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Summary

The past few years have witnessed a staggering increase of information traffic,

growing incessantly with the complexity and quality of the services provided to

users around the world. A remarkable example can be found in the social me-

dia history: starting from Facebook (quite focused on text interactions), people

swept to Instagram (strongly image-oriented), and at present one of the most

fashionables media is TikTok (based on video sharing). The paradigm enabling

this evolution has been “centralized computation”, most of the data processing

being processed in data centres, where most of traffic is localized, and then de-

livered to the end users. In this context, the role of short-range interconnects is

becoming comparable or even greater than that of telecommunications, leading

to the requirement of fast, low-power optoelectronic devices.

One of the main limitations of this architecture is the interface between the

optical domain, pertinent to data communications, and the electrical domain,

which is focused on data processing. Until an all-optical computer will be tech-

nologically feasible, one of the most promising solutions to attack this bottle-

neck is silicon photonics (SiPh), which promises a synergistical, low-cost and

fully CMOS-compatible integration of optical and electronics systems. Explor-

ing new device concepts or even just optimizing consolidated geometries requires

extensive and expensive trial-and-error prototyping campaigns, each prototype

requiring manufacturing a wafer from masks to epitaxy.

Aiming to overcome the state of the art SiPh receiver subsystems, the scope

of this thesis is developing a computer-aided design framework for waveguide

photodetectors. Also from a simulation perspective, dealing with the optical

and electrical domains is delicate, as it requires a joint treatment of Maxwell’s

equations and of a carrier transport model, resulting in a self-consistent multi-

physics picture: in the first instance, the spatially-resolved photogenerated car-

rier distribution is evaluated from absorbed photon density through a full-wave
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electromagnetic simulation (optical model); then, this is used as a source term

in an electrical simulation obtained from the solution of the electron and hole

continuity equations with drift-diffusion constitutive relations, coupled to the

quasistatic Poisson’s equation (electrical model).

The thesis is organized as follows:

• The first chapter reviews the state of the art of waveguide photodetectors,

introducing the figures of merit necessary to assess the electro-optical per-

formance (average photogeneration, responsivity, modulation response).

• The second chapter describes the details of the simulators used in this work.

The electromagnetic section is based on Synopsys RSoft FullWave: a 3D

finite-difference time-domain (FDTD) solver of Maxwell’s equations. The

electrical simulator is Synopsys Sentaurus Device, which solves the Poisson-

drift-diffusion system with a finite-box method based on the Scharfetter-

Gummel discretization of the drift-diffusion relations. The coupling strat-

egy behind the multiphysics approach is described in detail, with emphasis

on possible model simplifications allowing to reduce the computational bur-

den (low carrier generation rates).

• The third chapter is focused on two silicon-germanium waveguide photode-

tectors operating in both O (1.31 µm) and C (1.55 µm) bands: one based

on mode-evolution, one on butt coupling. After describing their opera-

tion by means of approximate semi-analytical models, the two devices are

optimized and compared on the basis of multiphysics simulations. The re-

sults of these simulations campaigns are supporting prototyping iterations

carried out by an industrial partner (Cisco Systems).
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Chapter 1
Photodetectors: a general introduction

Very fast communication systems are spreading all around the world and the

role of fast optoelectronic devices is essential in order to guarantee the ultra-

wide bandwidth high transmission rate needed. Photodetectors convert light

into electrical signals, so the challenge consists in optimisation of these devices,

leading to even higher transmission rate. Moreover, the combination with con-

ventional Silicon integrated circuit (SIC) is fundamental for the development of

Silicon Photonics (SP), where the integration of different materials allows high

performance integrated systems.

This first chapter wants to be an overview of the main photodetectors imple-

mentation and an introduction to the main problem and figures of merit discussed

in this thesis.

1.1 Photodetectors

The multiphysics approach proposed in chapter 3 that takes into account the

solution of both optical and electrical problem (Maxwell equation and semi-

conductor drift-diffusion model) has multiple applications, but it is particularly

suitable for the simulation of optoelectronic devices. The focus is waveguided

photodetectors, one of the most important implementations of photodetectors

where light is guided with a dielectric waveguide to the detecting region.

In order to better place in context the important role of photodetectors,

we start from the basic building blocks of a optical communication system, an

ideal scheme that describes the role of the different components involved in the

communication chain (see figure 1.1).

An optical communication system consists of three fundamental blocks:
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1. Photodetectors: a general introduction

Light
receiver AmplifierLight

emitter

Light

...Data

Figure 1.1: Block scheme of an ideal optoelectronic transmitter-receiver commu-

nication system

1. the transmitter: digital data coming from the transmitter system (like for

example a microprocessor or a microcontroller) are converted into analog

signal that is used to modulate a light source (for example a laser),

2. the channel (or link): it is usually based on optical waveguide (for example

optical fibers),

3. the receiver: it converts the modulated light into a current that contains

the information transmitted.

In the receiver block, photodetectors are the fundamental components as they

convert the light received from the transmitter into a current (called photocur-

rent), which can be managed by high speed electronic systems in successive chain

blocks (such as amplifiers, decoders, . . . ).

The conversion process of light into a current takes advantage of a generation-

recombination mechanism of carriers inside the semiconductor. The interaction

of light (electromagnetic field) with the semiconductor generates electron-hole

pairs that contribute to the overall current. In order to make an effective pho-

todetector, the photogenerated electron-hole pairs must be extracted from the

photodetector. This is usually done by means of an external electric field ap-

plied on the device, which is expected to generate an output current. A current

is present even if no light is illuminating the device, in which case it is referred to

as dark current. For example, in detectors based on pn junctions, dark current

is related to the inverse saturation current of the pn junction.

In order to describe a photodetector we have to define suitable figures of

merit that allow us to compare different configurations. The first is the respon-

sivity, usually indicated with R, measured in A/W. This quantity links the

input optical power to the output current of the detector taking into account the

dependence of the detector on the optical filed (such as light wavelength) and

the intrinsic parameters of the device.

For low input optical power this relation is approximately linear, however,

increasing the input optical power the electron-hole pair generation mechanism

2



1.1. Photodetectors

may saturate, screening the capability of the detector to convert light into a

current. This effect is due to the high number of photogenerated carriers that

do not allow to incoming light to interact with the semiconductor, generating

new electron-hole pairs. The photodetector is dependent on the wavelength λ of

the optical input field. In fact, the photogeneration process is dependent on the

absorption profile of the material, so the responsivity is strongly influenced by

the input optical wavelength. As a result, the responsivity can be written as a

function of the wavelength R = R(λ).
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Figure 1.2: Example of the behaviour of the responsivity of a pin photodetector

with respect to the input optical wavelength

Device capacitance and parasitic resistances are responsible for the responsiv-

ity dependence, indicating that not all of the photogenerated carriers have been

collected. Responsivity can be considered memory-less only if the input optical

signal is slowly varying in time, i.e., the input signal spectrum is significant only

below the device cutoff frequency. If the variation in the modulated signal is

too fast, the output current is not able to follow instantaneously the input opti-

cal field, due to the delay mechanism in carrier transport introduced by device

capacitance and parasitic resistances. So, a frequency-dependent responsivity

R(ω) relates the photocurrent component at ω to the input optical power. With

this in mind, the main parameters we have to take into account are the respon-

sivity with respect to the input optical power and the frequency behaviour of the

device with respect to the modulation of the input optical power, which is called

frequency response of the device.

In order to better understand the photodetector operation we can introduce
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1. Photodetectors: a general introduction
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Figure 1.3: Frequency response of a general photodetector, with frequency axis

normalized with respect to the cutoff frequency

a circuit model. A simple ideal electric model of the photodetector consists of

a current generator with a very high impedance, with parasitic resistance and

capacitance in parallel with the generator. In figure 1.4 it is reported the circuit

schematic of the circuit model of a photodetector.

A photodetector can be implemented in different ways, either by changing

the detector material, or by changing the photodetector structure. Different

materials have been exploited, but in this thesis the focus is on the Germanium

detector. Several types of semiconductor-based detector configurations exist,

namely

1. bulk photodetector (such as photoresistors, photoconductors),

2. junction-based photodetector (such as pn or pin photodiode),

3. avalanche photodetectors (which exploit internal gain by means of a con-

trolled avalanche process),

4. phototransistors (quite similar to bipolar junction transistors, where the

amplified base current is photogenerated).

Each of these implementations has advantages and disadvantages in terms of

responsivity, frequency response and costs. For example bulk photodetector are

very simple, low cost devices, but their response in terms of responsivity and

frequency is far from ideal.
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1.1. Photodetectors

This thesis focuses on junction-based devices, and in particular to waveg-

uide photodetectors with a configuration provided by the literature [2], where

the photogeneration process takes place in a reverse-bias pin junction and the

light reaches the detector by means of a optical waveguide. The idea behind

Z o
uti P
D

C
PD R
LO

A
D

Figure 1.4: Circuit model of a generic photodetector, reproduced from [6]

the operation of a pin device is that photocarriers are removed by the junction

reverse electric field, thus increasing the diode reverse saturation current (the

dark current). A first simple implementation of a junction-based photodetector

is given by a pn photodiode, but photons can be absorbed in the depleted region

(and adjacent diffusion region) that leads to a poor frequency response, limited

by the transit time and by the lifetime of photogenerated carriers. On the other

hand, a more sophisticated and effective solutions are in pin photodiodes. Here,

electrons holes generation occurs in a large intrinsic region placed between two

high-doping layers where an almost constant electric field can be applied from

an external source. The width of the intrinsic layer can be made large enough

with respect to the absorption length (define in eq. (1.2)) in order to make the

related photocurrent contribution dominant over the photocurrent originating

from the diffusion regions.

The very possibility of carriers generation is related to the material absorption

profile and, in particular, to the absorption threshold, i.e. the minimum energy

that photons must have in order to be absorbed[6]. Absorbed photons must

satisfy the following condition:

Eph = ℏω ≥ Eg −→=⇒ λ[µm] ≤ 1.24

Eg[eV]
. (1.1)

Both direct and indirect bandgap semiconductors can be exploited in photodetec-

tors; a direct bandgap semiconductor have the minimum of the conduction band

and the maximum of the valence band align with the same momentum, while

indirect bandgap semiconductors have the minimum of the conduction band and
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1. Photodetectors: a general introduction

the maximum of the valence band at different momentum values. Direct bandgap

materials typically have higher absorption, which results into higher speed[9].

Along a line parallel to the propagation direction (for example the z axis),

the light is absorbed according to the formula

Pin(z) = Pin(0)e
(−αz) = Pin(0)e

(−z/Lα), (1.2)

where Lα = 1/α indicates the absorption length. The dimension of the detector

must be consistent with the absorption length, i.e. the detecting region must

be sufficiently long. In particular, in one-dimensional case, the length d of the

detector should be larger than Lα,. Unfortunately a large d corresponds to higher

transit time, reducing the cutoff frequency, so this is a major limitation to the

detector speed[6]. In junction-based detectors, however, the absorption region

that is depleted acts as a capacitor, whose capacitance can be approximated as

a parallel plate capacitor. So the absorption region capacitance C is inversely

proportional to d limiting the detector speed, due to RC cutoff. If in the one

dimensional case d, the length of the detector, is too big, the transit-time higher,

limiting the speed of the device and decreasing the cutoff frequency, while the

RC limited speed increases, thus leading to a design trade-off.

