since the lead sheath was modelled also
with its creep behaviour, a visco step was chosen and, during this step,
a final temperature of Tf = 30◦C with a ramp shape was settled. This
allows to introduce a temperature gap of ∆T = 30◦C, which was verified
to be enough in order to obtain the wanted σVM . Since the tape has a
tangential orientation and negligible mechanical properties on the other
directions, the equivalent Von Mises stress is almost equal to σ33, thus
the circumferential component. In particular, the step duration was set
arbitrary to 1 s and the number of time frames was chosen near 10, since
this step is not of primary importance for the stress and strain field study.

Water Pressure After the Preload step, the water pressure was applied consid-
ering a maximum depth of 500 m. Thus, selecting a visco step, a pressure
of 5 MPa was distributed on the external surface of the model (which is
the adjacent one to the layer H). Imposing a duration of 1 s and about
10 time frames (being this step not important from the stress-strain field
evaluation), the water pressure was simulated. The main effect of this step
is to introduce an higher hydrostatic stress component, which brings to
reduce the slope of the equivalent stress condition in all the layers.

Thermal expansion The last step, which is the one of main interest, was
called Thermal expansion. During this step, two different temperatures
should have been defined on the layers A and B. Indeed, the layer A (copper
conductor) is subjected to the thermal expansion during the whole gap
∆T = 50◦C, while the insulation layer uses the first 30◦C in order to warm
the oil until it fills the cavities and the last 20◦C for the effective thermal
expansion [16]. Since the copper thermal expansion coefficient is negligible
with respect to the insulation’s one, in order to simplify the steps creation,
the final Temperature of Tf = 20◦C was set on both the layers.

Finally, the duration of this step was chosen in order to obtain a longitudinal
strain rate ε̇22 on the lead sheath equal to the strain rate measured during
the experimental fatigue tests. Even if the loading condition is different
from the experimental one (axial load) and a multiaxial stress-strain field
is present, ε̇22 was arbitrary still considered as reference entity in order
to perform a comparison between the results obtained from the fatigue
intensity factor computation for the specimens and the results obtained
from these more realistic models. Since the experimental tests on the
irregular specimens were performed at two different strain rate conditions,
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two simulations for each model were performed. An iteration procedure
on the thermal step duration allowed to obtain the desired strain rate.
A discussion upon this topic was faced in the next subsection and the
optimized step durations t are collected in Table 5.11.

Table 5.11: Thermal expansion step duration and comparison between strain rates

Set ε̇m (1/s) ε̇22 (1/s) t (s)

Set 1 5.23E-03 5.00E-03 0.2
Set 2 6.14E-04 5.54E-04 1.8

Set 1 and Set 2 have the same meaning of the previous chapters, thus Set
1 regards the model on which the highest strain rate was set, while Set
2 corresponds to the smooth and irregular models on which the lowest
strain rate was applied. The average strain rate values ε̇m were taken from
Table 3.7, while ε̇22 corresponds to the computed strain rate for the step
duration t. Then, knowing the values of t, the increment size during this
loading step was set in order to have at least 40 time increments.

5.5.1 Thermal Step Duration
The strain intensity factor was computed in two strain rate conditions. In

order to obtain the desired longitudinal strain rate, the correct thermal step
duration was chosen by means of an iterative procedure. In particular, the strain
rate was computed during each time frame:

ε̇22i
=
εg,22i

− εg,22i−1

ti − ti−1
,

where εg,22 is the global strain along the axial direction and t is the time instant of
each time frame. The global strain was computed far away from the irregularity
on the lead layer, in order to obtain a strain value which was not influenced by
the noise introduced by the irregularity. Thus, the point from which the output
was extracted consists in the node 1 of the element highlighted in Figure 5.8,
which is adjacent to the upper surface. Since the periodic boundary condition
was applied to the upper surface, the strain component ε22 is equal for each axial
coordinate and the choice of the element along the x direction was indifferent.

Then, the average was performed between the strain rate ε̇22i computed
during each time frame of the thermal expansion step. Finally, adjusting the
duration of the same step, the values in Table 5.11 were computed, which are
close enough to the ε̇m (taken from the Table 3.7). The strain rate was computed
and verified in this way for both the models (smooth lead layer and the second
with the irregularity on the lead layer) in the two strain rate conditions.

