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Abstract

In the frame of the European SWIRup project, this work deals with the research of new
materials for the detection of the upper band of Short Wavelength InfraRed (SWIR) radiation
up to 2.5µm at high working temperature. The current technology, consisting of HgCdTe,
shows some limitations and it requires cryogenic temperatures to work. As alternative,
InGaAs/GaAsSb Type-II SuperLattice (T2SL) is analysed through k·p simulations. From
experimental Quantum Efficiency (QE) measurements on some test devices, the problem of
carrier localization appears as an exponential dependence on temperature of the QE at a
given wavelength. By means of the simulations, the structure is optimized by following a
quite simple model based on the scattering time. In particular, strain in the superlattice
layers is adopted to achieve the lowest effective mass at the highest cutoff wavelength.
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Chapter 1

Introduction

InfraRed (IR) is an ElectroMagnetic (EM) radiation whose wavelength sweeps from 0.75µm
up to 100µm. Applications using such wavelengths regard for example gas sensing, sample
composition analysis and environmental control. This is because many chemical compounds
such as Carbon Dioxide (CO2) have absorption lines located in this range.
The IR spectrum can be divided into several ranges according to the wavelength (table 1.1).

Division name Wavelength (µm)
Near InfraRed (NIR) 0.75 - 1

Short Wavelength InfraRed (SWIR) 1 - 2.5
Mid Wavelength InfraRed (MWIR) 3 - 5
Long Wavelength InfraRed (LWIR) 8 - 12

Far InfraRed 15 - 100

Table 1.1: Infrared spectrum ranges.

The focus of this work is on the SWIR range in the frame of the SWIRup project. SWIRup
is a European Commission H2020 project aimed at image sensors for high-resolution earth
observation missions in the upper band of shortwave infrared (up to 2.5µm) and more
specifically for atmospheric gas analysis and hyperspectral imaging. The main idea is to
replace Mercury Cadmium Telluride (HgCdTe) which is today the predominant material
system used in SWIR applications. This is because HgCdTe material system often suffers
from poor material uniformity, difficult material growth, device instability, high cost, low
yield and it needs to work at cryogenic temperatures[1].
In the SWIR range, bulk InGaAs on InP works quite well up to 1.7µm with low dark
current and high quantum efficiency (about 70%). However, in order to extend the detection
wavelength, the In content has to be increased leading to higher strain and high defect
percentage which lowers the quantum efficiency and increases the dark current[2]. Another
solution may be bulk InGaAsSb on InP or GaSb substrate. The first can reach a maximum
cutoff wavelength of 1.8µm; the second is in principle adequate since it has a cutoff
tunability between 1.6µm and 2.5µm nevertheless the technology is not mature yet. In
this context, Type-II superlattices (T2SL) have gained significant interest in recent years
as an important infrared material system for high-performance detectors reaching cutoff

1



Introduction

wavelengths up to 30µm[2]. T2SL is a minority carrier device with type-II band alignment.
In its unique structure, based on alternating thin nano-layers, the absorption of a photon
induces a diagonal transition in which the electron and the hole are spatially separated in
two different adjacent layers. The transition occurs close to the interface between the two
layers where the two wavefunctions overlap. Since the conduction and valence bands reside
in different materials, the T2SL gap results lower than that of each of the components,
effectively creating an artificial bandgap. The diagonal generation of carrier has, in this
case, an intrinsic drawback that derives from the reduced oscillator strength and therefore
absorption with respect to bulk absorbers[3].
The main advantage of T2SL is the capability to tailor the gap playing with materials, layers’
thickness and composition. Other characteristics are the stronger immunity to tunneling and
the reduced Auger recombination with respect to bulk detectors[4]. III-V semiconductors,
grown on GaSb or InP substrates, are appropriate to make T2SL detectors in each of the
IR ranges. For the MWIR and LWIR ranges, InAs/InAsSb T2SL on GaSb Focal Plane
Array (FPA) have been demonstrated[5]. InAs/GaSb T2SL has a wider gap tunability from
SWIR and can achieve the same LWIR cutoff wavelengths as the InAs/InAsSb T2SL but
with shorter periods (hence better absorption strength). The problem is the very large
effective mass of hole along the growth direction which reduces the diffusion of the minority
carriers lowering the collection quantum efficiency. As a new candidate for the detection
in SWIR, InGaAs/GaAsSb T2SL on InP have been studied[1][2][5] in these years starting
from Sai-Halasz et al.[6] who first proposed this kind of structure. Recently, a quantum
efficiency of ∼ 40% has been measured at 2.18µm near room temperature[3]. In 2019,
an InGaAs/GaAsSb multi-quantum wells High-speed Uni-Travelling Carrier Photodiode
(UTC-PD) at 2µm has been also demonstrated[7].
The concrete application of these materials is made possible by the advanced fabrication
techniques available nowadays (e.g. MBE, MOCVD) which ensure the production of very
high-quality samples.

In this work InGaAs/GaAsSb T2SL on InP is studied as an alternative to bulk InGaAs to
reach bandgap tunability up to 2.5µm. The problem of the low and temperature-dependent
quantum efficiency arising from experimental measurements at the lab is addressed. In
particular, it is believed that the cause of this behaviour is the localization of holes in the
GaAsSb layer. In this respect, carrier transport mechanisms in superlattices are analysed
and particular attention is given to the transport properties in the case of localization.
Through k·p simulations, the structure is consequently optimized in terms of effective mass
lowering and band gap red-shifting towards 2.5µm in order to favour miniband transport.
Trends in band structure properties are analysed as a function of the layer thicknesses and
compositions. The latter property ultimately defines the strain with respect to the InP
lattice constant and this will be the key to optimize the device.

The report is organized as follows. In the next chapter, some theoretical basics on
heterostructures and carrier transport in superlattices are given. This discussion, which
starts with some generalities and gives a baseline to understand superlattices, is aimed to
give a model able to explain the problem of carrier localization and to guide towards the
simulation results that will be presented after a description of the main characteristics of a
T2SL. As last section there are the conclusions and some perspectives. An appendix on the
adopted k·p model is also present at the end of the document.
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The Lab and the group

This work has been carried on in III-V Lab under Thales. III-V Lab is a private R&D
organisation jointly established by Nokia, Thales and the CEA whose mission is to perform
research and development on III-V semiconductor components from basic research to
technology transfer for industrialisation. The group I worked with and I’m still working
with is lead by Dr. Jean-Luc Reverchon and it is made up of 9 people. The interests
are about photodetection in the Short Wavelength and Mid InfraRed ranges both in the
fundamental physics and the technological aspects. For such task, both interband and
intraband processes are exploited. An example of the first is given by this work, where
T2SL are investigated. For the second, Quantum Cascade Detectors (QCD) studies are
mainly lead by Dr. Alexandre Delga. As stems from this work, current interests goes
towards IR imagers for space applications.