6



1.2. Photodetector comparisons

1.2 Photodetector comparisons

The goal of this thesis is to analyse with CAD tools and the multiphysics ap-

proach two types of waveguide photodetector. In such context it is important

to define some quantities which will allow us to compare different structures

and configurations. From the electrical standpoint, photodetectors are one-ports

with an optical input port[6]. Assume that the input optical power around wave-

length λ is pin(t) and that the output current is iPD (including the photocurrent

iL and the dark current id); the photodetector is generally characterized by the

following constitutive relation:

iPD(t) = f

(︃
pin(t), vPD(t);

d

dt
, λ

)︃
, (1.3)

where vPD is the detector applied bias and λ is the wavelength of the optical

input field[6]. The time derivative stands for the memoryless behaviour of pho-

todetectos, but as we explained at the beginning of the chapter, if the input

optical signal is slowly varying with respect to the cutoff frequency of the device,

this dependence is not present. The output current, can be rewritten as:

iPD = iL + id, (1.4)

where the dark current id is the current in the absence of optical power, and the

photocurrent iL is the current contribution due to incident light[6]. The dark

current can be defined as:

id = f

(︃
0, vPD(t);

d

dt
, λ

)︃
, (1.5)

while the photocurrent can be defined as

iL = f

(︃
pin(t), vPD(t);

d

dt
, λ

)︃
− id. (1.6)

In general, the relation between the photodetector current and the optical power

is nonlinear and with memory. But, for a slowly varying pin(t) and low input

optical power, it is possible to approximate the relation to a memoryless relation,

linearly approximated as:

iPD(t) = iL + id ≈ R (λ, vPD) pin(t) + id (vPD) . (1.7)

In many photodetectors both the dark current and the responsivity are, in fact,

virtually independent from vPD, and the dark current is small and in these con-

ditions it is possible to neglect it

7



1. Photodetectors: a general introduction

iPD(t) = R(λ)pin(t) + Id ≈ R(λ)pin(t). (1.8)

The linear dependence for the photocurrent iL typically holds for input optical

powers Pin ≪ Pin, sat , where Pin, sat is the saturation optical power at which the

photocurrent saturates at IL, sat .

1.2.1 Responsivity

As mentioned (and discussed in the chapter 2), the detector photocurrent (and

therefore the responsivity) can be in principle derived by integrating the optical

generation rate Go. The generation rate describes the number of photogenerated

carriers per unit volume and unit time, and can be directly obtained from the

absorbed optical power. If we integrate the optical generation rate Go over the

device active volume[6]:

IL = q

∫︂
V

Go (r, Pin) dr, (1.9)

the responsively can be directly evaluated and With this definition it is possible

to define two types of responsivity: from IL the device responsivity can in turn

be obtained as:

R =
IL
Pin

(1.10)

or

Rdifferential =
dIL
dPin

. (1.11)

The two definitions coincide if the current-power characteristic is linear.

In the simulation that will be considered in chapter 3, the generation rate is

evaluated with a numerical solver that implements FDTD method to solve the

optical (Maxwell) problem. Nevertheless, a simple derivation of Go can be useful

to derive an ideal, best-case limit for the detector parameter. As a first step, we

directly relate Go to the optical power as follows

dP̃ in(x)

dx
= −α ˜︁Pin(x) →

Energy absorbed

t · V
= −∆P̃ in

∆x
= α ˜︁Pin, (1.12)

where we have differentiated the power equation with respect to x and defined˜︁Pin = Pin/A as the optical power density (W/m2), A being the detection area[6].

Dividing by the photon energy Eph = ℏω, we obtain:

( Energy lost)/(t · V )

Photon energy ℏω
=

α ˜︁Pin

ℏω
=

Number of photons absorbed

t · V
=

=
Number of e-h pairs generated

t · V
= Go,

(1.13)

8



1.2. Photodetector comparisons

hence

GO =
α ˜︁Pin

ℏω
, (1.14)

where Go is the optical generation rate associated to the external photon flux,

i.e. the number of electron-hole pairs generated per unit time and volume. Since

the optical power density exponentially decreases with x, so the same behaviour

is followed by the optical generation rate:

Go(x) =
α ˜︁Pin(x)

ℏω
=

α ˜︁Pin(0)

ℏω
e−x/Lα = Go(0)e

−x/Lα . (1.15)

For simplicity, let us now assume that all the incoming optical power is absorbed,

and all of the generated electron hole pairs are collected as a current in the

external circuit. We have:

IL
q

= A

∫︂ ∞

0

Go(x)dx = A

∫︂ ∞

0

α ˜︁Pin(x)

ℏω
dx = − A

ℏω

∫︂ ∞

0

d ˜︁Pin(x)

dx
dx ≈ Pin(0)

ℏω
,

(1.16)

therefore we have
IL
q

=
Pin(0)

ℏω
, (1.17)

where Pin(0) is the incident power. From this simplified model, it follows that

the photocurrent indeed linearly depends on Pin(0) through the responsivity R:

IL =
q

ℏω
Pin(0) = RPin(0). (1.18)

Using power and current densities, we similarly have JL = R ˜︁Pin(0).

The above analysis is based on the assumption that each incident photon

generates an electron in the external circuit, and leads to an ideal, best-case

value for the responsivity[6]. In these conditions it is possible to get

R =
q

ℏω
=

q

Eph

, (1.19)

which holds when all of the incident photons are absorbed and converted into

the external short-circuit current.

In the best-case conditions described above, the responsivity is a function of

the photon energy, and it has a maximum Rmax that can be computed. The

photon energies below the absorption threshold, that is given by the energy gap

of the material, gives a responsivity equals to zero; just above the threshold a

sharp increase of α is present (since electron hole pairs start to be generated),

and the R have its maximum for Eph ≈ Eg, i.e.:

Rmax ≈ q

Eg

=
1

Eg[eV]
≈ λ[µm]

1.24
. (1.20)

9



1. Photodetectors: a general introduction

Finally, for Eph > Eg, the responsivity ideally decreases with increasing Eph

R(Eph) ≈ Rmax
Eg

Eph

, (1.21)

according to this behaviour, for energies close to the threshold, the responsiv-

ity approximately follows the absorption coefficient, while for higher energies it

decreases like the inverse of the photon energy. This behaviour can be seen in

figure 1.2, in which a MgCdTe sample is used as detector.

Very large maximum responsivity values are achieved in far infrared detectors,

due to the inverse dependence of Rmax on the energy gap. Responsivity for long

wavelength infrared detectors (used in communications [18]) have its maximum

an order of magnitude of 1A/W. Additional detector figures of merit are the

internal quantum efficiency ηQ and the external (or device) quantum efficiency

ηx. The internal quantum efficiency is defined as:

ηQ =
generated pairs

photons reaching the active region
, (1.22)

where typically ηQ ≈ 1. On the other hand, ηx, that is defined as the external

quantum efficiency, is directly related to the responsivity, indeed

ηx =
collected pairs

incident photons
=

IL/q

Pin/ℏω
=

ℏω
q
R < ηQ. (1.23)

In general, ηx ≤ 1 in the absence of gain. If we assume ideal operation ηx = 1 ≡
ηQ.

But the number of electrons flowing in the external circuit in real device can

be substantially lower than the number of incident photons, so the responsivity

can be much smaller than the maximum value evaluated with the ideal method

(1.20). In fact, the incident light from the source to the detector region has to

pass trough a number of steps before being converted into a current. Some of

the steps are

1. Part of the power from the source is reflected at the waveguide-photodetector

interface due to possible dielectric mismatch;

2. A fraction of the power is absorbed by the waveguide

3. A fraction of the power is absorbed in regions outside the detector region,

so it does not contribute to the overall current;

4. A fraction of the optical power is absorbed by metals, that usually heat

up;

10



1.2. Photodetector comparisons

5. A Fraction of the power is transmitted through the PD without being

absorbed.

So, only part of the power is absorbed in the detector region, contributing to

the output current of the device. Devices must be optimised so that only a small

fraction of the input optical signal is lost during the path from the source to the

detecting region, or transmitted by the detector.

1.2.2 Photodetector electrical bandwidth

The responsivity concept can be readily extended to describe the detector fre-

quency response, i.e. the dependence of the output current with respect to the

modulation frequency of the input optical signal[6]. Let us assume that the de-

vice operates in linear condition, i.e. with low input optical power. Let us recall

the equation (1.3), where for simplicity the dependence with respect to the input

optical wavelength has been removed (since we are considering the modulation

frequency of a specific optical wavelength, so there is not a loss in generality

since we are considering just a single wavelength)

iPD(t) = f

(︃
pin(t), vPD(t),

d

dt

)︃
(1.24)

and we perform a kind of small signal analysis, separating the DC and signal

components1.

Pin = Pin,0 + p̂in(t), VPD = VPD,0 + v̂PD(t), IPD = IPD,0 + ı̂PD(t). (1.25)

If we now assume sinusoidal modulation of the input optical signal, it is

possible to associate phasors to the signal components. Again, this is not a loss

in generality, since the complete modulated signal can be recovered as a sum of

harmonic components:

p̂in(t) = R
(︂
P̂ ine

jωt
)︂
, v̂PD(t) = R

(︂
V̂ PDe

jωt
)︂
, ı̂PD(t) = R

(︂
ÎPDe

jωmt
)︂
, (1.26)

where ω = 2π/f is the light angular modulation frequency. Linearising around

a DC working point we obtain:

IPD,0 + ı̂PD(t) = f (Pin,0, VPD,0, 0)⏞ ⏟⏟ ⏞
IPD,0

+
∂f(d/dt)

∂pin

⃓⃓⃓⃓
0

p̂in(t) +
∂f(d/dt)

∂vPD

⃓⃓⃓⃓
0

v̂PD(t).

(1.27)

1the subscript 0 and the upper letter denote the DC working point

11



1. Photodetectors: a general introduction

We are interested in the second and third terms, that are respectively the small-

signal photocurrent ı̂L and dark current ı̂d.

With the just introduced phasor notation we can express the small-signal

detector current ı̂PD as[6]:

ı̂PD(t) = ı̂L(t) + ı̂d(t) = R
(︂
R(ω)P̂ ine

jωt
)︂
+R

(︂
YPD(ω)V̂ PDe

jωt
)︂
, (1.28)

where R(ω) is the complex small-signal responsivity, and YPD(ω) is the detector

small-signal admittance. Therefore, the phasor related to ı̂PD(t) is given by:

ÎPD(ω) = YPD(ω)V̂ PD(ω) + ÎL(ω), (1.29)

where the signal photocurrent phasor ÎL(ω) is linearly related to the signal optical

power phasor as:

ÎL(ω) = R(ω)P̂ in(ω) (1.30)

The complex responsivity R(ω) that describe the detector small-signal fre-

quency response is typically a low-pass filter of the modulation frequency. So

only the frequency components below the cutoff frequency are significant. The

bandwidth is defined as the frequency f3 dB at which the responsivity drops by

3 dB with respect to the DC value, in particular we have:

20 log10

⃓⃓⃓⃓
R (ω3 dB)

R(0)

⃓⃓⃓⃓
= −3 → R (f3 dB) =

1√
2
R(0). (1.31)

The cutoff frequency that has been described refers to the short-circuit pho-

tocurrent, and it is therefore independent from the detector loading but only on

transit time, high-frequency cutoff, . . . . All these effects are typically considered

in the intrinsic cutoff frequency.

