
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

A density-based method for scalable
outlier detection in large datasets

Advisors

prof. Paolo Garza, Politecnico di Torino

prof. Abolfazl Asudeh, University of Illinois at Chicago

prof. Alessandro Campi, Politecnico di Milano

Candidate

Matteo Corain

matricola: 256654

Academic Year 2019-2020

Contents

List of Tables V

List of Figures VI

1 Introduction 1

2 Background and related work 3

2.1 Density-based clustering . 3

2.1.1 Overview on clustering techniques . 3

2.1.2 DBSCAN . 4

2.1.3 First approaches to grid-based DBSCAN 8

2.1.4 Gunawan’s 2D algorithm . 9

2.1.5 𝜌-approximate DBSCAN . 10

2.1.6 Parallelization of DBSCAN . 12

2.1.7 RP-DBSCAN . 14

2.2 Anomaly detection . 16

2.2.1 Overview on anomaly detection techniques 16

2.2.2 Statistical methods . 17

2.2.3 Distance-based outliers . 18

2.2.4 Local outlier factor . 19

2.2.5 Clustering-based approaches . 20

2.2.6 One-class classifiers . 21

2.2.7 Isolation forests . 22

II

2.3 Apache Spark . 23

3 The proposed algorithm 29

3.1 Definitions . 29

3.1.1 Cell . 29

3.1.2 Cell types . 30

3.1.3 Neighboring cells . 31

3.1.4 Grid . 36

3.2 Overview of the algorithm . 36

3.3 Cell construction and grid definition . 37

3.3.1 Overview . 37

3.3.2 Time complexity . 38

3.3.3 Example . 38

3.3.4 Parallelization . 39

3.4 Core points identification . 40

3.4.1 Overview . 40

3.4.2 Time complexity . 40

3.4.3 Example . 42

3.4.4 Parallelization . 44

3.5 Outliers identification . 46

3.5.1 Overview . 46

3.5.2 Time complexity . 48

3.5.3 Example . 48

3.5.4 Parallelization . 48

3.6 Implementation optimizations . 50

3.6.1 Optimizations overview . 50

3.6.2 Broadcast join . 51

3.6.3 Grouping before joining . 52

4 Experimental results 53

4.1 Algorithm implementation . 53

4.2 Overview of the performed tests . 54

III

4.3 Quality-related testing . 54

4.3.1 Datasets description . 54

4.3.2 Tested algorithms . 55

4.3.3 Parameter selection . 56

4.3.4 Evaluation metrics . 56

4.3.5 Testing environment . 57

4.3.6 Results . 57

4.4 Scalability-related testing . 64

4.4.1 Datasets description . 64

4.4.2 Tested algorithms . 64

4.4.3 Parameters selection . 70

4.4.4 Evaluation metrics . 70

4.4.5 Testing environment . 70

4.4.6 Qualitative result analysis . 71

4.4.7 Scalability with respect to 𝜖 . 72

4.4.8 Scalability with respect to the number of points 78

4.4.9 Scalability with respect to the number of partitions 83

4.4.10 RP-DBSCAN’s approximation quality . 87

5 Conclusions 89

Bibliography 91

IV

List of Tables

2.1 Main RDD transformations in Apache Spark . 25

2.2 Main RDD actions in Apache Spark . 26

2.3 Main pair RDD transformations in Apache Spark 27

2.4 Main pair RDD actions in Apache Spark . 27

3.1 Some notable values for 𝑘𝑑 . 33

4.1 Rand index comparison for the generated datasets 58

4.2 Rand index comparison for the benchmark datasets 63

4.3 Running times (in seconds) for the Geolife dataset with variable 𝜖 75

4.4 Running times (in seconds) for the OpenStreetMap dataset with variable 𝜖 76

4.5 Statistics for the Geolife dataset . 78

4.6 Statistics for the OpenStreetMap dataset . 79

4.7 Running times (in seconds) for the Geolife dataset with variable sample size . . 80

4.8 Running times (in seconds) for the OpenStreetMap dataset with variable sample

size . 81

4.9 Running times (in seconds) for the Geolife dataset with variable number of par-

titions . 84

4.10 Running times (in seconds) for theOpenStreetMap dataset with variable number

of partitions . 85

4.11 RP-DBSCAN detection accuracy on the Geolife dataset 87

4.12 RP-DBSCAN detection accuracy for RP-DBSCAN on the OpenStreetMap dataset 87

V

List of Figures

3.1 Two-dimensional neighborhood of cell (0,0) . 32

3.2 Three-dimensional neighborhood of cell (0,0,0) 33

3.3 Overview of the example dataset . 37

3.4 Results of the grid definition phase on the example dataset 39

3.5 Dense cells marking on the example dataset . 43

3.6 Neighbor check for the point 𝑝1 on the example dataset 44

3.7 Neighbor check for the point 𝑝2 on the example dataset 45

3.8 Results of the core points identification phase on the example dataset 46

3.9 Neighbor check for the point 𝑝3 on the example dataset 49

3.10 Neighbor check for the point 𝑝4 on the example dataset 50

3.11 Results of the outliers identification phase on the example dataset 51

4.1 Results on the Blobs dataset . 59

4.2 Results on the Blobs-vd dataset . 60

4.3 Results on the Circles dataset . 61

4.4 Results on the Moons dataset . 62

4.5 Results on the cluto-t4-8k dataset . 65

4.6 Results on the cluto-t5-8k dataset . 66

4.7 Results on the cluto-t7-10k dataset . 67

4.8 Results on the cluto-t8-8k dataset . 68

4.9 Results on the cure-t2-4k dataset . 69

4.10 Results on the Geolife dataset . 73

4.11 Results on the OpenStreetMap dataset . 74

VI

4.12 Performance on the Geolife dataset with variable 𝜖 75

4.13 Performance on the OpenStreetMap dataset with variable 𝜖 77

4.14 Performance on the Geolife dataset with variable sample size 80

4.15 Performance on the OpenStreetMap dataset with variable sample size 82

4.16 Performance on the Geolife dataset with variable number of partitions 84

4.17 Performance on the OpenStreetMap dataset with variable number of partitions . 86

VII

List of Algorithms

2.1 The DBSCAN algorithm . 7

3.1 Neighbors generation procedure . 35

3.2 Grid definition procedure . 38

3.3 Core points identification procedure . 41

3.4 Outliers identification procedure . 47

VIII

Summary

DBSCAN is one of the most well-known algorithm in the field of density-based clustering,

although its applicability to large datasets is generally disputed due to its high complexity. The

aim of this work is to propose a new, parallel, Spark-based procedure for the sole purpose

of anomaly detection, in a way which is coherent to the DBSCAN definition and suitable for

the big data context. From a theoretical side, this algorithm is characterized by a worst-case

performance boundary that depends linearly on the size of the dataset; in practical tests, it

outperforms available solutions both in terms of result quality and overall scalability when the

data grow large.

IX

Chapter 1

Introduction

Outlier and noise detection are some of the most important tasks in a data mining pipeline.

Specifically, outliers (correct observations which significantly differ from the others in terms

of attribute values) may constitute a valuable information to collect per se, while noise points

(produced due to a disturbed data generation process) need very often to be removed from a

dataset before applying any kind of processing algorithm in order to improve the quality of the

obtained results.

In a way, outlier detection is a complementary task with respect to clustering [23]: accord-

ing to such definition, outliers may indeed be detected as the points such that they cannot be

assigned to any of the identified clusters, or at least their assignment may be disputed. In this

sense, this work builds upon the most recent developments in terms of parallelization of one

of the most well-known clustering algorithms, DBSCAN, to define a novel procedure that de-

tects outliers in a density-based fashion and runs in a worst-case linear time with respect to

the size of the input dataset. In practical tests, such algorithm was able to outperform all the

other available solutions, both in terms of the quality of the identified outliers and scalability

in terms of running time.

This work is organized as follows. Chapter 2 (Background and related work) presents the the-

oretical notions and the main results found in literature regarding the two branches of density-

based clustering and outlier detection algorithms. A brief overview of the main ideas behind

the Apache Spark data processing library is also introduced. Chapter 3 (The proposed algorithm)

1

1 – Introduction

describes the structure of the new algorithm, starting from some basic definitions and then con-

tinuing with the analysis of the three steps in which it can be conceptually subdivided and of

some implementation tricks. Finally, Chapter 4 (Experimental results) presents the results of the

execution of the algorithm on a range of different synthetic and real-world datasets, with the

aim of characterizing the quality of such results and the overall scalability. Such results are put

in comparison with those produced by some of the algorithms analyzed in Chapter 2, pointing

out how the new algorithm outperforms those techniques in terms of both result quality and

running time performance in most cases.

2

Chapter 2

Background and related work

In this chapter, an overview of the main results in the different branches of research the work

targets is presented. In the first section, density-based clustering techniques are reviewed, fo-

cusing specifically on the DBSCAN algorithm and its parallel implementations. In the second

section, some of the most common techniques for outlier detection are described. Finally, the

last section introduces the main ideas of the Apache Spark data processing library, which has

been used for the implementation of the algorithm.

2.1 Density-based clustering

2.1.1 Overview on clustering techniques

Clustering is a data mining task aiming to define groups of data, also called clusters, in a way that

objects belonging to a cluster are more similar (in some sense) to one another than to objects

outside the cluster [23]. Clustering represents a typical example of an unsupervised data mining

task.

Due to the generality of the notion of cluster, many approaches and techniques have been

proposed for the clustering task. Some of themostwell-known techniques for clustering include

the following [23]:

• Prototype-based clustering: in prototype-based clustering, each cluster is defined by a sin-

gle representative (or prototype), usually the centroid or the medoid of the points in the

3

2 – Background and related work

cluster; data points are assigned to the cluster whose representative is closer (according to

some distance measure) to the point itself. Examples of algorithms using this approach in-

clude the K-means algorithm and its variations (e.g. K-medoids, bisecting K-means); those

are simple and efficient algorithms, but are bound to detect clusters with a specific shape

(e.g. the globular shape, when the Euclidean distance measure is used) and do not perform

well in presence of outliers.

• Hierarchical clustering: in hierarchical clustering, clusters are allowed to have nested sub-

clusters; higher-level clusters are generated by joining the data points in all of their chil-

dren. There are two basic approaches for generating a hierarchical clustering:

– Agglomerative: agglomerative algorithms start from the lowest-level clusters (usu-

ally made up of a single point) and progressively merge them;

– Divisive: divisive algorithms start from the highest-level clusters (usually a single

cluster with all points) and progressively split them.

The agglomerative approach is by far the most used; algorithms implementing such tech-

nique generally produce good-quality clusters, but they are computationally expensive

and may not handle well noisy data.

• Density-based clustering: in density-based clustering, clusters are identified as regions

characterized by a high density of points (according to some definition of density), sepa-

rated from one another by regions with low density. One of the first andmost well-known

algorithm in this category is DBSCAN ; such approach allows to define clusters with arbi-

trary shapes and is resistant to noise and outliers, but suffers when clusters have varying

densities and does not perform well with high-dimensional data.

2.1.2 DBSCAN

DBSCAN [5] (Density-Based Spatial Clustering of Applications with Noise) is one of the first

and most well-known algorithm for performing the clustering task in a density-based fashion.

The traditional definition of the concept of density given by DBSCAN makes use of a center-

based approach: the density is estimated, separately for each point in the dataset, by counting

4

2.1 – Density-based clustering

the number of samples whose distance from that point is less than a specified threshold, usually

denoted as 𝜖. This idea is formalized in the following definition.

Definition 2.1.1 (Neighborhood of a point). Let 𝜖 be a positive real number and 𝒟 ⊆ ℝ𝑑 a

reference dataset. The 𝜖-neighborhood of a point 𝑝 ∈ 𝒟 is the set of points defined by:

𝒩𝜖(𝑝) = {𝑞 ∈ 𝒟 ∶ 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜖} (2.1)

Where 𝑑𝑖𝑠𝑡(⋅, ⋅) is an arbitrary distance function in ℝ𝑑 .

Note that an arbitrary point 𝑝 is always included in its own 𝜖-neighborhood, independently
on the value of 𝜖: indeed, 𝑑𝑖𝑠𝑡(𝑝, 𝑝) = 0, regardless of the chosen distance function.

In DBSCAN’s terminology, the 𝜖-neighborhood of a point is defined as “dense” whenever it
contains a number of points that is greater than a specified threshold, usually denoted as𝑚𝑖𝑛𝑃𝑡𝑠.
With respect to the value of such parameter, each point in the dataset is classified according to

the following definitions.

Definition 2.1.2 (Core point). Let 𝜖 be a positive real number and 𝑚𝑖𝑛𝑃𝑡𝑠 a positive integer

number. An arbitrary point 𝑝 ∈ 𝒟 is a core point if and only if its 𝜖-neighborhood contains at

least 𝑚𝑖𝑛𝑃𝑡𝑠 points:

|𝒩𝜖(𝑝)| ≥ 𝑚𝑖𝑛𝑃𝑡𝑠 (2.2)

Definition 2.1.3 (Border point). An arbitrary point 𝑝 ∈ 𝒟 is a border point if it is not a core

point, but it falls within the neighborhood of a core point.

Definition 2.1.4 (Outlier). An arbitrary point 𝑝 ∈ 𝒟 is an outlier if it is neither a core point

nor a border point.

In order to formalize the concept of cluster, the definitions of the property of density reach-

ability and connection are needed.

Definition 2.1.5 (Density reachability). Let 𝑝, 𝑞 ∈ 𝒟 be two arbitrary points in the dataset.

We say that 𝑝 is directly density-reachable from 𝑞 with respect to parameters 𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠 if the
following conditions are verified:

5

2 – Background and related work

• 𝑝 is in the 𝜖-neighborhood of 𝑞;

• 𝑞 is a core point.

We say that 𝑝 and 𝑞 are density-reachable if there exists a chain of points 𝑝1,… , 𝑝𝑘 , where
𝑝1 = 𝑝 and 𝑝𝑘 = 𝑞, such that 𝑝𝑖+1 is directly density-reachable from 𝑝𝑖 for all 𝑖 = 1,… , 𝑘.

Definition 2.1.6 (Density connection). Let 𝑝, 𝑞 ∈ 𝒟 be two arbitrary points in the dataset. We

say that 𝑝 is density-connected to 𝑞 with respect to parameters 𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠 if there exists a

point 𝑜 ∈ 𝒟 such that both 𝑝 and 𝑞 are density-reachable from 𝑜.

Finally, the notion of cluster is given as follows.

Definition 2.1.7 (Cluster). A cluster 𝐶 with respect to parameters 𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠 is a non-empty

subset of 𝒟 satisfying the following conditions:

• For all 𝑝, 𝑞 ∈ 𝒟 such that 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝, then 𝑞 ∈ 𝐶 ;

• For all 𝑝, 𝑞 ∈ 𝐶 , 𝑝 is density-connected to 𝑞.

A principle implementation of DBSCAN is shown in Algorithm 2.1. The algorithm loops

through all points in the dataset; for each unclassified point, it runs a range query in order

to identify its neighbors. If the neighborhood contains less than 𝑚𝑖𝑛𝑃𝑡𝑠 points, the vector is

classified as noise; otherwise (i.e. 𝑝 is core), it is assigned to a new cluster and a new loop is

started to identify all the points that are density-reachable from the considered vector. For each

of them, their label is set to the cluster identifier of the considered vector and a range query is

performed; if they are core points as well, then all of their neighbors are assigned to the cluster

(they are density-reachable from 𝑝, although not directly).

The time complexity of DBSCAN may simply be computed as:

𝑂(𝑛 ∗ complexity of the range query computation) (2.3)

Naïve implementations of DBSCAN, using a linear scan of the dataset for performing the

range query operation, have a 𝑂(𝑛2)worst-case complexity; however, for low-dimensional data

spaces, appropriate data structures may be used (such as R*-trees) to lower the average-case

complexity of the algorithm.

6

2.1 – Density-based clustering

Algorithm 2.1 The DBSCAN algorithm
function DBSCAN(𝑑𝑎𝑡𝑎, 𝑒𝑝𝑠,𝑚𝑖𝑛𝑃𝑡𝑠)

𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐼 𝑑 = 0

for 𝑝 in 𝑑𝑎𝑡𝑎 do
▷ Skip the point if already classified
if GET-LABEL(𝑝) ≠ 𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑 then

continue
end if

▷ Get the neighbors of the point
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← RANGE-QUERY(𝑝, 𝑑𝑎𝑡𝑎, 𝑒𝑝𝑠)

if SIZE(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) < 𝑚𝑖𝑛𝑃𝑡𝑠 then
▷ Point is noise
SET-LABEL(𝑝, 𝑛𝑜𝑖𝑠𝑒)

else
▷ Point is core, new cluster identified
𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐼 𝑑 ← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐼 𝑑 + 1
SET-LABEL(𝑝, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐼 𝑑)

▷ Expand cluster on nearby points
𝑠𝑒𝑒𝑑𝑆𝑒𝑡 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
while not EMPTY(𝑠𝑒𝑒𝑑𝑆𝑒𝑡) do

𝑞 ← POP(𝑠𝑒𝑒𝑑𝑆𝑒𝑡)

▷ Check that 𝑞 does not belong to other clusters
if GET-LABEL(𝑞) = 𝑢𝑛𝑐𝑙𝑎𝑠𝑠𝑖𝑓 𝑖𝑒𝑑 ∨ 𝑛𝑜𝑖𝑠𝑒 then

▷ Assign neighbor to cluster
SET-LABEL(𝑞, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝐼 𝑑)

▷ Get neighbors
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← RANGE-QUERY(𝑞, 𝑑𝑎𝑡𝑎, 𝑒𝑝𝑠)

▷ If 𝑞 is core, expand the cluster
if SIZE(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) ≥ 𝑚𝑖𝑛𝑃𝑡𝑠 then

𝑠𝑒𝑒𝑑𝑆𝑒𝑡 ← APPEND(𝑠𝑒𝑒𝑑𝑆𝑒𝑡, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
end if

end if
end while

end if
end for

end function

7

2 – Background and related work

With respect to other clustering techniques, the advantages provided by the DBSCAN algo-

rithm include:

• It does not require to specify the number of clusters a priori;

• It can find arbitrarily-shaped clusters;

• It allows to identify noise and outliers.