Even if the duration computed is small and not realistic (since in real working
conditions the cable warming duration is at least of some minutes), the following
results were considered valid, being this a qualitative analysis.
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Figure 5.8: Assembly detail, element of the lead layer from which the global strain
output was extracted.

Figure 5.9: Preload stress on the steel tape. Irregular specimen, highest strain rate.

5.6 Output Selection
The necessary outputs for the correct interpretation of these models and for

the results computation are regarding to few different integration points:

• The first output is useful in order to verify that the correct preload stress
was reached on the steel tape (∆T = 30◦C on the layer E, identified in
Figure 5.2) during the preload loading step. Thus, the most solicited point
of this layer was identified for both the models (the first with a smooth
lead layer, the second with the irregular Pb layer) and this was contained
in the lowest element in Figure 5.9, on the internal curvature. From this,
the results in terms of σVM , which is almost equal to σ33, were arbitrary
selected from the integration point 1;

• The second output, which was useful for the computation of the strain
intensity factor (further than the strain rate), was extracted from the
element identified in Figure 5.8. From this, the strain component ε22

(which is called in the following as global strain εg,22) was extracted from
the integration node 1;
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Figure 5.10: Detail of stress field on the Pb layer and identification of the most solicited
point.

• Finally, all the strain components of the most solicited point on the lead
layer, further than the stress components and the Von Mises stress, were
selected. This point is contained into the element identified in Figure 5.10
for the model with irregularity, but the same one was considered also for
the model with the smooth lead layer. Indeed, in the second model the
stress-strain field is uniform along the axis, thus any point on the internal
curvature represents the most solicited point.

Once all the desired outputs were known, the necessary elaborations could be
done and the strain intensity factor could be computed.

5.7 Results and Intensity Factor
The main target of this section is the strain intensity factor computation in

a real power cable configuration. Despite of that, before facing that discussion,
the preload stress on the steel tape was verified to be equal or near to the
wanted value σVM = 200 MPa. Thus, since the ramp shape was used in
the thermal gap application, from each time frame of the preload loading step
the current temperature was easily computed by a proportion to the time.
Plotting the collected Von Mises stress against the temperature gap, the chart
in Figure 5.11 was obtained. A temperature gap ∆T = 30◦C allowed to obtain
a σVM ≈ 183 MPa, which is close enough to the target value. Then, it was
verified that the steel tape was in its elastic field even at the end of the thermal
expansion. Indeed, only the elastic property was assigned to this layer. The
maximum stress was verified to be σVM ≈ 800 MPa, which (depending on the
steel) could effectively still be in the elastic behaviour field. After that, the
strain intensity factor computation was faced.

In a multiaxial stress and strain condition, the intensity factor definition is not
univocal. Indeed, the usual formula for the strain intensity factor computation
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Figure 5.11: Steel tape preload σPL − ∆T

(see Section 2.1.3) takes into account the maximum strain values for the same
global strain, which depends on the nature of the applied load. For this reason,
in the previous case where the notch effect was computed on the specimens,
the global axial strain εg,22 was considered, being the load applied an axial one.
When a multiaxial problem is faced, where also the load acts along the three
main directions, the strain intensity factor kε =

εmax,eq,irr

εmax,eq,smo |εg
can be defined in

different ways:

1. Being the thermal expansion predominant along the radial direction, the
load could be considered as radial. Thus, the strain intensity factor could
be computed for the same global εrr, which is the radial deformation far
away from the irregularity;

2. Since the thermal load generates a multiaxial stress and strain condition,
also the same εg,eq could be used. This is the equivalent Von Mises strain
computed far away from the irregularity (which takes into account all the
global strain components rather than only one of them);

3. In the last case, which was the used one, the strain intensity factor can
be computed for the same global εg,22. Even if this component is a
consequence the radial deformation (owing to the Poisson’s ratio), it was
used as reference condition being the same strain component used for the
notch sensitivity evaluation in the case of the lead specimens.

