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Abstract

This Thesis describes a custom-made cavity quantum electrodynamics (QED) toolbox for
a quantum dot (QD) emitter in an optical micropillar. The toolbox has been developed
for MATLAB® and it allows using either a full cavity-QED model or an effective adiabatic
Hamiltonian to work only with the QD subspace. The toolbox simulates output intensities,
first- and second-order correlations, and flux spectral densities both in continuous and pulsed
wave regime. The results show that the adiabatic model reduces the computational cost in
comparison to the full model, and allows performing accurate quantum optics simulations
in the weak coupling regime between the QD and the cavity. For the approximation
to yield satisfactory results, the cavity must decay at a faster timescale than the other
subsystems, including the QD dynamics and the incoming field: the Rabi frequency of the
QD must be much slower than the cavity damping rate, whereas, for the incoming field,
its evolution must be slow compared to the photon lifetime in the cavity. This work also
finds applications in the more general context of excited dipoles in 1-D photonic crystal
waveguides and nanocavities, and it can be generalized to more complex and realistic
systems. This includes the description of anisotropic neutral quantum dots, described
by 3-level systems, or charged quantum dots with a spin degree of freedom, modeled by
4-level systems, taking into account the polarization degree of freedom for the cavity and
input/output fields.
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Chapter 1

Introduction

Quantum technology is based on the development and control of systems governed by the
laws of quantum physics, while conventional technology can be understood in the context
of classical mechanics. The first practical reason that drives quantum technology is the
miniaturization of devices down to the nanometer scale [1], where Planck’s constant becomes
comparable with the action scales. The second reason, more fundamental, is that quantum
mechanics may improve the performances of the classical picture. In the first quantum
revolution, quantum mechanics was used to model and understand something that already
existed. It was possible to explain the different behavior of metals and semiconductors, but
not to design and build “artificial atoms”. In the second quantum revolution, we are not
passive observers anymore. It is possible to generate quantum states of matter and energy
that would not likely exist elsewhere.

1.1 Photons and Quantum dots
Photons are of particular interest being the smallest units of energy of the quantized
electromagnetic field and it is possible to manipulate them separately. They propagate at
the speed of light, hence they are ideal as flying qubits for long-range information transfer.
The fundamental difference, compared to a classical bit of information, is that a qubit
can be prepared in a coherent superposition of states. Photons are promising also to
interconnect different physical systems. The nodes of the quantum network are interrelated
by quantum channels and at each node, the information is processed [2]. To exploit the
quantum mechanical properties of photons, bright, efficient, and integrable quantum light
sources are needed, as well as efficient detectors and two-photon gates. Superconducting
nanowires detectors already show efficiencies close to unity in a wide spectral range and
high spatial resolution [3]. Previously single-photon based technologies were based on
heralded single-photon techniques, based on probabilistic generation in non-linear crystals.
However, one problem of these devices is the source brightness scaling linearly with the
multi-photon pairs probability. Possible solutions include neutral atoms and ions in traps,
solid-state emitters such as quantum dots and defects and molecules, without excluding
hybrid systems to optimize wavelength and bandwidth [4]. Still, currently available sources
have intrinsically limited efficiencies of a few percents.
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Introduction

When light of a certain frequency is directed onto a semiconductor, an electron-hole pair may
be generated. The latter is bound by the Coulomb interaction and it is called an exciton.
Moreover, if the exciton is confined in a QD, then the exciton acts like an artificial atom
with complex spectra. It is possible to obtain bound excitons also by injecting electrons and
holes into a quantum dot. QD excitons act as a bridge between quantum electronics and
the world of quantum optics, paving the way to quantum optoelectronics. Much attention
in this field has been focused on the development of a single-photon source that generates
pulses of light, with each pulse containing one and only one photon, starting from almost
twenty years ago [4]. Besides, the spin of a single charge carrier in the QD can be used as a
stationary qubit and can be optically manipulated [5]. Finally, QDs are compatible with the
III-V semiconductor nanofabrication techniques. More specifically, it is possible to couple
QDs to a variety of photonic structures, such as waveguides, microlenses, microcavities, etc.
for large scale applications [4].

1.2 Internship Presentation & State of The Art
This Master’s thesis has been realized in the group of Prof. Pascale Senellart at Centre for
Nanoscience and Nanotechnology (C2N/CNRS) under the supervision of Dr. Loïc Lanco.
The group activity is focused on the development of quantum devices based on single QDs
in cavity quantum electrodynamics (CQED) systems. The research team developed a new
technology in 2008, called in-situ optical lithography [6], which allows for the deterministic
and scalable fabrication of CQED devices by a single QD coupled to a micropillar cavity.
Through this technique, it is possible to work both in the weak and strong coupling regimes
[6; 7]. Afterward, an ultrabright source of entangled photon pairs was fabricated in 2010
[8]. In 2013, bright source QD-micropillar devices were realized, with indistinguishability
ranging from 70% to 90% [9]. In 2016 a brightness 20 times brighter than any source
of equal quality [10] was obtained with near-unity indistinguishability. Nowadays, a key
challenge is the source operation wavelength variability [11] because of inhomogeneities
during the growth process across the wafer. Another quest is controlling the temporal
profile of a single photon wavepacket, since it requires control of the fine-structure splitting
and the axes’ orientation between the cavity and the neutral QD.

My internship was expected to be experimental, however, because of the Covid-19
lockdown, I worked on the modeling and simulation of CQED open systems. For this reason,
I have chosen here to enter more in the details of quantum system simulations rather than
the devices themselves. The choice of the quantum dot in the micropillar will be discussed
more thoroughly in the next chapter, in comparison with other quantum emitter systems.
In quantum optics, it is often required to simulate the physical properties of a system
coupled to a reservoir. The system of interest has in general much fewer degrees of freedom
compared to the environment, e.g. phonons, photons, nuclear spins, etc. Quantum dissi-
pative systems in general require numerical integrations to be solved, but they are still a
delicate task. For an arbitrary system, there exist path-integral expressions [12] for density
matrix evolution, but they suffer from instability at long times. In the Schrödinger picture
approach, a solution is to integrate the Master equation for the density matrix [13] or by
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1.3 – Outline of the Thesis

using quantum Monte Carlo simulations [14].
If a system is described by an n dimensional Hilbert space, the number of matrix elements is
n2 for Schrödinger equation and n4 for the density matrix equations. This polynomial com-
putational memory is further reduced by considering that many of the previous coefficients
are zero, hence making viable the integration of systems of 102 : 103 equations numerically
by using sparse matrices, within a few hours on an average personal computer. Moreover,
when CQED simulations require few photons and atoms, it is possible to truncate the Fock
space basis for the light field modes with satisfactory results. Even so, sometimes it may be
required to increase the dimension of the Fock space to better reproduce higher photon
number experiments, resulting in much longer simulation times.
A possible way to overcome this problem is offered in quantum systems composed of several
interacting subsystems [15]. One may be interested in the dynamics of one subsystem,
getting rid of the others by making some approximations. This operation is called adiabatic
elimination and it offers an accurate model as long as the selected subsystem has much
slower dissipation rates than the others, to which it is weakly coupled. In the specific case
of a cavity interacting with an electromagnetic field, the total Hilbert space is given by
the tensor product of the spaces of the two individual systems, increasing the number of
variables. This is where adiabatic elimination may become a useful tool to simplify the
problem numerically or to get a better physical understanding of some phenomenon, or
both. Indeed, by adiabatic elimination one works only with the QD sub-space, taking the
cavity sub-space into account by an effective Hamiltonian.
The aim of my internship was the implementation of adiabatic elimination of the light
modes Fock space in high-loss cavities for several quantum optics simulations, concerning
mainly the simplest model of a QD as ground and excited state. It was also expected to
investigate the validity and differences of the adiabatic elimination relating to the “full
model” and literature. Moreover, my work was to be included in a new quantum toolbox
to simulate CQED multi-level systems.

1.3 Outline of the Thesis
In Chapter 2 the QD is introduced as a simple ground and excited state inside a micropillar,
first as a closed quantum system by recalling the Jaynes-Cummings Hamiltonian. In the
following, to treat the cavity QED as an open quantum system, the input-output formalism
and Lindblad Master equation are reviewed. In Chapter 3 the custom made cavity-QED
Quantum Toolbox is presented, showing some simulations regarding output intensities,
first- and second-order correlations, and time-frequency analysis. Some results are related
to previous ones in literature for referring theory to past experiments. The adiabatic
elimination is presented in Chapter 4, where the key approximations from the full model
are discussed, followed by possible criteria for its domain of validity. Finally, generalizations
of this work are suggested, with applications on more complex CQED models.

9



10



Chapter 2

Quantum Dots in Micropillar
Cavities

This chapter aims to develop a quantum mechanical description of a neutral quantum dot
(QD) in a micropillar cavity. The most important approximations will be outlined, at the
end of which the Hamiltonian will fully describe the closed quantum system evolution.
Dissipation and decoherence will be briefly mentioned in the following section. They will
be addressed more thoroughly at the end of this chapter, focused on the system coupling
with the environment.

Why Cavity-QED with Quantum Dots? A single-photon (SP) source is necessary
to perform quantum communication. It will be shown why optical microcavities are studied
nowadays for the realization of a SP source. For that purpose, it is important to briefly
review the main properties that an ideal SP source should satisfy. They are presented in
figure 2.1, where each slot corresponds to a time bin.
The first row (a) represents a source that emits identical single-photon wavepackets at each
excitation pulse. The following rows represent deviations from the perfect situation when
the source lacks one or more properties that label the corresponding row. For instance, in
(b), when an emitted photon is lacking given an excitation, then the brightness is lower
than 100%, lowering the overall efficiency. Another important property is the SP purity (c),
which is related to the probability of having a second photon in the emitted wavepacket.
This is a flaw for instance in quantum key distribution since secure communications would
require only a stream of single photons to avoid photon-number splitting attack [16]. The
purity is measured by a Hanbury Brown and Twiss (HBT) experiment, which evaluates
the second-order correlation function of a given source. For a pure SP source g(2)(0) = 0,
whereas when g(2)(0) > 0 there is a non-zero probability to have at least a second emitted
photon after the excitation pulse.
As for classical fields, the coherence of a SP source describes the light phase stability and
in (d) it is represented by a phase jump in the wavepacket. The total coherence time T2 is
given by

1
T2

= 1
2T1

+ 1
T ∗

2
, (2.1)
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Quantum Dots in Micropillar Cavities

where T1 is the transition radiative lifetime and T ∗
2 is the pure dephasing time, i.e. a loss of

coherence due to the interaction with the environment without recombination. Equivalently,
equation (2.1) can be written for the total dephasing rate γ as

γ = γsp
2 + γ∗, (2.2)

being γsp the damping rate of the population due to spontaneous emission in the external
environment and γ∗ the damping rate of the phase amplitude.
When the rate of pure dephasing is low enough in equation (2.1), then the so-called Fourier
transform-limit is obtained:

T2

2T1
→ 1 . (2.3)

This limit is a necessary condition for photons indistinguishability (e), which occurs

Figure 2.1: (a) An ideal source with identical, single photons generated per excitation
pulse. (b) When the brightness is lower than unity, sometimes no photon emission occurs.
(c) As a second identical photon is present in the wavepacket, the purity is degraded. (d)
Coherence loss for phase instability due to T2 ≤ 2T1. (e) Indistinguishability V < 1 because
of decoherence and spectral wandering.

when two photons have the same spectral bandwidth, pulse width, polarization, carrier
frequency, and mode profile. In such a case, when they impinge at the same time at the
two ports of a beamsplitter (BS), quantum mechanics predicts they both will leave the BS
from the same output port. This phenomenon was first measured by Hong-Ou-Mandel.
Spectral wandering is another process contributing to distinguishability because of the
environmental fluctuations. It is characterized by a shift of the photon wavelength, spoiling
indistinguishability which is important for low-error quantum computation.
The main limitation for brightness is the refractive index mismatch between the QD layer

12



Quantum Dots in Micropillar Cavities

and air (n ≈ 3.5 for GaAs), confining most of the light inside the semiconductor. It is
possible to improve the extraction efficiency by inserting the QD between two Distributed
Bragg Reflectors (DBRs), realizing a 3-D microcavity to redirect spontaneous emission
toward the surface. The brightness can be defined as [4]

brightness = p× η, (2.4)

where η is the extraction efficiency and, in a two-level system, p is the occupation probability
for the excited state

η = ηout × β = ηout ×
Γm

Γm + γsp
. (2.5)

Here ηout is the output extraction efficiency and the spontaneous emission coupling factor
β measures the fraction of photons emitted into the cavity mode Γm, considering also the
other radiative modes γsp. The increase of spontaneous emission in the mode of interest can
be achieved through the Purcell effect, in the domain of cavity quantum electrodynamics
(CQED) in the weak coupling regime [17]. This is employed for instance in micropillars,
whose first lens brightness nowadays is about 14% with 91% indistinguishability [11].
Because of the Purcell-enhanced emission in the cavity, the inverse of the QD lifetime is
now given by 1/T1 = Γtot ≡ Γm + γsp, with Γtot the total emission rate taking into account
both emissions into and outside the cavity mode. It also improves the ratio T2/ (2T1), since
the coherence time T2 is now given by

1
T2

= Γtot

2 + γ∗. (2.6)

A simple schematic of the micropillar used at C2N is shown in figure 2.2. The InGaAs is at

Figure 2.2: In green, the QD sandwiched between two Bragg mirrors of the micropillar,
standing on the substrate.

the center of a cavity with a cylindrical shape. The GaAs spacer is sandwiched between the
top and bottom AlGaAs/GaAs DBRs. The latter confine light along the vertical direction,
while total internal reflection guarantees lateral confinement.

13



Quantum Dots in Micropillar Cavities

2.1 The Quantum Dot and Pseudo-spin Systems
Quantum dots are structures confining charge carriers in regions of space over the nanometer
scale. In general direct-bandgap semiconductors are used for optical applications to have
direct transitions in reciprocal space. The aim here is to show why a QD can be seen as
an artificial atom, interacting with an electromagnetic field in the dipole approximation.
The analysis will be restricted to two energy levels, to be described in terms of Pauli spin
algebra.
In self-assembled QDs, quantum confinement generates localized states, having shells in the
conduction and valence band with discrete energy levels. These quantization effects become
relevant when the confinement dimensions are comparable with De Broglie wavelength
of the charge carrier. At low temperatures, λDB is of the order of 10÷ 100 nm [18]. For
the QD fabricated at C2N/CNRS, a Transmission Electron Microscopy (TEM) image and
the energy levels are shown in figure 2.3. The InGaAs QD is separated by the GaAs bulk
by an InAs wetting layer, originated by the growth process. The energy levels have been
computed in a non-interacting charge picture; electrons and holes fill the shells according
to the Pauli exclusion principle.
The fundamental state is when the valence band is filled and the conduction band is empty.
Among the possible excited states, the neutral exciton will be of interest, with an electron
in the conduction band and a hole in the valence band. For the CQED simulation toolbox,
without loss of generality, it is assumed that the interband transition between the two
lowest energy levels is dipole allowed.

Figure 2.3: (a) Transmission Electron Microscope image of a single InGaAs QD embedded
into GaAs. Image measured by A. Lemaitre and C. Gomez at C2N. (b) Schematics of
energy levels of non-interacting charge in the InGaAs QD, including the InAs wetting
material and GaAs bulk. The lowest states in energy are filled according to the Pauli
exclusion principle.

For the quantum mechanical description, the unexcited state of the QD is the state
|gê, whereas the exciton is |eê, according to Dirac notation. At this point it is favorable to
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2.2 – The Micropillar as a Cavity-QED

define the so-called atomic transition operators [16]

σ̂+ ≡ |eêég| , σ̂− ≡ |gêée| = σ̂†
+, (2.7)

being σ̂†
+ the hermitian conjugate of σ̂+. The projection operator in the excited state is

|eêée| = σ̂+σ̂−. (2.8)

The zero energy is referred to the ground state |gê, thus the free atomic Hamiltonian is

Ĥd = (Ee − Eg)σ̂+σ̂− = }ωdσ̂+σ̂−, (2.9)

Throughout this manuscript, “quantum dot” and “two-level atom” will be used interchange-
ably, since only the two-level system will be addressed.

2.2 The Micropillar as a Cavity-QED
In this section a model of the micropillar will be shown based on common CQED parameters,
that will be reviewed shortly based on [17]. The same arguments can be applied to different
micro-optical cavities, to be possibly implemented in the Cavity-QED Quantum Toolbox.
It is assumed that the atom in the cavity is a two-level system with fixed energies and that
it can radiatively decay, emitting a photon in the cavity, or absorb one from the latter. The
parameters that describe the interaction between the atom, that will represent our QD,
and the cavity field (see figure 2.4, left) are:

• the photon decay rate of the cavity (damping rate) κ, given by κ = ω/Q, where ω is
the angular frequency and Q is the quality factor. Higher quality factors will reduce
the cavity losses.

• the coupling strength g between the atom and the electromagnetic field;

• the dephasing rate γ, taking into account only the interaction with the external
environment, i.e. emission outside the cavity mode and pure dephasing : γ = γsp/2+γ∗.

Before commenting more on the previous parameters, for the following discussion, it is
important to distinguish between two possible regimes of the atom interacting with the
cavity. In the so-called strong coupling limit g º (κ, γ) the coupling strength is much
greater than the highest value between the cavity decay rate κ and the non-resonant decay
rate γ. In this regime, the atom strongly interacts with the cavity, and a reversible process
occurs. Indeed, the losses are so low that the emitted photon from the atom instead of
escaping from the cavity, it is readily absorbed by the atom. Viceversa is the weak coupling
limit, g ¹ (κ, γ): it describes an irreversible process, as the emitted photon is promptly
lost and no re-absorption can occur.
As mentioned before, in this manuscript the weak coupling regime will be of interest because
of the Purcell effect, to increase spontaneous emission in the mode of interest. Before
describing how this phenomenon affects the micropillar, it is crucial to outline the coupling
strength g. Differently from the case when a two-level atom interacts with a resonant light
field originating from an external source, here there is no external source that gives the
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Figure 2.4: (Left) A two-level atom is in a resonant cavity. The cavity parameters are g,
κ, γ, and V . They are respectively the atom-cavity coupling, the photon decay rate from
the cavity, the dephasing rate, and the modal volume. (Right) Micropillar with QD and
corresponding cavity parameters.

field strength.
In the weak coupling regime, since the effect of the cavity is relatively small, the atom-cavity
interaction can be modeled by perturbation theory. Distinctively from the free space case,
the emission rate in the cavity can be tuned since the cavity changes the photon number
density of states that appears in Fermi’s golden rule. By considering an atom coupled
resonantly to a single mode of a high-Q cavity, it is found that the ratio between the cavity
emission rate Γm and the one in a homogeneous medium γsp, is

FP ≡
Γm

γsp
= 4g2

κγsp
. (2.10)

In the previous equation, the Purcell factor FP has been defined and it emerges that
high-quality factor and low mode volume are required to get a strong emission rate in the
cavity mode. By introducing the Purcell factor in equation (2.5), one gets

β = FP

FP + 1 . (2.11)

So as FP º 1, the coupling factor β approaches unity, increasing the brightness of the
optical cavity.

The micropillar cavity In the micropillar (figure 2.4, right) g describes the time scales
at which energy can be coherently exchanged between the cavity field and the exciton. The
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dephasing rate is γ = γsp/2 + γ∗. It models the rate at which the QD leaks information in
the external (i.e. not including the cavity) environment. The total cavity damping rate is
κ = κtop + κside + κbottom, being κtop and κbottom accounting for the photons escaping the
cavity from the top and bottom mirror, respectively, while κside trough the sidewalls of the
cavity.
Three important parameters describe the performances of a QD-micropillar device [19] and
they will be used in the Quantum Toolbox:

• the cooperativity C = g2/κγ, which quantifies the coherent processes component over
the incoherent one;

• the top-mirror output coupling efficiency ηtop = κtop/κ, identifying the fraction of
photons escaping the cavity through the top mirror and to be collected;

• the input coupling efficiency ηin, which is the probability for an incoming photon to
be coupled to the cavity mode.

2.3 Jaynes–Cummings Model
Here the Jaynes-Cummings Hamiltonian in the dressed states formalism is reviewed to
model the interaction of a two-level atom with the single mode of an electromagnetic field.
Experimentally it is indeed possible to have the optical cavities supporting only a single
mode, as in the version of the micropillar of figure 2.2. The consequence of introducing an
interaction term with the field is that in general |eê an |gê will not be eigenstates anymore
of the Hamiltonian, leading to the so-called Rabi oscillations [16].
In the dipole approximation [16] the interaction Hamiltonian with a quantized field Ê ∝!
â− â†"

is:

Ĥint ≈ −d̂ · Ê, (2.12)

being d̂ the dipole moment of the quantum emitter. The free-field Hamiltonian, to be
added to the free-atom one and the interaction term, is

Ĥcav = }ωcâ†â, (2.13)

having neglected the zero-point energy. By making the rotating wave approximation (RWA),
the Jaynes-Cummings Hamiltonian [16] is

ĤJC ≈ Ĥd + Ĥcav + Ĥint

= }ωd σ̂+σ̂− + }ωc â†â− i}g
1
σ̂−â

† − σ̂+â
2
, (2.14)

The interaction term Ĥint causes only transitions of the kind

|eê |nê ←→ |gê |n+ 1ê , (2.15)

between two product states, where the second kets n are labeled by the number of photons
in the mode. These states are also called “bare” states of the Jaynes-Cummings model. By
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letting n ≥ 0 and expressing ĤJC in the basis |Ψ1nê = |eê |nê and |Ψ2nê = |gê |n+ 1ê, the
eigenvalues are

E±(n) = }ωc
3
n+ 1

2

4
+ }ωd

2 ± }
2Ωn(∆), (2.16)

where
Ωn(∆) =

è
∆2 + 4g2(n+ 1)

é1/2
(∆ = ωd − ωc) (2.17)

is the Rabi frequency comprising half the detuning. An example at resonance, i.e. ωc =
ωd ≡ ω0, is shown in figure 2.5. In (a) the detuning is null and the atom is decoupled

Figure 2.5: (a) Degenerate energy levels for an uncoupled atom-field system at resonance,
ωc = ωd ≡ ω0. (b) Level splitting due to the atom-field interaction, Ωn is the Rabi frequency.

from the field, i.e. g = 0. The energy levels are degenerate. The degeneracy is lifted by
introducing coupling (g > 0), splitting the original two degenerate eigenstates into two
new ones separated by the energy }Ωn. This phenomenon is known also as dynamic or
AC Stark effect. The perturbed eigenstates |n,±ê are called the “dressed states” of the
Jaynes-Cummings model.

2.4 Open Quantum Systems
Quantum states that are described by state vectors are called pure states. States that
cannot be described by state vectors are called mixed states. Both are described in terms
of the density operator ρ̂ in the following way:

ρ̂ ≡
Ø
i

pi |ψiêéψi| , (2.18)

where the sum is over a statistical ensemble such that pi is the probability of the system of
being in the state |ψiê, given the normalized state éψi|ψiê = 1. A density matrix ρ̂ has unit
trace, i.e. tr (ρ̂) = 1, and it is positive. Moreover, if and only if the state is pure, tr

!
ρ̂2"

= 1.
Similarly for tr

!
ρ̂2"

< 1, the system is a mixed state. For a general quantum state, the
average of some operator Â is given bye

Â
f

= tr
1
ρ̂Â

2
=

Ø
i

pi éψi|A|ψiê . (2.19)

In the absence of dissipative interactions and in the case of no explicitly time dependent
interaction, the density operator evolves following the unitary transformation, called the
Von Neumann equation [16]:

dρ̂
dt = i

}

è
ρ̂, Ĥ

é
, (2.20)
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whereas the Heisenberg equation of motion is given by

dÂ(H)

dt = − i
}

è
Â(H), Ĥ

é
. (2.21)

2.4.1 Master equation
The density matrix formalism is useful for the description of incoherent and dissipative
processes that occur mainly when the system is coupled to a reservoir, figure 2.6. The aim
is to describe the dynamics of the system of interest with the reservoir entering only as
parameters, reviewing the approximations stated in [20]. The total Hamiltonian of the
reservoir and the system is given by

Ĥ = ĤS + ĤR + ĤSR, (2.22)

where ĤS and ĤR are Hamiltonians for the undamped system (S) and the reservoir (R),
respectively, and ĤSR is the interaction Hamiltonian. The density operator ρ̂(t) of the

Figure 2.6: Total system with Hamiltonian Ĥ and density operator χ̂ divided into the
system of interest, “System”, and the Reservoir.

system is given by tracing the density matrix χ̂(t) of the composite system S ⊗R over all
possible states of the reservoir, i.e.

ρ̂(t) ≡ trR [χ̂( t)]. (2.23)

It is assumed that the interaction is turned on at t = 0, with no correlation between S and
R at this initial time. Then it is possible to factorize the density operator of the composite
system as

χ̂(0) = ρ̂⊗ R̂0, (2.24)
being R0 the initial reservoir density operator. In general, at later times the correlations
between S and R will couple the system and the reservoir. By assuming that the coupling
is very weak and that R is a very large system weakly affected by S, it is legit to write

χ̂(t) = ρ̂(t)⊗ R̂0 +O
1
ĤSR

2
. (2.25)
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Notice that the previous expression is still exact, based on the previous assumptions. The
first Born approximation consists of neglecting terms higher than the second order in HSR.
Still, the evolution of ρ̂(t) depends on its history [20]. The second major approximation
is the Markov approximation, which is based on the existence of two very different time
scales: a slow time scale for the system dynamics, compared to the decay of the reservoir
correlation functions.
Under these approximations, in the special case where there is a single initial state |iê and
final state |fê, the incoherent process are described in terms of collapse operators Ĉif with
rate γif :

Ĉif = √γif |fêéi| . (2.26)

For each collapse operator, a superoperator called Lindbladian L̂if is defined such that

L̂if (ρ̂) ≡ Ĉif ρ̂Ĉ
†
if −

1
2

î
Ĉ†
if Ĉif , ρ̂

ï
, (2.27)

being the last term the anticommutator defined as
î
Â, B̂

ï
≡ ÂB̂+ B̂Â. The density matrix

evolution in the RWA is given by the Lindblad master equation:

dρ̂
dt = i

}

è
ρ̂, Ĥ

é
+

Ø
if

L̂if (ρ̂), (2.28)

where the coherent processes are described by the first term on the RHS and the Lindbladian
operators account for the ensemble of the possible incoherent processes.

2.4.2 Input-output formalism

Figure 2.7: Input-output field formalism with a 1-D atom.

In the previous section the master-equation has been introduced to calculate the physical
properties of a damped system, in this thesis the cavity with an artificial atom. In this
section the aim is to treat explicitly the external field as the reservoir, in order to determine
the effect of the internal and external cavity dynamics. In the input-output formalism the
properties of the field exiting the system can be determined based upon information on the
dynamics of the atom-cavity and the input field. The following results have been derived
assuming the RWA and system-bath interactions that are linear in the bath operators.
Moreover, the coupling constant is assumed to be a constant independent of frequency [21].
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In the ideal case of a one-dimensional cavity as in figure 2.7, the first port (top-mirror) is asso-
ciated to the operators b̂in and b̂out, whereas ĉin and ĉout for the second port (bottom-mirror).
In the 1D-atom limit, where the dominant atomic radiative interactions are via the cavity
mode, the side losses are much lower than the ones from the mirrors (κside ¹ κtop +κbottom)
and the cooperativity (C º 1) [22].

Given an input or output operator ŝ, the expected value
+
ŝ†ŝ

,
is the associated photon

flux defined as number of photons per unit time. Thus the unit of each operator is s−1/2.
Given the single confined mode of annihilation operator â, the continuity relations of the
fields are:

b̂out = b̂in +√κtop â, (2.29a)
ĉout = ĉin +√κbottom â, (2.29b)

reflecting the interference between the incoming field and the one escaping from the
cavity. The interaction Hamiltonian between the cavity and the external electromagnetic
field is given by:

Ĥpump = −i}√κtop
1
b̂inâ

† − b̂†
inâ

2
. (2.30)

A useful simplification is the specific case of a coherent beam at resonant excitation. In
such case the input fields are fully described by the mean input field amplitudes, namely
bin =

e
b̂in

f
and cin = éĉinê. This approximation has simplified the computational costs of

the numerical results of the CQED Quantum Toolbox, to be addressed in the next chapter.
It is anticipated here that the numerical simulations are based on an input field bin solely
from the top-mirror. Therefore, cin = 0 and in this limit equations (2.29, 2.30) become

b̂out = binÎ +√κtopâ, (2.31a)
ĉout = √κbottomâ, (2.31b)

and
Ĥpump = −i}√κtop

1
binâ

† − b∗
inâ

2
, (2.32)

where the Î on the right-hand side of equation (2.31a) must be understood as the identity
operator. These relations will be exploited to evaluate the properties of the output fields
both in the continuous wave (CW) or pulsed wave (PW) laser regime.

2.4.3 The “full” model
At this point it is possible to model the time evolution of the exciton in the micropillar,
starting from the Lindblad Master equation (2.28). It is thus necessary to define the
Hamiltonian of interest and the collapse operators. In the following the rotating frame of
reference will be considered, centered at the laser frequency ω. The Hamiltonian is given by

Ĥ = Ĥd + Ĥcav + Ĥint + Ĥpump, (2.33)
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where

Ĥd = (ωd − ω) σ̂+σ̂−, (2.34a)
Ĥcav = (ωc − ω) â†â, (2.34b)

Ĥint = ig
1
σ̂+â− σ̂−â

†
2
, (2.34c)

Ĥpump = −i√κtop
1
binâ

† − b∗
inâ

2
, (2.34d)

where the } constant has been dropped. At last, the collapse operators are required to
describe the dissipative processes. The cavity damping Ĉcav =

√
κ â, with κ the total

damping rate, models the cavity optical losses. The QD spontaneous emission in the leaky
modes is given by ĈQD = √γsp σ̂−, being γsp the spontaneous emission rate. Last, the QD
pure dephasing is described by Ĉdeph =

√
2γ∗ σ̂+σ̂−, where the population is preserved

during the dephasing. From equation (2.27), the overall Lindbladian becomes then:

L̂ = L̂cav + L̂QD + L̂deph, (2.35)

whose labels reflect the recently defined collapse operators.

Conclusions
This chapter has presented the main properties that single-photon quantum emitters
should satisfy and the potential of QDs in microcavities. The micropillar solution, in the
weak coupling regime, is known to guarantee simultaneously high brightness and degree of
indistinguishability. After having introduced a pseudo-spin formalism to model the two-level
system of an exciton in the QD, the main parameters characterizing an optical cavity have
been briefly reviewed and translated to the micropillar. For the following simulations, the
Jaynes-Cummings Hamiltonian has been introduced to model the coupling between the
exciton and the micropillar as closed quantum systems. At last, to describe the system
dissipation, an open quantum system description based on the Master Equation has been
presented with its approximations. In the following chapter, the CQED Quantum Toolbox
will be presented with the implemented quantum optics simulations.
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Chapter 3

Cavity-QED Quantum Toolbox

Given a quantum emitter in an optical cavity interacting with an external field, one may
be interested in some physical properties such as output intensities, first- and second-order
correlations, flux spectral densities, etc. In this manuscript the Quantum Optics Toolbox
[23] has been exploited to numerically solve the Master Equation on MATLAB®. A custom
made Cavity QED Quantum Toolbox has been developed to efficiently organize different
simulations for two-level systems coupled to a microcavity mode. For instance, even though
field spectrum processing under stationary resonant excitation and second-order correlations
require different approaches to be simulated, they both share the same device, i.e. the QD
in the micropillar, and they are modeled by the same Hilbert space and Master Equation
formalism.
The scripts for the two-level system are contained in Appendix C and, based on figure 3.1,
they are divided in the following sections:

Main programs It contains the main scripts, for both continuous wave (CW) and pulsed
wave (PW) regime. They incorporate parameters commonly set by an experimentalist,
the field input-output operators and the core of the code to let the reader understand
which quantities are actually computed and how they are defined.

CQED device parameters The parameters of the device are imported from a file Init
2level device parameters. It includes the atom-cavity coupling, the photon decay
rate from the micropillar, the spontaneous emission rate, the pure dephasing rate, the
resonance frequencies etc., which characterize a given QD-cavity device.

CQED subprograms The subroutine Init 2level Hilbert space and operators de-
fines the Hilbert space and some of the operators introduced in the previous chapter.
Mainly two other kinds of subroutines are present. The ones that start by Init...
contain the initialization of some additional variables and they allow to preallocate
memory. The plot... scripts generate plots based on the choice set by the user in
the associated main script.

Each program contained in the main folder can be executed by choosing the full model
presented at the end of the previous chapter, or by selecting the adiabatic model, where the
cavity mode Fock space is not explicitly considered (see Chapter 4) by proper redefinition of
some of the full model operators. Before introducing the several quantum optics simulations,
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it is instructive to briefly introduce the “matrix representation” of Lindblad Master equation,
required for the numerical integration.

Figure 3.1: Custom Cavity QED toolbox. Here A← B means that B sends data to A.

The Fock-Liouville Hilbert space Some linear combinations of density matrices
are still density matrices as long as they have unit trace and positivity. A Hilbert space
of density matrices can be defined converting the matrices into vectors of the so called
Fock-Liouville space (FLS). The corresponding scalar product between φ̂ and ρ̂ is defined
as ééφ|ρêê ≡ tr

1
φ̂†ρ̂

2
. The Liouville superoperator L̂ of equation (2.27) is now an operator

L̃ acting on the FLS. For instance, it is possible to define for a two-level system:

|ρêê ≡


ρ00
ρ01
ρ10
ρ11

, (3.1)

where ρij is an element of the density matrix in the chosen representation basis. At last,
the time evolution of the system corresponds to a system of first order differential equations
d|ρêê

dt = L̃|ρêê, to be numerically solved.

3.1 Nonlinear Optics with CQED
In this section the spectral response of an atom-cavity device will be addressed based on the
parameters that have been introduced in Chapter 2. Before showing the simulation results of
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the reflection coefficient as a function of the laser energy ω, some features of the reflectivity
can be predicted based on the analytical formula [19] obtained in the semi-classical approach,
valid only for low power and γ∗ = 0. It is found that for the reflection coefficient

r(ω) ≡
e
b̂out

f
/bin = 1− κtop

κ
2 − i

1
ω − ωc − g2

(ω−ωd+iγ)

2 , (3.2)

being ω the energy of the excitation laser, ωc and ωd the energy of the cavity and the quan-
tum dot resonance, respectively. As in the previous chapter, g is the coupling strength, γ is
the total dephasing rate and κ the cavity damping rate. The reflectivity in the simulation
is given by R ≡

e
b̂†
outb̂out

f
/|bin|2 and for the uncoupled cavity (g = 0), a Lorentzian dip in

the reflectivity spectrum, at the cavity frequency ωc, is described from equation (3.2). The
following curves have been obtained by simulating at resonance, ωd = ωc, with null pure
dephasing, γsp = 0.6µeV, γ∗ = 0, κ = 100 µeV and extraction efficiency of the top mirror
ηtop = κtop

κ = 0.7. The reflectivity spectrum of an uncoupled cavity (g = 0) is the expected
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(a) Simulated reflectivity as a function of
the laser frequency impinging on an empty
cavity, input power Pin = 10 pW.
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Figure 3.2: Reflectivity spectra in continuous wave excitation.

Lorentzian curve centered at the cavity resonance, see figure 3.2a. The two-level atom
strongly modifies the reflectivity with a peak because of light being resonantly scattered.
In the particular case of weak coupling regime, setting g = 17 µeV in figure 3.2b, the light
intensity tunes the light-atom coupling because when the transition is saturated, the atom
has equal probability to be in the ground ot excited state, and it becomes transparent to
the optical field since it has the same probability to experience absorption or stimulated
emission. This phenomenon has been verified experimentally, for instance in figure B.1 in
AppendixB. As the contribution of the emission in the mode of interest decreases, also
the fraction of photons emitted outside the mode reduces with increasing input power, as
shown in figure B.2.
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In pulsed wave (PW) regime one can analyze the temporal evolution of a reflected
wavepacket. In the following simulation, it has been considered an input Gaussian pulse of
15 ps Full Width Half Maximum (FWHM), longer than the cavity lifetime of approximately
7 ps. The coherent laser pulse has a fixed center frequency, temporal width and average
number of photons.
In figure 3.3a it is shown the response of the micropillar with and without the QD. In the
case of an empty cavity, the first peak is the light being directly reflected from the top
mirror. It is followed by partially-destructive interference with the light escaping from the
cavity through the same top mirror, according to equation (2.31a). The second peak is
mostly due to the light which exits the cavity at the end of the excitation pulse, so that no
interference occurs and the decay time corresponds to the cavity damping rate.
As the exciton is coupled to the cavity mode, the second peak height is reduced because
of light absorbed by the artificial atom. Moreover, the reflected photon flux tail decays
at a lower rate than before because of the exciton spontaneous emission and the light
slowly being emitted by the QD in the cavity mode. The last process occurs through
Purcell-enhanced single-photon emission, with a typical decay time Γtot, and the light is
extracted from the cavity mode by the top-mirror.
By using the same program, it is possible to describe a non-resonant excitation experiment
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Figure 3.3: Results from pulsed-wave excitation script.

where the exciton state |eê is populated at time zero. To simulate such an effect, one can
simply change the initial state and use a very small value for the pulse average photon
number, to ensure that the output fields are almost entirely induced by the initial excitation.
The result is shown in figure 3.3b. For the blue curve, the high value of the cavity damping
rate κ = 100 µeV determines that the QD-cavity system is in the weak coupling regime,
being the merit factor S ≡ 4g/κ = 0.68 < 1 [24]. Vice-versa, for the dashed red curve, the
lower damping rate κ = 10 µeV implies that the system is in the strong-coupling regime. In
this figure, the Rabi oscillations are visible, with damping mainly caused by spontaneous
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emission outside the cavity mode and intracavity photon losses. If not stated otherwise,
the default simulation parameters of this chapter will be those defined in this section, in
the weak coupling regime, i.e. g = 17 µeV, γsp = 0.6 µeV and κ = 100 µeV.

3.2 First-order Coherence and Spectrum
In this section the quantum-mechanical first-order coherence functions will be briefly
reviewed, highlighting how they evaluate the coherent and incoherent contributions to the
reflected photon flux. In the CW regime the first-order temporal coherence has been obtained
by the quantum regression theorem [25], which greatly simplifies the task of computing
two-time correlation functions as one-time averages. The incoherent flux component has
been Fourier transformed to obtain the incoherent spectral density of the field. On the other
hand, in PW regime the Wigner Distribution Function of the first-order correlation has
been evaluated, yielding information on both the photon flux and energy spectral densities.
In the dipole interaction, mentioned in Chapter 2, using the Heisenberg picture, the general
first-order correlation function [16] for a scalar field is defined as:

G(1) (t1, t2) = tr
1
ρ̂Ê(−) (t2) Ê(+) (t1)

2
, (3.3)

with normal ordering and where, summing over the modes k of frequency ωk, electric
constant ε0 and cavity volume V ,

Ê(+)(ti) = i
Ø
k

3~ωk
ε0V

41/2
âk(ti). (3.4)

The normalized first-order quantum coherence function is

g(1) (t1, t2) = G(1) (t1, t2)#
G(1) (t1, t1)G(1) (t2, t2)

$1/2 , (3.5)

such that three possible degrees of coherence are defined:---g(1) (t1, t2)
--- = 1 complete coherence, (3.6a)

0 <
---g(1) (t1, t2)

--- < 1 partial coherence, (3.6b)---g(1) (t1, t2)
--- = 0 incoherent. (3.6c)

Such a quantity plays a major role in any experiment using an interference between two
time-delayed components of an optical field, as in a Michelson or Mach-Zender setup. Notice
that complete coherence is obtained when the expectation value of the numerator can be
factorized, i.e.

e
Ê(−) (t2) Ê(+) (t1)

f
≡

e
Ê(−) (t2)

f e
Ê(+) (t1)

f
, where the right hand side is

the coherent contribution.
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3.2.1 Continuous wave regime
For the following discussion, it is assumed a CW excitation. Being at stationary regime,
one may set a general reference time t1 = 0, and define the delay τ ≡ t2 − t1 so that
equation (3.5) reduces to

g(1)(τ) =

e
Ê(−)(t+ τ)Ê(+)(t)

f
e
Ê(−)(t)Ê(+)(t)

f . (3.7)

The details on the normalized-first order coherence computation by the quantum regression
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Figure 3.4: First order coherence of the reflected light in continuous wave regime, compared
to a coherent field. The input power is Pin = 10 pW and κ = 400 µeV. The reflected field is
partially coherent.

theorem are discussed in Appendix A. As before, the reflected flux is given by
e
b̂†
out(t)b̂out(t)

f
,

in Heisenberg picture. Being here in the CW regime, the flux takes a constant value
ΦR =

e
b̂†
outb̂out

f
in the stationary state. Given that b̂out is a fluctuating operator, due to

the random nature of spontaneous emission, it should become uncorrelated with itself at
very distant times. Mathematically speaking,

lim
τ→∞

e
b̂†
out(t+ τ)b̂out(t)

f
=

e
b̂†
out

f e
b̂out

f
= ΦR,coh, (3.8)

where ΦR,coh is the coherent photon flux reflected by the micropillar with the QD inside.
By comparing equation (3.8) with the definition of the normalized first-order correlation
function (3.7), it follows that limτ→∞ g(1)(τ) = ΦR,coh/ΦR, being the total reflected flux
the sum of the coherent and incoherent components, ΦR = ΦR,coh + ΦR,incoh. An example is
shown in figure 3.4, where the g(1)(τ) of a coherent field is compared to the reflected light
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3.2 – First-order Coherence and Spectrum

from the optical micropillar. At zero delay the normalized-first order coherence has unit
modulus as expected from the definition. For positive infinite delay, and negative, being
g(1)(−τ) = g(1)(τ)∗, the coherent percentage ΦR,coh/ΦR of the reflected light is recovered,
in this example about 91 %.