Finally, the overall detector response is also affected by the load impedance

and by parasitic (extrinsic) elements, such as parasitic resistance. The main

load-related cutoff mechanism is the RC cutoff, caused by the combined effect

of the device capacitances with the load resistance. A quantitative evaluation

of the total cutoff frequency can be based on the simplified equivalent circuit of

the photodetector in Fig. 1.4. In the frequency domain, the photodetector can

be modeled by the current-voltage phasor relation:

IPD(ω) =
[︁
Y i
PD(ω) + Y x

PD(ω)
]︁
VPD(ω) + IL(ω), (1.32)

where IL = R(ω)Pin is the short-circuit photocurrent component at ω, Y i
PD is

the detector intrinsic admittance, and Y x
PD is the detector admittance. The load

12



1.2. Photodetector comparisons

impedance ZL, that may describe the input impedance (or resistance for sim-

plicity) of amplifiers, for example. So, capacitive and resistive load, joined with

the intrinsic cutoff frequency, influence the bandwidth of the detector. Luckyly,

the RC cutoff may be handled at a circuit level. Assuming ZL = RL and a total

detector capacitance CPD, the current on the load IRL
= −IPD is given by

IRL
(ω) = − IL(ω)

1 + jωRLCPD

→ |IRL
(ω)| = |IL(ω)|√︁

1 + ω2R2
LC

2
PD

, (1.33)

Therefore, even if IL(ω) = RPin, with R not depending on the frequency, the

responsivity of the loaded detector has the expression:

|Rl(ω)| =
R√︁

1 + ω2R2
LC

2
PD

, (1.34)

which is frequency-dependent[6].

In junction-based detectors the DC current is small (dark current) and can

be considered bias-independent (or very weakly dependent), the detector large-

signal model can be defined as a capacitive admittance with two current gen-

erators modeling the photocurrent iL that is linearly dependent on the optical

power[6]. The voltage-dependent photocurrent or a nonlinear detector input

admittance, (as in pn photodiodes), or even other effects, can be implemented

directly at a circuit level.

13
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Chapter 2
Multiphysics approach: models for

carriers transport and FDTD method

The modelling of semiconductor devices started in the middle of the past century

with the increasing semiconductor devices downscaling and performance optimi-

sation. One of the first mathematicians was Van Roosbroeck, that studied semi-

conductor devices and he formulated the so-called fundamental semiconductor

device equations.

The semiconductor device equations are a system of nonlinear partial differ-

ential equations that involves electrostatic potential and carrier density distribu-

tions along the spatial domain, as reported in the following.

The first general approach to solve the system of equations was an approxi-

mate analytical solution, which allows the definition of design rules and gives an

intuitive understanding of the problem, how carriers move, etc. But the minia-

turisation process became stronger and stronger, and so more accurate solution

were needed. Therefore, the fully analytic approach became obsolete while nu-

merical simulation has become more and more relevant over the years, allowed

by the fast development of very high speed computers with large memory.

The first to suggest the numerical approach was Gummel for the bipolar

transistor. De Mari applied the fully computational approach to pn-junction

diodes.

But standard discretisation methods (like finite difference method) suited for

the analysis of small semiconductor devices, since instabilities are present and

as enormous amount of computational resources are needed in order to obtain

acceptable results. Scharfetter and Gummel developed a more sophisticated dis-

cretization method, which is still in use nowadays, solving the instability problem

[11].
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2. Multiphysics approach: models for carriers transport and FDTD method

2.1 Modeling of semiconductor devices

A semiconductor is a material whose electrical properties fall between insulators

and conductors. A possible representation of a semiconductor can be done by

means of a band structure that describes the range of energy levels that electrons

may have inside the semiconductor, as well as the ranges of energy levels that

they may not have within it [17]. A simplified representation includes two energy

bands, namely the valence band and the conduction band, separated by the

energy gap Eg.

Since the semiconductor devices of interest in this work operate at room

temperature (around T = 300K) or above, it is possible that some electrons

have enough thermal energy to be promoted from the valence to the conduction

band, leaving behind positive charges called holes.

Electrons and holes in the semiconductor can be described by means of den-

sities (or concentration), usually expressed in cm−3 (n and p respectively). Elec-

trons and holes can interact with different entity, such as an external applied

electric field (or an applied voltage to the semiconductor device), photons, as

well as with other particles (like phonons) [6].

In the following, the electronic devices that are considered work in low energy

condition, i.e. most of electrons and holes are situated in the minimum of the

conduction band and holes in the maximum of the valence band, so the effective

mass approximation can be used. This situation occurs when the semiconduc-

tor is in a condition near its thermodynamic equilibrium position (simply called

equilibrium). The effective mass approximation can be obtained from the com-

plete description of the band structure of the semiconductor considered, with the

fundamental period of the reciprocal space (of the periodic lattice of the semicon-

ductor) along the irreducible wedges (called first Brillouin zone[9]). With this

description, an electron energy-momentum relation is found that can be used to

completely describe the electronic band structure of the semiconductor. Possible

methods to evaluate the band structure of a semiconductor can be found in [3].

So, in low energy condition, almost all electrons and holes fall in the minimum

of the conduction band Ec and the maximum of the valence band Ev respectively,

and these two points (with their neighboring points) can be approximated with

a parabolic function, leading to the effective mass approximation [9].

Since semiconductors have a band structure, it is reasonable to describe the

states that can be occupied in the two bands with the number of states per unit

volume for electron in the conduction band, defined as Nc, and the number of

states per unit volume for holes in the valence band, defined asNv, both functions

16



2.1. Modeling of semiconductor devices

of the energy. They are also called density of states (DOS) and in a bulk (also

called 3D) semiconductor they have the following expressions

0 0.2 0.4 0.6 0.8 1

E
v

E
c

N
c

N
v

Figure 2.1: Qualitative plot of the dependence of the density of states with

respect to the energy

Nc(E) =
4π

h3

(︁
2m∗

n,D

)︁3/2√︁
E − Ec, (2.1)

Nv(E) =
4π

h3

(︁
2m∗

h,D

)︁3/2√︁
Ev − E. (2.2)

Near the edge of the valence band, holes may belong to different bands very close

one to the other (light holes and heavy holes), so the valence band DOS typically

is larger than the one of the conduction band[16].

Electrons and holes follow at equilibrium the Fermi-Dirac distribution that

describes the electrons and holes equilibrium occupation as:

fn(E) =
1

1 + e
E−EF
kB,T

(2.3)

fh(E) =
1

1 + e
EF−E

kBT

, (2.4)

where the Fermi level EF is constant in the whole system.

In Fig. 2.2 the Fermi-Dirac fn(E) has been plotted at different temperature.

At T = 0K no electrons have energy above the Fermi level EF , i.e. no electrons

have enough energy to belong to the conduction band. On the contrary, increas-

ing temperature, the probability to find electrons with energy above the Fermi
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Figure 2.2: Fermi-Dirac Statistic for electrons with different temperature as a

function of the difference between the energy of the particle and the Fermi level

EF

level (i.e. in the conduction band) increases. The same argument, but with op-

posite sign can be applied to holes Fermi-Dirac statistic, since fh(E) = 1−fn(E).

The Fermi-Dirac distribution are essential because it can be interpreted as the

availability of state, or better, it can be seen as the probability that a state with

a certain energy is available. This is crucial when dealing with optoelectronic

devices, since when the electromagnetic wave interact with the semiconductor,

new electron-hole pairs are Created. But, to be possible, some “space”in the

conduction band and in the valence band must be present.

Integrating the product between the density of states and the statistical dis-

tributions over all energies, we have:

n =

∫︂ ∞

Ec

Nc(E)fn(E)dE, (2.5)

p =

∫︂ Ev

−∞
Nv(E)fh(E)dE, (2.6)

since Nc has a physical meaning only from Ec to ≈ ∞1, only this energy range

is considered for the conduction band, while for Nv only from ≈ −∞ to Ev has

a physical meaning, so only this energy range is considered for the valence band.

1Nc represents a density of state, so only real values has a physical meaning, and since the

semiconductor has a forbidden gap, only hor energy outside the forbidden gap the integral is

different from zero. Same for Nv
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2.1. Modeling of semiconductor devices

The integral 2.5 and 2.6 can not be evaluated analytically, so a numerical

solution must be used. In other words equations 2.5 and 2.6 are the product of

the all possible states and the probability that each state is occupied, leading to

the actual concentration of electrons and holes in the semiconductor.

In many devices, the semiconductor is non degenerate, i.e. if the Fermi level

lies within the energy gap, so the Fermi-Dirac distribution can be approximated

with the Boltzmann approximation:

fn(E) ≈
E≫EF

e
EF−E

kBT , (2.7)

fh(E) ≈
E≪EF

e
E−EF
kBT . (2.8)

In the degenerate case the Fermi level can fall into the conduction or valence

bands, and the previous condition is violated. In such case, the full Fermi-Dirac

statistics has to be used. Substituting the Boltzmann approximation in equation

2.5 and 2.6 the integral can be evaluated

n =

∫︂ ∞

Ec

Nc(E)fn(E)dE = Nce
EF−Ec
kBT (2.9)

p =

∫︂ Ev

−∞
Nv(E)fh(E)dE = Nve

Ev−EF
kBT (2.10)

where we define the effective densities of states as:

Nc = 2

(︁
2πm∗

n,DkBT
)︁3/2

h3
, (2.11)

Nv = 2

(︁
2πm∗

h,DkBT
)︁3/2

h3
. (2.12)

Doping is the process that substitutes atoms of the semiconductor (in the

case of Si, which belongs to the IV group of the period table) with atoms of

neighboring groups of the period table, such as boron (III group) or arsenic (V

group)[6].

A semiconductor can be doped with a donors, whose density is usually de-

noted by ND. Donors are elements capable of providing an additional electron

when substituting an atom of the native semiconductor lattice. The additional

electron is weakly bounded to the donor atom, so it can be easily ionized and

enter the conduction band, contributing to conduction. In this case, the semi-

conductor is called n-type. Semiconductors can also be doped with acceptors,

whose concentration is usually denoted by NA. They have opposite behaviour
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Figure 2.3: Intrinsic carrier density for Silicon as a function of the temperature

with respect to donors and can therefore attract an electron from the valence

band leaving behind a hole. The semiconductor is called p-type.