Thus, the computation of the intensity factor requires the global axial deformation
(which is the same component used for the strain rate evaluation, taken from
Figure 5.8) further than the maximum equivalent Von Mises strain. For this
reason, the most solicited point on the lead layer was identified and the same
point was then considered for the model with the smooth lead layer, even if
(being the geometry equal along all the axis) any point on the internal curvature
would have had the same stress and strain history. Then, the outputs ε11, ε12,
ε22 and ε33 were used in order to compute the equivalent strain in the most
solicited point (see Equation 4.2):

εeq =
2

3
·
r

3(ε2
11 + ε2

22 + ε2
33)

2
+

3(ε2
12)

4
.
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Figure 5.12: σ12 component distribution on the model

Since the strain component ε12 is not null in the case of the model with irregularity,
even if negligible (see Figure 5.12), the choice of defining a contact between the
each layers rather than using a tie constraint was justified.

In this way, the charts in Figures 5.13 and 5.14 were obtained, where the
first one refers to the highest strain rate, while the second to the lowest one. In
order to consider only the effect of the thermal load, the time frames regarding
to the previous loading steps were neglected in this analysis and a polynomial
cubic interpolation was performed. In the end, at constant global strain, the
strain intensity factor kε was computed:

kε =
εmax,eq,irr
εmax,eq,smo |εg,22

.

It’s value was plotted in Figure 5.15 together with the temperature gap during
the thermal expansion step.

In the end, the estimation of the irregularity effect on the fatigue life was
performed considering the same notch sensitivity computed for the specimens
(see Table 4.14). Thus, the average values for kε, called kε,m, were computed
along the thermal step and they were used in order to compute a constant kf
for both the strain rates (according to the Equation 2.8). All these values were
collected in Table 5.12, where is evident that the fatigue intensity factors are
lower than the ones collected in Table 4.13. This means that the irregularity
has a lower damaging effect on the power cable than the expected one from the
experimental fatigue tests. Since the strain amplitude introduced by the thermal
cycle is higher than the experimental values faced in the previous chapter (see
Tables 4.9 and 4.10), this realistic loading condition is considered to act in the
low cycle fatigue domain.

An accurate fatigue life estimation can’t be performed with the available
data and for qualitative analysis it’s intended a percentage estimation on the
reduction of number of cycles to failure, knowing that (in a fatigue analysis)
the ratio between the maximum equivalent strain values for the two models is
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Figure 5.13: Equivalent strain in the most solicited point against the global strain
component ε22, Set 1

Figure 5.14: Equivalent strain in the most solicited point against the global strain
component ε22, Set 2

Figure 5.15: Strain intensity factor
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Table 5.12: Fatigue intensity factor in the real cable configuration

Set q kε,m kf

Set1 0.36 1.11 1.041
Set2 0.32 1.11 1.036

represented by kf . Even if the fatigue curves of a real cable are different from
the ones of the experimental tests, they are anyway layered each other by the
multiplication factor kf . Furthermore, the real fatigue curves are assumed to
have the same slope coefficients bel and bpl. Thus, taking into account the fatigue
curves in Figures 4.15 and 4.16 and knowing that the thermal cycle is acting in
the LCF domain, only their plastic contribution was considered, as plotted as an
example in Figure 4.12. If s stands for smooth and i for irregular, the following
relations can be written:

εg,22 = Apl · (Ns)bpl , εg,22 · kf = Apl · (Ni)bpl .

Thus, dividing these equations, the following relations were obtained:

kf = (
Ni
Ns

)bpl ,
Ni
Ns

= k
1/bpl
f ,

where 1− Ni

Ns
consists in the percentage loss of fatigue life owing to the irregularity

presence. Even if the real fatigue curves could have a different intercepts (also
owing to the compression coming from the hydrostatic contribution) these are
not relevant in a percentage computation, where only the slope parameters are
important.

Then, the same procedure was performed also considering small deformations
acting in the elastic field, in order to have an idea on the expected life loss.
Thus, the Coffin-Manson-Basquin parameters collected in Table 4.12 were used
in order to compute the values in Table 5.13. An higher loss factor is present in

Table 5.13: Percentage life loss estimation

Set 1− Ni

Ns el
1− Ni

Ns pl

Set1 23% 4%
Set2 18% 3%

the small deformations field (thus in the dominant elastic of the fatigue curves)
since the elastic contribution has a lower slope. Thus, the same fatigue intensity
factor brings to a major damaging effect. From the other side, having the plastic
contribution an higher slope, a less damaging effect is perceived in the low cycle
fatigue domain. In any case, since the fatigue curves are describing the safety
condition with an high error, it can be concluded that the irregularity has a
negligible effect on the fatigue life of the power cable.

