
POLITECNICO DI TORINO

Faculty of Engineering
Master of Science in Electronic engineering

Master Thesis

Temperature control system
development in microfluidic
environment for biological

purposes

Supervisor
Prof. Danilo Demarchi

Candidate
Enrico Picco

University tutor
Pázmány Péter Catholic University - Faculty of Information Technology

and Bionics
Dr. Laki András József

July 2020





Abstract

Microfluidic devices are rising in importance during the last decades. Biomedi-

cal science is one of the most important fields of application of these devices, since

they are one of the main innovative tools that can help life and medical scientist

to solve biological and biomedical problems through the application of engineering

tools. For example, the applications at the interface of microfluidics and biomedical

sciences have given birth to countless devices and research fields: single cell anal-

ysis, circulating tumour cells (CTC) detection, food safety diagnostic, lab-on-chip

(LOC), blood analysis, and many others.

In particular, there are some kind of microfluidic devices (i.e. foodborne parasitol-

ogy chips) that requires precise working condition to perform in a correct way.

The system developed and presented in this thesis is an embedded system that can

assure an accurate temperature control of the microfluidic device , and it is also com-

patible with the instruments of the Microfluidic Laboratories of the Pázmány Péter

Catholic University in terms of size , instruments needed, and power consumptions.

The main application for which the system was needed by the staff of the Labora-

tory is for detection of foodborne parasites by filtration microfluidic devices. The

parasite detected in this devices is Trichinella spiralis larvae, which are organisms

that can be maintained alive only in a temperature range close to the human body,

since they live and grow in the digestive human system and then spread further in

other tissues (blood, muscles, lymph).

The correct functioning of the embedded system has been tested and verified. It

is capable of maintain the temperature of the microfluidic device fixed to a precise

temperature for a specific amount of time: both these parameters are decided by

the user. This enhances the flexibility, making this embedded system able to work

with any microfluidic device that requires a temperature-controlled environment.

i



Acknowledgements

If I had to thank all the people that supported me through these years of hard work,

this paragraph would occupy more space than the explanation of the work done.

In primis, I would like to thank my family for having supported my studies and

taught me the importance of hard working.

As a student, I would like to thank all the people that played an important role

in my academic career: Prof. Danilo Demarchi for giving me the opportunity to

have such an achieving experience abroad, Dr. Laki Andràs for his great support

and availability during the time that I spent in Budapest, and all the students that

shared with me this journey.

As a person, I would like thank all my friends from Savigliano which were close

to me during these years, for all the amazing moments and laughs shared that are

the fuel to keep moving forward.

Last, but absolutely not least, I would like to thank from the bottom of my heart all

the people that I met during my stay in Budapest, especially my flatmates: thanks

for having filled me with enthusiasm toward whatever challenge I will face in my life

, and for showing me that it is possible to have a family even when you are far from

home.

ii



Contents

1 Introduction, Motivations and Goals 1

1.1 Microfluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Application: Trichinella Spiralis . . . . . . . . . . . . . . . . . . . . . 2

1.3 Final goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 System Overview 5

2.1 Closed loop control system . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Set point (reference) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 PID controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Heating element : Thermoelectric cooler/heater (TEC) . . . . 10

2.4.2 Driver : PWM and H-Bridge . . . . . . . . . . . . . . . . . . . 11

2.5 Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Mathematical Model 19

3.1 Motivations and goals of the mathematical model . . . . . . . . . . . 19

3.2 Steps for the building of the system . . . . . . . . . . . . . . . . . . . 19

3.2.1 Overall system . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.2 Simulink Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Tuning the PID controller . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Hardware 35

4.1 Components List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.2 H-Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.3 Thermoelectric cooler (TEC) . . . . . . . . . . . . . . . . . . 38

4.1.4 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.5 User friendly interface: LCD display and pushbuttons . . . . . 40

4.2 Assembling of the system . . . . . . . . . . . . . . . . . . . . . . . . . 42

iii



5 Software 44

5.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Working code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Complete code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6 AutoCad design and 3D printing 62

6.1 Heating chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Testing and final results 73

7.1 final results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76





List of Figures

1.1 T. spiralis life-cycle: A) Larvae are ingested in raw or under cooked

meat, B) Live in small intestine, C) Newborn larvae are carried

throught bloodstream, D) Newborn larva enters skeletal muscle cell,

E) Larva matures in muscle [9] . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Trichinella larvae surrounded by bubble-shaped precipitates after 24

hours of incubation at 37 ◦C [12] . . . . . . . . . . . . . . . . . . . . 4

2.1 Design flow of the overall system . . . . . . . . . . . . . . . . . . . . 5

2.2 Closed-loop control system . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Set point block with basic signals highlighted . . . . . . . . . . . . . . 7

2.4 Controller block with its input and output signals . . . . . . . . . . . 8

2.5 PID controller structure . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.6 Actuator block with its input and output signals . . . . . . . . . . . 9

2.7 Structure of a Peltier cell . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.8 H-Bridge circuit; its bidirectionality is highlighted by showing (red

lines) the two opposite current directions possible. . . . . . . . . . . . 12

2.9 PWM example: the blue waveform is the PWM signal while the red

one is the resulting waveform . . . . . . . . . . . . . . . . . . . . . . 13

2.10 Average voltage detected in input by the H-Bridge depends on the

duty cycle of the PWM signal: the greater the duty cycle, the greater

the average voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.11 PWM control signal with high duty cycle measured with an oscillo-

scope during the testing of the system . . . . . . . . . . . . . . . . . 15

2.12 PWM control signal with low duty cycle measured with an oscillo-

scope during the testing of the system . . . . . . . . . . . . . . . . . 15

2.13 Actuator block with its sub-blocks: PWM generator, H-Bridge and

TEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.14 Plant block with its input and output signals: actuator signal and

output (i.e. the temperature) . . . . . . . . . . . . . . . . . . . . . . . 16

2.15 Sensor block with its input and output signals: output and feedback

signal (i.e. the temperature) . . . . . . . . . . . . . . . . . . . . . . . 17

vi



2.16 Block scheme of the temperature control system . . . . . . . . . . . . 18

3.1 Design flow of the mathematical model . . . . . . . . . . . . . . . . . 20

3.2 Mathematical model of the system . . . . . . . . . . . . . . . . . . . 21

3.3 Simulink block of the PID controller: the tuning of the parameters

can be done in the section highlighted in red . . . . . . . . . . . . . . 22

3.4 Simulink block of the PWM generator . . . . . . . . . . . . . . . . . 23

3.5 Simulink block of the H-Bridge, implemented using Simscape . . . . . 25

3.6 Simulink block of the Thermoelectric Cooler . . . . . . . . . . . . . . 28

3.7 Output of the Simulink model for with Kp = Ku . . . . . . . . . . . . 30

3.8 Simulation of the Simulink model, with an input temperature of 37 ◦C 31

3.9 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.11 Simulation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Raspberry 3 model B board . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Arduino Uno board . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 The L298N H-Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 The power supply Keithley 2410 . . . . . . . . . . . . . . . . . . . . . 38

4.5 The Peltier cell TES1 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 The aluminium heat sink used . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Th temperature sensor DS18B20 . . . . . . . . . . . . . . . . . . . . 40

4.8 Pushbutton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.9 The LCD 1602 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.10 The Weller WSD81 soldering set . . . . . . . . . . . . . . . . . . . . 42

4.11 Schematic of the complete system: in blue the connections between

Arduino and the display, in green all the other general connections.

In red the connections to the 5 V pin of Arduino while in black the

ones to the Ground pin of Arduino. Finally, in brown the connections

with the external power supply. . . . . . . . . . . . . . . . . . . . . . 43

5.1 Initial state of the system when it is powered on . . . . . . . . . . . . 49

5.2 Desired temperature selected . . . . . . . . . . . . . . . . . . . . . . . 50

5.3 Desired time selected: in this example, 5 hours . . . . . . . . . . . . . 51

5.4 Display when the system is working, with the current temperature

and the remaining time displayed . . . . . . . . . . . . . . . . . . . . 52

6.1 Inverted microscope Olympus CKX53 . . . . . . . . . . . . . . . . . . 63

6.2 Close-up on the lenses of the microscope . . . . . . . . . . . . . . . . 64

6.3 AutoCAD model of the Heating chamber . . . . . . . . . . . . . . . . 64

6.4 The Heating chamber obtained with 3D printing . . . . . . . . . . . . 65



6.5 The Heating chamber with the TEC modules . . . . . . . . . . . . . . 65

6.6 The Heating chamber on the inverted microscope with the TEC mod-

ules, the temperature sensor (shown in two different positions) and

the Petri dish containing the microfluidic device . . . . . . . . . . . . 66

6.7 View from the bottom of the Heating chamber on the inverted micro-

scope: the lenses have enough space to rotate without touching the

structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.8 First version of the Case. The structure on the left is the box in which

all the hardware can be contained: it presents the apertures for the

LCD and the pushbuttons, and several other holes suitably sized for

the cables of the Arduino, the power cables for the H-Bridge and the

temperature sensor. The small channel on the bottom left part is

sized to hold in a vertical position the stripboard. The structure on

the right is the cover of the box. . . . . . . . . . . . . . . . . . . . . 68

6.9 Final version of the Case in AutoCAD . . . . . . . . . . . . . . . . . 69

6.10 Final version of the Case obtained with 3D printing . . . . . . . . . 69

6.11 Case with the Arduino and the L298N mounted. . . . . . . . . . . . 70

6.12 Stripboard on the soldering helping hand during the soldering process 71

6.13 Complete Case with all the hardware mounted on it . . . . . . . . . . 72

6.14 Close-up on the left side of the Case: the apertures for the power and

USB cables of Arduino, as well as the black pushbutton, are visible. 72

7.1 Test performed with an input temperature of 37 ◦C . . . . . . . . . . 73

7.2 Rise Time vs Selected Temperature . . . . . . . . . . . . . . . . . . . 75

7.3 Final version of the system . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Final version of the system . . . . . . . . . . . . . . . . . . . . . . . . 77





List of Tables

3.1 Values for the mathematical modelization of the H-Bridge . . . . . . 24

3.2 Values of the peltier module TES1-12704 . . . . . . . . . . . . . . . 27

3.3 Values of the Ziegler-Nichols tuning method . . . . . . . . . . . . . . 29

3.4 Results for three different simulations of the Simulink model . . . . . 34

4.1 Specifications of the DS18B20 temperature sensor . . . . . . . . . . . 40

7.1 Final results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x





Chapter 1

Introduction, Motivations and

Goals

This thesis project has been carried out during a mobility period of five months, in

the spring semester of the academic year 2018/2019 at the Pázmány Péter Catholic

University of Budapest. The work has been done in the Microfluidic Laboratory sit-

uated in the facilities of the Faculty of Information Technology and Bionics, under

the supervision of Dr. Laki András József.

The project is a Temperature control system for microfluidic devices em-

ployed in biological applications which was required by the Microfluidic Labo-

ratory in order to perform studies on microfluidic chips for the study of the parasite

Trichinella Spiralis, but the system was adapted to cover a broader range of applica-

tions. In section 1.1 will be given an overview about the kind of microfluidic devices

taken into account in the design of the system while section 1.2 gives an example of

application, which is the study of T. Spiralis.

1.1 Microfluidics

Nowadays microfluidic devices are rising in importance in many fields, and one of

the main applications is the development of lab-on-chip (LOC) devices as point-

of-care (POC) diagnostic tools. Usually LOC devices includes several features and

modules, such as sample transport, sample preparation, separation, detection and

analysis module [2].