Observation

I’d like to remark that in fact all the work I did was somehow influenced by the unusual
starting of 2020 with the pandemic situation due to the COVID19 that forced me to work
at home, physically far from the lab and from all my colleagues of the group. In this respect,
all the work focused on the simulation part with the impossibility to make complementary
experimental measurements in addition to the ones already performed by the group at the
time of my arrival. Hopefully, some new experimental measurements may be performed
during the summer.
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Chapter 2

Heterostructures

2.1 The resonant-tunneling diode
An heterostructure is a semiconductor composed of more than one material. The junction
between two different materials is called heterojunction, and this is the region where the
properties of the two materials meet each other. The energy band diagram is typically used
to display properties of heterostructures. It is a plot of the allowed electron energy states
in a material as a function of position along a preselected direction. In its simplest form,
the diagram contains only two lines: the bottom of the conduction band and the top of
the valence band. In the case of this work, these edge states occur in the Γ k-point of the
Brillouin zone of the corresponding materials and therefore the difference between these
two lines corresponds to their direct gaps. In the effective mass approximation, these edges
correspond to the potential energy of the corresponding carrier (hole for valence band,
electron for conduction band). In the case of abrupt interfaces and undoped materials, the
potential energy varies step-likely as a function of the growth direction. Remember also
that usually band-edges are the zones where the density of states is higher and therefore
such states determine most of the electronic properties of the system.
Depending on the band alignment, several types of heterostructure may occur (fig.2.1a).

According to these diagrams, carriers experience potential barriers and therefore general
problems of quantum physics related to waves and barriers apply.
The starting point of superlattices was the discovery of resonant tunneling through a double
potential barrier first predicted by Tsu and Esaki in 1973 [10] and then demonstrated in
1974 by Esaki, Chang and Tsu [11]. A schematic of the structure is in fig.2.1b. Negative
Differential Resistance (NDR) can be observed from I(V) curves of these kind of devices
(fig.2.2). The conditions to be fulfilled in order for NDR to occur are: 1) energy resonance
between the energy of the electron in the emitter and the discrete level of the well and
2) lateral momentum conservation. The above NDR effect is accompanied by a resonant
enhancement of the transmission. In fact, when the energy of the incoming electron
matches one of the quantized levels in the well material, the wavefunction builds up
within the well similar to a Fabry-Perot resonator leading to (ideally) unity transmission
although the tunnelling probability through the single barriers is much lower than unity
(fig.2.3, lowest curve). Scattering mechanisms however may destroy the coherence of
the process preventing the Fabry-Perot effect and therefore the resonant enhancement of
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(a) (b)

Figure 2.1: (a) Types of heterostructure from [8] and (b) Double barrier structure with
degenerate-doped emitter and collector at equilibrium and with applied voltage. When the proper
voltage is applied, resonance occurs and NDR is observed in the I(V ) characteristic. From [9].

the transmission. In the latter case, tunnelling must be viewed as an incoherent (sequential)
process [9].
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Figure 2.2: Experimental I(V) characteristics of a double barrier heterostructure
Al0.33Ga0.67As/GaAs/Al0.33Ga0.67As at 77K. The emitter and the collector are constituted
by Si-doped GaAs (1.1× 1017 cm−3). [From my experimental project in Paris Diderot, September
2019.]

In this respect, it is worth to stress that resonant tunnelling is a dynamic process and
that in order for the Fabry-Perot effect to occur it is necessary that the wavefunction
builds up inside the well, that is the well must be filled up by electrons. It can be defined
a transient time with time constant τ0 for the system to approach this condition [12].
Reasonably, this is related to the transmission through the barrier by:

τ0 = h̄

Γr
(2.1)
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where Γr is the Full Width at Half Maximum (FWHM) of the transmission through a
barrier. This time constant should be compared with the one related to scattering τ . The
principal effects of collisions are to decrease the peak transmission by the ratio τ0

τ0+τ and to
broaden the resonance because of the introduction of non-coherences. To summarize, in
order to have coherent resonant tunnelling:

Γr ≥ Γc (2.2)

where Γc = h̄
τ is the collision broadening [9].

2.2 Superlattices: does (mini)band transport always
occur?

A periodic repetition of two layers of different materials (the two materials have to act as
well and barrier according to band alignment) coupled by tunnelling makes each resonant
transmission peak split in N transmission peaks (fig.2.3) where N is the number of coupled
wells. This particular heterostructure is called (finite) superlattice and it has been studied
by Tsu and Esaki[10]. For an ideally infinite superlattice, the splitting becomes infinitesimal
leading in fact to minibands. In this case, a 1-D crystal is formed and Bloch theorem holds.

Figure 2.3: Transmission in logarithmic scale as a function of the electron energy for a
superlattice with 1,3 and 5 periods (one period is constituted by one well and one barrier). The
barrier and well thicknesses are 20 Ȧ and 50 Ȧ, respectively. The barrier height is 0.5 eV. From
[10].

The structure is called superlattice because it is a second level of periodicity superimposed
on the first level, which is the crystalline nature of the semiconductors. The period is longer
and the periodic potential weaker with respect to the constituting crystals. This is why the
bandwidth of the arising minibands is in a much lower scale of energies and the Brillouin
zone (BZ) narrower with respect to the band structures of the constituent materials.
A simple model to describe a 1-D infinite superlattice is the Kronig-Penney model (fig.2.4a).
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In this model, within the effective mass approximation, the system is described by the
following equation[13]:

cos(kzd) = cos(αtW )cosh(βtB) + 1
2

(
m∗W
m∗B

β

α
− m∗B
m∗W

α

β

)
sin(αtW )sinh(βtB) (2.3)

where α2 = 2m∗WE

h̄2 and β2 = 2m∗B(V0−E)
h̄2 . d = tW + tB is the superlattice period, kz is

the wavevector along the growth direction, E is the energy taken from the conduction band
edge of the well material, tW and tB are the thicknesses of the well and barrier material,
m∗W and m∗B the two respective effective masses. Bands arise requiring that eq.2.3 is valid
between -1 and +1 (fig.2.4). It can be seen from the inset of fig.2.4b that the bandwidth
grows exponentially by reducing the thickness of the barrier.