The entire analysis was performed considering only one half of a thermal
cycle and the maximum value of the local strain is equal to ≈ 7.0E − 3. The
simulation of a complete thermal cycle is not possible with the assigned material
properties (being the plastic property assigned with an isotropic strain hardening,
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rather than kinematic), but it would be also useless. Indeed, the lead properties
are regarding to the stabilised conditions of a traction fatigue test, which consists
in supposing that the lead layer is already facing those conditions when it’s
immersed in the seawater. Thus, the simulation should expect a precedent plastic
deformation of the lead layer, which for this reason couldn’t start its stress-strain
history from a null deformation. Otherwise, if the thermal cycles are bringing
themself the lead sheath in stabilised working conditions, it’s improbable that
they would be exactly the same of an axial fatigue test. Since the problem of
the correct simulation of an entire thermal cycle is more complex than what
it can be simulated with the available data, one half of the thermal cycle was
considered enough in order to compute the strain intensity factor. Thus, even if
the stress-strain history covered by the simulation is not exactly the real one,
what matters is the comparison between the results coming from the two models
(the first with the irregularity, the second with a smooth lead layer).

The deformations introduced by the thermal cycle (considering that the strain
amplitude is half of the simulated one) are higher than the ones experienced
during the axial fatigue tests. Thus, the most solicited point and in general all the
elements on the lead layer are laying on an advanced point of the plastic curve,
where the plastic curve itself contains more uncertainty (being not supported by
experimental data). This could be the reason why the slope of the intensity factor
curve in Figure 5.15 faces a variation for the highest temperatures, avoiding
a convergence. In any case, the strain intensity factor is lower than the one
computed for the lead specimens and decreases for increasing plasticity.

5.8 Data and Results Resume
In this chapter, the irregularity effect on the fatigue life of a submarine power

cable in its real configuration was studied. In particular, few steps were followed:

• Two models (one with a smooth lead layer, the second with the irregularity)
were created and the material properties were assigned to each layer. See
Figure 5.2 for the cable’s section geometry, while all the material properties
were collected in Section 5.2;

• A preload was applied to the steel tape by means of a thermal gap of
∆T = 30◦C, in order to reproduce the preload obtained during the cable
production;

• Then, a thermal gap was used in order to simulate the insulation layer
expansion and the duration was calibrated in order to obtain the same
strain rate measured in the previous chapter. In particular, in Table 5.11
these data are resumed;

• The most solicited point on the lead layer was identified in Figure 3.14 and
the equivalent Von Mises strain was computed. Than, the global strain
component εg,22 was extracted from the point highlighted in Figure 5.8
and these two data were used in order to compute the strain intensity
factor, which trend was plotted in Figure 5.15;

• Using the same notch sensitivity values computed in Chapter 4, the fatigue
notch factor was estimated in the real situation. Their constant values for
both the strain rated were collected in Table 5.12;
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• Finally, the kf was used in order to estimate the percentage life loss, which
was computed and collected in Table 5.13 in different situations:

– Computation for the two strain rate conditions;

– Computation of the life loss considering external excitations acting
firstly in the only plastic field (by means of the plastic contribution of
the fatigue curves in Figures 4.15 and 4.16), then in the elastic one.



Chapter 6

Conclusions

The aim of this work was to find out the life loss of a submarine power cable,
owing to the effect of the irregularities on the lead sheath. In order to perform
such analysis, the computation of the geometrical factor notch sensitivity q was
mandatory. This was done in different steps, since an evaluation performed
directly on the real cable’s section was not possible:

1. First of all, several experimental fatigue tests were performed at different
strain rates on Pb smooth hourglass-shaped specimens. Then, in Chapter
3, the material calibration was performed in order to model the correct
behaviour of Pb in fatigue conditions. In particular, the creep parameters
for the strain hardening equation were computed by means of an iterative
procedure implemented on Isight. Once the lead properties for specimens
of thickness t = 1.8 mm were known, these could be used for the study of
a model with the geometrical irregularity.