One of the key points in these devices is the miniaturization of reactions and assays,

which confer many advantages over ”macro scale” techniques: lower volumes, higher

surface to volume ratio, shorter diffusion distances, smaller heat capacities, faster

heat exchange, shorter assay times, improved parallelization and better process con-

trol. Fort these reasons, POC diagnostic test devices provide fast results on a wide

1



range of medical tests [3].

POC devices have usually to deal with biological samples (blood,serum, etc.) or

with pathogen detection (bacteria, parasites, etc.) hence one of the vital parame-

ters to be controlled for this kind of applications is the temperature: and for this

reason a temperature control system for microfluidic devices plays a fundamental

role.

Since microfluidic technologies are an efficient alternative of serologic separations of

blood borne parasites, one possible application is the detection of food-borne par-

asites by the use of filtration microfluidic devices: these techniques offer an oppor-

tunity for separating and detecting different parasites, for example the Trichinella

spiralis (T. Spiralis). This last is the main application for which the temperature

control system has been created, but the project has been adapted to cover a broader

range of applications in which the temperature of a microfluidic chip has to be kept

under control.

1.2 Application: Trichinella Spiralis

T. Spiralis is not only a threat to human health, but also represents an economic

problem. Infection of humans occur when Trichinella larvae are ingested, and they

are found in muscle tissues of animal’s meat, typically under cooked pig or horse

meat [4]. The lowest infection dose causing diseases in not clearly defined but is

approximately between 100 and 300 larvae ingested [5].T. Spiralis is a small ne-

matode with size of around 1 mm, with differences between genders (females are

smaller than males) [6]. The infection begins when an individual (a human or an

animal) ingests contaminated meat containing larvae. The stomach acid melts the

capsule-like cyst and the larvae is released and enters in the small intestine [7] and

its migratory phase begins, as shown in figure 1.1. During its lifetime, a single worm

of T. Spiralis can generate around 500-1500 newborn parasites, that spread in the

muscle fibers using the circulatory system. Once in the muscle fibers, they become

infective in 15 days and remain for months or even years [8] [9].

The early diagnosis of human trichinellosis is difficult because the observed symp-

toms are not specific enough [10], the standard tests available to diagnose it are not

sensitive to light infections and to the early stage of infection [11].

The technique for the detection of T. Spiralis for which the temperature control sys-

tem is needed is called Microprecipitation (MP): when an antigen and an antibody

come in contact, the reaction manifests with visible precipitate. In our application

the T. Spiralis are incubated in a serum containing specific antibody, and if they are

2



Figure 1.1: T. spiralis life-cycle: A) Larvae are ingested in raw or under cooked meat,
B) Live in small intestine, C) Newborn larvae are carried throught bloodstream, D)
Newborn larva enters skeletal muscle cell, E) Larva matures in muscle [9]

incubated at 37 ◦C for 24 -36 hours they produce microscopically visible precipitate,

thus making possible to detect their presence [12].

1.3 Final goal

The temperature control system that has to be designed has to meet different re-

quirements. First of all, it has to be compatible with the tools of the Microfluidic

Laboratory of the University, since it will be used there: this means that it has to

fit in the inverted microscope of the Laboratory, and also that it has to be designed

so that it can be used with the power supply and the other electronic equipment.

Therefore, the system should be capable of keep the temperature constant to 37 ◦C

for at least 24 hours as required in the application of T. Spiralis. However, in order

3



Figure 1.2: Trichinella larvae surrounded by bubble-shaped precipitates after 24
hours of incubation at 37 ◦C [12]

to make it more useful and flexible, the system is designed so that the user can select

both the desired temperature of the microfluidic device and the amount of time

in which the temperature of the chip has to be controlled.

Finally, the system is designed to be portable, stand-alone and robust.

All the design choices are explained in the following chapters: first of all it is given

an overview of the control system, then a Simulink mathematical model is cre-

ated in order to perform simulations and choose the best components; next, the

hardware and software employed are described in detail. After that there is a

description of the 3D-printed structures used to build the system and finally the

description of the project ends with the Testing and final results.

4



Chapter 2

System Overview

The previous chapter is focused on the main motivations and goals of the work,

while from now on the discussion will be focused on the realization of the system.

Since at the beginning the system had to be built from scratches, a design process

flow has been followed: this flow is exploited in figure 2.1.

Figure 2.1: Design flow of the overall system

5



The basic idea is to employ a closed loop control system. All the specifica-

tions of the system (blocks used and signals) and the theory are explained in the

next sections.

2.1 Closed loop control system

A closed loop control system is a set of mechanical or electronic devices that

automatically regulates a process variable to a desired state or set point without

human interaction [13, 14]. The main advantages of choosing a close loop systems

over an open loop systems are namely the sensitivity to disturbances and the inability

to correct for these disturbances. [15]

The basic idea of the closed loop system employed in this project in exploited in

picture 2.2.

Figure 2.2: Closed-loop control system

A brief explanation of the blocks :

• the reference signal , which is the input variable of the system: in this case

the reference signal is the temperature selected by the user;

• the controller; its input is the error signal (i.e. the difference between the

reference and the feedback signals) and gives as output the control signal;

• the actuator; receives the control signal and transform it into an actuating

signal which drives the plant;

• the physical system (plant) is our system that we want to control;

• the sensor reads the output from the plant and transform it into a feedback

signal which is fed back to the beginning of the system, subtracted to the

reference so that the error signal can be constantly updated.

6



In the next sections all the blocks and signals will be explained in detail.

2.2 Set point (reference)

The set point or reference signal is the input of the system. In this temperature

control system the set point is the desired input temperature of the microfluidic de-

vice, which can be selected by the user.

Figure 2.3: Set point block with basic signals highlighted

The input temperature is thus constantly subtracted from the feedback temper-

ature coming from the temperature sensor, obtaining as a result the error signal

which drives the controller; ideally, after a certain time the input temperature and

the feedback temperature should become the same, leading to an error signal equal

to zero. In reality, the error signal will never be exactly zero because of many effects

like oscillations, bias errors, etc.

2.3 PID controller

The controller is one of the most important elements of the closed loop system and

the choice of this block is of great relevance for the correct behaviour of the system.

The controller chosen for this system is a PID controller , suitable for the tem-

perature control application [16] being a good trade-off between performance and

complexity [17, 18] . If tuned correctly, it can improve the stability of the system,

7



Figure 2.4: Controller block with its input and output signals

reduce the steady state error to zero and reduce the response time needed to reach

the input (reference) value.

PID controllers have to be tuned using the three variables Kp, Ki and Kd, whence

the name; the structure of these controllers is shown in figure 2.5 and explained

below.

Figure 2.5: PID controller structure

The control signal (i.e. the output of the PID controller ) u(t) is a function of

the error value e(t) according to the equation 2.1

u(t) = Kpe(t) +K i

Z
e(t)dt+Kd

∂e(t)

∂t
(2.1)

where the first contribution is called proportional, the second integral, the third

derivative. More in detail:

• the proportional contribution compensates for the present error, it is a multi-

plication of e(t) multiplied by the proportional gain Kp; in general a large value

8



of Kp increases the speed of the system but can also generate an oscillation if

too large;

• the integral contribution compensates for the errors in the past, it is obtained

by multiplying the integration of e(t) and the integral gain Ki; it helps the

system to reach the reference value faster as well as decreasing the steady

state error;

• the derivative contribution is a prediction of errors in the future, based on

the present rate of errors , and it is a multiplication between the differenti-

ation of e(t) and the derivative gain Kd; it improves the stability of the system.

The transfer function of the PID controller is obtained using Laplace transform

to equation 2.1, obtaining equation 2.2:

U(s) = Kp +
K i

s
+Kds (2.2)

The tuning of the PID controller, i.e. the choice of the three constants Kp,

Ki and Kd, has been has been carried out with the Ziegler – Nichols method; the

explanation, application and results of this method are exploited in section 3.3

2.4 Actuator

Figure 2.6: Actuator block with its input and output signals

The next block is the actuator: as exploited in picture 2.6, it has as input the

control signal coming from the controller and as output the actuator signal that will

be fed straight into the plant .

In the real word, the function of this block is to convert the input electric control

signal into a precise heat flux which is responsible of the temperature of the mi-

crofluidic device under test.

How to implement this block in the real word as been one of the most important

9



decision in the design of the system, since there is a huge choice of solutions and

components that can be used in a temperature control system. The main choices,

that are explained in section 2.4.1 and 2.4.2 are related to the heating element

and the driver.

2.4.1 Heating element : Thermoelectric cooler/heater (TEC)

The heating element is the device responsible of converting the electrical energy into

heat.

For this system an external heating approach is used, which requires obviously an

external heater. Two categories of these devices have been taken into account for

the choice; their differences is the physical process employed to generate heat:

• resistive heaters : they use the Joule heating (also known as Ohmic heating or

resistive heating) , i.e. the process by which the passage of an electric current

through a conductor produces heat;

• thermoelectric heaters : they convert directly the temperature difference in

electric voltage and vice versa via termocouple;.

Taking into account both several examples in technical literature [19] [20] [21]

and a trade-off between performances and costs, the device chosen is the Peltier

cell, also known as Thermoelectric Cooler (TEC) .

It is a thermoelectric device built with many Peltier - effect junctions in series. It is

basically a solid - state heat pump with the aspect of a thin square plate: one of the

two sides absorbs heat, while the other one emits heat. The direction of the heat

transfer depends on the sense of the DC current applied at the nodes of the device.

Figure 2.7: Structure of a Peltier cell

10



A common Peltier cell is made by two doped semiconductor materials (n-type

and p-type), connected by a copper slat. If a voltage drop is applied between the

two semiconductors, one of the two slats is heated while the other one cools down;

if the voltage is reversed, also the flux of thermal energy is reversed.

The main problem of the cell is the control of the current intensity and the corre-

spondent increase of heat; if the thermal source changes value of heating emission,

also the increase made by the cell have to change accordingly. This change has to

be made with the help of temperature sensors , so that with an appropriate close-

loop feedback circuit , the current intensity supplied to the cell can maintain the

temperature in the admitted range.

A more rigorous discussion about the equations that model the functioning of the

cell (i.e. the equations that relate heat flux, voltages and currents) is presented in

section 3.2.2: in this section the behaviour of the Peltier cell has been described from

a mathematical point of view, in order to be implemented in the Simulink model.

2.4.2 Driver : PWM and H-Bridge

The next component to be selected is the driver of the TEC: the selection scheme

of the TEC driver depends on many requirements:

• mode of operation: if both cooling and heating modes of operation are needed,

the driver should be able to change the output polarity;

• power supply : driver with single power supply is better suited with the instru-

mentation of the Microfluidic laboratory;

• maximum output voltage and current of the driver, which must not exceed the

maximum admitted input values of the TEC in order to avoid the breakdown

of the Peltier cell;

• efficiency and noise compliance.

Traditionally, depending on these requirements, many different techniques are

available for the control of amplitude and direction of the TEC current [22]: linear

driver , switch mode power supply (SMPS) and H-Bridge driver .

In linear drivers the switches operate continuously in the active region, thus with

continuous heat dissipation; furthermore their efficiency is quite low (it can not be

increased more than 60%) , and for providing bidirectional current they need two

different power supplies. For these many reasons, they were discarded.

In SMPS the switches operate in cutoff and saturation region, thus the power losses

are lower. But also for this kind of drivers two different power supplies are needed

11



to provide bidirectional current in output, so they were also discarded.

Besides the traditional techniques, many different solutions were provided by the

technical literature such as dedicated integrated circuitry [23, 24] or use of current

pulses [25], or a customized temperature controller [26] : unfortunately the main

drawback of this solutions is the cost, since all of them employ components or de-

vices which are not available in the Microfluidic laboratory and are too expensive

to purchase .