0 5 10 15 20 25 30

z [nm]

0

50

100

150

200

250

300

350

E
n

e
rg

y
 [

m
e

V
]

V
0

t
w

t
B

2

(a)

10 20 30 40 50

Number of monoloyers

0

50

100

150

200

250

300

350

E
n

e
rg

y
 [

m
e

V
]

Bandwidth

0 20 40 60

Number of monolayers

0

100

200

E
n

e
rg

y
 [

m
e

V
] data

fitted curve

(b)

Figure 2.4: (a) Kronig-Penney simulated bandwidth of (10,10)In0.53Ga0.47As/GaAs0.51Sb0.49
superlattice’s conduction band according to eq.2.3. The single confined level within each well
couples with the one of the other wells forming a miniband. The notation (m,n) indicates that
InGaAs is m monolayers (MLs) thick and GaAsSb is n MLs thick. Adopted parameters [from
the group’s database]: m∗

W = 0.046m0, m∗
B = 0.054m0, tW = tB =10 MLs, V0 = 346meV (b)

Variation of the top and bottom edges of the conduction miniband as a function of the MLs
constituting the barrier. The well thickness is kept fixed at tW = 10MLs. The (10,10) band edges
are prolonged with dotted lines to show the link with (a). Inset: bandwidth with exponential
fitting.

For sufficiently weak coupling between wells (tight-binding model) the superlattice
dispersion relation can be approximated by a sinusoidal form[14]:

E(kz) = ∆[1− cos(kzd)] (2.4)

For small electric fields the mobility can be shown to be [9]:

µz = e∆d2

h̄2 τ (2.5)
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in which m∗ = h̄2

∆d2 is the band-edge effective mass. Since the bandwidth ∆ is dictated by
transmission through the barrier, the effective mass rises with an increase of the barrier, layer
thickness and effective masses of the two layers. The mobility for heavy holes and electrons
may be therefore very different leading to a mass-filtering effect[9] where heavy-holes,
generally characterized by a higher effective mass, actually remain localized. Transport
proceeds by miniband conduction if the mean free path of the carriers appreciately exceeds
the superlattice period and this requires that[9]:

h̄

τ
< ∆ (2.6)

Assuming τ ∼ 1 ps for holes [15], the bandwidth ∆ should be greater than 0.7 meV.
If eq.2.6 is not satisfied, superlattice’s transport cannot be described by Bloch states. In
the latter case, tunneling is rather a phonon-assisted process through localized states of
adjacent wells (hopping transport). Considering phonon-assisted hopping as the leading
transport mechanism, it can be shown that the mobility is given by[16]:

µ = ed2

kBT
〈W 〉 (2.7)

where 〈W 〉 is the thermodynamically averaged phonon-assisted tunnelling rate.

Another possible transport mechanism different from tunneling is given by thermionic
emission. It consists on diffusion of carriers through the continuum of states with energy
higher than the barrier. The thermionic emission lifetime following [17] is given by:

τE,z =
(

2πm∗zt2w
kBT

)1/2

exp

[
Vb
kBT

]
(2.8)

where tw is the thickness of the well, m∗z the effective mass along z. The conductivity
through this mechanism is highly dependent on the temperature, on the barrier Vb seen by
the quasi-bound carrier and on the diffusivity since a higher diffusivity may contrast the
carrier trapping in an adjacent well. It is worth to underline that thermal assisted transport
has to be regarded as a sequential process at the contrary of miniband which is extended
throughout the superlattice.

2.3 Type-II superlattices and device’s structure
Type-II superlattices (T2SL) are superlattices with type-II heterojunctions between the
constituent materials suited to detect IR. T2SL detectors are minority carrier devices whose
advantages and drawbacks have been already mentioned in the introduction (ch.1). The
T2SL energy gap, which determines the cutoff wavelength of the detector, is given by the
difference between the bottom of the lowest conduction miniband and the top of the highest
hole miniband. The optical transition occurs close to the heterojunction between two layers,
where the electron and hole wavefunctions, which are spatially separated in different layers,
overlap.
Fig.2.5 shows schematically the pixel’s structure of the detector investigated in this work
with a detailed description below. The choice of InGaAs/GaAsSb T2SL allows to keep the
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existing structure of the InGaAs on InP simply by substituting the n-doped bulk InGaAs
with the n-doped T2SL. In this configuration, the known diffusion process of Zinc (p-dopant)
allows to create a pn junction with the n-doped T2SL where the photogenerated holes are
extracted. Therefore, the great interest of this work is about holes’ transport properties
that are in turn related to the valence band of the T2SL.

Figure 2.5: InGaAs/GaAsSb T2SL photodiode structure. The blue and red lines represent the
absorption depth of a "blue" and a "red" wavelength since light impinges from the bottom. The
red zone indicates the diffused Zn. The substrate is n-doped InP. The T2SL absorbing material is
1µm thick. Between them, a 200 nm-thick n-InGaAs buffer layer acts as a screener of substrate
defects. The thick (1.5µm) n-InGaAs layer contains the photodiode depletion region and limits
the GR dark current. The thick InAlAs cap (unintentionally n-doped 2× 1016 cm−3) serves to
minimise the diffusion current and to remove surface influences. The wafer is capped with a 70 nm
InGaAs layer, which serves to (i) encapsulate and protect the InAlAs, which is prone to oxidation,
(ii) aid Zn diffusion, due to the high solubility of Zn in InGaAs, and (iii) minimise the contact
resistance to the p-type region.

A graphical summary of the working principle for a (5,5)InGaAs/GaAsSb T2SL is
depicted in fig.2.61. The electron-hole pair creation induced by IR absorption is shown
both in direct space and reciprocal space. Note that, while the absorption is indirect in
real space, it is direct in k-space.

One of the main characteristics of T2SL and of superlattices, in general, is the anisotropy
of the heavy hole and the light hole minibands that give the asymmetry of the bands
between the [001] growth direction and the [100] in-plane direction (fig.2.6b). Let’s consider
the superlattice growth direction as z. Heavy holes, that can be seen as a combination
of px and py orbitals, show lower effective mass along [100] with respect to light holes.
The latter has mainly contribution from pz and therefore show opposite behaviour with
respect to heavy holes (see table A.2 for the description of zone-center states). Because of
the heavier mass of heavy holes along the z-direction, the HH-LH degeneracy is removed
(fig.2.7). The different curvature of the two bands along (kx, ky) would lead to a cross.
However, considering a coupling, anti-crossing occurs. This brings to the so-called HH-LH
mixing effect which may lead to much higher hole mobility along the growth direction[18].
This anisotropy is very important when considering imagers constituted by an array of
pixels. Large anisotropies in hole mobility may lead to an increased cross-talk therefore
ruining the imager resolution[19].