Resonance fluorescence spectrum and Mollow triplets In this paragraph the ra-
diation due to an isolated atom driven by a monochromatic field will be addressed. The
optical spectrum of a CW optical field is characterized by its spectral density of flux, S(ω),
whose integral over the whole spectrum returns the total photon flux. Given a field operator,
e.g. the reflected field b̂out, the Wiener-Khinchin theorem [25] states that its spectrum is
the Fourier transform of the related correlation function G(1)(τ). In the rotating frame at
the laser frequency ωs, the spectrum of the reflected field is

SR(ω) = 1
2π

Ú +∞

−∞

e
b̂†
out(τ)b̂out(0)

f
ei(ω−ωs)τdτ, (3.9)

normalized such that its integral over the whole spectrum gives the total reflected flux:Ú +∞

−∞
SR(ω)dω =

e
b̂†
out(0)b̂out(0)

f
= ΦR. (3.10)

As stated before, the quantity
e
b̂†
out(τ) b̂out(0)

f
is the sum of the coherent componente

b̂†
out(0)

f e
b̂out(0)

f
and a varying contribution that tends towards zero for larger delays.

Correspondingly, the total spectrum SR(ω) will be the sum of two contributions: SR(ω) =
SR,coh(ω) + SR,incoh(ω). The coherent contribution has a DC value which, when Fourier
transformed over time, leads to a monochromatic spectrum centered at the laser frequency,
described by SR,coh(ω) =

e
b̂†
out

f e
b̂out

f
× δ(ω − ωs). On the other hand, the varying

contribution leads, after Fourier Transform, to a continuous spectrum SR,incoh(ω) which is
denoted as the spectrum of the incoherent component of the photon flux. Such a component
is called incoherent since, not being monochromatic, it cannot interfere with the incoming
laser. In the weak-coupling regime this incoherent spectrum has the shape of a Lorentzian
at low power, but of a Mollow triplet at high power, see figure 3.5. Experimental curves
from literature are shown in Appendix B, figure B.3.
The laser frequency is ωs = ωd, so it is at resonance with the QD driven at the Rabi
frequency Ω. At the low power or weak field limit, Ω¹ γsp and the Rabi frequency of the
driving field is much smaller than the spontaneous emission rate. The atom behaves as an
over-damped quantum harmonic oscillator and the spectrum is a Lorentzian. Yet, when
the Rabi frequency becomes comparable to the exciton linewidth in the strong excitation
limit Ωº γsp, the energy level splitting described in section 2.3 occurs. This generates two
side-bands at ωs ± Ω in addition to the transition at ωs, resulting in the Mollow triplet.

3.2.2 Pulsed wave regime
Constant CW regime can be used to design a two-level system single photon source. However,
one would be interested in deterministic sources that can be triggered on-demand. This
is in general done by an optical pulse, which requires a quantum dynamical treatment of
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Figure 3.5: Simulated spectral density of the reflected flux in the rotating frame, SR(ω),
for increasing input power. The Lorentzian profile turns into the Mollow triplet at higher
powers. Image for section 3.2.1.

Figure 3.6: (a) Two-level system resonant with the cavity field ωs, weak field and weak
coupling regime. (b) Degeneracy splitting due to strong field regime. The four dressed
states add two side-bands transitions at ωs ± Ω, in addition to the transition at ωs, leading
to the Mollow triplet. Image for section 3.2.1.
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resonance fluorescence. In pulsed regime two time evolution must be numerically computed
to obtain, e.g. for the reflected field

G(1)(t1, t2) =
e
b̂†
out(t2)b̂out(t1)

f
, (3.11)

which is the first-order correlation evaluated at two different times, t1 and t2.
The aim has been to compute the energy spectral density and to check, as in all the
simulations, the proper normalization of the spectrum. Assuming a transform-limited1
Gaussian pulse shape, the electric field can be represented in the time domain and the
rotating frame as

E(t) = exp
C
− t2

2σ2
t

D
, (3.12)

where σt characterizes the standard deviation of the pulse.
A common tool for time-frequency analysis is the Wigner distribution function (WDF),
which is used as transform in time-frequency analysis. It provides the highest possible
temporal and frequency resolutions, mathematically limited by the uncertainty principle in
quantum wave theory. Information on the single photon wavepacket can be obtained by
calculating the associated Wigner-Ville function (WVF, also known as chronocyclic Wigner
distribution), which is the quantum analogue of the WDF, the latter being the name chosen
in this text. In the rotating frame centered at the average pulse frequency ωp, its expression
[27] for a field mode of annihilation operator ŝ is:

W (t, ω) = 1
2π

Ú ∞

−∞

=
s†

3
t+ τ

2

4
s

3
t− τ

2

4>
e−i(ω−ωp)τ dτ . (3.13)

Indeed, it is the Fourier transform of the electric field correlations as a function of time. In
the following only the reflected field will be shown. Due to the projection property of the
WDF function, the following holds:Ú +∞

−∞
W (t, ω) dω =

e
b̂†
out(t)b̂out(t)

f
≡ Φ(t), (3.14a)Ú +∞

−∞
W (t, ω) dt = S(ω). (3.14b)

Thus by integrating the WDF over the frequency domain, the original flux is obtained
because of the correct normalization of the distribution. Whereas integrating the WDF over
time gives the total spectrum of the optical field, see equation (3.14b). Last, by integrating
in time and frequency, the total number of photons is recovered. In figure 3.7 the reflected
total flux Φ(t) is shown as a function of the simulation time. The flux has been evaluated
first, as in section 3.1, by

e
b̂†
out(t)b̂out(t)

f
. Whereas, the second curve has been computed

by integrating the WDF over the frequency domain. Being superimposed to the previous
one, it has proven the WDF correct normalization according to equation (3.14a). The input
Gaussian pulse has 15 ps FWHM with average photon number equal to one. The first peak

1A transform-limited pulse is one that has minimal phase variation over its spectrum and has a
minimal time-bandwidth product [26].
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Figure 3.7: Reflected photon flux computed by the output operator and by the Wigner
Distribution Function. Differently from figure 3.3a, κ = 200 µeV, Np = 1.
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3.2 – First-order Coherence and Spectrum

is due to the reflected field from the top mirror, which interferes destructively with the
field reflected from the bottom mirror. The decaying tail corresponds to the the quantum
emitter emission in the cavity.
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Figure 3.8: Absolute value of the normalized-first order coherence
---g(1)(t1, t2)

--- of the reflected
field in pulsed wave regime.

Computing the first-order correlation function Being in pulsed regime, two time
evolution were required for simulating g(1)(t1, t2), shown in figure 3.8. The mathematical
details are contained in Appendix A. There is a transition time around 60 ps before which
most of the light is induced by the empty-cavity response, and after which most of the
light is induced by the slowly-decaying QD signal. The figure can be analyzed according to
different time sets:

• Along the diagonal t1 = t2, the normalized first order correlation is unity by definition.
In the yellow region where both t1 and t2 are before the transition time, it regards
coherence of the empty-cavity reflection with itself, which comes from the laser input:
perfect relative coherence is obtained, being

---g(1)(t1, t2)
--- ≈ 1. For the yellow region

where both t1 and t2 are after the transition time, it regards coherence of the QD-
emitted signal with itself, which is also near-unity due to the negligible pure dephasing
chosen in the simulation.

• When t1 is before the transition time and t2 after, or the reverse,
---g(1)(t1, t2)

--- measures
the relative coherence of the QD-signal with the directly-reflected laser, showing only
partial coherence. This is in accordance with the partial coherence also observed in
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figure 3.4 in the CW regime. In general, the QD-emitted light is not fully coherent
with the incoming laser.

• The zero coherence lines presumably arise from the specific transition moment where
there should be no reflected light at all, due to perfect interference, if the QD signal
were entirely coherent. This would happen in the limit of very low power, in addition to
no pure dephasing. Since there is some amount of signal at this transition moment, this
signal only arises from the incoherent part, and this explains why there is absolutely
no coherence at that time.

(a)
--G(1)(t1, t2)

--. (b) Interpolated
--G(1)(t, τ)

--.
Figure 3.9: First-order correlation function of the reflected field in pulsed wave excitation.

Computing the Wigner Distribution Function In equation (3.13) the WDF is
described in terms of time t and delay τ . The latter are related to t1, t2 according to the
following mapping: I

t = (t1 + t2)/2
τ = t2 − t1.

The first-order correlation function G(1)(t1, t2) is shown in figure 3.9a, and the corre-
sponding interpolated function G(1)(t, τ) is shown in 3.9b, where the highest correlation
occurs nearby the maximum peak at about 50 ps of the reflected flux in figure 3.7. Comments
on the interpolation procedure, and on the computation of the Wigner Distribution Function
using the Fast Fourier Transform (FFT) are discussed in Appendix A. Indeed, a new WDF
algorithm has been developed independently, because the associated MATLAB® routine
(available from R2018b) is designed for single-time series and not correlation functions.
The WDF function, real because of the time-reversal symmetry of the first-order correlation
functions, is presented in figure 3.10b. As a function of time, the spectral content is centered
at the average pulse frequency. The negative values assumed by the WDF are a consequence
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of the so called Heisenberg–Gabor limit, which states that one cannot simultaneously sharply
localize a signal in both time ad frequency domain. Thus, an averaging along a time or
frequency window is necessary to deduce a physical and positive quantity. The WDF of
a Gaussian is still a bell-shaped surface which represents the pulse in the time-frequency
phase space, see figure 3.10a. In the simulated WDF with the QD-cavity, the effect of the
optical cavity and the QD spontaneous emission can be appreciated. The incident Gaussian
pulse is divided into a reflected pulse in phase space (weak yellow) and interference fringes
because of the many emission sources: the light directly reflected without entering, the
light extracted after entering the cavity (but without having interacted with the QD), and
finally, the light emitted due to QD decay. In figure 3.11 it is shown the spectrum S(ω)

20 40 60 80

t [ps]

-100

-50

0

50

100

-
p
 [

e
V

]

0 2 4 6 8

10-41/( eV  ps)

(a) The WDF of a Gaussian is still a bell-
shaped surface. Result obtained from the
reflected field by setting ηtop ≈ 0.
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(b) WDF of the reflected field interacting
with the QD-cavity. Interference fringes are
due to the multiple light sources present, as
explained in the text.

Figure 3.10: Wigner Distribution Functions in time-frequency axes given an input Gaussian
pulse.

obtained by integrating along time the WDF. The total spectrum is given by the sum of a
coherent and incoherent contribution, with the quantum emitter responsible for the latter.

3.3 Second-order Coherence
The first-order coherence correlation functions do not provide information on the photon
statistics, which is contained in the second-order quantum correlation function (at fixed
position)

g(2)(t, τ) = G(2)(t, τ)
G(1)(t, t)G(1)(t+ τ, t+ τ) , (3.15)

where
G(2)(t, τ) = tr

1
ρ̂Ê(−)(t)Ê(−)(t+ τ)Ê(+)(t+ τ)Ê(+)(t)

2
. (3.16)
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by equation (3.14b). Image discussed in section 3.2.2.
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A quantum field is said to be second order coherent if g(2)(t, t+ τ) = 1. Equation (3.15)
is interpreted as the conditional probability to detect a photon at time t + τ knowing
that a first photon has already been detected at time t, divided by the unconditioned
probability. For a coherent multimode state, it can be shown that g(2)(τ) = 1 and thus
the photon stream obeys a Poisson distribution. In the case of g(2)(0) < g(2)(τ), called
photon antibunching, photons tend to impinge evenly spaced in time and it represents
a non-classical state, figure 3.12a. In figure 3.12b the simulated g(2)(τ) of the quantum
dot spontaneous emission in the cavity is compared with a multimode coherent field and
thermal state. Being g(2)(0) ≈ 0, this represents a non-classical light source as mentioned
at the beginning of Chapter 2. To reduce numerical errors in the simulation, it has been

(a) Comparison of the photon streams
for antibunched light, coherent light,
and bunched light. For the case of
coherent light, the Poissonian photon
statistics correspond to random time
intervals between the photons.
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(b) The g(2)(τ) of the QD emitted field is compared
with a thermal (bunched) and a multimode coherent
field. κ = 200 µeV and Pin = 10 pW.

Figure 3.12: Photon statistics and simulated second-order correlation for the QD sponta-
neously emitted field.

decided to evaluate the second-order quantum coherence g(2)(t2, t1) in terms of a conditional
density matrix. The field operator for spontaneous emission is given by ê = √γspσ̂−, which
projects the excited state |eê into the ground state |gê. To physically interpret the results
and to get a better numerical convergence, it is computed the system’s density matrix just
after a detection event at time t. This new conditional density matrix ρ̂Í(t1) is given by

ρ̂Í(t1) = ê ρ̂(t1)ê†

tr(ρ̂(t1) ê† ê) . (3.17)

This is a valid density matrix with unit trace, verified by taking the trace in the previous
equation and by exploiting the cyclic permutation property. From this density matrix
at time t(+)

1 , right after the first detection at t1, one deduces the conditional density
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matrix at time t2, leading to a density matrix ρ̂(t2 | t1) ≡ ρ̂(t2, conditioned to a click at t1).
Therefore, the quantity

tr
1
ê†êρ̂(t2 | t1)

2
=

+
ê†(t1)ê†(t2)ê(t2)ê(t1)

,
éê†(t1)ê(t1)ê . (3.18)

Last, the second term in the denominator of equation (3.15) is given bye
ê†(t2)ê(t2)

f
= tr

1
ê†ê ρ̂(t2)

2
. (3.19)

So it is found that the normalized correlation function g(2)(t1, t2) is indeed the ratio between
two quantities: the photon flux at time t2, conditioned by a previous photon detection
event at time t1, and the photon flux at time t2, unconditioned. This is the equivalent
experimental definition of the second-order correlation function.
In the CW regime, the second-order quantum coherence function is only a function of the
delay, g(2)(τ), which simplifies the simulation of figure (3.12b) to just one-time evolution.
On the other hand, for PW excitation, the g(2)(t1, t2) for the QD emitted light is shown in

(a) g(2)(t1, t2) of the quantum dot emitted
light.
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Figure 3.13: Second order correlation function, correlated and uncorrelated coincidences in
pulsed wave excitation.

figure 3.13a. Along the diagonal, so for zero-delay time, g(2)(t, t) = 0 as expected: the QD
cannot emit a second photon immediately after having emitted a first one, since it has been
projected to the ground state. After the pulse arrival time, there is a “dead time” before
the laser field drives the electron back into the excited state at which moment another
photon may be emitted (yellow region). For longer times, the pulse is mostly extinguished
and the conditional probability is null (red region).
Note that in the g(2)(t1, t2) the denominator

+
ê†(t1)ê(t1)

, +
ê†(t2)ê(t2)

,
represents the rate of

uncorrelated coincidences corresponding to the expected coincidence rate for photons from
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independent sources (or, as usually done in the laboratory, by independent excitation pulses
from the same source). In comparison, the numerator

+
ê†(t1)ê†(t2)ê(t2)ê(t1)

,
corresponds

to the rate of correlated coincidences, that is the expected coincidences rate for photons
from the same pulse.
In a HBT experiment in pulsed regime, g(2)(τ) is obtained by an histogram integrating
all the coincidences corresponding to a given delay τ = t2 − t1. Here the normalization
is chosen such that the area of the g(2)(τ) peak is unity for uncorrelated coincidences,
figure B.4a in Appendix B. The correlated coincidences, figure B.4b, lead to a zero-delay
peak corresponding to photons emitted during the same pulse. Both the uncorrelated
and correlated coincidences are shown as a function of the delay τ in figure 3.13b, whose
experimental counterpart is represented in Appendix B, figure B.5. The purity of the source
is linked to the ratio between the correlated and uncorrelated areas. Here the area for the
correlated coincidences is almost negligible (inset in figure 3.13b), i.e. negligible probability
to have a second photon emitted during the same pulse compared to the correlated case.
Thus, this result confirms the very good single-photon purity of the simulated quantum
emitter.

Conclusions
In this chapter the custom Cavity QED Quantum Toolbox structure has been presented,
showing some quantum optics simulations results. It has been addressed the quantum
emitter optical non-linearity which modifies the reflectivity spectra, showing the 2-level atom
saturation at higher input power. From the spectrum of the first-order correlation functions
in the continuous-wave regime, the Mollow triplet phenomenon has been reproduced as the
driving Rabi frequency becomes much larger than the exciton spontaneous emission rate.
To investigate the first-order coherence function in the pulsed regime, a custom algorithm
for evaluating the Wigner Distribution Function has been presented with the associated
results. Last, the single-photon emission property of the artificial atom has been proved
by the second-order correlation function, both in continuous and pulsed wave excitation.
In the next chapter, the adiabatic elimination of the cavity mode Fock space is discussed,
highlighting its advantages for the computational cost and some results, in comparison with
the “full” model used in this Chapter.
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Chapter 4

Adiabatic Elimination

Figure 4.1: A fast sub-system, the cavity, is coupled to the slow sub-system, the neutral
QD. The cavity acts as a perturbation and it is adiabatically eliminated.

Adiabatic elimination is an approximation that produces an effective Hamiltonian for
the sub-space of interest and it is valid when the cavity damping rate κ is much higher
than any other evolution rate: κº g, γsp, γ

∗. This is the so-called bad cavity regime and
these conditions are always fulfilled for the simulations in this Chapter. As presented in
figure 4.1, the cavity is subjected to high losses and its dynamics are much faster than the
QD ones. If not stated otherwise, the QD-Cavity system has:

• κ ≈ 400 µeV, leading to a photon lifetime in the cavity of about 1.6 ps. The decay time
comes from the Lorentzian cavity spectrum, whose Fourier transform is an exponential
decay. The decay rate is κ/(2}) for the field amplitude, whereas κ/} for the intensity,
i.e. a photon lifetime }/κ. Since } = 6.582 · 10−4 eV · ps, it explains why κ is denoted
alternatively as a cavity linewidth or, by considering ~ ≡ 1 units, as a decay rate.

• g ≈ 17 µeV, corresponding to 120 ps timescale. Notice that g is related to the period
of the vacuum Rabi oscillations illustrated in figure 3.3b. From equation (2.17), the
Rabi angular frequency is 2g/}, with 2g the vacuum Rabi splitting between the two
first excited eigenstates of the Jaynes-Cummings model.
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• γsp ≈ 0.6 µeV, about 1 ns of spontaneous emission time in other modes than the cavity
mode, with negligible pure dephasing.

In such a case, the photons emitted by the QD in the cavity mode are not stored in the
cavity: they quickly escape it. From the QD point of view, there is no difference between
the spontaneous emission in the other modes, at the rate γsp, and the emission in the cavity
mode followed by photon escape, at the rate Γm. It is reminded that the ratio between the
latter and the former defines the Purcell factor, equation (2.10). Two important parameters
for the rate of emitted photons in the cavity mode (Γm) are:

• the normalized QD-Cavity detuning:

∆QD-C ≡
2(ωd − ωc)

κ
. (4.1)

• the Purcell-enhanced emission rate at zero detuning:

Γ0 = 4g2

κ
. (4.2)

One can show that, with these notations and for a 2-level system in a cavity, the following
Lorentzian dependence with the detuning is obtained for the Purcell-enhanced emission
rate in the cavity mode, Γm:

Γm = Γ0

1 + ∆2
QD-C

. (4.3)

With the above given values, at zero detuning it is found that Γm = Γ0 = 2.9 µeV,
thus Γtot = Γm + γsp = 3.5 µeV. This value is also much lower than κ and corresponds
to a total emission time of 180 ps. The coupling factor, proportional to the brightness, is
β = 2.9 µeV/3.5 µeV ≈ 83% at zero detuning.
Before discussing how the adiabatic model is obtained, in the following table the computation
time of the full model is compared with the adiabatic version. As the dimension of the cavity
mode Fock space increases, which is required for higher input powers, also the simulations
take more time. On the contrary, for the adiabatic model the Fock space has been neglected
and taken into account by an effective Hamiltonian. In the following table simulation times
for a CW and PW program are shown to illustrate the computational cost reduction of the
adiabatic approximation. The average times have been computed over ten simulations for
each program, without plotting.

Program Full model, N = dim (Hcav) Adiabatic model
N = 10 (s) N = 15 (s) N = 20. (s) (s)

Reflectivity spectrum in CW 6.9± 0.3 11± 2 18± 1 4.4± 0.3
Photon flux evolution and QD 9.6± 0.1 16.6± 0.5 33± 1 1.13± 0.05
occupation in PW
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4.1 Approximations from the “Full Model”
In the general case, the exact calculation starts from the standard CQED Hamiltonian
for a CQED system coherently excited by an input field bin, presented in section 2.4. The
full Hamiltonian acts both on the QD and the cavity subspaces: the goal of adiabatic
elimination is to work only within the QD Hilbert space.
In the fast, or bad, cavity regime, the point is that the variables associated to the cavity
mode have no memory of the past. At a given time t they simply adapt to the values of
the other important quantities at that time, in particular bin(t) and éσ̂−ê(t). Following a
similar derivation from [28, sec. 13.2.1], one can use the Heisenberg’s representation for
operators â(t), b̂in(t), σ̂−(t) and write in the rotating frame, as Loïc Lanco has done:

˙̂a(t) =
5
−κ2 − i (ωc − ω)

6
â(t)− g σ̂−(t)−√κtop b̂in(t) (4.4)

+ noise operator averaging to zero.

Finally, integrating this equation gives:

â(t) = â(0) exp
;
−

5
κ

2 + i (ωc − ω)
6
t

<
− g

Ú t

0
dtÍ σ̂−(t− tÍ) exp

;
−

5
κ

2 + i (ωc − ω)
6
tÍ

<
−√κtop

Ú t

0
dtÍ b̂in(t− tÍ) exp

;
−

5
κ

2 + i (ωc − ω)
6
tÍ

<
, (4.5)

where:

• the first (red) term quickly disappears after a fast transient regime;

• the other (blue) terms are almost a Dirac δ(tÍ) function, up to a coefficient, since κ
implies fast decays. Thus, the past times t − tÍ play no role except for very small
values of tÍ.

Since one can focus on times tÍ close to zero, at first order

b̂in(t− tÍ) ≈ b̂in(t) (4.6a)
σ̂−(t− tÍ) ≈ σ̂−(t)ei(ωd−ω)tÍ , (4.6b)

where the exponential arises since the QD is detuned from the laser frequency. The
simplified integrals over tÍ lead toÚ ∞

0
dtÍ exp

;
−

5
κ

2 + i (ωc − ωd)
6
tÍ

<
= 1

κ
2 + i (ωc − ωd) = 1

κ
2 (1− i∆QD-C) , (4.7a)Ú ∞

0
dtÍ exp

;
−

5
κ

2 + i (ωc − ω)
6
tÍ

<
= 1

κ
2 + i (ωc − ω) = 1

κ
2 (1− i∆) , (4.7b)

where

∆ ≡2(ω − ωc)
κ

. (4.8)
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Disregarding the noise term, one obtains:

â(t) = − g σ̂−(t)
κ
2 (1− i∆QD-C) −

√
κtop b̂in(t)
κ
2 (1− i∆) . (4.9)

This also gives the correct equation when one comes back to the Schrödinger’s representation:

â = − g σ̂−
κ
2 (1− i∆QD-C) −

√
κtop b̂in

κ
2 (1− i∆) . (4.10)

It is recalled that when the input field arises from a coherent (laser) light source, one can
replace b̂in by bin · Î. Thus, given this last assumption, the quantum fluctuations of the
annihilation operator are due to the quantum fluctuations of the QD lowering operator.
Note that the adiabatic elimination corresponds to a completely different point of view
since now the operator â does not act on the cavity subspace, that is not considered, but is
viewed only through its effect on the QD subspace, as given by equation (4.10).

4.2 Adiabatic Hamiltonian and Output Operators
In the previous section the annihilation operator has been expressed in terms of the lowering
operator and the coherent input field. Equation (4.10) is significant since it states that
the cavity field adapts instantaneously to its two sources: the input field and the Purcell-
enhanced emission from the QD into the cavity mode. The cavity forgets any previous
value it had. From this equation a new input-output equation is deduced

b̂out = b̂in +√κtop â (4.11)
↓

b̂out = bin

3
1− 2 ηtop

1− i∆

4
Î −

ð
Γ0 ηtop

1− i∆QD-C
σ̂−, (4.12)

being Î the identity operator. Note that equation (4.12) has a direct and fundamental
interpretation, where the reflected optical field is directly viewed as the sum of two
contributions. The first one, proportional to bin, is the optical field reflected by the empty
cavity alone, as would be obtained in the absence of QD. The second term, proportional to
σ̂−, is the optical field induced by a photon emitted in the cavity mode by the QD, and
then quickly extracted out from the cavity through the top mirror. Also note that the
operators Î and σ̂− in equation (4.12) are directly related to the effect that the detection of
a reflected photon can have on the QD subspace. If the detected photon comes from the
empty-cavity reflection, it does not change the QD state (operator Î) since this photon was
not emitted by the QD. If the detected photon comes from the QD emission, however, this
means that the QD has just decayed to the ground state (operator σ̂−). The superposition
of these two fields in equation (4.12) is also a direct illustration that they can interfere, as
already discussed in the interpretation of some of the results obtained in Chapter 3.
At last, one can limit the Hamiltonian to the part acting on the QD subspace, using the
above equation for â, to obtain a simplified, adiabatic one

Ĥad = (ωeff − ω) σ̂+σ̂− − i
ñ

Γ0 ηtop

3
bin

1− i∆ σ̂+ −
b∗
in

1 + i∆ σ̂−

4
, (4.13)
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with
ωeff = ωd + Γ0 ∆QD-C

2
1
1 + ∆2

QD-C

2 . (4.14)

The difference ωeff − ωd is a cavity-induced frequency shift [28]. It is proportional to Γm
and to the detuning ∆QD-C. The second term is analogous to the Rabi Hamiltonian for an
atom in free space, with the proper amplitude and phase factor describing how the input
field excites the QD.
Finally, replacing â in the optical Bloch equations an obtaining the time derivatives é ˙̂σ−ê,
é ˙̂σzê, it is found that they are consistent with the adiabatic Hamiltonian providing that
one modifies the collapse operator for the quantum dot spontaneous emission in the leaky
modes

ĈQD = √γsp σ̂− −→ ĈQD =
ð

Γtot σ̂− . (4.15)

As before, Γtot = Γm + γsp, so it takes into account QD decay both due to Purcell-enhanced
emission via the cavity mode and emission in the leaky modes. In practice, this means
that regarding the QD subspace all the dynamics is described by the Hamiltonian in
equation (4.13) and the collapse operator in equation (4.15), provided that the adiabatic
approximation holds.

4.3 Comparing Adiabatic and Full Model
During this internship, all the programs of the cavity-QED quantum toolbox have been
developed with two available options: “full model” or “adiabatic model”. It has been verified
each time that the higher the cavity damping rate κ, the quicker the cavity adapts to its
environment (i.e. the QD and the external field), and the better the two models coincide.
However, the inequality κº g, γsp, γ

∗ should not be considered as a sufficient condition for
the adiabatic elimination to be valid. What is important is the possibility to approximate
as in (4.6), when tÍ is of the order of the photon lifetime in the cavity.
Out of conciseness, it has been chosen to only focus in the following two examples, high-
lighting when these approximations may or may not be valid.

4.3.1 Mollow triplets
In the CW regime, the constant input field obviously verifies bin(t− tÍ) = bin(t), but the
approximation σ̂−(t − tÍ) ≈ σ̂−(t)ei(ωd−ω)tÍ can fail at high input power. This could lead
to discrepancies in the predictions for the first-order coherence g(1)(τ), and thus also for
the predicted spectral densities. In section 3.2.1 it has been shown that under resonance
fluorescence, for higher input powers the degeneracy splitting of the uncoupled system
eigenstates results in the so-called Mollow triplets spectrum. In this specific simulation,
adiabatic elimination is very promising because higher input powers require a larger
dimension N of the cavity truncated Fock space. Indeed, by adiabatic elimination, an
element of the Fock-Liouville space previously defined has always four components instead
of 4×N2.
In CW regime, given equation (2.17) and assuming zero detuning, all Fock states contribute
with the same Rabi frequency ΩR ≈ 2g

ð
én̂ê, where n̂ = â†â is the photon number operator
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for the optical mode of interest. By definition, this Rabi frequency is the rate at which the
QD state oscillates in the Bloch sphere [16], which is also the rate at which the QD lowering
operator is evolving. This means that, for the approximation σ̂−(t− tÍ) ≈ σ̂−(t)ei(ωd−ω)tÍ to
be valid when tÍ is of the order of the cavity photon lifetime, it is required that ΩR ¹ κ for
the effective Hamiltonian to be accurate enough. In the semi-classical approximation, which
is a very good assumption for higher optical input powers, the average photon number from
equation (4.10) is given by

n ≡ én̂ê = 4ηtop
κ

b2
in. (4.16)

Since the aim is to obtain an order of magnitude estimate for the adiabatic approximation
to be valid, from here on the semi-classical approximation will be taken for granted.
Substituting equation (4.16) into the previous inequality regarding the Rabi frequency, and
considering that by definition bin =

ñ
ηtopPin/ (}ωc), it is found that:

Pin ¹
}ωcκ2

8η2
top g

. (4.17)

Given the usual parameters of this chapter, the input power should be much lower than few
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Figure 4.2: Comparing Mollow triplets spectra of the spontaneously emitted field, obtained
with adiabatic and full model, for different input powers.

micro-watts. In figure 4.2a the spontaneous emitted spectrum under resonance fluorescence
is shown for 100 nW input power, in figure 4.2b at 1 µW. In the former case the adiabatic
model curve is superimposed onto the one obtained by the full model. In the second case,
in accordance to the newly found rule of thumb, the effective Hamiltonian fails, as the
side-peaks distance becomes comparable with the cavity damping rate.
A related phenomenon that the adiabatic model is not able to reproduce is when the QD
frequency is detuned from the cavity, the expected asymmetry of the Mollow triplet arises,
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Figure 4.3: Mollow triplets of the emitted field spectrum, for Pin = 50 nW, detuning between
the cavity and the QD, ωd−ωc = 100 µeV and laser at resonance with the QD. The expected
asymmetry in the full model is not recovered in the adiabatic model.
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figure 4.3. This is because one side peak emits more in the mode than the other side peak.
Indeed, in this case, one side peak has a significantly different normalized detuning with the
cavity, compared to the other side-peak that is significantly closer or further away from the
cavity mode resonance. This leads to an asymmetry in the values of Γm (Purcell-enchanced
emission rate in the cavity mode), and thus an asymmetry in the β factor1 for the two
side peaks. The adiabatic model is intrinsically unable to predict such asymmetry since it
considers only one value of Γm, and thus one value of β, evaluated at the laser frequency
and not at the frequency of the side peaks. Still, at lower power, the adiabatic model
retrieves its validity since all the peaks, the central one and its two side-peaks, span a
small frequency range compared to the cavity damping rate. In this limit, the side-peaks
approximately have the same value of the normalized detuning, hence equal Γm and β.

4.3.2 Reflectivity in pulsed wave regime
In the following, the optical responses to two incoming Gaussian pulses are compared.
The pulses impinge towards the optical micropillar at different delays and with different
FWHM , keeping constant the average photon number in each pulse. In pulsed wave regime
also the approximation b̂in(t − tÍ) ≈ b̂in(t) should be considered for the adiabatic model
domain of validity.
For the time derivative in the pulsed regime, the important inequality is formally dbin/dt¹
κ/2× bin. Indeed, the question is whether bin(t− tÍ) is close to bin(t) in a time-scale tÍ such
that κ/2× tÍ ≈ 1. And on such a time scale one can say that

bin(t− tÍ) ≈ bin(t)− dbin
dt

2
κ
, (4.18)

that reduces to bin(t) given the inequality mentioned above. In this case, for a Gaussian
pulse, the maximal value of bin(t) time derivative is of the order of the amplitude of bin,
divided by the pulse FWHM . The condition becomes

κ

2 × FWHM º 1, (4.19)

for a Gaussian pulse, where the photon number does not appear because both the signal and
its derivative are proportional to it. In the simulation of figure 4.4 the coupling constant g
has been set to zero to not have any QD lowering operator contribution. In the case of the
short FWHM of 5 ps the effective Hamiltonian is not able to reproduce the reflected flux of
the full model because of the too-short time scale for the system to adapt to the Gaussian
pulse. Indeed, in the effective Hamiltonian approximation only one peak is obtained instead
of two, and almost half the maximum peak value. By substituting the parameters in
equation (4.19), it is found that FWHM º 1.3 ps for the adiabatic model to be valid. The
short pulse does not satisfy the inequality, having a FWHM only about four times longer.
While the long pulse is better recovered, there is still some visible delay induced by the fact
that in the adiabatic model the cavity instantaneously reflects the incoming field, while in

1Fraction of photons emitted in the cavity mode, compared to the fraction emitted outside the mode,
introduced in Chapter 2.
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the full model it does store it for a short time before letting it be reflected. It is important
to outline that the inequality (4.19) has been obtained for a Gaussian pulse. For instance,
the cavity would not be able to respond to a square pulse adiabatically.
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Figure 4.4: Adiabatic and full model comparison of the reflected photon flux in pulsed wave
regime, average photon number Np = 10, for different FWHM of the two pulses.

Conclusions
In this chapter, an effective Hamiltonian has been introduced, based on the adiabatic
elimination of the cavity mode Hilbert space. This approximation simplifies the computa-
tional cost of most of the quantum optics phenomena addressed in the previous chapter, in
the weak coupling regime. The quantum fluctuations of the annihilation operator, in the
semiclassical approximation for the input field, are related only to the lowering operator. It
has been shown that in CW excitation for resonance fluorescence, one condition for the
adiabatic elimination validity is that the driving Rabi frequency should be much lower than
the cavity damping rate. Moreover, it has been shown that the effective Hamiltonian is not
able to reproduce the Mollow triplets asymmetry. The second condition, in PW regime, is
that the cavity should be able to follow the input signal time variations.
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Chapter 5

Conclusions

In this work, a new custom Cavity QED Quantum Toolbox for a two-level system has
been developed to simulate common quantum optics problems, such as non-linear optical
properties, first- and second-order correlations, and flux spectral densities for reflected,
transmitted, diffracted and emitted fields. While it has been previously established that the
Master equation integration based on a pre-existing quantum optics toolbox [23] provides
accurate results, given a proper fitting of the experimental parameters, phenomena that
require high photon number can be computationally expensive. In this direction, an effective
adiabatic Hamiltonian has been implemented to adiabatically eliminate the cavity mode
Fock space, and to deal only with the quantum-dot subspace.

The custom cavity QED quantum toolbox took inspiration from pre-existing codes,
written by Loïc Lanco, that have been fully revisited. The overall aim has been to find an
equilibrium between easiness for future readers and efficiency. An exception is the case of
spectral analysis, where the balance has been tipped strongly in favor of efficiency. Indeed,
while the fast Fourier transform is much more efficient than the standard definition of the
discrete Fourier transform, O(N logN) versus O

!
N2"

, it has required more attention to
obtain the proper normalization and phase, in the CW regime as well as in the custom-made
Wigner Distribution Function for time-frequency signal analysis.
The adiabatic approximation has shown to be promising in the weak coupling regime, which
is the working condition for the deterministic and scalable CQED built at C2N, employed
as single-photon source [11] and as an interface between the spin of a single charge and the
polarization of a single photon [29]. In the continuous-wave regime, its domain of validity
has resulted to be strictly related to the cavity damping rate, responsible for the cavity
time scale dynamics. An important parameter has been proven to be the laser input power,
that sets the Rabi frequency of the QD sub-system dynamics, which should be much slower
than the cavity one for the adiabatic approximation to hold. More studies are required in
pulsed-wave excitation for the input pulse shape, because of the limited cavity response
time that would prevent the cavity from adapting in time to sudden signal changes.

Among prospects, the most natural one is the generalization to less simple QD systems
introducing a charge, spin, and photons polarization, already begun by Clément Millet,
Elham Mehdi, and Nathan Coste in the C2N team. Starting from the programs developed
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in this work, other physical phenomena such as Mollow triplets in pulsed-wave regime
[30] and the quantum Zeno effect [31] could be addressed. Even though the adiabatic
elimination has been introduced for an optical micropillar, it would be possible to generalize
it in the larger context of dipoles in 1-D photonic crystal waveguides and nanocavities [32].
For future developments, it would be important to translate the scripts from MATLAB®

into the open-source Quantum Toolbox in Python (QuTiP) package [33], which is used
by a larger community and contains several already-implemented routines. Still, however
attractive also the idea of having already developed routines in QuTiP, the lower-level
programming of this thesis provides useful insights by detailing how each physical quantity
is computed, explicitly linking theoretical and experimental results.
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Appendix A

Correlations in Time Domain

A.1 First-order Coherence and Quantum Regression
Theorem

In section 3.2 the field operator first-order correlation function (3.3) has been introduced
to evaluate the frequency dependence of the scattered radiation. The quantum regression
theorem simplifies the problem of evaluating a two-time correlation function by Lindbladian
evolution of a fictitious density matrix. Dropping the hat symbol, here A(t) and B(t) are
two system operators (i.e. they do not act on the reservoir coupled to the system) and
the system density matrix satisfies the Lindbland master equation ∂tρ(t) = Lρ(t). In the
Heisenberg representation, the quantum regression theorem states that in the long time
limit [25]

lim
t→∞
éA(t)B(t+ τ)ê = tr (B Λ(τ)) , (A.1)

where Λ(t+ τ, t) acts as a sort of “fictitious” density matrix with respect to the B operator.
As the system density matrix evolves in time, the newly introduced operator evolves along
the delay τ according to

dΛ
dt = LΛ(τ), (A.2)

with initial condition
Λ(0) = ρ(t→∞)A. (A.3)

Here ρ(t → ∞) is the density matrix which is obtained in stationary regime, where it is
possible to simplify the two-time correlation function as a single-time average. The quantum
regression theorem can be applied for the pulsed wave case, but a two-time evolution is
then required.

Two-time evolution for pulsed-wave excitation To calculate the first correlation
function from equation (3.5), in Heisenberg representation, a general two-time representation
is éA(t1)B(t2)ê, where for instance A(t) = U †(t,0)AU(t,0). Here U(t,0) is the unitary time-
evolution operator from 0 to t. By exploiting the composition and inversion properties of
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the evolution operator

U(t, tÍ)U(tÍ, tÍÍ) = U(t, tÍÍ) (A.4)
U †(t, tÍ) = U(tÍ, t), (A.5)

it is found, by calling ρ the density matrix of the system

éA(t1)B(t2)ê = tr(A(t1)B(t2) ρ) (A.6)

= tr
1
B U(t2, t1)ρ(t1)AU †(t2, t1)

2
(A.7)

where ρ(t1) = U(t1,0)ρU(t1,0)†. Therefore, first the density matrix evolves from time 0
to t1. Then the density matrix is multiplied on the right by the operator A, obtaining
a “fictitious” density matrix that is let evolve from t1 to t2. At last, the latter is used to
calculate the expectation value of the operator B.

A.2 Custom Wigner Distribution Function Script
As mentioned in section 3.2, to compute the Wigner Distribution Function of a (e.g.
reflected) field it is necessary to map G(1)(t1, t2) into G(1)(t, τ) according toI

t = (t1 + t2)/2
τ = t2 − t1.

In the MATLAB® script, G(1)(t1, t2) is saved as a matrix G(1)(t1_index, t2_index) with
t1_index, t2_index = 1, . . . , N , whereasG(1)(t, τ) in terms ofG(1)(time_index, tau_index),
being time_index, tau_index = 1, . . . , 2N − 1. The coordinate systems are shown in
figure A.1. It follows that

tau_index = t2_index− t1_index+N, (A.8)
time_index = t1_index+ t2_index− 1, (A.9)

where N ×N is the dimension of the square matrix. It is then found that

t1_index = (time_index− tau_index+ 1 +N)/2 (A.10)
t2_index = (time_index+ tau_index+ 1−N)/2. (A.11)

From the previous system it is clear that G(1) must be interpolated at half-integer values
of the indices, by averaging with the values of G(1)(t1_index, t2_index) obtained at the
closest integer indices.

Fast Fourier transform implementation The fast Fourier transform (FFT) algorithm
computes the discrete Fourier transform of a finite sequence {xn}, converting in this thesis
the signal from time domain to frequency domain. It reduces the computational cost from
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Figure A.1: Discrete first order correlation function G(1)(t1_index, t2_index) in the blue
coordinate system. In orange as G(1)(time_index, tau_index).
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O
!
N2"

to O(N logN), where N is the number of elements of the signal, according to the
DFT definition

Xk ≡ F ({xn})k =
N−1Ø
n=0

xne
−i2πkn/N k = 0, . . . , N − 1 (A.12)

with x0, . . . , xN−1 complex numbers. In the following, the phase shifting and normalization
criteria will be illustrated.