On the other hand, the main disadvantages of the DBSCAN algorithm can be summarized

as follows:

• It does not behave well when clusters have varying densities;

• It performs poorly with high-dimensional data, since the concept of distance tends to lose

significance when the number of dimensions grows;

• It has a high computational complexity, which makes it unsuitable in the big data context.

2.1.3 First approaches to grid-based DBSCAN

In order to cope with the high computational complexity of the base DBSCAN algorithm, some

works have proposed the usage of a grid-based approach, which shows a greater scalability in

practice with respect to the principle implementation of the algorithm.

One of the first attempts to make use of a grid structure to reduce the running time of

DBSCAN is GriDBSCAN [16]. In their work, the authors propose the usage of a grid to evenly

partition the input space into a user-specified number of cells (although they suggest that the

cell width should be at least 2𝜖 for performance reasons). Each partition is assigned all the points

lying inside the cell, plus all the points within the 𝜖-enclosure of such cell (i.e. the “border” of

the cell having width 𝜖). In this way, all the range queries may accurately be performed by

considering only the points within each partition, although this leads to data duplication for

points lying in the 𝜖-enclosures. The algorithm computes clusters locally to each partition,

then merges them according to the following rule: two clusters, identified within different

partitions, need to be merged if there exists at least a core point which, separately in each

partition, was assigned to one of the two clusters. Authors show that such algorithm is able to

8

2.1 – Density-based clustering

theoretically reduce the complexity of DBSCAN by a factor equal to the number of considered

cells, when the merge cost is negligible; in their tests, GriDBSCAN outperforms a reference

DBSCAN implementation by up to 9.4 times on real-world and synthetic datasets.

Another forerunner in the field of grid-based DBSCAN isGF-DBSCAN [24], which improves

on the previous FDBSCAN [13]. Here, the authors propose the usage of a grid, in which each

cell has side length of 𝜖, to facilitate neighbor search: indeed, in order to retrieve the neighbors

of a point within a cell, it is only necessary to look in the cell itself and in the adjacent ones. The

algorithm scans linearly each data point; if the point does not belong to a cluster, a range query

is performed: if the 𝜖-neighborhood of the point contains at least 𝑚𝑖𝑛𝑃𝑡𝑠 points, a new cluster

is defined. Overlapping clusters are then merged into one to compute the final result. Such

method is not able to achieve the same clustering as DBSCAN: Gunawan [8] effectively provides

a counterexample for which both FDBSCAN and GF-DBSCAN would yield a different result

with respect to the original procedure. In practical tests, however, this algorithm outperforms

DBSCAN in terms of running time by up to three orders of magnitude while maintaining good

levels of accuracy.

2.1.4 Gunawan’s 2D algorithm

Gunawan [8] was the first to propose the usage of a grid with cells with diagonal length set to

𝜖. In his work, the author proposes a two-dimensional algorithm that is shown to allow to run

the exact DBSCAN in 𝑂(𝑛 log 𝑛)worst-case time, which inspired a number of successive studies

on the parallel and approximated versions of DBSCAN.

The algorithm by Gunawan is subdivided in four consecutive phases:

• Partitioning: this step deals with the construction of a grid and with the assignment to

each point to a cell in such grid; two partitioning methodologies are proposed, although

only the fixed-size cells with diagonal 𝜖 approach is used in the following.

• Core points identification: this step deals with the identification of the core points within

each cell; in particular, due to the size of the cell, the author shows how all points inside

cells with cardinality at least 𝑚𝑖𝑛𝑃𝑡𝑠 are core, while in the other case only a fixed number

of cells (21, for the 2D case) needs to be checked for performing the range query.

9

2 – Background and related work

• Cluster merging: this step deals with the definition of the final clusters, based on the fact

that, whenever the distance between two core points in different cells is less than 𝜖, the
clusters originated by such core points need to be merged into one; in order to do so,

the author proposes the construction of a graph-like structure, on which the connected

components are computed.

• Border and noise points identification: finally, this step deals with the identification of

border and noise points; the decision is based on the distance of each non-core point to a

core point: if that is lower than 𝜖, the point is on the border of a cluster, otherwise it is

simply marked as noise.

Gunawan shows that Steps 1, 2 and 4 of the algorithm run in linear time with the size of the

dataset; the linearithmic complexity is due to the cluster merging step, which has a 𝑂(𝑛 log 𝑛)
worst-case boundary.

Subsequent works have further investigated the usage of such structure for accelerating

DBSCAN performance. In particular, Gan and Tao [6] have shown that adapting Gunawan’s

algorithm for 𝑑 = 3 achieves a 𝑂 ((𝑛 log 𝑛)4/3) expected running time, while in higher dimen-

sions the algorithm runs in 𝑂 (𝑛2−
2

⌈𝑑/2⌉+1+𝛿) expected time, with 𝛿 > 0 being an arbitrarily small

constant. In addition to that, Gan and Tao [6] also have also proven that, for all dimensions

𝑑 ≥ 3, the DBSCAN problem can be solved only in at least Ω(𝑛4/3) time, unless very significant

advances in theoretical computer science are made. For this reason, exact DBSCAN algorithms

are currently deemed to be intractable for processing very large amounts of data.

2.1.5 𝜌-approximate DBSCAN

Due to the theoretical intractability of exact DBSCAN algorithms in the big data scenario, some

work has recently been carried out with the aim of developing an approximate version of such

algorithm, able to run within much stricter time constraints and characterized by solid theoret-

ical guarantees.

The first and most famous of such approaches to approximated DBSCAN was proposed by

Gan and Tao [6] and it is known as 𝜌-approximate DBSCAN. In 𝜌-approximate DBSCAN, an

additional parameter, denoted as 𝜌, is introduced to control the degree of approximation of the

10

2.1 – Density-based clustering

algorithm. Based on the value of such parameter, the authors revisit the basic definitions of

DBSCAN as follows.

Definition 2.1.8 (𝜌-approximate density reachability). Let 𝑝, 𝑞 ∈ 𝒟 be two arbitrary points in

the dataset. We say that 𝑝 is 𝜌-approximate density reachable from 𝑞 with respect to parameters

𝜖, 𝑚𝑖𝑛𝑃𝑡𝑠 and 𝜌 whenever there exists a chain of points, 𝑝1,… , 𝑝𝑘 , which satisfy the following

statements:

• 𝑝1 = 𝑝 and 𝑝𝑘 = 𝑞;

• 𝑝1,… , 𝑝𝑘−1 are core points;

• 𝑝𝑖+1 ∈ 𝒩𝜖(1+𝜌)(𝑝𝑖), for all 𝑖 = 1,… , 𝑘 − 1.

Definition 2.1.9 (𝜌-approximate cluster). A 𝜌-approximate cluster 𝐶 with respect to parame-

ters 𝜖, 𝑚𝑖𝑛𝑃𝑡𝑠 and 𝜌 is a non-empty subset of 𝒟 satisfying the following conditions:

• For all 𝑝, 𝑞 ∈ 𝒟 such that 𝑝 ∈ 𝐶 and 𝑞 is density-reachable from 𝑝, then 𝑞 ∈ 𝐶 ;

• For all 𝑝, 𝑞 ∈ 𝐶 , 𝑝, there exists a point 𝑜 ∈ 𝐶 such that both 𝑝 and 𝑞 are 𝜌-approximate

density-reachable from 𝑜.

With respect to the original definition of cluster, 𝜌-approximate DBSCAN weakens the con-

nectivity requirement to 𝜌-approximate connectivity. In spite of such approximation, the au-

thors present as a quality guarantee the results of the following sandwich theorem.

Theorem 2.1.1. Let 𝜖, 𝑚𝑖𝑛𝑃𝑡𝑠 and 𝜌 be the parameters of the 𝜌-approximate DBSCAN algo-

rithm; then, it can be proven that:

• For any cluster 𝐶1 produced by running the original DBSCAN algorithm with parameters

𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠, there exists a cluster 𝐶 produced by running the 𝜌-approximate algorithm

such that 𝐶1 ⊆ 𝐶 ;

• For any cluster 𝐶2 produced by running the original DBSCAN algorithm with parame-

ters 𝜖(1 + 𝜌) and 𝑚𝑖𝑛𝑃𝑡𝑠, there exists a cluster 𝐶 produced by running the 𝜌-approximate

algorithm such that 𝐶 ⊆ 𝐶2.
11

2 – Background and related work

In addition to this quality guarantee, authors show that the algorithm runs in expected 𝑂(𝑛)
time, coming from the usage of a quadtree-like data structure that can be built in 𝑂(𝑛) expected
time and answers range queries in 𝑂(1) time. Each cell of such quadtree is such to represent at

least a point in the dataset and has a maximum side length of 𝜖𝜌
√𝑑 .

2.1.6 Parallelization of DBSCAN

Another branch of research that has seen an important development in recent years consists

in a number of works aiming to parallelize the execution of the DBSCAN algorithm to make it

suitable to run in a distributed computing environment, such as the ones provided by Apache

Hadoop or Apache Spark. Song and Lee, in their RP-DBSCAN paper [22], identify three cate-

gories of parallel DBSCAN algorithms:

• Naïve random split algorithms: those algorithms focus on decomposing the clustering

problem into smaller problems, splitting the dataset in multiple disjoint and random sub-

sets, on which the DBSCAN algorithm is computed before finally merging the obtained

local clusters. Those are characterized by a high efficiency but low accuracy due to the

impossibility of correctly estimating the density of the different neighborhoods.

• Region split algorithms: the idea behind those algorithms is to “smartly” partition the

input dataset into contiguous and overlapping regions, such that the neighborhood of

each point may be computed more precisely. They are generally more accurate than the

previous, but suffer from load imbalance when used in conjunction with skewed datasets.

To alleviate this problem, different strategies have been proposed for implementing such

partitioning, including even-split partitioning (distribute the points as evenly as possible),

reduced-boundary partitioning (minimize points in the overlapping regions) and cost-based

partitioning (minimize the expected cost of the local clustering).

• Graph-based algorithms: they are based on the construction of an approximate 𝑘-nearest
neighbor graph that is used for performing region queries.

A forerunner in the field of parallel DBSCAN is PDBSCAN, presented in [25]. Here, authors

propose the usage of a shared-nothing architecture in which each node is assigned to a non-

overlapping partition of the input space. A distributed spatial index, denoted as dR*-tree, is

12

2.1 – Density-based clustering

used to support data retrieval from other partitions (e.g. to compute the neighborhood of the

points along the border of the partition). Local clusters to each partition are computed, then

merged if there is at least a core point whose 𝜖-neighborhood intersects with clusters identified

in other partitions.

One of the first approaches to the parallelization of DBSCAN using the Hadoop MapRe-

duce framework is DBSCAN-MR [4]. This is a region split algorithm, based on the concept of

partition with reduced boundary points: the data points are split into equal-width slices along

each dimension; slices with the lowest number of points are then selected as boundaries and

associated to both partitions. After building an opportune spatial index, local clusters to each

partition are computed, then merged through a relabeling phase which identifies core points

shared by two clusters in two different partitions.

MR-DBSCAN [9] is anotherMapReduce-based exact DBSCAN algorithm, which implements

instead a cost-based approach denoted as cost-based spatial partitioning. The input space is

recursively subdivided into two smaller regions in a way that minimizes the expected cost of

DBSCAN clustering on the produced partitions, computed through a cost function. An 𝜖-wide
margin is added to each partition in order to be able to decide whether a point is core or not

by only looking to the points in the partition itself; local clusters are computed, then merged

when at least a core point is shared by two clusters in two different partitions.

A first Spark-based implementation of a DBSCAN algorithm, called RDD-DBSCAN, is de-

scribed in [3]. Here, a even-split strategy is adopted: the procedure for defining partitions is

modified in a way to ensure that no one is smaller than 2𝜖 or contain less than 𝑚𝑎𝑥𝑃𝑡𝑠, which is

an additional parameter of the algorithm; an 𝜖-enclosure is added to each partition, then local

clustering is computed and finally results are merged according to the same rule as before.

Finally, a different approach is followed in NG-DBSCAN [15], which uses a graph-based

technique to compute approximate DBSCAN clusters based on Spark. Such algorithm, designed

to work with any symmetric distance measure, exploits a data structure called 𝜖-graph; each
point is a node in the graph, whereas each edge indicates that two points are likely to be at a

distance lower than 𝜖. The graph is randomly initialized, then a certain number of iterations is

performed to identify which of those random relationships actually hold; the final graph, clearly

approximate, allows to detect the core points in the dataset without performing region queries.

After marking the border and noise points, a vertex-centric procedure is used to define the

13

2 – Background and related work

clusters by spreading across the graph a “coreness” value for each core point, then proceeding

to successive pruning to retrieve their seed and assign them to the correct cluster.

2.1.7 RP-DBSCAN

RP-DBSCAN [22] is one of state-of-the-art algorithms for density-based clustering, built upon

the developments from both the approximate and the parallel DBSCAN research branches. The

key contribution provided by RP-DBSCAN paper is the introduction of an algorithm based on

random split (thus able to achieve high efficiency), but at the same time providing a theoretical

guarantee of the accuracy of the results that is coherent with the one provided by Gan and Tao’s

𝜌-approximate DBSCAN.

The algorithm uses a grid-based approach and exploits a specific data structure, denoted as

two-level cell dictionary, which allows to summarize the input dataset in terms of cell center and

density. Specifically, the authors formalize this concept with the following definitions [22].

Definition 2.1.10 (Sub-cell). A cell in a 𝑑-dimensional space is composed of 2𝑑(ℎ−1) sub-cells,
each of which being a 𝑑-dimensional hypercube with diagonal length set to 𝜖

2ℎ−1 . The value of

parameter ℎ is computed from the approximation parameter 𝜌 as:

ℎ = 1 + ⌈log2 (𝜌−1)⌉ (2.4)

Definition 2.1.11 (Two-level cell dictionary). A two-level cell dictionary is a tree with a root

node and multiple leaves, each of which consisting of multiple entries. Each root node en-

try represents a cell and each leaf node entry represents the belonging sub-cells. Every entry

records the center and the density of the corresponding (sub)-cell.

In other words, the two-level cell dictionary summarizes the input dataset in terms of (sub)-

cells, for each of which both the center and the density are known. Such cells are used for

answering region queries based on the concept of proximity given by the following definition.

Definition 2.1.12 ((𝜖, 𝜌)-neighborhood). Let 𝐶 be a (sub)-cell with respect to parameters 𝜖 and
𝜌, having 𝑞̂ as its center point. We say that 𝐶 is a (𝜖, 𝜌)-neighbor of a point 𝑝 if:

𝑑𝑖𝑠𝑡(𝑝, 𝑞̂) ≤ 𝜖 (2.5)

14

2.1 – Density-based clustering

Clearly, an (𝜖, 𝜌)-region query can be answered in 𝑂(log |𝑐𝑒𝑙𝑙𝑠|) when using an efficient tree

structure. The core points in the dataset are detected by counting the number of points within

their (𝜖, 𝜌)-neighborhoods; the definition of the clusters is then performed with the help of an

additional data structure, called cell graph, based on the concept of cell-level reachability.

Definition 2.1.13 (Cell-level reachability). Let 𝐶1 and 𝐶2 be two cells. We say that 𝐶2 is fully
directly reachable from 𝐶1 if the following conditions apply:

• 𝐶1 and 𝐶2 contain at least a core point;

• There exists a core point 𝑝 ∈ 𝐶1 and a point 𝑞 ∈ 𝐶2 such that 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜖.

We say that 𝐶2 is partially directly reachable from 𝐶1 if the following conditions apply:

• 𝐶1 contains at least a core point;

• There exists a core point 𝑝 ∈ 𝐶1 and a point 𝑞 ∈ 𝐶2 such that 𝑑𝑖𝑠𝑡(𝑝, 𝑞) ≤ 𝜖.

Definition 2.1.14 (Cell graph). A cell graph is a graph in which:

• Vertices are the cells identified at the previous step, classified as either core and non-core;

• Edges describe the set of fully and partially directly reachable relationships between the

different cells.

Cell subgraphs generated from single partitions are progressively merged in order to iden-

tify the final set of clusters. The RP-DBSCAN algorithm was implemented using Apache Spark,

showing great performance improvements over all the previous parallel DBSCAN implementa-

tions (up to 180 times), reducing the problems related to load imbalance and data duplication and

achieving great scalability also for very large datasets. Moreover, despite of the approximation

introduced by the algorithm, the authors have shown that with low values of 𝜌 (for example,

𝜌 = 0.01) the results of the clustering are the same as DBSCAN’s on benchmark datasets.