1All the kind of graphs like in fig.2.6 have been made through a MATLAB code developed by me to
analyse simulation outputs of k·p model (Appendix A) as described in section 3.2 of the next chapter.
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Figure 2.6: k· p simulated (a) Band diagram and (b) band structure of InP lattice-matched
(5,5)InGaAs/GaAsSb T2SL. The band diagram shows how the band edge energy for Conduction
Band (CB), Valence Band(VB), Heavy Hole (HH), Light Hole(LH) varies as a function of z. The
band structure shows the energy bands as a function of k for the directions kz and kx. The arrow
represents the absorption of IR causing the generation of carrier. Just the bands close to the
electronic gap are shown. In the band diagram, e1 hh1 and lh1 represent the value of the first
conduction band, the first topmost and the second topmost valence bands respectively in Γ. The
gap of the superlattice is given in this case by e1-hh1. The computed effective masses of heavy
holes along [100] and [001] are −0.05m0 and −0.83m0 respectively.

Figure 2.7: Removal of valence band degeneracy and mixing effect in quantum wells. From [20].

The Kronig Penney model, adopted here as a baseline to illustrate electronic properties
of superlattices, does not consider effects like anti-crossing and non-parabolicity of bands
and this is the reason why more accurate models like k·p are adopted.
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Chapter 3

Results

3.1 Experimental quantum efficiency spectra

Experimental results, obtained by the group prior to my arrival at III-V lab, regard measures
of Quantum Efficiency (QE) on the devices whose absorbing materials are listed in table 3.1.
Actually, the period of the superlattices should have been symmetric (3nm/3nm, 5nm/5nm,
7nm/7nm) but, due to a mistake in the growth program, the InGaAs thickness remained
unchanged. These three devices showed simulated cutoff wavelengths of 2.1µm, 2.3µm
and 2.5µm respectively. Fig.3.1 illustrates a comparison between the spectral QE of bulk
InGaAs on InP detector (ART3993) and two T2SL photodiodes (ART4013 and ART4015)
at different temperatures. It is recalled that the QE for a pn-junction photodiode is given
by[21]:

η = (1−R)
[
1− e−αWD

1 + αLp

]
(3.1)

where R is the reflection coefficient, α the absorption, WD the depleted region width and
Lp the diffusion length of the minority carriers.
The work I conducted concerned the analysis of such spectra with the aim of finding
the underlying physical problems (exposed in ch.2) and suggest solutions aided by k·p
simulations.
As it can be noted, there are two main differences between the bulk and the T2SL QE spectra:
one is the shape and the other is the temperature dependence. The cutoff wavelength λc
of bulk InGaAs is about 1.65µm. Looking at T2SL spectra (ART4013 and ART4015) at
given wavelength greater than 1.65µm, which is the region where the T2SL is designed
to absorb, the QE is characterized by an exponential dependence on temperature of the
kind ∼ exp

(
− Ea

kBT

)
where Ea is the activation energy. This suggests that transport is

thermally-activated rather than described by band structure implying that holes are actually
localized. This hypothesis is confirmed also by the slanting curve for λ ≤ 1.6µm. Such
energetic photons are absorbed by bulk InGaAs and GaAsSb nearby the substrate where
generated carriers are hindered from reaching the p-contact.
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Wafer Description
ART3993 InGaAs bulk absorber of 3µm
ART4013 T2SL 165 repeats of 3nm/3nm InGaAs/GaAsSb
ART4014 T2SL 100 repeats of 3nm/5nm InGaAs/GaAsSb
ART4015 T2SL 70 repeats of 3nm/7nm InGaAs/GaAsSb

Table 3.1: Tested SWIRUP T2SL at III-V lab. All the T2SLs are in lattice-matched condition
with the InP substrate: this corresponds to an In concentration in InGaAs of 53% and an As
concentration in GaAsSb of 51%.

(a) ART3993 (b) ART4013 (c) ART4015

Figure 3.1: Quantum Efficiency for ART3993, ART4013 and ART4015 devices in logarithmic
scale with temperature as parameter.

3.2 Localization analysis through kp simulations

In order to study new structures of T2SL as absorbing material, I interpreted my simu-
lation results according to the discussion I made in section 2. The holes generated by IR
absorption in the T2SL, which is located outside the depleted region of the pn junction
(fig.2.5), reach the p-contact through diffusion since no voltage is applied to the active
region. Therefore, to increase the quantum efficiency (eq.3.1) an high diffusion length is
needed. The diffusion length along the growth direction is given by Lp,z =

√
Dzτr with the

diffusivity Dp,z = kBT
e µp,z and the mobility µ given by eq.2.5 in case of band transport; τr

is the hole lifetime.
Since the mobility depends on the bandwidth of the miniband, I oriented my simula-
tions towards the increase of the bandwidth (and therefore the reduction of the effec-
tive mass) for cutoff wavelengths as close as possible to 2.5µm. In order to simulate
InxGa1−xAs/GaAsySb1−y T2SL I used a 18× 18 k·p model described in section A.2 ex-
ploiting a code made in III-V lab. I wrote a simple MATLAB code to extrapolate further
informations from the simulation results and to make plots. The simulation output two text
files: one containing the band structure and the other containing the band diagram. Besides
these two outputs, the simulation displayed as results the strain of the layers, the band-edge
effective masses along specific directions and the energy gap in Γ. All the other quantities
mentioned in the following, like energy gaps and band offsets come from my MATLAB
code. All the simulations are performed at 300K. I want to remark that a complete design

12



Results

of a new structure would have required absorption simulations and also the consideration
of scattering mechanisms. However, codes for these tasks were not available1 and actually
band structure-derived properties were enough for the purpose of this work.
The first thing I did was to simulate the device ART4013 to try to understand the reason
of localization. The band diagram and the band structure are shown in fig.3.2. Focusing
on fig.3.2b, the topmost valence band, which corresponds to the Heavy Hole (HH) one,
is almost flat resulting in a large effective mass (−9.9m0) and negligible Band Width
(BW) along the growth direction kz. The cutoff wavelength, that is computed from the
superlattice bandgap Eg = e1− hh1, is given by λc [µm] = 1.24

Eg [eV ] and in the case of T2SL
ART4013 corresponds to 2.1µm. All these quantities are reported in tab.3.2 for the three
T2SL photodiodes of table3.1.
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Figure 3.2: k·p simulated (a) Band diagram and (b) band structure for device ART4013.

The most important parameters here to understand localization are effective mass and
bandwidth of the first heavy hole miniband of the superlattice. According to the discussion
of the previous section, this may be a clear suggestion that this device probably suffered
from hole localization.

Device λc [µm] mv1,z[m0] VB1 CB1 BW VB1 −VB2
ART4013 2.1 -10 48 150 0.5 95
ART4014 2.1 -34 22 182 0.0 64
ART4015 2.1 -19 13 199 0.1 37

Table 3.2: Some k·p-simulated band properties of T2SL photodiodes of table 3.1. λc is the cutoff
wavelength, mv1,z is band-edge effective mass of the topmost valence miniband along direction kz,
BW is the bandwidth of the topmost valence miniband along kz (note that it is ∼ 0meV ). For
the other quantities, refer to fig.3.2. Energies are expressed in meV; m0 is the electron rest mass.