In an intrinsic (or undoped) semiconductor at equilibrium, electron and holes

have the same concentrations, since the overall semiconductor is neutral. So

p = n = ni, which implies that

ni = Nce
EFi−Ec

kBT = pi = Nve
Ev−EFi

kBT . (2.13)

where EF,i is the Fermi level for an intrinsic semiconductor, and it can be

evaluated as

EFi = kBT log

√︃
Nc

Nv

+
Ec + Ev

2
. (2.14)

Moreover, the intrinsic concentration can be directly evaluated only with the

effective densities of states (2.11), the temperature T and the energy gap, i.e. all

quantity of the material considered:

nipi = n2
i = NcNve

− Eg
kBT . (2.15)

The intrinsic density grows exponentially with T . If the intrinsic concentra-

tion is of the order of the doping, the doping becomes ineffective, leading to one

of the main limitations in semiconductor operation at high temperature.

In figure 2.3 an example of this effect is shown with a Silicon sample (data

from [8]).

The mass action law shows that, in equilibrium conditions, with and without

doping, the product of the concentrations n and p does not depend on the position
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2.1. Modeling of semiconductor devices

of the Fermi level

np = n2
i (2.16)

and substituting the equation 2.15 in the equation it is clear that the product

does not depends on the Fermi level EF .

In this thesis only room temperature cases are of interests, i.e. dopants are

in the so so called saturation region of dopants, where dopants are fully ionized.

From the expressions of the electron and hole densities, the Fermi level can

be evaluated. In n-type semiconductors, the Fermi level increases with respect to

EFi, becoming closer to the conduction band edge. On the other hand, for p-type

semiconductors the Fermi level decreases and becomes closer to the valence band

edge. For very high doping (with respect to the intrinsic concentration and near

the value of the effective densities of states), donors and acceptors can no longer

be assumed to be fully ionized (or electrically activated), but their ionization is

related to the position of the Fermi level[6].
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2. Multiphysics approach: models for carriers transport and FDTD method

2.2 Semiconductor transport

After briefly describing the behaviour of the semiconductor at thermodynamic

equilibrium, it is important to describe the effects of applied electric field to a

semiconductor. The main differences with respect tot the equilibrium case is

that at equilibrium the average carrier velocity is zero, while, when an electric

field is applied, average carrier velocity increase. This means that, although

carriers have zero ensemble average velocity, the root mean square (r.m.s.) carrier

velocity (also called the thermal velocity) is extremely high. Quasi-Fermi levels

are introduced to describe the behaviour of electrons and holes concentrations,

substituting the single Fermi level with two separate quasi-Fermi levels EFn and

EFh as follows:

fn (E,EFn) =
1

1 + e
E−EFn
kBT

,
E≫EFn

(2.17)

fh (E,EFh) =
1

1 + e
EFh−E

kBT

≈ .
E≪EFh

(2.18)

Applying again the Boltzmann approximation we get

fn (E,EFn)≈e
EFn−E

kBT , (2.19)

fh (E,EFh)≈e
E−EFh
kBT . (2.20)

Substituting the Boltzmann approximation in the carrier densities it becomes:

n = Nce
EFn−Ec

kBT , p = Nve
Ev−EFh

kBT , (2.21)

while the mass action law 2.16 is changed, introducing a difference in the two

quasi-Fermi levels:

np = n2
i e

EFn−EFh
kBT . (2.22)

In particular, if np > n2
i (for EFn > EFh) carriers injection occurs, while if

np < n2
i (for EFn < EFh) carriers depletion occurs.

In the degenerate case, the Boltzmann approximation is not valid the expres-

sion of the charge density uses the Fermi-Dirac integrals. So the density of states

can be rewritten substituting 2.17 and 2.18 in 2.5 and 2.6 respectively, obtaining:

n =
2√
π
NcF1/2

(︃
EFn − Ec

kBT

)︃
, (2.23)

p =
2√
π
NvF1/2

(︃
Ev − EFh

kBT

)︃
. (2.24)
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2.2. Semiconductor transport

Let us notice that the equilibrium case with the new quantity definitions is

just a particular case, i.e. at equilibrium EF is constant along the whole define,

this means that if EF,n = EF,h, the semiconductor is at equilibrium.

In the presence of an applied field, the ensemble average velocity assumes a

value proportional to the electric field:

vn,av = −µnE , vh,av = µhE . (2.25)

where µn and µh are the electron and hole mobilities, measured in cm2/Vs.

If the applied electric field is low with respect to the saturation electric field

value, the mobility is called low-field mobility and it does not depends on the in-

teraction with lattice vibrations (phonons), impurities etc. Typically, it decreases

with increasing doping and increasing temperature. For very large electric fields

(with values depending on the semiconductor) the average velocity saturates:

vn,av → vn, sat , vh,av → vh, sat (2.26)

where the saturation velocities have magnitude around 107cm/s.

The motion of electrons and holes due to the presence of an electric field is

called the drift motion and gives rise to the drift current density:

Jn,dr = −qnvn,av = qnµnE ,
Jh,dr = qpvh,av = qpµhE .

(2.27)

Scattering mechanism is the main reason why a saturation velocity is present.

However, for extremely small time (ps) or space (less than few microns) scales,

electrons and holes are free to move in the crystal without any scattering events.

In such conditions, the average carrier velocity can be much higher, in the pres-

ence of strong electric fields, than the static saturation velocity. The free motion

of carriers is called ballistic motion, while the increase of the average velocity is

calle velocity overshoot.

When a carriers concentration gradient is present, carriers tends to eliminate

the gradient, leading to a diffusion current, that can be define as

Jn,d = qDn∇n, (2.28)

Jh,d = −qDh∇p. (2.29)

where Dn and Dh are the electron and hole diffusivities, respectively. At

equilibrium the diffusivities and mobilities follow the Einstein relation Dn,p =

(kBT/q)µn,p.
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2. Multiphysics approach: models for carriers transport and FDTD method

2.3 Generation and recombination

Carriers generation and recombination processes are described by generation

rates Gn,p i.e. the number of electrons (n) or holes (p) generated per unit time

and volume, and Rn,p for the number of (n) or holes (p) recombining per unit

time and volume. It is possible to define the electron and hole net recombination

rates:

Un = Rn −Gn, Uh = Rh −Gh. (2.30)

In DC stationary conditions, Un = Uh, while in time-varying conditions the

instantaneous net recombination rates of electrons and holes can be different one

from the other.

Generation recombination processes can be phonon-assisted, thermal assisted,

photon-assisted (optical generation-recombination, the one of our interest), or as-

sisted by other electrons or holes. Moreover, recombination and generation can

occur through interband transitions (direct mechanisms), or assisted by inter-

mediate trap levels in the forbidden band (due to impurities of the crystal, by

doping, . . . ) (indirect mechanism)[6]. In direct-bandgap semiconductors (as Ge),

direct optical generation rate mechanism typically is the dominant one.

2.3.1 Trap-assisted (Shockley-Read-Hall) recombination

The trap-assisted generation recombination mechanism is called Shockley-Read-

Hall (SRH) generation recombination. In a semiconductor consider a trap den-

sity of Nt, and each of these traps introduce in the forbidden gap, an energy

level Et. Transitions due to thermal processes from the valence to the conduc-

tion bands are easier if assisted by a trap level, since two successive transitions

with lower energy differences are much more probable than one single transition

with energy bigger than the energy gap.

In stationary conditions [6], the net trap-assisted recombination rate can be

expressed as:

USRH =
np− n2

i

τSRH
h0 (n+ n1) + τSRH

n0 (p+ p1)
, (2.31)

where:

τSRH
h0 =

1

rSRH
ch Nt

, τSRH
n0 =

1

rSRH
cn Nt

. (2.32)
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2.3. Generation and recombination

The parameters rSRH
ch and rSRH

cn are the trap capture coefficients for elec-

trons and holes,the coefficient g is an dimensionless parameter, called the trap

degeneracy factor, EFi is the intrinsic Fermi level, close to midgap, while:

p1 = nige
EFi−Et
kBT0 , n1 = ni

1

g
e
−EFi−Et

kBT0 . (2.33)

2.3.2 Auger recombination (or impact ionization)

The electron or hole assisted recombination is called Auger recombination, and

the related rate is proportional to p2n and pn2, implying proportionality not only

with respect to the colliding populations (electrons and holes) but also to the

population of the energy suppliers. The inverse process of the Auger recombina-

tion is the generation by impact ionization. Due to this dependence, the Auger

recombination is important (and is indeed an unwanted competitor of the radia-

tive recombination) in high-injection devices. In high-field conditions (i.e. for

fields of the order of 100kV/cm ), electrons and holes gather enough energy from

the electric field between two successive scattering events (i.e. collisions with

phonons, impurities or - less important - other carriers) to be able to interact

with another electron and promote it to the conduction band[6].

Each electron or hole is therefore able to generate, over a certain length, a

number of electron-hole pairs, that undergo in turn the same process (energy

increase, scattering and e-h pair generation). The resulting chain can lead to

diverging current, i.e. to avalanche breakdown in the semiconductor.

The phenomenon can be described by the following carrier generation model:

∇ · Jn = −qGn − qGh, ∇ · Jh = qGn + qGh, (2.34)

where:

Gα =
1

q
αα(E)Jα, α = n, h. (2.35)

The impact ionization coefficients αn and αh or α and β,with dimension of

cm−1, show a strong increase with the electric field.

2.3.3 Electromagnetic wave-semiconductor interaction

At a microscopic level, an EM wave with frequency f (or free-space wavelength

λ = c/f) is interpreted as a collection of photons of energy Eph = hf = ℏω[6].
Photons can be considered zero-mass particles, whose speed is c0 (i.e. the

speed of light in free space) and c0/nr in materials, where nr is the refracting
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2. Multiphysics approach: models for carriers transport and FDTD method

index of the material r. A photon has ad momentum p = ℏk with k as the

propagating wave wavevector.

From the same microscopic point of view, a semiconductor can be seen as

container electrons and holes that may interact with photons. The interaction

can be seen as a scattering process (or a collision), in fact, charged particles

in motion are subject to the electric field and to magnetic field of electromag-

netic wave. We take into account that a semiconductor is not a dielectric or

a conductor, so its response is different with respect to other type of materials

since band-to-band processes allows transitions of carriers from one band to the

other. In fact, the transition that may occur with the interaction of the carriers

with the electromagnetic field is due to absorption or emission of a photon from

the semiconductor itself . The relation between the photon energy and the the

wavelength λ of the electromagnetic field is: [6]

Eph = hf =
hc0
λ

=
1.24

λ|µm
eV. (2.36)

It is clear that for a wavelength of the order of 1 µm the order of magnitude

of the photon energy is of 1 eV. This is important, and we anticipate it here,

because the interaction between the electromagnetic wave and the semiconductor

is depended on the energy gap of the semiconductor. It is possible to divide the

interaction in three different cases with respect to the value of Eph and the energy

gap Eg:

• Eph < Eg, as in radiofrequency (RF), microwaves, or far infraRed: the

interaction is weak and no band-to-band processes are involved. This kind

of interaction is typical of a dielectric material [6];

• Eph ≈ Eg and Eph > Eg, as in Near InfraRed (NIR), visible light and Ultra

Violet (UV). Light interaction is strong since band-to-band processes (and

the corresponding generation - recombination of electron and hole pairs)

are present. When a generation event happen, a photon has been absorbed,

when a recombination event happen, a photon has been emitted;

• Eph ≫ Eg, as for X rays: this is an high-energy ionizing interactions be-

tween photons and the semiconductor, i.e. a photon may cause the gen-

eration of a high-energy electron-hole pair, that may lead to avalanche

breakdown of the semiconductor[16].