15

2 – Background and related work

2.2 Anomaly detection

2.2.1 Overview on anomaly detection techniques

Anomaly detection is a data mining task that aims at the identification of objects (also called

outliers) that differ significantly from other objects in the dataset [23]. Depending on the appli-

cation context, the identification of outliers may either represent an interesting task per se, or

a preprocessing step in a more complex data mining pipeline: in order to improve the quality

of the produced models, outlier detection techniques are often used to identify (and remove)

noise points before feeding the data to the algorithms of choice [23]. In most cases, anomaly

detection is also carried out in an unsupervised fashion.

A very common approach, when performing anomaly detection tasks, is to define the “de-

gree of anomaly” of a certain data point based on a numeric value, denoted as outlier score. Each

point can then be classified as outlier or not depending on whether its outlier score is higher

than a threshold value. Such threshold may either be a constant/empiric value or, when a rough

estimation of the fraction 𝑓 of outliers in the dataset is known, derived as the 𝑓 -th percentile

of the distribution of the outlier scores.

As in cluster analysis, due to the generality of the concept of outlier, different approaches

have been proposed to perform anomaly detection tasks, which differ mainly on how the outlier

score is measured. Most of the most well-known techniques for outlier detection fall within one

of the following categories [23]:

• Model-based techniques: model-based techniques assume (or build) a model for the data,

and identify as outliers those objects that do not fit well with such model.

• Proximity-based techniques: proximity-based techniques identify outliers as data points

characterized by a high distance with respect to the remainder of the dataset, according

to some measure.

• Density-based techniques: density-based techniques identify outliers as points belonging

to regions characterized by a lower density with respect to the remainder of the dataset.

• Clustering-based techniques: clustering-based techniques identify outliers as data points

which do not strongly belong to any of the identified clusters.

16

2.2 – Anomaly detection

• Classification-based techniques: classification-based techniques make use of an oppor-

tunely trained classifier to distinguish outliers in the dataset.

2.2.2 Statistical methods

Statistical methods are a class of model-based techniques that use results from the field of statis-

tics to infer a model of the data; objects in the dataset which appear to have a low probability

with respect to the distribution defined by such model are marked as outliers [23]. A widely

used assumption is to model the data generation as a random Gaussian process, either univari-

ate or multivariate.

In the simple univariate case, the data are supposed to fit a normal distribution with mean

𝜇 ∈ ℝ and standard deviation 𝜎 ∈ ℝ+. For each object in the dataset, it is possible to define its

𝑧-score as follows.

Definition 2.2.1 (𝑧-score). Let 𝑥 ∈ 𝒟 be a point in the dataset, for which we assume a data

generation process that fits a normal distribution 𝒩 (𝜇, 𝜎). The 𝑧-score of 𝑥 is defined as:

𝑧 = 𝑥 − 𝜇
𝜎 (2.6)

The more the point moves towards the tails of the Gaussian bell (and, consequently, the

probability of generating such point decreases), the more its 𝑧-score increases; therefore, the

𝑧-score of a point may be used as a simple outlier score.

In the multivariate case, data generation is modeled as a normal process with mean 𝜇 ∈ ℝ𝑑
and covariance matrix Σ ∈ ℝ𝑑,𝑑 . For such data distribution, a particular type of distance, known
asMahalanobis distance, is defined with respect to the parameters of the distribution as follows.

Definition 2.2.2 (Mahalanobis distance). Let us consider a dataset 𝒟 ⊆ ℝ𝑑 generated from

a random, multivariate Gaussian process 𝒩 (𝜇,Σ). For each point 𝑥 ∈ 𝒟 , the Mahalanobis

distance is defined as:

𝑚𝑎ℎ𝑎(𝑥, 𝜇,Σ) = (𝑥 − 𝜇)Σ−1(𝑥 − 𝜇)𝑇 (2.7)

It is possible to show that the Mahalanobis distance of a point is related to its probability

according to the supposed distribution by the following relationship [23]:

17

2 – Background and related work

𝑚𝑎ℎ𝑎(𝑥, 𝜇,Σ) = −2 logℙ(𝑥) + 𝑐(Σ) (2.8)

Where 𝑐(Σ) is a constant value once the covariance matrix is fixed. The Mahalanobis dis-

tance of a point is higher when the probability that such point has been generated by an un-

derlying Gaussian process is lower; thus, such measure is a valid candidate for representing its

outlier score. Graphically, deciding on whether a point is an outlier based on its Mahalanobis

distance or not corresponds to the identification of a 𝑑-dimensional elliptic boundary around

the mean of the process and elongated in the different directions to according the covariance

values; all points lying outside such boundary are considered outliers.

Variants of the described method exists, which mainly differ in how the parameters of the

process are estimated. For example, scikit-learn’s EllipticEnvelope [18] uses a technique

called Minimum Covariance Determinant (MCD) [19] in order to robustly estimate the covari-

ance of the dataset without being highly affected by the presence of outliers. Those statistical

methods perform well when the data generation process is known or can be modeled appro-

priately by means of a standard distribution, whereas they have poor performances in high-

dimensional spaces.

2.2.3 Distance-based outliers

Proximity-based techniques decide on whether a data point has to be considered an outlier or

not based on its distance with respect to its nearest neighbors: if the point appears to have a

high 𝑘-th neighbor distance, then it is considered an outlier. Thosemethods, which are basically

an extension of the well-known 𝑘-nearest neighbor algorithm, make use of the distance from

the 𝑘-th nearest neighbor as the outlier score [23].

Another approach to outlier detection in a proximity-based fashion is described in [12]. This

work formalizes the concept of outlier as in the following definition.

Definition 2.2.3 (Distance based-outlier). Let 𝑥 ∈ 𝒟 denote a point in the dataset and 𝑝,𝐷
two positive real values. We say that 𝑥 is a distance based-outlier (or DB-outlier, in short) with

respect to parameters 𝑝,𝐷 if there is at least a fraction 𝑝 of objects in the dataset 𝒟 which lie

at a distance greater to 𝐷 with respect to point 𝑥 .
18

2.2 – Anomaly detection

The authors propose, for the identification of DB-outliers, a number of different algorithms,

including an index-based approach, a nested-loops approach and a more efficient cell-based

approach. Here, points are partitioned in cells with diagonal length set to 𝐷
2√𝑑 , so that objects

in the same cell have a maximum distance of 𝐷
2 and objects in adjacent cells have a maximum

distance of 𝐷. This observation justifies the following theorem.

Theorem 2.2.1. Let 𝐶 denote a cell in the previously defined grid; then, the following propo-

sitions hold:

• If 𝐶 contains at least 𝑀 = 𝑁(1 − 𝑝) points, then no object in 𝐶 is an outlier;

• If the total number of points in 𝐶 and its first-level neighbors is at least𝑀 , then no object

in 𝐶 is an outlier;

• If the total number of points in 𝐶 and its first and second-level neighbors is at most 𝑀 ,

then every object in 𝐶 is an outlier.

Distance-based methods are generally simple to implement and understand, but typically

expensive, largely dependent on the selection of parameters and unable to handle data with

varying densities.

2.2.4 Local outlier factor

Density-based techniques classify as outliers points in regions characterized by a lower density

with respect to other regions in the dataset. One of the most popular approaches to define the

outlier score for the points in the dataset in a density-based fashion is known as Local Outlier

Factor [2]. The definition of such parameter is given through the following definitions.

Definition 2.2.4 (Reachability distance). Let 𝑝, 𝑞 ∈ 𝒟 be two points in the dataset and 𝑘 a

positive integer number. The reachability distance of 𝑝 with respect to 𝑞 is defined as:

𝑟-𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑞) = max {𝑘-𝑑𝑖𝑠𝑡(𝑞), 𝑑𝑖𝑠𝑡(𝑝, 𝑞)} (2.9)

Where 𝑘-𝑑𝑖𝑠𝑡(𝑞) denotes the distance of the 𝑘-th nearest neighbor from object 𝑞.
19

2 – Background and related work

Definition 2.2.5 (Local reachability density). Let 𝑝 ∈ 𝒟 be a point in the dataset and 𝑘 a

positive integer. The local reachability density of point 𝑝 is defined as:

𝑙𝑟𝑑𝑘(𝑝) = (
∑𝑜∈𝒩𝑘(𝑝) 𝑟-𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜)

|𝒩𝑘(𝑝)|
)
−1

(2.10)

Where 𝒩𝑘(𝑝) denotes the set of the 𝑘 nearest neighbors to point 𝑝.

Definition 2.2.6 (Local outlier factor). Let 𝑝 ∈ 𝒟 be a point in the dataset and 𝑘 a positive

integer. The local outlier factor of point 𝑝 is defined as:

𝐿𝑂𝐹𝑘(𝑝) =
∑𝑜∈𝒩𝑘(𝑝)

𝑙𝑟𝑑𝑘(𝑜)
𝑙𝑟𝑑𝑘(𝑝)

|𝒩𝑘(𝑝)|
(2.11)

The only parameter that is needed to compute the Local Outlier Factor is the value of 𝑘,
which has to be user-specified. The LOF of a point averages the ratio between the local reach-

ability density of the neighbors of the point and that of the point itself; the lower the density

around point 𝑝 with respect to the density around its neighbors is, the higher the value of the

LOF is, whereas its value tends to 1 for objects in the core of a dense region.

The LocalOutlierFactor class provided by scikit-learn [18] represents a straightforward

implementation of the described methodology. If the proportion of outliers is not specified, the

algorithm uses a threshold of 1.5 as in the original LOF paper. The LOF approach generally

performs well with low-dimensional data even if they present regions with varying densities,

but it is expensive in higher dimensional spaces and it may need a thorough parameter selection

phase (as shown by the authors, the relationship between the choice of 𝑘 and the value of the

LOF is not monotonic).

2.2.5 Clustering-based approaches

Clustering-based techniques build upon the idea that outliers are those data objects which can-

not be clearly assigned to any of the clusters, or that form by themselves small and sparse

clusters. Some algorithms, such as DBSCAN, already mark some points as outliers during the

clustering process; others, such as 𝐾 -means, always assign each point to a cluster, and therefore

it is necessary to evaluate how “strong” such assignment is.

The most basic way to decide whether an object belongs to the cluster it was assigned to

20

2.2 – Anomaly detection

or should be considered an outlier is to measure the distance of the point with respect to the

cluster representative; if its value is much greater than those of the other points in the cluster,

then the vector is likely to be an outlier (i.e. it can be used as an outlier score). Clustering-based

techniques are inexpensive to apply whenever the set of clusters has already been computed

(i.e. as part of a data mining pipeline), but the results depend heavily on the chosen algorithm

and on the selection of parameters.

2.2.6 One-class classifiers

Outlier detection can be treated as a classification problem whenever an opportune training

set of labeled normal/abnormal samples is available. However, this is not the case in most

scenarios: such data may be difficult to obtain and, even when it is possible, problems with

high class imbalances may arise. For this reason, many classification-based techniques make

use of a different type of classifier, denoted as one-class classifier, specifically designed for the

purpose of anomaly detection.

One-class classification represents a typical semi-supervised problem: given a training set

of “normal” samples, the objective is to fit a model that is able to opportunely represent the

“normal” class, without any specific information on the “outlier” class. Every object that does

not comply with this model is considered to be an outlier. One example of such classifier is the

one-class support vector machine introduced in [20].

Definition 2.2.7 (One-class support vector machine). Let 𝑥1,… , 𝑥𝑙 ∈ 𝒳 ⊆ ℝ𝑑 be a set of “nor-
mal” observations and Φ ∶ 𝒳 → ℱ a feature map for the vectors in 𝒳 . A one-class support

vector machine is a classifier implementing the decision function:

𝑓 (𝑥) = sgn (𝑤 ⋅ Φ(𝑥) − 𝜌) (2.12)

Where 𝑤 ∈ ℱ , 𝜌 ∈ ℝ are the solutions to the following quadratic optimization problem:

min
𝑤∈ℱ ,𝜉∈ℝ𝑙 ,𝜌∈ℝ

1
2 ||𝑤 ||

2 + 1
𝜈𝑙 ∑𝑖

𝜉𝑖 − 𝜌 (2.13)

Subject to the linear constraints:

21

2 – Background and related work

𝑤 ⋅ Φ(𝑥𝑖) ≥ 𝜌 − 𝜉𝑖 (2.14)

𝜉𝑖 ≥ 0 (2.15)

The feature map (or the corresponding kernel function) and 𝜈 are the parameters of the

training algorithm. In particular, the value of 𝜈 is linked to the proportion of outliers by the

following theorem.

Theorem 2.2.2. Assume that the solution of a one-class SVM problem satisfies 𝜌 ≠ 0. Then,
the following statements hold:

• 𝜈 is an upper bound on the fraction of outliers;

• 𝜈 is a lower bound on the fraction of support vectors;

• 𝜈 equals both the fraction of support vectors and outliers asymptotically with probability

1, if the data are generated independently and the kernel is analytic and non-constant.

A straightforward implementation of the one-class SVMmethod is provided by scikit-learn’s

OneClassSVM [18]. Such classifier uses by default a RBF kernel and 𝜈 = 0.5.

2.2.7 Isolation forests

Isolation trees and isolation forests [14] are a variant of decision trees and random forests specif-

ically designed for the outlier detection task. The idea behind such technique comes from the

observation that, in trees trained by using random partitioning at each split, outliers are on

average easier to isolate (i.e. they require less splits) due to their reduced number and to the

unusual values of their attributes. This justifies the introduction of a decision model based on

the following concepts.

Definition 2.2.8 (Isolation tree). An isolation tree is a binary tree-like structure, in which each

node 𝑇 is either an external node with no child, or an internal node with exactly two children

and a test. Each test consists of an attribute and a randomly selected threshold value that divides

the data points between the two child nodes.

22

2.3 – Apache Spark

Definition 2.2.9 (Isolation forest). An isolation forest is an ensemble model made up of a col-

lection of independently trained isolation trees.

The training procedure for an isolation tree terminates whenever the maximum tree height

(set to ℎ = ⌈log2 𝑛⌉ in the original paper) is reached, the node contains a single object or all

objects in the node are overlapping. With respect to a trained isolation forest, the anomaly

score for each point 𝑥 in the dataset is defined by:

𝑠(𝑥, 𝑛) = 2−
𝔼(ℎ(𝑥))
𝑐(𝑛) (2.16)

Where 𝔼(ℎ(𝑥)) denotes the average path length for object 𝑥 in each of the random trees

and 𝑐(𝑛) = 2𝐻(𝑛 − 1) − 2 𝑛−1𝑛 is the average height of a binary tree with 𝑛 objects. The value

of a so-defined anomaly score is bounded between 0 and 1; it is close to 0 for “normal” points

(whose path length is higher on average) and to 1 for outliers (whose path length is generally

shorter).

A straightforward implementation of the described method is provided by scikit-learn’s

IsolationForest [18], which defaults to 100 base estimators and a decision value of 0.5.

2.3 Apache Spark

Spark [1] is an open-source, general-purpose, distributed data processing library, developed and

maintained by the Apache Foundation. The Spark computing framework provides a program-

ming abstraction, based on the concept of RDDs, and transparent mechanisms for distributing

and parallelizing the execution of the specified task on the nodes of a computing cluster, hiding

the complexity of fault tolerance mechanisms, of job scheduling and of job synchronization.

The core component of Spark is the Resilient Distributed Dataset, or RDD: this represents

a collection of objects, partitioned across the different worker nodes in the cluster, stored and

processed in main memory whenever possible. In order to reduce the synchronization cost

among the nodes and allow for greater fault tolerance, RDDs are immutable: whenever the

content of an RDD needs to be changed, a new one is instantiated.

RDDs are split in chunks that are assigned to the different nodes in the cluster; for the sake

of efficiency, operations are performed first locally on the data present in each single node, then

23

2 – Background and related work

the results are recombined after distributing them to the different nodes (operation known as

shuffle). In the Spark terminology, a node executing part of the computation is called worker

node; the same worker node may be used to perform different computations (tasks) in parallel,

each of which is assigned to a local executor. The computation carried out by worker nodes

is coordinated by a driver program (either running on a node of the cluster or on an external

machine), which distributes the jobs and collects the results produced by each executor.

RDDs support two types of operations:

• Transformations turn an RDD to another RDD; due to the immutability of RDDs, each

transformation produces a new RDD, whose contents are obtained by applying the spec-

ified operation to the elements of the input RDD;

• Actions return a value to the driver program, in the form of a local object in the program-

ming language of choice.

A typical chain of operations performed on an RDD is based on a set of transformations

applied in sequence on the RDDs produced by the previous one, which is concluded by a single

action that is used to extract the final result. The presence of the action to conclude the chain of

transformations is essential; transformations, in Spark, are indeed lazily computed: if no action

is present, the Spark execution core will not perform any operation. When a transformation

is invoked, Spark keeps track of the dependency between the input and the output RDD, but

defers the computation of the contents of the new RDD to the moment in which an action is

specified. This allows for a greater efficiency (the list of transformations may be optimized

without changing the result before executing them) and reliability (it is always known how to

recompute the contents of an RDD). Tables 2.1 and 2.2 present the main transformations and

actions that are available in Spark.