Taking into account all these considerations, the driver chosen is a H-Bridge

driven with Pulse Width Modulation (PWM), which is a traditional techniques

used also in many temperature control systems employed in modern applications

[27, 28].

H-Bridge is a MOSFET based bridge , and its configuration allows the control of

both the amplitude and the direction of the current flowing in the TEC. Due to

its great flexibility, it is used in countless applications, such as motor controllers ,

AC/AC converters, DC-to-AC converters and many other kind of power electronic

components. One of the main advantages is that with this type of driver only one

power supply is needed for bidirectional output current; furthermore it also ensures

good regulation, good precision and even fewer power losses.

Figure 2.8: H-Bridge circuit; its bidirectionality is highlighted by showing (red lines)
the two opposite current directions possible.

In order to reduce even more the power consumption of the driver, Pulse-width

modulation (PWM) is employed to drive the H-Bridge.

PWM is a digital modulation of an electric signal which allows to obtain an analog

signal using a digital source: the resulting analog signal depends on the duty cycle

12



(i.e. the ratio between the period of high signal and the total period of the signal) of

the digital square wave. It is used to change the voltage, i.e. the power, transmitted

to a generic load: it is used in several applications such as Dc motors, LEDs, and

power supplies. The main advantage of this technique is the smaller power con-

sumption when it is used with transistors or MOSFET : the power is the product

between the voltage difference across the device and the current that flows into it,

and since when a transistor conducts the voltage difference across it is almost zero

and when it is not conducting the current is zero, the power consumption in both

cases is almost zero.

Figure 2.9: PWM example: the blue waveform is the PWM signal while the red one
is the resulting waveform

The use of PWM in this system is related to the concept of average voltage.

When the PWM generator sends a square wave, if the frequency of the signal is

high enough, the H-Bridge does not detect a digital signal but an analog voltage

whose value is directly proportional to the duty cycle of the digital signal : the

greater the duty cycle, the greater the analog voltage. This is displayed in figure

2.10.

13



Figure 2.10: Average voltage detected in input by the H-Bridge depends on the
duty cycle of the PWM signal: the greater the duty cycle, the greater the average
voltage.

How do the PWM signal drives the H-Bridge? The PWM generator receives in

input the control signal from the controller and transform it into a square wave :

the duty cycle of the square wave is proportional to the control signal. In other

words, the greater the value of the control signal, the greater the duty cycle of the

PWM signal ; a greater value of duty cycle means also a greater average value of the

voltage (i.e. the power) transmitted to the H-bridge and so a bigger current flowing

into the TEC.

An example of real world PWM signal is displayed in figures 2.11 and 2.12.

These two waveforms were obtained and during the testing of the system (described

in detail in section 7) respectively in two different time instants: it is clear to see the

difference between the two, since the signal in figure 2.11 has a greater duty cycle

with respect to the signal in figure 2.12.

14



Figure 2.11: PWM control signal with high duty cycle measured with an oscilloscope
during the testing of the system

.

Figure 2.12: PWM control signal with low duty cycle measured with an oscilloscope
during the testing of the system

.

15



Now all the elements that make the Actuator have been described: PWM gen-

erator, H-Bridge and TEC. The correct order of connection, together with the

input control signal and the output actuator signal, is displayed in figure 2.13.

Figure 2.13: Actuator block with its sub-blocks: PWM generator, H-Bridge and
TEC

.

2.5 Plant

The plant in control theory is the physical system under test, i.e the system from

which we are sampling the output variable that we are interested in. The plant is

driven by the actuator signal coming from the Actuator block , and its output is the

variable observed, which in our case is the temperature. A plant is often described

mathematically with its transfer function (obtained with Laplace transform) which

gives the relation between input and output signal of the system basing on its phys-

ical properties.

Figure 2.14: Plant block with its input and output signals: actuator signal and
output (i.e. the temperature)

.

In the temperature control system designed the plant is the Petri dish containing

16



the microfluidic device, which form the heating chamber of the temperature control

system : the heat exchange between the chamber and the environment is managed

by the TECs, and the temperature is sampled and fed back to the input of the

system through the feedback loop.

In order to perform simulations of the system, a mathematical description (i.e. the

transfer fucntion) of the plant has been made, as described in section 3.2.2

2.6 Sensor

The final block of our control system is the sensor: its role is to convert the output

signal (i.e. the temperature) in a electrical signal , the feedback signal, which is fed

back to the input of the system where it is subtracted from the reference input value

in order to obtain the error signal.

Figure 2.15: Sensor block with its input and output signals: output and feedback
signal (i.e. the temperature)

.

The sensor in this system is obviously a temperature sensor: it is capable to

detect the temperature of the microfluidic chamber and generate an electric signal

proportional to the sensed temperature. All the decisions related to the choice of

the sensor are described in section 4.1.4.

Now all the blocks have been described: the complete closed-loop control system

is shown in figure 2.16.

17



Figure 2.16: Block scheme of the temperature control system

18



Chapter 3

Mathematical Model

3.1 Motivations and goals of the mathematical

model

Build a correct mathematical model is the first main step for the design of the overall

system. The main goal of this mathematical model is to simulate the functioning of

the temperature control system with precision and accuracy as close as possible to

the real ones. This aspect is fundamental in the design process since by simulating

the system is possible to choose the correct hardware to be employed in the real

system; this was especially useful since at the beginning the hardware needed for

the system was not available in the Microfluidic Laboratory of the University, and it

had to be purchased. But since the shipment for some components can take from up

to three months and my stay in Budapest was of five months, I had to be sure that

the purchased components were the correct ones for the control system in terms of

performances: i.e. the best way to choose the correct components was to run the

simulations with the parameters of different components and see the best ones that

could be suited for the application.

The model has been implemented using the software MATLAB with its tools Simulink

and Simscape.

3.2 Steps for the building of the system

Based on the reasons explained in the previous section, the design flow followed

for the building of the system followed few but important steps, as shown in the

following flowchart.

19



Figure 3.1: Design flow of the mathematical model

20



As exploited in the flowchart, there are two main steps of the design:

• design of the overall system, i.e. building all the blocks needed and connecting

them properly so that the system behaves as a temperature controller;

• after the design is complete , several simulations are performed using different

models of H-bridges and TECs until the best ones are selected for the purchase.

In the next sections, these two steps will be analyzed in detail.

3.2.1 Overall system

The original idea of the system is a closed-loop control system, which consists The

picture 3.2 display the system developed in Simulink and Simscape environment,

with the addition of some highlights which refer to the standard closed-loop block .

Figure 3.2: Mathematical model of the system

21



3.2.2 Simulink Blocks

In this section every block is analyzed in detail in terms of its Simulink implemen-

tation, internal working principles and choice of parameters.

Some blocks are already available in the Simulink environment and employed, while

some others are not used since they are not compatible with the other blocks, so

they have been built using other Simulink objects as basic blocks.

PID controller

The PID controller block is already implemented in Simulink so there is no need

to built it from scratches (for the Actuator and Plant blocks it’s the opposite, as it

will be described in the next sections).

As it can be seen in figure 3.3 there are many design choices available in the PID

block provided by Simulink, such as output saturation, tracking mode, data type

and many others, but in this case only the main function of the block is going to be

used, i.e. the tuning of the controller parameters: Ki, Kp and Kd.

Figure 3.3: Simulink block of the PID controller: the tuning of the parameters can
be done in the section highlighted in red

The tuning of the PID controller is described in section 3.3

22



PWM generator

The PWM generator block has been built from scratches using basic blocks from

the Simulink library, since a ”PWM generator ” block is not available in the library.

The basic idea of the PWM generator is a pulse generator which changes the dura-

tion of the pulse (the duty cycle) with respect to the analog input, that here is the

control signal coming from the PID controller. The block is built following some

previous works [22][29]and adapting them to this particular system, and it is shown

in figure 3.4.

Figure 3.4: Simulink block of the PWM generator

The starting idea is that the analog control signal is compared trough a com-

parator to a sawtooth wave: depending if the control signal is higher or lower than

the sawtooth wave, the output will be high or low. In this way a voltage-controlled

square wave generator with variable duty cycle is implemented. The frequency of

the square wave is the same as the frequency of the sawtooth wave.

The model is modified with two blocks: the Zero-Order Hold keeps the analog con-

trol signal constant for a short period of time (1 ms in this case), in order to model

the sampling time of the hardware that will be chosen [29].

The block named double in figure 3.4 is a Data Type Conversion block which con-

vert the output signal (the square wave) from boolean type to analog type, this is

necessary for coherence with the H-Bridge block which requires an analog signal as

input, but has no meaning in the real-world system.

The final result is a square wave at the output with duty cycle that changes ac-

cording to the control voltage and compatible with the other Simulink blocks, as

expected.

23



H-Bridge

The H-Bridge is driven by the PWM signal and provides bidirectional current to

the load, which is the TEC in this system; the amplitude of the current depends on

the duty cycle of the PWM signal.

In order to implement the H-Bridge block, also the tool box Simscape has been

used. It is a tool box in Simulink’s library which is necessary for the simulation

of physical systems, allowing a bigger variety of signals and blocks to be used in

Simulink simulations.

The basic schematic of an H-Bridge is shown in figure 2.8. However some additional

parameters must be introduced for a complete modelization of the H-Bridge:

• L1, L2, C1 and C2: the parasitic inductances and capacitances values that

are needed to model the frequency behaviour;

• RL: the load resistance, here the load is the TEC so its value is taken from

the datasheet of the chosen TEC;

• Vd: the supply voltage.

• ILB: the boundary current, i.e. the maximum value of current that can be

provided by the H-Bridge.

The values of L1, L2, C1 and C2 can be found in the datasheet of the chosen

H-Bridge; for this system the H-Bridge chosen is the L298N as described in section

3.4 and the relative values can be found in table 3.1. RL is the internal resistance

of the TEC and is taken from the datasheet of the TEC. The value of Vd can be

chosen taking into account the minimum values required by a typical TEC, which

is never less than 12 V [30] for a correct working range. Since in this design step

the chosen TEC is still unknown, a reasonable value of 24 V is chosen.

Instead, ILB is selected taking into account the maximum current which can be

provided by the power supply available in the Microfluidic Laboratory, which is

1,05 A

Vd ILB RL L1 L2 C1 C2

24 V 1,05 A 1 Ω 150 µL 150 µL 15 µF 15 µF

Table 3.1: Values for the mathematical modelization of the H-Bridge

Now that all the values are available, it is possible to build the Simulink model

of the H-Bridge, which is shown in figure 3.5. The blue elements and connections

are the part of the circuit built with Simscape.

24



Figure 3.5: Simulink block of the H-Bridge, implemented using Simscape

TEC

TEC working principle is based on Peltier effect and it is described in section 2.4.1.

This is the most complex block to implement in Simulink, since the block has as

input the PWM current signal coming from the H-Bridge and must convert it into

a heat flux which causes a change in the temperature of the plant: this means that

the equations that describe the TEC will involve at least the parameters regarding

current, heat, and temperature.

The equations regarding the heat can be written by taking into account 3 contri-

butions:

• first of all the contribution related to the Peltier effect, the basic principle of

the TEC: the greater the current flowing, the greater the heat flux between the

plates of the Peltier cell, thus the greater the temperature difference between

the plates. This behaviour is simply described by:

Q = πI (3.1)

where Q is the heat transferred, π is the Peltier coefficient and I is the current

flowing in the TEC. The Peltier coefficient measures the heat pumping capa-

bility of the cell: the greater this coefficient, the greater the heat flux between

the two surfaces of the TEC.