The interaction between the electromagnetic field and the semiconductor in-

volves at least a photon and an electron-hole pair, and the interaction can be
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one of the following:

• Photon absorption, corresponding to a generation of an electron hole pair:

a valence band electron receive the energy from the interaction, and it

is promoted to the conduction band leaving a hole in the valence band.

Since the process involves an exchange of energy, the electromagnetic wave

decreases its amplitude and power.

• Photon stimulated emission, i.e. an electron hole pair recombination: a

photon interact with the semiconductor and it emits another photon with

the same frequency and wavevector as the first one. The new photon is

coherent with the previous one, i.e. it increases the amplitude of the field

and the power. A gain process can be defined to describe this event.

• Photon spontaneous emission, that involves the recombination of an elec-

tron hole pairs: it is different from the previous case since the emission

is not correlated with another photon: the electron hole pair recombines

to provide the photon energy. The emitted photon is incoherent, i.e. the

process does not amplify an already existing wave, but the excitation of a

new electromagnetic field is possible

Absorption and stimulated emission are practically the same process with

time reversal, i.e. in the first one the photon is “converted”into an electron hole

pair, while in the second case an electron hole pair is “converted ”into a photon.

Quantum mechanics is the basis for the interaction of the electromagnetic

wave and the semiconductor, through the so-called perturbation theory [13]. In

the perturbation theory, the interaction must satisfy rules. The first coincides

with classical collision, i.e. the total energy and momentum must be conserved

during the interaction; the second consists of the so called selection rules ; The

selection rule states that some interactions are not allowed, even if they satisfy

energy and momentum conservation.

2.3.4 From EM wave to optical generation rates

We have introduced the basic concepts of the interaction of light (the electro-

magnetic field) with a semiconductor, but we still have to define the quanti-

ties involved. The common way of introducing the electromagnetic interaction

is through a generation-recombination rats, that describe the total number of

electron-hole pairs generated or recombined for unit volume and unit time.
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The electromagnetic wave is described inside the material with the dielectric

constant. In this case, a complex dielectric constant can be defined ϵ(hf) =

ϵ′− jϵ′′ and, equivalently, the complex propagation constant k = ω
√
ϵµ0 = ᾱ+jβ.

The absorption coefficient is positive in general but can be positive or negative,

depending if stimulated emission is present, corresponding to gain ḡ. A net gain

can be defined as g = ḡ−α. These points of view are just for the electromagnetic

wave, but for the semiconductor a radiative recombination rate Ro and a radiative

generation rate Go or the net radiative recombination rate Uo = Ro − Go are

defined.

The goal is to related the scattering processes with the parameters of the

electromagnetic wave[12] (absorption, gain, net gain). Let us assume that the

electromagnetic wave in the medium propagates as a single frequency plane wave.

This is not a loss in generality, since the complete spectrum of the field can be

reconstructed from the superposition of a series of single frequency plane waves.

We have for the electric field

E = E0e
−γz = E0[e

−ᾱze−jβz].

And the corresponding optical power as

Pop = Pop(0)e
−2ᾱ ≡ Pop(0)e

−αz, (2.37)

where ᾱ is the field attenuation, and α = 2ᾱ is the absorption coefficient. We

describe now the electromagnetic wave as a bunch of photons, travelling in the

semiconductor, whose photon density ρph must satisfy, in steady state, to the

continuity equation:

dρph
dt

⃓⃓⃓⃓
em,abs

≡ Wem −Wabs =
dΦph

dx
=

d

dx

(︃
ρph

c0
nr

)︃
, (2.38)

where Φph is the photon flux,WemandWabs are respectively the scattering rate

for the emission and the absorption. Expressing the scattering rates one has:

d

dx

(︃
ρph

c0
nr

)︃
= ρphwNcv [fnfh − (1− fn) (1− fh)] +

1

V
wNcvfnfh, (2.39)

where fn and fh are the Fermi integrals (2.17) and (2.18), describing the

occupation probabilities, Ncv is called the joint density of states, and it takes care

of describing both the density of states of the valence and the conduction band.

The first term is including the stimulated emission and absorption rates that is

proportional to ρph, while the second term is associated to spontaneous emission.

28



2.3. Generation and recombination

The first term lead to gain or loss of radiation, the second term contribute only

to the process that generates photons propagating in random directions (i.e.

spontaneous emission). The product of the Fermi integrals arise from the fact

that an initial(final) electron hole pair is present, as well as the photon.

Absorption (or gain) decreases (or increases) exponentially the photon density

in the propagation direction (z):

ρph(z) = ρph(0)e
−αzeḡz, (2.40)

Substituting in the previous equation we can identify two important quanti-

ties:

α = nr

c0
wNcv (1− fn) (1− fh)

ḡ = nr

c0
wNcvfnfh

Finally, the net gain g = ḡ − α can be expressed as:

g =
nr

c0
wNcvfnfh −

nr

c0
wNcv (1− fn) (1− fh) =

nr

c0
wNcv (fn + fh − 1) . (2.41)
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2. Multiphysics approach: models for carriers transport and FDTD method

2.4 Mathematical modelling of semiconductors

The analysis done in the previous sections provided us an overview of the be-

haviour of semiconductors either at equilibrium and out of equilibrium. It can

be summarised with the following statements

• If an electric field is applied, carriers experience a drift motion whose ve-

locity depends on material quantities such as electron hole mobility;

• If a gradient concentration of carriers is present, a diffusion motion of excess

carriers tries to balance the carriers difference;

• Generation recombination mechanism are fundamentals for carriers trans-

port and semiconductor interaction with light. In fact, a generation rate is

the linking point between the electromagnetic world and the semiconductor

world.

The last steps needed to close the mathematical model are the link between

the electrostatic potential and the band diagram, so that carriers are completely

defined, and the so called continuity equation, that describes the microscopic

current behaviour.

A possible choice for the state variables of the mathematical model are the

electrons and holes concentration (n and p respectively) and the electrostatic

potential (or simply, the potential) φ. All the other quantities and parameters,

suh as the mobility, the relative dielectric constant, . . . , are implicit to the model,

i.e. they are inside the equations that have been introduced before and often not

directly expressed in the model.

The link between the carriers concentrations and the potential is the Poisson

equation that in quasi-stationary condition describes its solution gives the rela-

tion of the potential and the carriers concentrations. In fact, Poisson’s equation

is expressed as [10]

∇2ϕ = −q

ϵ
ρ, (2.42)

whit ρ defined as

ρ =
(︁
+qN+

D

)︁
+
(︁
−qN−

A

)︁
+ (+qp) + (−qn). (2.43)

N+
D describe the ionisated donors concentration (in full ionisaiton condition

considered equal to ND) and N−
A describe the ionisated acceptors concentration

(in full ionisaiton condition considered equal to NA). It is important to remark
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2.4. Mathematical modelling of semiconductors

that n and p describe carriers that are free to move inside the semiconductor,

while N+
D and N−

A are impurities fixed charges.

Now that the links between charges and potential is made, we have to link

the potential to the energy level, so that the carrier concentration formulas with

Fermi-Dirac (or Boltzmann) statistic can be used. From the energy point of view

the potential is linked to the energy by E = −qφ, but only energy differences (as

for potential) are of physical interest. So we have to chose which energy level is

more suited for our work and we set the free energy level U0 = −qφ, as done in

TCAD Sentaurus [15].

The other fundamental relation is the so called continuity equation, that de-

scribe the conservation of charges in motion. It can be written as [5]

∂q

∂t
+∇ · J + Uq = 0, (2.44)

that for electrons can be written as

∂n

∂t
− 1

q
∇ · Jn + Un = 0, (2.45)

and for holes

∂p

∂t
+

1

q
∇ · Jh + Uh = 0. (2.46)

But the current is described by means of a drift term and a diffusion term,

hence

Jn = Jn,t + Jn,d = −qnµn∇ϕ+ qDn∇n

Jh = Jh,t + Jh,d = −qpµh∇ϕ− qDh∇p.
(2.47)

Finally, recalling that ∇φ = −E and dividing the contribution of electron

and holes, the mathematical model can be summarized for a 3D semiconductor

in time Waring condition as [5]

∂n

∂t
= −∇ · (−nµnE −Dn∇n)− Un

∂p

∂t
= ∇ · (−pµhE +Dh∇p)− Uh

∇ · E =
q

ϵ

(︁
N+

D −N−
A + p− n

)︁
.

(2.48)
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2.5 Heterostructures

Semiconductor devices with different materials are fundamental for high speed

application. In fact, using different materials the relative dielectric constant

profile of a device can be engineered to achieve high performances, carrier and

radiation confinements and different absorption profile. Moreover, the possibility

of integrating different materials on Silicon substrate, allow different possibility,

such as the compatibility with Silicon integrated technology.

Different crystals with different lattice constants can be grown on top of

each other by epitaxial techniques2., but only under certain condition the final

structure can be used to improve the electric performance. In fact, when a layer

is grown on top of another layer with a different lattice constant, interface defects

called misfit dislocations are present. These defects are electrons or holes traps.

They capture the electron and reducing the electronic property of the structure,

such as the overall conduction of the structure. Therefore, the resulting structure

is unsuited to the development of an electron device.

However, if the lattice constant difference between the substrate and the epi-

taxial layer is low, an almost ideal crystal can be grown. The resulting structure

is called a heterostructure, with unique electronic property defined by the two

material used. In photodetectos, different materials are essential since they allow

the absoption of the desired wavelength, and the compatibility with Silicon is

fundamental for integration and high speed system. In this work, the material

chosen as detector is from literature [2], but semiconductor alloys of three or

more semiconductor (called compounds [6]) can be used since the alloy of differ-

ent semiconductor make possible engineering the lattice constant and the energy

gap. With this solution, match of the substrate lattice constant and the optimi-

sation of the energy gap is possible. An example of compound semiconductor in

infrared detector is MgCdTe (usually called MERCATEL).

The material discontinuity of the heterostructure leads to important elec-

tronic and optical properties, such as confinement of carriers since they experi-

ence potential well due to the discontinuity of valence and conduction bands, and

confinement of radiation since different materials have different refractive index.

When heterostructures have a slight mismatch in the lattice constant in the

2In an epitaxial process, the substrate wafer acts as a seed for the new layer. Epitaxial

processes are differentiated from the melt-growth processes since in that the epitaxial layer

can be grown at a temperature substantially below the melting point, typically 30% to 50%

lower. The common techniques for epitaxial growth are chemical vapor deposition (CVD) and

molecular beam epitaxy (MBE)[4]
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2.5. Heterostructures

two layers tensile or compressive strain of one layer to the other is present. In

this case, it is called pseudomorphic structure or strained heterostructures. Strain

often allows for an improvement of the material transport or optical properties.