A variant of the standard RDD, called pair RDD, also plays a central role in Spark. A pair

RDD is a particular type of RDD, representing a collection of key-value pairs. In addition to

all the RDDs’ standard transformations and actions, pair RDDs also support specific opera-

tions, generally related to data grouping (computations are executed within groups of objects

characterized by the same key). Tables 2.3 and 2.4 present some of the pair RDD-specific trans-

formations and actions that are available in Spark.

24

2.3 – Apache Spark

Table 2.1. Main RDD transformations in Apache Spark

Transformation Description
FILTER It returns a new RDD containing only the elements of the input RDD

for which the provided function evaluates to true.
DISTINCT It returns a newRDD containing only the distinct elements of the input

RDD.
SAMPLE It returns a new RDD containing a random sample of the elements of

the input RDD, whose size is the given fraction of the original one,
with or without replacement.

MAP It creates a new RDD containing exactly one element for each element
𝑥 of the input RDD, obtained by applying the given function on 𝑥 .

FLATMAP It creates a new RDD containing zero or more elements for each el-
ement 𝑥 of the input RDD, obtained by applying the given function
on 𝑥 ; returned sequences are concatenated in the new RDD, without
removing duplicates.

MAPTOPAIR It creates a new pair RDD by applying the given function on each el-
ement of the original RDD; the created pair RDD will contain a tuple
for each element of the original RDD.

FLATMAPTOPAIR It creates a new pair RDD by applying the given function on each el-
ement of the original RDD; the created pair RDD will contain zero or
more tuples for each element of the original RDD.

ZIPWITHUNIqUEID It creates a new pair RDD by associating each element of the original
RDD with a unique identifier.

UNION It returns a new RDD consisting of the union of the elements belong-
ing to two RDDs; the types of the two RDDs must be the same and
duplicates are not removed.

INTERSECT It returns a new RDD consisting of the intersection of the elements
belonging to two RDDs; the types of the two RDDs must be the same.

SUBTRACT It returns a new RDD consisting of the subtraction of the elements
belonging to two RDDs; the types of the two RDDs must be the same.

25

2 – Background and related work

Table 2.2. Main RDD actions in Apache Spark

Action Description
COUNT It returns the number of elements in the given RDD.
FIRST It returns the first element of the RDD.
TAKE It returns a local collection containing the first 𝑛 elements of the RDD

TAKESAMPLE It returns a local collection containing 𝑛 random elements of the RDD,
with or without replacement.

TAKEORDERED It returns a local collection containing the first 𝑛 sorted elements of the
RDD.

COLLECT It returns a local collection containing all the elements of the RDD.
REDUCE It returns a single object obtained by combining the contents of the RDD

by means of the provided function, which needs to be associative and
commutative. Elements are processed in pairs: they are removed from
the RDD and their result is placed back, until a single one remains. The
returned data type must be the same of the elements of the input RDD.

AGGREGATE It returns a single object obtained by combining the contents of the RDD
by means of the provided functions and an initial zero value; the func-
tions must be associative and commutative and the returned object can
be of a different type with respect to the original objects.

SAVEASTEXTFILE It stores the RDD in a set of files of the given output path.

26

2.3 – Apache Spark

Table 2.3. Main pair RDD transformations in Apache Spark

Transformation Description
MAPVALUES It creates a new pair RDD where there is one pair for each pair in the

input RDD, with the same key; values are obtained by applying the
provided function to the values of the pairs in the original RDD.

FLATMAPVALUES It creates a new pair RDD where there are zero or more pairs for each
pair in the input RDD, with the same key; values are obtained by ap-
plying the provided function to the values of the pairs in the original
RDD.

REDUCEBYKEY It creates a new pair RDD where there is one pair for each distinct
key 𝑘 of the input pair RDD; the value associated with 𝑘 in the new
pair RDD is computed by combining via the provided function all the
values associated with 𝑘 in the input pair RDD. The function must be
associative and commutative; the data type of the new pair RDD is the
same of the input pair RDD.

AGGREGATEBYKEY It creates a new pair RDD where there is one pair for each distinct key
𝑘 of the input pair RDD; the value associated with key 𝑘 in the new
pair RDD is computed by combining via the provided functions the
values associated with 𝑘 in the input pair RDD. The functions must be
associative and commutative; the data type of the new pair RDD can
be different than the one of the input RDD.

GROUPBYKEY It creates a new pair RDD where there is one pair for each distinct key
of the input pair RDD. The value of such pair in the new pair RDD is
the list of values associated with the same key in the input pair RDD.

SUBTRACTBYKEY It creates a new pair RDD containing only the pairs of the input pair
RDD associated with a key that is not appearing as key in the pairs of
another pair RDD. The data type of the new pair RDD is the same of
the input pair RDD; the two RDDs must have the same data type for
the keys.

JOIN It creates a new pair RDD by joining the pairs in two pair RDDs based
on their keys; each pair of the input pair RDD is combined with all the
pairs of the other pair RDD with the same key. The new pair RDD has
the same key data type of the input pair RDDs and a tuple as value (the
pair of values of the two joined input pairs); the two RDDs must have
the same data type for the keys.

Table 2.4. Main pair RDD actions in Apache Spark

Action Description
COUNTBYKEY It returns a local map containing, for each key, the number of elements

associated with it in the input pair RDD.
COLLECTASMAP It returns a local map containing all the pairs of the pair RDD. If the input

pair RDD contains more than one pair with the same key, only one of
those pairs is returned (usually, the last one).

27

28

Chapter 3

The proposed algorithm

In this chapter, the structure of the proposed algorithm is described in detail. In the first section,

some basic definitions and theoretical results are presented and proven; the following section

gives an overview of the three phases of the algorithm, which are then analyzed in more depth

in the subsequent paragraphs. Finally, the last section presents some practical optimization

techniques that have been applied to the base algorithm in order to improve its performance in

the average case.

3.1 Definitions

3.1.1 Cell

Let us begin by introducing the concept of cell.

Definition 3.1.1 (Cell). For any dimensionality 𝑑 , an 𝜖-cell (or simply a cell) is a 𝑑-dimensional

hypercube having its diagonal length set to the value of the parameter 𝜖, with the samemeaning

as in the DBSCAN algorithm. Each cell 𝐶 ⊆ ℝ𝑑 is uniquely identified by a 𝑑-dimensional tuple

of integer values, 𝑐 = (𝑐1,… , 𝑐𝑑) ∈ ℤ𝑑 , which represents the coordinates of the vertex of the

hypercube with the minimum values, scaled by the quantity 𝑙 = 𝜖
√𝑑 .

Note that the value of 𝑙 = 𝜖
√𝑑 corresponds to the length of the side of the cell along any

dimension. A generic point 𝑝 = (𝑝1,… , 𝑝𝑑) ∈ ℝ𝑑 belongs to cell 𝐶 if and only if the following

set of inequalities applies:

29

3 – The proposed algorithm

𝑐𝑖 ∗ 𝜖
√𝑑

≤ 𝑝𝑖 < (𝑐𝑖 + 1) ∗ 𝜖
√𝑑

, ∀𝑖 = 1,… , 𝑑 (3.1)

Consequently, it is possible to compute the cell coordinates for any arbitrary point 𝑝 by

applying the following formula:

𝑐𝑖 = ⎢⎢
⎣
𝑝𝑖 ∗ √𝑑

𝜖
⎥⎥
⎦
, ∀𝑖 = 1,… , 𝑑 (3.2)

Where ⌊⋅⌋ denotes the integer flooring operator.

3.1.2 Cell types

Any given cell may be classified with respect to the number and the type of its points according

to the following definitions.

Definition 3.1.2 (Dense cell). For any given cell 𝐶 ⊆ ℝ𝑑 , we say that 𝐶 is dense if it contains

at least 𝑚𝑖𝑛𝑃𝑡𝑠 points, where the 𝑚𝑖𝑛𝑃𝑡𝑠 parameter has the same meaning as in the DBSCAN

algorithm.

Definition 3.1.3 (Core cell). For any given cell 𝐶 ⊆ ℝ𝑑 , we say that 𝐶 is core if it contains at

least a core point, in the sense of the DBSCAN algorithm.

It is immediate to prove the following theorems.

Theorem 3.1.1. Let 𝐶 ⊆ ℝ𝑑 be a dense cell; then, all points contained in 𝐶 are core points in

the sense of the DBSCAN algorithm.

Proof. From the definition of 𝜖-cell, we have that the distance between any given points 𝑝1, 𝑝2 ∈
𝐶 is at most 𝜖. Since 𝐶 is dense, any point 𝑝 ∈ 𝐶 will have at least 𝑚𝑖𝑛𝑃𝑡𝑠 neighboring points

with a distance that is at most 𝜖 (all the points within the cell); hence, by the definition of core

point, all points in 𝐶 are core in the sense of the DBSCAN algorithm.

Theorem 3.1.2. Let 𝐶 ⊆ ℝ𝑑 be a core cell; then, no point contained in 𝐶 can be an outlier in

the sense of the DBSCAN algorithm.

Proof. From the definition of 𝜖-cell, we have that the distance between any given points 𝑝1, 𝑝2 ∈
𝐶 is at most 𝜖. Since 𝐶 is core, there exists at least a point 𝑝∗ ∈ 𝐶 that is core; all the other points

30

3.1 – Definitions

in the cell will be neighbors of that point. Hence, according to the definition of outlier, they

can be only border or core as well.

3.1.3 Neighboring cells

The following definition deals with the concept of proximity between cells.

Definition 3.1.4 (Neighboring cells). Given any two non-empty cells 𝐶1, 𝐶2 ⊆ ℝ𝑑 , we say that

𝐶1 and 𝐶2 are neighbors if there may exist two points, 𝑝1 ∈ 𝐶1 and 𝑝2 ∈ 𝐶2, such that:

𝑑𝑖𝑠𝑡(𝑝1, 𝑝2) < 𝜖 (3.3)

Where 𝑑𝑖𝑠𝑡(⋅, ⋅) is an arbitrary distance function in ℝ𝑑 .

In other words, two non-empty cells are considered neighboring whenever the minimum

possible distance between any couple of points in the two cells is less than the value of 𝜖. We

denote as 𝒩 (𝑐) the set of neighbors of a given cell 𝐶 . Note that, by definition, each cell is a

neighbor of itself (the minimum distance between the points in the cell is zero). Figures 3.1

and 3.2 depict the shape of a neighborhood respectively for a two-dimensional and a three-

dimensional cell.

An important property deriving from the above definition is that the maximum number

of neighbors for any given cell is constant once we fix the dimensionality 𝑑 of the problem,

regardless of the parameter 𝜖; the value of such constant will be denoted as 𝑘𝑑 in the following.

A very loose bound on 𝑘𝑑 is given by the following theorem.

Theorem 3.1.3. For any fixed number of dimensions 𝑑 , an upper bound to the value of 𝑘𝑑 is

given by:

𝑘𝑑 = 𝑂 (2 ⌈√𝑑⌉ + 1)𝑑 (3.4)

Where ⌈⋅⌉ denotes the integer ceiling operator.

Proof. Let us consider a cell 𝐶 ⊆ ℝ𝑑 , identified by 𝑐 = (𝑐1,… , 𝑐𝑑) ∈ ℝ𝑑 . A necessary (although

not sufficient) condition for a cell 𝐶′ ⊆ ℝ𝑑 to be neighbor of 𝐶 is that its coordinates 𝑐′𝑖 = 𝑐𝑖 + 𝑗
(where 𝑗 ∈ ℤ) satisfy, along any fixed dimension 𝑖, the inequality:

31

3 – The proposed algorithm

Figure 3.1. Two-dimensional neighborhood of cell (0,0)

𝑙𝑐𝑖 − 𝜖 ≤ 𝑙𝑐′𝑖 ≤ 𝑙𝑐𝑖 + 𝜖 ⇒ 𝜖 (𝑐𝑖
√𝑑

− 1) ≤ 𝜖
√𝑑

(𝑐𝑖 + 𝑗) ≤ 𝜖 (𝑐𝑖
√𝑑

+ 1) (3.5)

Simplifying the above expression, we obtain:

−√𝑑 ≤ 𝑗 ≤ √𝑑 (3.6)

Possible values for 𝑗 are therefore those between − ⌈√𝑑⌉ and ⌈√𝑑⌉, which identify 2 ⌈√𝑑⌉+1
different cells. In other words, all the possible neighbors of 𝐶 are contained within a hypercube

made up of 2 ⌈√𝑑⌉ + 1 cells along each of the 𝑑 directions; hence, their total number is:

(2 ⌈√𝑑⌉ + 1)𝑑 (3.7)

The number of cells that are actually at a minimum distance lower than 𝜖 is generally lower
than this, especially for higher dimensions. Table 3.1 shows the value of 𝑘𝑑 for 𝑑 = 2,… , 9.

32

3.1 – Definitions

Figure 3.2. Three-dimensional neighborhood of cell (0,0,0)

Table 3.1. Some notable values for 𝑘𝑑
𝑑 Upper bound Actual 𝑘𝑑
2 25 21
3 125 117
4 625 609
5 16807 3903
6 117649 28197
7 823543 197067
8 5764801 1278129
9 40353607 8077671

The procedure used for the proof above justifies the introduction of Algorithm 3.1 for the

generation of the coordinates of a given cell’s neighbors. This is performed by means of a

recursive function, GENERATE-NEIGHBORS-REC, which computes all the combinations of values

between 𝑐𝑖 − 𝛿 and 𝑐𝑖 + 𝛿 (where 𝛿 = ⌈√𝑑⌉) along each of the axes 𝑖 = 1,… , 𝑑 ; the coordinates of
all cells in the hypercube with side 2𝛿+1 centered in the considered cell are therefore generated.
Whenever a new combination is computed, the MIN-DISTANCE function is applied in order to

33

3 – The proposed algorithm

decide whether the two cells are effectively neighbors or not (i.e. the distance between two

points placed on two opposite cell boundaries is at most 𝜖).
In order to show how to measure the minimum cell distance, let us denote two arbitrary

cells as 𝐶1, 𝐶2 ⊆ ℝ𝑑 , with coordinates 𝑐1, 𝑐2 ∈ ℤ𝑑 , and let us suppose that, along some direction

𝑖, 𝑐2𝑖 > 𝑐1𝑖; then, the points 𝑝1 ∈ 𝐶1 and 𝑝2 ∈ 𝐶2 with minimum distance along the 𝑖-th axis will

be characterized by:

𝑝1𝑖 = (𝑐1𝑖 + 1 − 𝜆) ∗ 𝑙 (3.8)

𝑝2𝑖 = 𝑐2𝑖 ∗ 𝑙 (3.9)

Where 𝜆 is an arbitrarily small positive value. The minimum distance between the two cells

along direction 𝑖 is therefore:

𝑝2𝑖 − 𝑝1𝑖 = 𝑙 [𝑐2𝑖 − (𝑐1𝑖 + 1 − 𝜆)] 𝜆→0−−−−→ 𝑙 (𝑐2𝑖 − 𝑐1𝑖 − 1) = 𝜖
√𝑑

(𝑐2𝑖 − 𝑐1𝑖 − 1) (3.10)

Generalizing the above results and accounting for the trivial case in which 𝑐1𝑖 = 𝑐2𝑖, the
formula for axis distance can be rewritten as:

𝑑𝑖𝑠𝑡𝑖(𝑝1, 𝑝2) =
⎧
⎨
⎩

𝑙 (|𝑐2𝑖 − 𝑐1𝑖| − 1) if 𝑐1𝑖 ≠ 𝑐2𝑖
0 if 𝑐1𝑖 = 𝑐2𝑖

(3.11)

To compute the actual distance, all the axis distances are finally squared and summed. If

this is found to be less than 𝜖, then the generated cell 𝐶2 is a neighbor of the considered cell 𝐶1
(and vice versa); otherwise, it can be discarded.

The implemented procedure is slightly different from the one described above for simplicity

and to avoid problems with additional floating-point roundings, but it follows the same logic.

Indeed, this computes the integer axis distances, withoutmultiplying by 𝑙; those are squared and
summed, then the result is scaled by 1

√𝑑 to take into account the side length for the considered

dimension. To decide whether the two cell are neighbors or not, this value is simply compared

to 1.