To improve transport properties, first I investigated the effects of InGaAs and GaAsSb

1Coding of these phenomena will constitute my next task during my training at III-V Lab.
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layers’ thicknesses on the band features for a InP-lattice matched T2SL. Fig.3.3a displays the
variation of the cutoff wavelength with the period’s thickness which is varied as described in
the caption of the figure. It is immediately clear that the increase of the GaAsSb thickness
does not bring to any advantage since it causes a blueshift of the gap and an increase of
the effective mass with consequent reduction of the bandwidth. This is why also the other
T2SLs of table 3.1 experimentally show localization in the QE. In particular, ART4013
shows an activation energy at 1.8µm of 150 meV while ART4015, with 7nm of GaAsSb,
shows an activation energy of 200 meV at the same wavelength. On the contrary, increasing
the InGaAs thickness or both the thicknesses of the two layers at the same time brings to
a redshift of the gap and an increase of the effective mass leading to a tradeoff. Fig.3.3b
shows the effective mass as a function of the cutoff wavelength for several configurations
where the two layers’ thicknesses are varied at the same time.
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Figure 3.3: Simulated quantities for In0.53Ga0.47As/GaAs0.51Sb0.49 T2SL (a) Cutoff wave-
length (inset: mv1,z for the tW curve case), (b) topmost valence miniband band edge effective
mass. Crosses indicate points where BW ∼ 2meV (c) CB1 and VB1 with respect to their initial
values (d) VB1 − VB2. tW stands for well thickness while tB for barrier thickness. The terms ’well’
and ’barrier’ refer to holes: the well is the GaAsSb layer while the InGaAs constitutes the barrier.
The tW curve means that tW is varied keeping fixed tB to 3 MLs; same approach for the tB curve.
In the (a*n,b*n) case, both the layer thicknesses are varied at the same time. The thickness of
one monolayer is about 2.93 Ȧ for both InGaAs and GaAsSb.
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Since the difference between the conduction band edge of InGaAs and the valence band
edge of the GaAsSb is fixed (eq.3.3), the variation of the gap is given by the variation of
CB1 and VB1 (please refer to fig.3.2a for the notation). The latter are represented in fig.3.3c
for the three cases of fig.3.3a. In tB = 3MLs = const, the blueshift is caused by a faster
increase of CB1 with respect to the decrease of VB1. In the case of tW = 3MLs = const
the behaviour of VB1 and CB1 is reversed: CB1 decreases faster than the increase of VB1.
In the (n,n) case, CB1 remains almost constant while VB1 decreases causing the redshift.
The steeper variation of CB1 with respect of VB1 is given by the lower effective mass of
the electron with respect to the heavy hole one. However, the maximum reachable cutoff
wavelength with such approach is about 2.05µm as indicated by the crosses in fig.3.3b for
the (n,n) and (3n,2n) configurations and therefore a complementary strategy is needed to
further increase the λc’s upper limit.

3.2.1 Introduction of strain
Considering InxGa1−xAs/GaAsySb1−y on InP substrate, according to the values of x and
y, the constituting layers may be strained (fig.3.4). When x = 53% and y = 51%, the
structure is lattice-matched. The lattice constant of the structure is determined by the
substrate that in this case is InP (5.87 Ȧ). In order to build strained structures without
introducing defects (pseudomorphic growing), strain-compensation growth technique is used.
It consists of alternating layers with the opposite type of strain. This means that if one
layer is tensile stressed, the other must be compressed or vice versa and the two strains
must compensate each other.
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Figure 3.4: Energy gap at 4.2K as a function of lattice constant for binary alloys (full points).
The line interpolating two points show how the dependence holds for ternary alloys. GaAsSb lies
between GaSb and GaAs while InGaAs between InAs and GaAs. For x=0.53 and y=0.51 the two
ternaries are naturally lattice-matched to InP. On the right side of the InP lattice constant, the
ternary is compressed while on the left side is stretched. From [22].

The way strain affects band edges in Γ in direct-bandgap semiconductors is depicted
in fig.3.5. As it can be seen, strain leads to HH-LH splitting in the bulk band structure.
Moreover, the gap changes: with compression bonds are shorter than as they would be
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without lattice-matched condition leading to an increase of the energy gap; the opposite
occurs with tensile strain. Since both InGaAs and GaAsSb remain direct-gap materials
over their entire composition range, these properties can be properly exploited to tailor
the electronic characteristics of T2SLs. In particular, I investigated both the GaAsSb in
compression (InGaAs in extension) and the GaAsSb in extension (InGaAs in compression).
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Figure 3.5: k·p simulated GaAsSb band structure under different values of biaxial strain. The
caption of each graph indicates the amount of strain in percentage (parts per hundred). The
HH-LH splitting is positive with biaxial compression and negative with biaxial tension.

The degrees of freedom I had to design the proper T2SL were the thicknesses of the two
layers and the composition. Moreover, strain-compensation requires:

1
tW + tB

|tW × strainW + tB × strainB| = 0 (3.2)

which in fact reduces the degree of freedom. In the formula, strainW (B) represents the
strain of the W(B) layer. Remember that in this case, I call ’well’(W) the GaAsSb layer
while ’barrier’(B) the InGaAs layer since I refer to holes.
In this respect, once analysed the role of tW and tB in the electronic properties of T2SL, I
investigated the role of layers’ composition.

The band-edge alignment is derived experimentally from the valence band edge disconti-
nuity VP (z) and the band gaps of the unstrained constituent materials and then adding
the effect of the strain. Setting VP = 0 for a reference material (GaAs in my case), the
conduction band edge variation according to the growth direction z is given by:

VS(z) = VP (z) + Eg(z)− Eg(GaAs) (3.3)

The band edges enter in the k·p model as inputs (Appendix A). For a review on III-V
semiconductor band parameters refer to [23].

