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Summary

Time Series data has become present everywhere, thanks to affordable edge devices
and sensors. Much of this data is valuable for decision making. To use this data for
the forecasting task, the conventional centralized approach has shown deficiencies
regarding extensive data communication and data privacy issues. Federated learn-
ing allows learning from decentralized data without the need to store it centrally.
The data remains where it was generated, which guarantees privacy and reduces
communication costs [1]. FL already naturally selects only a few nodes randomly
at each round. They have non-iid data and also varying in amount. After some
iteration of training, the central aggregator will generate a global model. That
is, heavily learning depends on a coordinator, which causes scalability issues with
large numbers of nodes, and besides, there is a single point of failure, which is not
suitable for some applications.

An example of this is predicting the online trajectory of moving nodes to manage
traffic, or proactive resource allocation in vehicular networks. In this work, to
tackle these problems, we use personalized distributed Federated Learning which is
online, peer-to-peer and provides asynchronous communications. Each node in this
network is a client for other existing nodes and use its local dataset to improve
their models. At the same time, it is like a coordinating server that merges received
models and personalized the model for itself. There can be as many models as many
as the number of clients. We present three practical algorithms called DFed Avg,
DFed Pow and DFed Best for the serverless federated learning of deep networks
based on iterative model averaging, and an empirical evaluation which considers
time series datasets and an LSTM model. DFed Avg merges models based on the
technique used in Federated Averaging, while DFed Best, and DFed Pow at every
iteration rounds use different methods to merge models. They will be discussed in
details in chapter four.

Our goal is to evaluate our optimization algorithms, not to achieve the best
possible accuracy on these tasks. The experiments demonstrate that these ap-
proaches are learning when we have numerous clients with the dynamic, unbalanced

ii



and non-IID data distributions. However, to evaluate their robustness we need to
do more experiments.
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Chapter 1

Introduction

1.1 Background

Standard machine learning approaches entail the training data to be stored centrally
on one machine or in a data centre [2] illustrated in figure 1.1. Storing such data in
a central place has become more and more problematic in the past years due to data
protection rules. Since May 2018, with the entry into the use of the General Data
Protection Regulation, a set of data protection rules is presented for all companies
operating in the EU, regardless of where they are based. Stricter rules on data
protection mean people have more control over their data, and businesses benefit
from a level playing field[3]. In general due to the increasing public awareness to
issues related to data handling, increase in the volume and diversity of the data
generated at the edge has presented the limitations of cloud computing[4]. For
specific scenarios, it turns out to be impractical and inefficient to log large volumes
of data to a data center in order to process it [5]. Likewise, uploading the raw data
to the cloud is not possible when there is privacy concerns about data generated at
the edge [6].These kinds of concerns lead to a new computing framework which
moving processing closer to where data is generated which is edge computing[7].

One of the most encouraging applications of edge computing is due to the re-
cent up rise of artificial deep learning. Traditional Machine learning techniques
based on neural networks need massive datasets and their performance increases
with the amount of available data available[8] . However, this dataset might not be
in access centrally because of the inherently diffused type of data, for instance, when
data is produced at the edge. According to the International Data Corporation
(IDC), “ more than 40 per cent of IoT-created data is saved,processed, and acted
upon close to, or at the network edge ” [9].
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Introduction

Figure 1.1: Standard Machine Learning

This growth in Mobile Edge Computing requires a new learning technique that can
be used at the edge. Researchers in this field have presented different algorithms
to overcome the limitations of general distributed deep learning. The most popular
nowadays is Federated Learning introduced by Google [1]. It attempts to solve
the problem described above. Thanks to the Federated Learning, mobile phones
are able to learn a shared prediction model collaboratively while all the training
data has been stored on a device,So there is no need to store data on the cloud.
It goes beyond the use of local models to predict on mobile devices, by bringing
model training to the device[2]. Distributed and federated learning operate on local
datasets with different properties, as federated learning aims to learn over hetero-
geneous datasets, when datasets are non-iid, unbalanced and have different size [10].

The main advantage of Federated Learning approaches to traditional machine
learning is to make sure about data privacy or data secrecy. No raw data is
uploaded to the server or exchanged. Since the entire database is on the local
machine, this makes it more difficult to hack into it. With federated learning,
clients exchange machine learning parameters. Besides, such parameters can be
encrypted before sharing between learning rounds to prolong privacy [11].

Federated Learning algorithms may operate based on a central server that or-
ganises the different steps of the algorithm and performs as a reference clock. It
allows us to train a shared model without storing data centrally. In Federated
Learning , there is a coordinating server that manages learning phases and generates
meta-model. We have some clients, each has a local dataset which never share
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with others. Server sends the latest version of meta-model to some clients, these
clients update the received model by using their local dataset. Then clients only
send back their updated models to the server. They will not communicate back
any data. The central server combines the partially trained models to create a
meta-model. It is also called federated model. Figure 1.2 represents a centralized
federated learning.

Figure 1.2: Centralized Federated Learning

Centralized FL heavily depends on a coordinator, which causes scalability is-
sues when there are a large number of clients, and the existence of a server means
there is a failure point in the system. So this method might not be ideal when there
is a time limitation to guarantee a response within any time frame like real-time
applications. Also, each device cares more about capturing the pattern in its local
data and utilizing model parameters of some intentionally selected nodes by itself
more than having a focus on randomly selected nodes by a server to improve its
model. For example, with the online prediction of next a few seconds trajectory in
vehicular networks, each edge device gathers different data with different patterns
as they usually have different sources and destinations, and their patterns vary
over time depending on the traffic jam, unexpected events, accidents, etc. In this
case, old generated models may not help to estimate the future path. Nodes must
update their model frequently. There is a high probability that one car follows the
same path as one of its neighbours in the near future, not those nodes which are
too far from. Hence, the training model by the help of neighbouring nodes might
be more useful than select a node randomly.

In this kind of applications, it is crucial to guarantee a response time. To tackle
these problems in the centralized Federated Learning, we use a serverless Federated
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Learning approach. This approach is a peer-to-peer and asynchronous communica-
tions system where there is no single point of failure, and no scalability issue by
having many devices as in the classic Federated Learning approach [12]. As it is
shown in figure 1.3 Each node can behave like a server and aggregates models to
generate an updated model and select some among existing nodes to transmit the
updated shared model. Like before chosen nodes train the shared model on their
local datasets and behave as a client.

Figure 1.3: Serverless Federated Learning

1.2 Problem
Federated learning aims to create a global model with the ability to generalise it by
the usage of clients’ local datasets. The data at each node is generated by different
distribution, so there is data heterogeneity. When the server aggregates the local
model, it cares more about how well the meta-model makes a prediction on all
the data, rather than nodes’ data individually. In some cases, the performance
of the global model on data samples from all nodes might be in tension with
the performance of the global model on a node’s dataset. Therefore, the idea
of one-fits-all might not be useful when we have nodes with different structure
present in their data. For example, If there is a global model trained on labelled
images and an individual node is more probable to create nature images, that node
cares more about the global model working well with nature images than with
any other kind of images. Moreover, the existence of a server causes scalability
issues with a large number of clients, and also there is a failure point in the system;
so this method might not be ideal when there is a time limitation required to
guarantee a response within any time frame like real-time applications. For exam-
ple, in vehicular networks by using self-driving cars; due to the high number of
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self-driving cars and the need for them to promptly respond to real-world situations.

Resolving these tensions is the primary goal of this thesis, which has been in-
fluenced by previous works. McMahan et al. represented two different algorithms
for the federated learning of deep networks based on an iterative model averaging,
and conducted an extensive empirical evaluation. Nevertheless, significantly, in
this study, the algorithms were synchronous, and they worked with a coordinator
server[1]. Virginia Smith et al. modelled the similarities amongst the nodes in the
network via diffused multi-task learning, where each node’s model is a task, but
there exists a structure that associates to the tasks [13]. Others such as Bandara et
al. presented two studies in which they group time series based on their similarities
into subgroups before using LSTMs to learn across each subgroup of time series.
In the first study, groups were made by extracting characteristics from the time
series [14]; and in their second study, groups were focused on available domain
knowledge[15]. Aymen Cherif and Hubert Cardot also divided the time series into
subsets based on similar characteristics before using a recurrent neural network
for prediction [16]. All these studies, except McMahan et al. which predominately
demonstrated traditional federated learning, assumed that the data is centrally
available and make use of traditional learning techniques.

A few attempts have been done to address the problem of decentralized federated
learning. In [17], a gossip protocol is used in which local models are distributed
over a peer-to-peer network. It considers an application of distributed learning for
medical data centres where several servers cooperate to learn a model over a fully
connected network. However, they did not take into account network scalability
and connectivity issues. In [18], a segmented gossip aggregation is introduced.
The global model is divided into non-overlapping subsets. There are some local
learners which aggregate the segmentation sets from other learners. The proposed
approach is application-dependent and not suitable for more general machine
learning contexts. S.Savazzi et al. proposed a fully serverless federated learning
approach. In [19] nodes receive a combined model from the neighbours, and each
one independently performs training steps on their local dataset, then similar to
gossip [17] nodes forward updated model to the one-hop neighbourhood for a new
consensus step. Their goal is exploiting serverless consensus paradigm for federated
learning and enhancing the speed of convergence. To the best of our knowledge,
they are not personalizing the model for each node to increase local performance.
Moreover, nodes are stationary, and datasets have fix size.