2. The second step consisted in the evaluation of the irregularity by means of
the same material properties calibrated in the Chapter 3. Fatigue tests
were then performed at two different strain rates on irregular specimens.
Thus, the comparison between these results and the ones coming from the
smooth specimens allowed to compute the notch parameters for the given
test conditions: strain intensity factor, fatigue intensity factor and notch
sensitivity. The observed results showed a low effect of the irregularity on
the fatigue life. Indeed, even if the strain intensity factor is high, the notch
sensitivity is far away from the value 1. In the last step, these results were
used in order to study a section on a real power cable, rather than study
lead specimens.

Few approximation were done in the Chapter 4. In particular, the ex-
perimental tests were performed on specimens with irregularities with a
slightly different geometry if compared to the real irregularities found in
another study [12]. Indeed, in some cases the irregularity from the external
side of the cable is more severe and sharp-cornered. Finally, these results
can be used for the evaluation for the effects of axial and bending loads.
Indeed, also when the cable is subjected to bending, the lead sheath faces
locally the same stress-strain conditions.

3. The last part of this work consisted in the irregularity effect evaluation
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for a real power cable configuration, by means of the previously computed
notch sensitivity. This was done in order to understand which could be the
effect of the adjacent layers on the fatigue life of the lead sheath. Another
approximation of this work consists in the capability of modelling just an
half of the thermal cycle. Indeed, the isotropic hardening was assigned as
a plastic property, thus the Baushingher effect couldn’t be observed.

Despite of that, the hydrostatic stress contribution (which comes from the
thermal expansion of the inner layers and from the water pressure) has a
beneficial effect on the irregularity, which doesn’t affect in a substantial
way the fatigue life of the power cable. Even if the irregularity shape
modelled in this work is not the worst which could be observed, the trend
of the reduction of its effect in the fatigue life is evident. Finally, the
results are valid also for the portions of the real power cable for which a
longitudinal expansion is not possible and this situation was verified by the
imposition of symmetrical boundary conditions also on the upper surface
of the cable section.



Appendix A

Research Material

A.1 Example of Wrong Calibration
In the Figures A.1, A.2 and A.3 an example of wrong calibration is plotted.

The optimization allowed to avoid these errors.

Figure A.1: Wrong calibration for Set 1 data

A.2 Irregularity Geometry
In the following, Matlab file useful in the computation of the four radius

defining the irregularity geometry is reported. The output is obtained by choosing
the most representative values of irr and start dimensions, which meaning is
explained in the following.

Figure A.4 represents a quarter of the specimen with the convex side on top,
where the coordinate x = 0 mm defines the end of the grabbing part (excluded
in the drawing), while the coordinate x = 13.5 mm represents the mean section
of the specimen. Thus, the dimensions irr and start are used in order to define
how severe is the irregularity.
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Figure A.2: Wrong calibration for Set 2 data

Figure A.3: Wrong calibration for Set 3 data

Figure A.4: Matlab plot representing the longitudinal section of the specimen, with
irregularity on the centre
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• start = 10 mm corresponds to the distance between the coordinate 0 and
the point where the curvature owe to the irregularity starts, thus the length
of the black lines;

• irr = 3 mm is the length of the convex part of the irregularity. Since only
an half of the specimen is represented, the longitudinal length of the red
lines corresponds to irr/2.

Finally, in the legend the four circle sections are explained. 1 refers to the circles
which centres are under the specimen, while 2 refers to the circles outer from
the convex side of the specimen. The dimensions highlighted were used in model
creation.

close all
clear all

%% half specimen, grab excuded
%irregularity dimensions
irr = 3; %convex length in mm (y direction) MINIMUM=1, MAXIMUM=20
start = 10; %curved part. 0 if starts at the end of grabbing section...
...START+IRR/2=MAX 13.5mm

%geometrical data
a = 13.5; %half specimen, circle 1, x center coordinate
b = start; %circle 2, x center coordinate
m = 0.17;
t = 1.8;
t_i = 1.8;

%% computations
gamma = t-m-t_i;
zita = (acos(1+2*(t_i+m-t)*gamma/((b-a)^2+gamma^2)));
zita_int = (acos(1-2*m^2/((b-a)^2+m^2)));
p_x = [b, 0, 0, b];
p_y = [0, 0, t, t];