Phase shift A first-order correlation function is always anti symmetric in the sense
that

G(1)(−τ) = G(1)(τ)∗. (A.13)
This anti symmetry ensures that the spectral density of the optical field, being the Fourier
Transform of the first-order correlation function, is a real quantity. Moreover, the integral
of the spectral density recovers the photon flux (3.10), i.e. a real physical quantity. In the
pulsed-wave regime a similar anti-symmetry relation holds:

G(1)(t1, t2) = G(1)(t2, t1)∗, (A.14)

which ensures that the Wigner-Ville function, also denoted Wigner Distribution Function
and abbreviated by WDF in this manuscript, is a real quantity - though it can assume
negative values.
However, directly applying the FFT algorithm to the correlation functions does not lead to
real values, as it is now explained. In the simulations each signal is discrete and stored with
positive indices. For instance given a signal xn defined over n = −N, −N+1, . . . , N−1, N ,
it is treated by the FFT algorithm as it were defined over n = 1, 2, . . . , 2N + 1. This
determines a phase shifted output, which is in general not a problem since one is commonly
interested in the absolute values of the Fourier transform (as in a circuit transfer function).
Still, it must be corrected if one wants to check the normalization or have the correct WDF.
The right phase is recovered by exploiting the shift theorem of the DFT, that is

F ({xn−m})k = Xk · e− 2πi
N
km, (A.15)

where in this case m is the number of elements associated to negative delays in the first-order
correlation function, or the Wigner Distribution Function at each time bin time_index.
Thus, a circular shift of the input xn corresponds to multiplying the output Xk by a linear
phase.

Normalization Apart from the phase shift, also proper normalization of the FFT
result has to be ensured. Parseval’s theorem for the DFT states that

N−1Ø
n=0
|xn|2 = 1

N

N−1Ø
k=0
|Xk|2. (A.16)

The discrepancy occurs when, due to the FFT algorithm optimization, the original signal
xn is padded with zeros so that its length is a power of two. Because of the N dependency
in the last equation, Parseval’s theorem does not hold anymore for the original signal. To
recover it, it can be shown that the output of the FFT must be divided by the sampling
frequency. More information can be found in the commented code.
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Supplementary Figures
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Figure B.1: Experimental (symbols) and simulated (lines) reflectivity as a function of the
incident laser energy of (left) an empty cavity, (right) a QD with increasing input power.
The black line refers to the lowest power. Image from [19].
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Figure B.2: Fraction of photons emitted outside the mode. Simulation parameters in
section 3.1.

Figure B.3: Laser detuning dependent resonance fluorescence spectra at increasing power,
showing Mollow triplets as the power increases. Image from [34].
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(a) Uncorrelated coincidences rate of the
emitted field. It is the denominator of equa-
tion (3.15), but expressed in terms of (t1, t2)
instead of t ≡ t1 and delay τ ≡ t2 − t1.

(b) Correlated coincidences G(2) of the emit-
ted field. It is the numerator of equa-
tion (3.15), but expressed in terms of (t1, t2)
instead of t ≡ t1 and delay τ ≡ t2 − t1.

Figure B.4: Correlated and uncorrelated coincidences of the emitted field in pulsed wave
excitation, simulation parameters in section 3.3.

Figure B.5: Experimental second order correlation of the emission from a QD in a micropillar.
Image from [19].
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Appendix C

MATLAB® Scripts

C.1 Main scripts
C.1.1 Reflectivity spectrum in CW

1 clear
2 clc
3 %close all
4 %%%%%%% Common basis to every programs based "two levels" %%%%%%%%%%%
5 % Important note: these paths must be modified if needed
6 addpath(genpath('..\QotoolboxV015'));
7 addpath(genpath('..\CQED subprograms'));
8 addpath(genpath('..\CQED device parameters'))
9
10 % In addition, for the mesolve function to operate the executable files
11 % (.exe) and batch files (.bat) contained in '[...] \QotoolboxV015\bin'
12 % have to be copied to a folder that is on the Windows system path, in the
13 % main hard drive where Windows is installed. This can be for example in:
14 % 'C:\Program Files\Matlab\R2014a\bin'.
15
16 % Warning: for the adiabatic version to converge, the tolerance in
17 % mesolve.m function must be reduced compared to the defaut values. For
18 % example:
19 % ode2file('ode_input.dat',L,rho0,t_list,struct('reltol',7e−8,'abstol',8e

−8));
20
21 %% %%%%%%%%%%% CW − spectra under stationary resonant excitation %%%%%%%%%%
22 % This script indexed "CW" considers a fixed incoming power and a variable
23 % angular frequency for the laser. One calculates the spectral response
24 % associated to the various fields (reflected, transmitted,
25 % diffracted/lost, and spontaneously emitted outside the cavity mode). One
26 % finally verifies the conservation of the total photon flux
27
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28 % Choice of full model 'F' or adiabatic 'A'
29 model = 'F';
30
31 %%% Experimental conditions
32 detuning_QD_C_muev = 0; %Detuning between the QD and cavity frequencies, in

mueV
33 eta_in = 1; % Injection efficiency for the incoming photons (depends on

experimentally−achieved spatial coupling)
34 P_in_CW_pW=10;% Incoming continuous−wave power in pW
35
36 %Parameters for the calculation of spectra
37 min_detuning_muev=−100; %minimal detuning (left part of the spectrum), in

muev
38 max_detuning_muev=100; %maximal detuning (right part of the spectrum), in

muev
39 nb_points_spectrum=400;
40
41 Init2levelDeviceParametersOngoingTest;
42 Init2levelHilbertSpaceAndOperators;
43 InitLists2levelCWscanLaserFrequency;
44
45 %Incoming power
46 P_in_CW = P_in_CW_pW*1e−12;% Incoming power in W %%
47 b_in_CW = sqrt(eta_in*P_in_CW*1e−24/(hbar*omega_c)); % square root of the

photon number per unit time, in ps−1/2
48 total_flux_injected_photons=abs(b_in_CW)^2; % total flux of incoming

photons taking into account eta_in (so only the photons coupled to the
cavity mode), in ps−1

49
50 % tic % NB: "tic" is used as a "start" time for the measurement of the
51 % computing time between "tic" and "toc"
52
53 %%%%%%%%%%%%%% Start the calculation of spectra %%%%%%%%%%%%%
54 for omega_index=1:nb_points_spectrum %Loop for frequency scan
55
56 omega_laser=omega_laser_list(omega_index); %Current value of

omega_laser, in rad/ps
57
58 switch model
59 case 'A' % Adiabatic case
60
61 Delta = 2*(omega_laser−omega_c)/kappa; %normalized laser

detuning appearing in Eq.12 of the pdf notes
62
63 %%%%%%%%% Definition of the adiabatic−model Hamiltonian (which

depends on omega_laser)
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64 H_CW = (omega_eff−omega_laser)*sigma_dag*sigma...
65 − 1i*sqrt(Gamma_0*eta_top)*(b_in_CW*sigma_dag/(1−1i*Delta)−

b_in_CW'*sigma/(1+1i*Delta)); % Adiabatic Hamiltonian
66
67 %%% For the redefinition of the operator "a" acting in the QD

space
68 % (Eq. 10 of the pdf notes
69 a = −2*g*sigma/(kappa*(1−1i*Delta_QDC))−2*sqrt(kappa_top)*

b_in_CW*Id/(kappa*(1−1i*Delta)); %annihilation operator a
in adiabatic approximation

70
71 % UNUSED HERE: Ansatz for the annihilation operator, obtained

by taking the time derivative of "a" equal to 0
72 % (OK for CW but not for PR (pulsed regime) programs)
73 % a = −2*g*sigma/(kappa*(1−1i*Delta))−2*sqrt(kappa_top)*b_in_CW

*Id/(kappa*(1−1i*Delta));
74
75 case 'F' % Full model
76
77 %%%%%%%%% Definition of the full−model Hamiltonian (which

depends on omega_laser)
78 H_CW = (omega_d−omega_laser)*sigma_dag*sigma...
79 + (omega_c−omega_laser)*a_dag*a...
80 + 1i*g*(sigma_dag*a−a_dag*sigma)...
81 − 1i*sqrt(kappa_top)*b_in_CW*(a_dag−a);
82
83 end % end of the "switch model"
84
85 %Superoperator associated to the coherent processes (Hamiltonian)
86 L_coh = −1i * (spre(H_CW) − spost(H_CW));
87
88 %%%%%%%%% Calculation of the Liouvillian superoperator
89 Liouvillian = L_coh + L_incoh; % Total Liouvillian superoperator

including both coherent processes (Hamiltonian) and incoherent
processes (dissipative jumps)

90
91 %%%%%%%%% Calculation of the density matrix corresponding to the

stationary state
92 rhoss_CW = steady(Liouvillian);
93
94 %%%%%%%%% Definition (or re−definition) of the output operators
95 if (model=='A' || omega_index==1) %
96 % In the full model, the output flux operators are not
97 % frequency−dependent and thus need to be defined only the first
98 % time In the adiabatic model the value of "a" is
99 % frequency−dependent and the output operators have to be
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100 % redefined for each frequency
101
102 b_out = b_in_CW*Id + sqrt(kappa_top)*a; % definition of the

operator b_out, i.e. the output operator for the reflected
light, in ps^(−1/2)

103 c_out = sqrt(kappa_bottom)*a; % definition of the operator c_out, i
.e. the output operator for the transmitted light, in ps^(−1/2)

104 d_out = sqrt(kappa_loss)*a; % definition of the operator d_out, i.e
. the output operator for the diffracted/lost light, in ps
^(−1/2)

105 % e_out = sqrt(gamma_sp)*sigma; % definition of the operator e_out,
i.e. the output operator for the light spontaneously emitted
outside the cavity mode, in ps^(−1/2)

106
107 % NB: in the adiabatic model the operators could also have been

written directly as:
108 % b_out = b_in_CW*Id*(1−2*eta_top/(1−1i*Delta))−sqrt(Gamma_0*

eta_top)*sigma/(1−1i*Delta_QDC); %output flux operator, (eq
.12)

109 % c_out = −2*g*sqrt(kappa_bottom)*sigma/(kappa*(1−1i*Delta_QDC))−2*
sqrt(kappa_top*kappa_bottom)*b_in_CW*Id/(kappa*(1−1i*Delta));

110 % d_out = −2*g*sqrt(kappa_loss)*sigma/(kappa*(1−1i*Delta_QDC))−2*
sqrt(kappa_top*kappa_loss)*b_in_CW*Id/(kappa*(1−1i*Delta));

111 % Such formulas are obtained by directly replacing the value of "a"
112 % from the adiabatic model, and are thus equivalent to the above,
113 % more general definitions In addition, e_out is independent on the
114 % experimental conditions and thus defined in the subprogram
115 % "Init_2level_Hilbert_space_and operators.m". It is given here for
116 % information and clarity purposes only
117
118 end
119
120 %%%%%% Calculation of useful expectation values %%%%%%%%%%%%
121
122 % Calculation of the total photon flux as a function of omega_laser
123 total_flux_reflected_photons_vs_omega(omega_index) = expect(b_out'*

b_out,rhoss_CW); % Total reflected flux = <b_out_dag b_out>, in ps
^(−1)

124 total_flux_transmitted_photons_vs_omega(omega_index) = expect(c_out'*
c_out,rhoss_CW); % Total transmitted flux = <c_out_dag c_out>, in
ps^(−1)

125 total_flux_diffracted_photons_vs_omega(omega_index) = expect(d_out'*
d_out,rhoss_CW);% Total diffracted/lost flux = <d_out_dag d_out>,
in ps^(−1)
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126 total_flux_emitted_photons_vs_omega(omega_index) = expect(e_out'*e_out,
rhoss_CW);% Total flux of spontaneously−emitted photons outside the
mode = <e_out_dag e_out>, in ps^(−1)

127
128 occupation_excited_state_vs_omega(omega_index) = expect(sigma_dag*sigma

,rhoss_CW); % Occupation probability for the excited state |e>
129 occupation_ground_state_vs_omega(omega_index) = expect(sigma*sigma_dag,

rhoss_CW); % Occupation probability for the ground state |g>
130 end % end of the frequency scan
131
132 % toc
133 % NB: "toc" is used as a "stop" time for the measurement of the computing

time between "tic" and "toc"
134
135 % Normalization: coefficients of reflectivity, transmission, diffracted/

lost part, and spontaneously−emitted part
136 R_vs_omega = total_flux_reflected_photons_vs_omega /

total_flux_injected_photons;
137 T_vs_omega = total_flux_transmitted_photons_vs_omega /

total_flux_injected_photons;
138 D_vs_omega = total_flux_diffracted_photons_vs_omega /

total_flux_injected_photons;
139 E_vs_omega = total_flux_emitted_photons_vs_omega /

total_flux_injected_photons;
140
141 %% %%%%%%%%% Plots %%%%%%%%
142 % For plot selection:
143 % − Reflected photons : 'R'
144 % − Transmitted + diffracted/lost photons : 'T'
145 % − Photons emitted outside the mode : 'E'
146 % − Occupation probabilities : 'O'
147
148 % plot_choice = ['T'];
149 plot_choice = ['T';'R';'E';'O'];
150 Plot2levelCWvsLaserFrequency;

C.1.2 Photon flux evolution and QD occupation in PW

1 clear
2 clc
3 %close all
4 %% Important note: these paths must be modified if needed
5 addpath(genpath('..\QotoolboxV015'));
6 addpath(genpath('..\CQED subprograms'));
7 addpath(genpath('..\CQED device parameters'))
8 savepath
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9
10 % In addition, for the mesolve function to operate the executable files
11 % (.exe) and batch files (.bat) contained in '[...] \QotoolboxV015\bin'
12 % have to be copied to a folder that is on the Windows system path, in the
13 % main hard drive where Windows is installed. This can be for example in:
14 % 'C:\Program Files\Matlab\R2014a\bin'.
15
16 % Warning: for the adiabatic version to converge, the tolerance in
17 % mesolve.m function must be reduced compared to the defaut values. For
18 % example:
19 % ode2file('ode_input.dat',L,rho0,t_list,struct('reltol',7e−8,'abstol',8e

−8));
20 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
21 %%%%%%%%%%%%%%%%%%%%%%%%%% Pulsed regime %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
23 % This section indexed "PR" computes the time evolution of the photon flux
24 % for various fields, and of the exciton occupation, in response to a
25 % coherent laser pulse with a fixed center frequency, temporal width, and
26 % average number of photons. One finally verifies that the total photon
27 % flux has been conserved after the simulation.
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29
30 %% Choice of full model 'F' or adiabatic model 'A'
31 model = 'F';
32
33 %% Experimental conditions
34 detuning_QD_C_muev = 10; %Detuning between the QD and cavity frequencies,

in mueV
35 detuning_pulse_QD_muev = 0; %Detuning between the pulse central frequency

and the QD frequency, in mueV
36 eta_in = 1; % Injection efficiency for the incoming photons (depends on

experimentally−achieved spatial coupling)
37 Nb_photons = 10; % Average number of incoming photons in a pulse. This

quantity should be multiplied by eta_in to know the number of incoming
photons actually coupled to the optical mode

38 FWHM = 15; %in ps, full width at half−maximum of the incoming Gaussian
pulse intensity (unit: ps since angular frequencies are in rad/ps)

39
40 %%
41 %Initialization of parameters, operators, arrays, etc...
42 Init2levelDeviceParametersOngoingTest;
43 Init2levelHilbertSpaceAndOperators;
44 InitLists2levelPRvsTime;
45
46 % Definition of the input field in ps^(−1/2), in the form of a fseries (

necessary for integrating the master equation)
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47 Standard_deviation_b_in_PR = FWHM/(2*sqrt(log(2))); %Deduced from the
properties of a Gaussian function

48 b_in_fn = fn('gauss',t_delay,Standard_deviation_b_in_PR) * sqrt( eta_in*
Nb_photons / ( sqrt(pi) * Standard_deviation_b_in_PR ) ); % square root
of the incoming photon number per time unit, in ps−1/2

49 b_in_vs_time = fsval(b_in_fn,t_list); %scalar array representing b_in vs
time

50
51 % Initial density matrix before the pulse has started
52 switch model
53 case 'F' %Full model
54 psi0 = tensor(Vacuum_state,g_ket); % Initial state: tensorial

product of photonic vacuum and QD ground state
55 rho0 = psi0*psi0'; % Density matrix corresponding to the initial

pure state
56 case 'A' % Adiabatic model
57 rho0 = g_ket*g_ket'; % Density matrix corresponding to the initial

pure state
58 end
59
60 %%% UNUSED HERE: to describe a non−resonant excitation experiment where the
61 % exciton state |e> is populated at time zero, one can simply change psi0
62 % and use a very small value for N_in, like 0.0001, to ensure that the
63 % output fields are almost entirely induced by the initial excitation. In
64 % such a case we use (e.g. for the full model):
65 % psi0=tensor(Vacuum_state,e_ket); % Initial state: tensorial product of

photonic vacuum and QD excited state
66 % rho0=psi0*psi0'; % Density matrix corresponding to the initial pure state
67
68 %% %%%%%%%% System Hamiltonian and time−dependent operators %%%%%%%%%%%%
69 %
70 % The system Hamiltonian is time−dependent due to the function b_in_fn
71 % describing the input field b_in(t).
72
73 % In addition, in the case of adiabatic elimination of the cavity mode an
74 % effective operator $a$ is defined, acting on the QD subspace, based on
75 % the formula for adiabatic elimination (Eq. 10 of the pdf notes). Since
76 % this formula depends on b_in(t), we define a time−dependent quantity
77 % "a_vs_time", which is an array containing, for each time of t_list, the
78 % corresponding operator "a". In the full model case, to simplify the
79 % following calculations, we define the same quantity a_vs_time, yet this
80 % time this array contains the same operator (annihilation operator "a"
81 % acting on the cavity subspace), replicated for all times of t_list.
82
83
84 switch model
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85 case 'A' % Adiabatic model
86
87 Delta = 2*(omega_pulse−omega_c)/kappa; %normalized laser

detuning appearing in Eq.12 of the pdf notes
88
89 %%%%%%%%% Definition of the adiabatic−model Hamiltonian (which

depends on omega_pulse)
90 H_PR = (omega_eff−omega_pulse)*sigma_dag*sigma − 1i*sqrt(

Gamma_0*eta_top)*...
91 ((1−1i*Delta)^(−1)*b_in_fn*sigma_dag−(1+1i*Delta)^(−1)*

b_in_fn'*sigma); % Hamiltonian (eq.13)
92
93 %%% For the redefinition of the operator "a" acting in the QD
94 %%% space vs time (Eq. 10 of the pdf notes)
95 a_vs_time = −2*(kappa*(1−1i*Delta_QDC))^(−1)*g*sigma*Id_vs_time

−2*sqrt(kappa_top)*(kappa*(1−1i*Delta))^(−1)*fsval(b_in_fn,
t_list).*Id_vs_time; %annihilation operator a in adiabatic
approximation (eq.10), as fseries

96
97 case 'F' % Full model
98
99 %%%%%%%%% Definition of the full−model Hamiltonian (which

depends on omega_pulse)
100 H_PR = (omega_d−omega_pulse)*sigma_dag*sigma...
101 + (omega_c−omega_pulse)*a_dag*a...
102 + 1i*g*(sigma_dag*a−a_dag*sigma)...
103 − 1i*sqrt(kappa_top)*b_in_fn*(a_dag−a);
104 %definition of a_vs_time, even though a is costant in the full
105 %model, to reduce the number of "switch" in the following code
106 a_vs_time = a*Id_vs_time;
107 end % end of the "switch model"
108
109 %Superoperator associated with the coherent processes (Hamiltonian)
110 L_coh = −1i * (spre(H_PR) − spost(H_PR));
111
112 %%%%%%%%% Calculation of the Liouvillian superoperator
113 Liouvillian = L_coh + L_incoh; % Total Liouvillian superoperator including

both coherent processes (Hamiltonian) and incoherent processes (
dissipative jumps)

114
115 %%%%%%%%%%% Numerical Integration of the Master Equation %%%%%%%%
116 % Computation of the density matrix vs time with t_list, i.e. between t_min
117 % and t_max, requiring a large enough time resolution.
118 rho_vs_time = mesolve(Liouvillian,rho0,t_list); % second evolution of the

system
119
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120
121 %%%%%%%%%%%%%%%%%% Definition of the output operators %%%%%%%%%%%%%%%%%%%%%
122 % These are general formulas for both the adiabatic and full model,

depending on "a_vs_time"
123 b_out_vs_time = b_in_vs_time*Id_vs_time + sqrt(kappa_top)*a_vs_time; %

definition of the operator b_out, i.e. the output operator for the
reflected light, in ps^(−1/2)

124 c_out_vs_time = sqrt(kappa_bottom)*a_vs_time; % definition of the operator
c_out_vs_time, i.e. the output operator for the transmitted light, in
ps^(−1/2)

125 d_out_vs_time = sqrt(kappa_loss)*a_vs_time; % definition of the operator
d_out_vs_time, i.e. the output operator for the diffracted/lost light,
in ps^(−1/2)

126 % e_out = sqrt(gamma_sp)*sigma % output operator for the light
spontaneously emitted outside the cavity mode, in ps^(−1/2), already
defined in Init_2level_Hilbert_space_and_operators.m

127 a_dag_vs_time = a_vs_time'; % definition of describing a_dag(t)
128
129 %Calculation of the state population
130 expect_sigma_dag_sigma_vs_time = expect(sigma_dag*sigma,rho_vs_time); %

List describing <sigma_dag sigma>(t), i.e. the excited state population
131 expect_sigma_sigma_dag_vs_time = expect(sigma*sigma_dag,rho_vs_time); %

List describing <sigma sigma_dag>(t), i.e. the ground state population
132
133 % Calculation of the total photon flux as a function of time
134 flux_injected_photons_vs_time = b_in_vs_time.^2; % total flux of injected

photons taking into account eta_in (so only the photons coupled to the
cavity mode), in ps(−1)

135 flux_reflected_photons_vs_time = real(expect(b_out_vs_time'*b_out_vs_time,
rho_vs_time));%flux in ps^(−1)

136 flux_transmitted_photons_vs_time = real(expect(c_out_vs_time'*c_out_vs_time
,rho_vs_time));%flux in ps^(−1)

137 flux_diffracted_photons_vs_time = real(expect(d_out_vs_time'*d_out_vs_time,
rho_vs_time)); %flux in ps^(−1)

138 flux_emitted_photons_vs_time = real(expect(e_out'*e_out,rho_vs_time));%flux
in ps^(−1)

139 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
140 %%%%%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
141 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
142
143 % For plot selection:
144 % − photon fluxes vs time vs delay : 'F'
145 % − occupation probabilities vs time: 'O'
146
147 plot_choice = ['F';'O'];
148 Plot2levelPRvsTime;
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C.1.3 First-order correlation and spectral densities in CW

1 clear
2 clc
3 close all
4
5 %% Important note: these paths must be modified if needed
6 addpath(genpath('..\QotoolboxV015'));
7 addpath(genpath('..\CQED subprograms'));
8 addpath(genpath('..\CQED device parameters'))
9 savepath
10
11 % In addition, for the mesolve function to operate the executable files
12 % (.exe) and batch files (.bat) contained in '[...] \QotoolboxV015\bin'
13 % have to be copied to a folder that is on the Windows system path, in the
14 % main hard drive where Windows is installed. This can be for example in:
15 % 'C:\Program Files\Matlab\R2014a\bin'.
16
17 % Warning: for the adiabatic version to converge, the tolerance in
18 % mesolve.m function must be reduced compared to the defaut values. For
19 % example:
20 % ode2file('ode_input.dat',L,rho0,t_list,struct('reltol',7e−8,'abstol',8e

−8));
21
22 %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

23 %%%%%%%%%%%%%%% g1SDCW : g1(tau) and spectral densities in CW
%%%%%%%%%%%%%%%%%%%%%%

24 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25 % This section called "g1SDCW" evaluates the first order temporal coherence
26 % g(1) as a function of the delay tau, for the various fields. It indicates
27 % the fractions of the coherent and incoherent contributions to the photon
28 % flux for each field. It also computes the Fourier transform of the
29 % incoherent contribution to g(1)(tau) as a function of omega, which gives
30 % the spectral density of flux for the incoherent part of the optical
31 % field. It verifies that the integral of the spectral densities
32 % corresponds to the photon flux (incoherent part only).
33 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

34
35 %% Choice of full model 'F' or adiabatic model 'A'
36 model = 'F';
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37 % Warning: in the full model 'F', the size of the Fock state must be large
38 % enough to ensure that the last Fock state is negligibly occupied.
39 % Artifacts can otherwise arise, especially when increasing the incoming
40 % power.
41
42 %%% Experimental conditions
43 detuning_QD_C_muev = 0; %Detuning between the QD and cavity frequencies, in

mueV
44 detuning_laser_QD_muev = 0; %Detuning between the pulse central frequency

and the QD frequency, in mueV
45 eta_in = 1; % Injection efficiency for the incoming photons (depends on

experimentally−achieved spatial coupling)
46 P_in_CW_pW = 10;% Incoming continuous−wave power in pW
47
48 % Parameters for the evaluation of the temporal evolution
49 %
50 % NB1: the maximum delay "tau_max" will also dictate the frequency
51 % resolution of the spectra, given by the angular frequency step
52 % "omega_step". The corresponding angular frequency lists are defined in
53 % the "Init_lists_..." subprogram (see also below details on the
54 % calculation and Fast Fourier Transform (FFT) algorithm)
55 %
56 % NB2: one should be careful that tau_max is large enough to include a good
57 % approximation of "infinite delays" (check that the g1(tau) function has
58 % had enough time to truly converge), while keeping a number of points
59 % large enough to ensure a good temporal resolution. This is especially
60 % important for high input powers where artifacts can appear.
61
62 tau_max = 4000; %maximum positive delay in ps
63 nb_points_delay = 2^13 + 1; % Number of points in the list of positive

delays (tau_list).
64 % −−> This must be of the form 2^N+1 for FFT optimization. For example:

2^13+1=8193
65
66 % Parameter defining the observed spectral window, in mueV, to avoid
67 % plotting and calculating spectra over an inadequately large angular
68 % frequency ranges. NB: should not exceed the size of the full FFT
69 % spectrum, which depends on the temporal time step and thus on tau_max and
70 % nb_points_delay.
71
72 width_spectral_window_muev = 300; % width of the spectral window to be

displayed, centered on omega_laser
73
74 %%%%%%%%%%% Plots %%%%%%%%
75 % For plot selection:
76 % − g1(tau) : 'G'
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77 % − Spectral densities of flux : 'S'
78 %
79 % plot_choice = ['G'];
80 plot_choice = ['G';'S'];
81
82 %%
83 % Initialization of parameters, operators, arrays, etc...
84 Init2levelDeviceParametersOngoingTest;
85 Init2levelHilbertSpaceAndOperators;
86 InitLists2levelG1SDCWvsDelayAndFrequency;
87
88 % Incoming power
89 P_in_CW = P_in_CW_pW*1e−12;% Incoming power of the CW laser, in W %%
90 b_in_CW = sqrt(eta_in*P_in_CW*1e−24/(hbar*omega_c)); % square root of the

photon number per unit time, in ps−1/2
91 flux_injected_photons = abs(b_in_CW)^2; % total flux of injected photons,

taking into account eta_in (so only the photons coupled to the cavity
mode), in ps−1

92
93 switch model
94 case 'A' % Adiabatic elimination model
95
96 Delta = 2*(omega_laser−omega_c)/kappa; % Normalized laser−cavity

detuning
97
98 % Hamiltonian including the QD operators, the cavity effect being

included by adiabatic elimination
99 Hamiltonian_CW = (omega_eff−omega_laser)*sigma_dag*sigma...
100 − 1i*sqrt(Gamma_0*eta_top)*(b_in_CW*sigma_dag/(1−1i*

Delta)−b_in_CW'*sigma/(1+1i*Delta)); %
Hamiltonian

101
102 % Definition of the operator "a" acting in the QD subspace,
103 % following adiabatic elimination (Eq. 10 of the pdf notes)
104 a = −2*g*sigma/(kappa*(1−1i*Delta_QDC))−2*sqrt(kappa_top)*b_in_CW*

Id/(kappa*(1−1i*Delta)); %annihilation operator a in adiabatic
approximation

105
106 % UNUSED HERE: Ansatz for the annihilation operator, obtained by

taking the time derivative of "a" equal to 0
107 % (OK for CW but not for PR (pulsed regime) programs)
108 % a = −2*g*sigma/(kappa*(1−1i*Delta))−2*sqrt(kappa_top)*b_in_CW*Id

/(kappa*(1−1i*Delta));
109
110 case 'F' % Full model
111
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112 % Hamiltonian including both QD and cavity operators
113 Hamiltonian_CW = (omega_d−omega_laser)*sigma_dag*sigma...
114 + (omega_c−omega_laser)*a_dag*a...
115 + 1i*g*(sigma_dag*a−a_dag*sigma)...
116 − 1i*sqrt(kappa_top)*b_in_CW*(a_dag−a);
117
118 end % end of the "switch model"
119
120 %Superoperator associated with the coherent processes (Hamiltonian)
121 L_coh = −1i * (spre(Hamiltonian_CW) − spost(Hamiltonian_CW));
122
123 %%%%%%%%% Calculation of the Liouvillian superoperator
124 Liouvillian = L_coh + L_incoh; % Total Liouvillian superoperator including

both coherent processes (Hamiltonian) and incoherent processes (
dissipative jumps)

125
126 %%%%%%%%% Calculation of the density matrix corresponding to the stationary

state
127 density_matrix_stationary_state = steady(Liouvillian);
128
129
130 %%%%%%%%%%%%%%%%%% Definition of the output operators %%%%%%%%%%%%%%%%%%%%%
131 % These are general formulas for both the adiabatic and full model
132 b_out = b_in_CW*Id + sqrt(kappa_top)*a; % definition of the operateur b_out

, i.e. the output operator for the reflected light, in ps^(−1/2)
133 c_out = sqrt(kappa_bottom)*a; % definition of the operateur c_out, i.e. the

output operator for the transmitted light, in ps^(−1/2)
134 d_out = sqrt(kappa_loss)*a; % definition of the operateur d_out, i.e. the

output operator for the diffracted/lost light, in ps^(−1/2)
135 % e_out = sqrt(gamma_sp)*sigma; % definition of the operateur e_out, i.e.

the output operator for the light spontaneously emitted outside the
cavity mode, in ps^(−1/2)

136
137 % NB: in the adiabatic model the operators could also have been written
138 % directly as a contribution from the empty cavity (term proportionnal to
139 % the identity operator "Id") and a contribution describing QD emission
140 % (term proportionnal to the decay operator "sigma"):
141 % b_out = b_in_CW*Id*(1−2*eta_top/(1−1i*Delta))−sqrt(Gamma_0*eta_top)*sigma

/(1−1i*Delta_QDC); %output flux operator, (eq.12)
142 % c_out = −2*g*sqrt(kappa_bottom)*sigma/(kappa*(1−1i*Delta_QDC))−2*sqrt(

kappa_top*kappa_bottom)*b_in_CW*Id/(kappa*(1−1i*Delta));
143 % d_out = −2*g*sqrt(kappa_loss)*sigma/(kappa*(1−1i*Delta_QDC))−2*sqrt(

kappa_top*kappa_loss)*b_in_CW*Id/(kappa*(1−1i*Delta)); %annihilation
operator a in adiabatic approximation

144 %
145 % Such formulas are obtained by directly replacing the value of "a" from
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146 % the adiabatic model, and are thus equivalent to the above, more general
147 % definitions. In addition, e_out is independent on the experimental
148 % conditions and thus defined in the subprogram
149 % "Init_2level_Hilbert_space_and operators.m". It is given here for
150 % information and clarity purposes
151
152
153 % Total photon flux for the various fields, i.e. expectation values of the

form
154 % < b'b >, including both coherent and incoherent contributions to the

optical flux
155 flux_reflected_photons=real(expect(b_out'*b_out,

density_matrix_stationary_state)); %flux in ps^(−1)
156 flux_transmitted_photons=real(expect(c_out'*c_out,

density_matrix_stationary_state)); %flux in ps^(−1)
157 flux_diffracted_photons=real(expect(d_out'*d_out,

density_matrix_stationary_state)); %flux in ps^(−1)
158 flux_emitted_photons=real(expect(e_out'*e_out,

density_matrix_stationary_state)); %flux in ps^(−1)
159
160 % Coherent part of the photon flux, i.e. expectation values of the form <
161 % b' > < b >, corresponding to the fraction of light that has a
162 % well−defined amplitude and phase (characterized by the complex field
163 % amplitude < b > ), with respect to the incoming monochromatic laser.
164 flux_reflected_photons_laser_coherent = abs(expect(b_out,

density_matrix_stationary_state))^2; %flux in ps^(−1)
165 flux_transmitted_photons_laser_coherent = abs(expect(c_out,

density_matrix_stationary_state))^2;%flux in ps^(−1)
166 flux_diffracted_photons_laser_coherent = abs(expect(d_out,

density_matrix_stationary_state))^2;%flux in ps^(−1)
167 flux_emitted_photons_laser_coherent = abs(expect(e_out,

density_matrix_stationary_state))^2;%flux in ps^(−1)
168
169 % Incoherent part of the photon flux, corresponding to the fraction of the
170 % optical flux which has no well−defined phase with respect to the incoming
171 % laser, and thus cannot interfere with it.
172 flux_reflected_photons_incoh = flux_reflected_photons−

flux_reflected_photons_laser_coherent;%flux in ps^(−1)
173 flux_transmitted_photons_incoh = flux_transmitted_photons−

flux_transmitted_photons_laser_coherent;%flux in ps^(−1)
174 flux_diffracted_photons_incoh = flux_diffracted_photons−

flux_diffracted_photons_laser_coherent;%flux in ps^(−1)
175 flux_emitted_photons_incoh = flux_emitted_photons−

flux_emitted_photons_laser_coherent;%flux in ps^(−1)
176
177 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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178 %%%%%%%%%%%%%%%%%%%%%%%%%%%% Evaluation of g1(tau) %%%%%%%%%%%%%%%%%%%%%%%
179 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
180 %
181 % For a given output field operator b, the two−time first−order
182 % auto−correlation function, g1(t1,t2), also called the "degree of
183 % first−order coherence", is defined by:
184 % g1(t1,t2)= < b'(t2) b(t1) > / sqrt[ <b'b>(t2) <b'b>(t1) ]
185 % Such a quantity plays a major role in any experiment using an
186 % interference between two time−delayed components of an optical field (as
187 % in a Michelson or Mach−Zender setup ensuring the interference of a short
188 % and long path). It also plays a huge role in the calculation of optical
189 % spectra (as in photoluminescence or resonance fluorescence experiments),
190 % due to the Wiener−Khinchine theorem which directly links the optical
191 % spectra with the Fourier Transform of the first−order autocorrelation
192 % function.
193 %
194 % To calculate such a quantity, one needs to use the "Quantum Regression
195 % Theorem". This theorem allows making the link between the Heisenberg
196 % representation of a two−time correlation function < A(t2) B(t1) >, where
197 % operators A and B are time−dependant, and the Schrodinger approach that
198 % we have to use here (where the density matrix varies). The "recipe" to
199 % deduce < A(t2)B(t1) > consists in:
200 % − Letting the density matrix evolve from time 0 to t1
201 % − Replacing rho(t1) by a fictitious density matrix B*rho(t1)
202 % − Computing the evolution of this fictitious density matrix between
203 % times t1 and t2
204 %− Calculating the expectation value of operator A using this fictitious

density matrix
205 %
206 % Note that even if B*rho(t1) is not a real/valid density matrix (it's not
207 % even Hermitian), we can at least make it of the order of unity, to ensure
208 % an optimal numerical convergence (especially important in the pulsed
209 % regime where for example the operator b_out is extremely small at the
210 % beginning of the pulse). Looking at the definition of g1(t1,t2), we see
211 % that this is readily obtained by taking the operator B as b/sqrt( <b'b>),
212 % with the consequence that operator A has to be taken equal to b'/sqrt(
213 % <b'b> ).
214 %
215 % NB1: To read more about the Quantum Regression Theorem, and the validity
216 % of the "recipe": −−>
217 % http://atomoptics−nas.uoregon.edu/~dsteck/teaching/quantum−optics/quantum

−optics−notes.pdf
218 % (see in particular Sec. 5.7.3, page 199)
219 % −−> "Quantum Noise" by Gardiner & Zoller
220 % (see in particular Eq. 5.2.11 and an alternative formulation in Sec.
221 % 5.2.3)
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222 % −−> "Statistical Methods in Quantum Optics 1" by H. J. Carmichael
223 % (see in particular Sec. 1.5 up to equations 1.97 and 1. 98)
224
225 % NB2: The approach used in the "g2CW_vs_delay" and "g2PR_vs_t1_t2"
226 % programs, to calculate second−order autocorrelation functions, is more
227 % focused on the physical/experimental definition of these quantities. It
228 % also makes use of real/normalized/valid density matrices, contrary to the
229 % fictitious density matrices used below. But the theory behind is also
230 % entirely linked to the use of the Quantum Regression Theorem.
231
232 % NB3: In the stationary regime, under CW excitation, one can take any
233 % initial time as time 0, and consider the density matrix of the stationary
234 % state at this time. Also, the flux <b'b> does not depend on time, hence
235 % the degree of coherence only depends on the delay tau through:
236 % g1(tau)= < b'(tau) b(0) > / <b'b>(0)
237 % From this formula one can directly see that at zero delay g1(0) has to be
238 % equal to unity, indeed:
239 % g1(0)= < b'b > / < b'b > = 1
240 % In addition, for very long delays one can guess that the field at delay
241 % tau=infty is completely uncorrelated from the field at delay zero, and we
242 % find that g1(infty) has to be equal to the coherent fraction of the
243 % optical field, corresponding to the fraction of light that has a
244 % well−defined amplitude and phase with respect to the incoming
245 % monochromatic laser. Indeed:
246 % g1(infty) = < b' > < b > / < b'b >
247 % where we used < b'(infty) b(0) > = < b' (infty) > < b(0) > (uncorrelated
248 % fields). Conversely, the difference between g1(0) and g(infty) gives the
249 % incoherent fraction of the optical field, i.e the fraction of intensity
250 % with no well−defined phase with respect to the incoming laser.
251
252
253 % Evaluation of g1(tau) for positive delays only, starting from the
254 % stationary−state density matrix at time 0.
255
256 tic %Start timer to evaluate the computation time
257 g_1_reflected_vs_tau = expect(b_out'/sqrt(flux_reflected_photons),mesolve(

Liouvillian,b_out/sqrt(flux_reflected_photons)*
density_matrix_stationary_state,tau_list)); %Equivalent to <
b_out_normalized_dag(t) b_out_normalized(t+tau)> for t−−> infinity

258 g_1_transmitted_vs_tau = expect(c_out'/sqrt(flux_transmitted_photons),
mesolve(Liouvillian,c_out/sqrt(flux_transmitted_photons)*
density_matrix_stationary_state,tau_list)); %Equivalent to <
c_out_normalized_dag(t) c_out_normalized(t+tau)> for t−−> infinity
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259 g_1_emitted_vs_tau = expect(e_out'/sqrt(flux_emitted_photons),mesolve(
Liouvillian,e_out/sqrt(flux_emitted_photons)*
density_matrix_stationary_state,tau_list)); %Equivalent to <
e_out_normalized_dag(t) e_out_normalized(t+tau)> for t−−> infinity

260 toc % Stop timer
261
262 % Evaluation of g1(tau) for both negative and positive delays (

full_tau_list).
263 full_g_1_reflected_vs_tau = [fliplr(conj (g_1_reflected_vs_tau(2:end−1)))

g_1_reflected_vs_tau ];
264 full_g_1_transmitted_vs_tau = [fliplr(conj (g_1_transmitted_vs_tau(2:end−1)