In this thesis there has been a decision to personalize the model for online trajectory
prediction via decentralized collaborative method. So, it is also vital to consider
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a few research in motion prediction domain. Many techniques for motion predic-
tion have been suggested in the literature. Many approaches have already been
examined for behavior prediction, such as hidden Markov models [20], [21], Kalman
filtering[22], Support Vector Machines [23], [24]. However, implementation and
the structure of these approaches might be too simple; they do not often perform
well for long term prediction. To overcome this limitation recently, artificial neural
network approaches have been proposed [25],[26]. Long Short Term Memory and
it variations have been used to predict the vehicle trajectory [27]. In [28],The
ranging sensor measurements is used to follow the position of the object by using
the LSTM. B.Kim et al [29] use the LSTM to predict the position of the vehicle
after x seconds using the past trajectory data. To the best of our knowledge, in
the above mentioned cases prediction is based on learning on big datasets such as
the Next Generation Simulation (NGSIM) dataset[30] by using traditional learning
methods.

This study considers this gap worthy of further investigation. In this work, we
propose 3 algorithms to personalize the model of each node via serverless federate
learning; so there is no single point of failure and no scalability issue. In this
way, instead of training a single global model, the idea is to train many models as
number of clients in the network to generate the models which are personalized for
each client. Clients’ datasets are varied in size and pattern. We focus on time series
data set which is dynamic. It means samples are added to the network during
learning steps ( nodes are collecting data samples as time is passing). There is a
notion of similarity amongst nodes.

The key problem addressed in this thesis is trajectory prediction in a vehicu-
lar network by using represented algorithms. We assume that the personal learning
task of each car is to predict where it will be in x time intervals from the present
time. The goal of each user is therefore to learn a model which generalizes well
to new trajectories drawn from its personal distribution. We therefore focus on a
collaborative setting, in which each user minimizes a loss function and maximizes
an accuracy metric over its local dataset by leveraging availability of other user’s
models to improve its personalized model. In chapter four, Decentralized Federated
Learning algorithm is explained in details, one of the critical aspects of federated
learning is how to build a meta-model. To do so, we have represented some methods
to merge models. They are discussed in chapter four. From the results gathered
we will show in chapter five how local performance is improved. We will compare
these methods in the results to see which one is more superior.
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1.3 Benefits

The main advantage of using the federated approaches to traditional machine
learning is to guarantee data privacy. Local data is not uploaded externally, or ex-
changed. Entire dataset only is saved on local device[1]. The rapid growth in smart
phone usage, IoT adoption, and big data analytic have led to a massive growth in
data centers, but they come with a cost. The amount of energy utilised by data
centers increases to double every four years, meaning they have the fastest-growing
carbon footprint of any area within the IT sector [31].This technique is in line with
what is referred to as ‘green computing’, as data is saved and processed locally
instead of sending it to the cloud. So it reduces network traffic on data centers, in
addition personal data is more secure.

Moving data processing closer to the edge decrease latency. It significantly improves
application performance thus allowing for real-time data analysis. The goal of this
thesis is to evaluate if there is any local performance gain in serverless federated
learning to do real-time prediction. In this case there is no single point of failure and
scalability issue. Serverless Federated learning can represent a solution for limiting
volume of data transfer and accelerating learning processes while there are many
nodes and response time is important. This method can be used in transportation
system. Implementing proactive strategies for resource allocation, e.g. for MEC
services. Self driving cars use many machine learning functions: computer vision
for detecting obstacles, applications use in traffic management requires real time
information and the processing of short but frequent packets from a multitude of
vehicles. Due to the potential large number of self-driving cars, they need to quickly
respond to real world situations, so serverless federated learning can be instrumental.

For some companies, like Uber, “forecasting enables to predict user supply and
demand in a spatio-temporal fine granular fashion to direct driver-partners to high
demand areas before they arise, thereby increasing their trip count and earnings”
[32].Another example of the value of real-time processing is Envision, a power
producer company who was able to cut its data analysis from minutes to seconds,
enabling it to increase the wind turbines production by 15 percent [33]. Therefore,
forecasting is of utmost importance for any business, since it guarantees efficient
utilisation of capital and correctness of management decisions.

Generally, this method can be used in numerous applications, specifically fore-
casting applications on time series while data security is important as well as
scalability and response time. Such as, Companies that wish to tailor the behavior
of their systems; financial risk prediction; electronic health record mining, and
smart manufacturing.
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1.4 Challenges and issues

There are some significant challenges to be able to online predict the trajectory of
a car by using server less Federated Learning when models are personalized. For
instance, we do not have fixed number of clients at every time, clients join and
leave the system periodically and this means the situation is constantly fluid and
changing. In federated learning, learning process usually iterates until the model
converges to the optimal model and when model converges; in this network, The
number of iterations amongst nodes varies and depends on how long they stay in
the city.

Furthermore, the size of datasets may vary significantly. For example, some
drivers may be in the city for 10 minutes some more and some less.Their time
series dataset is not stationary and they are accumulating data as time is passing.
Given this, there is a temporal heterogeneity, each local dataset’s distribution will
vary with time.These above mentioned factors make splitting dataset to training,
validation, and test set very challenging.

Another challenge is choosing the appropriate metrics. Generally in applied ma-
chine learning if we choose the wrong metric to evaluate our models, we are likely
to choose a weak model, or in the worst case, be deceived about the anticipated
performance of our model. There are some standard metrics that are extensively
used for assessing and classifying predictive models, such as classification accuracy
or classification error [34]. As this body of work is not an extensive study on trajec-
tory prediction to reach the best accuracy, we are going to evaluate optimization of
our methods when there is no server. We will choose some metrics because other
authors used these metric in analyzing similar problems and it worked for them.

Moreover, the next few second trajectories of each vehicle depends strongly on
the surrounding vehicles’ behaviors and recent movements. Therefore, all the
surrounding trajectories and their interactions should be taken into account. In
fact, every car has various numbers of surrounding cars and also different types
of dynamic datasets. The analysis of the interaction and the future movement is
based on a short period of observations of all surrounding cars’ movements and its
recent movements. They cannot handle massive data entry and therefore efficiently
take full advantage of the dataset. In this work, a Recurrent Neural Network Long
Short Term Memory (LSTM) framework is proposed to tackle above mentioned
difficulty.

In addition,the way of combining received models from surrounding nodes to
build a personalized model for each user is also examined. Doing this will have a
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high influence on performance. McMahan et al. in [1] use a weighted averaging
method, in which weight of node’s model is proportionally to the number of its
samples. We suggest a Serverless federated algorithm with three ways of combin-
ing models. The effectiveness of the suggested methods will be explored on non
stationary time series datasets in chapter four.

Finally, nodes communicate through a wireless channel, which is unreliable. Partic-
ipators in the training rounds may not be able to send or receive model correctly,
so parameters may confront failure, which imposes severe issues on the updated
model. Here, we imagine there is no failure in communication among nodes.

The rest of this work is organised as follows; in chapter two, we introduce the rele-
vant theories; in chapter three, machine learning methods are discussed. Chapter
four is associated to explain about proposed algorithm, in chapter five, we consider
different experiments and display their result, and finally, we have a conclusion and
future works.
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Chapter 2

Relevant theories

In this chapter, the relevant theory of our research is discussed. The primary goal
of this thesis is to evaluate the effectiveness of Serverless Federated Learning by
using the proposed algorithm when we are personalizing local model for each node
through a collaborative method, while we are going to predict next a few seconds
trajectory. The problem at discussion is strictly connected with multiple areas.
First, since the main topic is serverless federated learning, it is compulsory to talk
about the different type of federated learning as a learning mechanism. Then, the
problem that we address in this work is a time series problem, so it is also needed
to know about time series and variation of that.

2.1 Federated learning
In the machine learning algorithm, not only model can learn from centrally stored
data but also thanks to federated learning, it is possible to learn from distributed
data. Federated Learning (FL) makes training possible on a large amount of
decentralized data belongs to multiple devices like mobile phones. Data on each
client is non-IID and unbalanced.

• Non-IID: each data sample does not have the same probability distribution as
the others and also they are not mutually independent.

• Unbalanced: It means in each local dataset, target value has more observations
in one or a few specific classes rather than all other classes. In figure 2.1
unbalanced and balanced dataset is shown. In balance dataset female and
male have almost the same number of data samples while in another dataset,
number of samples for normal transactions is much larget than fraudulent
transactions.