This relation can also be written exploiting the Seebeck coefficient, which is

related to the Peltier coefficient π by:

π = ST (3.2)

where S is the Seebeck coefficient (expressed VK-1) and T is the temperature

25



of the device. The Seebeck coefficient can be defined as:

S =
V max

T h

(3.3)

Where V max is the maximum voltage admitted by the TEC and can be found

in the datasheet of the Peltier device.

The result is that Qpa and Qpe , which are respectively the heat emitted from

the cold surface and the heat absorbed by the hot surface are given by:

Qpa = SIT c (3.4)

Qpe = SIT h (3.5)

where T c is the temperature of the cold plate and T h is the temperature of

the hot plate.

• the second contribution is related to the thermal conductivity of the mate-

rial. It influences the heat transfer with a term Qt which is given by:

Qt = Kth∆T (3.6)

Where ∆T is the temperature difference between the hot and cold plate

∆T = T h − T c (3.7)

and Kth is the thermal conductivity of the material and can be found using

the relation:

Kth =
V maxImax(T h −∆Tmax)

2T h∆Tmax

(3.8)

where the parameters V max, Imax and ∆V max are respectively the maximum

voltage, maximum current and maximum temperature difference admitted by

the TEC and can be found on the datasheet of any Peltier device.

• the third and last contribution is related to the Joule effect, which is heat

production due to an electric current flowing in a conductor.

Qj is the heat produced by Joule heating and is given by:

Qj = I2R (3.9)

Where I is the current flowing in the TEC and R is the resistance of the TEC

device, which, as Kth, can be found as a function of the basic parameters V max,

26



Imax and ∆Tmax :

R =
V max(T h −∆Tmax)

ImaxT h

(3.10)

The sum of these three contributions just described gives as a result the equations

that define Qc and Qh, respectively the heat absorbed from the cold surface and the

heat emitted from the hot surface:

Qc = SIT c −
I2R

2
−Kth∆T (3.11)

Qh = SIT h +
I2R

2
−Kth∆T (3.12)

From equation 3.11, it is clear that in order to have a high (efficient) heat remove

from the cold surface, the value of S should be high while the value of Kth should

be low.

Since the typical application field of temperature controllers for microfluidic devices

involves typically organisms which must be kept at 37 ◦C , our TEC is used mainly

for heating and not for cooling, so it can be assumed that the hot surface heats the

microfluidic device while the cold surface temperature is always kept constant using

an heat sink. The equation 3.11 can be manipulated in order to write the cold side

temperature Tc as a function of the other variables:

T c =
0.5I2R +KthT h +Qc

SI +Kth

(3.13)

With this , we have all the equations which are necessary for a mathematical

description of the TEC block in Simulink, that is implemented with a simple function

Simulink block, in which the variable is the current I flowing in the TEC from the

H-Bridge while the parameters R and Kth are calculated in a separate MATLAB

script using the values of V max, Imax and ∆Tmax in the equations 3.8 and 3.10.

The values of V max, Imax and ∆Tmax and Qc are taken from the datasheet of the

Peltier cell.

As an example, the Peltier cell TES1-12704 has this values taken from the datasheet

Qmax 34,0 W
∆ Tmax 66 ◦ C

Imax 3,3 A
Vmax 14,0 V

Table 3.2: Values of the peltier module TES1-12704

The Simulink representation of the TEC is simple since there is the function

block that receives the current I as input and gives in output the temperature

of the hot side, which is subtracted from the cold side temperature in order to

27



obtain the temperature difference which can be monitored with a scope: the hot

side temperature is then sent as an output to the plant.

Figure 3.6: Simulink block of the Thermoelectric Cooler

Set point, Plant, Temperature sensor

The last three blocks are the Set point, the Plant and the Temperature sensor.

They will be briefly described since they are quite simple: however, some aspects

have to be highlighted for a better comprehension of the system.

• Set point is the temperature selected by the user, in Celsius degree: in the real

word the user can select the desired temperature with a dedicated interface,

that will be described later. The block is already described in section 2.2 and

further explanations would be unnecessary. In Simulink the block is a simple

constant value block.

• the Plant is the physical system which has to be heated, in this case the

Petri dish containing the microfluidic chip under observation. Since when the

mathematical model was being built there were not heating elements in the

Microfluidic Laboratory since they still had to be chosen and purchased, it

was not possible to experimentally obtain the transfer function of the plant

through the most common methods and so a lot of literature has been reviewed

in order to find a good transfer function for this plant; in many papers and

research works the plant of temperature control system is usually described

with a generic first order transfer function, and this approach is followed also

in this work.

• the Temperature sensor is not considered as a block in the mathematical

model: since the output of the plant is already the current temperature of the

microfluidic devices, in the mathematical description there is no need to add

another block for the sensor since it is like it is already included in the plant

description. It is important to consider that this design choice implies that

28



the real device for the temperature sensing will not be chosen among the ones

which provide an analog signal, since in this case the signal would need to be

transduced from an analog to a digital signal trough a DAC converter , which

would not benefit the system both in terms of complexity and costs; instead, a

simpler approach with a digital temperature sensor is chosen. The last aspect

to highlight is that in this mathematical model the uncertainty of the sensor

is not taken into account.

3.3 Tuning the PID controller

The method used to tuner the PID controller is the Ziegler–Nichols method. It is a

popular heuristic method which consists in different steps:

• first of all, the derivative and integral gains Kd and Ki are set to zero. Also

the proportional gain Kp is set initially to zero, and then it is increased until

it reaches a value for which the output of the control loop has stable and

consistent oscillations.

• This value of Kp is called ultimate gain Ku, while the period of the oscillation

is called Tu. For this Simulink model it was found that Ku = 130; the output

waveform for Kp = Ku = 130 is shown in picture 3.7. The value of Tu can be

extracted from the same figure, and it is found to be Tu = 19,90 s.

• from the values of Ku and Tu it is possible to obtain the parameters Kp, Ki,

Kd, Ti, Td of the PID controller using the values provided in the table 3.3.

Control type Kp Ti Td Ki Kd

classic PID 0,6 Ku Tu/2 Tu/ 8 1,2 Ku/ Tu 3 Ku Tu/40
some overshoot Ku/3 Tu/2 Tu/ 3 0,666 Ku/ Tu Ku Tu/9

minimize overshoot Ku/5 Tu/2 Tu/ 3 0,4 Ku/ Tu Ku Tu/15

Table 3.3: Values of the Ziegler-Nichols tuning method

For this application of temperature control for biological purposes, the main

parameter that has to be monitored and minimized is the overshoot, which

in this case is the occurrence of the temperature exceeding its target. In other

words, in this application it is extremely important to prevent the temperature

to exceed significantly the target temperature since this could cause irreversible

damage to the biological material confined in the microfluidic device. For this

reason, the PID parameters are chosen so that the maximum overshoot is

limited as much as possible, even if it means to extend the time needed for

the system to reach the desired temperature. In other words, the parameters

29



Figure 3.7: Output of the Simulink model for with Kp = Ku

are evaluated following the last line of table 3.3 as following (the values are

rounded up to the second decimal digit):

Kp = Ku/5 = 26 (3.14)

T i = Ku/2 = 9, 95s (3.15)

T d = Ku/3 = 6, 63s (3.16)

K i = 0.4 ·Ku/T u = 2, 61 (3.17)

K i = Ku · T u/15 = 1, 72 (3.18)

30



3.4 Simulation results

The simulations were performed in two steps, according to the design flow described

in section 3.2.

First of all, the Simulink models was built. In order to perform a qualitative simu-

lation and evaluate if the model was working in a proper way, test simulations were

performed using the values of a standard H-Bridge and a standard Peltier cell. The

variables of the H-Bridge L1, L2, C1, C2 and R, while the variables of the Peltier

cell are V max, Imax, ∆Tmax and Qc. For this initial quantitative analysis,,this values

were taken from a standard H-Bridge and TEC, namely the SN754410 and ETC-

200-14-06E.

Simulation results are provided in figure 3.8.

Figure 3.8: Simulation of the Simulink model, with an input temperature of 37 ◦C

The system is working as expected: the temperature control system is increasing

the temperature of the plant from the initial temperature (20 ◦C as the typical

laboratory temperature) up to the desired temperature (37 ◦C in this case), and it

is trying to maintain the temperature equal to it, with a significative overshoot and

almost negligible oscillations. Anyway, in this part of the design these two latter

aspects are not relevant, since the goal here is to check if the model is working as

expected from a qualitative point of view.

The model is working properly, so now it is time for the second step of the design:

in order to choose the correct components to purchase (H-Bridge and TEC), many

simulations were performed using different values of L1, L2, C1, C2, R, V max, Imax,

∆Tmax and Qc corresponding to different devices.

31



Besides, the choice of the component was performed following two guidelines:

• performances: the components with the better behaviour in terms of rise

time, maximum overshoot and ringing ;

• costs: a trade-off between performances and costs has been taken into account

in the choice;

Following some relevant guidelines in the available literature [31] [32] [33] three

choices were taken into account. Their respective results are provided in figures 3.9,

3.10, 3.11 and a brief comment about the comparison is provided here:

• Simulation 1 is performed with the cheapest devices available, the H-Bridge

is a TC648 and the Peltier cell is a TEC1-12706. As expected from this really

cheap setup, the performances are the worst between the three Simulations.

• Simulation 2 is performed with an approach of trade-off between costs and

performances, using the H-Bridge L298N and the Peltier cell TES1-12704.

• Simulation 3 is performed choosing good quality devices in terms of perfor-

mances: the H-Bridge chosen is a ifx9201 and the TEC is a ETC-200-14-06E.

The simulations results are the best in terms of rise time and accuracy, but

the cost is way higher than the other two cases.

Figure 3.9: Simulation 1

32



Figure 3.10: Simulation 2

Figure 3.11: Simulation 3

33



The better results in terms of performances were given by the most expensive

devices (Simulation 3 ), while the cheaper ones (Simulation 1 ) had worse results: a

trade-off approach between costs and performances was chosen (Simulation 2 ). In

table 3.4 are provided the significative results for the three different simulations:

Simulation Rise time Overshoot Bias error Total cost (estimate)
Simulation 1 16 min 34 s 0,80◦ C 0,62 ◦ 3,5 e
Simulation 2 12 min 29 s 0,36◦ C 0,29 ◦ 9 e
Simulation 3 9 min 50 s 0,32◦ C 0,24◦ 120 e

Table 3.4: Results for three different simulations of the Simulink model

At the end, the chosen components are the H-Bridge L298N and the Peltier cell

TES1-12704. The reason of this choice is that, with respect to the most expensive

case (Simulation 3 ), even though the rise time is consistently longer 26,9% more),

the decrease in temperature accuracy is small (12,5% for the maximum overshoot

and 20,1% for the bias error) and it is not worth to spend thirteen times more for

the budget of this components for a so small improvement . As a matter of fact,

for the application of this temperature control system, i.e. the study of parasites in

a microfluidic environment, the rise time is not so important, while the accuracy is

of vital importance especially because an oscillation too large in temperature could

lead to a damage to the organisms in the device. On the other hand, the most

cheap setup (Simulation 1 ) performs significantly worse (the rise time, maximum

overshoot and bias error increase respectively of 68,5%, 150,0% and 158,3% with

respect to Simulation 3 ) so it is not worth considering.

In this way, the mathematical model has performed its aim: provide essential

help in the design of the system and the choice of the components. Now, the next

step to build the system is the purchase of these chosen devices and of the rest of the

components (temperature sensor, hardware for the user interface, heatsinks,etc.).

34



Chapter 4

Hardware

In this chapter all the design choices regarding the hardware are explained.

Thanks to the successful simulation of the Simulink model, it was possible to choose

the H-Bridge and the Peltier device, as explained in section 3.4. But all the others

components were still to choose.