)) g_1_transmitted_vs_tau ];
265 full_g_1_emitted_vs_tau = [fliplr(conj (g_1_emitted_vs_tau(2:end−1)))

g_1_emitted_vs_tau ];
266 % NB: It is ensured that the total number of points is a power of 2, as

required for
267 % the calculation of spectra using the Fast Fourier Transform algorithm
268
269
270 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
271 %%%%%%%%%%%%%%%%%%%%%%%%% Spectral densities of flux %%%%%%%%%%%%%%%%%%%%%%
272 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
273
274 % The optical spectrum of a CW optical field is characterized by its
275 % "spectral density of flux", S(omega), whose integral over the whole
276 % spectrum gives the total photon flux. Computing such a spectrum requires
277 % using the "Wiener−Khinchine theorem", which states that the spectral
278 % density of flux, for a field described by operator "b", is the Fourier
279 % Transform of the non−normalized autocorrelation function vs delay :
280 % S(\omega) = (1/2pi)* \int < b'(\tau) b(0) > exp(− i \omega \tau) d\tau
281 % The normalization of this quantity implies that indeed the integral of
282 % S(omega) is the total flux:
283 % \int S(omega) d\omega = < b'(0) b(0) > = total flux
284 %
285 % As we saw above, however, the quantity < b'(tau) b > is the sum of two
286 % contributions:
287 % − A contribution < b' > < b >, corresponding to the coherent part of
288 % the flux.
289 % For monochromatic (i.e. infinitely coherent) CW laser excitation,
290 % this contribution never decays even at infinite delay (constant value
291 % < b' > < b >).
292 % − Complementary, a contribution < b'(tau)b > − < b' > < b >, induced
293 % by the incoherent
294 % part of the flux. This contribution tends towards zero for large
295 % delays.
296 %
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297 % Thus, after Fourier transforming < b'(tau) b > to obtain the spectrum:
298 % − The first constant contribution leads to a delta function centered on
299 % omega_laser,
300 % with an area given by < b' > < b >: this is the coherent part of the
301 % optical field, which is monochromatic and oscillating at the same
302 % frequency as the laser (with a phase and amplitude given by the
303 % complex number < b > ).
304 % − The decaying contribution leads to a continuous spectrum, which can
305 % not interfere
306 % with the incoming laser since it is not monochromatic: this is the
307 % spectrum of the incoherent part of the optical field, whose total
308 % area is the incoherent flux <b'b> − <b'><b>. Typically, in the
309 % weak−coupling regime this incoherent spectrum has the shape of a
310 % single Lorentzian peak at low power, but of a Mollow triplet at high
311 % power. This is this incoherent part of the spectrum that is
312 % calculated here, by Fourier transforming < b'(tau) b > − < b' >< b >
313 % as a function of the delay tau.
314 %
315 % NB1: To know more about Wiener−Khinchin theorem and the computation of
316 % optical spectra:
317 % −−> http://atomoptics−nas.uoregon.edu/~dsteck/teaching/quantum−optics/

quantum−optics−notes.pdf
318 % (see in particular Chap. 2 for Wiener−Khinchin theorem, and Sec. 5.7
319 % for resonance fluorescence)
320 % −−> "The Quantum Theory of Light" by Rodney Loudon
321 % (see in particular Chap. 3 for classical optics, and Chap. 8 for
322 % resonance fluorescence spectra)
323 % −−> "Statistical Methods in Quantum Optics 1" by Howard Carmichael
324 % (see in particular Sec. Z.3.4)
325 %
326 % NB2: We choose to define a spectral density in terms of the photon energy
327 % (in mueV), instead of frequency (in ps^−1) or angular frequency (in
328 % rad/ps). As a flux is measured here in ps^−1 (number of photons per unit
329 % time), the dimension of our spectral densities has to be in ps^−1 / mueV.
330 % Indeed each spectral contribution to the total flux is obtained through
331 % multiplying the spectral density of flux (in ps^−1 / mueV) by the photon
332 % energy step (in mueV).
333 %
334 % NB3: The default technique used here is the Fast Fourier Transform (FFT)
335 % algorithm, which can provide accurate spectra in a very fast way provided
336 % we use a number of points that is a power of 2 (same number of points in
337 % the time and frequency domain). The spectral width of the FFT spectrum
338 % (here denoted as "FFT_sampling_frequency") and its resolution (here
339 % related to the step in angular frequency, "omega_step") are fixed by the
340 % width and resolution used in in the time domain (related to "tau_max" and
341 % "tau_step" characterizing the "full_tau_list"). In practice, we are
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342 % interested only in a spectral window of width
343 % "width_spectral_window_muev", and the list of angular frequencies omega
344 % in "omega_list" (that we use to plot quantities "versus omega" and
345 % calculate integrals) is just a subset of the full FFT spectrum, centered
346 % on omega_laser. Also note that the raw FFT spectra have to be adequately
347 % transformed into real physical quantities:
348 % a) Proper normalization of the FFT result has to be ensured, so that
349 % the integral of the
350 % spectral density indeed corresponds to the optical flux in ps^−1
351 % (or more precisely the incoherent component of the optical flux, as
352 % discussed above).
353 % b) One needs to ensure that the optical spectra are centered on the
354 % laser frequency/photon
355 % energy, to take into account the fact that we worked in the
356 % rotating frame at this laser frequency. Using the "fftshift"
357 % function just ensures that the first half of the FFT spectrum
358 % corresponds to negative frequencies, and the second half to
359 % positive frequencies. In addition, we ensure that the lists of
360 % angular frequencies ("omega_list_full_spectrum" for the complete
361 % list in rad/ps, "omega_list" for the selected spectral window in
362 % rad/ps, and "omega_list_eV" for the selected energy window in eV)
363 % are defined to be centered. on the laser frequency/photon energy.
364 % c) The list of delays in "full_tau_list" includes negative and

positive
365 % delays, with the
366 % zero delay in the middle of the list. But the FFT algorithm
367 % considers that this is the first point of the list which is the
368 % time zero, which leads to a frequency−dependent phase shift along
369 % the full FFT spectrum. This phase shift has to be compensated (the
370 % spectral density of flux is a real quantity), which is done through
371 % a multiplication by "phase_shift_compensation_full_FFT_spectrum".
372 % −−> All the angular frequency lists and quantities related to the
373 % calculation of the FFT spectra
374 % are defined in the "Init_lists_..." subprogram, for clarity.
375
376
377 % Computing the spectral densities of flux over the full frequency spectrum
378 spectral_density_flux_reflected_photons_incoh_full_spectrum = 1/(2*pi)*

fftshift(fft(full_g_1_reflected_vs_tau*flux_reflected_photons−
flux_reflected_photons_laser_coherent,nb_points_full_spectrum)./
phase_shift_compensation_vs_omega_full_spectrum)/FFT_sampling_frequency

* (ev/hbar*1e−18); % spectral density in ps^−1 / muev
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379 spectral_density_flux_transmitted_photons_incoh_full_spectrum = 1/(2*pi)*
fftshift(fft(full_g_1_transmitted_vs_tau*flux_transmitted_photons−
flux_transmitted_photons_laser_coherent,nb_points_full_spectrum)./
phase_shift_compensation_vs_omega_full_spectrum)/FFT_sampling_frequency

* (ev/hbar*1e−18); % spectral density in ps^−1 / muev
380 spectral_density_flux_emitted_photons_incoh_full_spectrum = 1/(2*pi)*

fftshift(fft(full_g_1_emitted_vs_tau*flux_emitted_photons−
flux_emitted_photons_laser_coherent,nb_points_full_spectrum)./
phase_shift_compensation_vs_omega_full_spectrum)/FFT_sampling_frequency

* (ev/hbar*1e−18); % spectral density in ps^−1 / mueV
381
382 % Spectral densities of flux as a function of omega, limited to the
383 % selected spectra window (range of angular frequencies defined by "omega
384 % list")
385 spectral_density_flux_reflected_photons_incoh_vs_omega =

spectral_density_flux_reflected_photons_incoh_full_spectrum(
index_min_zoomed_spectrum:index_max_zoomed_spectrum); % spectrum
restricted to the selected spectral window, in ps^−1 / mueV

386 spectral_density_flux_transmitted_photons_incoh_vs_omega =
spectral_density_flux_transmitted_photons_incoh_full_spectrum(
index_min_zoomed_spectrum:index_max_zoomed_spectrum); % spectrum
restricted to the selected spectral window, ps^−1 / mueV

387 spectral_density_flux_emitted_photons_incoh_vs_omega =
spectral_density_flux_emitted_photons_incoh_full_spectrum(
index_min_zoomed_spectrum:index_max_zoomed_spectrum);% spectrum
restriced to the selected spectral window, in ps^−1 / mueV

388
389
390 %%
391 % %%% Alternative method: Fourier transform by explicit calculation of the
392 % Fourier integrals % This method is very inefficient in terms of computing
393 % time, yet is crucial to allow verifying % the results obtained with the
394 % FFT algorithm: it must give the same result as the FFT method.
395 %
396 % tic % Start timer to evaluate the computation
397 %
398 % for omega_index=1:nb_points_spectrum
399 % spectral_density_flux_reflected_photons_incoh_vs_omega(omega_index) =

1/(2*pi)* sum ( (full_g_1_reflected_vs_tau*flux_reflected_photons−
flux_reflected_photons_laser_coherent) .* exp(−1i* (omega_list(
omega_index) − omega_laser) .*full_tau_list )) * tau_step * (ev/hbar*1e
−18) ; % spectral density in ps^−1 / mueV

80



C.1 – Main scripts

400 % spectral_density_flux_transmitted_photons_incoh_vs_omega(omega_index)
= 1/(2*pi)* sum ( (full_g_1_transmitted_vs_tau*
flux_transmitted_photons−flux_transmitted_photons_laser_coherent) .*
exp(−1i* (omega_list(omega_index) − omega_laser) .*full_tau_list )) *
tau_step * (ev/hbar*1e−18); % spectral density in ps^−1 / mueV

401 % spectral_density_flux_emitted_photons_incoh_vs_omega(omega_index) =
1/(2*pi)* sum ( (full_g_1_emitted_vs_tau*flux_emitted_photons−
flux_emitted_photons_laser_coherent) .* exp(−1i* (omega_list(
omega_index) − omega_laser) .*full_tau_list )) * tau_step * (ev/hbar*1e
−18); % spectral density in ps^−1 / mueV

402 % end
403 %
404 % toc % Stop timer
405
406
407 %% %%%%%%%%% Plots %%%%%%%%
408
409 Plot2LevelG1SDCWvsDelayAndFrequency;

C.1.4 First-order correlation and Wigner Distribution Function
in PW

1 clear
2 clc
3 close all
4
5 %% Important note: these paths must be modified if needed
6 addpath(genpath('..\QotoolboxV015'));
7 addpath(genpath('..\CQED subprograms'));
8 addpath(genpath('..\CQED device parameters'))
9 savepath
10
11 % In addition, for the mesolve function to operate the executable files
12 % (.exe) and batch files (.bat) contained in '[...] \QotoolboxV015\bin'
13 % have to be copied to a folder that is on the Windows system path, in the
14 % main hard drive where Windows is installed. This can be for example in:
15 % 'C:\Program Files\Matlab\R2014a\bin'.
16
17 % Warning: for the adiabatic version to converge, the tolerance in
18 % mesolve.m function must be reduced compared to the defaut values. For
19 % example:
20 % ode2file('ode_input.dat',L,rho0,t_list,struct('reltol',7e−8,'abstol',8e

−8));
21
22
23 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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24 %%%%%%%%%%% g1SDPR : g1(t1,t2) and spectral densities in PR %%%%%%%%%%%
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 %This section labeled "g1SDPR" studies the resonant resonance fluorescence
27 %spectra in pulsed regime, by prior evaluation of the normalized
28 %correlation function g1(t1,t2). By setting t=(t1−t2)/2 and tau = t2−t1, an
29 %interpolated (unnormalized) G1(t,tau) is computed from G1(t1,t2). The
30 %Fourier Transform is evaluated over tau to find the associated
31 %Wigner−Ville−Distribution WDF(t,omega). To check its normalization,
32 %WDF(t,omega) is integrated over omega and compared with the photon fluxes.
33 %WDF is integrated over t for determining the spectral energy density
34 %ESD(omega), which is what is measured by the spectrometer. It is verified
35 %that the area of this spectrum gives the total number of photons. At last,
36 %the spectra of the total and the coherent component of the fluxes are
37 %compared for the reflected, transmitted, diffracted and emitted fields.
38 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39
40 %% Choice of full model 'F' or adiabatic model 'A'
41 model = 'A';
42
43 %% Experimental conditions (to be edited)
44 detuning_QD_C_muev = 0; %Detuning between the QD and cavity frequencies, in

mueV
45 detuning_pulse_QD_muev = 0; %Detuning between the pulse central frequency

and the QD frequency, in mueV
46 eta_in = 1; % Injection efficiency for the incoming photons (depends on

experimentally−achieved spatial coupling)
47 Nb_photons_pulse = 1; % Average number of incoming photons in a pulse.

This quantity should be multiplied by eta_in to know the number of
incoming photons actually coupled to the optical mode

48 FWHM_pulse = 15; %in ps, full width at half−maximum of the incoming
Gaussian pulse intensity (unit: ps since angular frequencies are in rad
/ps)

49 % Parameters for the evaluation of the temporal evolution
50 %
51 % NB1: the maximum delay "t_max_ps" will also dictate the frequency
52 % resolution of the spectra, given by the angular frequency step
53 % "omega_step". The corresponding angular frequency lists are defined in
54 % the "Init_lists_..." subprogram (see also below details on the
55 % calculation and Fast Fourier Transform (FFT) algorithm)
56 %
57 % NB2: one should be careful that "t_max_ps" is large enough to include a
58 % good approximation of "infinite delays" (check that the g1(tau) function
59 % has had enough time to truly converge), while keeping a number of points
60 % large enough to ensure a good temporal resolution. This is especially
61 % important for high input powers where artifacts can appear.
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62 t_delay = 2*FWHM_pulse; % Time at which the pulse is maximally intense, so
that the computation starts when the pulse has not arrived yet

63 t_max_ps = (t_delay + 4*FWHM_pulse)*5; % Final time where we stop the
computation and plots of time evolutions

64 nb_points_time = 2^7; % Time resolution/Number of iterations / <100000
otherwise the integrating the master equation gets difficult (odesolve)
)

65 % −−> This should be such that 4*nb_points_time−3 is less than a power of 2
66 % if one wants to reduce the amount of zero padding, the latter being
67 % required for FFT optimization.
68 t_min = 0.1*FWHM_pulse; % Initial time considered for the computations and

plots of time evolutions
69 width_spectral_window_muev = 300; % width of the spectral window to be

displayed, centered on omega_pulse
70 %% Initialization of parameters, operators, arrays, etc...
71 Init2levelDeviceParametersOngoingTest;
72 Init2levelHilbertSpaceAndOperators;
73 InitMaps2levelG1wdfPR;
74 %%
75 % Definition of the input field in ps^(−1/2), in the form of a fseries (

necessary for integrating the master equation)
76 Standard_deviation_b_in_PR = FWHM_pulse/(2*sqrt(log(2))); %Deduced from the

properties of a Gaussian function
77 b_in_fn = fn('gauss',t_delay,Standard_deviation_b_in_PR) * sqrt( eta_in*

Nb_photons_pulse / ( sqrt(pi) * Standard_deviation_b_in_PR ) ); %
square root of the incoming photon number per time unit, in ps−1/2

78 b_in_vs_time = fsval(b_in_fn,t_list); %scalar array representing b_in vs
time

79
80 % Initial density matrix before the pulse has started
81 switch model
82 case 'F' %Full model
83 psi0 = tensor(Vacuum_state,g_ket); % Initial state: tensorial

product of photonic vacuum and QD ground state
84 rho0 = psi0*psi0'; % Density matrix corresponding to the initial

pure state
85 case 'A' % Adiabatic model
86 rho0 = g_ket*g_ket'; % Density matrix corresponding to the initial

pure state
87 end
88
89 %% %%%%%%%% System Hamiltonian and time−dependent operators %%%%%%%%%%%%
90 %
91 % The system Hamiltonian is time−dependent due to the function b_in_fn
92 % describing the input field b_in(t).
93
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94 % In addition, in the case of adiabatic elimination of the cavity mode an
effective

95 % operator "a" is defined, acting on the QD subspace, based on the formula
for

96 % adiabatic elimination. Since this formula depends
97 % on b_in(t), we define a time−dependent quantity "a_vs_time", which is an
98 % array containing, for each time of t_list, the corresponding operator
99 % "a".
100 % In the full model case, to simplify the following calculations, we define

the
101 % same quantity a_vs_time, yet this time this array contains the same

operator
102 % (annihilation operator "a" acting on the cavity subspace), replicated for

all
103 % times of t_list.
104
105 switch model
106 case 'A' % Adiabatic model
107
108 Delta = 2*(omega_pulse−omega_c)/kappa; %normalized pulse

detuning
109
110 %%%%%%%%% Definition of the adiabatic−model Hamiltonian (in the

frame rotating at angular frequency omega_pulse)
111 H_PR = (omega_eff−omega_pulse)*sigma_dag*sigma − 1i*sqrt(

Gamma_0*eta_top)*...
112 ((1−1i*Delta)^(−1)*b_in_fn*sigma_dag−(1+1i*Delta)^(−1)*

b_in_fn'*sigma); % Hamiltonian
113
114 %%% Definition of the time−dependent operator "a_vs_time"

acting in the QD subspace
115 a_vs_time = −2*(kappa*(1−1i*Delta_QDC))^(−1)*g*sigma*Id_vs_time

−2*sqrt(kappa_top)*(kappa*(1−1i*Delta))^(−1)*fsval(b_in_fn,
t_list).*Id_vs_time; %annihilation operator a in adiabatic
approximation, as fseries

116
117 case 'F' % Full model
118
119 %%%%%%%%% Definition of the full−model Hamiltonian (in the

frame rotating at angular frequency omega_pulse)
120 H_PR = (omega_d−omega_pulse)*sigma_dag*sigma...
121 + (omega_c−omega_pulse)*a_dag*a...
122 + 1i*g*(sigma_dag*a−a_dag*sigma)...
123 − 1i*sqrt(kappa_top)*b_in_fn*(a_dag−a);
124
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125 % Definition of the operator a_vs_time, even though "a" is
constant in the full model, to reduce the number of "switch
" in the following code

126 a_vs_time = a*Id_vs_time;
127
128 end % end of the "switch model"
129
130 %Superoperator associated to the coherent processes (Hamiltonian)
131 L_coh = −1i * (spre(H_PR) − spost(H_PR));
132
133 %%%%%%%%% Calculation of the Liouvillian superoperator
134 Liouvillian = L_coh + L_incoh; % Total Liouvillian superoperator including

both coherent processes (Hamiltonian) and incoherent processes (
dissipative jumps)

135
136 %%%%%%%%%%% Numerical Integration of the Master Equation %%%%%%%%
137
138 % Computation of preliminary time evolution, between 0 (long before the

pulse)
139 % and t_min (time at which we want to start plotting and integrating the

physical
140 % quantities. Such a computation can be performed with very low time

resolution,
141 % i.e. the corresponding t_list_before_t_min has a very low number of

points,
142 % since the density matrix almost doesn't evolve between 0 and t_min.
143 %
144 % NB: such a preliminary time evolution is mandatory to avoid having

strictly
145 % zero expectation values for some quantities (such as the input or output

fields),
146 % during the following time evolution between t_min and t_max). Indeed,

zero
147 % expectation values lead to NaN errors when used in normalizing physical
148 % quantities, such as conditional density matrices (see below), or
149 % Stokes/Bloch coordinates in the Poincare'/Bloch sphere.
150
151 density_matrix_vs_time_before_t_min = mesolve(Liouvillian,rho0,

t_list_before_t_min); %master equation solver based on odesolve: first
evolution of the system

152 density_matrix_at_t_min = density_matrix_vs_time_before_t_min{
nb_points_time_before_t_min};

153
154 % Computation of the density matrix vs time with t_list, i.e. between t_min
155 % and t_max, requiring a large enough time resolution.
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156 density_matrix_vs_time = mesolve(Liouvillian,density_matrix_at_t_min,t_list
); % second evolution of the system

157
158 %%%%%%%%%%%%%%%%%% Definition of the output operators %%%%%%%%%%%%%%%%%%%%%
159 % These are general formulas for both the adiabatic and full model,

depending on "a_vs_time"
160
161 b_out_vs_time = b_in_vs_time*Id_vs_time + sqrt(kappa_top)*a_vs_time; %

definition of the operator b_out, i.e. the output operator for the
reflected light, in ps^(−1/2)

162 c_out_vs_time = sqrt(kappa_bottom)*a_vs_time; % definition of the operator
c_out_vs_time, i.e. the output operator for the transmitted light, in
ps^(−1/2)

163 d_out_vs_time = sqrt(kappa_loss)*a_vs_time; % UNUSED HERE: definition of
the operator d_out_vs_time, i.e. the output operator for the diffracted
/lost light, in ps^(−1/2)

164 % e_out = sqrt(gamma_sp)*sigma % output operator for the light
spontaneously emitted outside the cavity mode, in ps^(−1/2), already
defined in Init_2level_Hilbert_space_and_operators.m

165
166 % Calculation of the total photon flux as a function of time, for the

various optical fields
167 flux_injected_photons_vs_time = b_in_vs_time.^2; % total flux of injected

photons taking into account eta_in (so only the photons coupled to the
cavity mode), in ps(−1)

168 flux_reflected_photons_vs_time = real(expect(b_out_vs_time'*b_out_vs_time,
density_matrix_vs_time)); %flux in ps^(−1)

169 flux_transmitted_photons_vs_time = real(expect(c_out_vs_time'*c_out_vs_time
,density_matrix_vs_time)); %flux in ps^(−1)

170 flux_diffracted_photons_vs_time = real(expect(d_out_vs_time'*d_out_vs_time,
density_matrix_vs_time)); %flux in ps^(−1)

171 flux_emitted_photons_vs_time = real(expect(e_out'*e_out,
density_matrix_vs_time)); %flux in ps^(−1)

172
173 % Calculation of the total coherent photon flux as a function of time, for

the various optical fields
174 flux_reflected_photons_pulse_coherent_vs_time= abs(expect(b_out_vs_time,

density_matrix_vs_time)).^2; % coherent flux = <b_out'(t)><b_out(t)> in
ps^{−1}

175 flux_transmitted_photons_pulse_coherent_vs_time=abs(expect(c_out_vs_time,
density_matrix_vs_time)).^2; % coherent flux = <c_out'(t1)><c_out(t2)>
in ps^{−1}

176 flux_diffracted_photons_pulse_coherent_vs_time=abs(expect(d_out_vs_time,
density_matrix_vs_time)).^2; % coherent flux = <d_out'(t1)><d_out(t2)>
in ps^{−1}
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177 flux_emitted_photons_pulse_coherent_vs_time=abs(expect(e_out,
density_matrix_vs_time)).^2; % coherent flux = <e_out'(t1)><e_out(t2)>
in ps^{−1}

178
179 %Computing the number of reflected/transmitted/emitted photons, by

integrating over all times in t_list
180 Nb_reflected_photons = trapz(t_list,flux_reflected_photons_vs_time);
181 Nb_transmitted_photons = trapz(t_list,flux_transmitted_photons_vs_time);
182 Nb_diffracted_photons = trapz(t_list,flux_diffracted_photons_vs_time);
183 Nb_emitted_photons = trapz(t_list,flux_emitted_photons_vs_time);
184
185 %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

186 %%%%%%%%%%%%%%%%%%%%%%%%%%%% Evaluation of g1(t1,t2)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%

187 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

188 %
189 % For a given output field operator b, the two−time first−order auto−

correlation function,
190 % g1(t1,t2), also called the "degree of first−order coherence", is defined

by:
191 % g1(t1,t2)= < b'(t1) b(t2) > / sqrt[ <b'(t1)> <b(t2)> ]
192 % %
193 % To calculate such a quantity, one can use the Heisenberg representation

of a two−time
194 % correlation function < A(t1) B(t2) >, where operators A and B are time−

dependent, and
195 % the Schroedinger approach that we have to use here (where the density

matrix varies).
196 % The "recipe" to deduce < A(t1)B(t2) > consists in:
197 % − Letting the density matrix evolve from time 0 to t1
198 % − Replacing rho(t1) by a fictitious density matrix rho(t1)*A
199 % − Computing the evolution of this fictitious density matrix between

times t1 and t2
200 % − Calculating the expectation value of operator B using this

fictitious density matrix
201 %
202 % Note that even if rho(t1)*A is not a real/valid density matrix (it's not

even Hermitian),
203 % we can at least make it of the order of unity, to ensure an optimal

numerical convergence
204 % (especially important in the pulsed regime where for example the operator

b_out is
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205 % extremely small at the beginning of the pulse). Looking at the definition
of g1(t1,t2),

206 % we see that this is readily obtained by taking the operator B as b/sqrt(
<b'b>), with

207 % the consequence that operator A has to be taken equal to b'/sqrt( <b'b> )
.

208
209 % NB1: The approach used in the "g2CW_vs_delay" and "g2PR_vs_t1_t2"

programs, to calculate
210 % second−order autocorrelation functions, is more focused on the physical/

experimental
211 % definition of these quantities. It also makes use of real/normalized/

valid density matrices,
212 % contrary to the fictitious density matrices used below. But the theory

behind is also
213 % entirely linked to the use of the Quantum Regression Theorem.
214
215 %%%%%%%%%%% Calculation of fictitious density matrix rho(t1)*A %%%%%%%%%%
216 % In the following the "density_matrix_times_OPERATOR_dag_vs_t1"−s are
217 % defined for each value of time t1 in t_list.
218
219 % NB: notice the normalization b'/sqrt( <b'b> ) to optimize numerical
220 % convergence
221 density_matrix_times_b_out_dag_vs_t1 = density_matrix_vs_time*b_out_vs_time

'./sqrt(flux_reflected_photons_vs_time);
222 density_matrix_times_c_out_dag_vs_t1 = density_matrix_vs_time*c_out_vs_time

'./sqrt(flux_transmitted_photons_vs_time);
223 density_matrix_times_d_out_dag_vs_t1 = density_matrix_vs_time*d_out_vs_time

'./sqrt(flux_diffracted_photons_vs_time);
224 density_matrix_times_e_out_dag_vs_t1 = density_matrix_vs_time*e_out'./sqrt(

flux_emitted_photons_vs_time);
225
226 % NB: "tic" is used as a "start" time for the measurement of the computing

time between "tic" and "toc"
227 %tic
228
229 %Cycle over all times t1 in t_list, corresponding to the moment where a

first click occurred
230 for t1_index = 1:nb_points_time
231
232 % Both t1 and t2 are values in t_list. However, to compute the
233 % "fictitious density matrix B*rho(t1)" vs t2, we consider
234 % only t2 >= t1, and we need to deal with the fact that there are less
235 % and less remaining values of t2 in t_list, when t1 increases. To keep
236 % all quantities defined in the full t_list, for each time t1 < t2 we
237 % have a "zero" density matrix, i.e. a fictitious density matrix with
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238 % only zero elements−
239
240 % Incrementing the array of zero density matrices, each time t1_index
241 % is increased, to fill the density matrix for times t1 < t2
242
243 if (t1_index >=2) % No need to include a zero density matrix at the

first value of t1
244 zero_density_matrix_vs_t2_before_t1{t1_index−1} = 0*Id; %null

density matrix with the same dimensions of the involved Hilbert
space

245 end
246
247 % Array of normalized density matrices, conditioned on the detection of

a
248 % click at time t1, as a function of t2 >= t1 (and zero otherwise)
249
250 % NB: notice the normalization b'/sqrt( <b'b> ) to optimize numerical
251 % convergence
252 density_matrix_times_b_out_dag_vs_t2 = [

zero_density_matrix_vs_t2_before_t1 mesolve(Liouvillian,
density_matrix_times_b_out_dag_vs_t1{t1_index},t_list(t1_index:end)
)]./sqrt(flux_reflected_photons_vs_time);

253 density_matrix_times_c_out_dag_vs_t2 = [
zero_density_matrix_vs_t2_before_t1 mesolve(Liouvillian,
density_matrix_times_c_out_dag_vs_t1{t1_index},t_list(t1_index:end)
)]./sqrt(flux_transmitted_photons_vs_time);

254 density_matrix_times_d_out_dag_vs_t2 = [
zero_density_matrix_vs_t2_before_t1 mesolve(Liouvillian,
density_matrix_times_d_out_dag_vs_t1{t1_index},t_list(t1_index:end)
)]./sqrt(flux_diffracted_photons_vs_time);

255 density_matrix_times_e_out_dag_vs_t2 = [
zero_density_matrix_vs_t2_before_t1 mesolve(Liouvillian,
density_matrix_times_e_out_dag_vs_t1{t1_index},t_list(t1_index:end)
)]./sqrt(flux_emitted_photons_vs_time);

256
257
258 % Evaluation of g1(t1,t2) as described in the general notes above, for

t2 >= t1 (and zero otherwise)
259 % NB: the normalization by the photon flux is already considered in

density_matrix_times_OPERATOR_dag_vs_t2
260 g1_reflected_vs_t1_t2(t1_index,:) = expect(b_out_vs_time,

density_matrix_times_b_out_dag_vs_t2);
261 g1_transmitted_vs_t1_t2(t1_index,:) = expect(c_out_vs_time,

density_matrix_times_c_out_dag_vs_t2);
262 g1_diffracted_vs_t1_t2(t1_index,:) = expect(d_out_vs_time,

density_matrix_times_d_out_dag_vs_t2);
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263 g1_emitted_vs_t1_t2(t1_index,:) = expect(e_out,
density_matrix_times_e_out_dag_vs_t2);

264 end
265 %%
266 %%%%% Completion of previous partially−calculated maps vs t1,t2, to include

the case where t2 < t1
267
268 % Due to the symmetry between t1 and t2, we have to use properties like g1(

t1,t2)=g1(t2,t1)* to fill
269 % the voids in the quantities that we have only partially calculated yet
270 % (since we systematically considered a zero value when t2 < t1. For each
271 % map function of t1 and t2, this completion is obtained by adding it to
272 % its transpose conjugate (to replace the zeros at t2 < t1) and dividing by
273 % 2 the elements along the diagonal (to avoid counting twice the case where
274 % t2=t1). This is done via an ad−hoc matrix idx below:
275
276 idx = ones(nb_points_time)−0.5*diag(ones(nb_points_time,1)); % to divide by

2 the elements along the diagonal
277
278 % Completed g1(t1,t2) for the various optical fields
279
280 g1_reflected_vs_t1_t2 = (g1_reflected_vs_t1_t2+g1_reflected_vs_t1_t2').*idx

;
281 g1_transmitted_vs_t1_t2 = (g1_transmitted_vs_t1_t2+g1_transmitted_vs_t1_t2

').*idx;
282 g1_diffracted_vs_t1_t2 = (g1_diffracted_vs_t1_t2+g1_diffracted_vs_t1_t2').*

idx;
283 g1_emitted_vs_t1_t2 = (g1_emitted_vs_t1_t2+g1_emitted_vs_t1_t2').*idx;
284
285 % G1 correlation vs (t1,t2), e.g. <b_out'(t1) b_out(t2)>
286 G1_reflected_vs_t1_t2 = g1_reflected_vs_t1_t2.*(

flux_reflected_photons_vs_time'*flux_reflected_photons_vs_time).^0.5;
287 G1_transmitted_vs_t1_t2 = g1_transmitted_vs_t1_t2.*(

flux_transmitted_photons_vs_time'*flux_transmitted_photons_vs_time)
.^0.5;

288 G1_diffracted_vs_t1_t2 = g1_diffracted_vs_t1_t2.*(
flux_diffracted_photons_vs_time'*flux_diffracted_photons_vs_time).^0.5;

289 G1_emitted_vs_t1_t2 = g1_emitted_vs_t1_t2.*(flux_emitted_photons_vs_time'*
flux_emitted_photons_vs_time).^0.5;

290
291 % coherent component cross product, e.g <b_out'(t1)> <b_out(t2)>
292 expect_b_out_dag_t1_times_expect_b_out_t2 = expect(b_out_vs_time',

density_matrix_vs_time).'*expect(b_out_vs_time,density_matrix_vs_time);
293 expect_c_out_dag_t1_times_expect_c_out_t2 = expect(c_out_vs_time',

density_matrix_vs_time).'*expect(c_out_vs_time,density_matrix_vs_time);
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294 expect_d_out_dag_t1_times_expect_d_out_t2 = expect(d_out_vs_time',
density_matrix_vs_time).'*expect(d_out_vs_time,density_matrix_vs_time);

295 expect_e_out_dag_t1_times_expect_e_out_t2 = expect(e_out',
density_matrix_vs_time).'*expect(e_out,density_matrix_vs_time);

296
297 %% %%%%%%%%%%%%%%% Wigner distribution function%%%%%%%%%%%%%%%%%%%%%%%%%
298 %The Wigner distribution function (WDF) is used in signal processing as a
299 %transform in time−frequency analysis. the Wigner distribution function
300 %provides the highest possible temporal vs frequency resolution which is
301 %mathematically possible within the limitations of uncertainty in quantum
302 %wave theory. Given a non−stationary autocorrelation function C(t1,t2), by
303 %defining t=(t1+t2)/2 and tau= t2−t1, Fourier transforming the lag is
304 %obtained :
305 %WDF(t,omega) = \int C(t+tau/2,t−tau/2)*exp(−i*tau*omega)) d\tau.
306 %More info can be found at https://en.wikipedia.org/wiki/

Wigner_distribution_function
307 %Notice that tau is defined based on the definition of C(t1,t2) in this
308 %script, with opposite sign with respect to the wiki page one.
309 %% Mapping C(t1,t2) into C(t,tau)
310 %The Fourier transform of the WDF will be performed over tau/2 and not
311 %simply tau. This implies that in addition to mapping C(t1,t2) into
312 %C(t,tau), C(t1,t2) must be interpolated also not only over time and tau,

but also
313 %over the tau/2. If this were not done, aliasing would occur due to
314 %under sampling. For more information, section "More about" at
315 % https://www.mathworks.com/help/signal/ref/wvd.html
316 interpolation_2level_g1SDPR_vs_t1_t2;
317
318 %Side note: MATLAB has implemented its own WDF since R2018b, however it is
319 %defined for a single time series signal x(t) and not C(t1,t2). Still, it
320 %can be used for comparison to evaluate the WDF of the coherent component
321 %of the flux. Below it is shown how it is done for the reflected coherent
322 %field.
323
324 % expect_b_out_vs_time_dag = expect(b_out_vs_time',density_matrix_vs_time);
325 % sampling_frequency = 1/t_step; % Sampling frequency ps^(−1)
326 % [WVD_b_out_vs_time_coherent,frequency_WVD,t_list_WVD] = wvd(

expect_b_out_vs_time_dag,sampling_frequency); %returns the smoothed
pseudo Wigner−Ville distribution

327 % nb_points_WVD_spectrum = nb_points_time;
328 % omega_step_WVD = 2*pi*(sampling_frequency/2)/nb_points_WVD_spectrum;
329 % omega_step_WVD_muev = omega_step_WVD/ev*hbar/1e−18; %in mueV
330 % omega_spectrum_WVD = omega_pulse + frequency_WVD*2*pi; % rad/ps, arrays

of angular frequencies. Obs: the zero value from fft corresponds to
omega_laser
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331 % omega_spectrum_WVD_muev = omega_spectrum_WVD/ev*hbar/1e−18; % mueV,
arrays of angular frequencies, zero−centered

332 % figure,
333 % surf(t_list_WVD,omega_spectrum_WVD_muev − omega_pulse_ev*1e6,

WVD_b_out_vs_time_coherent/(2*pi/ev*hbar/1e−18),'EdgeColor','none')
334 % xlabel('time [ps]')
335 % ylabel('\omega−\omega_p [\mueV]')
336 % title('Wigner−Ville distribution reflected coherent photons − MATLAB')
337 % view(2)
338 % colorbar
339
340 %% Fourier Transforming over the delay tau to obtain the WDF
341 % The technique used here for the Fourier Transform is the Fast Fourier

Transform (FFT) algorithm, which
342 % can provide accurate spectra in a very fast way provided we use a number

of points that is
343 % a power of 2 (same number of points in the time and frequency domain).

The spectral width of
344 % the FFT spectrum (here denoted as "FFT_sampling_frequency") and its

resolution (here related
345 % to the step in angular frequency, "omega_step") are fixed by the width

and resolution used in
346 % in the time domain (related to "t_max_ps" and "t_delay" characterizing

the "full_tau_list").
347 % In practice, we are interested only in a spectral window of width "

width_spectral_window_muev",
348 % and the list of angular frequencies omega in "omega_list" (that we use to

plot quantities
349 % "versus omega" and calculate integrals) is just a subset of the full FFT

spectrum, centered on
350 % omega_pulse. Also note that the raw FFT spectra have to be adequately

transformed into real
351 % physical quantities:
352 % a) Proper normalization of the FFT result has to be ensured, so that

the integral of the
353 % spectral density indeed corresponds to the optical flux in ps^−1 (

or more precisely
354 % the incoherent component of the optical flux, as discussed above).
355 % b) One needs to ensure that the optical spectra are centered on the

laser frequency/photon
356 % energy, to take into account the fact that we worked in the

rotating frame at this laser
357 % frequency. Using the "fftshift" function just ensures that the

first half of the FFT
358 % spectrum corresponds to negative frequencies, and the second half

to positive frequencies.
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359 % In addition, we ensure that the lists of angular frequencies ("
omega_list_full_spectrum"

360 % for the complete list in rad/ps, "omega_list" for the selected
spectral window in rad/ps,

361 % and "omega_list_eV" for the selected energy window in eV) are
defined to be centered.