34

3.1 – Definitions

Algorithm 3.1 Neighbors generation procedure
functionMIN-DISTANCE(𝑐𝑒𝑙𝑙1, 𝑐𝑒𝑙𝑙2, 𝑑𝑖𝑚)

𝑑𝑖𝑠𝑡 ← 0

for 𝑖 in [1, 𝑑𝑖𝑚] do
▷ Compute distance along an axis
𝑎𝑥𝑖𝑠𝐷𝑖𝑠𝑡 = |𝑐𝑒𝑙𝑙1[𝑖] − 𝑐𝑒𝑙𝑙2[𝑖]| − 1

▷ Update total distance
if 𝑎𝑥𝑖𝑠𝐷𝑖𝑠𝑡 > 0 then

𝑑𝑖𝑠𝑡 ← 𝑑𝑖𝑠𝑡 + 𝑎𝑥𝑖𝑠𝐷𝑖𝑠𝑡2
end if

end for

return 𝑑𝑖𝑠𝑡
√𝑑𝑖𝑚

end function

function GENERATE-NEIGHBORS(𝑐𝑒𝑙𝑙, 𝑑𝑖𝑚)
𝑑𝑒𝑙𝑡𝑎 ← CEIL(√𝑑𝑖𝑚)
𝑛𝑒𝑤𝐶𝑒𝑙𝑙 ← EMPTY-LIST
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← EMPTY-LIST

GENERATE-NEIGHBORS-REC(0, 𝑑𝑒𝑙𝑡𝑎, 𝑑𝑖𝑚, 𝑐𝑒𝑙𝑙, 𝑛𝑒𝑤𝐶𝑒𝑙𝑙, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
return 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

end function

function GENERATE-NEIGHBORS-REC(𝑥, 𝑑𝑒𝑙𝑡𝑎, 𝑑𝑖𝑚, 𝑐𝑒𝑙𝑙, 𝑛𝑒𝑤𝐶𝑒𝑙𝑙, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)
▷ Check if an entire cell position has been generated
if 𝑥 = 𝑑𝑖𝑚 then

▷ Add the cell to the neighbors if its minimum distance is at most 1
if MIN-DISTANCE(𝑐𝑒𝑙𝑙, 𝑛𝑒𝑤𝐶𝑒𝑙𝑙, 𝑑𝑖𝑚) < 1 then

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← APPEND(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠, 𝑛𝑒𝑤𝐶𝑒𝑙𝑙)
end if
return

end if

▷ Otherwise, generate a component and go to the next
for 𝑖 in [𝑐𝑒𝑙𝑙[𝑥] − 𝑑𝑒𝑙𝑡𝑎, 𝑐𝑒𝑙𝑙[𝑥] + 𝑑𝑒𝑙𝑡𝑎] do

𝑛𝑒𝑤𝐶𝑒𝑙𝑙[𝑥] ← 𝑖
GENERATE-NEIGHBORS-REC(𝑥 + 1, 𝑑𝑒𝑙𝑡𝑎, 𝑑𝑖𝑚, 𝑐𝑒𝑙𝑙, 𝑛𝑒𝑤𝐶𝑒𝑙𝑙, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)

end for
end function

35

3 – The proposed algorithm

3.1.4 Grid

Finally, let us introduce the concept of grid.

Definition 3.1.5 (Grid). For any input space ℝ𝑑 , a grid is a complete and non-overlapping

partition 𝒢 = 𝐶1,… , 𝐶𝑘 of that input space into 𝜖-cells.

Clearly, if 𝑛 is the size of the input dataset, the number of cells in the grid is 𝑂(𝑛). Indeed,
in the worst case, each point belongs to a different cell.

3.2 Overview of the algorithm

Built upon the recent developments of DBSCAN-like clustering techniques, the algorithm we

propose is aimed at fulfilling twomain objectives: achieving high scalability in big data contexts

(with a theoretical linear worst-time complexity guarantee) and providing an exact result (i.e.

the same result that would be obtained by running the original DBSCAN algorithm on the same

dataset). Very high-level, this is structured as a grid-based procedure that can conceptually be

subdivided into three steps:

• Cell construction and grid definition: in this step, the input dataset is parsed and each of

its points is assigned to the corresponding 𝜖-cell;

• Core points identification: in this step, the grid constructed at the previous step is exploited

to discover all the core points in the dataset;

• Outliers identification: in this step, all the non-core points are checked to finally identify

the outliers in the dataset.

The first two phases are, in their baseline ideas, largely based on Gunawan’s [8], while

improved and generalized for working with 𝑑 ≥ 2. Note that this workflow does not involve

the definition of DBSCAN-like clusters: outliers in the dataset may indeed directly be obtained

when the core points are known. In the following, each step is described more in detail, with

the help of a graphic example. For this purpose, the 20-points, two-dimensional toy dataset in

Figure 3.3 will be used, on which we suppose to run the algorithm with parameters 𝜖 = √2 and
𝑚𝑖𝑛𝑃𝑡𝑠 = 5.

36

3.3 – Cell construction and grid definition

Figure 3.3. Overview of the example dataset

3.3 Cell construction and grid definition

3.3.1 Overview

The cell construction and grid definition phase is aimed at parsing of the input dataset from

secondary memory and defining the cells that will be used throughout the different steps of the

process. In particular, the procedure implementing this step performs the following actions:

• It loops through the points in the input dataset;

• For each point, it computes its cell coordinates by applying the formula: 𝑐𝑖 = ⌊𝑝𝑖 ∗ √𝑑
𝜖 ⌋;

• It assigns each point to its corresponding cell, by constructing a key-value map having as

key the cell coordinates and as value the list of points belonging to such cell.

A principle implementation of the procedure is shown in Algorithm 3.2.

37

3 – The proposed algorithm

Algorithm 3.2 Grid definition procedure
function CREATE-GRID(𝑖𝑛𝑝𝑢𝑡𝐹 𝑖𝑙𝑒, 𝑑𝑖𝑚, 𝑒𝑝𝑠,𝑚𝑖𝑛𝑃𝑡𝑠)

𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠 ← EMPTY-DICT

for 𝑝𝑜𝑖𝑛𝑡 in 𝑖𝑛𝑝𝑢𝑡𝐹 𝑖𝑙𝑒 do
𝑐𝑒𝑙𝑙 ← EMPTY-LIST(𝑑𝑖𝑚)

▷ Compute cell coordinates
for 𝑖 in [1, 𝑑𝑖𝑚] do

𝑐𝑒𝑙𝑙[𝑖] ← FLOOR(𝑝𝑜𝑖𝑛𝑡[𝑖] ∗ √𝑑𝑖𝑚
𝑒𝑝𝑠)

end for

▷ Assign the point to the cell
𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙] ← APPEND(𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙], 𝑝𝑜𝑖𝑛𝑡)

end for

return 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠
end function

3.3.2 Time complexity

It is possible to prove the following theorem.

Theorem 3.3.1. The cell construction and grid definition phase runs in 𝑂(𝑛) worst-case time

complexity, where 𝑛 is the size of the input dataset, for any data dimensionality.

Proof. The algorithm loops through all points once, computing the cell coordinates by applying

a single floating-point operation to all its components. Assuming a 𝑂(1) processing time for

each point, the overall complexity is therefore:

𝑛 ∗ 𝑂(1) = 𝑂(𝑛) (3.12)

3.3.3 Example

The results of running the grid definition phase on the example dataset are shown in Figure

3.4. As it can be seen, since the value of the parameter 𝜖 is set to √2, all the points have been
subdivided into cells with a side length of 1, identified by the coordinates of its bottom left

vertex: in this case, the value of the scaling factor is indeed 𝜖
√𝑑 = √2

√2 = 1.
38

3.3 – Cell construction and grid definition

Figure 3.4. Results of the grid definition phase on the example dataset

3.3.4 Parallelization

The parallelization of the grid definition procedure is straightforward; indeed, in this phase,

each point can be processed independently of the others by simply applying a MAPTOPAIR

transformation. The output of such transformation is a collection of key-value pairs in the form

(cell coordinates, point), where the cell coordinates are computed as in the sequential algorithm.

As an implementation concern, we additionally have to handle with care all the cases in

which repeated entries (i.e. points with the same coordinates) are present in the input dataset.

Subsequent steps, indeed, make use of REDUCEBYKEY transformations to aggregate the partial

results computed for each point; grouping based solely on its coordinates would combine all

the values referring to its multiple instances, thus causing the algorithm to produce incorrect

outcomes. This may be avoided by introducing a ZIPWITHUNIqUEID transformation to assign

to each point a unique identifier; in this way, by grouping based on such identifier, it is possible

to distinguish between instances with the same coordinates, thus providing correct results for

each individual data point.

39

3 – The proposed algorithm

3.4 Core points identification

3.4.1 Overview

In the sense of the DBSCAN algorithm, a point is core whenever its 𝜖-neighborhood contains

at least 𝑚𝑖𝑛𝑃𝑡𝑠 points. Based on the results of Theorem 3.1.1, for each cell one of the following

two situations can verify:

• The considered cell is dense: in this case, no additional processing is necessary, since

Theorem 3.1.1 allows us to immediately state that all the points in the cell are core;

• The considered cell is non-dense: in this case, it is necessary to compute the distance of

each point inside the cell to all the points in its neighboring cells (including the cell itself);

if the point has at least 𝑚𝑖𝑛𝑃𝑡𝑠 neighbors (i.e. points in neighboring cells having distance

less than 𝜖), then the point is to be considered core.

This observation justifies the procedure in Algorithm 3.3 for the identification of core points

in the dataset. The procedure loops through all cells; if the cell is dense, then the list of points

in the cell is copied in the dictionary of core points. Otherwise, the algorithm loops through all

the vectors 𝑣1 in the cell; for each of them, it considers all the vectors 𝑣2 in the neighboring cells

(generated via the GENERATE-NEIGHBORS procedure) and checks the distance from 𝑣1 to 𝑣2. If
that is less than 𝜖, a counter is incremented; if the final value of the counter is at least 𝑚𝑖𝑛𝑃𝑡𝑠,
then the point is core and it is appended to the list of core points of the cell.

3.4.2 Time complexity

It is possible to prove the following theorem.

Theorem 3.4.1. The core points identification phase runs in 𝑂(𝑛) worst-case time complexity,

where 𝑛 is the size of the input dataset, for any data dimensionality.

Proof. The function loops through all the cells via variable 𝑐1; assuming that size computation

can be executed in constant time (e.g. a length variable is stored for each cell), the following

situations can verify.

40

3.4 – Core points identification

Algorithm 3.3 Core points identification procedure
function FIND-CORE-POINTS(𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠, 𝑑𝑖𝑚, 𝑒𝑝𝑠,𝑚𝑖𝑛𝑃𝑡𝑠)

𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠 ← EMPTY-DICT

▷ Loop through all cells
for 𝑐𝑒𝑙𝑙 in 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠 do

𝑛𝑢𝑚𝑃𝑡𝑠 ← SIZE(𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙])

if 𝑛𝑢𝑚𝑃𝑡𝑠 ≥ 𝑚𝑖𝑛𝑃𝑡𝑠 then
▷ Dense cell, all points are core points
𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙] ← 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙]

else
𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← GENERATE-NEIGHBORS(𝑐𝑒𝑙𝑙)

▷ For all points in the cell...
for 𝑣1 in 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙] do

𝑐𝑜𝑢𝑛𝑡𝑁 𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 0

▷ ... check all the neighboring cells ...
for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

▷ ... consider all the points in each neighbor ...
for 𝑣2 in 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] do

▷ ... if the distance between the two vectors is less than 𝜖 ...
if DISTANCE(𝑣1, 𝑣2) < 𝑒𝑝𝑠 then

▷ ... then increment the number of neighbors
𝑐𝑜𝑢𝑛𝑡𝑁 𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← 𝑐𝑜𝑢𝑛𝑡𝑁 𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 + 1

end if
end for

end for

▷ Point is core if it has at least 𝑚𝑖𝑛𝑃𝑡𝑠 neighbors
if 𝑐𝑜𝑢𝑛𝑡𝑁 𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ≥ 𝑚𝑖𝑛𝑃𝑡𝑠 then

𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙] ← APPEND(𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙], 𝑣1)
end if

end for
end if

end for

return 𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠
end function

41

3 – The proposed algorithm

Case 1: 𝑐1 is dense. In this case, we just need to copy a pointer to the entire list of points of

the cell into the core points map. Hence, the time complexity for any number of dense cells is:

𝑂(𝑛) ∗ 𝑂(1) = 𝑂(𝑛) (3.13)

Case 2: 𝑐1 is not dense. In this case, all the points within the cell, which are at most𝑚𝑖𝑛𝑃𝑡𝑠−1,
need to be compared to each point in the neighboring cells. The number of comparisons we

need to perform is therefore:

∑
𝑐1

∑
𝑣1∈𝑐1

∑
𝑐2∈𝒩 (𝑐1)

∑
𝑣2∈𝑐2

1 (3.14)

Operating the same substitution as in Gunawan [8], we note that 𝑐2 ∈ 𝒩 (𝑐1) ⇔ 𝑐1 ∈ 𝒩 (𝑐2);
as a consequence, we can write:

∑
𝑐1

∑
𝑣1∈𝑐1

∑
𝑐2∈𝒩 (𝑐1)

∑
𝑣2∈𝑐2

1 = ∑
𝑐2

∑
𝑣2∈𝑐2

∑
𝑐1∈𝒩 (𝑐2)

∑
𝑣1∈𝑐1

1 (3.15)

Given that |𝑐1| = 𝑂(𝑚𝑖𝑛𝑃𝑡𝑠) and |𝒩 (𝑐2)| = 𝑘𝑑 , we have:

∑
𝑐2

∑
𝑣2∈𝑐2

∑
𝑐1∈𝒩 (𝑐2)

∑
𝑣1∈𝑐1

1 = ∑
𝑐2

∑
𝑣2∈𝑐2

𝑂(𝑚𝑖𝑛𝑃𝑡𝑠 ∗ 𝑘𝑑) (3.16)

Finally, since ∑𝑐2 ∑𝑣2∈𝑐2 1 = 𝑛, we obtain:

∑
𝑐2

∑
𝑣2∈𝑐2

𝑂(𝑚𝑖𝑛𝑃𝑡𝑠 ∗ 𝑘𝑑) = 𝑂(𝑛 ∗ 𝑚𝑖𝑛𝑃𝑡𝑠 ∗ 𝑘𝑑) (3.17)

The overall worst-case time complexity of this phase is therefore:

𝑂(𝑛) + 𝑂(𝑛 ∗ 𝑚𝑖𝑛𝑃𝑡𝑠 ∗ 𝑘𝑑) = 𝑂(𝑛 ∗ 𝑚𝑖𝑛𝑃𝑡𝑠 ∗ 𝑘𝑑) (3.18)

3.4.3 Example

In order to illustrate the core points identification phase for the example dataset, let us consider

what happens for two example cells with coordinates 𝑐1 = (0, 0) and 𝑐2 = (1,−1).
42

3.4 – Core points identification

As for cell 𝑐1, it may be immediately noticed that the cell is dense: indeed, it contains six

points, a value which is greater than 𝑚𝑖𝑛𝑃𝑡𝑠 = 5. Therefore, cell 𝑐1 is marked as dense and all

of its points as core, as shown in Figure 3.5.

Figure 3.5. Dense cells marking on the example dataset

As for cell 𝑐2, the cell is not dense as it contains two points only; consequently, it is necessary
to check, for both of them, the distance with all the points in the neighboring cells. The results

are as follows:

• As shown in Figure 3.6, point 𝑝1 = (1.1,−0.3) happens to have nine neighbors (those

pointed by a green arrow), a value which is greater than 𝑚𝑖𝑛𝑃𝑡𝑠; thus, the point and its

cell are marked as core;

• Conversely, as shown in Figure 3.7, point 𝑝2 = (1.9,−0.9) happens to have only two more

points within its 𝜖-neighborhood, which means that the point is not core. Note that,

whereas several points are included in the neighboring cells of 𝑐2, many of them (those

pointed by a red arrow) do not effectively lie in the 𝜖-neighborhood of point 𝑝2.
43

3 – The proposed algorithm

Figure 3.6. Neighbor check for the point 𝑝1 on the example dataset

All the other cells and points are processed as described above, yielding the result shown in

Figure 3.8, in which the 𝜖-neighborhoods of the identified core points are also drawn.

3.4.4 Parallelization

The parallelization of the core points identification phase is more complex due to the necessity

of computing the distances between points belonging to different cells, whenever those are not

dense. In order to accomplish this goal, the adopted strategy is to emit the points to be checked

as tuples in the form (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 , 𝑝𝑜𝑖𝑛𝑡) so that, by means of a JOIN operation with the original

dataset, it is possible to create pairs of vectors for which the distance can be easily computed.

This phase can furtherly be subdivided into three consecutive steps:

• Identification of the dense cells: for this purpose, it is necessary to count the number of

points belonging to each cell through of a REDUCEBYKEY transformation, whose results

are used to construct a cell map that is distributed to all executors, storing for each cell

identifier its type (dense/non-dense).

44

3.4 – Core points identification

Figure 3.7. Neighbor check for the point 𝑝2 on the example dataset

• Emission of the points to check: in order to identify the core points belonging to non-

dense cells, the first step is to emit all the points from non-dense cells on their neighbors,

so that the required comparisons can be performed. To this purpose, a FLATMAPTOPAIR

transformation is used; for each vector 𝑣1 belonging to a non-dense cell 𝑐1 (which can be

identified by using the information contained in the cell map), a number of pairs in the

form (𝑐2, (𝑐1, 𝑣1)) is emitted, one for each neighbor 𝑐2 of 𝑐1.

• Identification of core points from non-dense cells: the points to be checked are joined by key

through a JOIN transformation with the entire dataset in the form (𝑐2, 𝑣2), thus originating
pairs in the form (𝑐2, (𝑣2, (𝑐1, 𝑣1))). The distance between the two points is computed and

used, in a MAPTOPAIR transformation, for producing pairs having as key the tuple (𝑐1, 𝑣1)
and as value an integer, either 1 (if the distance is at most 𝜖) or 0 (otherwise). Finally, a

succession of a REDUCEBYKEY and FILTER transformations are used to retrieve the number

of effective neighbors for each point and select only those having at least 𝑚𝑖𝑛𝑃𝑡𝑠.

The overall set of core points is then produced by applying a UNION transformation to the

45

3 – The proposed algorithm

Figure 3.8. Results of the core points identification phase on the example dataset

results of Step 3 with the points belonging to dense cells as identified during Step 1.