The starting idea was to build the system using a Raspberry PI 3 B board: it

is s single-board computer, with an operative system based on a Linux kernel. The

Raspberry was supposed to manage the interface through a Graphical User Inter-

face (GUI), in which the user could set the temperature and time from the GUI

using a keyboard and a monitor connected to the Raspberry, and the board would

have manage the correct functioning of the automatic controlled system via software

written in Python code, and driving the hardware components sending the correct

control signals.

Figure 4.1: Raspberry 3 model B board

However the use of the Raspberry was discarded because of two main reasons:

• the us of a Raspberry board would have been an ”overkill” for this application:

the board would have need to be connected (at least) to a monitor and a

keyboard, and many tools available on the board would have not been used.

35



• the system was meant to be designed to be portable and easy to use, so a more

stand-alone approach was preferred.

For this reasons, the final choice for the system was an Arduino Uno board.

4.1 Components List

4.1.1 Arduino

Arduino is an open-source electronics platform, which consists of both a physical

programmable circuit board (microcontroller) and a piece of software (Integrated

Development Environment, IDE). The reasons for which the Arduino board has

been chosen instead of the Raspberry is because it fits better into the project: it is

possible to work without being connected to a PC (given that the code is previously

uploaded on the board from a PC through an USB cable), which makes it more

portable and flexible for the usage; furthermore, it is capable of drive all the pieces

of hardware that are needed for the temperature control system.

Figure 4.2: Arduino Uno board

Specifically, the Arduino board in this project is responsible of many tasks:

• it receives from the user interface (which will be composed of a LCD screen

and two pushbuttons) the desired temperature selected from the user and the

desired amount of time for which the temperature has to be regulated;

36



• it implements, via software, the PID controller ;

• it generates the PWM signals which drive the H-Bridge;

• it reads the data sent from the temperature sensor, i.e. the current temperature

of the microfluidic device.

The functions managed by the Arduino board are explained more in detail in

section 5.

4.1.2 H-Bridge

All the design considerations regarding the H-Bridge have been explained in detail

in section 3.4.

The chosen H-Bridge is the L298N: it is a dual H-Bridge controller, designed mainly

for driving DC motors but perfectly fit for driving two Peltier cells at the same time.

It is cheap, compact, and reliable thanks to the overvoltage protections.

Figure 4.3: The L298N H-Bridge

As explained in the previous chapters, the H-Bridge is driven by the Arduino

board with a PWM signal, which is sent to the Enable A and Enable B from the

digital pin 9 of Arduino. The four pins Logic input set the flowing direction of the

current depending on their values, and are driven by the digital pins 7 and 8 of

Arduino. Each one of the pins Output A and Output B is connected to a Peltier

37



cell.

Figure 4.4: The power supply Keithley 2410

In this project, l298N is powered by the power supply Keithley 2410, which is

the one available in the Microfluidic Laboratory, through the pin Power GND and

12V power.

4.1.3 Thermoelectric cooler (TEC)

The chosen Peltier devices are the TES1-12704, as explained in section 3.4. They

are 30 mm x 30 mm x 3,2 mm Peltier cells, made of ceramic, with two power supply

cables of 15 cm each.

The Peltier plates are places below the Petri dish containing the microfluidic

device, in this way the heat can be diffused in an optimal way; in order to hold

the Peltier cells in the correct position, a customized 3D-printed structure has been

designed and printed, as explained in section 6.1.

The typical area of a Peltier cell is 40 mm x 40 mm, but for this project have been

used cells of size 30 mm x 30 mm, because the first ones could not fit in the space

below the Petri dish on the reverse microscope of the laboratory.

In order to improve an uniform diffusion of the temperature, two TES1-12704 are

used.

So in this configuration the top plate of the Peltier cell is heating / cooling (depend-

ing on the selected temperature) while the bottom plate has the opposite behaviour;

besides, in order to dissipate the heat/cold on the bottom surface, aluminium fins

are used.

38



Figure 4.5: The Peltier cell TES1

Figure 4.6: The aluminium heat sink used

As with the Peltier devices, the typical surface of the Aluminium fins is 40 mm

x 40 mm. Fins of this size have been purchased and then, in order to obtain fins

with area of 30 mm x 30 mm, they have been shaped with a metal saw.

4.1.4 Temperature sensor

It exists a huge variety of temperature sensors on the market, which differs for

temperature range, accuracy, price, application and so on.

After the decision of using Arduino as the ”brain” of the system, the temperature

sensor has been chosen to among the ones that are designed to be used with Arduino.

Furthermore, some sensors like the thermocouples require additional hardware to

work, thus increasing the complexity and cost of the project.

The chosen temperature sensor is the DS18B20: it is cheap, fairly precise and it

is perfectly suited for the integration with the Arduino board since it requires only

one digital pin for the bidirectional communication with the microcontroller, besides

the analog output voltage of the Arduino pins is enough to power it without need of

39



external power supplies. The complete specifications of the sensor are in table 4.1

Figure 4.7: Th temperature sensor DS18B20

Power supply 3 V to 5,5 V
Current consumption 1 mA
Temperature range -55 ◦C to 125 ◦C

Accuracy ± 0,1 ◦C
Resolution 9 to 12 bit (selectable)

Table 4.1: Specifications of the DS18B20 temperature sensor

The sensor has three pins: Vcc, Data and GND. The pins Vcc and GND are

connected, respectively, to the 5 V pin and the ground of the Arduino, for the

powering of the sensor. The pin Data is connected to the digital pin 10 of Arduino,

and is also connected to the 5 V pin through a 4, 7kΩ resistor as recommended in

its datasheet.

4.1.5 User friendly interface: LCD display and pushbuttons

The user interface must be capable of allowing the user to select the temperature of

the microfluidic device and the desired amount of time for which the temperature

must be kept constant.

One option for the implementation of the interface is through a GUI implemented

via software and accessible from a PC; however to employ this solution means that

every time that the system has to be used, the Arduino need to be connected to a

PC, which makes the controller less flexible and portable.

So the decision was to create a customized interface for the project, consisting into a

LCD screen and two pushbuttons, that can allow the user to select the parameters:

both the LCD and the pushbuttons are powered and communicate directly with

the Arduino board so there is no need to connect the board to a PC. The working

40



principle of the interface is explained in section 5.2

Figure 4.8: Pushbutton

Each pushbutton has two pins: one pin is connected to the 5 V pin of the

Arduino, while the other one is connected to ground through a 10 kΩ pull-down re-

sistor. When the pushbutton is pressed, an high signal is sent to the corresponding

digital pin on the Arduino. The dedicated pins on the board for the two pushbuttons

are the digital pins 12 and 13.

Figure 4.9: The LCD 1602

The LCD screen has 16 pins. The first one is Vss, which is the ground pin,

connected to the ground of Arduino. The second pin is Vdd which is connected to

the 5 V pin of the board. Next is V0, this pin is connected to a 10 kΩ potentiometer

for the control of the contrast of the display. Next one is the RS pin: it is set low

when data have to be sent to the screen, while it is set high when commands have to

41



be sent, like turn on, turn off or set the cursor in a specific point of the display.It is

connected to the digital pin 1 of Arduino. The pin R\W is set high or low depend-

ing if the data of LCD must be written or read: in this case, is connected to ground.

Next pin is the enable pin E, which enables the writing to the registers of the LCD:

it is driven by the digital pin 2 of Arduino. The 8 data pins from D0 to D7 send the

data that have to be displayed in ASCII code; 8-bit or 4-bit configuration can be

used: in this system 4-bit is used, thus the pins D0, D1, D2, D3 are not connected

while the pins D4, D5, D6, D7 are connected to the Arduino digital pins 3, 4, 5

, 6. The last two pins A and K are the anode and cathode and are connected re-

spectively to the 5 V pin and to ground, since they are needed for the LED back light.

4.2 Assembling of the system

The final schematic of the temperature control system is shown in figure 4.11.

In order to integrate all the hardware in a compact way, a stripboard has been

used. A pictures of the system completed and assembled is shown in figure 6.13

together with the 3D-printed case which contains all the hardware.

Figure 4.10: The Weller WSD81 soldering set

The soldering has been performed with a Weller WSD81 provided by the

Microfluidic Laboratory, shown in fig 4.10

42



Figure 4.11: Schematic of the complete system: in blue the connections between
Arduino and the display, in green all the other general connections. In red the
connections to the 5 V pin of Arduino while in black the ones to the Ground pin of
Arduino. Finally, in brown the connections with the external power supply.

43



Chapter 5

Software

The software is written in C++ code and implemented using the Arduino IDE,

which is an open-source software that is optimized to write code and implement it

on the board. The environment is written in Java and based on Processing and

other open sources software.

The code is uploaded to the Arduino through a USB cable; it is sufficient to upload

it only one time because the code remains saved in the non-volatile memory of the

board. This feature allows the system to be more portable and flexible, since once

the code has been uploaded, it will be necessary to connect the Arduino only to its

power supply and the system will work in a stand-alone way.

The main task of the code is to control the Arduino board which will drive the other

components; specifically, the main functions of the software are:

• manage the user interface, ensuring communication between Arduino, the LCD

display and the pushbuttons;

• implement the PID controller, which is managed entirely via software

• read the temperature from the DS18B20 sensor and acting accordingly;

• generate the PWM signal to control properly the H-Bridge and thus the current

in the heating elements.

The following sections explain in details the code.

5.1 Initialization

The first step to do is to declare the libraries that are going to be used in the code:

44



1 #include LiquidCrystal.h

2 #include OneWire.h

3 #include DallasTemperature.h

4 #include PID_v1.h

These four libraries have different purposes:

• LiquidCrystal is needed to drive correctly the LCD display, it contains a lot

of functions that are different than a simple ”writing on the screen” and will

be useful later;

• OneWire contains function for the management of One-Wire communication

protocol, which in this project is used by the temperature sensor DS18B20;

• DallasTemperature is also needed to drive the sensor DS18B20;

• PID v1 is a library which allows to implement an effective and precise PID

control via software.

The next step is to define the pin of Arduino board, associating to each variable

the number of the pin: in this way, if the pin number needs to be changed, it has to

be done only one time in those lines and not multiple times in the main code. These

lines define the pins which drive the H-Bridge, namely the pin 7 for the enable signal

and pin 8 and 9 for the input signals.

1 #define en1 7

2 #define in1 8

3 #define in2 9

Instead, the following line defines the pin for the communication with the tem-

perature sensor, pin 13:

1 #define ONE_WIRE_BUS 13

While the following two lines declare that the pin 10 and 11 will be used to

communicate withe the two pushbuttons: buttonPin10 is related to the button

which increases temperature time, while buttonPinOk is related to the button for

the confirmation of the selection.

1 #define buttonPin 10

2 #define buttonPinOK 11

45



Next step is to initialize the hardware: the temperature sensor and the LCD

are initialized using dedicated functions of their libraries. In particular, the com-

mand LiquidCrystal lcd(1, 2, 3, 4, 5, 6) creates an LCD object and the Arduino

pins 1, 2, 3, 4, 5, 6 are associated to the LCD pins RS, E, D4, D5, D6, D7.

1 OneWire oneWire(ONE_WIRE_BUS);

2 DallasTemperature sensors(&oneWire);

3 LiquidCrystal lcd(1, 2, 3, 4, 5, 6);

Next step is to define the variables related to the closed-loop system:

Celsius is the temperature (in Celsius degree) detected by the sensor, out perc is

the duty cycle of the PWM signal, Setpoint is the desired temperature selected by

the user, while Input and Output will be used later for the implementation of the

PID controller.