10
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Figure 2.1: Balanced dataset vs. unbalance dataset

In federated learning, transferring data to the cloud is not necessary; Data is stored
locally; as a result, we can be sure about data confidentially and decreasing the
traffic of the network and diminishing communication costs. Federated learning
depends on an iterative process. At every iteration, we have a set of client-server
interactions. Every iteration is known as a federated learning round. Server at
each round sends the current statistical model to a fraction of local nodes or clients.
Clients start training on local data while other nodes do nothing and wait for next
federated learning round. Each client sends the locally updated model back to the
server. Clients only exchange models and machine learning parameters, and no
raw data. The server aggregates all the updated models and creates a meta-model.
Process of training by nodes and aggregation by the server is done frequently until
a pre-specified termination condition has been happened (e.g. the total number of
rounds or average accuracy upper than some targets). In the end, the server contains
a robust model which was trained over several rounds on multiple heterogeneous
datasets. Explained steps are clearly shown in the photo 2.2 by Jeromemetronome.

On the assumption of existing a central coordinating server, it is called centralized
federated learning. A drawback of centralized federated learning is the dependency
on a central server. It needs all clients to come to an agreement on one trusted
central server. A failure in central point would disrupt the training process of all
clients, and it makes our network unreliable. Moreover, heavy dependency on a
coordinator causes scalability issues with large numbers of nodes. The way the
local updated models are combined, and the methods that nodes communicate

11
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Figure 2.2: Centralized fedeareted learning steps - By
Jeromemetronome - licensed under CC BY-SA 4.0

Source: https://commons.wikimedia.org

with each other lead to a variety of federated learning approaches. For instance,
no central orchestrating server, or stochastic communication [35]. In particular,
serverless federated learning is a prominent variation. In this case, there is no
central point of failure and scalability issue. It is a peer-to-peer network. Each local
node sends its updated model to several nodes that might be selected randomly, and
aggregation of results is done locally. This approach sometimes reduces training
and computation cost [36].

However, the core topic of this thesis is based on serverless federated learning;
let us be more specific about the details of one proposed federated algorithm
to understand this research better. In this part, we stay on the explanation of
Federated Averaging of Communication-Efficient Learning of Deep Networks from
Decentralized Data, H. Brendan McMahan et al. 2017[1].

2.1.1 The Federated Averaging algorithm
We first introduce some concepts which are main parameters of Federated Averaging
algorithm and authors evaluate performance of algorithm by changing theses
parameters.

• Epoch:the number of epoch indicates number of learning iteration over entire
dataset that machine learning algorithm has to complete. One epoch means

12
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each sample in the dataset only has one opportunity to update parameters.
Usually, to generate a model with the high performance, we need to have a
high number of epochs, hundreds or thousands. We increase number of epoch
until the error from model has become minimized.

• Mini-batch: An epoch is comprised of one or more batches. If the batch size
is greater than one and smaller than the size of the training set, it is called
mini-batch Gradient Descent. In machine learning examples usually batch
size is from 32 to 512. Small values for batch size lead to quick convergence
at the cost of noise in the training process. On the other hand, large values
give the training process to converge slowly with precise estimates of the error
gradient. According to [37] [38] a good default value for batch size is 32.

• Learning rate: one of the key hyper-parameters to set in order to train a neural
network is the learning rate. It determines the step size at each iteration
while moving toward a minimum of a loss function. This parameter scales
the magnitude of our weight updates in order to minimize the network’s loss
function. If our learning rate is set too low, training will progress very slowly
as we are making very tiny updates to the weights in our network. However,
undesirable divergent behavior in the loss function can occur if learning rate
is too high, it can cause divergence, shown in photo 2.3. The optimal learning
rate depends on both model architecture and dataset. Using a default learning
rate (ie. the default value of learning rate sets by deep learning library) may
provide decent results, we can often increase the performance or speed up
training by tuning learning rate and searching for an optimal value.

Figure 2.3: Effect of learning rate size on the learning
process.
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Federated Averaging (FedAvg) is a generalization form of Federated Stochastic Gra-
dient Descent (FedSGD) which is synchronous and centralized federated learning.
It is a server-client network. The Server or central coordinator coordinates training
steps and generates a meta-model by combining updated local models of clients or
local nodes.

In FedSGD, at every training round, a random fraction of all nodes is selected to
be involved in the training phase. All the data on these nodes is used to make
one step of the gradient descent. Local nodes send updated models back to the
server. Then server averages the gradients proportionally to the number of training
samples on each node[39].

Figure 2.4: The Federated Averaging

While in FedAvg performing more than one batch update on the local data and
transmitting the updated weights instead of the gradients is possible. Similar to
FedSGD, first of all, the server selects a fraction of total clients. These clients,
as mentioned earlier, compute a number of the batch update on their datasets,
and local model can be updated for more than one epoch. If algorithm treats the
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local dataset as a single mini-batch (batch size equal to infinite) and train samples
once(only one epoch), this algorithm corresponds exactly to FedSGD. Then, all the
local updates model are sent to the server. Finally, the server aggregates them by
computing a weighted average. Each updated model is weighted according to the
number of samples in each client’s local dataset. For example, if 2 clients out of
10 clients are selected. And the first client has 100 samples in its dataset and the
second client has 200; when the central server aggregates the updates from these
two clients, it will give more importance to the model generated by the second
client (2/3 to the second client and 1/3 to the first one). This algorithm is an
iterative algorithm. These steps are done repeatedly until termination conditions
happen. This algorithm is given in Algorithm 1 and communication steps are
depicted in figure 2.4.

Algorithm 1 Federated Averaging algorithm. Clients are indexed by k, B is the
local mini-batch size, E is the local number of epochs and η is the learning rate.
Server execute:
initialize weights w0
for each round t=1,2,...,r do

m← max(C.K,1)
St ← (random set of m clients)
for each client k ∈ St do

wk
t+1 ← clientUpdate(k, wt)

end for
wt+1 ←

Kq
k=1

nk

N
wk

t+1

end for
procedure clientUpdate(k, wt) ó Run on client k

β ← split ρk into batchsize of B
for each local epoch i from 1 to E do

for batch b ∈ β do
w ← w − ηÒ (w; b)

end for
end for
return w to the server

end procedure

As presented by McMahan and et al. these four parameters: number of selected
clients at each round, local mini-batch size, number of epochs, and learning rate,
have an extreme effect on the convergence of learning algorithm. For example,
increasing parallelism (increasing number of chosen clients) usually decreases the
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number of communication rounds needed to converge. On the other hand, it also
outcomes to higher communication costs, so it is necessary to trade-off to find out
which one is more important in our problem. Moreover, for very large numbers of
local epochs, FedAvg can plateau or diverge. This result suggests that for some
models, especially in the later stages of convergence, it may be useful to decay the
amount of local computation per round (moving to smaller number of epoch or
larger batch size) in the same way decaying learning rates can be useful.

Many researchers have been attracted to the federated learning algorithms re-
cently. Some have presented enhancements to the algorithm, for example, by
enhancing the model aggregation [40], or by improving the communication effi-
ciency [41]. It is expected by increasing edge computing devices federated learning,
specifically serverless federated learning algorithms, play a vital role in the near
future. In the following, we explain about time series dataset and its different kind.

2.2 Time series
A sequential set of observations, normally measured over consecutive times is called
time series. Time series forecasting is all about estimating the future. A time
series sample is denoted as a set of vectors x(t),t = 0,1,2,... where t illustrates the
time elapsed [42]. x(t) is given as a random variable. Depending on the number of
random variables, time series is divided to univariate and multivariate time series.

• Univariate time series: If a time series contains samples of only one single
variable, it is called the univariate time series. For example, measuring the
temperature of room hourly. We have only temperature as a variable.

• Multivariate time series: samples considering more that one variable is termed
as multivariate time series. Like the problem in our hands we have a time
series of the position of cars, each position is shown by X and Y which are
lateral and longitudinal coordinates respectively.

In another classification, the time series can be divided into two categories, contin-
uous and discrete.

• Continuous time series: in a continuous time-series, data is measured at every
moment in time; It means there is a data value corresponding to every moment
in time. All analogue signals are continuous naturally.

• Discrete time series: observations are measured in time intervals that are
usually greater than one second and discrete points of time. Time intervals can
be either infrequent (e.g., one data point per hour) or irregular (e.g., whenever
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a user logs in). Usually, in discrete time series, the consecutive samples
are calculated at equally spaced time intervals such as hourly, daily, weekly,
monthly, etc. It shows the continuous time series can be easily converted to a
discrete one only by pick samples up in larger time interval, or some cases by
averaging data over a specific time interval[43].

The below table represented the first five rows of our dataset. Rows have repre-
sented the samples which are collected every five seconds. Columns give features.
Each car has a unique id. The city has been divided into different partitions called
area or cell represented by character c. X and Y are local coordinates. X, Y and
area show the position of each car at every time step in the city. It is illustrated
speed of cars in the unit of a meter per second as well.

Simulation time Car id speed(m/s) X Y Area
0 1 20 6588.69 6074.39 21
0 2 32 7434.28 5733.13 25
5 1 20 6589.93 6073.25 21
5 2 30 7434.29 5733.17 26
5 3 20 5722.69 5777.38 14

Table 2.1: Examples of time series dataset

Since we have the position of cars every five seconds, by putting cars with the
same id within one group, we can present the trace of each car. Understanding the
time series pattern is critical to analysis and solve the problem, especially in the
implementation task when data is needed to be rescaled. Typically, time series data
exhibits different patterns or a combination of different patterns. It is essential to
understand the concept of trend, seasonal , and cyclic to recognize a time series
pattern.