%lower circle
down_ext = linspace(pi/2,pi/2+zita,10); %dot sequence in radians
down_int = linspace(pi/2,pi/2+zita_int,10);
R1_ext = (irr/2)/sin(zita); %circle 1 external radius
R1_int = (irr/2-t_i*sin(zita_int))/sin(zita_int);
x1_ext = R1_ext*cos(down_ext); %circle 1
y1_ext = R1_ext*sin(down_ext);
x1_int = R1_int*cos(down_int);
y1_int = R1_int*sin(down_int);

%upper circle
up_ext = linspace(3/2*pi,3/2*pi+zita,10);
up_int = linspace(3/2*pi,3/2*pi+zita_int,10);
R2_ext = (t_i+m-t)/(1-cos(zita))-R1_ext;
R2_int = ((b-a)^2+m^2)/(2*m)-R1_int;
x2_ext = R2_ext*cos(up_ext);
y2_ext = R2_ext*sin(up_ext);
x2_int = R2_int*cos(up_int);
y2_int = R2_int*sin(up_int);

%plot irregularity
alpha=-R1_ext+m+t_i;
beta = R2_ext+t;
plot(p_x,p_y,'k'); %specimen



APPENDIX A. RESEARCH MATERIAL 108

hold on;
plot(x1_ext+a,y1_ext+alpha,'r--'); %lower circle (1)
plot(x1_int+a,y1_int+(-R1_int+m),'r'); %lower circle (1)
plot(x2_ext+b,y2_ext+beta,'--b'); %upper circle (2)
plot(x2_int+b,y2_int+R2_int,'b'); %upper circle (2)
axis equal;
grid on;
legend('specimen','R1_{ext}','R1_{int}','R2_{ext}','R2_{int}');
set(gcf,'color','w');
text(start/2,t/2,'start','Color','k');
text(13.5-irr/4,t/2,'irr','Color','r');

D1_ext=R1_ext*2;
D1_int=R1_int*2;
D2_ext=R2_ext*2;
D2_int=R2_int*2;

A.3 In-depth Analysis about kf

In this section few clarifications about kf are discussed:

• Discussion about the measurement of εg in a notched specimen;

• Why usually a constant value of kf is used.

Being lead a material with a wide plastic field, its fatigue life was studied by
means of the fatigue notch factor applied to the global strain amplitudes, rather
than net section stress amplitude. For this reason, a correct computation of the
global strain must be performed in both smooth and irregular specimen.

Talking about the smooth specimen (even if its section area is not constant)
no intensification factors were present. Thus, the global strain could be computed
for each segment length which bridges the mean section. This consideration
consists in supposing that during the fatigue test each point along the specimen
is solicited in the same way (same stress and strain values), so that each element
is identified by the same point on the hysteresis loop or on the traction curve. If
the notched specimen is considered, this is not any more true. Indeed, owing to
the stress and strain intensification, the elements near to the notch are covering
a wider hysteresis loop than the elements closer to the grabbing part. For
this reason, as already discussed in Figure 2.10 (which is reproduced by the
experimental results in Figure A.5), computing the global strain on different
segments length L0 could lead to different values.

Global Strain Measurement
In order that all the computations and results could be useful for the design

purpose, the measured global strain must be directly comparable to the strain
which is applied during real service conditions. Usually, the applied strain is
a consequence of the cable bending, thus of the rotation to which the cable
is subjected with respect to the straight condition (see Figure A.6). If the
lead sheath would be smooth, the global strain computed from geometrical
considerations would be equal to the local strain. However, being irregularities
present on each cable sheathing at a distance of ≈ 10 mm each other, the same
global strain must be used in order to evaluate the local effect of the irregularity.
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This means that the global strain that can be computed from geometrical
considerations must be the same computed on the irregular specimen, thus the
length L0 on which measurements are performed must be enough longer than
the irregularity, in order to obtain a strain measure which is independent from
the distance to the irregularity.