1 double Celsius, out_perc, Setpoint, Input, Output;

After that, it is the turn of the PID controller initialization, which is per-

formed by declaring the variables Kp, Ki, Kd and then associating the variables

Input, Output, Setpoint, Kp, Ki, Kd to the correspondent signals of the virtual PID

controller through the function myPID taken from the PID library:

1 double Kp=26, Ki=2.61, Kd=1.72;

2 PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);

The values of the PID constants Kp, Ki, Kd are the same evaluated in section

3.3. The reason why these values obtained from the mathematical model are used

instead of evaluating new constants for the real system is related to some practical

issues appeared during the tuning process with the real system. During the first step

of the Ziegler-Nichols method, in which the derivative and integral gains Kd and Ki

are set to zero while the proportional gain Kp is increased until stable and consistent

oscillations are reached, the temperature oscillations are so high in magnitude that

they overcome the melting point of the plastic material of the Petri dish containing

the microfluidic device, causing its melting. For this reason the PID tuning using

the real system was impracticable and the values obtained from the mathematical

model were used instead.

Next step is the definition of the variables related to the user interface:

temp in is the temperature which is displayed at the beginning on the LCD, can be

increased through the related pushbutton and it is initialized to 20 Celsius degrees;

46



time selected is the time (in minutes) displayed on the LCD, can be chosen by in-

creasing it with the related pushbutton and is initialized to 0 minutes; temp selected

and time selected are flag variables used to point if the temperature and the time

have been selected by the user; buttonState and buttonStateOK are flag variables

used to detect if the two pushbuttons have been pressed, they are initialized with

low (0) values and assume high values (1) when the associated buttons are pressed;

time min and ds counter are used for the decreasing time counting operation needed

to calculate how much time is left for the system to work, according to the time

set by the user; finished is a flag variable used to detect when the decreasing time

counting operation reaches the zero, i.e. when the system has to stop.

1 int temp_in = 20, temp_selected = 0, time_hours = 0,

time_selected = 0, buttonState = 0, buttonStateOK = 0,

time_min = 0, finished = 0, ds_counter=0;

Once this first initialization has been performed, the function setup embedded

in the Arduino IDE is used.

First of all, the pins 7, 8 and 9 related to the H-Bridge (the enable and the input

pins) are initialized as output pins. Besides, one of the two inputs is set high while

the other is set low : in this way the initial current flow direction, which determines

the initial heat flow direction, is set.

1 void setup() {

2

3 //H BRIDGE

4 pinMode(en1, OUTPUT);

5 pinMode(in1, OUTPUT);

6 pinMode(in2, OUTPUT);

7

8 // Set initial heat flow direction ;

9 digitalWrite(in1, HIGH);

10 digitalWrite(in2, LOW);

Next step is the turn of the temperature sensor, which is initialized and start to

aquires data with the function:

1 sensors.begin();

Next step is the initialization of the interface of the LCD screen with the function

lcd.begins(16,2); 16 and 2 refer to the width and height dimensions of the display:

47



1 lcd.begin(16,2);

The last initialization involves the buttons, which are set as input pins. The last

curly bracket close the loop function setup opened previously:

1 pinMode(buttonPin, INPUT);

2 pinMode(buttonPinOK, INPUT);

5.2 Working code

The previous section described all the necessary initialization, while in this section

the main part of the code is explained.

This second part of code is entirely contained in the function loop, i.e. it runs con-

tinuously until the Arduino board is powered down.

The first piece of code manage the initial part of the user interface, i.e. the

temperature selection:

1 void loop() {

2

3 buttonStateOK = digitalRead(buttonPinOK);

4

5 //TEMPERATURE SELECTION

6 while (temp_selected == 0)

7 {

8 lcd.clear();

9 lcd.print(Selected desired );

10 lcd.setCursor(0,1);

11 lcd.print(temperature );

12 lcd.setCursor(13,1);

13 lcd.print(temp_in);

14

15 //read the state of the pushbutton value

16 buttonState = digitalRead(buttonPin);

17

18 if (buttonState == HIGH) {

19 //increase temperature

20 temp_in++;}

48



21

22 if (temp_in == 50) {

23 //reset temperature to 20

24 temp_in=20;}

25

26 buttonStateOK = digitalRead(buttonPinOK);

27 if (buttonStateOK == HIGH) {

28 temp_selected=1; }

When the system is powered on, the LCD screen displays the message Select

desired temperature: 20, as shown in picture 5.1. The number 20 represent the

temperature in Celsius degrees, and can be changed using the proper pushbutton.

Figure 5.1: Initial state of the system when it is powered on

Each time the green pushbutton is pressed, the temperature increases of one

Celsius degree, until the limit temperature of 50 ◦C is reached and the counting

starts from 20 ◦C. In the example shown in figure 5.2, the selected temperature is

37 ◦C in this case.

Once the desired temperature is selected, the black button has to be pressed to

confirm.

The next piece of code is related to the time selection:

1 // TIME SELECTION

2 while (time_selected==0 and temp_selected ==1){

3 lcd.clear();

4 lcd.print(Select desired);

49



Figure 5.2: Desired temperature selected

5 lcd.setCursor(0,1);

6 lcd.print(time (hours) );

7 lcd.setCursor(14,1);

8 lcd.print(time_hours);

9

10 //read the state of the pushbutton value

11 buttonState = digitalRead(buttonPin);

12

13 if (buttonState == HIGH) {

14 // increase min

15 time_hours++; }

16

17 if (time_hours == 99) {

18 reset temperature to 99

19 time_hours=0; }

20

21 buttonStateOK = digitalRead(buttonPinOK);

22 if (buttonStateOK == HIGH) {

23 time_selected=1; }

24 delay(200); }

This part of the interface works in the same way as the temperature selection,

but here the time (in hours) is selected, and it can ranges from 0 to 99 hours. As

before, the green button is used to increase the value and the black button is used

to confirm. An example is shown in figure 5.3.

50



Figure 5.3: Desired time selected: in this example, 5 hours

Next, the PID controller is turned on and set on automatic mode. Therefore,

the temperature selected by the user and stored in the variable temp in is set as Set

point of the PID controller and so of the overall closed-loop system:

1 //Set the desired temperature

2 Setpoint = temp_in;

3 //Turn the PID on

4 myPID.SetMode(AUTOMATIC);

5 //Adjust the values of PID

6 myPID.SetTunings(Kp, Ki, Kd);

From now on, the most important part of the code starts: in few words, this

is the part in which the closed-loop control system begins to work and the desired

temperature of the microfluidic device is reached and maintained constant.

Meanwhile, the screen display the current temperature of the device and the re-

maining time, in hours and minutes, as shown in picture 5.4 . When the countdown

reaches zero, all the process can be started all over again by pressing any button.

This piece of code starts with a if and a while loops that employ the flag vari-

ables temp selected, time selected and finished. In few words, the meaning of this

loops is to keep the temperature of the microfluidic constant as soon as the desired

temperature and time have been selected, and until the countdown has finished.

First of all, the temperature of the microfluidic device is sampled and stored in the

variable Celsius, which is subtracted from the Set point in order to obtain the error

51



Figure 5.4: Display when the system is working, with the current temperature and
the remaining time displayed

signal which is the Input of the PID controller and it is stored in the variable of the

same name.

Next, the Output of the PID controller is computed: it is an analog value with value

between 0 and 1023. As explained in the previous chapters, this output signal is

called control signal and its value drives a PWM generator which generates a square

wave with duty cycle proportional to this control signal. In this way we are imple-

menting via software both the PID controller and the PWM generator. In order

to convert this control signal into a PWM signal, the Arduino needs it to to be

mapped into a value between 0 and 255: this is performed with the function map().

So the variable Output, whose value ranges from 0 to 1023, is linearly mapped into

the variable pwmOutput, which ranges from 0 to 255.

The PWM signal is sent to the enables of the H-Bridge L298N through the pin en,

which is the pin 7 of the Arduino board.

1 if (temp_selected == 1 and time_selected == 1) {

2

3 while (finished == 0)

4 {

5 //SENSOR

52



6 sensors.requestTemperatures();

7 Celsius=sensors.getTempCByIndex(0);

8 Input = Celsius;

9 //PID calculation

10 myPID.Compute();

11 int pwmOutput = map(Output, 0, 1023, 0 , 255); //

Map the output PID value from 0 to 255

12 analogWrite(en1,Output);} //PWM to L298N Enable pin

The next lines of codes, in which the function Serial.print is employed, are used

for two reasons: data acquisition and debug. This function prints on the serial

monitor of the Arduino IDE, which is visible only by PC, the current temperature

and the duty cycle of the PWM signal, every time that the loop is repeated. This

part of the code has been useful to collect data during the testing of the system.

Since the system is designed to be used without PC, this section is not present in

the final code but it is shown here for completeness.

1 // Send data by serial for plotting

2 Serial.print(INPUT );

3 Serial.println(Input);

4

5 out_perc = Output / 2.55;

6

7 Serial.print(OUTPUT );

8 Serial.print(out_perc);

9 Serial.println( %);

The next part of code is responsible of printing the current temperature and

remaining time on the LCD screen, until the countdown reaches zero.

First of all, the temperature and the remaining time at the current instant are

displayed on the screen (as shown in figure 5.4) with the function lcd.print.

The following lines of code is responsible for the countdown. The while loop that

contains this part of code is repeated every 100 ms, and each time the variable

ds counter is increased by one. So when the value of ds counter reaches 599 it

means that one minute is elapsed since 100 ms × 600 = 60 s = 1 min. In this way,

every minute the countdown shown in the display goes down of one minute.

In a similar way, the variable time min is used to perform the counting operation of

the minutes elapsed: it starts from 59 and decrease each minute. When it reaches

zero, also the variable time hours, which represents the remaining hours, decreases

by one.

53



Finally, when both time hours and time min reach zero, the counting stops and the

flag variable finished changes value, allowing the code to exit the while loop and

reach the final step.

1 //displaying TEMPERATURE

2 lcd.clear();

3 lcd.print(Temperature);

4 lcd.print(Celsius);

5 lcd.print( C);

6

7 //displaying TIME

8 lcd.setCursor(0,1);

9 lcd.print(Time left);

10 lcd.print(time_hours);

11 lcd.print(h);

12 lcd.print(time_min);

13 lcd.print(m);

14

15 //wait one minute and decrease minutes

16 if (ds_counter == 600) {

17 time_min--;

18 ds_counter = 0; }

19

20 //when min reaches 0, decreases hours

21 if(time_min 0) {

22 time_min = 59;

23 time_hours--; }

24

25 //when reaching 00h00m, STOP

26 if(time_hours < 1 and time_min == 0) {

27 finished = 1; }

28 delay(100); }

The last part of code manages the system when the desired time is elapsed and

the countdown reaches zero. The closed-loop feedback system stops working and

the display shows ”FINISH. Press to restart”. If one of the pushbuttons is pressed,

the system is reset, the variables are set again to the original values and the display

shows again the first screen for the temperature selection, as in figure 5.1.

54



1 if (finished == 1)

2 {

3 while (temp_selected == 1 and time_selected == 1)

4 {

5 lcd.clear();

6 lcd.print(FINISH);

7 lcd.setCursor(0,1);

8 lcd.print(Press to restart);

9

10 buttonState = digitalRead(buttonPin);

11 buttonStateOK = digitalRead(buttonPinOK);

12

13 if (buttonState == HIGH or buttonStateOK == HIGH) {

14 finished = 0;

15 temp_selected=0;

16 time_selected=0;

17 lcd.clear(); }

18 delay(100); }

5.3 Complete code

For completeness, the full version of the code is reported here.