• A trend exists when there is a long-term tendency in the data. It can be
upward, or downward, linear or exponential.

• The seasonal pattern occurs when there are periodic fluctuations in the data
always within a specified period or fixed frequency.

• Cyclic happens when there are periodic fluctuations in data but not in a
fixed frequency. By comparison to the seasonal pattern not only duration of
fluctuations is not fixed but also the duration is more considerable.

It is also possible that for some kinds of time series, like our scenario, data has no
seasonality, trend, or cyclic behaviour. Random fluctuations and lack of strong
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pattern make prediction very difficult and a model learned on the local dataset
might not be useful to make a prediction; hence we use the neighbouring datasets
to estimate the future.

Figure 2.5 shows four different patterns for time series data. On the top left
the monthly housing sales chart shows seasonality within each year and also cyclic
behaviour within a more substantial period about six years. The plot of US treasury
bill contracts on the top right shows there is no seasonality, but instead, there is a
clear downward trend. On the bottom left, it shows a strong increasing trend with
seasonality and finally on the bottom right the daily change in the Google closing
stock price, there is no evidence of having seasonality, trend or cyclic behaviour.

Figure 2.5: Four examples of time series showing different patterns
https://otexts.com/fpp2/tspatterns.html

In the next chapter, machine learning methods based on neural networks that
can be used to solve the forecasting problem will be discussed. Chapter four
contains methodology and proposed algorithms in details. Chapter five covers
different experiments and the results will be displayed, and finally, chapter six is
about future works and conclusion of our thesis.
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Chapter 3

Machine Learning methods

3.1 Background

Models for time series data can have many forms and represent different stochastic
processes. AutoRegressive and Moving Average, and their combinations such as
AutoRegressive Integrated Moving Average (ARIMA) models are widely used in
literature. Due to their comparative simplicity in implementation and understand-
ing, they have drawn much consideration [44]. The drawback of such techniques is
the poor robustness when time series has rapid fluctuations[45]. Moreover, these
methods work with homogeneous time series[46]; Therefore, they are not in our
interest in this work. Support Vector Machine is used in many applications in a
variety of domains such as regression estimation and time series prediction [47]
[48]. Advantages of using SVM models: they work well when we are dealing with
unstructured data, or semi-structured data like text, or image. Besides, the risk
of overfitting is less, and they gives better results when compared to Artificial
Neural Networks. On the other hand, it is not straightforward to comprehend
and interpret the final model variable weights. Moreover,when the training size
is large, it necessitates a massive amount of computation which enlarges the time
complexity of the solution, also tuning the parameters is not easy [48]. In recent
years , Artificial neural networks (ANNs) techniques gained huge reputation and has
been recommended to apply in time series forecasting problems [49][50]. Following
this chapter is assigned to explain about Artificial Neural Networks and its verities
like Recurrent Neural Network and Long Short Term Memory that can be used to
solve the time series forecasting problem.
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3.2 Artificial Neural Networks
The fundamental objective of ANNs was to create a model for imitating the
intelligence of the human brain into the machine [49] [50]. ANNs try to learn from
input data and provide a generalized result based on all information that they have
already received and known about it. It is similar to what the human brain is doing.
In the beginning, the objective of ANNs was biologically motivated, but after a
while They have been used in many domains, specifically classification algorithms,
and forcasting problems[49] [50]. Below some prominent features of ANNs which
make them preferred for time-series forecasting are mentioned.

• ANNs are self-adaptive and data-driven in nature [51].We do not need to
specify a specific model form or making any former assumption about the
statistical distribution of data. In ANNs, the model is adaptively created
based on the data features. This characteristic makes ANNs models quite
useful for many practical situations, where there is no information about the
data generation process.

• ANNs are fundamentally non-linear, so they are more practical and accurate to
construct a model for intricate data patterns, in contrast to several traditional
linear approaches, such as ARIMA methods[50][51].

• ANNs’ model learns from input data even if input data is fuzzy, erroneous, or
it contains missing values [50].

The most general kind of artificial neural network entails of three layers of units: the
input layer, hidden layer and output layer. In which input layer units (neurons) are
connected to hidden layer units and hidden layer units in layer two are connected
to output layer units. As it is shown in the figure 3.1 this network is fully connected.

Input data is fed to the network through the input units. This is also called
the input layer.The second layer is called hidden layer. The activity of each unit
in the hidden layer is determined by the activities of the input nodes and the
weights on the connections between itself and previous layer units. The activity of
the hidden units and also the weights between the two last layers determine the
behaviour of the output layer.

When we use multiple layers in ANNs it is called Deep Neural Networks. In
this network perceptrons stacked one after the other in a layerwise mode. The
objective of the network is to approximate a function f∗. For example, by consid-
ering a regression algorithm, y = f∗(x), It maps an input data x to an output y
which is a real value. A feed forward neural network designates, a mapping y =
f(x,θ), and learns the appropriate value for the weights θ that decrease the error
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Figure 3.1: Artificial Neural Network with three layers
https://otexts.com/fpp2/nnetar.html

of the estimation. In this networks information always goes from input to the
output; it never goes backwards. There are no feedback connections in such a
way that outputs go backwards and are fed as input again. Feed forward neural
networks do not have the memory to memorize the previous understanding of
data [52]. They are not instrumental for time series predictions that we want to
understand sequential data. In this work, we focus on an algorithm that have
attracted substantial interest in the forecasting field by using Long Short Term
Memory networks (LSTM) which is a kind of RNN network. In the following,
LSTM and its variety are discussed in details.

3.2.1 LSTM
When we start reading a sentence to understand the concept of that, we do not
consider every word separately. We understand each word based on an understand-
ing of the previous words. Feed Forward Neural Networks can not learn through a
sequence of data. Recurrent NNs address this problem by having a loop in their
structure; it allows information to persist.

RNNs can use their memory (internal state) to process variable length sequences
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Figure 3.2: Recurent Neural Network.By fdeloche - Own work, CC BY-SA 4.0
https://commons.wikimedia.org/w/index.php?curid=60109157

of inputs [53]. In figure 3.2, we have a chunk of neural network, inputs are shown
by x indexed by sampled time, and outputs denote by o, produced at every time
step. A loop permits information to be traversed from one step of the network
to the next. RNNs can use the past information to learn where the gap between
the relevant information and the place that it’s needed is small. Long Short Term
Memory (LSTM) networks are a special kind of RNN, capable of learning long
term dependencies. They were introduced by Hochreiter,and Schmidhuber (1997)
[27], and were refined and popularized by many people in following work and were
improved by many people. LSTMs work remarkably well on a large variety of
problems. They are designed to overcome the problem of RNNs to avoid the long
term dependency problem. Remembering information for long periods is practically
their default behaviour, not something they try to learn.

Figure 3.3: The repeating module in a standard RNN contains a single layer
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All recurrent neural networks have the form of a chain of duplicating modules of a
neural network. In standard RNNs, this repeating module will have a straightfor-
ward structure, such as a single tanh layer represented in figure 3.3.

LSTMs also have this chain but with a different structure. Instead of having
a single layer, there are four layers. They are interacting in a very special way.

Figure 3.4: The repeating module in an LSTM contains four interacting layers
https://towardsdatascience.com/understanding-lstm-networks-by-example-using-

torch-c63dba7bbb3c

The main part of LSTMs is the cell state, in the figure 3.4 the horizontal line
running through the top of the diagram. It goes through the entire chain, with
only some minor linear computations. LSTM can eliminate or add the information
to the cell state, adjusted carefully by structures called gates.

Forget Gate: output of the previous state is shown by h(t-1). Forget gate gets the
output of the former state. By the help of sigmoid function, which generates a
number between zero and one, It takes decisions about what must be eliminated
from h(t-1) state and thus holding only relevant stuff.

Input Gate: LSTM decides how much data must be added from the present
input to the current cell state. Sigmoid layer determines which values to be up-
dated and tanh layer produces a vector for new candidates to appended to present
cell state.

Output Gate: finally, LSTM generates the output of this state. Data in cell
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state goes through a tanh to crush the value between -1 and 1. Its result is multi-
plied by the production of the sigmoid function. The input of the sigmoid function
is the output of the previous layer concatenated by the present input[54].

Many types of LSTMs can be used for time series prediction problems. Depending
on the number of inputs, and outputs (figure 3.5), and number of variables we must
select the proper LSTM which is more suitable for the problem. In the following,
we discussed about a few type of LSTMs.

Figure 3.5: Recurrent Neural Network sequence

• Vanilla LSTM: It is an LSTM model that has one hidden layer of LSTM units,
and a single output layer used in making prediction. When we have univariate
time series forecasting a vanilla LSTM can be used[55].

• CNN-LSTM: A convolutional neural network is a type of neural network
developed for working with two dimensional image data. A CNN model can
be used in a combination model with an LSTM. This hybrid model is termed
a CNN-LSTM. The CNN can be beneficial at automatically extracting and
learning features from one dimensional sequence data such as univariate time
series data[55].