362 % on the laser frequency/photon energy.
363 % c) The list of delays in "full_tau_list" include negative and positive

delays, with the
364 % zero delay in the middle of the list. But the FFT algorithm

considers that this is the
365 % first point of the list which is the time zero, which leads to a

frequency−dependent
366 % phase shift along the full FFT spectrum. This phase shift has to be

compensated (the
367 % spectral density of flux is a real quantity), which is done through

a multiplication
368 % by "phase_shift_compensation_full_FFT_spectrum".
369 % −−> All the angular frequency lists and quantities related to the

calculation of the FFT spectra
370 % are defined in the "Init_lists_..." subprogram, for clarity.
371 %WDF−s for reflected field
372 WDF_interpolated_G1_reflected_vs_time_tau_full_spectrum = 1/(2*pi)*fftshift

(fft(interpolated_G1_reflected_vs_time_tau,nb_points_full_spectrum,2)
,2)./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)

373 WDF_interpolated_reflected_coherent_vs_time_tau_full_spectrum = 1/(2*pi)*
fftshift(fft(interpolated_reflected_coherent_vs_time_tau,
nb_points_full_spectrum,2),2)./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)

374 WDF_interpolated_G1_reflected_vs_time_tau =
WDF_interpolated_G1_reflected_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum); % 1/(mueV*ps)

375 WDF_interpolated_reflected_coherent_vs_time_tau =
WDF_interpolated_reflected_coherent_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum); % 1/(mueV*ps)

376
377 %WDF−s for transmitted field
378 WDF_interpolated_G1_transmitted_vs_time_tau_full_spectrum = 1/(2*pi)*

fftshift(fft(interpolated_G1_transmitted_vs_time_tau,
nb_points_full_spectrum,2),2)./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)
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379 WDF_interpolated_transmitted_coherent_vs_time_tau_full_spectrum = 1/(2*pi)*
fftshift(fft(interpolated_transmitted_coherent_vs_time_tau,
nb_points_full_spectrum,2),2)./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)

380 WDF_interpolated_G1_transmitted_vs_time_tau =
WDF_interpolated_G1_transmitted_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum);% 1/(mueV*ps)

381 WDF_interpolated_transmitted_coherent_vs_time_tau =
WDF_interpolated_transmitted_coherent_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum);% 1/(mueV*ps)

382
383 %WDF−s for emitted field
384 WDF_interpolated_G1_emitted_vs_time_tau_full_spectrum = 1/(2*pi)*fftshift(

fft(interpolated_G1_emitted_vs_time_tau,nb_points_full_spectrum,2),2)
./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)

385 WDF_interpolated_emitted_coherent_vs_time_tau_full_spectrum = 1/(2*pi)*
fftshift(fft(interpolated_emitted_coherent_vs_time_tau,
nb_points_full_spectrum,2),2)./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)

386 WDF_interpolated_G1_emitted_vs_time_tau =
WDF_interpolated_G1_emitted_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum);% 1/(mueV*ps)

387 WDF_interpolated_emitted_coherent_vs_time_tau =
WDF_interpolated_emitted_coherent_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum);% 1/(mueV*ps)

388
389 %WDF−s for diffracted field
390 WDF_interpolated_G1_diffracted_vs_time_tau_full_spectrum = 1/(2*pi)*

fftshift(fft(interpolated_G1_diffracted_vs_time_tau,
nb_points_full_spectrum,2),2)./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)

391 WDF_interpolated_diffracted_coherent_vs_time_tau_full_spectrum = 1/(2*pi)*
fftshift(fft(interpolated_diffracted_coherent_vs_time_tau,
nb_points_full_spectrum,2),2)./(FFT_sampling_frequency)./
phase_shift_compensation_vs_omega_full_spectrum*(ev/hbar*1e−18); % 1/(
mueV*ps)

392 WDF_interpolated_G1_diffracted_vs_time_tau =
WDF_interpolated_G1_diffracted_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum);% 1/(mueV*ps)
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393 WDF_interpolated_diffracted_coherent_vs_time_tau =
WDF_interpolated_diffracted_coherent_vs_time_tau_full_spectrum(:,
index_min_zoomed_spectrum:index_max_zoomed_spectrum);% 1/(mueV*ps)

394
395 %% Spectral energy density and spectral energy flux
396 % The projection property (see Wiki page linked above) of the WDF(t,omega)
397 % guarantees that its
398 % integral over the spectrum omega gives the photon flux as a function of
399 % time, whereas the integral of WDF over time gives the energy spectral
400 % density of the flux, which is shown in the spectrometer.
401 %
402 % As we saw above, however, the quantity < b'(t,tau) b(t) > is the sum of

two contributions:
403 % − A contribution < b'(t,tau) > < b(t) >, corresponding to the coherent

part of the flux.
404 % − Complementary, a contribution < b'(t,tau)b(t) > − < b'(t,tau) > < b(t

) >, induced by the incoherent
405 % part of the flux. This contribution tends towards zero for large

delays.
406
407 ESD_reflected_photons_vs_omega = real(sum(

WDF_interpolated_G1_reflected_vs_time_tau,1))*time_step; % 1/mueV
408 ESD_coherent_reflected_photons_laser_vs_omega = real(sum(

WDF_interpolated_reflected_coherent_vs_time_tau,1))*time_step; % 1/mueV
409 ESD_transmitted_photons_vs_omega = real(sum(

WDF_interpolated_G1_transmitted_vs_time_tau,1))*time_step; % 1/mueV
410 ESD_coherent_transmitted_photons_laser_vs_omega = real(sum(

WDF_interpolated_transmitted_coherent_vs_time_tau,1))*time_step; % 1/
mueV

411 ESD_emitted_photons_vs_omega = real(sum(
WDF_interpolated_G1_emitted_vs_time_tau,1))*time_step; % 1/mueV

412 ESD_coherent_emitted_photons_laser_vs_omega = real(sum(
WDF_interpolated_emitted_coherent_vs_time_tau,1))*time_step; % 1/mueV

413 ESD_diffracted_photons_vs_omega = real(sum(
WDF_interpolated_G1_diffracted_vs_time_tau,1))*time_step; % 1/mueV

414 ESD_coherent_diffracted_photons_laser_vs_omega = real(sum(
WDF_interpolated_diffracted_coherent_vs_time_tau,1))*time_step; % 1/
mueV

415
416 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
417 %%%%%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
418 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
419
420 % For plot selection:
421 % − g1 vs (t1,t2) : 'g'
422 % − G1 vs (t1,t2) : 'G'
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423 % − interpolated G1 vs (time, tau): 'I'
424 % − WDF vs (time, omega) : 'W'
425 % − photon fluxes : 'F'
426
427 % − plot_choice = ['G'];
428 plot_choice = ['g';'G';'I';'W';'F'];
429 Plot2levelG1wdfPR;

C.1.5 Second-order correlation in CW

1 clear
2 clc
3 close all
4 %% %%%%% Common basis to every programs based "two levels" %%%%%%%%%%%
5 % Important note: these paths must be modified if needed
6 addpath(genpath('..\QotoolboxV015'));
7 addpath(genpath('..\CQED_subprograms'));
8 addpath(genpath('..\CQED device parameters'))
9 savepath
10
11 % In addition, for the mesolve function to operate the executable
12 % files (.exe) and batch files (.bat) contained in '[...] \QotoolboxV015\

bin'
13 % have to be copied to a folder that is on the Windows system path,
14 % in the main hard drive where Windows is installed. This can be
15 % for example in: 'C:\Program Files\Matlab\R2014a\bin'.
16
17 % Warning: for the adiabatic version to converge, the tolerance in
18 % mesolve.m function must be reduced compared to the defaut values. For
19 % example:
20 % ode2file('ode_input.dat',L,rho0,t_list,struct('reltol',7e−8,'abstol',8e

−8));
21
22
23 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24 %%%%%%%%% g2CW : photon−photon correlations under CW excitation %%%%%%%%%
25 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
26 % This section indexed "g2CW" computes the intensity correlations as a
27 % function of delay, i.e g2(tau), for the various optical fields. One
28 % checks that values of g2(0) and g2(infty) correspond to the
29 % expected ones, and that the photons emitted outside the mode are single
30 % photons (g2(0)=0). Depending on the detuning large bunchings with
31 % g2(0)>>1 can also be observed, on the transmitted field for example (cf
32 % PRL 101, 203602 2008) or in the strong−coupling regime (see for example
33 % Nature 575, 622−627(2019)).
34
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35 % Warning: g2CW may not always lead to a proper numerical convergence,
36 % especially for very low incoming powers: this can be seen when we obtain
37 % absurd negative values of g(2) and/or noisy values of g2(infty) (instead
38 % of a smooth convergence to unity), and/or abrupt discontinuities in the
39 % g2(tau) function. This can usually be solved by adjusting the incoming
40 % power and/or the Fock space and/or the mesolve function (mainly the
41 % tolerances, and potentially the calculation algorithm). But it seems that
42 % the use of normalized density matrices (normalized = unity trace, even
43 % for conditional density matrices obtained after a detection event) is
44 % crucial to get the best numerical convergence.
45
46 % Choice of full model 'F' or adiabatic 'A'
47 model = 'F';
48
49 %%% Experimental conditions
50 detuning_QD_C_muev = 0; %Detuning between the QD and cavity frequencies, in

mueV
51 eta_in = 1; % Injection efficiency for the incoming photons (depends on

experimentally−achieved spatial coupling)
52 P_in_CW_pW=1000;% Incoming continuous−wave power in pW
53
54 Init2levelDeviceParametersOngoingTest;
55 Init2levelHilbertSpaceAndOperators;
56
57 %Incoming power
58 P_in_CW = P_in_CW_pW*1e−12;% Incoming power in W %%
59 b_in_CW = sqrt(eta_in*P_in_CW*1e−24/(hbar*omega_c)); % square root of the

photon number per unit time, en ps−1/2
60
61 % Angular frequency of the incoming CW laser (fixed)
62 omega_laser_ev = omega_d_ev; % in eV
63 omega_laser = omega_laser_ev*ev/hbar*1e−12; % in rad/ps
64
65 %Parameters for the calculation of the time dynamics of g(2)(tau)
66 tau_max=800; % Maximal delay in ps (the minimal delay is fixed to 0 for

calculations)
67 nb_points_time_g2CW=20000; %%% Time resolution/number of iterations for the

curves G(2)(tau)
68 tau_step_g2CW=(tau_max)/(nb_points_time_g2CW−1); % Duration of a time step
69 tau_list_g2CW = linspace(0,tau_max,nb_points_time_g2CW); % list of all the

positive delays considered in the computation and plots
70 full_tau_list_g2CW = [fliplr(−tau_list_g2CW(2:end)) , tau_list_g2CW ]; %

list of all negative and positive delays for the plots
71
72 % tic NB: "tic" is used as a "start" time for the measurement of the
73 % computing time between "tic" and "toc"
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74
75 switch model
76 case 'A' % Adiabatic case
77
78 Delta = 2*(omega_laser−omega_c)/kappa; %normalized laser

detuning appearing in Eq.12 of the pdf notes
79
80 %%%%%%%%% Definition of the adiabatic−model Hamiltonian (which

depends on omega_laser)
81 H_CW = (omega_eff−omega_laser)*sigma_dag*sigma...
82 − 1i*sqrt(Gamma_0*eta_top)*(b_in_CW*sigma_dag/(1−1i*Delta)

−b_in_CW'*sigma/(1+1i*Delta)); % Hamiltonian (Eq.13 of
the pdf notes)

83
84
85 %%% For the redefinition of the operator "a" acting in the QD

space
86 % (Eq. 10 of the pdf notes
87 a = −2*g*sigma/(kappa*(1−1i*Delta_QDC))−2*sqrt(kappa_top)*

b_in_CW*Id/(kappa*(1−1i*Delta)); %annihilation operator a
in adiabatic approximation

88
89 % UNUSED HERE: Ansatz for the annihilation operator, obtained

by taking the time derivative of "a" equal to 0
90 % (OK for CW but not for PR (pulsed regime) programs)
91 % a = −2*g*sigma/(kappa*(1−1i*Delta))−2*sqrt(kappa_top)*b_in_CW

*Id/(kappa*(1−1i*Delta));
92
93 case 'F' % Full model
94
95 %%%%%%%%% Definition of the full−model Hamiltonian (which

depends on omega_laser)
96 H_CW = (omega_d−omega_laser)*sigma_dag*sigma...
97 + (omega_c−omega_laser)*a_dag*a...
98 + 1i*g*(sigma_dag*a−a_dag*sigma)...
99 − 1i*sqrt(kappa_top)*b_in_CW*(a_dag−a);
100
101 end % end of the "switch model"
102
103 %Superoperator associated with the coherent processes (Hamiltonian)
104 L_coh = −1i * (spre(H_CW) − spost(H_CW));
105
106 %%%%%%%%% Calculation of the Liouvillian superoperator
107 Liouvillian = L_coh + L_incoh; % Total Liouvillian superoperator including

both coherent processes (Hamiltonian) and incoherent processes (
dissipative jumps)
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108
109 %%%%%%%%% Calculation of the density matrix corresponding to the stationary

state
110 rhoss_CW = steady(Liouvillian);
111
112 %%%%%%%%% Definition of the output operators. These are general formulas
113 % for both the adiabatic and full model, depending on the choice of "a"
114 b_out = b_in_CW*Id + sqrt(kappa_top)*a; % definition of the operator b_out,

i.e. the output operator for the reflected light, in ps^(−1/2)
115 c_out = sqrt(kappa_bottom)*a; % definition of the operator c_out, i.e. the

output operator for the transmitted light, in ps^(−1/2)
116 d_out = sqrt(kappa_loss)*a; % definition of the operator d_out, i.e. the

output operator for the diffracted/lost light, in ps^(−1/2)
117 % e_out = sqrt(gamma_sp)*sigma; % definition of the operator e_out, i.e.

the output operator for the light spontaneously emitted outside the
118 % cavity mode, in ps^(−1/2), already defined in "

Init_2level_Hilbert_space_and_operators.m"
119
120 % NB: in the adiabatic model the operators could also have been written

directly as:
121 % b_out = b_in_CW*Id*(1−2*eta_top/(1−1i*Delta))−sqrt(Gamma_0*eta_top)*sigma

/(1−1i*Delta_QDC); %output flux operator, (eq.12)
122 % c_out = −2*g*sqrt(kappa_bottom)*sigma/(kappa*(1−1i*Delta_QDC))−2*sqrt(

kappa_top*kappa_bottom)*b_in_CW*Id/(kappa*(1−1i*Delta));
123 % d_out = −2*g*sqrt(kappa_loss)*sigma/(kappa*(1−1i*Delta_QDC))−2*sqrt(

kappa_top*kappa_loss)*b_in_CW*Id/(kappa*(1−1i*Delta)); %annihilation
operator a in adiabatic approximation

124 % Such formulas are obtained by directly replacing the value of "a" from
125 % the adiabatic model, and are thus equivalent to the above, more general
126 % definitions In addition, e_out is independent on the experimental
127 % conditions and thus defined in the subprogram
128 % "Init_2level_Hilbert_space_and operators.m". It is given here for
129 % information and clarity purposes only
130
131 % Calculation of the total photon flux as a function of omega_laser
132 total_flux_injected_photons=abs(b_in_CW)^2; % total flux of injected

photons taking into account eta_in (so only the photons coupled to the
cavity mode), in ps−1

133 total_flux_reflected_photons=expect(b_out'*b_out,rhoss_CW);%flux in ps^(−1)
134 total_flux_transmitted_photons=expect(c_out'*c_out,rhoss_CW);%flux in ps

^(−1)
135 total_flux_diffracted_photons=expect(d_out'*d_out,rhoss_CW);%flux in ps

^(−1)
136 total_flux_emitted_photons=expect(e_out'*e_out,rhoss_CW);%flux in ps^(−1)
137
138 %%
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139 %%%%%%%%%% Intensity correlations %%%%%%%%%%%
140 % (method ensuring the best numerical convergence, using normalized density
141 % matrices in the mesolve functions)
142
143 %%% General notes on calculating two−time correlation functions, valid in
144 %%% PR and CW %%%
145
146 % Experimentally, the second order correlation function g2(t1,t2) is the
147 % ratio between two probabilities:
148 % − the probability of detecting a photon at time t2 conditioned by a
149 % first photon detected at time t1
150 % − the probability of detecting a photon at time t2 without any
151 % information on previous detections
152 % On the theory side, the standard definition of a normalized correlation
153 % function g2(t1,t2) is:
154 % g2(t1,t2) = <b'(t1)b'(t2)b(t2)b(t1)> / <b'(t2)b(t2)> <b'(t1)b(t1)>
155 % We thus need to make the link between both views, and derive a way to
156 % practically compute such quantities with the physical interpretation in
157 % mind.
158 % As a preliminary remark, the theoretical notations above consider the
159 % Heisenberg representation, where the operators vary in time but the
160 % density matrix is constant (equal to its initial value at t=0). For
161 % example:
162 % <b'(t1)b(t1)> = Trace [ b'(t1)b(t1) * rho(0)]
163 % Fortunately, to go to the Schrodinger evolution we can use a very useful
164 % rule, which tells us that we can put the time evolution in the density
165 % matrix (instead of the operators) to calculate any average value:
166 % <b'(t1)b(t1)> = Trace [ b'(0)b(0) * rho(t1) ]
167 % In this Schrodinger representation the operators are constant and thus
168 % equal to their value at time 0, so that :
169 % <b'(t1)b(t1)> = Trace [ b'b * rho(t1) ]
170 % This is why, to calculate <b'(t1)b(t1)> we just have to start at t=0
171 % and make rho(t) evolve up to time t1 using mesolve, then calculate the
172 % expectation value of b'b:
173 % <b'(t1)b(t1)> = expect ( b'b, rho(t1) )
174
175 % Now, to calculate g2(t1,t2) we also also have to switch from the
176 % Heisenberg definition to a practical quantity we can calculate, i.e. the
177 % expectation value of some operator on some density matrix. By definition
178 % in the Heisenberg representation:
179 % < b'(t1) b'(t2) b(t2) b(t1) > = Trace[ b'(t1) b'(t2) b(t2) b(t1) *

rho(0)]
180 % But with a circular permutation inside the Trace this can also be seen as

:
181 % < b'(t1) b'(t2) b(t2) b(t1) > = Trace[ b'(t2) b(t2) * b(t1)rho(0)b'(

t1) ]
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182 % This gives us some hint that the correlation function, in the Heisenberg
183 % representation, can be seen as the expectation value of b'b at time t2,
184 % starting at time t1 from a fictitious density matrix b(t1)rho(0)b'(t1).
185 % In the Schrodinger representation, however, the operators b and b' are
186 % constant and only the density matrix evolves between times 0 and t1, and
187 % between times t1 and t2. But we can also take into account the effect of
188 % a photon detection event at time t1, which leads to an abrupt change of
189 % the system density matrix between two times:
190 % − time t=t1^(−): after evolution between 0 and t1, but just before a
191 % click (photon detection event)
192 % − time t=t1^(+): just after a click at time t1
193 % With this in mind, the idea is to compute < b'(t1) b'(t2) b(t2) b(t1) >
194 % thanks to three steps:
195 % − evolution from 0 to t1^(−), leading to a density matrix rho(t1)
196 % "just before a click"
197 % − modification of the system state due to the detection event at t1,
198 % leading to a different density matrix "just after a click"
199 % − further evolution of the system between times t1^(+) and t2
200
201 % However, to physically interpret the results and to get a nice numerical
202 % convergence, we should not work with the fictitious density matrix
203 % b(t1)rho(0)b'(t1) in the Heisenberg representation, nor its equivalent in
204 % the Shrodinger representation b rho(t1) b', since it is not normalized
205 % (its trace is not unity). Instead we define the real/normalized density
206 % matrix obtained just after a detection event at time t1:
207 % rho(t1, just after a click) = b rho(t1) b' / expect [ b'b , rho(t1)

]
208 % This is a valid density matrix since the denominator is :
209 % expect [ b'b , rho(t1) ] = Trace [ b'b * rho(t1) ] = Trace [ b rho(

t1) b' ],
210 % and thus "rho(t1, just after a click)" is well normalized with unity
211 % trace. This division by expect [ b'b , rho(t1) ] also makes sense since
212 % this quantity is equal to <b'b(t1)>, i.e. one of the two terms in the
213 % denominator of g2(t1,t2). From this density matrix at time t1^(+), we can
214 % then deduce the density matrix at time t2, leading to a density matrix
215 % "rho(t2, conditioned to a click at t1)". With these notations the
216 % quantity < b'(t1) b'(t2) b(t2) b(t1) > / < b'b(t1) > is equivalent to :
217 % < b'(t1) b'(t2) b(t2) b(t1) > / < b'b'(t1) > = Trace[ b'b * rho(t2,

conditioned to a click at t1) ]
218 % And with similar notations the quantity < b'b(t2) > is equivalent to:
219 % < b'b'(t2) > = Trace [ b'b * rho(t2) ]
220 % So we find that the normalized correlation function g2(t1,t2) is indeed
221 % the ratio between two quantities:
222 % − the photon flux at time t2, conditioned by a previous photon
223 % detection event at time t1
224 % − the photon flux at time t2, unconditioned
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225 % This is exactly the experimentalist's definition of g2(t1,t2). Note that
226 % in CW we usually take t1 = 0 and t2 = tau, and we take the stationary
227 % density matrix state both for rho(t1) and rho (t2), since by definition
228 % it does not evolve with time: only the density matrix "rho(tau,
229 % conditioned to a click at time 0)", being different from the stationary
230 % state's density matrix, does evolve with the delay tau
231
232 % Normalized (unity trace) density matrices just after a click at time 0,
233 % for the various optical fields:
234 density_matrix_just_after_reflected_photon_detection=b_out*rhoss_CW*b_out'/

total_flux_reflected_photons; % Density matrix just after a reflected
photon click at time 0

235 density_matrix_just_after_transmitted_photon_detection=c_out*rhoss_CW*c_out
'/total_flux_transmitted_photons; % Density matrix just after a
transmitted photon click at time 0

236 density_matrix_just_after_emitted_photon_detection=e_out*rhoss_CW*e_out'/
total_flux_emitted_photons;% Density matrix just after an emitted (
outside the mode) photon click at time 0

237
238 % Normalized density matrices as a function of the (positive) delay tau,
239 % conditioned on the detection of a click at time 0
240 density_matrix_vs_delay_after_reflected_photon_detection=mesolve(

Liouvillian,density_matrix_just_after_reflected_photon_detection,
tau_list_g2CW); %Density matrix at time tau, conditioned on a reflected
photon click at time 0

241 density_matrix_vs_delay_after_transmitted_photon_detection=mesolve(
Liouvillian,density_matrix_just_after_transmitted_photon_detection,
tau_list_g2CW); %Density matrix at time tau, conditioned on a
transmitted photon click at time 0

242 density_matrix_vs_delay_after_emitted_photon_detection=mesolve(Liouvillian,
density_matrix_just_after_emitted_photon_detection,tau_list_g2CW); %
Density matrix at time tau, conditioned on an emitted (outside the mode
) photon click at time 0

243
244 % Calculation of the normalized auto−correlation functions g2(tau), for
245 % positive delays and various optical fields
246 g2_reflected_vs_delay=expect(b_out'*b_out,

density_matrix_vs_delay_after_reflected_photon_detection)/
total_flux_reflected_photons; %Auto−correlation g(2)(tau) for the
reflected light

247 g2_transmitted_vs_delay=expect(c_out'*c_out,
density_matrix_vs_delay_after_transmitted_photon_detection)/
total_flux_transmitted_photons; %Auto−correlation g(2)(tau) for the
transmitted light
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248 g2_emitted_vs_delay=expect(e_out'*e_out,
density_matrix_vs_delay_after_emitted_photon_detection)/
total_flux_emitted_photons; %Auto−correlation g(2)(tau) for the light
emitted outside the mode

249
250 % Calculation of g2(tau) for both negative and positive delays
251 full_g2_reflected_vs_delay= [fliplr(g2_reflected_vs_delay(2:end) )

g2_reflected_vs_delay ];
252 full_g2_transmitted_vs_delay= [fliplr(g2_transmitted_vs_delay(2:end) )

g2_transmitted_vs_delay ];
253 full_g2_emitted_vs_delay= [fliplr(g2_emitted_vs_delay(2:end) )

g2_emitted_vs_delay ];
254
255 % Calculation of the conditional occupation probabilities, as a function
256 % of the delay tau after a photon detection event
257 occupation_ground_vs_delay_after_reflected_photon_detection=expect(sigma*

sigma_dag,density_matrix_vs_delay_after_reflected_photon_detection);
258 occupation_excited_vs_delay_after_reflected_photon_detection=expect(

sigma_dag*sigma,
density_matrix_vs_delay_after_reflected_photon_detection);

259 occupation_ground_vs_delay_after_transmitted_photon_detection=expect(sigma*
sigma_dag,density_matrix_vs_delay_after_transmitted_photon_detection);

260 occupation_excited_vs_delay_after_transmitted_photon_detection=expect(
sigma_dag*sigma,
density_matrix_vs_delay_after_transmitted_photon_detection);

261 occupation_ground_vs_delay_after_emitted_photon_detection=expect(sigma*
sigma_dag,density_matrix_vs_delay_after_emitted_photon_detection);

262 occupation_excited_vs_delay_after_emitted_photon_detection=expect(sigma_dag

*sigma,density_matrix_vs_delay_after_emitted_photon_detection);
263
264 %toc
265
266 %%% UNUSED HERE: alternative method with non−normalized conditional density
267 %%% matrices
268 % NB: we denote G2(tau) (with a capital "G") the non−normalized intensity
269 % correlations of the form <b'(0) b'(tau) b(tau) b(0)>, where the output
270 % fields are in ps−{1/2}. Complementary, we denote g2(tau) the normalized
271 % intensity correlations <b'(0) b'(tau) b(tau) b(0)>/<b' b><b' b>
272
273 % rho_vs_delay_if_rho0_equal_a_rhoss_a_dag=mesolve(Liouvillian,a*rhoss_CW*

a_dag,tau_list_g2CW); % Sufficient to calculate correlations for c_out
=sqrt(kappa_bottom)a et d_out=sqrt(kappa_loss)a

274 % rho_vs_delay_if_rho0_equal_sigma_rhoss_sigma_dag=mesolve(Liouvillian,
sigma*rhoss_CW*sigma_dag,tau_list_g2CW); % Sufficient to calculate
correlations of e_out=sqrt(gamma_sp) sigma
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275 % rho_vs_delay_if_rho0_equal_rhoss_a_dag=mesolve(Liouvillian,rhoss_CW*a_dag
,tau_list_g2CW); % Necessary to calculate correlations of b_out=b_in+
sqrt(kappa_top) a

276 % rho_vs_delay_if_rho0_equal_a_rhoss=mesolve(Liouvillian,a*rhoss_CW,
tau_list_g2CW); % Necessary to calculate correlations of b_out=b_in+
sqrt(kappa_top) a

277 %
278 % G2_reflected_vs_tau= kappa_top*expect(b_out'*b_out,

rho_vs_delay_if_rho0_equal_a_rhoss_a_dag)...
279 % + abs(b_in_CW)^2*expect(b_out'*b_out,rhoss_CW)...
280 % + sqrt(kappa_top)*b_in_CW*expect(b_out'*b_out,

rho_vs_delay_if_rho0_equal_a_rhoss)...
281 % + sqrt(kappa_top)*conj(b_in_CW)*expect(b_out'*b_out,

rho_vs_delay_if_rho0_equal_rhoss_a_dag);
282 % G2_transmitted_vs_tau=kappa_bottom*expect(c_out'*c_out,

rho_vs_delay_if_rho0_equal_a_rhoss_a_dag);
283 % G2_diffracted_vs_tau=kappa_loss*expect(d_out'*d_out,

rho_vs_delay_if_rho0_equal_a_rhoss_a_dag);
284 % G2_emitted_vs_tau=gamma_sp*expect(e_out'*e_out,

rho_vs_delay_if_rho0_equal_sigma_rhoss_sigma_dag);
285 %
286 %
287 % %%% Calculation of the G(2) for all delays, through the symmetrization

G2(tau) = conj(G2(−tau))
288 % full_G2_reflected_vs_tau = [fliplr(G2_reflected_vs_tau(2:end) )

G2_reflected_vs_tau ];
289 % full_G2_transmitted_vs_tau = [fliplr(G_2_transmitted_vs_tau(2:end) )

G_2_transmitted_vs_tau ];
290 % full_G2_diffracted_vs_tau = [fliplr(G_2_diffracted_vs_tau(2:end) )

G_2_diffracted_vs_tau ];
291 % full_G2_emitted_vs_tau = [fliplr(G_2_emitted_vs_tau(2:end) )

G_2_emitted_vs_tau ];
292 %
293 % %%% Calculation of the normalized g(2) for all delays
294 % full_g2_reflected_vs_delay = full_G2_reflected_vs_tau/(

total_flux_reflected_photons)^2;
295 % full_g2_transmitted_vs_tau = full_G_2_transmitted_vs_tau/(

total_flux_transmitted_photons)^2;
296 % full_g2_diffracted_vs_tau = full_G_2_diffracted_vs_tau/(

total_flux_diffracted_photons)^2;
297 % full_g2_emitted_vs_tau = full_G_2_emitted_vs_tau/(

total_flux_emitted_photons^2);
298
299
300 %% %%%%%%%%% Plots %%%%%%%%
301 % For plot selection:

104



C.1 – Main scripts

302 % − g2 from reflected photons : 'R'
303 % − g2 from transmitted + diffracted/lost photons : 'T'
304 % − g2 from photons emitted outside the mode : 'E'
305 % − associated conditioned occupation probabilities : 'O'
306
307 %plot_choice = ['T'];
308 plot_choice = ['T';'R';'E';'O'];
309 Plot2LevelG2CWvsDelay;

C.1.6 Second-order correlation in PW

1 clear
2 clc
3 %close all
4
5 %% Important note: these paths must be modified if needed
6 addpath(genpath('..\QotoolboxV015'));
7 addpath(genpath('..\CQED subprograms'));
8 addpath(genpath('..\CQED device parameters'))
9 savepath
10
11 % In addition, for the mesolve function to operate the executable files
12 % (.exe) and batch files (.bat) contained in '[...] \QotoolboxV015\bin'
13 % have to be copied to a folder that is on the Windows system path, in the
14 % main hard drive where Windows is installed. This can be for example in:
15 % 'C:\Program Files\Matlab\R2014a\bin'.
16
17 % Warning: for the adiabatic version to converge, the tolerance in
18 % mesolve.m function must be reduced compared to the defaut values. For
19 % example:
20 % ode2file('ode_input.dat',L,rho0,t_list,struct('reltol',7e−8,'abstol',8e

−8));
21
22
23 %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 %%%%%%%%%%%% Intensity correlations in the pulsed regime
%%%%%%%%%%%%%%%%%%%%

25 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

26 % This section indexed "g2PR_vs_t1_t2" computes the intensity correlations
27 % in the pulsed regime, as a function of the detection times t1 and t2 in

two
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28 % detectors, for the various optical fields. The normalized function g2(t1,
t2)

29 % is computed, as well as the coincidence maps determining the probability
of

30 % having double−clicks, one at time t1 and the other at time t_2, during
the same

31 % pulse or for uncorrelated pulses. The conditional occupation
probabilities,

32 % modified by the detection of a first photon at time t1, are also computed
, as

33 % well as the normalized g2 as a function of delay tau = t2 − t1, and the
averaged

34 % g2(0), i.e. the area of the zero−delay peak of the normalized g2 function
.

35 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
36
37
38 %% Choice of full model 'F' or adiabatic model 'A'
39 model = 'F';
40
41 %% Experimental conditions (to be edited)
42 detuning_QD_C_muev = 0; %Detuning between the QD and cavity frequencies, in

mueV
43 detuning_pulse_QD_muev = 0; %Detuning between the pulse central frequency

and the QD frequency, in mueV
44 eta_in = 1; % Injection efficiency for the incoming photons (depends on

experimentally−achieved spatial coupling)
45 Nb_photons_pulse = 1; % Average number of incoming photons in a pulse.

This quantity should be multiplied by eta_in to know the number of
incoming photons actually coupled to the optical mode

46 FWHM_pulse = 15; %in ps, full width at half−maximum of the incoming
Gaussian pulse intensity (unit: ps since angular frequencies are in rad
/ps)

47 t_delay = 2*FWHM_pulse; % Time at which the pulse is maximally intense, so
that the computation starts when the pulse has not arrived yet

48 t_max_ps = (t_delay + 4*FWHM_pulse)*5; % Final time where we stop the
computation and plots of time evolutions

49 nb_points_time = 100; % Time resolution/Number of iterations / <100000
otherwise the integrating the master equation gets difficult (odesolve)
)

50 t_min = 0.4*FWHM_pulse; % Initial time considered for the computations and
plots of time evolutions

51
52
53 %%
54 % Initialization of parameters, operators, arrays, etc...
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55 Init2levelDeviceParametersOngoingTest;
56 Init2levelHilbertSpaceAndOperators;
57 InitMaps2LevelG2PRvsT1T2;
58
59 % Definition of the input field in ps^(−1/2), in the form of a fseries (

necessary for integrating the master equation)
60 Standard_deviation_b_in_PR = FWHM_pulse/(2*sqrt(log(2))); %Deduced from the

properties of a gaussian function
61 b_in_fn = fn('gauss',t_delay,Standard_deviation_b_in_PR) * sqrt( eta_in*

Nb_photons_pulse / ( sqrt(pi) * Standard_deviation_b_in_PR ) ); %
square root of the incoming photon number per time unit, in ps−1/2

62 b_in_vs_time = fsval(b_in_fn,t_list); %scalar array representing b_in vs
time

63
64 % Initial density matrix before the pulse has started
65 switch model
66 case 'F' %Full model
67 psi0 = tensor(Vacuum_state,g_ket); % Initial state: tensorial

product of photonic vacuum and QD ground state
68 rho0 = psi0*psi0'; % Density matrix corresponding to the initial

pure state
69 case 'A' % Adiabatic model
70 rho0 = g_ket*g_ket'; % Density matrix corresponding to the initial

pure state
71 end
72
73 %% %%%%%%%% System Hamiltonian and time−dependent operators %%%%%%%%%%%%
74 %
75 % The system Hamitonian is time−dependent due to the function b_in_fn
76 % describing the input field b_in(t).
77
78 % In addition, in the case of adiabatic elimination of the cavity mode an

effective
79 % operator $a$ is defined, acting on the QD subspace, based on the formula

for
80 % adiabatic elimination (Eq. 10 of the pdf notes). Since this formula

depends
81 % on b_in(t), we define a time−dependent quantity "a_vs_time", which is an
82 % array containing, for each time of t_list, the corresponding operator
83 % "a".
84 % In the full model case, to simplify the following calculations, we define

the
85 % same quantity a_vs_time, yet this time this array contains the same

operator
86 % (annihilation operator "a" acting on the cavity subspace), replicated for

all
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87 % times of t_list.
88
89
90 switch model
91 case 'A' % Adiabatic model
92
93 Delta = 2*(omega_pulse−omega_c)/kappa; %normalized laser

detuning appearing in Eq.12 of the pdf notes
94
95 %%%%%%%%% Definition of the adiabatic−model Hamiltonian (in the

frame rotating at angular frequency omega_pulse)
96 H_PR = (omega_eff−omega_pulse)*sigma_dag*sigma − 1i*sqrt(

Gamma_0*eta_top)*...
97 ((1−1i*Delta)^(−1)*b_in_fn*sigma_dag−(1+1i*Delta)^(−1)*

b_in_fn'*sigma); % Hamiltonian (eq.13)
98
99 %%% Definition of the time−dependant operator "a_vs_time"

acting in the QD subspace (Eq. 10 of the pdf notes)
100 a_vs_time = −2*(kappa*(1−1i*Delta_QDC))^(−1)*g*sigma*Id_vs_time

−2*sqrt(kappa_top)*(kappa*(1−1i*Delta))^(−1)*fsval(b_in_fn,
t_list).*Id_vs_time; %annihilation operator a in adiabatic
approximation (eq.10), as fseries

101
102 case 'F' % Full model
103
104 %%%%%%%%% Definition of the full−model Hamiltonian (in the

frame rotating at angular frequency omega_pulse)
105 H_PR = (omega_d−omega_pulse)*sigma_dag*sigma...
106 + (omega_c−omega_pulse)*a_dag*a...
107 + 1i*g*(sigma_dag*a−a_dag*sigma)...
108 − 1i*sqrt(kappa_top)*b_in_fn*(a_dag−a);
109
110 % Definition of the operator a_vs_time, even though "a" is

constant in the full model, to reduce the number of "switch
" in the following code

111 a_vs_time = a*Id_vs_time;
112
113 end % end of the "switch model"
114
115 %Superoperator associated to the coherent processes (Hamiltonian)
116 L_coh = −1i * (spre(H_PR) − spost(H_PR));
117
118 %%%%%%%%% Calculation of the Liouvillian superoperator
119 Liouvillian = L_coh + L_incoh; % Total Liouvillian superoperator including

both coherent processes (Hamiltonian) and incoherent processes (
dissipative jumps)
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120
121 %%%%%%%%%%% Numerical Integration of the Master Equation %%%%%%%%
122
123 % Computation of preliminary time evolution, between 0 (long before the

pulse)
124 % and t_min (time at which we want to start plotting and integrating the

physical
125 % quantities. Such a computation can be performed with very low time

resolution,
126 % i.e. the corresponding t_list_before_t_min has a very low number of

points,
127 % since the density matrix almost doesn't evolve between 0 and t_min.
128 %
129 % NB: such a preliminary time evolution is mandatory to avoid having

strictly
130 % zero expectation values for some quantities (such as the input or output

fields),
131 % during the following time evolution between t_min and t_max). Indeed,

zero
132 % expectation values lead to NaN errors when used in normalizing physical
133 % quantities, such as conditional density matrices (see below), or
134 % Stokes/Bloch coordinates in the Poincare'/Bloch sphere.
135
136 density_matrix_vs_time_before_t_min = mesolve(Liouvillian,rho0,

t_list_before_t_min); %master equation solver based on odesolve: first
evolution of the system

137 density_matrix_at_t_min = density_matrix_vs_time_before_t_min{
nb_points_time_before_t_min};

138
139
140 % Computation of the density matrix vs time with t_list, i.e. between t_min
141 % and t_max, requiring a large enough time resolution.
142 density_matrix_vs_time = mesolve(Liouvillian,density_matrix_at_t_min,t_list

); % second evolution of the system
143
144
145 %%%%%%%%%%%%%%%%%% Definition of the output operators %%%%%%%%%%%%%%%%%%%%%
146 % These are general formulas for both the adiabatic and full model,

depending on "a_vs_time"
147
148 b_out_vs_time = b_in_vs_time*Id_vs_time + sqrt(kappa_top)*a_vs_time; %

definition of the operator b_out, i.e. the output operator for the
reflected light, in ps^(−1/2)

149 c_out_vs_time = sqrt(kappa_bottom)*a_vs_time; % definition of the operator
c_out_vs_time, i.e. the output operator for the transmitted light, in
ps^(−1/2)
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150 % d_out_vs_time = sqrt(kappa_loss)*a_vs_time; % UNUSED HERE: definition of
the operator d_out_vs_time, i.e. the output operator for the diffracted
/lost light, in ps^(−1/2)

151 % e_out = sqrt(gamma_sp)*sigma % output operator for the light
spontaneously emitted outside the cavity mode, in ps^(−1/2), already
defined in Init_2level_Hilbert_space_and_operators.m

152
153 % Calculation of the total photon flux as a function of time, for the

various optical fields
154 flux_injected_photons_vs_time = b_in_vs_time.^2; % total flux of injected

photons taking into account eta_in (so only the photons coupled to the
cavity mode), in ps(−1)

155 flux_reflected_photons_vs_time = real(expect(b_out_vs_time'*b_out_vs_time,
density_matrix_vs_time)); %flux in ps^(−1)

156 flux_transmitted_photons_vs_time = real(expect(c_out_vs_time'*c_out_vs_time
,density_matrix_vs_time)); %flux in ps^(−1)

157 % flux_diffracted_photons_vs_time = real(expect(d_out_vs_time'*
d_out_vs_time,rho_vs_time)); %flux in ps^(−1)

158 flux_emitted_photons_vs_time = real(expect(e_out'*e_out,
density_matrix_vs_time)); %flux in ps^(−1)

159
160 %Computing the number of reflected/transmitted/emitted photons, by

integrating over all times in t_list
161 Nb_reflected_photons = trapz(t_list,flux_reflected_photons_vs_time);
162 Nb_transmitted_photons = trapz(t_list,flux_transmitted_photons_vs_time);
163 % Nb_diffracted_photons = trapz(t_list,flux_diffracted_photons_vs_time);
164 Nb_emitted_photons = trapz(t_list,flux_emitted_photons_vs_time);
165
166
167 %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

168 %%%%%%%%%%%% Intensity correlations and conditional probabilities
%%%%%%%%%%%%

169 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

170 % (method ensuring the best numerical convergence, using normalized density
171 % matrices in the mesolve functions)
172
173 %%% General notes on calculating two−time correlation functions, valid in
174 %%% PR (pulsed regime) and CW
175 %
176 % Experimentally, the second order correlation function g2(t1,t2) is the
177 % ratio between two probabilities:
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178 % − the probability of detecting a photon at time t2 conditioned by a
first

179 % photon detected at time t1
180 % − the probability of detecting a photon at time t2 without any

information
181 % on previous detections
182 %
183 % On the theory side, the standard definition of a normalized correlation
184 % function g2(t1,t2) is:
185 % g2(t1,t2) = <b'(t1)b'(t2)b(t2)b(t1)> / <b'(t2)b(t2)> <b'(t1)b(t1)>
186 %
187 % We thus need to make the link between both views, and derive a way to
188 % practically compute such quantities with the physical interpretation in
189 % mind.
190
191
192 % As a preliminary remark, the theoretical notations above consider the
193 % Heisenberg representation, where the operators vary in time but the
194 % density matrix is constant (equal to its initial value at t=0). For
195 % example:
196 % <b'(t1)b(t1)> = Trace [ b'(t1)b(t1) * rho(0)]
197 % Fortunately, to go to the Schrodinger evolution we can use a very useful
198 % rule, which tells us that we can put the time evolution in the density
199 % matrix (instead of the operators) to calculate any average value:
200 % <b'(t1)b(t1)> = Trace [ b'(0)b(0) * rho(t1) ]
201 % In this Schrodinger representation the operators are constant and thus
202 % equal to their value at time 0, so that :
203 % <b'(t1)b(t1)> = Trace [ b'b * rho(t1) ]
204 % This is why, to calculate <b'(t1)b(t1)> we just have to start at t=0
205 % and make rho(t) evolve up to time t1 using mesolve, then calculate the
206 % expectation value of b'b:
207 % <b'(t1)b(t1)> = expect ( b'b, rho(t1) )
208
209 % Now, to calculate g2(t1,t2) we also also have to switch from the
210 % Heisenberg definition to a practical quantity we can calculate, i.e. the
211 % expectation value of some operator on some density matrix. By definition
212 % in the Heisenberg representation:
213 % < b'(t1) b'(t2) b(t2) b(t1) > = Trace[ b'(t1) b'(t2) b(t2) b(t1) *

rho(0)]
214 % But with a circular permutation inside the Trace this can also be seen as

:
215 % < b'(t1) b'(t2) b(t2) b(t1) > = Trace[ b'(t2) b(t2) * b(t1)rho(0)b'(

t1) ]
216
217 % This gives us some hint that the correlation function, in the Heisenberg
218 % representation, can be seen as the expectation value of b'b at time t2,
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219 % starting at time t1 from a fictitious density matrix b(t1)rho(0)b'(t1).
220 % In the Schrodinger representation, however, the operators b and b' are
221 % constant and only the density matrix evolves between times 0 and t1, and
222 % between times t1 and t2. But we can also take into account the effect of
223 % a photon detection event at time t1, which leads to an abrupt change of
224 % the system density matrix between two times:
225 % − time t=t1^(−): after evolution between 0 and t1, but just before a
226 % click (photon detection event)
227 % − time t=t1^(+): just after a click at time t1
228 % With this in mind, the idea is to compute < b'(t1) b'(t2) b(t2) b(t1) >
229 % thanks to three steps:
230 % − evolution from 0 to t1^(−), leading to a density matrix rho(t1)
231 % "just before a click"
232 % − modification of the system state due to the detection event at t1,
233 % leading to a different density matrix "just after a click"
234 % − further evolution of the system between times t1^(+) and t2
235
236 % However, to physically interpret the results and to get a nice numerical
237 % convergence, we should not work with the fictitious density matrix
238 % b(t1)rho(0)b'(t1) in the Heisenberg representation, nor its equivalent in
239 % the Shrodinger representation b rho(t1) b', since it is not normalized
240 % (its trace is not unity). Instead we define the real/normalized density
241 % matrix obtained just after a detection event at time t1:
242 % rho(t1, just after a click) = b rho(t1) b' / expect [ b'b , rho(t1