3.5 Outliers identification

3.5.1 Overview

Conceptually, the outliers identification phase is very similar to the core points identification

phase. In this case, no further processing is needed for the core cells: indeed, thanks to Theorem

3.1.2, we know that they cannot contain any outlier. For all the non-core cells, instead, it is

necessary to check the distance to all points in the neighboring cells; the considered point is an

outlier if and only if none of those distances is lower than 𝜖.
The conceptual implementation of the procedure for the identification of the outliers is

shown in Algorithm 3.4.

46

3.5 – Outliers identification

Algorithm 3.4 Outliers identification procedure
function FIND-OUTLIERS(𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠, 𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠, 𝑑𝑖𝑚, 𝑒𝑝𝑠,𝑚𝑖𝑛𝑃𝑡𝑠)

𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑠 ← EMPTY-DICT

▷ Loop through all cells
for 𝑐𝑒𝑙𝑙 in 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠 do

▷ Check that the cell does not contain core points
if 𝑐𝑒𝑙𝑙 not in 𝑐𝑜𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠 then

𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ← GENERATE-NEIGHBORS(𝑐𝑒𝑙𝑙)

▷ For all points in the cell...
for 𝑣1 in 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑐𝑒𝑙𝑙] do

𝑖𝑠𝑂𝑢𝑡𝑙𝑖𝑒𝑟 ← 𝑡𝑟𝑢𝑒

▷ ... check all the neighboring cells ...
for 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 do

▷ ... consider all the core points in each neighbor ...
for 𝑣2 in 𝑎𝑙𝑙𝑃𝑜𝑖𝑛𝑡𝑠[𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟] do

▷ ... if the distance between the two vectors is less than 𝜖 ...
if DISTANCE(𝑣1, 𝑣2) < 𝑒𝑝𝑠 then

▷ ... then the point is not an outlier
𝑖𝑠𝑂𝑢𝑡𝑙𝑖𝑒𝑟 ← 𝑓 𝑎𝑙𝑠𝑒

end if
end for

end for

▷ Point is outlier if it has no core neighbor
if 𝑖𝑠𝑂𝑢𝑡𝑙𝑖𝑒𝑟 then

𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑠[𝑐𝑒𝑙𝑙] ← APPEND(𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑠[𝑐𝑒𝑙𝑙], 𝑣1)
end if

end for
end if

end for

return 𝑜𝑢𝑡𝑙𝑖𝑒𝑟 𝑠
end function

47

3 – The proposed algorithm

3.5.2 Time complexity

It is possible to prove the following theorem.

Theorem 3.5.1. The outliers identification phase runs in 𝑂(𝑛) worst-case time complexity,

where 𝑛 is the size of the input dataset, for any data dimensionality.

Proof. The algorithm loops through every cell. If the cell is core, then no operation needs to

be performed; otherwise, all the points in the cell (at most 𝑚𝑖𝑛𝑃𝑡𝑠 − 1, since a non-core cell is
certainly not dense) need to be compared to all the points in the neighboring core cells (at most

𝑘𝑑). Thus, the overall complexity is equivalent to the one of the core points identification phase:

𝑂(𝑛 ∗ 𝑚𝑖𝑛𝑃𝑡𝑠 ∗ 𝑘𝑑) (3.19)

3.5.3 Example

Also in this case, in order to illustrate the outliers identification phase on the toy dataset, an

example cell with coordinates 𝑐 = (0,−2) has been chosen. This cell is not core (otherwise all

of its non-core points can immediately be classified as border points, since they fall within the

𝜖-neighborhood of at least a core point) and has two points, for which we need to check the

distance from all the core points in the neighboring cells:

• As shown in Figure 3.9, point 𝑝3 = (0.7,−1.5) happens to have one core point within its

𝜖-neighborhood, which is a sufficient condition not to classify it as an outlier; the point

will consequently be marked as a border point;

• Point 𝑝4 = (0.3,−1.8), instead, happens to have all the core points in the nearby cells at a

distance greater than the parameter 𝜖 (see Figure 3.10); thus, it is classified as an outlier.

The same procedure is applied for every non-core cell in order to identify the outliers in the

dataset. The final result is shown in Figure 3.11.

3.5.4 Parallelization

The parallelization of the outliers identification phase follows the same ideas of the core points

identification phase. It can be structured in four steps:

48

3.5 – Outliers identification

Figure 3.9. Neighbor check for the point 𝑝3 on the example dataset

• Identification of the core cells: the cell map constructed during the previous phase is up-

dated by marking as core all the cells which appear at least once in the set of core points,

then broadcast to all the executors.

• Identification of outliers from non-core cells with no core neighbors: the updated cell map is

used to identify the non-core cells having no core neighbor by means of a FILTER trans-

formation; all the points belonging to these cells are outliers, since they are surely not in

the neighborhood of a core point.

• Emission of the points to check: similarly to what happens in the previous phase, in this

case the points belonging to non-core cells need to be emitted on all their neighbors in

order to compute distances.

• Identification of outliers from non-core cells with at least one core neighbor : the points to

be checked are joined by key through a JOIN transformation with the set of core points,

in order to compute the distances between each generated pair. Each point to be checked

49

3 – The proposed algorithm

Figure 3.10. Neighbor check for the point 𝑝4 on the example dataset

is associated with a boolean value, true if the distance is at least 𝜖 or false otherwise,

through MAPTOPAIR transformation. Finally, a succession of a REDUCEBYKEY and FILTER

transformations is used to select only the points for which, after all the reduction bymeans

of a boolean AND operation, the flag remains true.

The entire set of outliers can be obtained by applying a UNION transformation to the results

of Step 2 and 4.

3.6 Implementation optimizations

3.6.1 Optimizations overview

The algorithm as described up to now works as expected, and always returns the expected

outcomes for any combination of input parameters. However, its performance may not be

optimal for some specific cases; in the following paragraphs, some optimizations which allow

to reduce the running time while keeping the overall logic of the algorithm are presented. All

50

3.6 – Implementation optimizations

Figure 3.11. Results of the outliers identification phase on the example dataset

those techniques focus specifically on reducing the running time of the JOIN operations, which

are the most computationally expensive in the entire flow.

3.6.2 Broadcast join

In some cases, the number of the points to check in the core points and outlier identification

phases is small enough to collect them in a local map. The broadcast join optimization allows to

eliminate the costly JOIN transformation by collecting them in an opportune structure, which

is then broadcast to all executors; this can be used to perform the join operation by means of a

FLATMAPTOPAIR transformation.

Since local Javamaps do not allow for repeated keys, a GROUPBYKEY operation is also needed

in order to generate pairs (𝑐𝑒𝑙𝑙, [𝑝𝑜𝑖𝑛𝑡𝑠]), which are then collected and broadcast. The FLATMAP-

TOPAIR transformation, applied to the entire dataset, checks whether the cell is present in the

map; if so, it computes the distance between the current vector and all the vectors associated to

the cell, emitting a pair ((𝑐𝑒𝑙𝑙, 𝑣𝑒𝑐𝑡𝑜𝑟), 0/1) for each of them. From this point on, the algorithm

51

3 – The proposed algorithm

proceeds as before.

The effect of such optimization is variable; as a general trend, it performs best for higher

values of 𝜖: indeed, in this case more cells are dense and less points need to be emitted on

nearby cells for distance computation. However, since its application may generate out-of-

memory errors at runtime whenever the map of points to be checked does not fit in memory,

this optimization is disabled by default in the developed code.

3.6.3 Grouping before joining

During the performed tests, it has been possible to notice that the performances of the JOIN

transformation decrease almost linearly with the size of the data to be joined. The purpose of

this optimization, therefore, is to consistently reduce the cardinality of one of the join operands

when the value of 𝜖 is lower and, consequently, the number of points to be checked is higher.

This is achieved by applying, immediately before the join, a GROUPBYKEY transformation on

the dataset side, whose cardinality is generally lower than the one of the points to be checked,

especially for low 𝜖.
Although the quality of such optimization from a conceptual point of view may be dis-

puted due to the inherent complexity of the grouping operation, in practice it allows to obtain

speedups up to 500% for certain datasets and low values of 𝜖, while not severely affecting per-

formances with high 𝜖. Moreover, grouping before joining allows to reduce the number of

comparisons for each point in the average case; it is indeed possible to stop computing the

distance from the considered point to the vectors in the joined cell if:

• The number of the point’s neighbors reaches the target value of 𝑚𝑖𝑛𝑃𝑡𝑠 during the core

points identification phase;

• The point is discovered not to be an outlier due to the presence of a neighboring core

point during the outliers identification phase.

For these reasons, it has been chosen to always apply the grouping before joining optimiza-

tion, independently of the type of dataset and of the value of the different parameters.

52

Chapter 4

Experimental results

In this chapter, the algorithm described in Chapter 3 is tested on multiple datasets and with

different parameters combinations in order to characterize the quality of the results and the

scalability of its performance in big data scenarios. After a brief description concerning the

implementation of the algorithm, the following sections present the results of the executed tests

and discuss how they compare to the ones obtained by means of reference and state-of-the-art

outlier detection and parallel DBSCAN techniques.

4.1 Algorithm implementation

The parallel version of the proposed algorithmwas implemented using the Java Spark APIs. The

choice of such programming language was dictated by the performance penalties introduced

by the usage of a non-JVM native language (such as Python) in conjunction with a JVM-native

library such as Spark (written in Scala), deriving from the communication cost between the

language interpreter and the Java Virtual Machine. For comparison, a sequential version of

the algorithm was also implemented, which has been used in the first set of tests due to its

higher performance on small-sized datasets (there is no overhead related to scheduling and

communication among nodes); the Java language was used in this case as well, in order to

facilitate code sharing between the two versions.

For the parallel algorithm, an optional parameter was additionally introduced to control the

number of partitions in which to split the input data; if not specified, the number of HDFS

53

4 – Experimental results

chunks of the input file is used. It is worth noticing that such parameter does not influence the

results of the computation, which is indeed always dependent only on 𝜖 and 𝑚𝑖𝑛𝑃𝑡𝑠; rather, it
may improve the degree of parallelism that is achieved by the system, thus reducing the running

time.

4.2 Overview of the performed tests

In order to evaluate the performance of the proposed algorithm, a number of tests were de-

signed, aiming to characterize:

• The quality of the results, with respect to the ones produced by other well-known outlier

detection algorithms; to this purpose, some small, synthetic datasets have been employed,

which are manageable by all the tested algorithms and for which quality measures may

be simply computed and interpreted;

• The scalability of the algorithm with the variation of its parameters, with respect to refer-

ence parallel implementations of DBSCAN; to this purpose, some real-world datasets have

been employed, which are large enough not to be manageable by traditional, sequential

data mining algorithms.

4.3 Quality-related testing

4.3.1 Datasets description

The first set of tests has been performed on synthetic datasets, with the goal to measure the

quality of the results produced by the new algorithm on different data distributions and to

compare them with available implementations of well-known reference algorithms. Some of

these datasets were generated by us, while some others are benchmark datasets extensively

used in literature for testing the performances of clustering algorithms. A description of the

generated dataset is provided in the following list:

• Blobs: a two-dimensional, 10000 points dataset featuring five globular clusterswith similar

densities with added random noise; 99% of the dataset is generated using scikit-learn’s

54

4.3 – Quality-related testing

make_blobs, with parameters centers=5, cluster_std=0.5, random_state=100, while

the remaining 1% is represented by random, two-dimensional noise;

• Blobs-vd: a two-dimensional, 10000 points dataset featuring three globular clusters with

varying densities with added random noise; 99% of the dataset is generated using scikit-

learn’s make_blobs, with parameters centers=3, cluster_std=[0.5, 1, 1.5], ran-

dom_state=100, while the remaining 1% is represented by random, two-dimensional noise;

• Circles: a two-dimensional, 10000 points dataset featuring two circle-shaped, concentric

clusters with added random noise; 99% of the dataset is generated using scikit-learn’s

make_circles, with parameters factor=0.5, noise=0.05, random_state=100, while the

remaining 1% is represented by random, two-dimensional noise;

• Moons: a two-dimensional, 10000 points dataset featuring twomoon-shaped clusters with

added random noise; 99% of the dataset is generated using scikit-learn’s make_moons, with

parameters noise=0.05, random_state=100, while the remaining 1% is represented by

random, two-dimensional noise.

As for the benchmark datasets, the following were used:

• Chameleon [11]: a collection of four, two-dimensional datasets with 8000-10000 points

each, characterized by the presence of oddly-shaped clusters with added random noise;

• Cure [7]: a two-dimensional dataset consisting of 4000 points and characterized by the

presence of variable-sized circular and elliptic clusters with added random noise.

4.3.2 Tested algorithms

Given the small size of the tested datasets, the sequential version of the algorithm was used to

perform all the quality-related tests without incurring in scheduling and synchronization costs,

which are predominant with respect to the actual execution time.

In order to evaluate the quality of the detection, the results produced by the new algorithm

were compared against those produced by the original DBSCAN (for which we checked that

the same set of outliers was being marked as such) and by some of the traditional algorithms

for outlier detection presented in Chapter 2 (specifically, Robust Covariance Estimation [19],

55

4 – Experimental results

Isolation Forests [14], Local Outlier Factor [2] and One-Class SVM [20]). For all of them, we

used their Python implementation as provided by the scikit-learn [18] library.

4.3.3 Parameter selection

As for the selection of the algorithm parameters, for the first set of tests we adopted the usual

DBSCAN estimation technique: we fixed the value of 𝑚𝑖𝑛𝑃𝑡𝑠, then drawn the graph of the

distance to the 𝑚𝑖𝑛𝑃𝑡𝑠-th neighbor against the number of points; the value of 𝜖 was then chosen

in the uppermost part of the elbow zone of such graph, with some rounding. For the outlier

detection algorithms described in Chapter 2, the value of the contamination factor 𝜈 was set to
the actual proportion of outliers in each dataset (0.01 for those generated by us, variable for the

benchmark ones), while the other parameters were left to their default values.

4.3.4 Evaluation metrics

In order to evaluate the quality of the obtained result, themetric of choice for the first set of tests

is the adjusted Rand index [10], as computed by scikit-learn’s adjusted_rand_score function.

This constitutes a variation of the “standard” Rand index that is “adjusted for chance”, according

to the formula:

𝐴𝑅𝐼 = 𝑅𝐼 − 𝔼[𝑅𝐼]
max𝑅𝐼 − 𝔼[𝑅𝐼] =

𝑅𝐼 − 𝔼[𝑅𝐼]
1 − 𝔼[𝑅𝐼] (4.1)

Where 𝔼[⋅] is the expected value operator and 𝑅𝐼 the “standard” Rand index, which is com-

puted as:

𝑅𝐼 = true positives + true negatives
number of points

(4.2)

Obviously, the evaluation of such parameter requires the knowledge of the “true” labels for

each data point, which is in this case assured by the synthetic nature of the datasets. For both the

Rand index and its adjusted variant, values close to 0 represent a completely random labeling,

while values close to 1 represent a perfect labeling up to a permutation of the identifiers.

In relation to the “standard” Rand index, ARI provides a much more unbiased evaluation

of the detection results, since it takes into account the expected similarity between the true

56

4.3 – Quality-related testing

and predicted labels as computed by a random model, which is generally not null. This is

particularly evident for the outlier detection task, for which we can expect the great majority

of data points, whose number is in any case predominant with respect to the number of outliers,

to be correctly marked, thus returning an elevate value of the unadjusted index even when the

quality of the labeling is clearly poor.

4.3.5 Testing environment

All the sequential code was run on a Windows 10 PC equipped with an Intel Core i7-7700HQ

CPU and 16 GB of RAM. For both the Java JDK and the Python interpreter, the latest available

versions were used (13.0.2 and 3.8.2, respectively).

4.3.6 Results

A summary of the outcomes of the experiments on the generated datasets is presented in Table

4.1; a visual comparison is shown in Figures 4.1 to 4.4.

In all the tests on the generated datasets, the new algorithm outperformed all the others in

terms of result quality. Clearly, performances are better for the datasets with clusters charac-

terized by a homogeneous density, on which ARI values of up to 0.95800 are recorded (on both

the Blobs and Moons dataset); nevertheless, good quality scores are obtained also for the other

datasets with an opportune choice of the parameters (the minimum ARI value, registered for

the Blobs-vd dataset, is 0.85751). In particular, it can be seen that the new algorithm is capable

of correctly identifying the great majority of outliers and data points in the dataset; notable

exceptions include outliers that are randomly generated in dense areas which no density-based

algorithmwould ever identify as such (as shown for example on the Blobs-vd andMoons datasets

in Figures 4.2 and 4.4) or by themselves constituting small clusters, as in the Blobs dataset (Figure

4.1). A reduced number of errors is also related to unidentified data points located on the border

of the dense areas, especially for the Blobs-vd dataset in Figure 4.2. In any case, as expected,

results for the DBSCAN algorithm match exactly the ones provided by the new algorithm, once

that cluster labels have been removed.