• Encoder-decoder LSTM: This model specifically developed for multi-step
forecasting with multivariate input and output data. As its name suggests,
the model is composed of two layers (the encoder and the decoder). In this
architecture, the encoder receives the input sequence step-by-step. The output
of encoder is a fixed-length vector. This vector encapsulates the information
for entire inputs to help the decoder makes accurate predictions. This vector
is then given as an input to the decoder that interprets it as each step in the
output sequence is made [55].
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Figure 3.6: Encoder-decoder LSTM

In this work, we use encoder-decoder LSTM to train our data, when multivariate
sequence of input is associated to univariate sequence output. Through an example
in figure 3.6 how LSTM encoder-decoder is working in keras library is depicted.
In this example we have multivariate, multi-step input, and univariate,multi-step
output. Corresponding inputs are x and y at different time steps. In code instead
of the num-input-step must be written 7(number of input steps), and num-features
is replaced with two (x,y). Output of encoder is a fixed-length vector. Its size is
equal to number of output steps. In this example, the number of output steps is
four. The output of the fixed-length vector goes to the decoder. To implement
the decoder model one or more LSTM layers can be used ; return-sequence =
True allows us to have two LSTM layers. For the last step, according to the
problem, we have to select a proper activation function. The softmax activation
function is widely used in multi class classification problems, hence we use it as well.

The next important issue is implementation, i.e. to apply Long Short Term
Memory for generating forecasts through a distributed learning algorithm. In the
next chapter, our proposed algorithms will be discussed in details and the way
of implementation is also discussed and then in chapter five results are displayed;
finally, chapter six is assigned to conclusion part and future works.
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Chapter 4

Design of serverless
distributed FL algorithms
for trajectory prediction

In previous chapters, we examined the machine learning methods and theories
related to the problem. In this part, we formulate an optimization problem to
decrease the loss value on the test set . Then, a computation-efficient algorithm is
proposed to approach the optimal solution. The needed practical steps to tackle
this problem has also been discussed.

4.1 System model
We consider a set of wireless nodes, moving on a finite region of the plane according
to an arbitrary stationary mobility model. We assume nodes know exactly their
position at any point in time. We assume to observe the system over a finite time
window. Nodes communicate among them using a wireless technology (e.g. WiFi,
DSLR, Cellular D2D, among others). We say that two nodes are in contact when
they are able to exchange information directly.

We assume that the region of the plane is partitioned into cells, and let c be
the label of the generic element of this partition. Cells can be of any shape and size,
but these aspects are typically determined by the specific application scenario. For
instance, in a scenario with vehicles in which part of the computing tasks are to be
offloaded via a Mobile Edge Computing (MEC) service, a cell might correspond
to the coverage area of the roadside unit to which a specific MEC server is associated.
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We assume that, from the beginning of the observation window, each vehicle
samples its position in space at regular time intervals. Let i be the label of the
i− th time interval, and let Deltak be the duration of such time intervals for the
k − th vehicle. The resulting time series x1, x2, ..., xi constitutes the local dataset
of each vehicle up to the i− th time interval. With nk,i we denote the size of the
local dataset of the k − th car at the i− th time interval.

The fundamental problem addressed in this thesis is online trajectory prediction in
a vehicular network by using decentralized collaborative learning of personalized
models.

4.2 Our DFL algorithms for trajectory predic-
tion

As explained, we consider a scenario in which a MNO receives regularly predictions
of car trajectory in order to implement proactive strategies for resource allocation,
e.g. for MEC services.

We assume therefore that each user (vehicle) has a personal learning task, consisting
in predicting its location in h time intervals from the present time, for the whole
duration of the observation window. To this end, starting from its local dataset
and the one from the other vehicles in the scenario, each user has to learn a model
which generalizes well to new trajectories drawn from its distribution.

We focus on a collaborative setting, in which each user minimizes a loss function
and maximizes accuracy metric over its local dataset by leveraging the availability
of other user’s models to improve its personalized model.

In general the outcome is a different model for each user, as we have as many
learning tasks as are the users in the area.

Our algorithm is structured as follows. We assume the time spent by each user in
the scenario, during the observation window, to be divided into two stages.

• Initialization stage. It starts from the time interval in which the node enters
the considered area, denoted as ik (or from the beginning of the observation
window, for those nodes present in the scenario at that time), and it ends
at time interval ik + V . During this time, the node does not perform any
prediction, but it just builds its local dataset. At the end of this stage, the
local dataset constitutes the validation set for the next time interval. The
validation set is used to evaluate the model generated at any time interval.
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• Exploitation stage. At the end of time interval ik + V , the node initializes
the model by assigning random values to its parameters. Depending on the
type of time series; if it does not have any strong pattern, the local information
might not be useful to predict the future so that parameters can be initialized
by random numbers. Otherwise, each node can initialize the model by training
it on local data.
In this phase, a key role is played by two time series: The validation set at time
interval i, which is the portion of the local dataset constituted by those samples
associated to the time. Based on the specific application scenario, validation
set can have static fixed size, or expanding size rolling windows, or fixed size
rolling window (i − V, i). For example, in online learning methods which
retraining model is done when new data becomes available. This determines
whether a fixed or expanding size rolling validation set window will be applied.
The test set is used to assess the performance (e.g. in terms of accuracy or loss)
of the model. Like validation set, there are different ways to select the test set.
It can have static fixed size, or a short rolling window size for data sampled in
short intervals, and a larger size for data gathered in longer intervals [56].
For a short rolling window size, the test set at time interval i, constituted
by those samples associated to the time interval (i− l, i + h) where l is time
duration of input sequence, and h is the forcast horizon. Static fixed test set
can be considered as an example: the last 30 per cent of dataset.

To each input we can associate as an output a cell trajectory [ct1 , ct2 , ..., ctl
], where

ctx denotes the label of the cell containing the point (xtx , ytx).

We assume time to be partitioned into rounds, of equal duration and equal to one
or more time intervals.

Nodes can have two roles: client and server. These roles are the same as in
classical FL algorithms. That is, a node is a client when it receives a model from
another node (called server), it updates model using its local dataset, and send back
to the server the updated version. The server node, as in classical FL, combines
models to have a federated model and controls learning steps. However, in our
algorithm, during the exploitation stage, each node is a server for his personal
learning task, for which it is building its model, while at the same time it is available
as a client for the tasks of all other nodes in the scenario.

The model of node k is shown by wk. To do such collaborative learning, each node
after x time interval sends its model to surrounding nodes which are in its range.
Neighbouring nodes will train received models on their local dataset (Depending
on the application scenario, it is needed to determine whether the model will be
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trained on all available dataset or only on the most recent observations. This leads
to the use of whether a sliding or expanding window of training set), and then
will send it back to the source. Each node has control of its data, and never share
its dataset with others. Instead, they share their models; this makes sure data
confidentiality.

Source node combines received shared model to build an updated model. Then they
use the updated model for trajectory prediction. Every x time interval source node
will repeat this process to improve its model; so at every round, it gets through
the updated shared model wt+1 to make a prediction. The maximum number of
rounds depends on the duration of time in which node is in the space. One of the
crucial aspects of building meta models is how merging models. In the following,
we are using three different methods to merge models and create a meta-model
by using collaborative learning technique. One of them is the way of combing
model that McMahan et al. have used in federated averaging and we discussed it
in chapter two. Two new methods are given in the following. The collaborative
learning algorithm while there is no server is depicted in algorithm 2.
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Algorithm 2 DFed: Decentralized Federated Learning algorithm. The K Clients
are indicated by k, E is the number of local epochs, B is the local mini-batch size,
R shows the maximum number of round, η is the learning rate, and ρ denotes the
local dataset.
Server execute:
do nothing until collect data for validation set
initialize weights w1
for each round t=1,2,...,R every x time interval do

St ← (Clients in transmission radius)
Send(wt,k) ó TX to neighbours
for each client k ∈ St do

wk
t+1 ← clientUpdate(k, wt) ó RX from neighbours

end for
wt+1 ← mergeModels(.)
update validation set

end for
procedure clientUpdate(k, wt) ó Run on client k

β ← split ρk into batchsize of B
for each local epoch i from 1 to E do

for b ∈ β do
w ← w − ηÒ (w; b)

end for
end for
return w to the server

end procedure

4.2.1 Decentralized Federated Averaging (DFed Avg)
When server receives updated models from neighbours has to merge them to have a
meta-model. In the following, we explain the method used in literature to combine
models.

DFedAvg:
procedure mergeModels(.)

wt+1 ←
Kq

k=1

nk

N
wk

t+1

end procedure

• wt+1: updated model of server at round t.
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• wk
t+1: updated model of client k at round t.

• nk: the number of samples involved in the training phase of client k

• N: Total number of samples of all clients involved in the training phase.

• K: all clients involved in training phase

wt+1 is computed through a weighted sum over all K clients. In which wk
t+1 is

weighted by the proportion of the number of its samples involved in the training
phase (nk) over total number of samples in the training phase (N). This method
gives more weight to a model which has more samples. It seems reasonable when
we have more data to train, generation of a model with higher performance is more
probable. Pseudo code is illustrated in procedure 1.

