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Chapter 1

Introduction

1.1 Context
This master thesis is placed within the modern context of the information processing where
low-power hardware and software is needed for handling a large amount of data in the most
efficient way. Here, the aim is to contribute to the recent interest in photonic technologies
for increasing the computing power, specifically to address the big data challenge. This is
motivated by the peculiar advantages of photonic technology in terms of speed and power
efficiency.
The TRT research group where my internship experience took place aims to use integrated
photonic devices in order to develop constructive elements able to mimic the essential
characteristics of brain-like synapses and neurons in the interest of lay the foundations
for low power and fast non-von Neumann computing. In fact, as powerful as might be
an electronic chip is based on the 1940s John von Neumann architecture, this involves
connections carrying data back and forth between memory and processor, and operates
in strictly sequential way. Instead an artificial neural network is intrinsically parallel
and decentralized. Therefore, the hope of neuromorphic computing is to overcome the
bottleneck inherent the sequential operation of the von Neumann architecture.
The future objective of the group will be to develop integrated processors able to perform
machine learning activities and therefore interface with real computational problems such
as big data analysis.
This is the goal that Dr. De Rossi’s team in collaboration with other researchers from all
over Europe aims to achieve.

Having defined the context within which this work belongs, we will now define the
objective of the following master thesis.

The photonic technology considered here is based on a nonlinear resonator which is
operated as an artificial "neuron". In order to achieve energy-efficient operation, meaning
use of little energy for each computing operation, ultra-small cavities are used, based on
the technology of photonic crystals. These operate as an all-optical gate. I will study their
characteristic starting from a theoretical model.
The specific point I have been addressing is the connection among a hierarchy of models,
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Introduction

from the most complex to the simplest (static), by analyzing the implications of the
approximations made. The use of a lightweight but realistic model is essential in view of
simulating the operation of a large network of such artificial neurons.

To this purpose, I will use particular Python platform called Photontorch, a library
specifically defined to develop and model photonic elements and photonic neural networks
under development by a group of researchers from the university of Gent [1]. It was
perhaps the interface to this library the most difficult aspect of my work, in fact it is a
high-level language developed to perform very specific tasks and operations. Moreover, as
it is not yet commercially available, the documentation is not available.

1.1.1 Computing with light: a brief survey
Scientists started to dream about an optical computer from the 1960, and initially re-
search focused on a digital transistor-equivalent device to control the on-off state of light.
Researchers of the time claimed that such a machine could operate much faster than an
electronic computer because of its higher light transmission speed and the possibility for
parallel processing. Examples of the first optical implementations of artificial networks
can be traced back in to the Hopfield network and the volume holographic neural network.
The first neuronal models were in fact based on the concept of analog neuron defined
through a non-linear activation function 1.
The Hopfield network, 1985, was based on the model for Hopfield neural networks and was
also characterized by a nonlinear iterative feedback. The technology thus developed showed
that the optical system was accurate and stable while maintaining all the advantages
of optical technology, such as parallelism and the ability to stretch a large number of
interconnections[2]. The machine had 32 neurons and had the capacity to store up to 1000
different values for interconnect weights. However, its performance was not comparable
to that of the electronic systems of the time. For this reason a few years later, in 1988,
a more complex version of the Hopfield network was developed: the volume holographic
neural network. It consisted of a 3 dimensional implementation of the previous system,
thus being able to store billions of weights[3].
Another example dates back to 1993, where an optical two layer neural network was
used for facial recognition. The recognition accuracy was almost 100% and the it was
instantaneous [4].
However, this technology did not prove to be competitive at time mainly for two reasons:

• these systems proved to be competitive only for large networks with extremely complex
architecture

• the non-interaction characteristic of photons meant that they could not be used
directly to control other photons, so switching required an indirect approach by
modifying an intermediate material using electronics. However, the energy required
for such a non-linearity was too high and therefore the development of an optical
gate was considered impractical

1This type of artificial neuron will be defined in more detail in the paragraph 2.2.
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Introduction

which is why this technology was almost completely abandoned.
In addition electronics had been keeping on becoming smaller and faster. In recent years,
however, Moore’s law is beginning to waver, and the need is now to develop a technology
capable of overcoming the limits of today’s electronics[5].

Examples are the use of Mach Zender patterns to develop programmable nanophotonic
processors [6], or the application of ring resonators to develop more advanced system based
on a spiking neuron model [7]. These and many other approaches have been proposed in
recent years generating an almost infinite range of possibilities.
To conclude, today, despite the enthusiasm of many optical ANN researchers, many
scientists remain skeptical of their chances of becoming competitive with current digital
systems. However, there is no doubt that Moore’s law is currently in check and in the face
of this reality photonic technologies have attracted significant interest.
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Chapter 2

Non conventional computing

Below are the basic concepts relevant to contextualize the work of my master thesis. The
reasons that led to the attempt to develop an unconventional method of calculation and
how this can be contextualized within the modern reality of machine learning will be
presented.

2.0.1 Towards parallel computation and problems
Von Neumann’s architecture is characterized by a structure where CPU communicates
with memory and operations are executed sequentially according to the Turing model.
This sequential structure for data communication has several advantages, in particular it is
much easier to develop algorithms able to work in this condition. However, in modern CPU,
it was necessary to introduce a parallelism because the clock rate, at which operations
are executed, could not be further increased without causing overheating. Parallelism has
turned out convenient, in spite of a growing complexity. Yet, the communication between
processors involves a bottleneck as it takes more than the 50% of the energy budget.
Faced with these problems, two main ways are possible to overcome the problem:

• The development of a non sequential computing paradigm (non Von Neumann)
capable of a much better use of parallelism, in principle.