In Section 2.1.3 it has been explained that if the measurement is performed
far away from the notched section, the described σ − εg curve (apparent one) is
stable and independent from L0. On the opposite side, if the length L0 would
be considered gradually closer to the irregularity, the measured strain wouldn’t
be any more the true global strain and the traction curve would be closer to
the smooth specimen one. Indeed, in this case the measured strain would be
closer to the local one, which is laying on the material plastic curve. Thus, if
the output strain of the simulations εg,s (considered to be the global strain)
is not independent from L0, the curve which is describing together with the
experimental stress is not the apparent one, but a curve in the middle between
the notched and smooth curve in Figure 2.10. In this way, the real global
strain εg,r (which is computed by the strain definition, as in Figure A.6) is
not comparable to the simulation one (being the simulation one affected by
the irregularity influence). Thus, using the kf computed from εg,s on the real
one εg,r would lead to design errors, since these entities are not comparable.
Indeed, being εg,s > εg,r the computed fatigue curve of the irregular specimen
would be closer to the real fatigue curve than expected and kf would lead to an
underestimation of the notch effect.

Finally, the simulation strain εg,s (collected as output in the point highlighted
in Figure 4.5) was verified to be independent from the length L0 in the following
subsection.

εg Verification

In order to verify that the simulation global strain could be effectively
considered to be global, the strain was measured at the identified time frames
also on another point more far away from the irregularity. This consists in the
limit point of the specimen and it is identified in Figure A.7. In Table A.1 the
global strain computed from this point εg,2 and the one in Figure 4.5 εg (which

Figure A.5: σ − εg for smooth and irregular specimens
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Figure A.6: Deformation resulting from pure bending

Figure A.7: Global strain verification
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Table A.1: Comparison between εg, Set 1

time frame εg εg,2

32 6.94E-04 7.04E-04
33 7.16E-04 7.26E-04
25 5.38E-04 5.47E-04
48 1.06E-03 1.06E-03
41 8.97E-04 9.05E-04

data are taken from Table 4.9) are collected, for data Set 1. Since the measured
values have a relative error of less than 2%, the conclusion is that both the points
can be used for the global strain computation (being then independent from the
length L0) and the results obtained for kf can be effectively applied for design
purpose.

Constant kf

In this work, being the experimental data concerning to the irregular specimen
few and scattered, the interpolation curve on the εg−N plot was chosen supposing
a proportionality with respect to the CMB fatigue curve of the smooth specimen.
This choice avoided to perform the interpolation of the experimental data and it
led to compute a constant kf . Despite of that, as explained in Section 4.3.4, if
more experimental data were available a more correct interpolation could have
been performed by means of the apparent traction curve as reported in Figure
A.5. Plotting the global strain (which comes from the simulation) together with
the nominal stress amplitude (which is an experimental data) and performing
the RO interpolation should have led to a case analogous to the one in Figure
2.10. Then, the RO curve could have been used in order to obtain the elastic
and plastic components of the global strain εg, which are useful in order to
perform the exact CMB interpolation on the εg −N plot. In this way, two real
fatigue curves could have been obtained and, by the definition of the fatigue
notch factor, a variable kf with respect to the number of cycles could have been
generally computed.

Even if this procedure could be followed, a variable kf couldn’t be easily
used and for this reason an average value is generally provided. Indeed, using a
variable kf requests to perform an iterative computation if the fatigue curve of
the irregular specimen is not directly accessible:

• First attempt kf applied to the global strain amplitude;

• N computation from the intersection of the perceived strain amplitude
and the fatigue curve of the smooth specimen (true fatigue curve) on the
εg −N plot;

• Verification that N corresponds to the number of cycles for which the
adopted kf is valid.

For this reason, a constant notch factor is preferred, since it allows to simplify
the computations.
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Figure A.8: DIC system example [13]

Figure A.9: DIC pattern in two different time frames [13]

A.4 Digital Image Correlation
The Digital Image Correlation (DIC) is a non-destructive surface deformation

measurements method, which scheme is plotted in Figure A.8. This measurement
technique is used when a specimen or component is subjected to a non uniform
deformation and it allows to perform a local strain measurement in all the
specimen’s surface. In order to achieve this result, a speckle pattern must be
artificially created on the region of interest, as it was done for the specimens in
Figure 4.4. After that, a post processing analysis allows to follow the path of
each speckle in order to compute the local deformation for every time instant,
as reported in Figure A.9. This technique was used in this work in order to
compute more accurate strain values.
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