GaAsSb in compression

Since the rise of λc towards 2.5µm by increasing the number of monolayers per period is
not practicable because of the fastly growing hole effective mass (fig.3.3b), I first tried to
investigate how band edges of GaAsSb vary sweeping y = 0.51→ 0 (GaAsSb in compression)
since holes reside in GaAsSb. In this respect, keeping x=0.53 fixed to make the comparison
more clear, I noticed an increase of the gap of strained GaAsSb of about 126 meV from
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y=0.50 to y=0.05 which goes in an increase of 280 meV of the Conduction Band edge
Offset (CBO) and an increase of 154 meV of the Heavy Hole band edge Offset (HHO) as it
can be seen in the band-edge alignment of fig.3.6a. The increase of the valence band edge
in GaAsSb towards the conduction band edge of InGaAs makes this a potential solution
for the reduction of the gap keeping the thickness of the layers fixed. Then I considered
the variations in the InGaAs band edges when put in tensile strain. The effect of bands
alignment, sweeping x = 0.50→ 0.05 with y = 0.51, is an increase of the InGaAs gap who
mostly goes in an increase of HHO while CBO remains almost constant (fig.3.6a)2. Fig.3.7
shows these offsets on the band diagram. As the role of tensile-strained InGaAs is just to
increase HHO and therefore the potential barrier seen by holes while keeping the CB edge
fixed, this brought me to find the best y in order to lower as much as possible the gap and
then to choose x according to eq.3.2. Refer to table3.3 for the specific strain of the two
layers.
As depicted in fig.3.6b, by just analysing the effect of As concentration while keeping
the In one fixed to 53%, CB1 increases while VB1 remains almost constant. This means
that, in order for the gap to decrease, ∆(CB1)−∆(HHO) + ∆(VB1) < 0 must be verified.
From fig.3.6c the gap redshifts from y = 50% up to y = 15% and blueshifts for y < 15%
concluding that the maximum optimization may be reached at y = 15%.
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Figure 3.6: Some useful simulated band parameters for (5,5)InxGa1−xAs/GaAsySb1−y T2SL.
(a) HHO and CBO band offsets (b) Top most valence band edge and first-conduction band edge
in Γ (c) Superlattice energy gap variation.

Therefore, I oriented myself towards this direction performing simulations of some
promising SWIRup that I proposed to the crystal grower of the group and that are listed
in tab.3.4. Again, the In concentration is subordinated to the As one to guarantee strain-
compensation.

The general trend for both the cutoff wavelength λc and of the effective mass of the
topmost valence miniband along the growth direction mv1,z as a function of the number
of monolayers n is a monotonic grow. Therefore, it is useful to plot the behaviour of
the effective mass as a function of the wavelength to understand which composition gives

2I remark that the real structure must satisfy the strain-compensation (eq.3.2); this "graphical"
analysis is just to ascertain how band edges align in the band diagram in order to have some intuitions
on the resulting band structure properties.
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Figure 3.7: Effect of strain on the band edges of InGaAs and GaAsSb compared to the unstrained
case. (a) lattice-matched (b) GaAsSb in maximum compression with InGaAs lattice-matched (c)
InGaAs in maximum extension with GaAsSb lattice-matched. Note that the graphs are aligned in
energy to favour the comparison with the lattice-matched case.
Band offsets [meV]: (a) VBO=365, CBO=346; (b) VBO=620, CBO=358 VB splitting=106;(c)
VBO=398, CBO=628, VB splitting=127.

Layer Concentration
0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.10 0.05

InxGa1−xAs 0.2 0.6 0.9 1.3 1.6 2.0 2.4 2.7 3.1 3.5
GaAsySb1−y -0.1 -0.5 -0.8 -1.2 -1.6 -1.9 -2.3 -2.7 -3.0 -3.4

Table 3.3: Biaxial strain in percentage for InxGa1−xAs (GaAsySb1−y) as a function of x(y)
concentration. When positive, it is tensile strain while for negative is compressive strain.

Device x y n λc[µm] mv1,z[m0] VB1 − VB2 [meV]
#1.1 0.1 0.05 4 2.13 -1.42

not shown
#1.2 0.1 0.05 5 2.13 -1.81
#1.3 0.1 0.05 6 2.20 -3.26
#1.4 0.1 0.05 7 2.28 -5.82
#1.5 0.1 0.05 8 2.35 -9.68
#2 0.15 0.10 not shown
#3.1 0.2 0.15 4 2.11 -1.15 165
#3.2 0.2 0.15 5 2.15 -1.66 176
#3.3 0.2 0.15 6 2.21 -2.95 188
#3.4 0.2 0.15 7 2.29 -5.3 197
#3.5 0.2 0.15 8 2.37 -9.08 189
#4 0.25 0.2 not shown
#5 0.3 0.25 not shown
#6.1 0.35 0.3 4 2.04 -0.9 119
#6.2 0.35 0.3 5 2.09 -1.34 130
#6.3 0.35 0.3 6 2.16 -2.28 141
#6.4 0.35 0.3 7 2.23 -4.04 150
#6.5 0.35 0.3 8 2.30 -7.12 156

Table 3.4: Simulated (n, n)InxGa1−xAs/GaAsySb1−y strain-compensated T2SL. For each
composition, 5 values of n are considered.

the lower effective mass at a given wavelength. The graph, obtained from simulated
data of table 3.4 is depicted in fig.3.8a. Device #3 (x=20%, y=15%) shows the best
characteristics. In fact, the associated curve tends to be above the other strain-compensated
structures. Note also the big advantage with respect to the lattice-matched one. Of
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Figure 3.8: k·p simulated (a) Effective mass and (b) zone-center HH-LH splitting as a function
of cutoff wavelength for devices of tab.3.4. Lattice-matched is also shown for direct comparison.

course, since the offsets are bigger in the strained cases, the effective mass increases (in
absolute value) with a higher rate as a function of n with respect to the unstrained
case. Another advantage of using GaAsSb in compression, besides the lowering of the
gap, is the higher topmost valence band edge splitting in Γ that is known to lead to
an higher mobility because of reduced interband scattering mechanisms (fig.3.8b)[4]. In
this solution, heavy holes experience an higher barrier Vb = HHO − VB1 with respect
to the lattice-matched case. This is expected to lower the thermal activated transport.
For example, Vb = 250meV for (4,4)In0.53Ga0.47As/GaAs0.51Sb0.49 and Vb = 625meV for
(4,4)In0.20Ga0.80As/GaAs0.15Sb0.85.

GaAsSb in extension

In order to have GaAsSb in extension in strain-compensated structures, it is needed that
x, y → 1.

Layer Concentration
0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

InxGa1−xAs -0.1 -0.5 -0.8 -1.1 -1.5 -1.8 -2.1 -2.5 -2.8
GaAsySb1−y 0.3 0.7 1.1 1.4 1.8 2.2 2.6 3.0 3.4

Table 3.5: Biaxial strain in percentage for InxGa1−xAs (GaAsySb1−y) as a function of x(y)
concentration. When positive, it is tensile strain while for negative is compressive strain.