• The use of optical technology, motivated by their intrinsic capability to transmit
information with low energy consumption.

2.0.2 Analog computation
Analog computation uses physical laws instead of algorithms to perform some calculations.
In order to understand the difference between these two concepts a practical example
can be made taking into consideration the Fourier transform. This operation can be
carried out by a digital computer as a series of sum and subtraction with desired precision.
For what concern the analog approach, if we consider a diffraction pattern, is known
that the intensity profile distribution at the aperture is the Fourier transform of the
diffraction pattern. The use of an analog calculation means that the accuracy depends
on the correctness of the physical model used and also on the signal-to-noise ratio within
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which the calculation takes place.
An example of analog computing implemented in a CMOS technology, is TrueNorth, a
neural network developed using electronic circuits modeled as neurons [8].

2.1 Machine learning

Machine learning (ML) can be defined as the study of computer algorithms that improve
automatically through experience[9], namely it consists in the development of an algorithm
able to observe a quantity of data and define among them by means of a function (called
decision function) a pattern through a series of of examples provided. This current of
studies stems from the fact that computers today are not very adept at solving human-like
tasks, and it is in this context that the machine learning research tries to define systems
that are able to approach problems more generally, and learn from examples like humans.
In order to achieve this goal, a particular technique is typically used within the field of
ML, namely artificial neural networks (ANN). This tool is a computing system inspired by
biological neural networks that constitute brain [10]. Starting from the neural network
approach many subfield exist.
ANN have known a remarkable success as software implementation on a traditional
von Neumann architecture. In the last years, the growing concern about rising carbon
footprint of big-data has given a strong push to alternative approach based on hardware
implementation of ANN, mainly using CMOS electronics, as TrueNorth[8], which however
due to the high computer power consumption and the von Neumann architecture limitation
are not very efficient.
More in general nowadays, many researchers are dedicated to the study of this new
technology, in order to develop and characterize what are called neuromorphic devices.
Namely a on-chip structure inspired by a neural network and with the same goal of solving
problems now confined to the software field of machine learning. From a hardware point
of view it is therefore completely different from the classical Turing machine architecture
of modern computers.
Many advantages came from this new approach, in fact a non-Von Neumann computing
eliminates the bottleneck between memory and processor, due to sequential structure
between memory and CPU, by performing computation at the location of data. In this
way one potential path towards lower power consumption and speed on specific tasks, such
as the training of neural networks, can be achieved[11] .

2.2 Artificial Neural Network

An Artificial Neural Network (ANN) is basically a model which try to emulate the brain
structure. It consists of "neurons" and connections, just like the brain, and in the same way
recognize patterns in data by adjusting the strength of connections between the processing
units (e.g neurons). In particular, depending on the needs of the model and the problem
to be solved there are different types of neuronal elements which can be implemented.
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2.2.1 Neuron Typologies
• Threshold gates: Is a category of neurons corresponding to a binary classifiers

which only produces digital output. The main advantages of this class is that they
are very simple neurons and universal for input-output digital computation.

• Neurons based on an activation function (analog neurons): This class is
based on computational units that evaluate the output through a nonlinear activation
function and on a system of weights to manipulate the connections within the single
neuron and between different neurons. In this way different output can be obtained
according to the weighted sum of the inputs and the nonlinearity of the activation
function.
A widely used activation function is the sigmoid function, in fact, since is defined
between 0 and 1, it useful for models where the output is predicted as probability.
Another widely used function is the hyperbolic tangent, which compared to sigmoid
has the advantage of being defined between -1 and 1, hence the negative inputs are
mapped negatively and the zero inputs are mapped near zero in the tanh graph.
An important characteristic of these neurons is that they support learning algorithms
based on gradient descent technique 1.
The input-output relationship of this kind of neuron, considered within a set of
neurons, can be written hence as follow:

yj = f(
Ø
i∈Sj

Wijyi) (2.1)

where Wij is connection weight between neurons, Sj a set of neurons describing the
connections from neuron i to neuron j, and yi the activation level of the neuron.
This is just a brief introduction to this type of neuron that will be deepened later in
section 3.

• Spiking neurons: These are the most biologically realistic but also the most complex
neurons to model. Has been theoretically proven that Spiking Neural Networks can
perform more complex operations than analog neurons [13].

2.2.2 Network Topologies
The key concept behind a neural network consists of the idea of neurons connected to
each other by means of connections that can be described in matrix terms, called "weight
matrices" Wij. The purpose of weight matrices is to describe between which neurons
there is a connection and the strength of it, it is in fact through the definition of these
parameters that the network is defined. In particular, two classes of neural networks,
distinguishable according to their connectivity, can be defined:

1The gradient descent technique is an optimization algorithm used to iteratively minimize the weights
of the function in order to minimize the cost function, i.e. the function that defines how much the network
results are correct compared with the desired output. For more details on ML techniques and theory [12].
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• Feedforward Neural Networks (FFNN): This topology is characterized by the
absence of recurrent connections. The neurons are divided on different layers and the
information is transmitted from the input layer to the output layer in a sequential way
through the intermediate levels called hidden layers. However this unidirectionality of
information has some limitations, in fact, although the network topology is simpler,
it is not possible to store temporal information. For these supervised networks the
best training rule is the error-backpropagation rule, which consists in iteratively
minimizing a suitably defined "cost function" describing how close the network is
to the desired behaviour, through the continuous readjustment of the connection
weights.