4.2.2 Decentralized Federated Powerloss (DFed Pow)

DFedPow:
procedure mergeModels(.)

lk ← evaluate loss of wk
t+1 on validation set

pk ← 10−lk

wt+1 ←
Kq

k=1

pk

P
wk

t+1

end procedure

We assume there are some similarities amongst nodes in dataset. Usually node
cares more about models generated on more similar datasets. For example, when a
vehicle goes from Torino to Milano, a well trained model on cars’ trajectories of
Rome city may not help to make a correct prediction; this node cares more about
models generated by those nodes travel from Torino to Milano. Therefore, it would
be rational to give more weight to a model that has more similar observations.

• wt+1: see procedure1.

• wk
t+1: see procedure 1.

• lk: evaluated loss of updated model of node k on the local validation set of
server

• pk : 10−lk

• P: summation of all pk
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The preliminary assumption in the decentralized collaborative learning algorithm
is to consider a portion of the local dataset as the validation set. Server at round t
evaluates loss value of the updated model of node k, wk

t+1, on its local validation set.
We call it lk . lk may get less loss when server validation set and the training set of
node k have more similar data points. To compute loss value we are using categorical
cross-entropy formula described in section 4.3. In order to give more weight to a
model with less loss, we inverse the result of this formula(lk) by computing 10−lk

which is represented by pk. Then to generate wt+1 , we use a weighted sum in
which wk

t+1 is weighted by taking the proportion of pk over summation of all pks .

4.2.3 Decentralized Federated Best(DFed Best)

DFedBest:
procedure mergeModels(.)

lk ← evaluate loss of wk
t+1 on validation set

wt+1 ← wk
t+1 where lk has the smallest value

end procedure

In both DFed Avg, and DFed Pow, a server at every round receives updated
models,wk

t+1, and create a meta-model,wt+1, from two different weighted sums.
Sometimes newly merged model (wt+1) does not perform as well as individual
models(wk

t+1). Therefore, instead of merging local models, we take the best model
at every round and utilise it for next communication round of training. To do so,
server evaluate local updated models of K client on the validation set and choose
one with the lowest loss value as the best model to contribute in the next training
step.

4.3 performance metrics
At each iteration of training, a loss function is used to calculate the error between
the target value and the predicted one. The loss is backpropagated so that the
network can update its weights and reduce loss, and as a result, generate a confident
model. In purely local learning, a typical choice of loss function for multi class
time series prediction is the categorical cross-entropy loss function L. Output of
deep learning network is a vector which its length is equal to the total number of
classes. It contains probability values representing the probability of being in each
class. True class is shown by a one-hot encoded vector, size of this vector is equal
to the total number of classes. All values in this vector are zero except one which
is set to "1" to show in which class we are. Categorical cross-entropy will compare
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the output of machine learning which is a probability vector with one-hot encoded
vector representing the true class, and by using below formula can compute the
amount of loss. Loss value increases as the predicted probability diverges from
the actual label, whereas a perfect model would have a loss value of "0". The loss
function is given by

L(y, ŷ) = − 1
N

NØ
n=1

CØ
c=1

(yn,c) log( ŷn,c) (4.1)

where:

• N number of total samples

• C number of total classes

• n iterates over N samples

• c iterates over C classes

• yn,c is target label for sample n for class c. It is a binary variable, equal to 1
if class c is visited, and zero otherwise;

• ŷn,c is the probability predicted by the model for the nth observation belongs
to the class c

Another mostly used performance metric in classification algorithms is accuracy. It
is defined as the percentage of correctly classified outputs.

accuracy = Number of correct predictions

Total number of predictions made
(4.2)

The rest of this work is organized to consider experiments and depicting results in
chapter five, and conclusion and future works in chapter six.
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Chapter 5

Experiments and results

In this section, we present the results of the experiments on practical datasets.
We must emphasise again that, given the large number of parameters in NNs, we
decided to choose particular value for some parameters, as it is suggested in the
literature, and since our main concern is performance evaluation of the proposed
algorithms which personalized model through a collaborative learning when there
is no server.

5.1 general considerations

5.1.1 Data collection

Data collection is the first most crucial step in every machine learning algorithm.
Because they are learning from data, and it is very crucial to feed them with correct
data to avoid getting unpleasant outputs. We have to be sure that we are using a
proper date with a useful scale, format, and meaningful features. To estimate the
trajectory of 10 seconds ahead, essential features are X and Y. We need to sample
X and Y at the same time intervals for all nodes; X and Y are the lateral and
longitudinal position of each node, respectively. To have such a dataset, we use
synthetic traffic simulation of Luxembourg city centre. It contains car trajectories
from 12AM to 10 AM. It is imperative that nodes visit k neighbours in every
training rounds(k » 1), so we consider simulation time between 6:30 and 7:30 am,
which is a dense traffic time. After we collect data, some actions must be done on
it. We have to select how we can use this data and in which form it must be to
work. To do data pre-processing, we must do some steps. They are mentioned in
the following.
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5.1.2 Visualization and data analysis
The purpose of data analysis and visualization is to gain insight into the dataset
and better understand the problem. One way of visualizing data is plotting the
graphs that summarize the data. In figure 5.1 trajectories of three vehicles are
illustrated. The common routs that cars have crossed are highlighted. It shows,
there are some similarities amongst nodes’ datasets, and time series has no pattern
(seasonality, cyclic, or trend). In general, dataset contains information of 1948
vehicles; each has it own local dataset. Data over clients is unbalanced and non-IID.
On average cars spend fifteen minutes in the plane. Maximum time which a car is
in the plane is 43 minutes. 1201 cars stay in the space for less than 10 minutes as
they might start their journey before 6:30 AM or continue it after 7:30 AM.

Figure 5.1: Car trajectory of 3 nodes.

We did data visualization not only to have a summary of data but also to explore
data in order to identify if data cleaning operation is needed.

5.1.3 Re-scaling
Better performance will be achieved in some machine learning algorithms when
data has been scaled or distributed consistently. Normalization and standardization
are two techniques that we can utilize to rescale our time series data. In practice,

35



Experiments and results

it is almost always an advantage to applying pre-processing rescaling to the input
data before it is given to a network. In the same way, for the outputs of the network
[57]. Having a large range of values may result in significant error values affecting
weight values to alter drastically. It might make the learning process unstable.
Hence, in deep learning neural networks scaling inputs and outputs is a critical
step. As it is mentioned in subsection 5.1.2 our time series has no pattern, so we
can not use transformation techniques for scaling. We used normalization for input
values. X and Y are the lateral and longitudinal position of each node in the plane,
respectively. For each of them, we have the maximum and minimum allowed values.
We use the following formula for both X and Y to have values in range 0 and 1.

S = (s−min)
(max−min) (5.1)

where:

• S is scaled value

• s is the real value of variable X, or Y

• min is minimum value of X, or Y

• max is maximum value of X,or Y

5.1.4 partitioning
The input of the demonstrated network is the ordered set of examples D =
[(xt1 , yt1), (xt2 , yt2), ..., (xtl

, ytl
)] of l coordinates in space. To each input we can

associate as an output a cell trajectory [ct1 , ct2 , ..., ctl
], where ctx denotes the label

of the cell containing the point (xtx , ytx). xt , and yt are provided in our dataset.
We have calculated corresponding ct by the use of below formulas.

K = math.ceil[ (max(x)−min(x))
segment size

] (5.2)

J = math.ceil[ (max(y)−min(y))
segment size

] (5.3)

XX = math.ceil[ (xt −min(x))
segment size

] (5.4)

Y Y = math.ceil[ (yt −min(y))
segment size

] (5.5)

ct = XX ∗K + Y Y − J (5.6)
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To do data transformation of our output, which is categorical value, we use
One-Hot Encoding. In this case, integer representation of variable will be removed
and instead a new binary variable is added for each unique integer. In new binary
vector, all bits are zero except a single bit which is one to identify the unique
variable.

5.1.5 Model structure
Finally, by having all this information, we need to train our data to generate a model.
On this dataset we train an encoder-decoder LSTM model. The model takes a series
of car positions as input. It is associate to D = [(xt1 , yt1), (xt2 , yt2), ..., (xtl

, ytl
)] of l

coordinates in space. D contains twenty four data points. Input passed through
two LSTM layers, each has fifty neurons. Output of LSTM layer is associated
to cell trajectory [ct1 , ct2 , ..., cth

] with fixed size of h. We are using two samples
of cell trajectory as output. Time interval between sampling for both input and
output series is five seconds; therefore, by having last two minutes trajectory of
car we predict cell position in the next ten seconds. At the end the output of the
second LSTM layer is sent to a softmax output layer with one neuron per cell. By
partitioning in subsection 5.1.4 fifty Square cells with a length of 200 meters have
been generated. Size of cell corresponds to the coverage area of the roadside unit
to which a specific MEC server is associated. Corresponding values for l,h, and
number of neurons have been selected empirically. To do so, we modify one or more
variables (cause), and controls and measures the change in other variables (effect).