As for the other tested algorithms, the worst performing overall is the statistical Robust Co-

variance Estimation-based method (with ARI values as low as 0.06939 for the Blobs-vd dataset),

57

4 – Experimental results

since it assumes an elliptical shape for the data which is not reflected in any of the tested

datasets, leading to a large number of misclassified points. The Isolation Forest and One-Class

SVM algorithms provide mixed results, performing better on the datasets featuring globular

clusters: on the Blobs dataset, the two algorithms obtain an ARI value of 0.78450 and 0.74115

respectively. Isolation Forests fail in particular on the Circles dataset (ARI value: 0.09917), in

which the outliers are indeed very close to actual data points; the same trend can be observed

for the One-Class SVM (ARI value: 0.22872), which is not able to fit an opportune separating

hyperplane for the two classes. The results provided by the Local Outlier Factor algorithm

are much more consistent among the different executions (with ARI values consistently higher

than 0.8), but the algorithm suffers (due to its density-based nature) in the test using clusters

with varying densities, obtaining an ARI score of 0.69270.

Table 4.1. Rand index comparison for the generated datasets

Dataset Algorithm Parameters ARI

Blobs

New 𝜖 = 0.6,𝑚𝑖𝑛𝑃𝑡𝑠 = 5 0.95800
Robust Covariance Estimation 𝜈 = 0.01 0.37906

Isolation Forest 𝜈 = 0.01 0.78450
Local Outlier Factor 𝜈 = 0.01 0.86638
One-Class SVM 𝜈 = 0.01 0.74115

Blobs-vd

New 𝜖 = 0.8,𝑚𝑖𝑛𝑃𝑡𝑠 = 5 0.85781
Robust Covariance Estimation 𝜈 = 0.01 0.06938

Isolation Forest 𝜈 = 0.01 0.63169
Local Outlier Factor 𝜈 = 0.01 0.69270
One-Class SVM 𝜈 = 0.01 0.73729

Circles

New 𝜖 = 0.02,𝑚𝑖𝑛𝑃𝑡𝑠 = 5 0.87112
Robust Covariance Estimation 𝜈 = 0.01 0.18878

Isolation Forest 𝜈 = 0.01 0.09917
Local Outlier Factor 𝜈 = 0.01 0.81518
One-Class SVM 𝜈 = 0.01 0.22872

Moons

New 𝜖 = 0.02,𝑚𝑖𝑛𝑃𝑡𝑠 = 5 0.95800
Robust Covariance Estimation 𝜈 = 0.01 0.43946

Isolation Forest 𝜈 = 0.01 0.33888
Local Outlier Factor 𝜈 = 0.01 0.93824
One-Class SVM 𝜈 = 0.01 0.59420

Results for the experiments on benchmark datasets are summarized in Table 4.2 and shown

in Figures 4.5-4.9. Also in this case, the new algorithm demonstrates good performance on

all the datasets (ARI values range from the 0.78507 obtained for the cluto-t8-8k dataset to the

58

4.3 – Quality-related testing

Figure 4.1. Results on the Blobs dataset

59

4 – Experimental results

Figure 4.2. Results on the Blobs-vd dataset

60

4.3 – Quality-related testing

Figure 4.3. Results on the Circles dataset

61

4 – Experimental results

Figure 4.4. Results on the Moons dataset

62

4.3 – Quality-related testing

0.88192 obtained for the cluto-t7-10k dataset), being outperformed by Local Outlier Factor only

on cluto-t8-8k (registering an ARI score of 0.87300) due to the presence of clusters with different

densities with outliers very close to one another. Again, problems are mainly related to very

clustered outliers (such as in the cluto-t4-8k and cluto-t5-8k datasets in Figures 4.5 and 4.6) and

undetected data points on the clusters’ borders (like in the cluto-t8-8k dataset, in Figure 4.8).

The worst-performing is still the statistical method (with an absolute lowest of 0.02769 ARI

score for the cure-t2-4k dataset), whereas the results of both Isolation Forests and One-Class

SVMs confirm to be very dependent on the distribution of the data, yet less promising than

in the previous tests (ranging from the very poor 0.10351 obtained by the One-Class SVM on

the cluto-t5-8k dataset to the average 0.54303 obtained by means of an Isolation Forest on the

cluto-t4-8k dataset).

Table 4.2. Rand index comparison for the benchmark datasets

Dataset Algorithm Parameters ARI

cluto-t4-8k

New 𝜖 = 7,𝑚𝑖𝑛𝑃𝑡𝑠 = 10 0.80787
Robust Covariance Estimation 𝜈 = 0.1 0.28230

Isolation Forest 𝜈 = 0.1 0.54303
Local Outlier Factor 𝜈 = 0.1 0.49339
One-Class SVM 𝜈 = 0.1 0.43017

cluto-t5-8k

New 𝜖 = 5,𝑚𝑖𝑛𝑃𝑡𝑠 = 10 0.80705
Robust Covariance Estimation 𝜈 = 0.15 0.16433

Isolation Forest 𝜈 = 0.15 0.27899
Local Outlier Factor 𝜈 = 0.15 0.60001
One-Class SVM 𝜈 = 0.15 0.10351

cluto-t7-10k

New 𝜖 = 10,𝑚𝑖𝑛𝑃𝑡𝑠 = 10 0.88192
Robust Covariance Estimation 𝜈 = 0.08 0.17878

Isolation Forest 𝜈 = 0.08 0.26501
Local Outlier Factor 𝜈 = 0.08 0.70620
One-Class SVM 𝜈 = 0.08 0.22965

cluto-t8-8k

New 𝜖 = 12,𝑚𝑖𝑛𝑃𝑡𝑠 = 10 0.78507
Robust Covariance Estimation 𝜈 = 0.04 0.14175

Isolation Forest 𝜈 = 0.04 0.36608
Local Outlier Factor 𝜈 = 0.04 0.87300
One-Class SVM 𝜈 = 0.04 0.31859

cure-t2-4k

New 𝜖 = 0.08,𝑚𝑖𝑛𝑃𝑡𝑠 = 10 0.87480
Robust Covariance Estimation 𝜈 = 0.05 0.02769

Isolation Forest 𝜈 = 0.05 0.26621
Local Outlier Factor 𝜈 = 0.05 0.78362
One-Class SVM 𝜈 = 0.05 0.10577

63

4 – Experimental results

All in all, the new algorithm was capable of providing good-quality results for each of the

tested datasets, without requiring any domain knowledge for parameter estimation (e.g. it is

not needed to know an estimate of the proportion of outliers in the dataset). For our tests, a

very simple technique has been used to decide the value of the algorithm parameters; we believe

that possibly even better quality figures may be obtained using a more thorough approach to

parameter estimation.

4.4 Scalability-related testing

4.4.1 Datasets description

The second set of tests, aimed at demonstrating the scalability of the algorithm with very large

amounts of data, was performed using some publicly available, real-world datasets extensively

adopted in the related literature. Those include:

• Geolife [26]: a collection of GPS trajectories from 182 users over a five years period (April

2007 to August 2012), consisting in a series of timestamped three-dimensional points (lati-

tude, longitude, altitude in feet); although the dataset contains points from different areas

of theworld, a very high concentration of tracks has been registered around the city of Bei-

jing, which makes the dataset heavily skewed. As a preprocessing step, all the trajectory

files were joined together upfront in the form of a CSV file in which all the unnecessary

features were removed.

• OpenStreetMap [17]: a set of sample GPS points collected by OpenStreetMap contribu-

tors over the first seven and a half year of the platform; it consists of a series of sorted,

latitude-longitude pairs in the form of integer values obtained by multiplying the actual

coordinates by 107.

4.4.2 Tested algorithms

In order to evaluate the scalability, the performances of the parallel algorithm were compared

to the ones of RP-DBSCAN [22], given that such approximated algorithm was shown to out-

perform all of the other parallel implementations of DBSCAN by large margins. The code for

64

4.4 – Scalability-related testing

Figure 4.5. Results on the cluto-t4-8k dataset

65

4 – Experimental results

Figure 4.6. Results on the cluto-t5-8k dataset

66

4.4 – Scalability-related testing

Figure 4.7. Results on the cluto-t7-10k dataset

67

4 – Experimental results

Figure 4.8. Results on the cluto-t8-8k dataset

68

4.4 – Scalability-related testing

Figure 4.9. Results on the cure-t2-4k dataset

69

4 – Experimental results

RP-DBSCAN was obtained by recompiling the code publicly made available by the authors

(latest version to date is from January 28th, 2020), after applying the following modifications:

• The cluster configuration was updated to reflect the available one;

• The output file writing phase was updated to provide only the results relative to outliers

(those having the cluster identifier set to -1).

4.4.3 Parameters selection

For the second set of tests, the algorithm was run by fixing 𝑚𝑖𝑛𝑃𝑡𝑠 to 100 for all the executions,
while testing multiple values of the other parameters (such as 𝜖 and the number of partitions)

to characterize the overall scalability. The choice of 𝑚𝑖𝑛𝑃𝑡𝑠 is in line with the one made by RP-

DBSCAN authors. A general conception, which is also reflected by some initial tests performed

on the new algorithm, is that the impact of such parameter is indeed minimal if compared to 𝜖.
As for RP-DBSCAN, the approximation parameter was fixed to 𝜌 = 0.01 in all runs, as suggested
by the authors.

4.4.4 Evaluation metrics

In this case, the metric of choice has been the execution time (in seconds) as reported by the

Spark web interface. All the tests were run at least five times so to derive general trends which

do not depend on the specific load factor of the cluster at any given moment; the average and

the standard deviation were used as aggregate values for each series of tests. In addition, due

to the approximation introduced by RP-DBSCAN, a qualitative comparison between the results

produced by the two algorithms was also performed.

4.4.5 Testing environment

The parallel code was tested on the machines of the SmartData@Polito cluster located at Po-

litecnico di Torino, Italy; a description of the available computing facilities can be found on the

laboratory’s website [21]. A specific Yarn queue was dedicated to the execution of the jobs, to

which a total of 100 CPU vcores and 800 GB of main memory were statically assigned. Two

allocation schemes of such dedicated resources have been defined:

70

4.4 – Scalability-related testing

• Configuration #1: this configuration uses 100 executors, each consisting of a single CPU

core and 8 GB of main memory;

• Configuration #2: this configuration uses 50 executors, each consisting of two CPU cores

and 16 GB of main memory.

All tests on the smaller Geolife dataset were performed using the first configuration, while

both configurationswere tested on the largerOpenStreetMap dataset. Note that, on such dataset,

jobs using RP-DBSCAN could not run in the first configuration due tomemory limitations (Yarn

containers fail due to memory shortage). The Spark version is 2.4.0, running on Scala 2.11.12;

the JVM version is 1.8.0_181. For all jobs, the following additional configuration options were

specified in spark-submit:

• The maximum result size (spark.driver.maxResultSize) was set to 0 (unlimited), to

avoid problems related to the size of the results collected by the driver program;

• The object serializer (spark.serializer) was set to use KryoSerializer, which has

better performance with respect to the standard Java serializer;

• The network timeout (spark.network.timeout) was set to 300s, in order to support the

execution of the most complex stages without timeout-related failures.

4.4.6 Qualitative result analysis

Figures 4.10 and 4.11 show the results obtained by running the algorithm on a two-dimensional

version of the Geolife and on the OpenStreetMap datasets respectively. Parameters were set to

𝜖 = 0.1 and 𝜖 = 106 to correspond to a precision of 0.1 degrees along the latitude/longitude

axes, while in both cases 𝑚𝑖𝑛𝑃𝑡𝑠 = 100 was used.
From an exclusively qualitative point of view, it can be noticed that the algorithm effectively

provides a good quality result, marking as outliers all of those points which do not belong

to dense areas. These include, for the most part, points which do not lie within any of the

continents, corresponding to flights or other forms of travel by sea; small groups of observations

recorded in very isolated locations (such as Antartica) are also correctly identified. In addition

to that, the algorithm detects much of the noise that is present in the OpenStreetMap dataset,

71

4 – Experimental results

including a strip of evenly distributed interference that is recorded around the central part of

the globe (described also in the dataset’s documentation).

All in all, these results justify, in our view, the applicability of the proposed algorithm for

the mining of outliers in large datasets in a density-based fashion.

4.4.7 Scalability with respect to 𝜖

A first set of tests was run to compare the performances of the proposed algorithm (in terms of

running time) with those of RP-DBSCAN, fixing 𝑚𝑖𝑛𝑃𝑡𝑠 to 100 and the number of partitions to

the quantity of the HDFS chunks. For both datasets, four values of 𝜖 were chosen in the neigh-

borhood of those used in the original RP-DBSCAN paper (some higher, some lower). Tables 4.3

and 4.4, along with the corresponding Figures 4.12 and 4.13, present the results of the execution

of the new algorithm and of RP-DBSCAN on the two datasets. Some sample statistics were also

computed for both datasets in correspondence of each tested value of 𝜖; they are summarized

in Tables 4.5 and 4.6.

As for the Geolife dataset, no general trend may be derived; depending on the specific 𝜖,
either the new algorithm or RP-DBSCAN happens to be slightly faster than the other. Indeed,

due to the significant skewness, with such selection of parameters most points fall within very

few cells (in the case with 𝜖 = 200, 40% of points are assigned to the most populous one); in a

way, this facilitates the work of RP-DBSCAN (which summarizes points at the cell level), but

instead impacts on the performance of the new algorithm, since these very dense cells happen

to participate in average in several join operations with their neighbors (depending on the

value of 𝜖). We believe that, with a wiser parameter choice (e.g. taking into account domain-

specific considerations), the algorithm performances could scale much better than shown in the

executed tests.

The analysis of the larger OpenStreetMap dataset provides very different results, in which

the new algorithm shows significant performance advantage with respect to RP-DBSCAN for

almost all tested values of the parameter 𝜖, which is more and more evident the lower 𝜖 gets.
Both algorithms show a decreasing running time for increasing values of 𝜖, which is somehow

expected due to the reduction in the number of cells. Moreover, in this case the size of the

densest ones has less impact because, due to the higher uniformity in data distribution, there

72

4.4 – Scalability-related testing

Fi
gu

re
4.
10
.

Re
su
lts

on
th
e
G
eo
lif
e
da
ta
se
t

73

4 – Experimental results

Figure
4.11.

Results
on

the
O
penStreetM

ap
dataset

74

4.4 – Scalability-related testing

Table 4.3. Running times (in seconds) for the Geolife dataset with variable 𝜖

RP-DBSCAN
𝜖 Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev
25 45.40 45.11 47.18 47.93 44.79 46.082 1.387432881
50 44.50 42.82 44.55 42.78 43.70 43.670 0.862960022
100 43.41 39.75 47.75 44.68 44.50 44.018 2.880272557
200 42.95 49.18 50.61 50.90 52.66 49.260 3.738134562

New algorithm
𝜖 Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev
25 54.34 58.59 55.91 59.58 60.00 57.684 2.455041751
50 40.83 43.66 44.46 44.60 41.58 43.026 1.754563099
100 41.85 38.99 38.55 41.50 39.10 39.998 1.692835393
200 51.56 53.72 52.17 52.10 58.23 53.556 2.733958668

Figure 4.12. Performance on the Geolife dataset with variable 𝜖

75

4 – Experimental results

Table 4.4. Running times (in seconds) for the OpenStreetMap dataset with variable 𝜖

RP-DBSCAN
𝜖 Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

250000 4305 4331 4556 4297 4211 4340.0 128.8914272
500000 1806 1870 1910 1780 1836 1840.4 51.40817056
1000000 1148 1145 1126 1152 1076 1129.4 31.47697571
2000000 780 675 748 714 791 741.6 45.10266068

New algorithm (configuration #1)
𝜖 Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

250000 1018 1093 1029 1028 987 1031.0 38.60699418
500000 863 898 830 905 850 869.2 31.83865575
1000000 753 739 726 745 745 741.6 10.03992032
2000000 723 730 744 765 738 740.0 16.07793519

New algorithm (configuration #2)
𝜖 Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

250000 1029 951 947 971 970 973.6 32.81463088
500000 773 773 834 767 798 789.0 27.84780063
1000000 768 707 765 758 737 747.0 25.42636427
2000000 672 715 699 674 674 686.8 19.30543965

76

4.4 – Scalability-related testing

Figure 4.13. Performance on the OpenStreetMap dataset with variable 𝜖

77

4 – Experimental results

Table 4.5. Statistics for the Geolife dataset

Category Parameter 𝜖 = 25 𝜖 = 50 𝜖 = 100 𝜖 = 200

Points

Total
24876978 24876978 24876978 24876978
(100%) (100%) (100%) (100%)

Core
24844886 24858744 24867347 24873503
(99.87%) (99.92%) (99.96%) (99.99%)

Border
6440 3405 2881 977
(0.03%) (0.02%) (0.01%) (<0.01%)

Outlier
25652 14829 6750 2498
(0.10%) (0.06%) (0.03%) (0.01%)

Cells

Total
17510 7563 3230 1685
(100%) (100%) (100%) (100%)

Dense
2941 1613 798 449

(16.80%) (21.33%) (24.71%) (26.65%)

Core
5434 2650 1044 605

(31.03%) (35.04%) (32.32%) (35.90%)

Other
9135 3300 1388 631

(52.17%) (43.63%) (42.97%) (37.45%)

Points per cell
Max 3445913 3671480 6236325 9995454
Min 1 1 1 1
Avg 1420.730 3289.300 7701.851 14763.785

Neighbors per cell
Max 45 26 31 15
Min 1 1 1 1
Avg 19.128 13.173 9.060 9.540

are very few of them that (in average) need to take part in a join operation (i.e. neighbors of

dense cells are very likely to be dense as well). The new algorithm running on configuration

#2 achieves small advantages over the one running on configuration #1, possibly due to the

deployment of couple of executors on the same physical machines, which to a certain extent

improves data locality while not affecting much job parallelism.