) ]
243 % This is a valid density matrix since the denominator is :
244 % expect [ b'b , rho(t1) ] = Trace [ b'b * rho(t1) ] = Trace [ b rho(

t1) b' ],
245 % and thus "rho(t1, just after a click)" is well normalized with unity
246 % trace. This division by expect [ b'b , rho(t1) ] also makes sense since
247 % this quantity is equal to <b'b(t1)>, i.e. one of the two terms in the
248 % denominator of g2(t1,t2). From this density matrix at time t1^(+), we can
249 % then deduce the density matrix at time t2, leading to a density matrix
250 % "rho(t2, conditioned to a click at t1)". With these notations the
251 % quantity < b'(t1) b'(t2) b(t2) b(t1) > / < b'b(t1) > is equivalent to :
252 % < b'(t1) b'(t2) b(t2) b(t1) > / < b'b(t1) > = Trace[ b'b * rho(t2,
253 % conditioned to a click at t1) ]
254 % And with similar notations the quantity < b'b(t2) > is equivalent to:
255 % < b'b(t2) > = Trace [ b'b * rho(t2) ]
256 % So we find that the normalized correlation function g2(t1,t2) is indeed
257 % the ratio between two quantities:
258 % − the photon flux at time t2, conditioned by a previous photon

detection
259 % event at time t1
260 % − the photon flux at time t2, unconditioned
261 % This is exactly the experimentalist's definition of g2(t1,t2). Note that
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262 % in CW we usually take t1 = 0 and t2 = tau, and we take the stationary
263 % density matrix state "rhoss" both for rho(t1) and rho (t2), since by
264 % definition rhoss does not evolve with time: only the density matrix
265 % "rho(tau, conditioned to a click at time 0)", being different from rhoss,
266 % does evolve with the delay tau
267 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
268
269 %%%%%%%%%%%%%%%% Calculation of conditional density matrices

%%%%%%%%%%%%%
270 % In the following the "density_matrix_vs_t1_just_after_click_OPERATOR"s

are
271 % defined for each value of time t1 in t_list. Their N−th element represent
272 % the normalized density matrix just after a click has occurred at the N−th

time.
273
274 density_matrix_vs_t1_just_after_click_b_out = b_out_vs_time*

density_matrix_vs_time*b_out_vs_time'/flux_reflected_photons_vs_time; %
Density matrix just after a reflected photon click at time t1

275 density_matrix_vs_t1_just_after_click_c_out = c_out_vs_time*
density_matrix_vs_time*c_out_vs_time'/flux_transmitted_photons_vs_time;
% Density matrix just after a transmitted photon click at time t1

276 density_matrix_vs_t1_just_after_click_e_out = e_out*density_matrix_vs_time*
e_out'/flux_emitted_photons_vs_time;% Density matrix just after an
emitted (outside the mode) photon click at time t1

277
278 % NB: "tic" is used as a "start" time for the measurement of the computing

time between "tic" and "toc"
279 %tic
280
281 %Cycle over all times t1 in t_list, corresponding to the moment where a

first click occurred
282 for t1_index = 1:nb_points_time
283
284 % Both t1 and t2 are values in t_list. However, to compute the
285 % normalized density matrices vs t2 after a click at t1, we consider
286 % only t2 >= t1, and we need to deal with the fact that there are less
287 % and less remaining values of t2 in t_list, when t1 increases. To keep
288 % all quantities defined in the full t_list, for each time t1 < t2 we
289 % have a "zero" density matrix, i.e. a fictitious density matrix with
290 % only zero elements−
291
292 % Incrementing the array of zero density matrices, each time t1_index
293 % is increased, to fill the density matrix for times t1 < t2
294
295 if (t1_index >=2) % No need to include a zero density matrix at the

first value of t1
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296 zero_density_matrix_vs_t2_before_t1{t1_index−1} = 0*Id; %null
density matrix with the same dimensions of the involved Hilbert
space

297 end
298
299 % Array of normalized density matrices, conditioned on the detection of

a
300 % click at time t1, as a function of t2 >= t1 (and zero otherwise)
301 density_matrix_vs_t2_after_click_b_out_at_t1 = [

zero_density_matrix_vs_t2_before_t1 mesolve(Liouvillian,
density_matrix_vs_t1_just_after_click_b_out{t1_index},t_list(
t1_index:end))];

302 density_matrix_vs_t2_after_click_c_out_at_t1 = [
zero_density_matrix_vs_t2_before_t1 mesolve(Liouvillian,
density_matrix_vs_t1_just_after_click_c_out{t1_index},t_list(
t1_index:end))];

303 density_matrix_vs_t2_after_click_e_out_at_t1 = [
zero_density_matrix_vs_t2_before_t1 mesolve(Liouvillian,
density_matrix_vs_t1_just_after_click_e_out{t1_index},t_list(
t1_index:end))];

304
305 % Evaluation of g2(t1,t2) as described in the general notes above, for

t2 >= t1 (and zero otherwise)
306 g2_reflected_vs_t1_t2(t1_index,:) = expect(b_out_vs_time'*b_out_vs_time

,density_matrix_vs_t2_after_click_b_out_at_t1)./
flux_reflected_photons_vs_time; %Auto−correlation g(2)(tau) for the
reflected light

307 g2_transmitted_vs_t1_t2(t1_index,:) = expect(c_out_vs_time'*
c_out_vs_time,density_matrix_vs_t2_after_click_c_out_at_t1)./
flux_transmitted_photons_vs_time; %Auto−correlation g(2)(tau) for
the transmitted light

308 g2_emitted_vs_t1_t2(t1_index,:) = expect(e_out'*e_out,
density_matrix_vs_t2_after_click_e_out_at_t1)./
flux_emitted_photons_vs_time; %Auto−correlation g(2)(tau) for the
light emitted outside the mode

309
310 % Calculation of the conditional occupation probabilities at time t2

after
311 % a photon detection event at t1, for t2 >= t1 (and zero otherwise)
312 occupation_ground_vs_t1_vs_t2_after_click_b_out_at_t1(t1_index,:) =

expect(sigma*sigma_dag,density_matrix_vs_t2_after_click_b_out_at_t1
);

313 occupation_excited_vs_t1_vs_t2_after_click_b_out_at_t1(t1_index,:) =
expect(sigma_dag*sigma,density_matrix_vs_t2_after_click_b_out_at_t1
);
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314 occupation_ground_vs_t1_vs_t2_after_click_c_out_at_t1(t1_index,:) =
expect(sigma*sigma_dag,density_matrix_vs_t2_after_click_c_out_at_t1
);

315 occupation_excited_vs_t1_vs_t2_after_click_c_out_at_t1(t1_index,:) =
expect(sigma_dag*sigma,density_matrix_vs_t2_after_click_c_out_at_t1
);

316 occupation_ground_vs_t1_vs_t2_after_click_e_out_at_t1(t1_index,:) =
expect(sigma*sigma_dag,density_matrix_vs_t2_after_click_e_out_at_t1
);

317 occupation_excited_vs_t1_vs_t2_after_click_e_out_at_t1(t1_index,:) =
expect(sigma_dag*sigma,density_matrix_vs_t2_after_click_e_out_at_t1
);

318 end
319
320 %toc
321
322 %%
323 %%%%% Completion of previous partially−calculated maps vs t1,t2, to include

the case where t2 < t1
324
325 % Due to the symmetry between t1 and t2 (we don't know which detector will
326 % click first), we have to use properties like g2(t1,t2)=g2(t2,t1) to fill
327 % the voids in the quantities that we have only partially calculated yet
328 % (since we systematically considered a zero value when t2 < t1. For each
329 % map function of t1 and t2, this completion is obtained by adding it to
330 % its transpose (to replace the zeros at t2 < t1) and dividing by 2 the
331 % elements along the diagonal (to avoid counting twice the case where
332 % t2=t1). This is done via an ad−hoc matrix idx below:
333
334 idx = ones(nb_points_time)−0.5*diag(ones(nb_points_time,1)); % to divide by

2 the elements along the diagonal
335
336 % Completed g2(t1,t2) for the various optical fields
337 g2_emitted_vs_t1_t2 = real((g2_emitted_vs_t1_t2+g2_emitted_vs_t1_t2.')).*

idx;
338 g2_reflected_vs_t1_t2 = real((g2_reflected_vs_t1_t2+g2_reflected_vs_t1_t2

.')).*idx;
339 g2_transmitted_vs_t1_t2 = real((g2_transmitted_vs_t1_t2+

g2_transmitted_vs_t1_t2.')).*idx;
340
341 %Completed conditional occupation probabilities for the excited and ground

state
342 occupation_ground_vs_t1_vs_t2_after_click_b_out_at_t1 = (

occupation_ground_vs_t1_vs_t2_after_click_b_out_at_t1+
occupation_ground_vs_t1_vs_t2_after_click_b_out_at_t1.').*idx;
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343 occupation_excited_vs_t1_vs_t2_after_click_b_out_at_t1 = (
occupation_excited_vs_t1_vs_t2_after_click_b_out_at_t1+
occupation_excited_vs_t1_vs_t2_after_click_b_out_at_t1.').*idx;

344 occupation_ground_vs_t1_vs_t2_after_click_c_out_at_t1 = (
occupation_ground_vs_t1_vs_t2_after_click_c_out_at_t1+
occupation_ground_vs_t1_vs_t2_after_click_c_out_at_t1.').*idx;

345 occupation_excited_vs_t1_vs_t2_after_click_c_out_at_t1 = (
occupation_excited_vs_t1_vs_t2_after_click_c_out_at_t1+
occupation_excited_vs_t1_vs_t2_after_click_c_out_at_t1.').*idx;

346 occupation_ground_vs_t1_vs_t2_after_click_e_out_at_t1 = (
occupation_ground_vs_t1_vs_t2_after_click_e_out_at_t1+
occupation_ground_vs_t1_vs_t2_after_click_e_out_at_t1.').*idx;

347 occupation_excited_vs_t1_vs_t2_after_click_e_out_at_t1 = (
occupation_excited_vs_t1_vs_t2_after_click_e_out_at_t1+
occupation_excited_vs_t1_vs_t2_after_click_e_out_at_t1.').*idx;

348
349
350 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
351 %%%%%%%%%%%%%%% Coincidence maps as a function of t1, t2 %%%%%%%%%%%%%%%%%%
352 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
353
354 % This part computes quantities such as :
355 % − < b_out'(t1) b_out'(t2) b_out(t2) b_out(t1) >, which is proportional
356 % to the probability of detecting two reflected photons at time t1 and

t2
357 % in two detectors, during the same pulse (correlated clicks)
358 % − < b_out'(t1) b_out(t1) > < b_out'(t2) b_out(t2) >, which is

proportional
359 % to the probability of detecting two reflected photons at time t1 and

t2
360 % in two detectors, but for different pulses (uncorrelated clicks)
361
362 % Uncorrelated photon_coincidences vs (t1,t2), e.g. <b_out'(t1)b_out(t1)> <

b_out'(t2)b_out(t2)>
363 emitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses = real(expect(

e_out'*e_out,density_matrix_vs_time))'*real(expect(e_out'*e_out,
density_matrix_vs_time));

364 reflected_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses = real(expect
(b_out_vs_time'*b_out_vs_time,density_matrix_vs_time))'*real(expect(
b_out_vs_time'*b_out_vs_time,density_matrix_vs_time));

365 transmitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses = real(
expect(c_out_vs_time'*c_out_vs_time,density_matrix_vs_time))'*real(
expect(c_out_vs_time'*c_out_vs_time,density_matrix_vs_time));

366
367 % Correlated photon_coincidences vs (t1,t2), e.g. <b_out'(t1) b_out'(t2)

b_out(t2) b_out(t1)>
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368 emitted_photon_coincidences_vs_t1_vs_t2 = g2_emitted_vs_t1_t2.*
emitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses;

369 reflected_photon_coincidences_vs_t1_vs_t2 = g2_reflected_vs_t1_t2.*
reflected_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses;

370 transmitted_photon_coincidences_vs_t1_vs_t2 = g2_transmitted_vs_t1_t2.*
transmitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses;

371
372 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
373 %%%%%%%%%%%%%%%%%%%%%%% Normalized g2(tau) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
374 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
375 %
376 % As in a standard HBT experiment in the pulsed regime, g2(tau) is obtained
377 % by defining an histogram integrating all the coincidences corresponding
378 % to a given delay tau (with tau = t2 − t1 being positive or negative). The
379 % normalization choice here is that the area of the g2(tau) peak is unity
380 % for uncorrelated coincidences, i.e. for all peaks except the zero−delay
381 % peak.
382
383 % Normalized g2 (tau) for the zero−delay peak, corresponding to photons

emitted
384 % within the same pulse. It is obtained from the correlated coincidence

map
385 % <b'(t1)b'(t2)b(t2)b(t1)>, by integrating over all values corresponding to

a
386 % given delay tau = t2 − t1, with a time bin t_step, and normalizing by

Nb_photons^2.
387 % Note that tau = 0 for t1=t2, corresponding to the diagonal elements of

the
388 % g2(t1,t2) map, while non−zero delays are obtained outside the diagonal.
389 for j = 1:nb_points_time
390 normalized_g2_vs_delay_emitted(j) = real(sum(diag(

emitted_photon_coincidences_vs_t1_vs_t2,j)))*t_step/
Nb_emitted_photons^2;

391 normalized_g2_vs_delay_reflected(j) = real(sum(diag(
reflected_photon_coincidences_vs_t1_vs_t2,j)))*t_step/
Nb_reflected_photons^2;

392 normalized_g2_vs_delay_transmitted(j) = real(sum(diag(
transmitted_photon_coincidences_vs_t1_vs_t2,j)))*t_step/
Nb_transmitted_photons^2;

393 end
394
395 % Normalized g2 (tau) for the other peaks, corresponding to photons emitted
396 % within different pulses. It is obtained from the uncorrelated coincidence

map
397 % <b'(t2)b(t2)><b'(t1)b(t1)>, by integrating over all values corresponding

to a
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398 % given delay tau = t2 − t1, with a time bin t_step, and normalizing by
Nb_photons^2.

399 for j = 1:nb_points_time
400 normalized_g2_vs_delay_uncorrelated_emitted(j) = real(sum(diag(

emitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses,j)))*
t_step/Nb_emitted_photons^2;

401 normalized_g2_vs_delay_uncorrelated_reflected(j) = real(sum(diag(
reflected_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses,j)))*
t_step/Nb_reflected_photons^2;

402 normalized_g2_vs_delay_uncorrelated_transmitted(j) = real(sum(diag(
transmitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses,j))
)*t_step/Nb_transmitted_photons^2;

403 end
404
405 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
406 %%%%%%%%%%%%%%%% Mean g2 for the zero delay peak %%%%%%%%%%%%%%%%%%%%%%%%%%
407 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
408
409 % In the pulsed regime, what experimentalists usually call the g2(0) is in
410 % fact the mean value of g2(tau) for the zero−delay peak, or more precisely
411 % the area of the normalized g2(tau) curve for the zero−delay peak, as

compared
412 % to the unity area obtained for the other uncorrelated peaks.
413
414 % Area of normalized g2(tau) for the zero−delay/correlated peak
415 mean_g2_zero_delay_peak_reflected_photons = trapz(full_tau_list,[flip(

normalized_g2_vs_delay_reflected(2:end))
normalized_g2_vs_delay_reflected]);

416 mean_g2_zero_delay_peak_transmitted_photons = trapz(full_tau_list,[flip(
normalized_g2_vs_delay_transmitted(2:end))
normalized_g2_vs_delay_transmitted]);

417 mean_g2_zero_delay_peak_emitted_photons = trapz(full_tau_list,[flip(
normalized_g2_vs_delay_emitted(2:end)) normalized_g2_vs_delay_emitted])
;

418
419 % Area of normalized g2(tau) for the zero−delay/correlated peak
420 mean_g2_uncorrelated_peaks_reflected_photons = trapz(full_tau_list,[flip(

normalized_g2_vs_delay_uncorrelated_reflected(2:end))
normalized_g2_vs_delay_uncorrelated_reflected]);

421 mean_g2_uncorrelated_peaks_transmitted_photons = trapz(full_tau_list,[flip(
normalized_g2_vs_delay_uncorrelated_transmitted(2:end))
normalized_g2_vs_delay_uncorrelated_transmitted]);

422 mean_g2_uncorrelated_peaks_emitted_photons = trapz(full_tau_list,[flip(
normalized_g2_vs_delay_uncorrelated_emitted(2:end))
normalized_g2_vs_delay_uncorrelated_emitted]);

423
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424
425
426
427 %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
428 %%%%%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
429 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
430
431 % For plot selection:
432 % − g2 vs (t1,t2) : 'G'
433 % − photon coincidences (correlated and not) vs (t1,t2) : 'C'
434 % − ground state occupations vs (t1,t2) : 'O'
435 % − photon fluxes vs time & g2 vs delay : 'F'
436
437 % plot_choice = ['G'];
438 plot_choice = ['G';'C';'O';'F'];
439 Plot2LevelG2PRvsT1T2;

C.2 CQED device parameters

1 if ~ismember(model,['F'; 'A'])
2 f = errordlg('Not valid input for full / adiabatic model selection.','

Error');
3 end
4
5 %%%% Physical constants (do not change) %%%%
6 ev=1.60217646e−19;h=6.626068e−34; hbar=h/(2*pi);
7
8 % Parameters: energies of the mode ("c" for "cavity" and of the QD ("d" for
9 % "dot") in eV. NB: all variable names have to end in "_ev" when they are
10 % in electron−volts. Afterwards the energies in electron−volts will all be
11 % converted in angular frequencies in rad/ps for subsequent calculations.
12 omega_c_ev = 1.329810; % Cavity mode energy
13 omega_d_ev = omega_c_ev + detuning_QD_C_muev*1e−6; % QD transition energy
14
15 % Parameters of the QD (in ueV as indicated by the name ending by "_muev"
16 g_muev = 17; % Light matter coupling in mueV
17 gamma_sp_muev = 0.6; %Spontaneous emission of leaky modes (i.e. not in the
18 %cavity mode)
19 gamma_puredephasing_muev = 0; %Pure dephasing in mueV
20 gamma_decoherence_muev = gamma_sp_muev/2 + gamma_puredephasing_muev;
21
22 %Parameters of the cavity
23 kappa_muev = 400; % Cavity intensity decay rate, in ueV
24 eta_top = 0.7; %Extraction efficiency for the top Bragg mirror
25 eta_bottom = 0.1; %Extraction efficiency for the bottom Bragg mirror
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26 eta_loss = 1−eta_top−eta_bottom; %Losses induced by lateral diffraction or
absorption

27
28 % Conversions in rad/ps
29 omega_c = omega_c_ev*ev/hbar*1e−12; %in rad/ps
30 omega_d = omega_d_ev*ev/hbar*1e−12; %in rad/ps
31 g = g_muev*10^−6*ev/hbar*1e−12; %in rad/ps
32 gamma_decoherence = gamma_decoherence_muev*1e−6*ev/hbar*1e−12; %in rad/ps
33 gamma_sp = gamma_sp_muev*1e−6*ev/hbar*1e−12; %in rad/ps
34 gamma_puredephasing = gamma_puredephasing_muev*1e−6*ev/hbar*1e−12; %in rad

/ps
35 kappa = kappa_muev*1e−6*ev/hbar*1e−12; %in rad/ps
36 kappa_top = kappa*eta_top; %in rad/ps
37 kappa_bottom = kappa*eta_bottom; %in rad/ps
38 kappa_loss = kappa*eta_loss; %in rad/ps
39
40 if strcmp(model,'F')
41 N=10; %Maximal number of photons in the cavity mode (troncature of the

Fock space if complete model is used)
42 end
43
44 % Parameters useful for physical interpretation of data, and required for
45 % the "adiabatic elimination" model
46 Delta_QDC = 2*(omega_d−omega_c)/kappa; %normalized QD−cavity detuning
47 Gamma_0 = 4*g^2/kappa; %Purcell−enhanced emission rate at zero detuning
48 Gamma_m = Gamma_0/(1 + Delta_QDC^2); % Purcell−enhanced emission rate
49 Gamma_tot = Gamma_m + gamma_sp; %total emission rate
50 omega_eff = omega_d + 0.5*Gamma_0*Delta_QDC/(1 + Delta_QDC^2); %cavity

induced frequency shift

C.3 Subprograms
C.3.1 mesolve

1 % Function developed by Sze Meng Tan. A quantum optics toolbox, 1999
2 function [rho] = mesolve(L,rho0,t_list)
3 %%%%%%%%%%%%%%%%%% L : Liouvillien use in the Master Equation
4 %%%%%%%%%%%%%%%%%% rho 0 : Initial Condition for the solving of the ME
5 %%%%%%%%%%%%%%%%%% t_list : time list containing each time value where the
6 %%%%%%%%%%%%%%%%%% Density Matrix will be calculated thanks to the routine
7
8 %%%%%%%%%%% Numerical Integration of the Master Equation %%%%%%%%
9
10
11 ode2file('ode_input.dat',L,rho0,t_list,struct('reltol',7e−8,'abstol',8e−7))

; % Writes the data into a file
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12 odesolve('ode_input.dat','ode_output.dat'); % Solve/Integration (here Adams
method by default)

13 fid = fopen('ode_output.dat','rb');
14 rho = qoread(fid,dims(rho0),size(t_list));
15 fclose(fid);
16 %%%%%%%%%%%%%%%%%% rho : list of the Density Matrix calculated for each
17 %%%%%%%%%%%%%%%%%% time specified in the list

C.3.2 Init 2level Hilbert space and operators

1 switch model
2 case 'F'
3 %%%%%%%%%%%%%%%%%%%% Sub−space "quantum dot" %%%%%%%%%%%%%%%%%%%%
4
5 %Basis states for the quantum dot (g for "ground", e for "excited")
6 g_ket=qo([1;0]); %%% Quantum object "ket" associated to the ground

state
7 g_bra=g_ket'; %%% Quantum object "bra" associated to the ground

state
8 e_ket=qo([0;1]); %%% Quantum object "ket" associated to the excited

state
9 e_bra=e_ket'; %%% Quantum object "bra" associated to the excited

state
10
11 %Operators acting in the sub−space of the 2−level QD system (2x2

matrixs)
12 id_QD=e_ket*e_bra+g_ket*g_bra; % Quantum object "Identity operator"
13 sigma_QD=g_ket*e_bra; % Quantum object "de−excitation of the 2−

level system"
14 sigma_dag_QD=sigma_QD'; % Quantum object "excitation of the 2−level

system"
15
16 %%%%%%%%%%%%%%%%%%%% Sub−space "cavity"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 %N denotes the maximal number of photons in the truncated Fock

space (see above)
18 id_cav = identity(N); % Quantum object "Identity operator" (

matrix NxN)
19 destroy_cav=destroy(N);% Quantum object "annihilation operator" (

matrix NxN)
20 Vacuum_state=basis(N,1); % State corresponding to photon vacuum |0>

(Nx1)
21
22 last_Fock_state_ket = basis(N,N);% State corresponding to the last

Fock state |N−1>, to control its occupation probability
23
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24 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

25
26 %%%%%%%%% Operators acting in the product space cavity−quantum dot

(matrices 2Nx2N)
27 Id=tensor(id_cav,id_QD); % Tensorial product of identities in the

cavity and QD subspace
28 sigma = tensor(id_cav,sigma_QD); % De−excitation operator from the

excited QD state to the ground QD state
29 sigma_dag = sigma'; % De−excitation operator from the ground QD

state to the excited QD state
30
31 a=tensor(destroy_cav,id_QD); % Annihilation operator for a photon

in the cavity mode
32 a_dag=a'; % Creation operator for a photon in the cavity mode
33 n=a_dag*a; % Intracavity photon number operator
34
35 occupation_last_Fock_state=tensor(last_Fock_state_ket*

last_Fock_state_ket',id_QD);% operator for the occupation of
the last Fock state, to control that it remains low

36
37
38 %%%%%%%%%%%%%%%% Definition of Collapse operators

%%%%%%%%%%%%%%%%%%%%%
39 C_cav = sqrt(kappa)*a; %Collapse operator for the cavity
40 C_sp = sqrt(gamma_sp)*sigma; % Collapse operator for a spontaneous

emission outside the cavity mode
41 C_pure_dephasing = sqrt(2*gamma_puredephasing)*sigma_dag*sigma; %

Collapse operator for pure dephasing
42
43 % Lindblad operators associated to each incoherent process
44 L_cav = 1/2 * (2*spre(C_cav)*spost(C_cav') − spre(C_cav'*C_cav) −

spost(C_cav'*C_cav));% 1st terme: cavity dumping
45 L_sp = 1/2 * (2*spre(C_sp)*spost(C_sp') − spre(C_sp'*C_sp) − spost(

C_sp'*C_sp));% 2nd terme: exciton lifetime
46 L_pure_dephasing = 1/2 * (2*spre(C_pure_dephasing)*spost(

C_pure_dephasing') − spre(C_pure_dephasing'*C_pure_dephasing) −
spost(C_pure_dephasing'*C_pure_dephasing));% 3rd term: pure
dephasing

47
48 % Lindblad operator associated to all the incoherent processes
49 L_incoh=L_cav+L_sp+L_pure_dephasing;
50
51 case 'A'
52 %%%%%%%%%%%%%%%%%%%% space "quantum dot" %%%%%%%%%%%%%%%%%%%%
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53
54 %Basis states for the quantum dot (g for "ground", e for "excited")
55 g_ket=qo([1;0]); %%% Quantum object "ket" associated to the ground

state
56 g_bra=g_ket'; %%% Quantum object "bra" associated to the ground

state
57 e_ket=qo([0;1]); %%% Quantum object "ket" associated to the excited

state
58 e_bra=e_ket'; %%% Quantum object "bra" associated to the excited

state
59
60 %Operators acting in the sub−space of the 2−level QD system (2x2

matrixs)
61 Id=e_ket*e_bra+g_ket*g_bra; % Quantum object "Identity operator"
62 sigma=g_ket*e_bra; % Quantum object "de−excitation of the 2−level

system"
63 sigma_dag=sigma'; % Quantum object "excitation of the 2−level

system"
64
65 %%%%%%%%%%%%%%%% Definition of Collapse operators

%%%%%%%%%%%%%%%%%%%%%
66 C_QD = sqrt(Gamma_tot)*sigma; % Collapse operator for a spontaneous

emission outside the cavity mode (eq.15)
67 C_pure_dephasing = sqrt(2*gamma_puredephasing)*sigma_dag*sigma; %

Collapse operator for pure dephasing
68
69 % Lindblad operators associated to each incoherent process
70 L_QD = 1/2 * (2*spre(C_QD)*spost(C_QD') − spre(C_QD'*C_QD) ...
71 − spost(C_QD'*C_QD));% exciton lifetime
72 L_pure_dephasing = 1/2 * (2*spre(C_pure_dephasing)*spost(

C_pure_dephasing') − spre(C_pure_dephasing'*C_pure_dephasing) −
spost(C_pure_dephasing'*C_pure_dephasing));% 3rd term: pure
dephasing

73
74 % Lindblad operator associated to all the incoherent processes
75 L_incoh=L_QD+L_pure_dephasing;
76
77 % NB: in the adiabatic model L_QD includes both the emission

outside the mode
78 % and the Purcell−enhanced emission through the cavity mode, hence

the
79 % "Gamma_tot" term in the definition of C_QD
80
81 end
82
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83 %%%%%%%%%%% Constant output operator used to describe the field emitted
outside the mode

84 e_out=sqrt(gamma_sp)*sigma; % Output flux operator in ps^(−1/2)
85
86 % NB: the other output flux operators can be power−dependent or frequency−

dependent, depending on the model used
87 % (full or adiabatic). They are thus defined in the main file. Also note

that e_out is equal to C_sp, but we use
88 % a different notation to insist on its use as an output operator,

analogous to the other output operators b_out,
89 % c_out, and d_out, respectively describing the reflected, transmitted, and

diffracted/lost photon field.

C.3.3 Init lists 2level CW scan laser frequency

1 %Parameters for the calculation of spectra
2 omega_laser_min_ev=omega_d_ev+min_detuning_muev*1e−6;
3 omega_laser_max_ev=omega_d_ev+max_detuning_muev*1e−6;
4
5 %%%% Initialization of lists to calculate and plot the spectra as a

function of omega_laser
6 omega_laser_list_ev = linspace(omega_laser_min_ev,omega_laser_max_ev,

nb_points_spectrum);% list of laser photon energies for the plots in eV
7 omega_laser_list = omega_laser_list_ev*ev/hbar*1e−12;% list of laser

angular frequencies in rad/ps, the unit used for calculations
8 omega_step = (max(omega_laser_list) − min(omega_laser_list)) / (

nb_points_spectrum−1); %in rad/ps, step for the calculation of
integrals

9
10 % List to plot the spectra as a function of the detuning omega_laser−

omega_d, in mueV
11 detuning_list_muev = (omega_laser_list_ev − omega_d_ev)*1e6;
12
13 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
14 % Memory preallocation (allows gaining in calculation time)
15 % The "_vs_omega" indicates here that this is a list of values related to

the defferent_values of omega_laser
16
17 total_flux_reflected_photons_vs_omega = zeros(1,length(omega_laser_list));

%flux in ps^(−1)
18 total_flux_transmitted_photons_vs_omega = zeros(1,length(omega_laser_list))

; %flux in ps^(−1)
19 total_flux_diffracted_photons_vs_omega = zeros(1,length(omega_laser_list));

%flux in ps^(−1)
20 total_flux_emitted_photons_vs_omega = zeros(1,length(omega_laser_list)); %

flux in ps^(−1)
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21
22 occupation_excited_state_vs_omega = zeros(1,length(omega_laser_list)); %

for the occupation of the excited state
23 occupation_ground_state_vs_omega = zeros(1,length(omega_laser_list)); % for

the occupation of the ground state
24
25
26 %%%% OPTIONAL : Memory preallocation for the coherent part of the output

fields
27 % Here the term "laser_coherent" means that it corresponds to the part of

the flux that is
28 % coherent with the incoming excitation laser, and not the "total" flux.

Obviously the incoherent part
29 % is just given by substrating the "laser_coherent" part from the "total"

flux
30
31 flux_reflected_photons_laser_coherent_vs_omega = zeros(1,length(

omega_laser_list)); %flux in ps^(−1)
32 flux_transmitted_photons_laser_coherent_vs_omega = zeros(1,length(

omega_laser_list)); %flux en s^(−1)
33 flux_diffracted_photons_laser_coherent_vs_omega = zeros(1,length(

omega_laser_list)); %flux en s^(−1)
34 flux_emitted_photons_laser_coherent_vs_omega = zeros(1,length(

omega_laser_list)); %flux en s^(−1)

C.3.4 Init lists 2level PW vs time

1 % Parameters of the incoming gaussian pulse
2 omega_pulse_ev=omega_d_ev+detuning_pulse_QD_muev*1e−6; %center energy of

the incoming pulse, in eV
3 omega_pulse=omega_pulse_ev*ev/hbar*1e−12; %in rad/ps
4
5 % Parameters for the computation of time evolutions
6 t_delay = 2*FWHM; % Time at which the pulse is maximally intense, so that

the computation starts when the pulse has not arrived yet
7 t_max_ps=t_delay + 4*FWHM +0.5/gamma_sp; % Final time where we stop the

computation and plots of time evolutions
8 nb_points_time = 1000; % Time resolution/Number of iterations / <100000

otherwise the integrating the master equation gets difficult (odesolve)
)

9 t_min = 0*FWHM; % Initial time considered for the computations and plots of
time evolutions

10 t_step=(t_max_ps−t_min)/(nb_points_time−1); % Duration of a time step
11 t_list=linspace(t_min,t_max_ps,nb_points_time); % list of all the times

considered in the computation and plots
12
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13 % Initialization of qo array of identity operator
14 Id_vs_time = qo;
15 for time_index = 1:nb_points_time
16 Id_vs_time{time_index} = Id;
17 end

C.3.5 Init lists 2level g1SD CW vs delay and frequency

1 %M Laser frequency (fixed)
2
3 omega_laser_ev = omega_d_ev + detuning_laser_QD_muev*1e−6;
4 omega_laser = omega_laser_ev*ev/hbar*1e−12; % laser angular frequency in

rad/ps, the unit used for calculations
5
6
7 %% Parameters and lists for the evaluation of the temporal evolution as a

function of the delay tau
8
9 tau_step = (tau_max)/(nb_points_delay−1); %size of the time step, in ps
10 tau_list = linspace(0,tau_max,nb_points_delay); % array containg the non−

negative time steps
11 full_tau_list = [fliplr(−tau_list(2:end−1)) , tau_list ];% array containing

both positive and negative time steps
12
13
14 %% Parameters for the calculation of spectral densities through the Fast

Fourier Transform (FFT) algorithm
15 %
16 % NB1: See comments in the main program for a definition of spectral

densities and main concepts involved
17 %
18 % NB2: For more information in the matlab FFT function, see:
19 % https://fr.mathworks.com/help/matlab/ref/fft.html
20 % A discussion on the proper normalization of the FFT signal (which should

be performed by
21 % dividing the fft function's result by the signal's sampling frequency)

can be found here:
22 % https://math.stackexchange.com/questions/636847/understanding−fourier−

transform−example−in−matlab
23 % Such a normalization choice allows respecting the Parseval's theorem, i.e

.:
24 % sum_{n=0}^{N−1} |x[n]|^2 = 1/N*sum_{k=0}^{N−1} |X[k]|^2,
25 % with x[n] the signal and X[k] its discrete Fourier Transform, n and k

being positive
26 % indices between 0 and N−1. Indeed, Parseval's theorem is at the heart of

our normalization

126



C.3 – Subprograms

27 % choice that the integral of the spectra density of flux should be the
28 % total flux.
29 %
30 % NB3: To get a really fast algorithm, the number of points used in the
31 % time and frequency domain should be a power of 2.
32
33 FFT_sampling_frequency = 1/tau_step; % sampling frequency, also called "

sampling rate", in ps^(−1)
34 nb_points_full_spectrum = 2^nextpow2(length(full_tau_list)); % ensuring a

power of 2 for for optimized FFT performance
35
36 omega_step = 2*pi*FFT_sampling_frequency/nb_points_full_spectrum; % angular

frequency step in the spectrum, in rad/ps
37 omega_step_muev = omega_step/ev*hbar/1e−18; % photon energy step in mueV
38
39 omega_list_full_spectrum = omega_laser + (−nb_points_full_spectrum/2:

nb_points_full_spectrum/2−1)*omega_step; % array of angular frequencies
in rad/ps

40 % spectrum centered around omega_laser, since we work in the frame rotating
at this angular frequency)

41
42
43 %% Parameters for the zoomed spectrum, i.e. the list of angular frequencies

of interest in the slected spectral window.
44 %
45 % NB: This zoomed spectrum is simply a subset of the previous one, between

a minimal index
46 % and a maximal one that are defined below.
47
48 index_min_zoomed_spectrum = nb_points_full_spectrum/2+1−round(

width_spectral_window_muev/omega_step_muev/2);
49 index_max_zoomed_spectrum = nb_points_full_spectrum/2+1+round(

width_spectral_window_muev/omega_step_muev/2);
50
51 omega_list = linspace(omega_list_full_spectrum(index_min_zoomed_spectrum),

omega_list_full_spectrum(index_max_zoomed_spectrum),
index_max_zoomed_spectrum−index_min_zoomed_spectrum+1); % list of
angular frequencies, in rad/ps over the full FFT spectrum

52
53 nb_points_spectrum = length(omega_list);
54
55
56 %% Parameters for the zoomed spectrum expressed in photon energy
57
58 omega_list_ev = omega_list/ev*hbar/1e−12; % selected list of photon

energies, in eV
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59
60
61 %% Parameters for the compensation of the FFT phase shift compensation
62 %
63 % NB: a first−order autocorrelation function is always anti−symmetric in

the sense that:
64 % g1(−tau) = g1(tau)*
65 % This antisymmetry ensures that its Fourier Transform, and thus the

corresponding spectral
66 % density, gives a real physical quantity. However, as discussed in the

main program the fft
67 % function considers that the first signal point corresponds to time 0,

while in our case
68 % the full_tau_list contains both negative and positive delays, and the

antisymmetry point
69 % (tau=0) is shifted to the middle of the spectrum. This is a very general

issue arising
70 % from the fact that MATLAB arrays have only positive indices, so a signal

x[n] defined over
71 % n = −N, −N+1, ..., 0, ... N−1, N is treated by the fft function as it

were defined over
72 % n = 1 , 2 , ... , 2*N+1. Such a translation of the x[n] signal leads, in

its Fourier
73 % Transform X[k], to a phase shift which linearly increases with the index

k. In our case,
74 % the phase shift will depend on the angular frequency omega, and has to be

compensated by
75 % by a phase term denoted "phase_shift_compensation_vs_omega_full_spectrum

".
76 % For more info on the phase shift compensation, see:
77 % https://www.mathworks.com/matlabcentral/answers/94874−why−is−the−fft−of−

an−anti−symmetric−signal−not−correct
78
79 k = 0:(nb_points_full_spectrum−1);
80 phase_shift_compensation_vs_omega_full_spectrum = exp(−1j*2*pi*(

nb_points_full_spectrum/2−1)*k/length(k));
81
82
83 %% Memory preallocation (allows gaining in calculation time)
84 % NB: The "_vs_omega" indicates here that this is a list of values related

to the different
85 % values of omega, in rad/ps, in omega_list
86
87 spectral_density_flux_reflected_photons_incoh_vs_omega = zeros(1,length(

omega_list));
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88 spectral_density_flux_transmitted_photons_incoh_vs_omega = zeros(1,length(
omega_list));

89 spectral_density_flux_emitted_photons_incoh_vs_omega = zeros(1,length(
omega_list));

C.3.6 Init maps 2level g1 WDF PW

1 % Parameters of the incoming gaussian pulse
2 omega_pulse_ev=omega_d_ev+detuning_pulse_QD_muev*1e−6; %center energy of

the incoming pulse, in eV
3 omega_pulse=omega_pulse_ev*ev/hbar*1e−12; %in rad/ps
4
5 % Parameters for the computation of time evolutions
6 t_step=(t_max_ps−t_min)/(nb_points_time−1); % Duration of a time step
7 t_list=linspace(t_min,t_max_ps,nb_points_time); % list of all the times

considered in the computation and plots
8
9 % Steps in time and delay for the Wigner Distribution Function (WDF).
10 % Notice that even though tau = t2−t1, its step here is half the step in
11 % the density matrix evolution to correctly Fourier transform over
12 % frequency later, according to the WDF definition. More info in the "main"
13 % script.
14
15 tau_step = t_step/2; %important to avoid aliasing
16 time_step = t_step/2;
17
18 time_list = (t_list(1):time_step:t_list(end));
19 tau_list = (t_list(1)−t_list(end):tau_step:t_list(end)−t_list(1));
20 %%
21 % Parameters for the computation of preliminary time evolution,
22 % between 0 (long before the pulse) and t_min (time at which we want
23 % to start plotting and integrating the physical quantities
24 nb_points_time_before_t_min = 5; % (Low) time resolution for first

evolution of the system for initialization
25 t_list_before_t_min = linspace(0,t_min,nb_points_time_before_t_min); % time

array for first evolution of the sistem
26
27 % Initialization of qo array of identity operator
28 Id_vs_time = qo;
29 for t1_index = 1:nb_points_time
30 Id_vs_time{t1_index} = Id;
31 end
32
33 %%% Preallocation of the memory to save computing time
34
35 % Initialization of g1 vs (t1,t2)
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36 g1_reflected_vs_t1_t2 = zeros(nb_points_time,nb_points_time);
37 g1_transmitted_vs_t1_t2 = zeros(nb_points_time,nb_points_time);
38 g1_diffracted_vs_t1_t2 = zeros(nb_points_time,nb_points_time);
39 g1_emitted_vs_t1_t2 = zeros(nb_points_time,nb_points_time);
40
41 % Initialization of the "zero" density matrix which will be used to fill

the
42 % conditional density matrices, using 0 values for t2 < t1
43 zero_density_matrix_vs_t2_before_t1 = qo;
44 %% Parameters for the calculation of Fourier Transform over tau through the

Fast Fourier Transform (FFT) algorithm
45 %
46 % NB1: See comments in the main program for a definition of spectral

densities and main concepts involved
47 %
48 % NB2: For more information in the matlab FFT function, see:
49 % https://fr.mathworks.com/help/matlab/ref/fft.html
50 % A discussion on the proper normalization of the FFT signal (which should

be performed by
51 % dividing the fft function's result by the signal's sampling frequency)

can be found here:
52 % https://math.stackexchange.com/questions/636847/understanding−fourier−

transform−example−in−matlab
53 % Such a normalization choice allows respecting the Parseval's theorem, i.e

.:
54 % sum_{n=0}^{N−1} |x[n]|^2 = 1/N*sum_{k=0}^{N−1} |X[k]|^2,
55 % with x[n] the signal and X[k] its discrete Fourier Transform, n and k

being positive
56 % indices between 0 and N−1. Indeed, Parseval's theorem is at the heart of

our normalization
57 % choice that the integral of the spectra density of flux should be the
58 % total flux.
59 %
60 % NB3: To get a really fast algorithm, the number of points used in the
61 % time and frequency domain should be a power of 2. However, in this
62 % specific program the number of elements is 4*nb_points_time−3, so zero
63 % padding is performed by the fft−s defined in the main.
64
65 FFT_sampling_frequency = 1/t_step; % sampling frequency, also called "

sampling rate", in ps^(−1)
66 nb_points_full_spectrum = 2^nextpow2(length(tau_list)); % ensuring a power

of 2 for for optimized FFT performance
67 omega_step = 2*pi*FFT_sampling_frequency/nb_points_full_spectrum; % angular

frequency step in the spectrum, in rad/ps
68 omega_step_muev = omega_step/ev*hbar/1e−18; % photon energy step in mueV
69
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70 omega_list_full_spectrum = omega_pulse + (−nb_points_full_spectrum/2:
nb_points_full_spectrum/2−1)*omega_step; % array of angular frequencies
in rad/ps

71 omega_list_full_spectrum_muev = omega_list_full_spectrum/ev*hbar/1e−18;
72 % spectrum centered around omega_pulse, since we work in the frame rotating

at this angular frequency)
73
74 %% Parameters for the zoomed spectrum, i.e. the list of angular frequencies

of interest in the slected spectral window.
75 %
76 % NB: This zoomed spectrum is simply a subset of the previous one, between

a minimal index
77 % and a maximal one that are defined below.
78
79 index_min_zoomed_spectrum = nb_points_full_spectrum/2+1−round(

width_spectral_window_muev/omega_step_muev/2);
80 index_max_zoomed_spectrum = nb_points_full_spectrum/2+1+round(

width_spectral_window_muev/omega_step_muev/2);
81
82 omega_list = linspace(omega_list_full_spectrum(index_min_zoomed_spectrum),

omega_list_full_spectrum(index_max_zoomed_spectrum),
index_max_zoomed_spectrum−index_min_zoomed_spectrum+1); % list of
angular frequencies, in rad/ps over the full FFT spectrum

83
84 nb_points_spectrum = length(omega_list);
85
86 %% Parameters for the zoomed spectrum expressed in photon energy
87
88 omega_list_ev = omega_list/ev*hbar/1e−12; % selected list of photon

energies, in eV
89
90 %% Parameters for the compensation of the FFT phase shift compensation
91 %
92 % NB: WVD gives a real quantity. However, as discussed in the main program

the fft
93 % function considers that for each row, the first signal point corresponds

to delay 0, while in our case
94 % each row contains both negative and positive delays. This is a very

general issue arising
95 % from the fact that MATLAB arrays have only positive indices, so a signal

x[n] defined over
96 % n = −N, −N+1, ..., 0, ... N−1, N is treated by the fft function as it

were defined over
97 % n = 1 , 2 , ... , 2*N+1. Such a translation of the x[n] signal leads, in

its Fourier
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98 % Transform X[k], to a phase shift which linearly increases with the index
k. In our case,

99 % the phase shift will depend on the angular frequency omega, and has to be
compensated by

100 % by a phase term denoted "phase_shift_compensation_vs_omega_full_spectrum
".