Electronic and optoelectronic devices require to be grown on a suitable sub-

strate. In practice, the only semiconductor substrates readily available are those

which can be grown into monocrystal ingots through Czochralsky techniques3,

such as Si and few others. The use of graded buffer layers made up of a mixture

of the two materials allows to exploit mismatched substrates, since it distributes

the lattice mismatch over a larger thickness, removing strain and defects far away

from the interface.

The band structure of a semiconductor depends on the lattice constant and

the crystal structture [9]. Heterojunctions introduce significant variation of the

band structure of the device, and they allow quantized structures (such as quan-

tum well or quantum dot) that also introduce variation in the density of states,

with important consequences in terms of optical properties. Moreover, strain

allows other degrees of freedom, like controlling the degeneracy between heavy

and light hole subbands and changing the effective mass value for carriers (often

increasing their velocity). As already recalled, lattice-matched or pseudomor-

phic junctions between different semiconductors allow for photon confinement

(through the difference in refractive indices), carrier confinement (through po-

tential wells in conduction or valence bands) and quantized structures such as

superlattices, quantum wells, quantum dots, quantum wires[6]. The affinity (An-

derson) rule describe with a certain accuracy the bands discontinuities. Accord-

ing to this rule the conduction band discontinuity is the affinity difference, the

valence band discontinuity is the difference in ionizations energies.

Depending on the material parameters, several band alignments are possible:

the band of the second semiconductor can be bigger than the one for the first

semiconductor, and the electron affinity can be very different, leading to different

situation. These differences are organised in types.

The quantum behaviour of carriers in narrow potential wells between wide-

gap and narrow-gap semiconductors can be analyzed applying the Schrödinger

equation to electrons or holes. Solution of the Schrödinger equation enables to

evaluate the energy levels and subbands, given the well potential profile. De-

pending of the type of confinement induced by the different layers used, the

3The Czochralski method allows the growth of monocrystals of extreme purity of a semi-

conductor. This process is mainly used in the growth of silicon blocks, which are obtained with

the form of cylindrical loaves [4]
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2. Multiphysics approach: models for carriers transport and FDTD method

reduced dimensionality structures can be divided in:

1. Confinement in one direction (quantum well), particles are confined along

one direction by a potential well but are free to move along the other two;

2. Confinement in two directions (quantum wire): particles are confined along

two direction but they are free to move along the remaining one

3. Confinement in three directions (quantum dot): particles are entirely con-

fined and cannot move.

In this thesis the focus is on Si and Ge, an indirect bandgap alloy important

for electronic applications (heterojunction bipolar transistors) but also for detec-

tors and electroabsorption modulators. From table 2.1, it is possible to evaluate

the lattice difference ∆a = 5.658 Å− 5.4318 Å = 0.2162 Å, where the Ge lattice

constant is approximately 4% bigger with respect to the Si lattice constant.

Parameter Ge Value Si Value

Crystal structure Diamond Diamond

Dielectric constant 16.2 11.7

Effective electron masses ml 1.6m0 0.98m0

Effective electron masses mt 0.08m0 0.19m0

Effective hole masses mh 0.433m0 0.49m0

Effective hole masses mlp 0.043m0 0.19m0

Electron affinity 4.0 eV 4.05 eV

Lattice constant 5.658 Å 5.4318 Å

Table 2.1: Germanium parameters at 300K, taken from [7] and [8]
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2.6. FDTD

2.6 FDTD

This section focuses on the study of simulation software programs for microde-

vices such as Synopsys TCAD Sentaurus (RSoft FullWave tool). This software

program is used to solve Maxwell’s equations in two or three spacial domanis by

means of the so-called Finite-Difference Time-Domain method FDTD, providing

3D CAD modelling and a rich library of properties of semiconductors.

The main challenge consists in integrate different kind of solver on the same

device, but it is possible with Synopsys TCAD Sentaurus. It allows the user to

evaluate the optical field in the domain of interest, then it converts the evalu-

ated field distribution taking care of the different material parameters in to a

generation rate. The first step consists in studying how FDTD methods can be

applied to simulate electromagnetic phenomena in micro optoelectronic devices.

2.6.1 Framework

This section is dedicated to the study of FDTD method used to simulate com-

putational electrodynamics problems by finding approximate solutions to the

associated system of differential equations. This method produces approximate

solutions for a wide range of problems in electromagnetic theory.

We recall that Maxwell equations in a linear and isotropic medium are given

by [1]

∂D
∂t

= ∇×H− J (Faraday’s Law),

∂B
∂t

= −∇× E (Ampère’s Law),

∇ · B = 0 (Gauss’s Law for magnetism),

∇ · D = ρ (Gauss’s Law for electric fields).

(2.49)

In order to simply the problem, we can assume that the constitutive relations

are the following:

D = ϵ0E
H = 1

µ0
B

(2.50)

The FDTD method allows to compute numerical solutions of Maxwell’s equa-

tion by means of a finite difference approximation for both space and time deriva-

tives. The method falls in the category of “resonance region”techniques[19]. This

means that the characteristic dimensions of the domain of interest and the wave-

length have the same order of magnitude.
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2. Multiphysics approach: models for carriers transport and FDTD method

The FDTD method can be applied to a wide range of problems, however, in

some cases, it can become computationally too expensive. For example, if the

domain is very small compared to a wavelength, quasi-static approximations can

provide more efficient solutions.

The basic step in the construction of a finite difference scheme consists into

the approximation of the first derivative of the unknown function. To fix ideas,

let us perform a simple computation. Consider the Taylor series expansions

of a function f(·) around the point x0, and consider offsets given by ±δ/2, in

particular we write:

f
(︁
x0 +

δ
2

)︁
= f (x0) +

δ
2
f ′ (x0) +

1
2

(︁
δ
2

)︁2
f ′′ (x0) +

1
6

(︁
δ
2

)︁3
f ′′′ (x0) + o (δ3) ,

f
(︁
x0 − δ

2

)︁
= f (x0)− δ

2
f ′ (x0) +

1
2

(︁
δ
2

)︁2
f ′′ (x0)− 1

6

(︁
δ
2

)︁3
f ′′′ (x0) + o (δ3) ,

(2.51)

where the primes indicate differentiation. Subtracting the second equation

from the first one, yields:

f

(︃
x+

δ

2

)︃
− f

(︃
x− δ

2

)︃
= δf ′ (x0) +

2

3!

(︃
δ

2

)︃3

f ′′′ (x0) + o
(︁
δ3
)︁
. (2.52)

Dividing by δ, we have

f
(︁
x+ δ

2

)︁
− f

(︁
x− δ

2

)︁
δ

= f ′ (x0) +O
(︁
δ2
)︁
, (2.53)

thus, we have obtained an approximate expression for the derivative of f(·) at

x0. Notice that such approximation is δ2 -accurate.

All in all, we have derived the so called central-difference approximation:

f ′ (x0) ≈
f
(︁
x+ δ

2

)︁
− f

(︁
x− δ

2

)︁
δ

. (2.54)

2.6.2 Yee’s Algorithm

The FDTD algorithm was first proposed by K. Yee. The algorithm employs

second-order centred differences. The fundamental steps in the construction of

this numerical scheme are the following (reported from the Yee original article

[19]):

1. discretise space and time for the electric and magnetic fields;

2. replace all the derivatives in Ampere’s and Faraday’s laws with finite dif-

ferences;

36
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3. use the current values of the electric fields to compute the magnetic fields

one time-step into the future;

4. use the values of the magnetic fields obtained in previous step to compute

the electric field one time-step into the future;

5. iterate the previous two steps until the fields have been obtained over the

desired time interval.

The complete method with different applications can be found in [14] and

[20]

2.6.3 Stability of the method

In order to obtain accurate simulations, the size of the grid cells must be suffi-

ciently small in relation to the minimum wavelength we consider. As proposed

by K. Yee in his paper[19], in order to ensure computational stability in three

dimensions, we set [20]

c∆t <
√︁

(∆x)2 + (∆y)2 + (∆z)2, (2.55)

where c is the speed of light. For simplicity we can choose ∆x = ∆y = ∆z. To

ensure that the method produces reliable outputs, we add the following condition

on ∆x :

∆x <
λmin

10
. (2.56)

2.6.4 One-dimensional example

Let us consider a simple one-dimensional problem which allows to better under-

stand the method. In particular, consider a plane wave travelling in the z di-

rection, assuming “free space” as propagation medium. In the one-dimensional

case, we can focus the attention on the terms Ex and Hy, as the other terms

vanish. We are left with
∂Ex

∂t
= − 1

ϵ0

∂Hy

∂z
,

∂Hy

∂t
= − 1

µ0

∂Ex

∂z
,

(2.57)

and this system of equations admits a plane wave traveling in the z direction

as a solution. As we are considering a centred difference scheme, we have to

evaluate the functions Ex and Hy at the midpoints, i.e. at points that are
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shifted in space by half a cell (in this case, ∆x/2 ) and in time by half a time

step (∆t/2). More specifically, we have:

E
n+ 1

2
x (k)− E

n− 1
2

x (k)

∆t
= − 1

ϵ0

Hn
y

(︁
k + 1

2

)︁
−Hn

y

(︁
k − 1

2

)︁
∆z

,

Hn+1
y

(︁
k + 1

2

)︁
−Hn

y

(︁
k + 1

2

)︁
∆t

= − 1

µ0

E
n+ 1

2
x (k + 1)− E

n+ 1
2

x (k)

∆z
,

(2.58)

where n is the discretised time index and k is the discretised space index. The

explicit FDTD equations can be derived from equations, resulting in

E
n+ 1

2
x (k) = E

n− 1
2

x (k) + ∆t
ϵ0∆z

(︁
Hn

y

(︁
k − 1

2

)︁
−Hn

y

(︁
k + 1

2

)︁)︁
Hn+1

y

(︁
k + 1

2

)︁
= Hn

y

(︁
k + 1

2

)︁
+ ∆t

µ0∆z

(︂
E

n+ 1
2

x (k)− E
n+ 1

2
x (k + 1)

)︂ (2.59)

Notice that these equations have to be complemented with suitable discrete

boundary conditions when the problem requires it.

The discrete equations can be implemented in a computer code directly, how-

ever, in order to avoid computational issues due to distinct amplitudes of E and

H, we introduce the new quantity Ẽ =
√︂

ϵ0
µ0
E. Substituting we obtain

E
n+ 1

2
x (k) = E

n− 1
2

x (k) + 1√
µ0ϵ0

∆t
∆z

(︁
Hn

y

(︁
k − 1

2

)︁
−Hn

y

(︁
k + 1

2

)︁)︁
Hn+1

y

(︁
k + 1

2

)︁
= Hn

y

(︁
k + 1

2

)︁
+ 1√

µ0ϵ0
∆t
∆z

(︂
E

n+ 1
2

x (k)− E
n+ 1

2
x (k + 1)

)︂ (2.60)

2.6.5 Remarks on the method

The FDTD method has been very well studied and, when applicable, it is accu-

rate and robust. Systematic errors and, consequently, imprecision in the results

are inevitable due to the space-time discretisation, however all the errors can

be controlled and made small with a suitable choice of the mesh grid. Indeed,

a finer mesh (space-time discretisation) leads to more accurate results, but this

determines increased computational costs.