A common problem we all face when working on deep learning projects is how
optimizing the hyper-parameters. In deep leaning there are many parameters that
needs to be set. The goal of this thesis is not reaching maximum accuracy or
precision on the specific dataset. We are evaluating the efficiency of represented
methods to anticipate next 10 seconds trajectory in vehicular networks. We choose
particular value for some parameters, as it is suggested by some authors.The local
batch size is 32, According to [37] [38] a good default value for batch size is 32.
We can often use default value 0.001 for learning rate [58]. Adam optimizer is
straightforward to implement, and computationally efficient. It requires little
memory, and well suited for problems with large parameters. It is also appropriate
for non-stationary objectives [59]. We consider number of epoch equal to one to
avoid training time increase. Totally, the full model has 33350 parameters.

5.2 Server-Based Federated Learning
However, The main topic in this thesis is the performance evaluation of proposed
serverless FL algorithms; we first evaluate the performance of centralized FL using
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FedAvg algorithm explained in chapter two to evaluate loss and accuracy over
rounds, and to see how this algorithm is behaving on non-IId and unbalanced
dataset. For this particular case, we first eliminate cars’ dataset which are for less
than 3 minutes in the space, because in 3 minutes they collect few samples and
this amount of data can not be useful in training phase. Then we use the first 2/3
of the dataset contains 3323240 time series over 632 cars for the training part, and
the last 1/3 of dataset holds 911416 samples collected by 208 cars for the test set.

Figure 5.2: Loss evaluation on test set using Centralized
Federated Averaging.

Regarding the configuration parameters of the federating averaging algorithm,
we select ten clients randomly at every round to involve in the training phase, the
configuration is as following:

• the local batch size is 32,

• learning rate is 0.001

• number of epoch equal to one

• optimaizer : Adam
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The reason of selecting these values for hyper-perameters explained in subsection
5.1.5.

Figure 5.3: Accuracy evaluation on test set using
centralized Federated Averaging.

Usually in ML hundreds or thousands learning round is needed to have a high per-
formance model, so we select communication round equal to 700,1400, and 3000 to
evaluate the performance on the test set. By increasing number of communication
rounds, model learns more but very slowly. Figure 5.2 depicts when we train a
model for 3000 communication rounds. It shows that loss value over the test set
is slightly decreasing, although it has fluctuation. In addition, accuracy increases
steadily to reach almost 52 per cent at the last round shown in figure 5.3. These
fluctuations are because we select random nodes with different datsets at every
communication round.

We would expect that additional rounds of communication produces further per-
formance improvements; However, it is shown in figure 5.4 and 5.5 increasing
communication rounds does not lead to improvement of clients’ performance indi-
vidually.
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Figure 5.4: Test set performance of
one car using centralized Federated
Averaging

Figure 5.5: Test set performance of
one car using centralized Federated
Averaging

Avg acc Avg loss Min acc Min loss Max acc Max loss
FedAvg 0.52 2.54 0 0.34 0.88 9.64

Table 5.1: Test set performance of Fed Avg over 3000th
communication rounds.

In summary, by using centralized federated averaging for 3000 communication
round we achieve the average accuracy equal to 52 per cent and average loss equal
to 2.54. In table 5.1 under minimum accuracy we observe value zero, and 9.64
for maximum loss. These values imply that generated model does not make any
correct prediction on some cars’ dataset. According to downward trend depicted
in figure 5.4 and 5.5 we can not assure by increasing number of communication
round the finalized model performs well on all individual cars’ dataset. We propose
serverless federated learning algorithms discussed in chapter 4, not only to tackle
this problem but also to solve scalability issue and existence of single point of
failure in centralized federated learning. In section 5.3 results of these algorithm is
discussed.

5.3 Server-less Federated Learning algorithms
In this section, we evaluate the performance of the proposed algorithms (DFed Avg,
DFed Pow, and DFed Best explained in chapter four) through an online learning
method. We update models each time step when new data becomes available. We
check the availability of data every five seconds. If we increase this time step, we
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have less communication rounds; so it is harder to estimate performance of our
model(because nodes stay for short time in the plane). On the other hand, by
decreasing this value, It needs more time to run. In addition only a few samples
are added to the scenario that may not help to improve model.

We evaluate the performance of algorithms on 31 vehicles which are for more
than 20 minutes in the space (on average cars spend 20 minutes in the space).
Every car has its own route related to different part of city. Only a few cars are
evaluated as experiments are expensive in terms of time.

In the following experiments, when cars enter to the space collect samples for
five minutes and consider it as validation set. If we consider this time less than 5
minutes, nodes have not collected enough samples to evaluate models. On the other
hand, If we assign more than 5 minutes to collect data for validation set, number
of communication round will decrease and we can not evaluate the performance of
our model perfectly. Needed time to collect data for validation set is shown by v.

Then training phase starts. Cars communicate via a wireless technology. We
assumed transmission radius equal to 250 meters. If we consider transmission ra-
dius larger we have more nodes involved in training phase, so it is computationally
more expensive. By considering a less value lower than 250 meters, number of
involved nodes in training phase is less and model needs more time (communication
round) to learn.

Car sends its model to all neighbours in its transmission radius to train. If
instead of sending models to neighbouring nodes, we select nodes randomly, DFed
Avg and centralized Fed Avg will be equivalent.

All neighbours train the shared model and send it back to the source.

Depending on time spent in the space by each car, maximum number of learning
round is different amongst cars. We limit number of learning round to 115. It is
equal to almost 10 minutes.

Totally, we consider observed samples over first 5 minutes as validation set, next
10 minutes car communicates with others to build its model. Needed time to do
learning phase is shown by lp .

In the following, we appraise the performance of three merging methods used
by DFed algorithms ( DFed Avg, DFed Pow, and DFed Best) while the test set is
defined in two ways:

41



Experiments and results

• short rolling test set window: Test set at time interval i constituted of those
samples associated to the time interval (i− l, i + h) where l is time duration
of input sequence, and h is the forecast horizon. l represents a total of 120
seconds past samples, and h represents next ten seconds from the current
moment.

• fixed test set window: it contains observations collected over m minutes
after finishing learning phase (v+lp, v+lp+m). In all below experiments we
considered m equal to 5 minutes. Like what we do for validation set, to have
enough samples in test set to evaluate the performance of model.

Not only by changing hyper-parameters of LSTM model the results may change
but also changing in size of validation set might lead to different results. We also
consider the effect of validation set when we have :

• Fixed size rolling validation set : Validation set at time interval i contains
observations collected over recent five minutes of nodes’ trajectory.

• Expanding size validation set : In the server side observations over first 5
minutes are considered as validation set. By passing time new observations
are added to the validation set so its size increases.

5.3.1 Experiment 1: short size rolling test set
In this experiment, We will evaluate the performance of DFed Avg, DFed Pow,
DFed Best by considering a short rolling window for the test set and a fixed size
rolling validation set window.

Avg acc Avg loss Min acc Min loss Max acc Max loss
DFed Pow 0.72 3.1 0.1 0.08 0.93 6.59
DFed Avg 0.41 3.5 0 0.73 0.79 15.3
DFed Best 0.65 4.7 0.07 0.76 0.9 14.9

Table 5.2: Performance evaluation of algorithms on short rolling test set window
over 115 communication rounds.

Table 5.2 is demonstrating accuracy and loss corresponding to each algorithm
we used in this thesis. We explain some elements of table:

• Average accuracy and loss: First we compute average accuracy and loss of
each car’s dataset over 115 communication rounds. Then we take average over
all obtained averages.
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• Minimum accuracy and loss: First we compute average accuracy and loss of
each car’s dataset over 115 communication rounds. Then we take minimum
over all obtained averages.

• Maximum accuracy and loss: First we compute average accuracy and loss of
each car’s dataset over 115 communication rounds. Then we take maximum
over all obtained averages.

Figure 5.6: Accuracy evaluation on short rolling test set
window.

It is shown in table 5.2 DFed Pow gives a pretty high average accuracy , the
average loss is rather high as well; this means the generated model is not so confi-
dent. Instead DFed Avg does not obtain a good result in both accuracy and loss
because it just dedicates weights to a model based on number of samples involved
in training phase. The last line of table illustrates results came out from Dfed Best
which is not the best in spite of its name and this tells us that choosing the best
model according to criteria used in this algorithm is not necessarily correct. By
looking at column minimum accuracy, we observe by using DFed Avg some cars
are not able to do any prediction correctly like what we experienced in centralized
Fed Avg after 3000 communication rounds (explained in section 5.2).
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Figure 5.7: Loss evaluation on short rolling test set
window.

Figure 5.8: Loss evaluation when going to new cell.
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In general, DFed Pow has privilege with respect to others. It gives higher av-
erage accuracy and lower average loss.

Figure 5.6 provides a detailed information on accuracy at every communication
round. Except the DFed Avg the other two algorithms are following similar general
trend. This contrasts when we look closely from communication round 34 to 76. In
this interval we witness a continuous down fall in DFed Pow and DFed Best where
as DFed Avg exposes a pretty constant behavior in this interval. By considering
datasets we observed in this time interval many nodes are going to new cell, and
these two algorithms do not perform well to predict new cell. From communication
interval round 88 on all algorithms experience an analogous behavior. Among all
three algorithms, DFed Pow produces higher accuracy in majority of rounds due to
better decision making mechanism.