The table 3.5 shows the strain in percentage of the two layers as a function of the
concentrations x,y. A hint of how energy levels and gaps of superlattice will evolve with
GaAsSb in extension can be seen by the evolution of band offsets in fig.3.9. Changing
x, y → 1, the VBO is much lower with respect to the unstrained case and this may favour
thermal-assisted transport. However, the increase of CBO due to x→ 1 is lower than the
decrease of HHO(=VBO+VB splitting) due to y → 1 (fig.3.9) and therefore a blueshift of
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the superlattice gap occurs with respect to the unstrained case as expected (fig.3.10a). The
intriguing thing with GaAsSb in extension is that the bulk zone-center HH-LH splitting
becomes negative (fig.3.5a) and interesting properties may arise in the energy difference
between hh1 and lh1. From k·p simulations, the hh1-lh1 splitting reaches the order of kBT
as indicated in fig.3.10a and, following the argument of Ting[4], this may lead to two effects
on the hole mobility. The first is the increased interband scattering probability which ruins
the coherence of the miniband transport; the second is an enhanced HH-LH mixing effect
which may enhance the hole mobility.
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Figure 3.9: Effect of strain on the band edges of InGaAs and GaAsSb compared to the unstrained
case. (a) lattice-matched (b) GaAsSb in maximum extension with InGaAs lattice-matched (c)
InGaAs in maximum compression with GaAsSb lattice-matched. Note that the graphs are aligned
in energy to favour the comparison with the lattice-matched.
Band offsets [meV]: (a) VBO=365, CBO=346; (b) VBO=103, CBO=319 VB splitting=106;(c)
VBO=189, CBO=374, VB splitting=104.

Keeping x,y increasing towards 1, the HH zone-center state of compressive-strained
InGaAs turns out to exceed in energy the one of GaAsSb causing, in fact, a type-II to
type-I transition for heavy holes. This transition occurs for 0.75 ≤ x ≤ 0.80 as indicated in
fig.3.10a and it is shown for x=y=85% in fig.3.10b.
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Figure 3.10: Type-II → Type-I HH transition. k·p simulated (a) λc, HHO and VB1 − VB2
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Chapter 4

Conclusions

Quantum efficiency spectra of InGaAs/GaAsSb T2SL photodiode have been analyzed. In
particular, the exponential dependence on temperature at a given wavelength in the T2SL
suggested a problem of hole localization in the GaAsSb layer. In this respect, phonon-
assisted tunneling and thermionic emission transport mechanisms have been suggested as
leading transport mechanisms. To increase hole mobility, strain-compensated T2SL have
been simulated through a 18 × 18 k·p model in order to make miniband transport the
leading mechanism. Following this task, the bandwidth of the topmost valence band has
been engineered to be as large as possible for cutoff wavelengths towards 2.5µm following
the minimum value of 1meV as reference value. Accordingly, two types of strained structure
have been considered. The configuration with GaAsSb in compressive strain is promising in
reaching a sufficiently low topmost valence miniband edge effective mass along the growth
direction for cutoff wavelengths greater than 2µm with an increased topmost valence
band splitting. For the GaAsSb tensile strained configuration, the consequences of the
heavy hole-light hole splitting of the order of kBT need to be studied as from one side
this disadvantages single miniband transport but on the other side, this may enhance the
HH-LH mixing effect. In this respect, a 3D E(k) would be useful. However, a blueshift
of the superlattice gap occurs and therefore it turns out to be useless in the frame of the
SWIRup project.
In this work, just stationary properties have been considered. Scattering mechanisms
and absorption coefficient should also be considered for a complete description. Programs
performing such tasks will be coded in the next days.
Moreover, the results should be considered as semiquantitative. In fact, the k·p model is a
perturbative approach that relies on a database of input parameters that is continuously
updated to the new literature and experiments.
Following the results of this work, new devices will be produced and tested in the next
growth campaign.
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Appendix A

kp model

The k·p model is a method that allows to compute band structures of bulk and heterostruc-
ture materials by making use of few parameters like optical matrix elements and energy
gaps that can be obtained directly or indirectly from experiments. Matrix elements, in
particular, are determined by fitting the experimental effective masses with the model, i.e.
finding those values that give the simulated effective masses as close as possible to the
experimental ones.
The model considers within a certain level of approximation features like nonparabolicity,
anisotropy and coupling between HH and LH bands[20].
This appendix is organized as follows: first a quick overview of the k·p in zinc-blende
crystals with some reference to group theory is presented; secondly, the actual model
employed in the simulations is discussed. A good approach towards k·p model and group
theory can be found in [24].

A.1 Bulk
In the case of a bulk crystal with periodic potential the eigenstates are given by the Bloch
theorem:

Ψnk(r) = eik·runk(r) (A.1)
where n is the band index and k the wavevector. The Bloch function unk(r) has the same
periodicity as the unit cell. Substituting in the single-electron stationary Schroedinger
equation: [

p̂2

2m0
+ V (r)

]
Ψnk(r) = EnkΨnk(r) (A.2)

a Schroedinger-like equation in unk(r) is obtained:[
p̂2

2m0
+ V (r) + h̄

m0
k · p + h̄2k2

2m0

]
unk(r) = Enkunk(r) (A.3)

Note that H = H0 +W (k) and therefore the term W (k) can be treated as perturbation
with respect to the known problem in Γ (k=0). Since the perturbation terms are proportional
to k, the method works best for small values of k.
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Nondegenerate band (one band model) For non degenerate states like the conduction
band in Γ for zinc-blende semiconductors, nondegenerate perturbation theory can be applied
to compute the dispersion relation analytically. To second order, Enk = En0 + h̄2k2

2m∗ , where

1
m∗

= 1
m

+ 2
m2k2

∑
n′ /=n

|〈un0|k · p|un′0〉|2

En0 − En′0
(A.4)

is the effective mass. The matrix elements 〈un0|k · p|un′0〉 different from zero are
given by the matrix-element theorem which is based in the symmetry of the basis Bloch
functions unk[24]. For example, the conduction band s-like states transform according to
the irreducible representation Γ1 of the point group Td while the p-like valence band states
according to Γ4. Note that the importance of other bands with respect to the considered
n-th one depends on the energy difference therefore distant bands have lower contribution.

Degenerate bands and multiband model For the degenerate states like the valence
band at Γ of zinc-blende, degenerate perturbation theory has to be used. As previously
mentioned, the symmetry of the wavefunctions for such states is p-like and the states
are usually denoted |X〉, |Y 〉, |Z〉. In analogy with atomic physics, p orbital has an
angular momentum associated to the quantum number l=1 and it’s three-fold degenerate
(ml = −1,0,1). When spin is considered, an additional term Hso describing spin-orbit
interaction is added. In this case, the symmetry of Hso and therefore of spin has to be
considered. In tab.A.1 it is shown how the point group of zinc-blend Td changes considering
spin variable. The new group that contains also symmetry operations of spin wave functions
is known as double groups. It is constituted by 48 elements divided in eight classes.