101 % For more info on the phase shift compensation, see:
102 % https://www.mathworks.com/matlabcentral/answers/94874−why−is−the−fft−of−

an−anti−symmetric−signal−not−correct
103
104 k = 0:(nb_points_full_spectrum−1);
105 %NB 1: the command "repmat" is used since the fft returns a matrix to be
106 %phaseshifted only along the rows. Therefore, "repmat" is used to generate
107 %a matrix with identical rows.
108 %NB 2: "length(tau_list)−1)/2" is the number of negative delay elements for
109 %each row
110 phase_shift_compensation_vs_omega_full_spectrum = repmat(exp(−1j*2*pi*((

length(tau_list)−1)/2)*k/length(k)),2*nb_points_time−1,1);

C.3.7 Interpolation 2level G1 WDF PR

1 %% Memory preallocation (allows gaining in calculation time)
2 interpolated_G1_reflected_vs_time_tau = 0*time_list'*tau_list;
3 interpolated_reflected_coherent_vs_time_tau = 0*time_list'*tau_list;
4 interpolated_G1_transmitted_vs_time_tau = 0*time_list'*tau_list;
5 interpolated_transmitted_coherent_vs_time_tau = 0*time_list'*tau_list;
6 interpolated_G1_emitted_vs_time_tau = 0*time_list'*tau_list;
7 interpolated_emitted_coherent_vs_time_tau = 0*time_list'*tau_list;
8 interpolated_G1_diffracted_vs_time_tau = 0*time_list'*tau_list;
9 interpolated_diffracted_coherent_vs_time_tau = 0*time_list'*tau_list;
10
11 %From the definition of time = (t1+t2)/2 and tau=t2−t1, it is found that

for a
12 %matrix tau_index = t2_index−t1_index + N and time_index =
13 %t1_index+t2_index−1. Therefore, it is obtained that t1_index =
14 %(time_index−tau_index+1+1)/2 and t2_index = (time_index+tau_index+1−N)/2.
15
16 %NB: The following interpolation is based on a simple arithmetic mean

between
17 % consecutives values at half−integer values. "Fancier" interpolations
18 % would surely increase the overall accuracy.
19
20 for time_index = 1:length(time_list)
21 for tau_index = 1:length(tau_list)
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22 t1_index = (time_index−((tau_index+1)/2)+1+nb_points_time)/2; %obs:
tau_index from the previous formula is acqually "(tau_index+1)
/2" since we have set tau_step = t_step/2

23 t2_index = (time_index+((tau_index+1)/2)+1−nb_points_time)/2; %same
as above

24
25 if t1_index <= nb_points_time && t1_index >= 1 && t2_index <=

nb_points_time && t2_index >= 1
26
27 if floor(t1_index)==t1_index && floor(t2_index)==t2_index
28 interpolated_G1_reflected_vs_time_tau(time_index, tau_index

) = G1_reflected_vs_t1_t2(t1_index, t2_index);
29 interpolated_reflected_coherent_vs_time_tau(time_index,

tau_index) = expect_b_out_dag_t1_times_expect_b_out_t2(
t1_index, t2_index);

30 interpolated_G1_transmitted_vs_time_tau(time_index,
tau_index) = G1_transmitted_vs_t1_t2(t1_index, t2_index
);

31 interpolated_transmitted_coherent_vs_time_tau(time_index,
tau_index) = expect_c_out_dag_t1_times_expect_c_out_t2(
t1_index, t2_index);

32 interpolated_G1_emitted_vs_time_tau(time_index, tau_index)
= G1_emitted_vs_t1_t2(t1_index, t2_index);

33 interpolated_emitted_coherent_vs_time_tau(time_index,
tau_index) = expect_e_out_dag_t1_times_expect_e_out_t2(
t1_index, t2_index);

34 interpolated_G1_diffracted_vs_time_tau(time_index,
tau_index) = G1_diffracted_vs_t1_t2(t1_index, t2_index)
;

35 interpolated_diffracted_coherent_vs_time_tau(time_index,
tau_index) = expect_d_out_dag_t1_times_expect_d_out_t2(
t1_index, t2_index);

36
37 elseif floor(t1_index)==t1_index && floor(t2_index)~= t2_index
38 interpolated_G1_reflected_vs_time_tau(time_index, tau_index

) = (G1_reflected_vs_t1_t2(t1_index, floor(t2_index)) +
G1_reflected_vs_t1_t2(t1_index, ceil(t2_index)))/2;

39 interpolated_reflected_coherent_vs_time_tau(time_index,
tau_index) = (expect_b_out_dag_t1_times_expect_b_out_t2
(t1_index, floor(t2_index)) +
expect_b_out_dag_t1_times_expect_b_out_t2(t1_index,
ceil(t2_index)))/2;

40 interpolated_G1_transmitted_vs_time_tau(time_index,
tau_index) = (G1_transmitted_vs_t1_t2(t1_index, floor(
t2_index)) + G1_transmitted_vs_t1_t2(t1_index, ceil(
t2_index)))/2;
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41 interpolated_transmitted_coherent_vs_time_tau(time_index,
tau_index) = (expect_c_out_dag_t1_times_expect_c_out_t2
(t1_index, floor(t2_index)) +
expect_c_out_dag_t1_times_expect_c_out_t2(t1_index,
ceil(t2_index)))/2;

42 interpolated_G1_emitted_vs_time_tau(time_index, tau_index)
= (G1_emitted_vs_t1_t2(t1_index, floor(t2_index)) +
G1_emitted_vs_t1_t2(t1_index, ceil(t2_index)))/2;

43 interpolated_emitted_coherent_vs_time_tau(time_index,
tau_index) = (expect_e_out_dag_t1_times_expect_e_out_t2
(t1_index, floor(t2_index)) +
expect_e_out_dag_t1_times_expect_e_out_t2(t1_index,
ceil(t2_index)))/2;

44 interpolated_G1_diffracted_vs_time_tau(time_index,
tau_index) = (G1_diffracted_vs_t1_t2(t1_index, floor(
t2_index)) + G1_diffracted_vs_t1_t2(t1_index, ceil(
t2_index)))/2;

45 interpolated_diffracted_coherent_vs_time_tau(time_index,
tau_index) = (expect_d_out_dag_t1_times_expect_d_out_t2
(t1_index, floor(t2_index)) +
expect_d_out_dag_t1_times_expect_d_out_t2(t1_index,
ceil(t2_index)))/2;

46
47 elseif floor(t2_index)==t2_index && floor(t1_index)~= t1_index
48 interpolated_G1_reflected_vs_time_tau(time_index, tau_index

) = (G1_reflected_vs_t1_t2(floor(t1_index), t2_index)+
G1_reflected_vs_t1_t2(ceil(t1_index), t2_index))/2;

49 interpolated_reflected_coherent_vs_time_tau(time_index,
tau_index) = (expect_b_out_dag_t1_times_expect_b_out_t2
(floor(t1_index), t2_index)+
expect_b_out_dag_t1_times_expect_b_out_t2(ceil(t1_index
), t2_index))/2;

50 interpolated_G1_transmitted_vs_time_tau(time_index,
tau_index) = (G1_transmitted_vs_t1_t2(floor(t1_index),
t2_index)+G1_transmitted_vs_t1_t2(ceil(t1_index),
t2_index))/2;

51 interpolated_transmitted_coherent_vs_time_tau(time_index,
tau_index) = (expect_c_out_dag_t1_times_expect_c_out_t2
(floor(t1_index), t2_index)+
expect_c_out_dag_t1_times_expect_c_out_t2(ceil(t1_index
), t2_index))/2;

52 interpolated_G1_emitted_vs_time_tau(time_index, tau_index)
= (G1_emitted_vs_t1_t2(floor(t1_index), t2_index)+
G1_emitted_vs_t1_t2(ceil(t1_index), t2_index))/2;
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53 interpolated_emitted_coherent_vs_time_tau(time_index,
tau_index) = (expect_e_out_dag_t1_times_expect_e_out_t2
(floor(t1_index), t2_index)+
expect_e_out_dag_t1_times_expect_e_out_t2(ceil(t1_index
), t2_index))/2;

54 interpolated_G1_diffracted_vs_time_tau(time_index,
tau_index) = (G1_diffracted_vs_t1_t2(floor(t1_index),
t2_index)+G1_diffracted_vs_t1_t2(ceil(t1_index),
t2_index))/2;

55 interpolated_diffracted_coherent_vs_time_tau(time_index,
tau_index) = (expect_b_out_dag_t1_times_expect_d_out_t2
(floor(t1_index), t2_index)+
expect_b_out_dag_t1_times_expect_d_out_t2(ceil(t1_index
), t2_index))/2;

56 else
57 interpolated_G1_reflected_vs_time_tau(time_index, tau_index

) = (G1_reflected_vs_t1_t2(floor(t1_index), floor(
t2_index))+G1_reflected_vs_t1_t2(ceil(t1_index), floor(
t2_index))+G1_reflected_vs_t1_t2(floor(t1_index), ceil(
t2_index))+G1_reflected_vs_t1_t2(ceil(t1_index), ceil(
t2_index)))/4;

58 interpolated_reflected_coherent_vs_time_tau(time_index,
tau_index) = (expect_b_out_dag_t1_times_expect_b_out_t2
(floor(t1_index), floor(t2_index))+
expect_b_out_dag_t1_times_expect_b_out_t2(ceil(t1_index
), floor(t2_index)) +
expect_b_out_dag_t1_times_expect_b_out_t2(floor(
t1_index), ceil(t2_index))+
expect_b_out_dag_t1_times_expect_b_out_t2(ceil(t1_index
), ceil(t2_index)))/4;

59 interpolated_G1_transmitted_vs_time_tau(time_index,
tau_index) = (G1_transmitted_vs_t1_t2(floor(t1_index),
floor(t2_index))+G1_transmitted_vs_t1_t2(ceil(t1_index)
, floor(t2_index))+G1_transmitted_vs_t1_t2(floor(
t1_index), ceil(t2_index))+G1_transmitted_vs_t1_t2(ceil
(t1_index), ceil(t2_index)))/4;

60 interpolated_transmitted_coherent_vs_time_tau(time_index,
tau_index) = (expect_c_out_dag_t1_times_expect_c_out_t2
(floor(t1_index), floor(t2_index))+
expect_c_out_dag_t1_times_expect_c_out_t2(ceil(t1_index
), floor(t2_index)) +
expect_c_out_dag_t1_times_expect_c_out_t2(floor(
t1_index), ceil(t2_index))+
expect_c_out_dag_t1_times_expect_c_out_t2(ceil(t1_index
), ceil(t2_index)))/4;
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61 interpolated_G1_emitted_vs_time_tau(time_index, tau_index)
= (G1_emitted_vs_t1_t2(floor(t1_index), floor(t2_index)
)+G1_emitted_vs_t1_t2(ceil(t1_index), floor(t2_index))+
G1_emitted_vs_t1_t2(floor(t1_index), ceil(t2_index))+
G1_emitted_vs_t1_t2(ceil(t1_index), ceil(t2_index)))/4;

62 interpolated_emitted_coherent_vs_time_tau(time_index,
tau_index) = (expect_e_out_dag_t1_times_expect_e_out_t2
(floor(t1_index), floor(t2_index))+
expect_e_out_dag_t1_times_expect_e_out_t2(ceil(t1_index
), floor(t2_index)) +
expect_e_out_dag_t1_times_expect_e_out_t2(floor(
t1_index), ceil(t2_index))+
expect_e_out_dag_t1_times_expect_e_out_t2(ceil(t1_index
), ceil(t2_index)))/4;

63 interpolated_G1_diffracted_vs_time_tau(time_index,
tau_index) = (G1_diffracted_vs_t1_t2(floor(t1_index),
floor(t2_index))+G1_diffracted_vs_t1_t2(ceil(t1_index),
floor(t2_index))+G1_diffracted_vs_t1_t2(floor(t1_index
), ceil(t2_index))+G1_diffracted_vs_t1_t2(ceil(t1_index
), ceil(t2_index)))/4;

64 interpolated_diffracted_coherent_vs_time_tau(time_index,
tau_index) = (expect_d_out_dag_t1_times_expect_d_out_t2
(floor(t1_index), floor(t2_index))+
expect_d_out_dag_t1_times_expect_d_out_t2(ceil(t1_index
), floor(t2_index)) +
expect_d_out_dag_t1_times_expect_d_out_t2(floor(
t1_index), ceil(t2_index))+
expect_d_out_dag_t1_times_expect_d_out_t2(ceil(t1_index
), ceil(t2_index)))/4;

65 end
66 end
67 end
68 end

C.3.8 Init maps 2level g2 PR vs t1 t2

1 % Parameters of the incoming gaussian pulse
2 omega_pulse_ev=omega_d_ev+detuning_pulse_QD_muev*1e−6; %center energy of

the incoming pulse, in eV
3 omega_pulse=omega_pulse_ev*ev/hbar*1e−12; %in rad/ps
4
5 % Parameters for the computation of time evolutions
6 t_step=(t_max_ps−t_min)/(nb_points_time−1); % Duration of a time step
7 t_list=linspace(t_min,t_max_ps,nb_points_time); % list of all the times

considered in the computation and plots
8
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9 % Parameters for the computation of preliminary time evolution,
10 % between 0 (long before the pulse) and t_min (time at which we want
11 % to start plotting and integrating the physical quantities
12 nb_points_time_before_t_min = 5; % (Low) time resolution for first

evolution of the system for initialization
13 t_list_before_t_min = linspace(0,t_min,nb_points_time_before_t_min); % time

array for first evolution of the sistem
14
15
16
17 % Initialization of qo array of identity operator
18 Id_vs_time = qo;
19 for time_index = 1:nb_points_time
20 Id_vs_time{time_index} = Id;
21 end
22
23
24 full_tau_list = [−flip(t_list(2:end)) t_list(1:end)]; %t_list with both

negative and positive delays for plotting
25
26 %%% Preallocation of the memory to save computing time
27
28 % Initialization of g2 vs (t1,t2)
29 g2_reflected_vs_t1_t2 = zeros(nb_points_time,nb_points_time);
30 g2_transmitted_vs_t1_t2 = zeros(nb_points_time,nb_points_time);
31 g2_emitted_vs_t1_t2 = zeros(nb_points_time,nb_points_time);
32
33 % Initialization of conditional occupation probabilities vs (t1,t2)
34 occupation_ground_vs_t1_vs_t2_after_click_b_out_at_t1 = zeros(

nb_points_time,nb_points_time);
35 occupation_excited_vs_t1_vs_t2_after_click_b_out_at_t1 = zeros(

nb_points_time,nb_points_time);
36 occupation_ground_vs_t1_vs_t2_after_click_c_out_at_t1 = zeros(

nb_points_time,nb_points_time);
37 occupation_excited_vs_t1_vs_t2_after_click_c_out_at_t1 = zeros(

nb_points_time,nb_points_time);
38 occupation_ground_vs_t1_vs_t2_after_click_e_out_at_t1 = zeros(

nb_points_time,nb_points_time);
39 occupation_excited_vs_t1_vs_t2_after_click_e_out_at_t1 = zeros(

nb_points_time,nb_points_time);
40
41 % Initialization of the "zero" density matrix which will be used to fill

the
42 % conditional density matrices, using 0 values for t2 < t1
43 zero_density_matrix_vs_t2_before_t1 = qo;
44
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45 % Initialization of correlated normalized g2(tau)
46 normalized_g2_vs_delay_emitted = zeros(1,nb_points_time);
47 normalized_g2_vs_delay_reflected = zeros(1,nb_points_time);
48 normalized_g2_vs_delay_transmitted = zeros(1,nb_points_time);
49
50 % Initialization of uncorrelated normalized g2(tau)
51 normalized_g2_vs_delay_uncorrelated_emitted = zeros(1,nb_points_time);
52 normalized_g2_vs_delay_uncorrelated_reflected = zeros(1,nb_points_time);
53 normalized_g2_vs_delay_uncorrelated_transmitted = zeros(1,nb_points_time);

C.3.9 plot 2level CW vs laser frequency

1 switch model
2 case 'F'
3 text_legend_model='full model';
4 case 'A'
5 text_legend_model='adiabatic model';
6 end
7
8 % Parameters for the text displayed in figure legends
9 text_legend_QD=['g=', num2str(g_muev) ' muev \gamma_{sp}=' num2str(

gamma_sp_muev) 'muev \gamma^*=' num2str(gamma_puredephasing_muev) '
muev'];

10 text_legend_cav=['\kappa=' num2str(kappa_muev) '\muev \eta_{top}='
num2str(eta_top) ' C=' num2str(g^2/kappa/gamma_decoherence,3)];

11 text_legend_P_in=['P_{in}=' num2str(P_in_CW_pW) 'pW n_0=' num2str(4*
eta_top*abs(b_in_CW)^2/kappa,2) ' n_c=' num2str(gamma_decoherence*
gamma_sp/(4*g^2),2)];

12 text_legend={text_legend_QD,text_legend_cav,text_legend_P_in};
13 % NB: C is the cooperativity and n_c the critical photon number, both

depend only on the cavity−QED parameters.
14 % On the contrary, n_0 depends on the incoming power P_in since it is the

calculated number of intracavity photons
15 % in the absence of QD (i.e. when g=0). When n_0 is much lower than n_c we

are in the weak excitation limit.
16
17
18 % Verification of the conservation of total photon flux
19 fprintf(['CW − ' text_legend_model ' ' ': Maximal relative error on the

conservation of photon flux: ' num2str(max(abs(1−R_vs_omega−T_vs_omega−
D_vs_omega−E_vs_omega))) ' \n \n'])

20
21 %%%%%%%%%%%%%%%%%%%% Plots %%%%%%%%%%%%%%%%%%%%
22
23
24 if ismember('R',plot_choice)
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25 %Color code : Refl in red, Transm + Diffr/lost in blue, Spont. Em. in
magenta

26 figure('Name',['CW − ' text_legend_model ' ' ' − Reflectivity vs laser
photon energy − Pin = ' num2str(P_in_CW_pW) ' pW'],'NumberTitle','
off')

27 %%% UNUSED HERE: allows comparing total part and coherent part
28 % plot(omega_laser_list_ev_CW,real(R_vs_omega),'r',

omega_laser_list_ev_CW,real(R_coh_vs_omega),'r−−');
29 % legend('Fraction of reflected photons','Fraction of coherent

reflected photons')
30 plot(detuning_list_muev,real(R_vs_omega),'r');
31 xlabel('\omega_{laser}−\omega_{d} [\mueV]'); ylabel('Reflectivity');
32 ylim([0 1]);
33 text(detuning_list_muev(ceil(nb_points_spectrum*0.55)),0.8,text_legend,

'FontSize',9)
34 legend('Reflected photons','Location','Northeast')
35 end
36
37
38 if ismember('T',plot_choice)
39 figure('Name',['CW − ' text_legend_model ' ' ' − Transmission vs laser

photon energy − Pin = ' num2str(P_in_CW_pW) ' pW'],'NumberTitle','
off')

40 %%% UNUSED HERE: allows comparing total part and coherent part
41 % plot(omega_laser_list_ev_CW,real(T_vs_omega+D_vs_omega),'b',

omega_laser_list_ev_CW,real(T_coh_vs_omega+D_coh_vs_omega),'b−−');
42 % legend('Fraction of transmitted + diffracted photons','Fraction of

coherent transmitted/diffracted photons')
43 plot(detuning_list_muev,real(T_vs_omega+D_vs_omega),'b');
44
45 xlabel('\omega_{laser}−\omega_{d} [\mueV]'); ylabel('Transmission +

diffraction/losses');
46 ylim([0 1]);
47 text(detuning_list_muev(ceil(nb_points_spectrum*0.55)),0.12,text_legend

,'FontSize',9)
48 legend('Transmitted + diffracted photons','Location','Northeast')
49 end
50
51
52 if ismember('E',plot_choice)
53 figure('Name',['CW − ' text_legend_model ' ' ' − Spontaneous emission

outside the mode vs laser photon energy − Pin = ' num2str(
P_in_CW_pW) ' pW'],'NumberTitle','off')

54 % %%% UNUSED HERE: allows comparing total part and coherent part
55 % plot(omega_laser_list_ev_CW,real(E_vs_omega),'m',

omega_laser_list_ev_CW,real(E_coh_vs_omega),'m−−');
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56 % legend('Fraction of spontaneously emitted photons','Fraction of
coherent spontaneously−emitted photons')

57 plot(detuning_list_muev,real(E_vs_omega),'m');
58 % xlabel('\omega_{laser}−\omega_{d} [\mueV]'); ylabel('Fraction of

photons emitted outside the mode');
59 ylim([0 1]);
60 text(detuning_list_muev(ceil(nb_points_spectrum*0.55)),0.8,text_legend,

'FontSize',9)
61 legend('Photons emitted outside the mode','Location','Northeast')
62 end
63
64
65
66 if ismember('O',plot_choice)
67 figure('Name',['CW − ' text_legend_model ' ' ' − Occupation

probabilities vs laser photon energy − Pin = ' num2str(P_in_CW_pW)
' pW'],'NumberTitle','off')

68 plot(detuning_list_muev,real(occupation_excited_state_vs_omega),'r',...
69 detuning_list_muev,real(occupation_ground_state_vs_omega),'b');
70 xlabel('\omega_{laser}−\omega_{d} [\mueV]'); ylabel('Occupation

probability');
71 ylim([−0.05 1.05]);
72 text(detuning_list_muev(ceil(nb_points_spectrum*0.55)),0.7,text_legend,

'FontSize',9)
73 legend('Occupation state |e>','Occupation state |g>','Location','best')
74 end

C.3.10 plot 2level PW vs time

1 switch model
2 case 'F'
3 text_legend_model='Full model';
4 case 'A'
5 text_legend_model='Adiabatic model';
6 end
7
8 fprintf([text_legend_model ' − Average number of injected photons per pulse

: ' num2str(abs(sum(flux_injected_photons_vs_time)*t_step)) ' \n'])
9 fprintf([text_legend_model ' − Average number of reflected photons per

pulse : ' num2str(abs(sum(flux_reflected_photons_vs_time)*t_step)) ' \n
'])

10 fprintf([text_legend_model ' − Average number of transmitted photons per
pulse : ' num2str(abs(sum(flux_transmitted_photons_vs_time)*t_step)) '
\n'])
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11 fprintf([text_legend_model ' − Average number of diffracted photons per
pulse : ' num2str(abs(sum(flux_diffracted_photons_vs_time)*t_step)) ' \
n'])

12 fprintf([text_legend_model ' − Average number of spontaneously−emitted
photons per pulse : ' num2str(abs(sum(flux_emitted_photons_vs_time)*
t_step)) ' \n \n'])

13
14 %Verification of the conservation of photon number
15 fprintf([text_legend_model ' − Verification − relative error on the

conservation of photon number : ' num2str(abs(sum(
flux_reflected_photons_vs_time+flux_transmitted_photons_vs_time+
flux_diffracted_photons_vs_time+flux_emitted_photons_vs_time−
flux_injected_photons_vs_time)/sum(flux_injected_photons_vs_time))) ' \
n \n'])

16
17 %Verification of the maximal photon number in the last Fock state (for full
18 %model only)
19 if model == 'F'
20 last_Fock_state_ket = basis(N,N);
21 occupation_last_Fock_state=tensor(last_Fock_state_ket*

last_Fock_state_ket',id_QD);
22 expect_occupation_last_Fock_state_vs_time=expect(

occupation_last_Fock_state,rho_vs_time); %
23 fprintf(['Full model − Verification − maximal occupation of the last

Fock state : ' num2str(max(abs(
expect_occupation_last_Fock_state_vs_time))) ' \n'])

24 end
25
26 %%%%%%%%%%% Plots %%%%%%%%%%
27 % Parameters for the text displayed in figure legends
28 text_legend_QD = ['g=', num2str(g_muev) ' muev \gamma_{sp}=' num2str(

gamma_sp_muev) 'muev \gamma^*=' num2str(gamma_puredephasing_muev) '
muev'];

29 text_legend_cav = ['\kappa=' num2str(kappa_muev) 'muev \eta_{top}='
num2str(eta_top) ' C=' num2str(g^2/kappa/gamma_decoherence,3)];

30 text_legend_pulse = ['N_{in}=' num2str(Nb_photons) ' FWHM_{pulse}='
num2str(FWHM) 'ps'];

31 text_legend = {text_legend_QD,text_legend_cav,text_legend_pulse};
32 % NB: C is the cooperativity
33
34 if ismember('F',plot_choice)
35 figure('Name',['PR − ' text_legend_model ' − Photon flux vs time − Nin

= ' num2str(Nb_photons) ' − Pulse FWHM = ' num2str(FWHM) ' ps −
pulsation laser = ' num2str(omega_pulse_ev) ' eV'],'NumberTitle','
off')
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36 plot(t_list,real(flux_reflected_photons_vs_time),'r',t_list,real(
flux_transmitted_photons_vs_time+flux_diffracted_photons_vs_time),'
b',t_list,real(flux_emitted_photons_vs_time),'g')

37 legend('Flux of reflected photons','Flux of transmitted + diffracted/
lost photons', 'Flux of photons spontaneously−emitted outside the
mode')

38 xlabel('Time t [ps]');ylabel('Photon flux [ps^{−1}]');
39 text(t_list(floor(nb_points_time*0.6)),0.7*max(

flux_reflected_photons_vs_time),text_legend,'FontSize',9)
40 end
41
42 if ismember('O',plot_choice)
43 figure('Name',['PR − ' text_legend_model ' − Occupation probabilities

vs time − Nin = ' num2str(Nb_photons) ' − Pulse FWHM = ' num2str(
FWHM) ' ps − pulsation laser = ' num2str(omega_pulse_ev) ' eV'],'
NumberTitle','off')

44 plot(t_list,real(expect_sigma_dag_sigma_vs_time),'r',t_list,real(
expect_sigma_sigma_dag_vs_time),'k')

45 legend('Occupation of excited state |e>','Occupation of ground state |g
>')

46 xlabel('Time t [ps]');ylabel('Occupation probability');
47 ylim([0 1])
48 text(t_list(floor(nb_points_time*0.6)),0.7,text_legend,'FontSize',9)
49 end

C.3.11 plot 2level g1SD CW vs delay and frequency

1 switch model
2 case 'F'
3 text_legend_model='full model';
4 case 'A'
5 text_legend_model='adiabatic model';
6 end
7
8 % Parameters for the text displayed in figure legends
9 text_legend_QD = ['g=', num2str(g_muev) ' muev \gamma_{sp}=' num2str(

gamma_sp_muev) 'muev \gamma^*=' num2str(gamma_puredephasing_muev) '
muev'];

10 text_legend_cav = ['\kappa=' num2str(kappa_muev) 'muev \eta_{top}='
num2str(eta_top) ' C=' num2str(g^2/kappa/gamma_decoherence,3)];

11 text_legend_P_in = ['P_{in}=' num2str(P_in_CW_pW) 'pW n_0=' num2str(4*
eta_top*abs(b_in_CW)^2/kappa,2) ' n_c=' num2str(gamma_decoherence*
gamma_sp/(4*g^2),2)];

12 text_legend_omega = [' \omega_{laser}−\omega_d=' num2str(
detuning_laser_QD_muev) ' muev'];
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13 text_legend = {text_legend_QD,text_legend_cav,text_legend_P_in,
text_legend_omega};

14 % NB: C is the cooperativity and n_c the critical photon number, both
depend only on the cavity−QED parameters.

15 % On the contrary, n_0 depends on the incoming power P_in since it is the
calculated number of intracavity photons

16 % in the absence of QD (i.e. when g=0). When n_0 is much lower than n_c we
are in the weak excitation limit.

17
18 %Verification of the maximal photon number in the last Fock state (for full

model only)
19 if model == 'F'
20 fprintf(['Full model − Verification − maximal occupation of the last

Fock state : ' num2str(abs(expect(occupation_last_Fock_state,
density_matrix_stationary_state))) ' \n \n'])

21 end
22
23 % Verification of photon flux conservation
24 fprintf(['g1SDCW − ' text_legend_model ': Relative error on photon flux

conservation: ' num2str(abs(flux_injected_photons−
flux_reflected_photons−flux_transmitted_photons−flux_diffracted_photons
−flux_emitted_photons)/flux_injected_photons) ' \n \n'])

25
26 % Verifications on the extreme values of g1(tau) functions at zero and "

infinite" delay
27 fprintf(['g1SDCW − ' text_legend_model ': Relative error on g1(0) = 1: '

num2str(abs(1−g_1_reflected_vs_tau(1))) ' \n'])
28 fprintf(['g1SDCW − ' text_legend_model ': Relative error on g1(0) = 1: '

num2str(abs(1−g_1_transmitted_vs_tau(1))) ' \n'])
29 fprintf(['g1SDCW − ' text_legend_model ': Relative error on g1(0) = 1: '

num2str(abs(1−g_1_emitted_vs_tau(1))) ' \n \n'])
30 fprintf(['g1SDCW − ' text_legend_model ': Relative error on g1(infty) =

coherent fraction for reflected photons: ' num2str(abs(
flux_reflected_photons_laser_coherent/flux_reflected_photons−
g_1_reflected_vs_tau(nb_points_delay))) ' \n'])

31 fprintf(['g1SDCW − ' text_legend_model ': Relative error on g1(infty) =
coherent fraction for transmitted photons: ' num2str(abs(
flux_transmitted_photons_laser_coherent/flux_transmitted_photons−
g_1_transmitted_vs_tau(nb_points_delay))) ' \n'])

32 fprintf(['g1SDCW − ' text_legend_model ': Relative error on g1(infty) =
coherent fraction for emitted photons: ' num2str(abs(
flux_emitted_photons_laser_coherent/flux_emitted_photons−
g_1_emitted_vs_tau(nb_points_delay))) ' \n \n'])

33
34 % Verification of spectral density normalization for the various fields (

incoherent part only). Its integral over
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35 % the whole spectrum must correspond to the incoherent photon flux,
considering that each spectral density is measured

36 % in ps−1/muev, which gives a flux in ps−1 when multiplying by the photon
energy step in mueV (omega_step_ev*1e−6)

37 fprintf(['g1SDCW − ' text_legend_model ': Relative error on the spectral
density normalization − reflected photons (incoherent part) : ' num2str
(abs(sum(spectral_density_flux_reflected_photons_incoh_vs_omega*(
omega_step_muev))−flux_reflected_photons_incoh)/
flux_reflected_photons_incoh) ' \n'])

38 fprintf(['g1SDCW − ' text_legend_model ': Relative error on the spectral
density normalization − transmitted photons (incoherent part) :'
num2str(abs(sum(
spectral_density_flux_transmitted_photons_incoh_vs_omega*(
omega_step_muev))−flux_transmitted_photons_incoh)/
flux_reflected_photons_incoh) ' \n'])

39 fprintf(['g1SDCW − ' text_legend_model ': Relative error on the spectral
density normalization − emitted photons (incoherent part) : ' num2str(
abs(sum(spectral_density_flux_emitted_photons_incoh_vs_omega*(
omega_step_muev))−flux_emitted_photons_incoh)/
flux_emitted_photons_incoh) ' \n \n'])

40
41
42 %%%%%%%%%%%%%%%%%% Plots of g(1)(tau) %%%%%%%%%%%%%%%%%%%%%%
43 if ismember('G',plot_choice)
44 figure('Name',['g1SDCW − ' text_legend_model ' − |(g1)| vs tau −

reflected photons − Pin = ' num2str(P_in_CW_pW) ' pW − Pulsation
laser = ' num2str(omega_laser_ev) ' eV' ],'NumberTitle','off')

45 plot(full_tau_list,abs(full_g_1_reflected_vs_tau),'r');
46 xlabel('Delay \tau [ps]'); ylabel('|(g1)| − reflected photons');
47 xlim([min(full_tau_list) max(full_tau_list)]);ylim([0 real(max(

full_g_1_reflected_vs_tau))]);
48 text(full_tau_list(ceil(nb_points_delay/20)),0.2*max(

full_g_1_reflected_vs_tau),text_legend,'FontSize',9)
49 annotation('textbox',[.15 .65 .2 .2],'String',['Coherent : ' num2str(

abs(100*flux_reflected_photons_laser_coherent/
flux_reflected_photons)) ' %'],'FitBoxToText','on');

50 annotation('textbox',[.15 .55 .2 .2],'String',['Incoherent : ' num2str(
abs(100*flux_reflected_photons_incoh/flux_reflected_photons)) ' %'
],'FitBoxToText','on');

51
52 figure('Name',['g1SDCW − ' text_legend_model ' − |(g1)| vs tau −

transmitted photons − Pin = ' num2str(P_in_CW_pW) ' pW − Pulsation
laser = ' num2str(omega_laser_ev) ' eV' ],'NumberTitle','off')

53 plot(full_tau_list,abs(full_g_1_transmitted_vs_tau),'r');
54 xlabel('Delay \tau [ps]'); ylabel('|(g1)| − transmitted photons');
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55 xlim([min(full_tau_list) max(full_tau_list)]);ylim([0 real(max(
full_g_1_transmitted_vs_tau))]);

56 text(full_tau_list(ceil(nb_points_delay/20)),0.2*max(
full_g_1_transmitted_vs_tau),text_legend,'FontSize',9)

57 annotation('textbox',[.15 .65 .2 .2],'String',['Coherent : ' num2str(
abs(100*flux_transmitted_photons_laser_coherent/
flux_transmitted_photons)) ' %'],'FitBoxToText','on');

58 annotation('textbox',[.15 .55 .2 .2],'String',['Incoherent : ' num2str(
abs(100*flux_transmitted_photons_incoh/flux_transmitted_photons)) '
%'],'FitBoxToText','on');

59
60 figure('Name',['g1SDCW − ' text_legend_model ' −real |(g1)| vs tau −

emitted photons in leaky modes − Pin = ' num2str(P_in_CW_pW) ' pW −
Pulsation laser = ' num2str(omega_laser_ev) ' eV' ],'NumberTitle',
'off')

61 plot(full_tau_list,abs(full_g_1_emitted_vs_tau),'r');
62 xlabel('Delay \tau [ps]'); ylabel('|(g1)| − emitted photons');
63 xlim([min(full_tau_list) max(full_tau_list)]);ylim([0 real(max(

full_g_1_emitted_vs_tau))]);
64 text(full_tau_list(ceil(nb_points_delay/20)),0.2*max(

full_g_1_emitted_vs_tau),text_legend,'FontSize',9)
65 annotation('textbox',[.15 .65 .2 .2],'String',['Coherent : ' num2str(

abs(100*flux_emitted_photons_laser_coherent/flux_emitted_photons))
' %'],'FitBoxToText','on');

66 annotation('textbox',[.15 .55 .2 .2],'String',['Incoherent : ' num2str(
abs(100*flux_emitted_photons_incoh/flux_emitted_photons)) ' %'],'
FitBoxToText','on');

67 end
68 %%%%%%%%%%%%%%%% Plotting of spectra densities %%%%%%%%%%%%%%%%%%%
69 if ismember('S',plot_choice)
70
71 figure('Name',['g1SDCW − ' text_legend_model ' − Spectral density of

flux − Incoherent reflected photons − Pin = ' num2str(P_in_CW_pW) '
pW − Pulsation laser = ' num2str(omega_laser_ev) ' eV' ],'
NumberTitle','off')

72 plot((omega_list_ev−omega_laser_ev)*1e6,abs(
spectral_density_flux_reflected_photons_incoh_vs_omega));

73 xlabel('\omega−\omega_{laser} [muev]');ylabel('Flux spectral density [
photons / ps / mueV]');

74 text(1e6*(omega_list_ev(ceil(nb_points_spectrum/20))−omega_laser_ev)
,0.9*real(max(abs(
spectral_density_flux_reflected_photons_incoh_vs_omega))),
text_legend,'FontSize',9)

75 title('Flux spectral density − incoherent part of the reflected field')
76
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77 figure('Name',['g1SDCW − ' text_legend_model ' − Spectral density of
flux − Incoherent transmitted photons − Pin = ' num2str(P_in_CW_pW)
' pW − Pulsation laser = ' num2str(omega_laser_ev) ' eV' ],'
NumberTitle','off')

78 plot((omega_list_ev−omega_laser_ev)*1e6,abs(
spectral_density_flux_transmitted_photons_incoh_vs_omega));

79 xlabel('\omega−\omega_{laser} [muev]');ylabel('Flux spectral density [
photons / ps / mueV]');

80 text(1e6*(omega_list_ev(ceil(nb_points_spectrum/20))−omega_laser_ev)
,0.9*real(max(abs(
spectral_density_flux_transmitted_photons_incoh_vs_omega))),
text_legend,'FontSize',9)

81 title('Flux spectral density − incoherent part of the transmitted field
')

82
83 figure('Name',['g1SDCW − ' text_legend_model ' − Spectral density of

flux − Incoherent emitted photons − Pin = ' num2str(P_in_CW_pW) '
pW − Pulsation laser = ' num2str(omega_laser_ev) ' eV' ],'
NumberTitle','off')

84 plot((omega_list_ev−omega_laser_ev)*1e6, abs(
spectral_density_flux_emitted_photons_incoh_vs_omega));

85 xlabel('\omega−\omega_{laser} [muev]');ylabel('Flux spectral density [
photons / ps / mueV]');

86 text(1e6*(omega_list_ev(ceil(nb_points_spectrum/20))−omega_laser_ev)
,0.9*real(max(abs(
spectral_density_flux_emitted_photons_incoh_vs_omega))),text_legend
,'FontSize',9)

87 title('Flux spectral density − incoherent part of the emitted field')
88 end

C.3.12 plot 2level g1 WDF PW

1 %Verification of the photon number conservation
2 fprintf(['RFTR: relative error of the photon number conservation: ' num2str

(abs(Nb_reflected_photons+Nb_transmitted_photons+Nb_diffracted_photons+
Nb_emitted_photons−Nb_photons_pulse)/Nb_photons_pulse) ' \n'])

3 %
4 switch model
5 case 'F'
6 text_legend_model='full model';
7 case 'A'
8 text_legend_model='adiabatic model';
9 end

10 %% plotting g1(t1,t2)
11
12 if ismember('g',plot_choice)
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13
14 figure('Name',['g1 reflected vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
15 surf(flip(t_list),t_list,flip(abs(g1_reflected_vs_t1_t2),2),'LineStyle'

,'none')
16 xlabel('t_1 [ps]')
17 ylabel('t_2 [ps]')
18 title('reflected |g^{(1)}(t_1,t_2)|')
19 view(2)
20 colorbar
21
22 figure('Name',['g1 diffracted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
23 surf(flip(t_list),t_list,flip(abs(g1_diffracted_vs_t1_t2),2),'LineStyle

','none')
24 xlabel('t_1 [ps]')
25 ylabel('t_2 [ps]')
26 title('diffracted |g^{(1)}(t_1,t_2)|')
27 view(2)
28 colorbar
29
30 figure('Name',['g1 transmitted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
31 surf(flip(t_list),t_list,flip(abs(g1_transmitted_vs_t1_t2),2),'