This method can be applied to obtain (approximate) solutions for broadband

systems since the time dependence is considered from the very beginning. It is

not necessary to carry out repeated tests at various frequencies. Moreover, the

electric and magnetic fields are computed step by step allowing us to observe

their evolution in time and, eventually, convergence to a stationary state. As a

remark, spatial inhomogeneity of the domain can be included in the model with

minor adjustments to the method.
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The stability condition is satisfied provided that the grid cells are sufficiently

small. Consequently, in order to obtain acceptable computational costs, we must

consider very small spatial domains. This means that the FDTD method is not

adequate for the study of diffraction caused by large objects. The simulation

domain is necessarily bounded, and therefore boundary conditions play a signif-

icant role and have to be chosen carefully depending on the problem at hand.

We also highlight the following properties of the method.

• The Yee’s algoritms gives approximate solutions for both electric and mag-

netic fields in time and space using coupled Maxwell’s curl equation rather

than solving for electric field alone (or magnetic field alone) with a wave

equation. This choice makes the method more robust than others.

• Yee’s algorithm centers the electric field components and the magnetic field

components in a three-dimentional space so that every the electric field

component is surrounded by four magnetic field components and viceversa.

• the method preserves the orthogonality of the fields;

• the location of electric field and magnetic field components in the grid and

the central difference operations on these components implicitly enforce

each of the two Gauss’s Laws. Thus, the Yee mesh is divergence-free with

respect to its electric and magnetic field.

• the time-stepping process is fully explicit, allowing us to avoid problems

with coupled equations and matrix inversion.

• The resulting time-stepping algorithm is non dispersive, that is, numerical

wave modes propagating in the mesh do not spuriously decay due to a non

physical artifact of the time-stepping algorithm.
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Chapter 3
Silicon-germanium waveguide

photodetectors

In this chapter we discuss the properties of two different waveguide photodetec-

tors and the analysis of their configurations with a multiphysics approach, where

the simulations have been performed with Synopsys TCAD Sentaurus (electrical

problem) and with RSoft FullWave (optical problem). The junction based pin

photodetectors is at the basis of our study. We will consider designs from the

literature, see [2]. The devices considered are made up of a Silicon (Si) substrate

with a Germanium (Ge) detecting region, with one contact placed on top of Ge

and the other on parallel to the detector.

The main difference between the two configurations lies in the waveguide-

detector coupling, impacting on the absorption of light and therefore on the

overall device performance. In fact, the waveguide is used to guide the optical

signal without (relevant) losses up to the detecting region, where it is converted

into a current. A silicon dioxide (SiO2) cladding is surrounding the device. In the

first of the two configurations considered the waveguide brings the light to the

bottom of the Ge detector region, and it is called butt coupling photodetector.

In the other configuration, i.e., the mode evolution photodetector, the waveguide

is alongside the Ge detector region, placed at the same height of the substrate,

without being connected to it; here, light is detected through an evanescent

mode coupling between the waveguide and the detector. The reference structures

are shown in Figs. 3.2 and 3.1. The z axis is chosen as the direction of the

propagation of light from the source to the detector, the x axis is used as the

lateral width axis and the y axis is related to the height axis. The z axis has

the origin at the beginning of the Ge detector region while the x axis has the

origin in the middle of the Ge detector region (so the detector is approximately
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symmetric). The y axis has the origin at the interface between the Si substrate

and the Ge detector.

Starting from the literature geometries, design optimizations aimed at opti-

mizing the responsivity and the frequency response are presented. The literature

case is called the reference case, both for the evanescent coupling and the butt

coupling. Apart from the waveguide, the geometry is the same for both reference

configuration. The main section is the Germanium detector region, whose width,

length and height are 1.5 µm, 12 µm and 0.8 µm, respectively. The Ge is doped

near the top contact, with a p-type thin layer 50 nm thick, with a Gaussian dop-

ing profile [4] whose top value of 1019 cm−3 is placed at the interface with the top

contact. The Si substrate height is 0.22 µm and it exceeds of 0.5 µm the length

of the detector. It is n-doped uniformly with a concentration of 1020 cm−3. The

electric contacts are placed one on the top of the Ge detector, with a small W

contact on top of which a Cu layer is present, while the side contact is made up

of 19 pillars of W, equally spaced, with another Cu layer on top. In table 3.1

detailed dimensions are reported.

Material
Width

(µm)

Height

(µm)

Length

(µm)

Doping

(cm−3)

Intrinsic Germanium 1.5 0.8 12 0

Germanium Doped Region 1 0.05 11.5 1e19

Silicon 3 0.22 12 1e20

Side contact 0.8 1.19 12

Top Contact 1 0.25 12

Waveguide 0.4 0.22

Table 3.1: Device geometry parameters used in the simulations

Focusing on the Si waveguide, it has the same height of the Si substrate,

and its width is 0.4µm; along the detector, the waveguide is tapered. In all

the simulations, the source field launched in the Si waveguide is its fundamental

mode.

The goal of our analysis is to find a balanced solution which allows the detec-

tors to be used both at at a wavelength of 1.31 µm and 1.55 µm, without limiting

too much the device performance.
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Figure 3.1: Butt coupled photodetector, ideal structure, side view. The waveg-

uide is facing towards the substrate of the detector, on top of which a Ge region

is present.

Figure 3.2: Mode evolution photodetector, ideal structure, top view. The waveg-

uide is parallel to the detector, so an evanescent coupling between the detector

and the waveguide is possible
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Geometry Description
(SDE Tool)

RSoft FullWave
(EM Solver, FDTD)

Drift-Diffusion Solver
(sDevice Tool)

Bias point
(sDevice tool)

Post Processing
(MATLAB)

Figure 3.3: Block scheme of the solver used with indicated the name of the

commercial tools. The electromagnetic problem is solved only once and used as

input of the Drift Diffusion solver, that is solved self consistently

The chosen wavelengths for the simulations are λ = 1.31 µm and λ = 1.55 µm,

which are commonly referred to as O band and C band in optical communication

systems. The analysis of these two wavelengths is crucial if compared with the

transmission window of optical fibers. In fact, in the O band signal distortion

inside the fiber is minimal, while the C band is nowadays broadly used in fiber

optics communication system since is the amplification range of erbium doped

fiber amplifiers (EDFAs)[18].

44



3.1. Approach used and methodology

3.1 Approach used and methodology

We study both structures with the same approach using Synopsys TCAD Sen-

taurus. The main variables have been defined as parameters, such as the type

of waveguide used (for evanescent coupling or butt coupling waveguide), the de-

tector dimensions, . . . . In fact, the device parameters are the same for the two

structures, with the exception of the waveguide, and only after the preliminary

analysis some improvements have been explored.

A block scheme of the solver used is reported in figure 3.3. We simulated the

electrical problem (i.e. finding the self consistent solution of Poisson’s equation

described in chapter 2 under a reverse bias) and the propagation of light inside the

structures (solving Maxwell’s equation). In this work, the multiphysics coupling

is unidirectional, i.e., the simulation is performed using the solution of the optical

problem as a generation term for the drift-diffusion equations, without any self-

consistent loop. This assumption can be justified considering that the input

optical power is too low (tens of microwatt, from [2]) to affect the Ge absorption

profile. Performing a complete self-consistent approach would require several

days of computation since the solution of the Maxwell equation require by itself

several hours. In this view, this simplification enables to achieve realistic results

with an extreme reduction of the overall computational cost.

The geometry is generated with SDE tool, considering a worst case approach,

i.e. the Ge on the Si substrate is considered bulk material, i.e. no strain is

applied to the Ge, so there is no improvements in the absorption profile of the

Ge at higher λ.

The geometry generated with SDE is used as input of the optical solver,

RSoft FullWave, which simulates light propagation in the devices. A quite large

computational box is needed, and a very dense mesh is required in order to get

an accurate result. A uniform mesh in all directions is chosen, with very low ∆r

(i.e. distance between one point and the following one). Below 40 nm the solu-

tion of the optical problem obtained is invariant with respect to the chosen mesh

size. Therefore, a mesh size of 25 nm is chosen. From the simulation perspec-

tive, this value is convenient since it is a multiple of all the dimensions of each

component of the two configuration, eliminating the uncertainty at boundaries.

As boundary condition for the optical problem, perfect matched layer (PML)

boundary conditions are chosen. This kind of boundaries can be configured to

absorb (ideally) all the light impinging on them, so that no reflected light from

the boundary should be present.

Since metals contribute only with a power loss to the optical problem, they
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3. Silicon-germanium waveguide photodetectors

have been described as perfect electrical conductors (PEC). Silicon is practically

transparent at the two studied wavelength, in fact only the Ge detector is highly

influenced by the optical field. Indeed, the Ge detector absorbs light and this

triggers the generation process of electron-hole pairs.

From chapter 2 we recall that the optical power absorption per unit volume

can be calculated from the divergence of the Poynting vector (S)

Pabs = −0.5 real(∇ · S). (3.1)

It can be shown that the above formula is equivalent to

Pabs = −0.5ω|E|2 imag (ε), (3.2)

where ε is the dielectric constant, ω = 2πf (f is the optical frequency) and |E|
is the optical field intensity.

Since the problem variables are 3-dimensional, it is difficult to represent them

clearly. In this view, we show integral averages over the Ge detector in the trans-

verse plane to the light propagation direction, enabling a better understanding

of the behaviour of light in the detecting region. This can be written as

Pabs,z =
1

(x2 − x1)(y2 − y : 1)

∫︂ x2

x1

∫︂ y2

y1

Pabsdxdy =

=
1

A

∫︂ x2

x1

∫︂ y2

y1

−0.5ω|E|2imag(ε) dxdy,

(3.3)

where z is the light propagation direction, x1, x2, y1, y2 are the boundary of the

Ge detector, whose transverse area is called A.

The mode light source used in the simulations is computed by the FDTD tool

as a preliminary step, and then this is propagated in the waveguide/device. This

procedure helps reducing noise and interference, since, if the mode is confined in

the waveguide, practically no light may escape the waveguide and it is directly

guided to the detector.

Once the optical power in the Ge detector is evaluated, it is used as a

generation-recombination rate in the drift diffusion solver. RSoft provides an

utility that converts automatically the results taking care of the different mate-

rial parameters. The bias point is computed, as well as the dark current, with

sDevice tool. A reverse bias voltage of 3V is chosen and all other computation

are based on this bias point. The responsivity is computed as the derivative of

the power-current (PI) curve, but since it is linear, it has been simplified with

the difference of two point corresponding to minimal and maximal input power

respectively. Finally, the frequency response is found with a resistive load equal
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3.1. Approach used and methodology

to 50Ω that is connected at one of the two pins of the photodiode, so that

capacitive effects are noticeable.
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3. Silicon-germanium waveguide photodetectors

3.2 Mode evolution photodetector

In a mode evolution photodetector the waveguide is parallel to the Ge detector.