Irreducible representation {E} {3C2/3ÊC2} {6S4} {6σ/6Êσ} {8C3} {Ê} {6ÊS4} {8ÊC3}
Γ1 1 1 1 1 1 1 1 1
Γ2 1 1 -1 -1 1 1 -1 1
Γ3 2 2 0 0 -1 2 0 -1
Γ4 3 -1 -1 1 0 3 -1 0
Γ5 3 -1 1 -1 0 3 1 0
Γ6 2 0

√
2 0 1 -2 -

√
2 -1

Γ7 2 0 -
√

2 0 1 -2
√

2 -1
Γ8 4 0 0 0 -1 -4 0 1

Table A.1: Character table of the double group of the point Γ in zinc-blend-type semiconductors.
Adapted from [24].

Following atomic physics it is possible now to symmetrize the wavefunctions so that
their symmetry properties reflect the ones of the system. In particular, with spin, the wave
functions are eigenstates of the total momentum operator j = l + s and therefore can be
expressed as linear combinations of the eigenfunctions of the orbital angular momentum
and spin giving rise to 6 states (tab.A.2).

The four-fold degenerate j=3/2 states belong to the Γ8 representation since from tab.A.1
this is the only four-dimensional representation while the j=1/2 states belong to the Γ7
representation. These two states are split by the spin-orbit coupling ∆0. The conduction
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HH |32
3
2〉

1√
2 |(X + iY ) ↑〉

|32 −
3
2〉

1√
2 |(X − iY ) ↓〉

LH |32
1
2〉

1√
6 |(X + iY ) ↓〉 −

√
2
3 |Z ↑〉

|32 −
1
2〉 − 1√

6 |(X − iY ) ↑〉 −
√

2
3 |Z ↓〉

SO |12
1
2〉

1√
3 |(X + iY ) ↓〉+ 1√

3 |Z ↑〉
|12 −

1
2〉 − 1√

3 |(X − iY ) ↑〉+ 1√
3 |Z ↓〉

Table A.2: |j,mj〉 valence states. Adapted
from[25].

LH

HH

SO
k

valence band

j=3/2

1/2

3/2

} j=1/2

(p)

∆
0

E

Figure A.1: III-V semiconductor’s
valence bands. Adapted from[26].

band belongs instead to Γ6.
The Bloch functions can be expanded in terms of band edge functions[27]

un(k) =
∑
m

cm(k)um0 (A.5)

Inserting in eq.A.3, multiplying by u∗n0 and integrating over a unit cell a system of coupled
equations with dimension given by the number of considered band edges in the expansion is
obtained. For example, considering the coupling between the 6 Γ4v, the 2 Γ6c and the 6 Γ4v
bands (and not considering spin, Td point group notation) results in a 14× 14 determinant
that has to be diagonalized.
In order to calculate analytically this determinant, Löwdin (quasi-degenerate) perturbation
theory can be used (see for example [26]). Nevertheless, in this work a numerically approach
is adopted as described in section A.2.

A.2 Superlattice
An 18x18 k·p model[28] has been adopted to simulate superlattice band structures. The
approach is divided in two steps:

• 18x18 k·p bulk simulation of the constituents: there are 9 parameters: 4 coupling
terms P 2, (P ′)2, Q2, R2 and the 6 edge energies Γ6c,Γ7v,Γ8v,Γ7c,Γ8c,Γ3c of which one
is taken as reference so that there are actually 5 (see fig.A.2.). In the case of strain,
Bir-Pikus model based on deformation potentials is employed[25]. Remember that
strain causes a modification of the bulk energy edges.

• envelope function approximation in the superlattice. For superlattices, inputs of the
model are the band offsets and bulk energy edges and gaps at Γ. Unstrained band
offsets are taken from literature and then corrected through the Bir-Pikus model in
case of strain as described in the previous point.

Envelope function approximation When a perturbation is introduced in a perfect
crystal, like a quantum well or a superlattice, the wavefunction is no more given by the
Bloch theorem but it is the product of a Bloch function unk0 and an envelope function,
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Δ0
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Γ7v

P’

Q

Γ8v

Γ7c

Γ8c

Γ3c

R

Figure A.2: 18 × 18 k· p model. Graphical representation of the involved input parameters.
Adapted from [25].

slowly varying with respect to the Bloch function [20].
Considering an abrupt interface between two materials, according to the envelope function
approximation, the wavefunction in layer A(B) for the miniband n can be written as[27]:

Ψnk(r) =
∑
i

f
A(B)
i,n (r)uik0(r) (A.6)

where the index i spans over a set of band edges.

Considering lattice matching, the system is translationally invariant in the direction
perpendicular to the growth direction z and therefore k⊥ is a good quantum number. Then:

f
A(B)
i,n (r⊥, z) = 1√

S
eik⊥·r⊥χ

A(B)
i,n (z) (A.7)

where χA(B)
i,n (z) is the envelope function in layer A(B) and S is the heterojunction surface.

Looking at the asymptotic behaviour of the envelope, it must satisfy the Bloch theorem
and this allows to expand the periodic part of χA(B)

i,n (z) in a Fourier series:

χ
A(B)
i,n (z) = eikzz

∑
m

amin (k)eiGmz (A.8)

At the end:

Ψnk(r) =
∑
i

∑
m

amin (k) 1√
S
eik⊥·r⊥ei(kz+Gm)zuik0(r) (A.9)
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where Gm = 2π
d m, k = (k⊥, kz) and d = tb + tw is the superlattice period (tb: barrier

thickness, tw: well thickness). Applying the superlattice Hamiltonian Hsl = H
A(B)
bulk +VV B(z),

multiplying by e−i(kz+Gm′ )zu∗jk0
(r) and integrating the problem becomes a NxN system of

differential equations to be diagonalized. The dimension of the system is N = 18×(2NG+1)
where NG is the number of Gm considered in the Fourier expansion (NG ≤ m ≤ NG). The
numerically solved system is:

∑
m,m′,i,j

amin (k)
{
h̄2(k + Gm)2

2m0
δm,m′δi,j + 1

d

∫ d

0
ei(Gm−Gm′ )z[εi(z) + VV B(z)]dzδi,j+

+ h̄

m0
(k + Gm)1

d

∫ d

0
ei(Gm−Gm′ )zPij(z)dz

}
= En(k)ajm′n (k) (A.10)

where εi(z) are the energy edges of the known (strained) bulk problem of the constituent
materials, VV B(z) is the (unstrained) valence band edge variation along the growth direction
(band offsets) and Pij is the matrix element between states i and j.
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