• Recurrent Neural Networks (RNN): These networks are characterized by feed-
back loops. This topology has several advantages, in fact unlike the previous topology
it is now possible to introduce and contain time information in the system. This
implies that the information contained by the single neuron is not only due to inputs,
but also to previous states stored in the neuron and therefore depends on all previous
inputs. However, there are not many functional learning rules, in fact the convergence
of the output is fairly slow. A further problem is that, contrary to the solidity ensured
by the previous topology, these networks are very sensitive to small variations of the
initial parameters and therefore not stable.

A schematic comparison between the two types listed above can be seen in figure 2.1.

Figure 2.1: Comparison between Feedforward neural network and Recurrent neural
network[14].

2.2.3 Reservoir Computing
This machine learning approach attempts to overcome the problems previously exposed
related to training process in RNN. Different ways and networks have been proposed over
the years, examples are: Echo State Network (ESN)[15], Liquid State Machine (LSM)[16],
BackPropagation DeCorrelation (BPDC)[17].
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In any case, the common idea behind this type of network, regardless of the proposed
approach, is to transform the input signal to a high-dimensional state (e.g "reservoir")2.

Initially RC was purely bound to software implementations to process temporal data,
however, this approach has proved to be very versatile over the years, able in fact to deal
with sequential problem (like speech recognition). Moving away from the software aspect
in many ways has been tried to implement RC from a hardwer point of view [18]. Examples
of this approach can also be found outside photonic technology like in memrisitive systems
[19] and atomic switch network[20].

In general this type of network is based on a structure, shown in figure 2.2, consisting
of three parts and characterized as follows:

1. An input layer whose job it is to pair the input signals.

2. The reservoir which represents the heart of the network and which in fact consists of
an untrained recurrent neural network.

3. An output layer whose task is to linearly combine the states assumed in the reservoir
in order to generate a time dependent output signal[21].

The procedure by which problems with RC are dealt with is typical of the supervised
machine learning3. This means that training data are used to train the weights and get
the output as a linear combination of the information stored in each node of the reservoir.

Figure 2.2: Graphic representation of a Reservoir Computing, consisting of a Recurrent
Neural Network, an input layer and an output layer [22].

2This technique is called Kernel method, and is based on the fact that a non-linear surface is separable
by a linear hyperplane in the high dimensional space. Therefore moving from a low dimensional input to
an high dimensional space the performance of the system increases and the complexity of the problem
decrease .

3More detail in 2.3
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2.2.4 Training network
The main training techniques of this particular class of network will be quickly outlined
below, which can be divided into two types: on-line and off-line

• On-line learning: The weights of the output are changed as soon as new informa-
tion is transmitted in the network, this means that the learning procedure is done
sequentially.

• Off-line learning: Using the dynamic responses due to the different inputs of the
system, a comparison is processed with the desired output of the system in such a
way as to change the output weights.

2.3 Learning Approaches
Before considering the physical properties of the neuromorphic device, will be discussed
ML techniques, which are distinguished by how they implement learning in the network.
In particular:

• Supervised learning approach: The goal is to build a function that maps an input
to an output based on a known input-output pairs example [23]. Hence supervised
learning algorithm analyzes the training data and produces an inferred function,
which can be used for mapping new examples.

• Unsupervised learning approach: Is an approach that looks for previously un-
detected patterns in a data set with no pre-existing labels and with a minimum of
human supervision. In contrast to supervised learning that usually makes use of
human-labeled data, unsupervised learning, also known as self-organization allows for
modeling of probability densities over inputs[24].

• Reinforcement learning approach: Is an area of machine learning concerned with
how software agents ought to take actions in an environment in order to maximize
the notion of cumulative reward. Reinforcement learning differs from supervised
learning in not needing labelled input/output pairs be presented, and in not needing
sub-optimal actions to be explicitly corrected. Instead the focus is on finding a
balance between exploration (of uncharted territory) and exploitation (of current
knowledge)[25].

2.4 Photonics
As mentioned above, one of the main issues with software implementation of ANN is
the large amount of energy required. In general, the trouble with modern computer
microprocessor is the energy cost transferring data within chip, which represents more than
the 50% of the total power consumption and the situation deteriorates as the bandwidth
and the complexity (i.e. number of gates) increases in the digital CMOS technology.

One step further is taken when considering moving from electrons to photons to
implement artificial neural network. The very use of light as a means of transporting

9



Non conventional computing

information introduces in the system more degrees of freedom, in fact light is characterized
by the amplitude and phase. Moreover the speed of the communication it is not limited
by circuit element and is independent by the energy consumption. Other advantages arise
from the fact that using photonic technology a large bandwidth for the signal is allowed
and the losses of the system are almost negligible.
However some drawbacks are present, in fact the constructive tolerance in this photonic
device must be taken into account since slight variations in the construction characteristics
of each element produce large variations in the expected behavior of the photonic device
and therefore the expected response from the system.