Loss evaluation in detail is exposed to see in figure 5.7. From the beginning
up to round 34 all 3 algorithms are following an almost constant trend with some
fluctuations in DFed Avg.Then DFed Pow and DFed Best starts to rise and increase
their loss value from 1.5 to 3 sharply just after passing 4 rounds and from that
round on DFed Pow stops elevating and keeps its stability loss between values 3 and
4 after round 79 to the end, while DFed Best rockets to loss 9 after experiencing
a short time fluctuation between loss 4 and 6. DFed Avg remains waving almost
without significant change after first round between loss 2 and loss 5. Like the case
of centralized FedAvg it learns very slowly.

As we observed, DFed Pow and DFed Best do not perform well to predict new cell,
they have delay to recognize in which cell they are. So we asses the performance of
algorithms when cars go from one cell to another one. In figure 5.8 "0" represents
time that car arrives from another cell to the new cell. Loss value of all three
algorithms starts to grow before reaching to new cell and reaches its peak 5 seconds
after arriving to new cell and then starts to decrease steadily. We observe DFed
Avg has lower loss, in addition it can predict new cell with 20 per cent accuracy,
while DFedPow with 10 per cent and DFed Best only 7 per cent.

To sum up, the generated model by DFed Pow predicts with lower loss and more
accuracy, while to predict moving to new cell it has delay, and can not perform well.
We have to tune parameters and try to decrease this delay. In addition, in this
experiment as test set is changing at every round (because of changes in patterns of
mobility over time) we can not estimate how well in future this generated models
will work. To evaluate the performance of models after several communication
rounds, we assign a portion of time to learning phase and then we evaluate the
performance of generated model on the test set. In experiment 2 we will see the
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results.

5.3.2 Experiment 2: Fixed test set window
Unlike previous experiment, we are not evaluating the performance of algorithms
on short rolling test set window; instead we use a fixed test set as it is explained in
section 5.3.

Avg acc Avg loss Min acc Min loss Max acc Max loss
DFed Pow 0.59 5.54 0 0 1.0 16.11
DFed Avg 0.66 2.05 0 0.0 1.0 15.1
DFed Best 0.39 8.6 0 0 1.0 16.11

Table 5.3: Performance evaluation of algorithms on static
fixed test set window over 115th communication rounds.

Figure 5.9: Accuracy evaluation on fixed test set window

It is shown in table 5.3, unlike previous experiment DFed Avg provides the best
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average loss and accuracy amongst 3 algorithms. Like what we had in centralized
Federated Averaging, and experiment 1 for DFed Avg, all three algorithms can not
make any correct prediction on some datasets. By considering the performance
of algorithms on each car dataset, we sometimes see, in one specific car model
generated by DFed Avg diverges and is not able to learn anything to make a
prediction on its test set. While models generated by DFed Pow and DFed Best
are showing different behavior, and they converge on the same car’s test set. For
some other cars model generated by DFed Avg converges while DFed Pow, and
DFed Best models diverge. DFed Pow and DFed Best are showing more or less the
same behaviours

However, we evaluated performance of DFed Avg and centralized Federated Av-
eraging on different test sets. we can roughly say by using DFed Avg we need
less communication rounds to generate a high performance model, depending on
the way of selecting involved nodes in the training phase. As usually node cares
more about models generated on more similar datasets to improve their models.
Similarities in datasets of nodes which are in each others’ transmission radius
coverage is more probable.

Evaluation of loss and accuracy over communication rounds are depicted in figure
5.10 and 5.9. In all rounds accuracy of DFed Avg is higher than others, and DFed
Pow in almost all round reaches higher accuracy than DFed Best. Three algorithms
have upward trend, although generated models by DFed Best and DFed Avg can
not almost make any correct prediction in first 60 rounds and they can not improve
their models. It means only 60 communication rounds is enough for them to reach
to the same accuracy and loss. Then they have to predict next 5 minutes after 60
rounds ( 60 rounds is equal to 5 minutes). We also see from round 80 on DFed Avg
sticks to accuracy around 65 percent.

By looking at figure 5.10 we observe 3 algorithms have downward trend. DFed Avg
not only at first communication round is experiencing by far lower loss than others
but also keep this distance until the end of communication round.

In general, as loss value of DFed Avg is decreasing steadily over communication
rounds, it seems by increasing number of communication rounds we can experience
lower loss and higher accuracy. While the performance of DFed Pow and DFed
Best improves as we are getting close in time to the point in time where test set
data is taken, it seems they need less communication round to converge the model.
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Figure 5.10: Loss evaluation on fixed test set window

5.3.3 Experiment 3: how validation set impacts on perfor-
mance

In this experiment we consider the effect of size of validation set on DFed Pow
algorithm while we have :

• Expanding size validation set: at every time step, new observed samples are
added to validation set to increase the size of validation set (for more details
see section 5.3).

• Fixed size validation set : it is a rolling validation set like what we considered
in experiment 1 and 2.

This experiment is done only for 70 communication rounds equal to 6 minutes;
since in the previous experiment(2) it seems DFed Pow needs less communication
round to generate a high performance model. Like experiment 2 we have fixed test
set contains samples collected over 5 minutes after finishing learning phase.

In figure 5.11 loss reaches at lower value by using expanding validation set, with
respect to using fixed size rolling validation set over all communication rounds
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Figure 5.11: Evaluate the effect of size of validation set
on the fixed test set

except first rounds that both fixed size and expanding validation set have more
or less the same size. Both curves are following approximately the same pattern,
but only at the ending rounds loss value generated by DFed Pow using fixed size
rolling validation set increases sharply, in contrary another one decreases drastically.

DFed Pow is giving more weight to more similar models. When we have an
expanding validation set, it means we have a validation set with more samples.
When we have more samples, it is more probable to evaluate the loss of models
much preciser. Hence, giving more weight correctly to a model which is more
similar.
Moreover, as the size of validation set grows by passing time; it is more probable to
have various similarities between clients’ models and validation set of server. For
example, if validation set contains 100 time series samples, similar points between
server validation set and clients’ models vary from 0 to 100. While when we have a
fixed size validation set contains observed samples over less time, for examples it
contains 20 time series samples, similar points between server validation set and
clients’ models vary from 0 to 20. The probability of having the same number of
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similar samples between clients’ model and validation set of server is higher. So
server will give the same weight to these models to generate a meta-model. In this
case we are not able to distinguish amongst received model and select the more
similar one to give more weight.

Notice that in this scenario we could not take size of validation set so large
as the size of datasets is limited. On average vehicles are for 20 minutes in the
space. We need to assign a portion of time to collect data points for validation
set, another portion of time to learning phase and the last portion for test set
to evaluate our models. In the next chapter, weaknesses and strengths of each
algorithm are discussed and the limitation of the assessment that we have. What
should be done to overcome them is discussed in next chapter as well.
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Chapter 6

Conclusion and future
works

6.1 Conclusion and future works
In this work, we proposed three serverless federated learning approaches using
three different techniques to combine models to tackle the learning problems of
centralized federated learning. These algorithms are asynchronous and peer-to-peer,
which personalize model for each node through online collaborative learning. The
proposed distributed federated learning approaches were validated on a car trajec-
tory prediction scenario where an LSTM model was trained to predict the next ten
seconds cell trajectory of vehicles by using models updated by neighbouring nodes
through a collaborative method.

Our experiments show, DFed Pow trains models which are performing efficiently
almost on all provided datasets when we have a short rolling test set window.
Instead, DFed Avg needs more communication rounds to make a correct prediction,
so it is instrumental when we can train model for a while and then check its perfor-
mance, or we can increase the size of transmission radius to increase the number
of involved clients in the training phase. Increasing number of involved clients in
the training phase usually decreases the number of communication rounds needed
to converge. On the other hand, it also outcomes to higher communication costs,
so it is necessary to trade-off to find out which one is more important in our problem.

Models generated by all algorithms can not predict well when a car is going
from one cell to another cell. We evaluated the performance of models only on
transmission time (cars go from one cell to another cell). By using DFed Avg model
we reached accuracy equal to 20 per cent, and model generated by DFed Pow
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algorithm, only predicts 10 per cent times correctly. DFed Best model performs
the worst amongst all. As nodes’ datasets are unbalanced, and non-iid, it seems
we need to assign more time to tune parameters and do more experiments to
reach higher accuracy. In future work, we consider the effect of Machine Learning
parameters on models generated by DFed Avg and DFed Pow, and try to improve
accuracy on transmission time. We do not evaluate the performance of DFed Best
in future work, as it does not have any advantages to others in all experiments.

We observed, the way of merging models to create federated model is so cru-
cial. As obtained results of DFed Avg, and DFed Pow on the same car were
totally different. For some cars, DFed Avg diverges, while DFed Pow converges,
and vise-versa. In future, we apply a merging method that implies both merging
characteristic of DFed Avg and DFed Pow to be able to perform well on more cases.

In this work, we did not consider the case when there are malicious users and
adversaries. In future, we will study the impact of having an unreliable network on
DFed Pow and DFed Avg algorithm.

Finally, as revealed in the considered case study, nodes do not use shared person-
alized models of others to improve their model, or to make a prediction; Hence,
having a few shared meta-model in the network is an exciting direction for future
work.
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