1 #include LiquidCrystal.h

2 #include OneWire.h

3 #include DallasTemperature.h

4 #include PID_v1.h

5

6 //H BRIDGE

7 #define en1 7 //Enable of H-Bridge

8 #define in1 8 //Input of H-Bridge

9 #define in2 9 //Input of H-Bridge

10

11 //SENSOR

12 #define ONE_WIRE_BUS 13 // sensor pin

13

14 //LCD

15 #define buttonPin 10 // increase pushbutton pin

55



16 #define buttonPinOK 11 // confirm pushbutton pin

17

18 //SENSOR

19 OneWire oneWire(ONE_WIRE_BUS);

20 DallasTemperature sensors(&oneWire);

21

22 //LCD

23 LiquidCrystal lcd(1, 2, 3, 4, 5, 6); //Creates LCD object

24

25 double Celsius, out_perc, Setpoint, Input, Output

26

27 //PID parameters

28 double Kp=26, Ki=2.61, Kd=1.72;

29 //create PID instance

30 PID myPID(&Input, &Output, &Setpoint, Kp, Ki, Kd, DIRECT);

31

32 //Initialization

33 int temp_in = 20, temp_selected = 0;

34

35 int time_hours = 0, time_selected = 0;

36

37 int buttonState = 0, buttonStateOK = 0;

38

39 int time_min = 0, finished = 0;

40

41 int ds_counter=0;

42

43 void setup() {

44

45 //H BRIDGE

46 pinMode(en1, OUTPUT);

47 pinMode(in1, OUTPUT);

48 pinMode(in2, OUTPUT);

49

50 // Set initial heat flow direction ;

51 digitalWrite(in1, HIGH);

52 digitalWrite(in2, LOW);

53

54 //SENSOR

56



55 sensors.begin();

56

57 //LCD

58 lcd.begin(16,2); // Initializes LCD interface

59

60 //PUSHBUTTONS

61 pinMode(buttonPin, INPUT);

62 pinMode(buttonPinOK, INPUT); }

63

64 void loop() {

65

66 buttonStateOK = digitalRead(buttonPinOK);

67

68 //TEMPERATURE SETTING

69 while (temp_selected == 0)

70 {

71 lcd.clear();

72 lcd.print(Selected desired );

73 lcd.setCursor(0,1);

74 lcd.print(temperature );

75 lcd.setCursor(13,1);

76 lcd.print(temp_in);

77

78 //read the state of the pushbutton value

79 buttonState = digitalRead(buttonPin);

80

81 if (buttonState == HIGH) {

82 // increase temperature

83 temp_in++; }

84

85 if (temp_in == 50) {

86 //reset temperature to 20

87 temp_in=20; }

88

89 buttonStateOK = digitalRead(buttonPinOK);

90 if (buttonStateOK == HIGH) {

91 temp_selected=1;

92

93 //for debug purpose, to avoid to skip the time selection

57



94 delay(300); }

95

96 delay(200);

97 }

98

99 // TIME SETTING

100 while (time_selected==0 and temp_selected ==1)

101 {

102 lcd.clear();

103 lcd.print(Select desired);

104 lcd.setCursor(0,1);

105 lcd.print(time (hours) );

106 lcd.setCursor(14,1);

107 lcd.print(time_hours);

108

109 //read the state of the pushbutton value

110 buttonState = digitalRead(buttonPin);

111

112 if (buttonState == HIGH) {

113 // increase min

114 time_hours++; }

115

116 if (time_hours == 99) {

117 reset temperature to 99

118 time_hours=0; }

119

120 buttonStateOK = digitalRead(buttonPinOK);

121 if (buttonStateOK == HIGH) {

122 time_selected=1; }

123

124 delay(200);

125 }

126

127 //PID

128 //Set the desired temperature

129 Setpoint = temp_in;

130 //Turn the PID on

131 myPID.SetMode(AUTOMATIC);

132 //Adjust the values of PID

58



133 myPID.SetTunings(Kp, Ki, Kd);

134

135 if (temp_selected == 1 and time_selected == 1) {

136

137 while (finished == 0) {

138

139 //SENSOR

140 sensors.requestTemperatures();

141 Celsius=sensors.getTempCByIndex(0);

142

143 //Read the value from the light sensor

144 Input = Celsius;

145 //PID calculation

146 myPID.Compute();

147

148 //Write the output as calculated by the PID

function

149 int pwmOutput = map(Output, 0, 1023, 0 , 255); Map

the output PID value from 0 to 255

150 analogWrite(en1,Output); Send PWM signal to L298N

Enable pin

151

152 // Send data by serial for plotting

153 Serial.print(INPUT );

154 Serial.println(Input);

155

156 out_perc = Output2.55;

157

158 Serial.print(OUTPUT );

159 Serial.print(out_perc);

160 Serial.println( %);

161

162 //displaying TEMPERATURE

163 lcd.clear();

164 lcd.print(Temperature);

165 lcd.print(Celsius);

166 lcd.print( C);

167

168 //displaying TIME

59



169 lcd.setCursor(0,1);

170 lcd.print(Time left);

171 lcd.print(time_hours);

172 lcd.print(h);

173 lcd.print(time_min);

174 lcd.print(m);

175

176 //wait one minute and decrease minutes

177 if (ds_counter == 600) {

178 time_min--;

179 ds_counter = 0; }

180

181 //when min reaches 0, decreases hours

182 if(time_min 0) {

183 time_min = 59;

184 time_hours--; }

185

186 //when reaching 00h00m, end everything

187 if(time_hours < 1 and time_min == 0) {

188 finished = 1; }

189

190 delay(100);

191 }

192 }

193 if (finished == 1)

194 {

195 while (temp_selected == 1 and time_selected == 1)

196 {

197 lcd.clear();

198 lcd.print(FINISH);

199 lcd.setCursor(0,1);

200 lcd.print(Press to restart);

201

202 buttonState = digitalRead(buttonPin);

203 buttonStateOK = digitalRead(buttonPinOK);

204

205 if (buttonState == HIGH or buttonStateOK == HIGH) {

206 finished = 0;

207 temp_selected=0;

60



208 time_selected=0;

209 lcd.clear(); }

210 delay(100);

211 }

212 }

213 }

61



Chapter 6

AutoCad design and 3D printing

At this point of the design, the system is almost complete. The last step to be done

is to pack and integrate the hardware together, and the choice was to use some

3D-printed structures to hold everything together allowing the system to be more

compact and robust.

The 3d-printed structures realized are two:

• the first structure has been named Heating chamber and it has to hold in

the right positions the hardware on the inverted microscope (i.e. the TEC

modules and the temperature sensor) together with the Petri dish containing

the microfluidic device;

• the second structure is a Case for the rest of the hardware: it integrates

together the Arduino board, the L298N H-Bridge, the pushbuttons, the screen

and all the interconnections. It is basically the interface with which the user

interacts with.

Both the structures have been first designed with the software AutoCAD, and

the AutoCAD models have been printed with 3D printer available in the laboratories

of the University. The next sections explain in detail all the design aspects that has

been taken into account during the realization of the models.

62



6.1 Heating chamber

The design aspects taken into account in the realization of the Heating chamber

are:

• it has to perfectly fit in the reverse microscope.

• it has to keep the TEC modules (i.e. the Peltier cells along with the aluminium

heat sinks) in contact with the Petri dish, thus allowing the microfluidic device

to be heated/cooled;

• it has to hold the temperature sensor inside the Petri dish and in contact

with the microfluidic chip, so that the temperature can be sampled in the

most precise way;

The inverted microscope used in the Microfluidic laboratory is a Olympus

CKX53 and it is shown in picture 6.1.

Figure 6.1: Inverted microscope Olympus CKX53

The main aspect to consider in the design is that the heating chamber has to fit

perfectly in the microscope observation chamber: the two main limitations are the

size of the ”hole” in which the chamber has to fit and the space below which has

to be enough for the microscope lenses. As a matter of fact, as shown in picture

6.2, the microscope has a system of four different rotating lenses, and enough space

must be provided for these lenses to rotate without touching the structure.

63



Figure 6.2: Close-up on the lenses of the microscope

The structure has been designed taking into account all these considerations:

the figures 6.3 and 6.4 show, respectively, the AutoCAD model and its realization

with the 3D Printer.

Figure 6.3: AutoCAD model of the Heating chamber

64



Figure 6.4: The Heating chamber obtained with 3D printing

The two cross-shaped structures are designed so that the TEC modules can per-

fectly fit inside, as shown in figure 6.5. The TEC modules are kept below and in

contact with the Petri dish, as shown in figure 6.6. The same figure shows that the

Heating chamber dimensions are correct and it fit in the observation chamber of the

inverted microscope.

Figure 6.5: The Heating chamber with the TEC modules

65



Figure 6.6: The Heating chamber on the inverted microscope with the TEC mod-
ules, the temperature sensor (shown in two different positions) and the Petri dish
containing the microfluidic device

The two small structures on the top with an hole are responsible of keeping the

temperature sensor in a steady position and in contact with the microfluidic device,

as shown in figure 6.6 (this figure shows the two different positions in which the sen-

sor can be inserted, but the system is designed to work with only one sensor. The

two-sensors configuration doesn’t bring any significative advantage to the system in

terms of accuracy).

The tip of the sensor can access inside the Peltri dish through a hole suitably cre-

ated and touch the glass support plate of the microfluidic device. This particular

askew position is the best one for the sensing of the temperature in the chamber,

since in other positions the sensor would be straight above the Peltier cells and the

temperature sensed would be much higher than the temperature of the microfluidic

device.

As planned, the structure leaves enough space for the lenses, they can be rotated

66



without touching the structure, as shown in figure 6.7

Figure 6.7: View from the bottom of the Heating chamber on the inverted micro-
scope: the lenses have enough space to rotate without touching the structure

67



6.2 Case

The second structure needed for the project is a Case which can contain the Ar-

duino board, the H-Bridge L298N, the pushbuttons, the LCD, and the strip board

with all the interconnections of the electronic system.

The starting idea was to design the Case as a box, as shown in figure 6.8. This

first design was discarded due to the excessive material needed by the 3D printer:

more than 100 m of plastic wire and a process time of 40 hours.

Figure 6.8: First version of the Case. The structure on the left is the box in which
all the hardware can be contained: it presents the apertures for the LCD and the
pushbuttons, and several other holes suitably sized for the cables of the Arduino,
the power cables for the H-Bridge and the temperature sensor. The small channel
on the bottom left part is sized to hold in a vertical position the stripboard.
The structure on the right is the cover of the box.

Taking into account this aspect, another version of the case was designed. In

this second and final version, about the 73% if the material has been removed with

respect to the first version, thus allowing an achievable structure in terms of material

and time needed. This structure presents the same features of the previous version:

apertures for LCD, pushbuttons, cables, contact pins for the fit of the H-Bridge and

Arduino,and a channel to hold the stripboard in a vertical position. The drawback

of this version with respect to the first one is that it is not closed like a box and thus

can not protect the hardware as the other one, but it is not a big issue since this

system is going to be used in laboratories or other non-hazardous environments, so

a complete protection is not fundamental.

The AutoCAD model is shown in 6.9 while its realization in 6.10.

68



Figure 6.9: Final version of the Case in AutoCAD

Figure 6.10: Final version of the Case obtained with 3D printing

The first components to be mounted are the Arduino board and the H-Bridge,

as shown in fig 6.11.

69



Figure 6.11: Case with the Arduino and the L298N mounted.

Next step is the mounting all the other components: first of all, the interconnec-

tions have been soldered using the tools available in the microfluidic components, i.e.

the soldering station shown in figure 4.10 and a soldering helping hand, as shown in

figure 6.12. The schematic followed is the one presented in figure 4.11 and most of

the interconnections have been soldered on the stripboard, which is visible in figure

6.12. In particular, the LCD screen is directly mounted on the stripboard and the

case is designed so that they fit perfectly.

The final result of is shown in figure 6.13, in which the case is seen from behind

and all the cables and components are visible.