2.4.1 Computing primitive for Optical Neural Networks
As introduced above a good platform for the creation of artificial neural network is the
photonic technology, in fact an artificial neural network, for instance an RC network (figure
2.2), basically consists of a large number of nonlinear elements connected to each other.
A nonlinear activation function is the essential element of a neural network. In order to
implement such function, a varierty of technologies have been considered in the past years,
like Semiconductor Optical Amplifiers (SOAs) and nonlinear ring resonators[18].
Here we consider photonic crystal cavities as promising for neuromorphic devices:

• Since they are passive devices, unlike SOA, they require less energy.

• The ability to store energy in very small volume enhances non linear effects (FCD,
Kerr, temperature), as will be discussed in more detail later in 3.4.

• Photonic crystals are intrinsically bidirectional devices since it is possible to define a
transmitted and a reflected signal, allowing the introduction of a possible feedback
system.

• An additional degree of freedom in the network can be achieved through construction
geometry. In fact the crystal cavity can be placed inside the guiding structure, namely
"inline cavity", or alongside the waveguide, namely "side coupled cavity". The main
difference between these two construction solutions is that the first is characterized
by maximum transmission when the cavity is at resonance, while the second has zero
transmission at resonance.

• The scalability of the cavity allows many of these elements to be placed on very small
footprint.

10



Chapter 3

Model for a neuron

So far, the key concepts related to what is meant by neural network and how photonic
technology can intervene in the development of such systems have been presented globally.
In the following the discussion will focus in particular on the study and formalization
of the basic element constituting such networks, i.e. an artificial neuron. A biological
neuron is mainly composed of three elements: soma, axion and dendrites. The soma is
characterized by a difference in potential and as a result of signals coming from outside,
if a certain threshold of potential is exceeded, there is the emission of a nervous signal
through the axon and dendrites to adjacent neurons[26]. This behaviour can be modelled
through a system composed of a computing unit connected to other computing units by
means of weights characterising the connection and a unit defining the activation function,
which in biologically inspired neural networks is an abstraction representing the rate of
action potential firing in the cell[27] beyond which there is the emission of the signal. A
graphic representation is shown in the figure 3.1
As previously mentioned in the paragraph 2.2.1 this is therefore a model based on analog
neurons.

Figure 3.1: Model formalisation of an artificial neuron.
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Model for a neuron

As hinted in the paragraph 2.4.1 the artificial neuron considered here is therefore a
photonic crystal cavity. However, of fundamental importance for the characterization of
an artificial neuron is the implementation of its activation function. In fact this represents
the logical unit able to decide whether outside connections should consider this neuron as
“activated” or not.
In the next paragraphs a static model describing a photonic crystal cavity will be examined
to define its non-linear output characteristic (namely the artificial neuron activation
function). The model described will start from a more complex dynamical treatment to
which various simplifications will be made. The purpose will be then to analyze the limit
of validity of the developed static treatment. As far as the theoretical part is concerned,
the model that will be presented derives from a discussion still under development by Dr
De Rossi, while the comparison algorithm that will be used for the dynamical model has
been developed by Demulle.

3.1 Photonic Crystal Resonators
Photonic crystals are optical structures characterized by the possibility of modulating their
properties periodically at wavelength scale. As a matter of fact, they can be interpreted as
Bragg reflector, in fact like these devices, the coherently scattered waves add up in order
to produce a reflection characterized by a strength that grows with the number of periods
of the structure. This implies that a periodic structure does not allow the propagation
of light in a certain spectral range, and therefore the photonic gap introduces in the
system fundamental properties for the control of light matter interaction. The introduction
of a defect in the periodicity of the structure creates a resonant localized states and in
this way the photonic crystal resonators is achieved. Of fundamental importance for the
resonator is therefore the manufacturing of the defect, on which the quality of the light
confinement within it and the quality factor of the structure depend. However, even if
today’s manufacturing techniques are very advanced, it remains a challenging aspect in
the resonator fabrication due to the tight tolerances required [28].
In particular, as mentioned in 2.4.1, there are two possible configurations for the location
of the defect : the cavity can be located inside the guiding structure, "inline cavity",or
outside the guiding structure, "side-coupled cavity". A schematic representation is shown
in the figure 3.2

Figure 3.2: Possible architecture layouts[29].
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3.1.1 2D Photonic Crystal
Theoretically, in order to confine light in all directions, it would be necessary to construct
a three dimensional periodic structure, but this is not an easy manufacturing procedure.
For this reason through a waveguide the light is totally confined and guided along the
z-axis exploiting the total internal reflection, while along the (x,y) plane the properties
deriving from the periodicity of the photonic crystal are used. In this way it is possible to
obtain a confinement of light along the three spatial directions with a 2D PhC combined
with a waveguide, as shown in figure 3.3.

Figure 3.3: Side coupled PhC[30].

Considering a two dimensional photonic crystal with a lattice defined by two perpen-
dicular vectors þa1 and þa2, having same magnitude a, in the (x,y) plane, it can be assumed
invariant along z direction. The periodicity of the structure allows, as mentioned in the
paragraph 3.1, the formation of a photonic band gap where propagating states are not
allowed. In order to describe this behaviour a Bloch formalism approach can be applied.

In fact the system is characterized by a discrete periodic symmetry for the dielectric
unit Ô(r) = Ô(r + R) for any R integer multiple of any linear combination of the primitive
vectors ax̂ and aŷ.