LineStyle','none')
32 xlabel('t_1 [ps]')
33 ylabel('t_2 [ps]')
34 title('transmitted |g^{(1)}(t_1,t_2)|')
35 view(2)
36 colorbar
37
38 figure('Name',['g1 emitted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
39 surf(flip(t_list),t_list,flip(abs(g1_emitted_vs_t1_t2),2),'LineStyle','

none')
40 xlabel('t_1 [ps]')
41 ylabel('t_2 [ps]')
42 title('emitted |g^{(1)}(t_1,t_2)|')
43 view(2)
44 colorbar
45 end
46 %% plottig G1 vs(t1,t2)
47 if ismember('G',plot_choice)
48
49 figure('Name',['G1 reflected vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')

147



MATLAB® Scripts

50 surf(flip(t_list),t_list,flip(abs(G1_reflected_vs_t1_t2),2),'LineStyle'
,'none')

51 xlabel('t_1 [ps]')
52 ylabel('t_2 [ps]')
53 title('|<b_{out}''(t_1) b_{out}(t_2)>|')
54 view(2)
55 colorbar
56
57 figure('Name',['G1 transmitted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
58 surf(flip(t_list),t_list,flip(abs(G1_transmitted_vs_t1_t2),2),'

LineStyle','none')
59 xlabel('t_1 [ps]')
60 ylabel('t_2 [ps]')
61 title('|<c_{out}''(t_1) c_{out}(t_2)>|')
62 view(2)
63 colorbar
64
65 figure('Name',['G1 diffracted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
66 surf(flip(t_list),t_list,flip(abs(G1_diffracted_vs_t1_t2),2),'LineStyle

','none')
67 xlabel('t_1 [ps]')
68 ylabel('t_2 [ps]')
69 title('|<d_{out}''(t_1) d_{out}(t_2)>|')
70 view(2)
71 colorbar
72
73 figure('Name',['G1 emitted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
74 surf(flip(t_list),t_list,flip(abs(G1_emitted_vs_t1_t2),2),'LineStyle','

none')
75 xlabel('t_1 [ps]')
76 ylabel('t_2 [ps]')
77 title('|<e_{out}''(t_1) e_{out}(t_2)>|')
78 view(2)
79 colorbar
80 end
81 % Parameters for the text displayed in figure legends
82 text_legend_QD = ['g=', num2str(g_muev) ' muev \gamma_{sp}=' num2str(

gamma_sp_muev) 'muev \gamma^*=' num2str(gamma_puredephasing_muev) '
muev'];

83 text_legend_cav = ['\kappa=' num2str(kappa_muev) 'muev \eta_{top}='
num2str(eta_top) ' C=' num2str(g^2/kappa/gamma_decoherence,3)];

84 text_legend_pulse = ['N_{in}=' num2str(Nb_photons_pulse) ' FWHM_{
pulse}=' num2str(FWHM_pulse) 'ps'];
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85 text_legend = {text_legend_QD,text_legend_cav,text_legend_pulse};
86 % NB: C is the cooperativity
87
88 %% plotting interpolated G1(time,tau)
89 if ismember('I',plot_choice)
90 figure('Name',['interpolated G1 reflected vs time tau − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

91 surf(time_list,tau_list, abs(interpolated_G1_reflected_vs_time_tau'),'
LineStyle','none')

92 axis xy
93 colorbar
94 xlabel('t, origin at beginning of 1st evolution [ps]','FontSize',14)
95 ylabel('\tau [ps]','FontSize',14)
96 title('interpolated G1 reflected vs time tau')
97 view(2)
98
99 figure('Name',['interpolated G1 transmitted vs time tau − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

100 surf(time_list,tau_list, abs(interpolated_G1_transmitted_vs_time_tau'),
'LineStyle','none')

101 axis xy
102 colorbar
103 xlabel('t, origin at beginning of 1st evolution [ps]','FontSize',14)
104 ylabel('\tau [ps]','FontSize',14)
105 title('interpolated G1 transmitted vs time tau')
106 view(2)
107
108 figure('Name',['interpolated G1 emitted vs time tau − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

109 surf(time_list,tau_list, abs(interpolated_G1_emitted_vs_time_tau'),'
LineStyle','none')

110 axis xy
111 colorbar
112 xlabel('t, origin at beginning of 1st evolution [ps]','FontSize',14)
113 ylabel('\tau [ps]','FontSize',14)
114 title('interpolated G1 emitted vs time tau')
115 view(2)
116
117 figure('Name',['interpolated G1 diffracted vs time tau − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

118 surf(time_list,tau_list, abs(interpolated_G1_diffracted_vs_time_tau'),'
LineStyle','none')
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119 axis xy
120 colorbar
121 xlabel('t, origin at beginning of 1st evolution [ps]','FontSize',14)
122 ylabel('\tau [ps]','FontSize',14)
123 title('interpolated G1 diffracted vs time tau')
124 view(2)
125 end
126 %% Plotting WDF
127 if ismember('W',plot_choice)
128 figure('Name',['WDF reflected photons − ' text_legend_model ' −

Nb_photons = ' num2str(Nb_photons_pulse)],'NumberTitle','off')
129 imagesc(time_list,(omega_list_full_spectrum_muev − omega_pulse_ev*1e6),

real(WDF_interpolated_G1_reflected_vs_time_tau_full_spectrum)');
130 axis xy
131 colorbar
132 xlabel('t, origin at beginning of 1st evolution [ps]')
133 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
134 title('Wigner distribution reflected [1/(\mueV\cdotps)]')
135
136 figure('Name',['WDF reflected photons − zoomed spectrum − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

137 imagesc(time_list,(omega_list_ev − omega_pulse_ev)*1e6, real(
WDF_interpolated_G1_reflected_vs_time_tau'));

138 axis xy
139 colorbar
140 xlabel('t, origin at beginning of 1st evolution [ps]')
141 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
142 title('zoomed Wigner distribution reflected [1/(\mueV\cdotps)]')
143
144 figure('Name',['WDF transmitted photons − ' text_legend_model ' −

Nb_photons = ' num2str(Nb_photons_pulse)],'NumberTitle','off')
145 imagesc(time_list,(omega_list_full_spectrum_muev − omega_pulse_ev*1e6),

real(WDF_interpolated_G1_transmitted_vs_time_tau_full_spectrum)')
;

146 axis xy
147 colorbar
148 xlabel('t, origin at beginning of 1st evolution [ps]')
149 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
150 title('Wigner distribution transmitted [1/(\mueV\cdotps)]')
151
152 figure('Name',['WDF transmitted photons − zoomed spectrum −'

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

153 imagesc(time_list,(omega_list_ev − omega_pulse_ev)*1e6, real(
WDF_interpolated_G1_transmitted_vs_time_tau'));
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154 axis xy
155 colorbar
156 xlabel('t, origin at beginning of 1st evolution [ps]')
157 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
158 title('zoomed Wigner distribution transmitted [1/(\mueV\cdotps)]')
159
160 figure('Name',['WDF emitted photons − ' text_legend_model ' −

Nb_photons = ' num2str(Nb_photons_pulse)],'NumberTitle','off')
161 imagesc(time_list,(omega_list_full_spectrum_muev − omega_pulse_ev*1e6),

real(WDF_interpolated_G1_emitted_vs_time_tau_full_spectrum)');
162 axis xy
163 colorbar
164 xlabel('t, origin at beginning of 1st evolution [ps]')
165 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
166 title('Wigner distribution emitted [1/(\mueV\cdotps)]')
167
168 figure('Name',['WDF emitted photons − zoomed spectrum − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

169 imagesc(time_list,(omega_list_ev − omega_pulse_ev)*1e6, real(
WDF_interpolated_G1_emitted_vs_time_tau'));

170 axis xy
171 colorbar
172 xlabel('t, origin at beginning of 1st evolution [ps]')
173 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
174 title('zoomed Wigner distribution emitted [1/(\mueV\cdotps)]')
175
176 figure('Name',['WDF diffracted photons − ' text_legend_model ' −

Nb_photons = ' num2str(Nb_photons_pulse)],'NumberTitle','off')
177 imagesc(time_list,(omega_list_full_spectrum_muev − omega_pulse_ev*1e6),

real(WDF_interpolated_G1_diffracted_vs_time_tau_full_spectrum)');
178 axis xy
179 colorbar
180 xlabel('t, origin at beginning of 1st evolution [ps]')
181 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
182 title('Wigner distribution diffracted [1/(\mueV\cdotps)]')
183
184 figure('Name',['WDF diffracted photons − zoomed spectrum − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

185 imagesc(time_list,(omega_list_ev − omega_pulse_ev)*1e6, real(
WDF_interpolated_G1_diffracted_vs_time_tau'));

186 axis xy
187 colorbar
188 xlabel('t, origin at beginning of 1st evolution [ps]')
189 ylabel('\omega−\omega_p [\mueV]','FontSize',14)
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190 title('zoomed Wigner distribution diffracted [1/(\mueV\cdotps)]')
191 end
192 %% Plotting photon fluxes
193 if ismember('F',plot_choice)
194 figure('Name',['Flux reflected photons vs time − Nb_photons = ' num2str

(Nb_photons_pulse)],'NumberTitle','off')
195 plot(t_list, flux_reflected_photons_vs_time,'r', time_list, real(sum(

WDF_interpolated_G1_reflected_vs_time_tau_full_spectrum,2))*
omega_step_muev,'g−−', t_list,
flux_reflected_photons_pulse_coherent_vs_time,'k',time_list, real(
sum(WDF_interpolated_reflected_coherent_vs_time_tau_full_spectrum
,2))*omega_step_muev,'m−−');

196 xlabel('Time t [ps]');ylabel('Flux reflected photon [ps^{−1}]');
197 legend('<b_{out}''b_{out}>','total flux by WDF(t,\omega)','<b_{out}''><

b_{out}>','total coherent flux by WDF(t,\omega)');
198 text(t_list(floor(nb_points_time*0.6)),0.2*max(

flux_reflected_photons_vs_time),text_legend,'FontSize',9)
199
200 figure('Name',['Flux transmitted photons vs time − Nb_photons = '

num2str(Nb_photons_pulse)],'NumberTitle','off')
201 plot(t_list, flux_transmitted_photons_vs_time,'r', time_list, real(sum(

WDF_interpolated_G1_transmitted_vs_time_tau_full_spectrum,2))*
omega_step_muev,'g−−', t_list,
flux_transmitted_photons_pulse_coherent_vs_time,'k',time_list, real
(sum(
WDF_interpolated_transmitted_coherent_vs_time_tau_full_spectrum,2))

*omega_step_muev,'m−−');
202 xlabel('Time t [ps]');ylabel('Flux transmitted photon [ps^{−1}]');
203 legend('<c_{out}''c_{out}>','total flux by WDF(t,\omega)','<c_{out}''><

c_{out}>','total coherent flux by WDF(t,\omega)');
204 text(t_list(floor(nb_points_time*0.6)),0.2*max(

flux_transmitted_photons_vs_time),text_legend,'FontSize',9)
205
206 figure('Name',['Flux emitted photons vs time − Nb_photons = ' num2str(

Nb_photons_pulse)],'NumberTitle','off')
207 plot(t_list, flux_emitted_photons_vs_time,'r', time_list, real(sum(

WDF_interpolated_G1_emitted_vs_time_tau_full_spectrum,2))*
omega_step_muev,'g−−', t_list,
flux_emitted_photons_pulse_coherent_vs_time,'k',time_list, real(sum
(WDF_interpolated_emitted_coherent_vs_time_tau_full_spectrum,2))*
omega_step_muev,'m−−');

208 xlabel('Time t [ps]');ylabel('Flux emitted photon [ps^{−1}]');
209 legend('<d_{out}''d_{out}>','total flux by WDF(t,\omega)','<d_{out}''><

d_{out}>','total coherent flux by WDF(t,\omega)');
210 text(t_list(floor(nb_points_time*0.6)),0.2*max(

flux_emitted_photons_vs_time),text_legend,'FontSize',9)
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211
212 figure('Name',['Flux diffracted photons vs time − Nb_photons = '

num2str(Nb_photons_pulse)],'NumberTitle','off')
213 plot(t_list, flux_diffracted_photons_vs_time,'r', time_list, real(sum(

WDF_interpolated_G1_diffracted_vs_time_tau_full_spectrum,2))*
omega_step_muev,'g−−', t_list,
flux_diffracted_photons_pulse_coherent_vs_time,'k',time_list, real(
sum(WDF_interpolated_diffracted_coherent_vs_time_tau_full_spectrum
,2))*omega_step_muev,'m−−');

214 xlabel('Time t [ps]');ylabel('Flux diffracted photon [ps^{−1}]');
215 legend('<e_{out}''e_{out}>','total flux by WDF(t,\omega)','<e_{out}''><

e_{out}>','total coherent flux by WDF(t,\omega)');
216 text(t_list(floor(nb_points_time*0.6)),0.2*max(

flux_diffracted_photons_vs_time),text_legend,'FontSize',9)
217
218
219 figure('Name',['Spectral density reflected photons vs omega −

Nb_photons = ' num2str(Nb_photons_pulse)],'NumberTitle','off')
220 plot((omega_list_ev − omega_pulse_ev)*1e6, real(

ESD_reflected_photons_vs_omega) ,'r',(omega_list_ev −
omega_pulse_ev)*1e6, real(
ESD_coherent_reflected_photons_laser_vs_omega),'g',(omega_list_ev −
omega_pulse_ev)*1e6, real(ESD_reflected_photons_vs_omega)−real(
ESD_coherent_reflected_photons_laser_vs_omega),'b');

221 xlim([min(omega_list_ev − omega_pulse_ev)*1e6 max(omega_list_ev −
omega_pulse_ev)*1e6]);

222 xlabel('\omega−\omega_p [\mueV]');ylabel('Reflected field spectral
density');

223 legend('WDF(\omega) − total reflected flux', 'WDF(\omega) coherent flux
', 'WDF(\omega) − incoherent flux')

224 text(omega_list_ev(1) − omega_pulse_ev,0.7*max(
ESD_reflected_photons_vs_omega),text_legend,'FontSize',9)

225
226 figure('Name',['Spectral density transmitted photons vs omega −

Nb_photons = ' num2str(Nb_photons_pulse)],'NumberTitle','off')
227 plot((omega_list_ev − omega_pulse_ev)*1e6, real(

ESD_transmitted_photons_vs_omega) ,'r',(omega_list_ev −
omega_pulse_ev)*1e6, real(
ESD_coherent_transmitted_photons_laser_vs_omega),'g',(omega_list_ev
− omega_pulse_ev)*1e6, real(ESD_transmitted_photons_vs_omega)−real
(ESD_coherent_transmitted_photons_laser_vs_omega),'b');

228 xlim([min(omega_list_ev − omega_pulse_ev)*1e6 max(omega_list_ev −
omega_pulse_ev)*1e6]);

229 xlabel('\omega−\omega_p [\mueV]');ylabel('Reflected field spectral
density');
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230 legend('WDF(\omega) − total transmitted flux', 'WDF(\omega) coherent
flux', 'WDF(\omega) − incoherent flux')

231 text(omega_list_ev(1) − omega_pulse_ev,0.7*max(
ESD_transmitted_photons_vs_omega),text_legend,'FontSize',9)

232
233 figure('Name',['Spectral density emitted photons vs omega − Nb_photons

= ' num2str(Nb_photons_pulse)],'NumberTitle','off')
234 plot((omega_list_ev − omega_pulse_ev)*1e6, real(

ESD_emitted_photons_vs_omega) ,'r',(omega_list_ev − omega_pulse_ev)

*1e6, real(ESD_coherent_emitted_photons_laser_vs_omega),'g',(
omega_list_ev − omega_pulse_ev)*1e6, real(
ESD_emitted_photons_vs_omega)−real(
ESD_coherent_emitted_photons_laser_vs_omega),'b');

235 xlim([min(omega_list_ev − omega_pulse_ev)*1e6 max(omega_list_ev −
omega_pulse_ev)*1e6]);

236 xlabel('\omega−\omega_p [\mueV]');ylabel('Reflected field spectral
density');

237 legend('WDF(\omega) − total emitted flux', 'WDF(\omega) coherent flux',
'WDF(\omega) − incoherent flux')

238 text(omega_list_ev(1) − omega_pulse_ev,0.7*max(
ESD_emitted_photons_vs_omega),text_legend,'FontSize',9)

239
240 figure('Name',['Spectral density diffracted photons vs omega − '

text_legend_model ' − Nb_photons = ' num2str(Nb_photons_pulse)],'
NumberTitle','off')

241 plot((omega_list_ev − omega_pulse_ev)*1e6, real(
ESD_diffracted_photons_vs_omega) ,'r',(omega_list_ev −
omega_pulse_ev)*1e6, real(
ESD_coherent_diffracted_photons_laser_vs_omega),'g',(omega_list_ev
− omega_pulse_ev)*1e6, real(ESD_diffracted_photons_vs_omega)−real(
ESD_coherent_diffracted_photons_laser_vs_omega),'b');

242 xlim([min(omega_list_ev − omega_pulse_ev)*1e6 max(omega_list_ev −
omega_pulse_ev)*1e6]);

243 xlabel('\omega−\omega_p [\mueV]');ylabel('Reflected field spectral
density');

244 legend('WDF(\omega) − total diffracted flux', 'WDF(\omega) coherent
flux', 'WDF(\omega) − incoherent flux')

245 text(omega_list_ev(1) − omega_pulse_ev,0.7*max(
ESD_diffracted_photons_vs_omega),text_legend,'FontSize',9)

246 end
247
248 %% Checking normalization of ESDs
249 fprintf(['Relative error over normalization of spectral density − reflected

field: ' num2str(abs(sum(ESD_reflected_photons_vs_omega)*
omega_step_muev−Nb_reflected_photons)/Nb_reflected_photons) ' \n'])
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250 fprintf(['Relative error over normalization of spectral density −
transmitted field: ' num2str(abs(sum(ESD_transmitted_photons_vs_omega)*
omega_step_muev−Nb_transmitted_photons)/Nb_transmitted_photons) ' \n'])

251 fprintf(['Relative error over normalization of spectral density − emitted
field: ' num2str(abs(sum(ESD_emitted_photons_vs_omega)*omega_step_muev−
Nb_emitted_photons)/Nb_emitted_photons) ' \n'])

252 fprintf(['Relative error over normalization of spectral density −
diffracted field: ' num2str(abs(sum(ESD_diffracted_photons_vs_omega)*
omega_step_muev−Nb_diffracted_photons)/Nb_diffracted_photons) ' \n'])

C.3.13 plot 2level g2 CW vs delay

1 switch model
2 case 'F'
3 text_legend_model='full model';
4 case 'A'
5 text_legend_model='adiabatic model';
6 end
7
8 % Parameters for the text displayed in figure legends
9 text_legend_QD=['g=', num2str(g_muev) ' muev \gamma_{sp}=' num2str(

gamma_sp_muev) 'muev \gamma^*=' num2str(gamma_puredephasing_muev) '
muev'];

10 text_legend_cav=['\kappa=' num2str(kappa_muev) 'muev \eta_{top}=' num2str
(eta_top) ' C=' num2str(g^2/kappa/gamma_decoherence,3)];

11 text_legend_P_in=['P_{in}=' num2str(P_in_CW_pW) 'pW n_c=' num2str(
gamma_decoherence*gamma_sp/(4*g^2),2)];

12 text_legend_omega=['\omega_{laser}−\omega_d=' num2str(1e6*(omega_laser_ev−
omega_d_ev),3) 'muev \omega_d−\omega_c=' num2str(1e6*(omega_d_ev−
omega_c_ev),3) 'muev'];

13 text_legend={text_legend_QD,text_legend_cav,text_legend_P_in,
text_legend_omega};

14 % NB: C is the cooperativity and n_c the critical photon number, both
depend only on the cavity−QED parameters.

15 % On the contrary, n_0 depends on the incoming power P_in since it is the
calculated number of intracavity photons

16 % in the absence of QD (i.e. when g=0). When n_0 is much lower than n_c we
are in the weak excitation limit.

17
18
19 %%%%%%%%%%%%%%%%% Verifications %%%%%%%%%%%%%%%%
20
21 % Verification on the conservation of photon flux
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22 fprintf(['Verification − relative error on the conservation of photon flux
: ' num2str(abs(total_flux_injected_photons−
total_flux_reflected_photons−total_flux_transmitted_photons−
total_flux_diffracted_photons−total_flux_emitted_photons)/
total_flux_injected_photons) ' \n'])

23
24 if model=='F'
25 %Verification of the maximal photon number in the last Fock state
26 expect_occupation_last_Fock_state=expect(occupation_last_Fock_state,

rhoss_CW); %
27 fprintf(['Verification − occupation of the last Fock state : ' num2str(

max(abs(expect_occupation_last_Fock_state))) ' \n \n'])
28 end
29
30
31 % Basic verifications on the intensity correlations
32 % (one also has to verify that the g(2) curves are smooth − irregular

curves probably indicate a wrong numerical convergence)
33 if min(g2_reflected_vs_delay)<0 || min(g2_transmitted_vs_delay)<0 || min(

g2_emitted_vs_delay)<0
34 fprintf(' \n \n !!!!!!!!! Warning: non−physical negative values

!!!!!!!!!! \n \n');
35 end
36
37 fprintf(['Verification: relative error on g2_reflected(0)=<b_out'' b_out''

b_out b_out>/(<b_out'' b_out>^2) : ' num2str(abs(g2_reflected_vs_delay
(1) − (expect(b_out'*b_out'*b_out*b_out,rhoss_CW)/(expect(b_out'*b_out,
rhoss_CW)^2) ))) ' \n'])

38 fprintf(['Verification: relative error on g2_transmitted(0)=<c_out'' c_out'
' c_out c_out>/(<c_out'' c_out>^2) : ' num2str(abs(
g2_transmitted_vs_delay(1) − (expect(c_out'*c_out'*c_out*c_out,rhoss_CW
)/(expect(c_out'*c_out,rhoss_CW)^2) ))) ' \n'])

39 fprintf(['Verification: relative error on g2_reflected(0)=<e_out'' e_out''
e_out e_out>/(<e_out'' e_out>^2) : ' num2str(abs(g2_emitted_vs_delay(1)
− (expect(e_out'*e_out'*e_out*e_out,rhoss_CW)/(expect(e_out'*e_out,
rhoss_CW)^2) ))) ' \n'])

40
41 fprintf(['Verification: relative error on g2(infty)=1 for reflected photons

: ' num2str(abs(g2_reflected_vs_delay(nb_points_time_g2CW)−1)) ' \n'])
42 fprintf(['Verification: relative error on g2(infty)=1 for transmitted

photons : ' num2str(abs(g2_transmitted_vs_delay(nb_points_time_g2CW)−1)
) ' \n'])

43 fprintf(['Verification: relative error on g2(infty)=1 for emitted photons :
' num2str(abs(g2_emitted_vs_delay(nb_points_time_g2CW)−1)) ' \n'])

44
45
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46
47 %%%%%%%%%%%%%%%%%% Plots of the normalized g(2)(tau)

%%%%%%%%%%%%%%%%%%%%%%
48 if ismember('R',plot_choice)
49
50 figure('Name',['g2CW ' text_legend_model ' − g2 vs tau − reflected

photons − Pin = ' num2str(P_in_CW_pW) ' pW − Laser photon energy =
' num2str(omega_laser_ev) ' eV' ],'NumberTitle','off')

51 plot(full_tau_list_g2CW,full_g2_reflected_vs_delay,'r');
52 xlabel('Delay \tau [ps]'); ylabel('g^{2} − reflected photons');
53 xlim([min(full_tau_list_g2CW) max(full_tau_list_g2CW)]);
54 text(full_tau_list_g2CW(ceil(nb_points_time_g2CW/20)),0.8*max(

full_g2_reflected_vs_delay),text_legend,'FontSize',9)
55
56 if ismember('O',plot_choice)
57 figure('Name',['g2CW ' text_legend_model ' − occupation

probabilities conditioned to a reflected photon detecton − Pin
= ' num2str(P_in_CW_pW) ' pW − Laser photon energy = ' num2str(
omega_laser_ev) ' eV' ],'NumberTitle','off')

58 plot(tau_list_g2CW,
occupation_ground_vs_delay_after_reflected_photon_detection,'r'
,...

59 tau_list_g2CW,
occupation_excited_vs_delay_after_reflected_photon_detection
,'b');

60 xlabel('Delay \tau [ps]'); ylabel('Conditionnal occupation
probabilities');

61 xlim([min(tau_list_g2CW) max(tau_list_g2CW)]); ylim([0 1]);
62 text(tau_list_g2CW(ceil(nb_points_time_g2CW/10)),0.7,text_legend,'

FontSize',9)
63 legend('Occupation of |g> conditioned on a reflected photon

detection','Occupation of |e> conditioned on a reflected photon
detection','Location','best');

64 end
65 end
66
67 if ismember('T',plot_choice)
68 figure('Name',['g2CW ' text_legend_model ' − g2 vs tau − transmitted

photons − Pin = ' num2str(P_in_CW_pW) ' pW − Pulsation laser = '
num2str(omega_laser_ev) ' eV' ],'NumberTitle','off')

69 plot(full_tau_list_g2CW,full_g2_transmitted_vs_delay,'b');
70 xlabel('Delay \tau [ps]'); ylabel('g^{2} − transmitted photons');
71 xlim([min(full_tau_list_g2CW) max(full_tau_list_g2CW)]);
72 text(full_tau_list_g2CW(ceil(nb_points_time_g2CW/20)),0.8*max(

full_g2_transmitted_vs_delay),text_legend,'FontSize',9)
73
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74 if ismember('O',plot_choice)
75 figure('Name',['g2CW ' text_legend_model ' − occupation

probabilities conditioned to a transmitted photon detecton −
Pin = ' num2str(P_in_CW_pW) ' pW − Laser photon energy = '
num2str(omega_laser_ev) ' eV' ],'NumberTitle','off')

76 plot(tau_list_g2CW,
occupation_ground_vs_delay_after_transmitted_photon_detection,'
r',...

77 tau_list_g2CW,
occupation_excited_vs_delay_after_transmitted_photon_detection
,'b');

78 xlabel('Delay \tau [ps]'); ylabel('Conditionnal occupation
probabilities');

79 xlim([min(tau_list_g2CW) max(tau_list_g2CW)]); ylim([0 1]);
80 text(tau_list_g2CW(ceil(nb_points_time_g2CW/10)),0.7,text_legend,'

FontSize',9)
81 legend('Occupation of |g> conditioned on a transmitted photon

detection','Occupation of |e> conditioned on a transmitted
photon detection','Location','best');

82 end
83 end
84 if ismember('E',plot_choice)
85
86 figure('Name',['g2CW ' text_legend_model ' − g2 vs tau − photons

emitted outside the mode − Pin = ' num2str(P_in_CW_pW) ' pW −
Pulsation laser = ' num2str(omega_laser_ev) ' eV' ],'NumberTitle','
off')

87 plot(full_tau_list_g2CW,full_g2_emitted_vs_delay,'g');
88 xlabel('Delay \tau [ps]'); ylabel('g^{2} − photons emitted outside the

mode');
89 xlim([min(full_tau_list_g2CW) max(full_tau_list_g2CW)]);
90 text(full_tau_list_g2CW(ceil(nb_points_time_g2CW/20)),0.3*max(

full_g2_emitted_vs_delay),text_legend,'FontSize',9)
91
92 if ismember('O',plot_choice)
93 figure('Name',['g2CW ' text_legend_model ' − occupation

probabilities conditioned to an emitted photon detecton − Pin =
' num2str(P_in_CW_pW) ' pW − Laser photon energy = ' num2str(
omega_laser_ev) ' eV' ],'NumberTitle','off')

94 plot(tau_list_g2CW,
occupation_ground_vs_delay_after_emitted_photon_detection,'r',
...

95 tau_list_g2CW,
occupation_excited_vs_delay_after_emitted_photon_detection
,'b');
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96 xlabel('Delay \tau [ps]'); ylabel('Conditionnal occupation
probabilities');

97 xlim([min(tau_list_g2CW) max(tau_list_g2CW)]); ylim([0 1]);
98 text(tau_list_g2CW(ceil(nb_points_time_g2CW/10)),0.7,text_legend,'

FontSize',9)
99 legend('Occupation of |g> conditioned on an emitted photon

detection','Occupation of |e> conditioned on an emitted photon
detection','Location','best');

100 end
101 end

C.3.14 plot 2level g2 PR vs t1 t2

1 switch model
2 case 'F'
3 text_legend_model='full model';
4 case 'A'
5 text_legend_model='adiabatic model';
6 end
7
8 % Parameters for the text displayed in figure legends
9 text_legend_QD = ['g=', num2str(g_muev) ' muev \gamma_{sp}=' num2str(

gamma_sp_muev) 'muev \gamma^*=' num2str(gamma_puredephasing_muev) '
muev'];

10 text_legend_cav = ['\kappa=' num2str(kappa_muev) 'muev \eta_{top}='
num2str(eta_top) ' C=' num2str(g^2/kappa/gamma_decoherence,3)];

11 text_legend_pulse = ['N_{in}=' num2str(Nb_photons_pulse) ' FWHM_{
pulse}=' num2str(FWHM_pulse) 'ps'];

12 text_legend = {text_legend_QD,text_legend_cav,text_legend_pulse};
13 % NB: C is the cooperativity
14 %% g2 vs (t1,t2)
15 if ismember('G',plot_choice)
16 figure('Name',['g2 emitted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
17 surf(flip(t_list),t_list,flip(real(g2_emitted_vs_t1_t2),2))
18 xlabel('t_1 [ps]')
19 ylabel('t_2 [ps]')
20 title('emitted photon g^{(2)}(t_1,t_2)')
21 view(2)
22 colorbar
23
24 figure('Name',['g2 reflected vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
25 surf(flip(t_list),t_list,flip(real(g2_reflected_vs_t1_t2),2))
26 xlabel('t_1 [ps]')
27 ylabel('t_2 [ps]')
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28 title('reflected photon g^{(2)}(t_1,t_2)')
29 view(2)
30 colorbar
31
32 figure('Name',['g2 transmitted vs (t1,t2) − ' text_legend_model],'

NumberTitle','off')
33 surf(flip(t_list),t_list,flip(real(g2_transmitted_vs_t1_t2),2))
34 xlabel('t_1 [ps]')
35 ylabel('t_2 [ps]')
36 title('transmitted photon g^{(2)}(t_1,t_2)')
37 view(2)
38 colorbar
39 end
40 %% Photon coincidences
41 if ismember('C',plot_choice)
42 % photon coincidences uncorrelated
43 figure('Name',['Uncorrelated coincidences emitted photons vs (t1,t2) −

' text_legend_model],'NumberTitle','off')
44 surf(flip(t_list),t_list,flip(real(

emitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses),2))
45 xlabel('t_1 [ps]')
46 ylabel('t_2 [ps]')
47 title('<e_{out}''(t_1) e_{out}(t_1)> <e_{out}''(t_2) e_{out}(t_2)>')
48 view(2)
49 colorbar
50
51 figure('Name',['Uncorrelated coincidences reflected photons vs (t1,t2)

− ' text_legend_model],'NumberTitle','off')
52 surf(flip(t_list),t_list,flip(real(

reflected_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses),2))
53 xlabel('t_1 [ps]')
54 ylabel('t_2 [ps]')
55 title('<b_{out}''(t_1) b_{out}(t_1)> <b_{out}''(t_2) b_{out}(t_2)>')
56 view(2)
57 colorbar
58
59 figure('Name',['Uncorrelated coincidences transmitted photons vs (t1,t2

) − ' text_legend_model],'NumberTitle','off')
60 surf(flip(t_list),t_list,flip(real(

transmitted_photon_coincidences_vs_t1_vs_t2_uncorrelated_pulses),2)
)

61 xlabel('t_1 [ps]')
62 ylabel('t_2 [ps]')
63 title('<c_{out}''(t_1) c_{out}(t_1)> <c_{out}''(t_2) c_{out}(t_2)>')
64 colorbar
65
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66 % photon coincidences correlated
67 figure('Name',['Correlated coincidences emitted photons vs (t1,t2) − '

text_legend_model],'NumberTitle','off')
68 surf(flip(t_list),t_list,flip(real(

emitted_photon_coincidences_vs_t1_vs_t2),2))
69 xlabel('t_1 [ps]')
70 ylabel('t_2 [ps]')
71 title('<e_{out}''(t_1) e_{out}''(t_2) e_{out}(t_2) e_{out}(t_1)>')
72 view(2)
73 colorbar
74
75 figure('Name',['Correlated coincidences reflected photons vs (t1,t2) −

' text_legend_model],'NumberTitle','off')
76 surf(flip(t_list),t_list,flip(real(

reflected_photon_coincidences_vs_t1_vs_t2),2))
77 xlabel('t_1 [ps]')
78 ylabel('t_2 [ps]')
79 title('<b_{out}''(t_1) b_{out}''(t_2) b_{out}(t_2) b_{out}(t_1)>')
80 view(2)
81 colorbar
82
83 figure('Name',['Correlated coincidences transmitted photons vs (t1,t2)

− ' text_legend_model],'NumberTitle','off')
84 surf(flip(t_list),t_list,flip(real(

transmitted_photon_coincidences_vs_t1_vs_t2),2))
85 xlabel('t_1 [ps]')
86 ylabel('t_2 [ps]')
87 title('<c_{out}''(t_1) c_{out}''(t_2) c_{out}(t_2) c_{out}(t_1)>')
88 view(2)
89 colorbar
90 end
91 %% conditioned occupations
92 if ismember('O',plot_choice)
93 figure('Name',['Occupation ground after reflected photon vs (t1,t2) − '

text_legend_model],'NumberTitle','off')
94 surf(flip(t_list),t_list,flip(real(

occupation_ground_vs_t1_vs_t2_after_click_b_out_at_t1),2))
95 xlabel('t_1 [ps]')
96 ylabel('t_2 [ps]')
97 title('Occupation ground after reflected photon')
98 view(2)
99 colorbar
100
101 % figure('Name',['Occupation excited after reflected photon vs (t1,t2)

− ' text_legend_model],'NumberTitle','off')
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102 % surf(flip(t_list),t_list,flip(real(
occupation_excited_vs_t1_vs_t2_after_click_b_out_at_t1),2))

103 % xlabel('t_1 [ps]')
104 % ylabel('t_2 [ps]')
105 % title('Occupation excited after reflected photon')
106 % view(2)
107 % colorbar
108
109 figure('Name',['Occupation ground after transmitted photon vs (t1,t2) −

' text_legend_model],'NumberTitle','off')
110 surf(flip(t_list),t_list,flip(real(

occupation_ground_vs_t1_vs_t2_after_click_c_out_at_t1),2))
111 xlabel('t_1 [ps]')
112 ylabel('t_2 [ps]')
113 title('Occupation ground after transmitted photon')
114 view(2)
115 colorbar
116
117 % figure('Name',['Occupation excited after transmitted photon vs (t1,t2

) − ' text_legend_model],'NumberTitle','off')
118 % surf(flip(t_list),t_list,flip(real(

occupation_excited_vs_t1_vs_t2_after_click_c_out_at_t1),2))
119 % xlabel('t_1 [ps]')
120 % ylabel('t_2 [ps]')
121 % title('Occupation excited after transmitted photon')
122 % view(2)
123 % colorbar
124
125 figure('Name',['Occupation ground after emitted photon vs (t1,t2) − '

text_legend_model],'NumberTitle','off')
126 surf(flip(t_list),t_list,flip(real(

occupation_ground_vs_t1_vs_t2_after_click_e_out_at_t1),2))
127 xlabel('t_1 [ps]')
128 ylabel('t_2 [ps]')
129 title('Occupation ground after emitted photon')
130 view(2)
131 colorbar
132
133 % figure('Name',['Occupation excited after emitted photon vs (t1,t2) −

' text_legend_model],'NumberTitle','off')
134 % surf(flip(t_list),t_list,flip(real(

occupation_excited_vs_t1_vs_t2_after_click_e_out_at_t1),2))
135 % xlabel('t_1 [ps]')
136 % ylabel('t_2 [ps]')
137 % title('Occupation excited after emitted photon')
138 % view(2)

162



C.3 – Subprograms

139 % colorbar
140 end
141 %% photon fluxes
142 if ismember('F',plot_choice)
143 figure('Name',['Photons flux vs t1 − ' text_legend_model],'NumberTitle'

,'off')
144 plot(t_list,flux_injected_photons_vs_time,'k','Displayname','incoming')
145 hold on
146 plot(t_list,flux_reflected_photons_vs_time,'r','Displayname','reflected

')
147 plot(t_list,flux_transmitted_photons_vs_time,'b','Displayname','

transmitted')
148 plot(t_list,flux_emitted_photons_vs_time,'g','Displayname','emitted')
149 hold off
150 title(['Photon flux − Nb =' num2str(Nb_photons_pulse)])
151 xlabel('t_1 [ps]')
152 ylabel('[1/ps]')
153 legend
154 text(t_list(ceil(nb_points_time*0.05)),0.95*max(

flux_injected_photons_vs_time),text_legend,'FontSize',9)
155
156 figure('Name',['Normalized g2 vs delay, photon emission − '

text_legend_model],'NumberTitle','off')
157 plot(full_tau_list,[flip(normalized_g2_vs_delay_emitted(2:end))

normalized_g2_vs_delay_emitted],'g','Displayname', 'correlated')
158 hold on
159 plot(full_tau_list,[flip(normalized_g2_vs_delay_uncorrelated_emitted(2:

end)) normalized_g2_vs_delay_uncorrelated_emitted],'−−g','
Displayname', 'uncorrelated')

160 title('Histogram < g^{(2)}(\tau) > emitted photons')
161 xlabel('\tau [ps]')
162 ylabel('counts')
163 legend('Location','northeast');
164 text(full_tau_list(ceil(nb_points_time*0.05)),max(

normalized_g2_vs_delay_uncorrelated_emitted)*0.9,text_legend,'
FontSize',9)

165
166 figure('Name',['Normalized g2 vs delay, photon reflection − '

text_legend_model],'NumberTitle','off')
167 plot(full_tau_list,[flip(normalized_g2_vs_delay_reflected(2:end))

normalized_g2_vs_delay_reflected],'r','Displayname', 'correlated')
168 hold on
169 plot(full_tau_list,[flip(normalized_g2_vs_delay_uncorrelated_reflected

(2:end)) normalized_g2_vs_delay_uncorrelated_reflected],'−−r','
Displayname', 'uncorrelated')

170 title('Histogram < g^{(2)}(\tau) > reflected photons')
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171 xlabel('\tau [ps]')
172 ylabel('counts')
173 legend('Location','northeast');
174 text(full_tau_list(ceil(nb_points_time*0.05)),max(

normalized_g2_vs_delay_uncorrelated_reflected)*0.95,text_legend,'
FontSize',9)

175
176 figure('Name',['Normalized g2 vs delay, photon transmission − '

text_legend_model],'NumberTitle','off')
177 plot(full_tau_list,[flip(normalized_g2_vs_delay_transmitted(2:end))

normalized_g2_vs_delay_transmitted],'b','Displayname', 'correlated'
)

178 hold on
179 plot(full_tau_list,[flip(

normalized_g2_vs_delay_uncorrelated_transmitted(2:end))
normalized_g2_vs_delay_uncorrelated_transmitted],'−−b','Displayname
', 'uncorrelated')

180 title('Histogram < g^{(2)}(\tau) > transmitted photons')
181 xlabel('\tau [ps]')
182 ylabel('counts')
183 legend('Location','northeast');
184 text(full_tau_list(ceil(nb_points_time*0.05)),max(

normalized_g2_vs_delay_uncorrelated_transmitted)*0.95,text_legend,'
FontSize',9)

185 end
186 %%
187
188 % Displaying the mean g2(0), i.e. the area of the correlated HBT peak
189 fprintf(['PR − ' text_legend_model ' ' ': Area of mean g2(0) from reflected

photons: ' num2str(mean_g2_zero_delay_peak_reflected_photons) '\n'])
190 fprintf(['PR − ' text_legend_model ' ' ': Area of mean g2(0) from

transmitted photons: ' num2str(
mean_g2_zero_delay_peak_transmitted_photons) '\n'])

191 fprintf(['PR − ' text_legend_model ' ' ': Area of mean g2(0) from emitted
photons: ' num2str(mean_g2_zero_delay_peak_emitted_photons) '\n'])

192
193
194 % Verification of the area of the uncorrelated HBT peaks, that should be
195 % normalized to unity
196 fprintf(['PR − ' text_legend_model ' ' ': Relative error on the area of

mean g2 for uncorrelated peaks, for reflected photons: ' num2str((−1 +
mean_g2_uncorrelated_peaks_reflected_photons)*100 ) '%% \n'])

197 fprintf(['PR − ' text_legend_model ' ' ': Relative error on the area of
mean g2 for uncorrelated peaks, for transmitted photons: ' num2str((−1
+ mean_g2_uncorrelated_peaks_transmitted_photons)*100 ) '%% \n'])
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198 fprintf(['PR − ' text_legend_model ' ' ': Relative error on the area of
mean g2 for uncorrelated peaks, for emitted photons: ' num2str((−1 +
mean_g2_uncorrelated_peaks_emitted_photons)*100 ) '%% \n'])

199
200
201 % Basic verifications on the intensity correlations
202 if min(normalized_g2_vs_delay_uncorrelated_transmitted)<0 || min(

normalized_g2_vs_delay_reflected)<0 || min(
normalized_g2_vs_delay_emitted)<0

203 fprintf(' \n \n !!!!!!!!! Warning: non−physical negative values in g2
vs delay !!!!!!!!!! \n \n');

204 end
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