All in all, the proposed algorithm shows good scalability in terms of parameter selection,

especially for large datasets, allowing to mine with ease anomalies in a density-based fashion

for wide ranges of input parameters.

4.4.8 Scalability with respect to the number of points

A second set of tests was designed to characterize the scalability of the two algorithms with

respect to the number of points in the input data. To this purpose, random samples were

78

4.4 – Scalability-related testing

Table 4.6. Statistics for the OpenStreetMap dataset

Category Parameter 𝜖 = 250000 𝜖 = 500000 𝜖 = 1000000 𝜖 = 2000000

Points

Total
2770233904 2770233904 2770233904 2770233904

(100%) (100%) (100%) (100%)

Core
2762662319 2767287625 2768896461 2769656678
(99.73%) (99.89%) (99.95%) (99.98%)

Border
2227934 747881 253302 70840
(0.08%) (0.03%) (0.01%) (<0.01%)

Outlier
5343651 2198398 1084141 506386
(0.19%) (0.08%) (0.04%) (0.02%)

Cells

Total
3660554 1695943 835796 445231
(100%) (100%) (100%) (100%)

Dense
1531376 779818 357612 152947
(41.83%) (45.98%) (42.79%) (34.35%)

Core
1010148 348925 125354 53748
(27.60%) (20.57%) (15.00%) (12.07%)

Other
1119030 567200 352830 238536
(30.57%) (33.45%) (42.21%) (53.58%)

Points per cell
Max 2725412 3320727 5918794 13568291
Min 1 1 1 1
Avg 756.780 1633.448 3314.486 6222.015

Neighbors per cell
Max 21 21 21 21
Min 1 1 1 1
Avg 10.580 10.354 9.846 10.344

extracted at 1%, 25%, 50% and 75% of the size of the original datasets and used to run the

two algorithms. The parameters were set to 𝜖 = 100,𝑚𝑖𝑛𝑃𝑡𝑠 = 100 for the Geolife samples,

𝜖 = 1000000,𝑚𝑖𝑛𝑃𝑡𝑠 = 100 for the OpenStreetMap samples. Results are shown in Tables 4.7 and

4.8 and in the corresponding figures 4.14 and 4.15.

As in the previous set of tests, performances on theGeolife dataset are very variable depend-

ing on the sample size; in the two extremes, the new algorithm performs better on average,

while in the other cases RP-DBSCAN results to be the fastest between the two. We believe this

is due to the high skewness of the dataset, which is statistically preserved through the sampling

operation.

Results are again much more promising on the larger OpenStreetMap dataset, in which the

new algorithm runs consistently faster than RP-DBSCAN for each value of the sample fraction.

Furthermore, it also appears to scale much better, showing an approximately linear evolution

of the running time with respect to the sample size. A further small improvement is achievable

79

4 – Experimental results

Table 4.7. Running times (in seconds) for the Geolife dataset with variable sample size

RP-DBSCAN
Sample size Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

1% 22.99 21.84 19.13 19.63 19.55 20.628 1.691898342
25% 24.42 24.48 22.95 24.32 23.83 24 0.640429543
50% 32.63 31.58 30.75 31.7 32.69 31.87 0.808919032
75% 36.51 34.31 38.76 34.7 36.97 36.25 1.80639143
100% 43.41 39.75 47.75 44.68 44.5 44.018 2.880272557

New algorithm
Sample size Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

1% 19.58 18.58 17.72 18.69 19.88 18.89 0.86040688
25% 28.44 29.79 29.27 29.71 27.64 28.97 0.916487861
50% 34.77 34.91 33.83 34.26 33.68 34.29 0.54758561
75% 38.17 37.57 37.15 37.33 39.31 37.906 0.874231091
100% 41.85 38.99 38.55 41.5 39.1 39.998 1.549603175

Figure 4.14. Performance on the Geolife dataset with variable sample size

80

4.4 – Scalability-related testing

Table 4.8. Running times (in seconds) for the OpenStreetMap dataset with variable sample size

RP-DBSCAN
Sample size Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

1% 202 219 214 221 218 214.8 7.596051606
25% 752 713 694 685 723 713.4 26.29258451
50% 847 792 891 787 783 820.0 47.46577715
75% 1022 1121 1027 1048 1132 1070.0 52.63553932
100% 1148 1145 1126 1152 1076 1129.4 31.47697571

New algorithm (configuration #1)
Sample size Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

1% 119 105 114 105 108 110.2 6.140032573
25% 235 248 248 258 242 246.2 8.497058314
50% 316 309 338 346 334 328.6 15.51773179
75% 497 545 523 505 563 526.6 27.47362371
100% 753 739 726 745 745 741.6 10.03992032

New algorithm (configuration #2)
Sample size Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

1% 102 108 109 101 103 104.6 3.646916506
25% 204 206 204 201 210 205.0 3.31662479
50% 293 307 302 297 311 302.0 7.280109889
75% 435 447 396 466 429 434.6 25.79341001
100% 768 707 765 758 737 747.0 25.42636427

81

4 – Experimental results

Figure 4.15. Performance on the OpenStreetMap dataset with variable sample size

82

4.4 – Scalability-related testing

by running the new algorithm using configuration #2, justified by the same reasons as above.

To sum up, in this case as well the algorithm shows good scalability in relation to the number

of data points in the input set; the larger the input dataset is, the more consistent the advantage

the algorithm achieves over RP-DBSCAN is.

4.4.9 Scalability with respect to the number of partitions

The final set of tests was aimed at the characterization of the scalability of the new algorithm

with respect to the number of partitions. In this case, the assumption to test is that, by dividing

the input data in smaller chunks, the overall running time decreases due to the faster processing

of such partitions (if the recombination cost does not improve significantly). All tests were run

using as parameters 𝑚𝑖𝑛𝑃𝑡𝑠 = 100 and 𝜖 = 100 (for Geolife) or 𝜖 = 1000000 (for OpenStreetMap),

while varying the value of the analyzed parameter by means of the appropriate switches for

the two algorithms.

Again, results on the Geolife dataset do not seem to show any relevant trend in terms of the

evolution of the running time with respect to the number of partitions for neither of the two

tested algorithms. Due to the significant skewness, the processing of the partitions containing

very dense cells still accounts for the most predominant portion of the running time.

A more interesting trend for the two algorithms can be derived for the larger OpenStreetMap

dataset. Indeed, the increase in the number of partitions seems to have a completely opposite

effect on the two algorithms: while the new one shows some performance improvement, the

additional fragmentation hampers RP-DBSCAN, whose running time increases almost linearly.

For the new algorithm, a reduction of more than 20% (in the case of configuration #2, on which

as before it performs slightly better than configuration #1) can be registered when the quantity

of chunks is quadrupled (from 500 to 2000), while in the same range the running time for RP-

DBSCANmore than doubles. Further splitting of the input data does not appear to provide any

additional benefit to the new algorithm, at least for the tested configurations.

In the end, data partitioning appears to be a very effective technique to optimize the perfor-

mance of the new algorithm, with speedups of up to five times with respect to RP-DBSCAN’s

using the same number of partitions.

83

4 – Experimental results

Table 4.9. Running times (in seconds) for the Geolife dataset with variable number of partitions

RP-DBSCAN
Partitions Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

6 43.41 39.75 47.75 44.68 44.50 44.018 2.880272557
12 45.85 49.91 51.69 57.40 43.66 49.702 5.352529309
18 47.67 40.85 50.59 42.14 41.34 44.518 4.359274022
24 52.94 42.36 54.88 49.32 50.45 49.990 4.782572530
30 43.41 45.35 41.46 44.33 48.30 44.570 2.529654127

New algorithm
Partitions Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

6 41.85 38.99 38.55 41.50 39.10 39.998 1.549603175
12 41.28 44.53 41.33 42.19 39.34 41.734 1.879236547
18 35.92 35.39 39.23 38.80 40.93 38.054 2.337825913
24 41.84 38.79 40.47 34.63 39.00 38.946 2.708916758
30 44.52 39.85 38.41 42.16 42.40 41.468 2.378627756

Figure 4.16. Performance on the Geolife dataset with variable number of partitions

84

4.4 – Scalability-related testing

Table 4.10. Running times (in seconds) for theOpenStreetMap dataset with variable
number of partitions

RP-DBSCAN
Partitions Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

500 1223 1189 1267 1203 1178 1212.0 35.04283094
1000 1943 1978 1822 1860 1955 1911.6 67.02462234
1500 2327 2281 2355 2375 2361 2339.8 37.21827508
2000 2884 2896 2857 2972 2885 2898.8 43.36703817

New algorithm (configuration #1)
Partitions Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

500 770 771 772 796 731 768.0 23.35594143
1000 686 683 671 660 696 679.2 13.95349419
1500 641 616 654 617 645 634.6 17.18429516
2000 660 618 665 632 593 633.6 29.90484911

New algorithm (configuration #2)
Partitions Run 1 Run 2 Run 3 Run 4 Run 5 Mean Stddev

500 711 724 764 704 731 726.8 23.33880888
1000 556 579 513 640 611 579.8 49.05812879
1500 593 517 601 605 612 585.6 38.95895276
2000 560 608 554 573 512 561.4 34.65256123

85

4 – Experimental results

Figure 4.17. Performance on the OpenStreetMap dataset with variable number of partitions

86

4.4 – Scalability-related testing

4.4.10 RP-DBSCAN’s approximation quality

Since the new algorithm allows to exactly retrieve outliers according to the DBSCAN definition,

as a final consideration it is possible to make some superficial qualitative analysis of the results

produced by a 𝜌-approximate algorithm such as RP-DBSCAN.

In Table 4.11, the outliers detected by RP-DBSCAN on the Geolife dataset for varying values

of the parameter 𝜖 are split in three categories: actual outliers, false positives (i.e. data points

marked as outliers) and false negatives (i.e. outliersmarked as data points). As a general trend, it

can be stated that 𝜌-approximate algorithms appear to have the tendency to identify a superset

of the actual outliers as such. Indeed, in all cases except for the first, the algorithm detects

all the DBSCAN outliers, plus a consistent proportion of false positives (around 15-20% of the

output size). In the case with 𝜖 = 25, a small number of false negative is also present.

Similar considerationsmay be given also for the largerOpenStreetMap dataset, whose results

are reported in Table 4.12. Again, RP-DBSCAN shows a tendency to overestimate the set of

outliers in the dataset by quite a margin of false positives; actual outliers are mined for the

most part (a very reduced number of false negatives are present in all runs).

Table 4.11. RP-DBSCAN detection accuracy on the Geolife dataset

𝜖 New RP-DBSCAN Correct False positives False negatives
25 25652 30297 25632 4665 20
50 14829 17143 14829 2314 0
100 6750 8536 6750 1786 0
200 2498 3096 2498 598 0

Table 4.12. RP-DBSCAN detection accuracy for RP-DBSCAN on the OpenStreetMap dataset

𝜖 New RP-DBSCAN Correct False positives False negatives
250000 5343651 6594305 5343151 1251154 500
500000 2198398 2612656 2198224 414432 174
1000000 1084141 1225326 1083932 141394 209
2000000 506386 547805 505966 41839 420

87

88

Chapter 5

Conclusions

This work had the objective to introduce an algorithm to detect outliers in very large datasets,

characterized by a strict bound on worst-time complexity, a good detection quality and a good

scalability with respect to its parameters. In the end, all such goals may be considered reached.

With respect to the other techniques, the new algorithm provides a very high result quality,

with adjusted Rand scores of up to 0.95. Moreover, it scales better than other parallel (yet ap-

proximated) DBSCAN solutions (with speedups of up to 450% in some cases), while maintaining

the accuracy of the results.

We believe that this algorithm could perform reasonably well in a wide range of application

domains in which the concepts of distance among points and density are well-defined. One

very relevant use case is represented, for example, by location data.

Upon the basic structure of the algorithm presented in this work, the applicability of several

optimizations may surely be investigated in future ones. In particular, we acknowledge that the

following points may be relevant branches of further development:

• The usage of some kind of cell-level spatial indices to improve the efficiency of range

query operations;

• The implementation of a “clever” partitioning scheme that is able to achieve better load

balancing among executors.

89

90

Bibliography

[1] Apache Foundation. Apache Spark - Unified Analytics Engine for Big Data.

https://spark.apache.org/. [Online; accessed 03/01/2020].

[2] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. LOF: Identify-

ing Density-Based Local Outliers. In Proceedings of the 2000 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’00, page 93–104, New York, NY, USA, 2000.

Association for Computing Machinery.

[3] I. Cordova and T. Moh. DBSCAN on Resilient Distributed Datasets. In 2015 International

Conference on High Performance Computing Simulation (HPCS), pages 531–540, July 2015.

[4] Bi-Ru Dai and I-Chang Lin. Efficient Map/Reduce-Based DBSCAN Algorithm with Op-

timized Data Partition. In Proceedings of the 2012 IEEE Fifth International Conference on

Cloud Computing, CLOUD ’12, page 59–66, USA, 2012. IEEE Computer Society.

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm

for discovering clusters a density-based algorithm for discovering clusters in large spatial

databases with noise. In Proceedings of the Second International Conference on Knowledge

Discovery and Data Mining, KDD’96, page 226–231. AAAI Press, 1996.

[6] Junhao Gan and Yufei Tao. DBSCAN Revisited: Mis-Claim, Un-Fixability, and Approxi-

mation. In Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’15, page 519–530, New York, NY, USA, 2015. Association for Computing

Machinery.

[7] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An Efficient Clustering Algo-

rithm for Large Databases. SIGMOD Records, 27(2):73–84, June 1998.

[8] Ade Gunawan. A Faster Algorithm for DBSCAN. Master’s thesis, Technische Universiteit

Eindhoven, March 2013.

91

5 – Bibliography

[9] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan. MR-DBSCAN:

a scalable MapReduce-based DBSCAN algorithm for heavily skewed data. Frontiers of

Computer Science, 8, February 2014.

[10] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of Classification,

2:193–218, 1985.

[11] George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar. Chameleon: Hierarchical Clus-

tering Using Dynamic Modeling. Computer, 32(8):68–75, August 1999.

[12] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-based outliers in

large datasets. In Proceedings of the 24rd International Conference on Very Large Data Bases,

VLDB ’98, page 392–403, San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[13] Bing Liu. A fast density-based clustering algorithm for large databases. In 2006 Interna-

tional Conference on Machine Learning and Cybernetics, pages 996–1000, August 2006.

[14] F. T. Liu, K. M. Ting, and Z. Zhou. Isolation Forest. In 2008 Eighth IEEE International

Conference on Data Mining, pages 413–422, Dec 2008.

[15] Alessandro Lulli, Matteo Dell’Amico, Pietro Michiardi, and Laura Ricci. NG-DBSCAN:

Scalable Density-Based Clustering for Arbitrary Data. Proc. VLDB Endow., 10(3):157–168,

November 2016.

[16] Shaaban Mahran and Khaled Mahar. Using grid for accelerating density-based clustering.

In 2008 8th IEEE International Conference on Computer and Information Technology, pages

35–40, July 2008.

[17] OpenStreetMap. Bulk GPS point data. https://blog.openstreetmap.org/2012/04/01/bulk-

gps-point-data/. [Online; accessed 03/29/2020].

[18] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Andreas Müller, Joel Nothman, Gilles Louppe,

Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos,

David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-

learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[19] Peter Rousseeuw and Katrien Driessen. A Fast Algorithm for the Minimum Covariance

Determinant Estimator. Technometrics, 41:212–223, August 1999.

[20] Bernhard Schölkopf, Robert Williamson, Alex Smola, John Shawe-Taylor, and John Platt.

92

5 – Bibliography

Support vector method for novelty detection. In Proceedings of the 12th International Con-

ference on Neural Information Processing Systems, NIPS’99, page 582–588, Cambridge, MA,

USA, 1999. MIT Press.

[21] SmartData@Polito. Computing facilities. https://smartdata.polito.it/computing-

facilities/. [Online; accessed 04/16/2020].

[22] Hwanjun Song and Jae-Gil Lee. RP-DBSCAN: A Superfast Parallel DBSCAN Algorithm

Based on Random Partitioning. In Proceedings of the 2018 International Conference on Man-

agement of Data, SIGMOD ’18, page 1173–1187, New York, NY, USA, 2018. Association for

Computing Machinery.

[23] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to DataMining. Always

learning. Pearson, 2014.

[24] Cheng-Fa Tsai and Chien-Tsung Wu. GF-DBSCAN: A New Efficient and Effective Data

Clustering Technique for Large Databases. In Proceedings of the 9th WSEAS Interna-

tional Conference on Multimedia Systems and Signal Processing, MUSP’09, page 231–236,

Stevens Point, Wisconsin, USA, 2009. World Scientific and Engineering Academy and So-

ciety (WSEAS).

[25] Xiaowei Xu, Jochen Jäger, and Hans-Peter Kriegel. A Fast Parallel Clustering Algorithm

for Large Spatial Databases. Data Mining and Knowledge Discovery, 3(3):263–290, Septem-

ber 1999.

[26] Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. Geolife GPS trajectory dataset,

Geolife GPS trajectories 1.3 edition, August 2012.

93