Applying the Bloch’s theorem, it is possible to write the magnetic field as a function of
the Bloch state and focus the treatment on the values of k|| inside the Brillouen zone:

Hn,kz ,k||(r) = eik||ρeikzzun,kz ,k||(ρ) (3.1)

where n represents the band number, k = kz + k|| the wave vector, ρ the projection of r in
the (x,y) plane and u(ρ) the periodic function, namely u(ρ) = u(ρ + R).
Due to the symmetry in the (x,y) plane and the invariance along z, the modes can be
classified according to the their polarizations: respectively transverse electric (TE) modes
and transverse magnetic (TM) modes.
The subdivision between these two modes has important consequences, in fact the photonic
band structure depending on the mode can be completely different.
In these structures it has been demonstrated that for cavities with dimensions comparable
to the incident wavelength, they are characterized by very strong light confinement. The
quality factor (Q) for modal volume (V), Q/V, determines the strength of the interaction
of the cavity with the mode, and for these devices is characterized by very high values.
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However, realizing this type of structures is still sufficiently complex[31]. This is the
reason why today nanophotonics is a field of research that attracts a lot of interest, in
fact, considering the case of photonic crystal cavity, it allows to store the same amount
of energy but in a much smaller volume. This implies that the nonlinear response from
the cavity will be much greater since the properties of the material depend on the density
of the electric field contained within it. This concept will be discussed in more detail in 3.5.1.

Next we introduce a dynamical model of a semiconductor PhC resonator [32]. It is
described by dynamical variables corresponding to the field and to the population of
free carriers excited by absorption in the material. Starting from this complex model
several assumptions will be made to simplify it until it is completely developed in static
approximation.

3.2 Coupled Mode Theory
Considering a system composed by a single resonator coupled with a waveguide and
assuming per hypothesis the case of single mode resonator (figure 3.4a), the coupled mode
theory describes the evolution of the field inside the cavity in terms of the evolution of its
normal modes [33]. The field in the resonator is dependent to the amplitude A as:

E(x, t) =
Ø
n

An(t)un(x)eiωref t (3.2)

where ωref represents the reference angular frequency namely, the working frequency of
the laser. The amplitude evolves in time according to the following motion equation:

Ȧ = M · A−R · Si (3.3)

where it is possible to recognize the input electric field amplitude Si, the term rep-
resenting the effects of interaction with matter M, and a parameters depending on the
geometry, R. In particular M = i∆ω− γ

2−
Γ0
2 and R = k. Where ∆ω = ω0−ωref is the cav-

ity detuning from the laser, Γ0 denotes the internal loss and γ the coupling to the waveguide.

3.3 Free Carriers
Absorption in semiconductors occurs, of course, when an absorbed photon allows the
transition of an electron into the conduction band, leaving a hole in the valence band.
These populations of free carrier can be represented by the density N(x,t), which is assumed
under the hypothesis of ambipolar approximation to be the same for electrons and holes.
The dynamical model describing the time evolution of the density can be written as follow:

Ṅ = −ΓcN +
A

1
2ΓTPA|A|4 + ΓA|A|2

B
1

Vc~ω
(3.4)

In order to simplify the equation the two photon absorption process (TPA) is neglected.
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The simplified model can be rewritten as follow:

Ṅ = −ΓCN + ΓA|A|2
1

Vc~ω
(3.5)

where ΓC and ΓA are respectively the recombination rate and the absorption rate, ω
the resonance frequency of the cold cavity and Vc the modal volume contained in the cavity.

Assuming in eq. 3.5 the recombination rate sufficiently large the carriers variation
in time can be considered negligible since it is possible to regard the instantaneous
rearrangement of these. Hence through this consideration it is possible to relate the
carriers density distribution to the internal energy mode stored by the cavity:

N = ΓA
ΓcVc~ω

|A|2 (3.6)

3.4 Nonlinear response in semiconductors
In dielectric structures several non nonlinear effects can arise, typically they can be
negligible, however in a cavity the intensity of the incoming field is strongly enhanced and
then the nonlinear effects become relevant.
In semiconductors the dominant nonlinear effects are related to Kerr nonlinearity, and to
the refractive index dependence on the temperature or the density of free carriers. Even
though Kerr effect is much faster, free carrier nonlinear response effects can be stronger. In
fact, is well known that the non linear index change strongly according to the concentration
of the free carrier dispersion. The strength of the effect also depends on how close to the
edge of the electronic bandgap, in fact when the photon energy is close to the bandgap,
the non linear effect due to bandfilling appears and dominates the response.
Is proven that the classical free carrier plasma dispersion (FCD) effect described by the
Drude model dominates when the plasma energy is well below the band gap and this
condition is here taken into account.
In any case, the refractive index decreases while increasing the free carrier population
due to FCD, inducing usually a blue shift in the cavity resonance. In particular it is
experimentally demonstrated that for a photonic crystal the FCD induces a non linear
response of few orders of magnitude larger than Kerr effect [34].
Another important parameter is the effect of temperature. In fact, the refractive index
may change due to the thermal refractive effects as dissipation increases the temperature,
generating a red shift of the resonance.
Therefore, the two dominants nonlinear terms to take into account are free carriers and
temperature. Then considering these two effects the change of the refractive index resulting
into a change of the frequency of the resonance through:

∆ωNL = ∂NωN + ∂TωT (3.7)

Where ∂NωN and ∂TωT represent the linearized dependence on T and N . However in
the following discussion for simplicity the thermal effect will not be considered.
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Including the nonlinear terms, the motion equation shown in eq. 3.3 becomes:

Ȧ = MA−RSi + i∆ωNLA (3.8)