70



Figure 6.12: Stripboard on the soldering helping hand during the soldering process

On the lateral sides there are the two pushbuttons (one for each side) and also

the apertures for the cables needed to enter or exit from the case: the sensor cable,

the wires of the Peltier cells and the USB and power cables of the Arduino, shown

in figure 6.14. The wires which connect the power supply to the H-Bridge L298N

come out straight from behind the case and have to be connected to the pins of the

power supply.

A front view of the case can be seen in the figures of the previous chapter, for

example 5.4. The user can interact with the system directly from the case, since

with the pushbuttons and the screen the desired temperature and amount of time

can be selected and also monitored afterwards.

In this way the system has all the desired features: it is compact, portable, simple

to use and stand-alone , since it does not require to be connected to a PC after the

code has been uploaded once.

71



Figure 6.13: Complete Case with all the hardware mounted on it

Figure 6.14: Close-up on the left side of the Case: the apertures for the power and
USB cables of Arduino, as well as the black pushbutton, are visible.

72



Chapter 7

Testing and final results

Finally the design and building of the system is complete: the only step left is the

Test of the system and the Discussion of the final results.

The tests have been performed by acquiring the temperature data with the Serial

monitor of Arduino, transferring them in Microsoft Excel and using MATLAB in

order to plot and analyze them. The system has been tested choosing as set point

temperatures between 25 ◦C and 40 ◦C with a step of 1 ◦C.

An example of plot of temperature (in ◦C) versus time (in minutes) is shown in

figure 7.1; in this case the set point is 37 ◦C, which is also the temperature needed

for the main application of the system, the study of T. Spiralis.

Figure 7.1: Test performed with an input temperature of 37 ◦C

73



The initial temperature of the microfluidic device at the beginning is the same

as the room temperature of the Microfluidic Laboratory, usually around 25 ◦C; as

soon as the system starts to work, the temperature of the device increases linearly

until it reaches the set point and, after an initial small overshoot of 0,25 ◦C, it starts

to have slow and small oscillations around it. For this input temperature, the rise

time is 15 min 14 s while the maximum value of the oscillation is ± 0,15 ◦C.

7.1 final results

Many tests have been performed choosing different input temperatures: all the re-

sults are summarized in table 7.1. All the tests have been performed during a time

window of 2 hours each, with a sample frequency of 120 Hz. For each test is

reported the Average Temperature, i.e. the average value of all the samples

considering the time samples after the overshoot, the Rising time, i.e. the time

required for the temperature to reach the 90% of the set point value, and the Over-

shoot.

Selected temperature Average temperature Rising time Overshoot
25 ◦C 25,04 ◦C 2 min 21 s ± 0,32 ◦C
26 ◦C 26,01 ◦C 3 min 01 s ± 0,26 ◦C
27 ◦C 27,09 ◦C 3 min 56 s ± 0,26 ◦C
28 ◦C 28,06 ◦C 4 min 42 s ± 0,22 ◦C
29 ◦C 28,95 ◦C 5 min 35 s ± 0,26 ◦C
30 ◦C 30,11 ◦C 6 min 50 s ± 0,26 ◦C
31 ◦C 30,96 ◦C 8 min 04 s ± 0,29 ◦C
32 ◦C 31,99 ◦C 9 min 15 s ± 0,32 ◦C
33 ◦C 33,08 ◦C 10 min 21 s ± 0,32 ◦C
34 ◦C 34,07 ◦C 11 min 36 s ± 0,35 ◦C
35 ◦C 35,10 ◦C 12 min 59 s ± 0,29 ◦C
36 ◦C 35,92 ◦C 14 min 09 s ± 0,27 ◦C
37 ◦C 37,02 ◦C 15 min 14 s ± 0,25 ◦C
38 ◦C 38,12 ◦C 16 min 37 s ± 0,21 ◦C
39 ◦C 39,03 ◦C 18 min 32 s ± 0,23 ◦C
40 ◦C 40,11 ◦C 19 min 49 s ± 0,23 ◦C

Table 7.1: Final results

74



7.2 Discussion of results

From the results shown in table 7.1 some considerations can be done.

First of all, as expected the rise time increases with the selected temperature, and

this is straightforward since the chip requires more time to be heated to higher tem-

peratures. This experimental result is exploited in figure 7.2 which plots the rise

time versus desired temperature,

Figure 7.2: Rise Time vs Selected Temperature

Regarding the Average temperature, the bigger error in magnitude is of 0,12 ◦C

in the case where a temperature of 38 ◦C is selected. In all the other cases the error

is lower. The Overshoot ranges from ± 0,21◦C to ± 0,35 ◦C depending on the

input temperature; this is not a problem in the study of T. Spiralis which is the

main application of this project. However, for other applications the overshoot has

to be taken into account because it could maybe lead to some issues.

75



7.3 Conclusion

The temperature controller performs all the tasks asked in the requirements: it al-

lows the user to select the desired temperature of the microfluidic device and also

the amount of time in which the temperature needs to be monitored. It is portable,

robust and stand-alone: furthermore, it is designed to be mounted and used with

the instruments of the Microfluidic Laboratory of the Pázmány Péter Catholic Uni-

versity, which requested this project.

In conclusion, two pictures of the working system are shown in pictures 7.3 and7.4.

Figure 7.3: Final version of the system

76



Figure 7.4: Final version of the system

77



Bibliography

[1] Kwang W. Oh. Multidisciplinary Role of Microfluidics . University at Buffalo,

State University of New York , 2017.

[2] Auroux P., Iossifidis D., Reyes D., Manz A., Micro Total Analysis Systems,

Analytical Standard Operations and Applications, Analytical Chemistry, vol.

74, pp. 2637-2652, 2002.

[3] Squires T., Quake S., Microfluidics: Fluid physics at the nanoliter scale, Re-

views of Modern Physics, vol. 77, pp. 977-1026, 2005.

[4] Gottstein B., Pozio E., Nöckler K., Epidemiology, Diagnosis, Treatment, and

Control of Trichinellosis, Clin. Microbiol. Rev. vol. 22(1), pp. 127-145, 2009.

[5] Dupouy-Camet J., Bruschi F., Management and diagnosis of human trichinel-

losis, World Organisation of Animal Health Press, vol. 32, pp. 37-68, 2007.

[6] Babos S., Élősködő fonálférgek III. Nematoda parasitica III. Magyarország

Állatvilága, Fauna Hungariae III. vol. 4, pp. 13-15, 1958.

[7] Katz M., Gwadz R., Parasitic Diseases, Springer Verlag, Second edition, New

York,pp. 260-265, 1989.

[8] Piekarski G., Medical Parasitology, Springer Science & Business Media,New

York, pp. 320-324, 2012.

[9] Allen K., Comparative growth and development of Trichinella spiralis in vitro

and in vivo, with a redescription of the life cycle, Experimental Parasitology,

vol. 16, pp. 74-106, 1965.

[10] Wang ZQ., Cui J., Diagnosis and treatment of trichinellosis, Chinese Journal

of Parasitology & Parasitic Diseases, vol. 26(1), pp. 53-57, 2008.

[11] Murrell K.D., Foodborne parasites, International Journal of Environmental

Health Research,vol. 5(1), pp. 63-85, 1995.

78



[12] Roth H., The in vitro action of trichina larvae in immune serum-a new precip-

itin test in trichinosis, Acta Pathologica Microbiologica Scandinavica banner,

vol. 18. pp. 160-167, 1940.

[13] N. S. Nise Control System Engineering, 5th Edition, Wiley, 2008.

[14] Karl Johan Astrom, Richard M. Murray Feedback Systems, Princeton University

Press, New Jersey, 2008

[15] Bemjamin C. Kuo Automatic Control System, Prentice - Hall, New Jersey, 1975.

[16] F. Ioannidis Intelligent controller based on Raspberry PI, School of Computer

Science, University of Manchester, 2014.

[17] Jean Claude Mugisha, Bernard Munyazikwiye, Hamid Reza Kaŕımi Design

of temperature control system using conventional PID and Intelligent Fuzzy

Logic controller, International Conference on Fuzzy Theory and Its Applica-

tions (iFUZZY), 2015.

[18] S. Bennett Development of the PID controller, IEEE Control Systems Magazine

( Volume: 13 , Issue: 6 , Dec. 1993 )

[19] Maltezos, G.; Gomez, A.; Zhong, J.; Gomez, F.A.; Scherer, A. Microfluidic

polymerase chain reaction, Appl. Phys. Lett. 2008, 93, 243901:1–243901:3.

[20] Maltezos, G.; Johnston, M.; Taganov, K.; Srichantaratsamee, C.; Gorman,

J. Exploring the limits of ultrafast polymerase chain reaction using liquid for

thermal heat exchange: A proof of principle, Appl. Phys. Lett. 2010, 97,

264101:1–264101:3.

[21] Khandurina, J.; McKnight, T.E.; Jacobson, S.C.; Waters, L.C.; Foote, R.S.;

Ramsey, J.M. Integrated system for rapid PCR-based DNA analysis in microflu-

idic devices., Anal. Chem. 2000, 72, 2995–3000.

[22] Chandrabhan Patel . Simulation of Thermoelectric Cooler and H-Bridge Driver

for Precise Temperature Control Applications , NATIONAL INSTITUTE OF

TECHNOLOGY, KURUKSHETRA-136119 JUNE 2017.

[23] Yang Jiagu Design of Temperature Control System of Laser Diode Based on

MAX1968, YANG Jiagui , Electronic Engineer , 2007

[24] Jim Williams A Thermoelectric Cooler Temperature Controller for Fiber Optic

Lasers , LINEAR Technology, Application note 89, 2001

79



[25] G. Jeffrey Snyder, Jean-Pierre Fleurial, and Thierry Caillat Supercooling of

Peltier cooler using a current pulse, Journal of Applied Physics 92, 1564 (2002);

https://doi.org/10.1063/1.1489713

[26] Hoffmann, D, Curtin, M, Moore, E, Loughran, M; Development of an integrated

microsystem for injection, transport and manipulation of encoded microbeads,

Lab on a chip, 7(3): 392-395, 2007.

[27] Zdenek Slanina, Martin Uhlik, Vaclav Sladece. Cooling device with Peltier ele-

ment for medical applications, VSB - Technical Universty of Ostrava , Faculty

of Electrical Engineering and Computer Science , Ostrava, Czech Republic,

January 2018

[28] Dave Salerno. Closed-Loop Temperature Regulation Using the UC3638 H-Bridge

Motor Controller and a Thermoelectric Cooler, Application Report SLUA202A

- September 2001.

[29] Huan-Liang Tsai, Jium-Ming Lin, Model Building and Simulation of Thermo-

electric Module Using Matlab/Simulink, Journal of ELECTRONIC MATERI-

ALS, Vol. 39, No. 9, 2010

[30] Ivaylo Belovski, Liliya Staneva, Anatoliy Aleksandrov, Pavlik Rahnev Mathe-

matical Model of Thermoelectric Peltier Module , Journal of Communication

and Computer 14 (2017) 60-64

[31] Mohit Thakkar A report on ”Peltier (thermoelectric) cooling module”, Technical

report, February 2016

[32] Vincent Miralles, Axel Huerr, Florent Malloggi, Marie-Caroline Jullien A Re-

view of Heating and Temperature Control in Microfluidic Systems: Techniques

and Applications, Diagnostics 2013, 3, 33-67

[33] Jianing Yang, Yingjie Liu, Cory B. Rauch, Randall L. Stevens, Robin H. Liu,

Ralf Lenigk, Piotr Grodzinski High sensitivity PCR assay in plastic micro reac-

tors, Physical Sciences Research Laboratories, Motorola Labs, November 2002

80