3.5 Static limit
Now considering a further approximation: the static condition for the motions equation
Ȧ = 0. Hence using eq. 3.6 and 3.7 in eq. 3.8 under steady state condition it is possible
to write: C

i

A
∆ω + ΓA

ΓcVc~ω
|A|2

B
− γ

2 −
Γ0

2

D
A = kSi (3.9)

A further approximation can be done, in fact in order to simplify the model, the internal
loss Γ0 is assumed zero. In this way the total linear energy damping Γ = Γ0 + γ can be
approximated directly with the coupling term (e.g γ). Furthermore the coefficient k is
determined by the conditions of conservation energy [35], hence in absence of internal loss
can be defined k =

ñ
γ/2. It also introduces a parameter characterizing non linear effects,

g, defined as follow : g = ∂ωN ΓA

ΓcVc~ω which under typical operating conditions is a positive
value.
With these considerations the previous equation can be rewritten in the following way:C

i

A
∆ω + g|A|2

B
− Γ

2

D
A =

ò
γ

2Si (3.10)

Applying then the modulus square to eq. 3.10 a cubic polynomial equation in |A|2 is
obtained, where the energy stored in the cavity (e.g |A|2 ) can be reached according to
the input power in the cavity (e.g |Si|2). Namely:

g2|A|6 + 2∆ωg|A|4 +
A

∆ω2 + Γ2

4

B
|A|2 − γ

2 |Si|
2 = 0 (3.11)

The solutions for the cavity energy of the previous equation allow to solve eq. 3.10
from which the amplitude A of the mode stored in the cavity can be obtained.

Depending on the configuration of the structure, namely in line cavity and side coupled
cavity, the relationship between input and output fields takes a different form, respectively
So =

ñ
γ
2 A and So =

ñ
γ
2 A + Si. In this discussion and in particular in the following

chapters a in line configuration will be taken into account. Hence through the relationship
written above it is possible to obtain the output as a function of the input, from which a
non linear behaviour is expected. But before analyzing the solutions of the model it is
necessary to introduce and better define the phenomenon responsible for the expected
non-linear feature, the so called optical bistability.

3.5.1 Optical Bistability and logical applications
Taking into account in general a resonant nonlinear cavity coupled to an input and an
output in linear regime and considering as input and output two single mode waveguides,
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figure 3.4a, the ratio between input and output powers is characterized by the typical
Lorentzian shape:

Po
Pi

= 1
1 + (ωref−ω

Γ )2
(3.12)

where Γ represents the total dissipation rate.

(a) In line cavity configuration.[28] (b) Resonance shift under the effect of the de-
tuning.[28]

Figure 3.4: Principle of resonant all-optical switch.[28]

Considering now the photonic crystal resonator with the nonlinear mechanism exposed
previously, a non linear bistable response of the resonator is now taken into account and
described.

Historically, bistability has represented an important step in the definition of an optical
transistor and therefore to exploit this response in order to realize an optical gate equivalent
to a CMOS gate. Today this approach is outdated because in today’s neural network
applications bistability is no longer used. However, it remains interesting to characterize
the bistable operation to understand this technology [36].

Looking at the eq. 3.10 it is possible to distinguish two important parameters to
characterize a bistable behavior: the detuning, ∆ω, and the effective detuning (∆ω+g|A|2).
The role of detuning is to set the frequency of the incident field outside the cavity resonance.
Important for the occurrence of a bistable event is to set the detuning so as to have the
opposite sign to the non-linear term g, in this way, as the energy contained in the cavity
increases (i.e. as the input power increases) the non-linear phenomena will lead to the
compensation of the detuning. In this compensation situation the effective detuning will
be equal to zero, thus causing a shift of the resonance towards the operating frequency
of the input signal, figure 3.4b. The system, therefore, entering resonance, will pass to
another stable solution.

What happens, therefore, is that the system passes from an out-of-resonance state to a
resonance state, thus presenting a transition between two stable states. The system is then
called bistable because it presents two output states for the same input at the moment in
which the transition takes place . A hysteresis cycle appears in the input-output plane as
the input is varied cyclically. This is the hallmark of bistabiity.
Through this system an optical gate can be realized. A logical function can be associated
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to the two stable states of the system and thanks to the detuning control it is possible
to dynamically control the gate. The advantage of the use of photonic crystals in this
context lies in the efficiency they bring in terms of switching energy and switching time,
in fact from comparisons with other photonic devices a good trade off between these
parameters appears, as shown in figure 3.5. It is particularly by moving into the domain
of nanophotonics that these advantages become fundamental. In fact the non-linear
response are properties of the material and depend on the energy density contained locally.
Therefore, by developing nanocavity it is possible to concentrate the same amount of
energy in a very reduced volume.

Figure 3.5: All optical processing compared[34].

The large and fast nonlinear response and the small footprint are of fundamental
importance for implementing nonlinear activation function in neuromorphic devices as
they provide new features with new logical functions that can be introduced in training
systems.
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Chapter 4

Towards a photonic NN based
on PhC resonators

It is important to underline that the approach for the development of NN proposed here is
substantially different from what can be found in similar research. Here in fact all the data
used for the formulation and implementation of the model derive from the characterization
of photonic crystals. Therefore, the model developed is based on an existing device whose
characteristics have also been experimentally verified [34]. This is a big difference compared
to other researches developed on abstract and not well defined elements. The parameters
used and obtained experimentally are given in Appendix A.
Starting from this key consideration, from the model described in paragraphs 3.2-3.3-3.4,
we will now define the methods and approach with which this has been addressed in the
following discussion.
The physical model presented was approached using Python programming language, In
particular it has been implemented on a particular library named "Photontorch".
Photontorch is a library developed by a group of researchers on the subject of photonic
neuromorphic devices from the University of Gent. Dr Peter Bienstman has kindly granted
the use of this platform for writing of this report, in the framework of FunComp H2020
project.
Photontorch is a tool for highly parallel simulation and optimization of photonic circuits
in time and frequency domain. Photontorch features CUDA enabled simulation and
optimization of photonic circuits. It leverages the deep learning framework PyTorch to
view the photonic circuit as essentially a sparsely connected recurrent neural network.
This enables the use of native PyTorch optimizers to optimize the (physical) parameters
of the circuit [1].

4.1 Solving process
One of the major issues I faced in implementing our model was to learn how to use the
Photontorch working environment. It is in fact a library still under development with a
completely different approach compared to classic programming languages.
In order to implement out the "neuron" model with Photontorch was considered the cavity
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as a system defined by 3 variables (e.g. ports): the input, the mode energy contained in
the cavity and the output. |A|2 has in fact been used as an internal variable of the system
in order to keep track of the variations in the cavity response. To do this the model has
been manipulated (see 3.4) in order to obtain a third degree polynomial equation in |A|2,
eq. 3.11. Once found the solutions of this equation only the one characterized by the
value corresponding to the minimization of the energy contained in the cavity is accepted
and stored as an internal variable of the system. Iteratively this process is implemented
considering at each iteration as minimum energy state the one stored at the previous
iteration.
So the solutions thus obtained were used within eq. 3.10 to calculate the amplitude of the
mode within the 2D PhC. From these, finally, the amplitude of the response is evaluated
through the relation previously exposed in 3.4 , namely So =

ñ
γ
2 A for in line cavity and

So =
ñ

γ
2 A + Si for side coupled cavity.

It is important to underline that in the following discussion all the values and results have
been obtained by considering an in line cavity configuration.

4.1.1 Dynamical Model
Since the core of this work is to define a static model and to verify its convergence with
the more general dynamical model for the photonic crystal cavity, it will be briefly defined
below.
The dynamic model for the cavity with which the comparison will be made was developed
by doctoral student Maxime Demulle in the Photontorch programming environment. The
latter has been built according to the same assumption and parameters 1 as the static one,
however, solving at an integral calculation level the amplitude of the electric field inside
the cavity eq. 3.10.

4.2 Results and Discussion
In the following section the results obtained from the static model will be analyzed. In
order to do this, the signal transmitted by the cavity will be studied. The treatment will
be performed by dividing the analysis into these 3 points:

1. Hysteresis loop demonstration.

2. Detuning.

3. Limits of convergence between static and dynamical model.

4.2.1 Hysteresis loop demonstration
Using an increasing and decreasing ramp input power between 0.01 and 0.5 mW the power
transmitted by the system is analyzed; what is expected is the appearance of a cycle of

1The parameters used are reported in the appendix A, table A
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hysteresis, figure 4.1

(a) ∆ω = −0.112rad/s (b) ∆ω = −0.1212rad/s (c) ∆ω = −0.1412rad/s

Figure 4.1: Hysteresis loop for variable detuning.

As can be seen using this range of powers a hysteresis cycle appears, and in particular
as the detuning value increases in magnitude the hysteresis cycle also becomes wider.
The following phenomenon can be described by analysing separately the cavity’s response
to the increase and decrease in input power:

• Increasing input power: in the ascending range part [0.01:0.5]mW the system
starts with zero input energy, which means that the initially stable solution of the
system will be the lower one. This is until for sufficiently high energies the system
moves to the upper solution when the resonance shift occurs.

• Decreasing input power: considering now the decreasing part of the input signal
(0.5:0.01)mW, the system will be permanently in the upper solution. Therefore,
starting from this solution, the system will pass through the stable states of this
configuration until it transitions specularly with respect to the previous case in the
lower solution.

The results reported here were obtained not through Photontorch, but through the same
model developed on Python. This is because through the code developed on Photontorch
an error for the moment unsolved appeared making it impossible to display the hysteresis
cycle.

4.2.2 Detuning
As mentioned in the previous section, a very important parameter is the angular frequency
detuning. In fact the cavity exhibits monostable or bistable behavior depending on the
operating angular frequency ωref . In particular it’s defined the angular frequency detuning
as ∆ω = ω − ωref . Here we will study its effect on the static characteristic given at the
input a constant signal between 0.01 and 0.5 mW.

What is shown in Figure 4.2 is detuning compensation through the non-linearities of
the system.
In fact the effect of detuning is to modulate the external pulse in order to meet the shifting
resonance from non-linear effects, as explained in 3.5.1. This involves the definition of
two stable solutions: one out of resonance (lower part of the curve) and one in resonance
(upper part of the curve), corresponding respectively to low transmission condition and
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(a) ∆ω= 0 rad/s
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(b) ∆ω= - 0.0812 rad/s
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(c) ∆ω= -0.112 rad/s

Figure 4.2: Non linear response of inline cavities for several detuning.

high transmission condition. The trends shown here have been processed for an inline
cavity and therefore the compatibility with the construction architecture is verified.
As far as the effect of detuning on the cavity is concerned, it has been verified that the
bistability threshold also increases with ∆ω, since an higher resonance shift is expected to
visualize the transition.

4.2.3 Limits of convergence between static and dynamical model
The following will discuss to what extent the static and dynamical models converge. In
order to do so, two cases will be analysed:

1. Case 1: Ramp input signal within [0.01:0.5] mW for both models.

2. Case 2: Ramp input signal within [0.01:0.5] mW for the static model and a sinusoidal
signal with amplitude of 0.5 mW and variable period for the dynamical model.

Case 1

(a) f = 100MHz,
∆ω = −0.112rad/s

(b) f = 5GHz,
∆ω = −0.112rad/s

(c) f = 10GHz,
∆ω = −0.112rad/s

Figure 4.3: Static model validity range in time domain for fixed input signals with
different period of time.

As can be seen in figure 4.3, time domain simulations has been implemented proposing
different values for the period of input signal in the cavity. In fact this parameters does
not influence the characteristic of the static model, being this time independent and
characterized by a single solution for each input value. On the contrary, the dynamical
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model is strongly influenced by the period of the input because a dynamic resolution is set
for the motion equation that describes the evolution of the mode amplitude in the cavity,
eq. 3.8.
The purpose of this comparison is to characterize the error that is obtained by choosing a
frequency for the input signal too high, in fact this would involve working outside the static
condition of immediate rearrangement of the carriers. The usefulness of this information
at a practical level is that through this comparison it will be possible to know how many
signals per second it will be possible to send into the cavity in order to obtain a stable
and immediate transition.
From figure 4.3 it can be understood that the PhC presents a practically instantaneous
response in the MHz range, figure 4.3a. Therefore the model has been simulated up to the
GHz domain and it has been observed that the response of the cavity converges with the
static solutions up to around 5 GHz2. In fact, continuing to increase the frequency of the
signal (figure 4.3c) the dynamical model substantially diverges from the static limit.
In order to further verify these assumptions the static solutions for the same power range
have been analyzed as visible in figure 4.4 and the considerations obtained previously have
been verified.
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(a) f = 100MHz,
∆ω = −0.112rad/s
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(b) f = 5GHz,
∆ω = −0.112rad/s
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(c) f = 10GHz,
∆ω = −0.112rad/s

Figure 4.4: Static model validity range for fixed input signals with different period of
time.

Starting from the 4.4a image it is possible to see that the convergence between the
results of the two models is verified for each solution, as expected from the time domain
simulation. This convergence consideration is verified for the whole subsequent frequency
range up to 5GHz, fig 4.4b where it is possible to notice a slight discrepancy between the
two models solutions. Continuing to increase the frequency of the signal the solutions
begin to diverge because the cavity has not yet reached a stable solution, as visible in 4.4c.
There is therefore convergence between time domain analysis and static solutions.

Case 2

It is important to underline that the use of a sinusoidal input for the dynamic model
necessarily involves the formation of a hysteresis cycle, for this reason ascending and
descending ramp input has been used for the static model. However, as already pointed

2In particular it has been observed that a good level of convergence is achieved up to 5.7 GHz.
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out previously, the static model for the moment is not able to visualize this characteristic,
so only a partial comparison will be possible.

(a) f = 10MHz,
∆ω = −0.112rad/s

(b) f = 100MHz,
∆ω = −0.112rad/s

(c) f = 1GHz,
∆ω = −0.112rad/s

Figure 4.5: Static model validity range for a sinusoidal input signals with different period
of time.

As can be noted, since the photonic crystal cavity is a memory device, the response
will depend on the history of the input signal, and therefore on its shape. Particularly for
a sufficiently slow signal, i.e. in the order of MHz, the response of the cavity to the signal
is almost instantaneous. This behaviour can therefore be assumed as a static response by
the cavity. This characteristic is clear when looking at figure 4.5a where the solutions for
the two models are perfectly convergent.
By means of the previous consideration it is immediate to ask therefore within what limits
the static model is still verified, and observing the figure 4.5c can be noticed that the
solutions tend to maintain a convergence up to about 1 GHz, a value from which the
response of the cavity is too fast and the static approximation is no longer verified.
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Chapter 5

Conclusion and Perspectives

In this work a static model capable of describing a photonic crystal cavity resonator has
been developed and analysed and its limits of validity have been studied. Through the
considerations obtained here it is intended for the future to correct the gaps in the model
realized on photontorch and to try to implement this through laboratory measurements in
order to verify the expected results from the simulations. Finally, the goal is also to use this
model within a neural network as a decision function and to verify the efficiency of the train-
ing. In any case, the approach proposed here of all optical gating applied to the non-linear
phenomena of PhC is highly promising both for the high degree of efficiency in terms of
energy and sampling and for the intrinsic characteristics related to these devices, and there-
fore once defined a good level of familiarity with the experimental set up, the possibility to
develop this technology within a context of a photonic neural network seems to be a reality
far from improbable and the advantages considerable. In fact, of fundamental importance
is to remember that such a structure for the characterization of PhC currently exists and
the possibility of using this technology in extremely favourable energy conditions is verified.
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Appendix A

Here are reported the values experimentally obtained by the group and that have been
used for the development of the static model, in particular here GaAs is taken into account:

Parameter Value Units
ω 193 2πTHz
Γ 1010 2πs−1

ΓC 1.25 · 1011 2πs−1

ΓA 4 · 109 2πs−1

Vc 5.73 · 10−20 m3

Table A.1: Model parameters

From article [34] also other materials have been examined, so for more details we
recommend to see them.
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