Since a distance of 0.1 µm is present between the substrate and the waveguide,

there is no direct coupling, and the light is coupled through the evanescent field

to the detector. This allows to achieve good performance and a good distribution

of the input optical field in the Ge detector. The reference structure is reported

in figure 3.2. The waveguide is divided in two sections: a first section is made

up of a rectangular waveguide, then the second is tapered with a length equal

to the Ge detector region. A taper is a region where the waveguide change

its transverse dimensions orienting light in the wanted direction, in this case the

detector. Light is coupled from the waveguide in the detector in an extent directly

proportional to the length of device, so that the behaviour of the absorption is

substantially different in the case of 1.31 µm and in the case of 1.55 µm. In fact,

at a wavelength of 1.31 µm the absoption profile of the Ge is much higher with

respect to 1.55 µm, leading to an higher absorption in the initial microns of the

device. In figure 3.4 the average (mean) optical generation rate is shown along

the direction of propagation of light z.

The optical generation rate is rapidly increasing at the beginning of the de-

tector. This effect is related to the coupling of the optical field: the taper present

at the end of the waveguide is orienting the light inside the detector along the z

axis, so at the beginning very little portion of light is present inside the detector.

This is crucial in order to reduce the screening effect of the high number of optical

photocarriers generated by the detector region. In figure 3.4a we report the opti-

cal generation rate for a input wavelength of 1.31 µm with an input optical power

of 200 µW. After the initial increase in the optical generation rate at the end of

the detector the generation rate becomes very low, allowing optimisation of the

device length. On the contrary, in figure 3.4b we show the optical generation

rate for a input wavelength of 1.55 µm with an input optical power of 200µW.

In this case the absorption of light is distributed along the whole device. Two

considerations can be done:

1. a lower responsivity is expected in the 1.55 µm case. Since the generation

rate is not decreasing along the z axis, probably only a fraction of the light

is absorbed, while the remaining part is reflected or transmitted trough the

device;

2. a reduction of the device length is expected to lead to a decrease in the re-

sponsivity, because the total number of the photogeneration carriers should
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3.2. Mode evolution photodetector

be lower with respect to the case with a longer device.
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Figure 3.4: Optical generation rate of the mode evolution configuration at wave-

length equal to 1.31µm (a) and 1.55µm (b). Input power 200µW

Let us now focus on the curve that represents the output current of the

detector versus the input optical power. In figure 3.5a it is reported the curve

for an input optical field with wavelength of 1.31 µm with different value of the

input optical power. At low input optical power, no saturation effects is present,

but also for high optical power the current is not saturating. This is consistent

with the results obtained in the literature [2] that predict a saturation at tens

of milliwatt. As expected from the optical generation rate, in the case with

input optical wavelength of 1.55 µm, the curve has a lower slope with respect to

the other wavelength. From these curves it possible to extract the responsivity

values, which have been reported in 3.2.

Responsivity

1.31µm (simulation) 1.037A/W

1.31 µm (ideal, from 1.20) 1.056A/W

1.55µm (simulation) 0.67A/W

1.55µm (ideal, from 1.20) 1.25A/W

Table 3.2: Responsivity estimated for the mode evolution photodetector

The responsivity of the detector at 1.31 µm is close to the ideal value, whereas

at 1.55µm is very far from the ideal case, being approximately half of it. In real
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3. Silicon-germanium waveguide photodetectors

devices this effect should be drastically different. Indeed here a worst case sce-

nario has been used, since the strain of the Ge is not taken into account. In

fact, a tensile strain applied in the Ge detector, should introduce an enhance-

ment factor in the absorption profile of the Ge leading to similar results at both

wavelength and this behaviour is visible in the literature [2].
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Figure 3.5: Power-Current (PI) plot of the mode evolution configuration at wave-

length equal to 1.31µm (a) and 1.55µm (b)

The frequency response of the device is affected by screening effects related

to the optical generation. In fact, at 1.31µm, with higher input optical power,

the cutoff frequency is reduced. The same does not occur at 1.55 µm, since the

absorption of the Ge at that wavelength is considerably lower with respect to the

other case, leading to an almost constant frequency response on the considered

input optical power range. In figure 3.6a and 3.6b we show the complete low

pass behaviour of the device with different input optical power applied to the

detector. As expected, with lower wavelength the frequency is strongly affected

by the input optical power, while for higher input wavelength the response is not

changing for different input power.

In order to better understand the variation of the cutoff frequency of this

configuration, they have been extracted from the figure 3.6 interpolating the

−3 dB value. The results are reported in figure 3.7. It is clear from figure 3.7b

that at higher wavelength the device is not affected by the input optical power

range chosen for the simulation, while it decreases for lower wavelength as the

input optical power increases.
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Figure 3.6: Frequency response plot of the mode evolution configuration at wave-

length equal to 1.31µm (a) and 1.55µm (b)
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Figure 3.7: Cuttoff frequency plot of the mode evolution configuration at wave-

length equal to 1.31µm (a) and 1.55µm (b)
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3.3 Butt coupled photodetector

In mode evolution devices, the detector is fed by the waveguide through evanes-

cent coupling. In butt-coupled detectors, the rectangular waveguide enters in

the substrate. In this configuration, light is guided below the detector region.

Even though this approach is expected to enhance light coupling, this leads also

to higher screening effects of the number of photogenerated carriers.

It is possible to observe that the mean optical generation rate is very different

at 1.31 µm in the two configurations. In the evanescent coupling configuration

the very first micron presents an increase of the optical generation rate, with a

slow decay in the following microns. Instead, in the butt coupling configuration

one can observe a very fast increase of the generation rate and then a steep decay,

until becoming negligible after few microns. In this view, in the mode evolution

case, the overall optical generation rate is better distributed, being higher for

a longer section of the device. Also the maximum value reached by the optical

generation rate is quite different, in the butt coupling is slightly higher, leading

to stronger photogenerated carriers screening effects.

The optical generation rate at 1.55 µm remains practically constant along

the device length, so also in this configuration, as well as in the mode evolution

configuration, a lower responsivity is expected since only a fraction of the light

is absorbed, while the remaining part is reflected or radiated. This behaviour

could be ascribed to the very fast oscillation pattern in the optical generation

rate. In figure 3.8a and 3.8b the mean optical generation rates are reported.

The differences with respect to the previous case are significant from the

responsivity and the frequency response standpoint. Starting from the respon-

sivity, it is slightly higher at both considered wavelength, with values reported

in table 3.3

Responsivity

1.31µm (simulation) 1.037A/W

1.31µm (ideal, from 1.20) 1.056A/W

1.55µm (simulation) 0.71A/W

1.55µm (ideal, from 1.20) 1.25A/W

Table 3.3: Responsivity estimated for the mode evolution photodetector

The frequency response instead is different, since the screening effect at

1.31µm is higher with respect to the previous case. The cutoff frequency of this

configuration are reported in figure 3.11. At higher wavelengths the influence of
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Figure 3.8: Optical generation rate of the mode evolution configuration at wave-

length equal to 1.31µm (a) and 1.55µm (b)

the input optical power is practically negligible, while at lower wavelengths the

dependence is practically linear with respect to the increase of the input optical

power.
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Figure 3.9: Power-Current (PI) plot of the mode evolution configuration at wave-

length equal to 1.31µm (a) and 1.55µm (b)
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Figure 3.10: Frequency response plot of the mode evolution configuration at

wavelength equal to 1.31µm (a) and 1.55µm (b)
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Figure 3.11: Cutoff frequency plot of the mode evolution configuration at wave-

length equal to 1.31µm (a) and 1.55µm (b)
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3.4 Comparison and optimisation

After discussing the behaviour of the reference structure obtained from [2], some

variations are applied to both configuration, in order to optimise and reduce the

dimension of the device.

The experiments that are performed are carried out by trying to assess the

effects of the different dimensions. As a first parameter, we investigate the length

of the device, reducing it down to 5µm. Secondly, the width has been changed

with values ranging from 3µm to 0.5µm. Finally, the height has been varied from

1.2µm to 0.4µm. All other parameters have been maintained unchanged.

Case HGe (µm) LGe (µm) WGe (µm) Ge doping width (µm)

1 1.2 12 1.5 1.0

2 1.0 12 1.5 1.0

3 0.8 12 1.5 1.0

4 0.6 12 1.5 1.0

5 0.4 12 1.5 1.0

6 0.8 10 1.5 1.0

7 0.8 8 1.5 1.0

8 0.8 6 1.5 1.0

9 0.8 5 1.5 1.0

10 0.8 12 0.5 0.40

11 0.8 12 1.0 0.75

12 0.8 12 2.0 1.5

13 0.8 12 3.0 2.0

Table 3.4: All the variation with respect to the reference case proposed

In the case of mode evolution detectors, the length of the waveguide is related

to the length of the detector. The variations are applied in the same way to both

configurations, so a total of 26 cases have been studied.

In figure 3.12 is reported the configuration of the case 9 of the table 3.4,

corresponding to the minimum value of the of the length tested for this device.

Figure 3.14 represents cases 1 and 4, corresponding to the extreme value of the

height tested with respect to the reference case, as figure 3.13 corresponds to

the extreme value (case 10 and case 13) of the width of the detector tested with

respect to the reference case.

The new configuration with the variation are reported just for the butt cou-

pling case, but the same variation have been tested also for the mode evolution
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Figure 3.12: Butt coupling configuration with the minimum length used in the

optimisation process

(a) Minimum value of the Ge width (b) Maximum value of the Ge width

Figure 3.13: Variation example of the Ge width in the butt coupling configuration

configuration.

For the optimisation process the quantities that we are considering are only

the responsivity and the cutoff frequency of the different configurations. Let

us start from the responsivity analysis with the variation of the length of Ge

detector. Figs. 3.15a and 3.15b show the responsivity values at different detector

length for both butt coupling and mode evolution configuration. At 1.31 µm the

variation is very small in both configuration. This can be motivated recalling

that the optical generation rate is steeply decreasing after few microns in the z

axis, as shown in Fig. 3.8a and 3.4a. In fact, after few microns the two generation

rate profiles have average values so low that cannot contribute to the current.

At 1.55 µm the behaviour of the detectors are drastically different. In both butt

coupling and mode evolution cases the optical generation rates (Fig. 3.8b and
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(a) Minimum value of the Ge height (b) Maximum value of the Ge height

Figure 3.14: Variation example of the Ge height in the butt coupling configura-

tion

3.4b) are almost constant along all the detector, so a decrease in the length of

the device leads to a decrease in the responsivity. Similar considerations can be

applied to the variation of the Ge width and height at 1.31 µm, reported in Fig.

3.15c, 3.15e, 3.15d and 3.15f. A more dramatic situation is for the variation of

the width of the detector region at 1.55 µm in Fig. 3.15f. Probably the light

is absorbed along the whole width of the device, and it is not localized at the

beginning of the detector as in the butt coupling case, so the responsivity is

drastically reduced.

From the cutoff frequency standpoint, the main dependence still remains on

the input optical power. In fact, increasing the optical power, the cutoff frequency

reduces, especially at 1.31 µm.

Let us start by analysing the cutoff frequency varying the length of the detec-

tor in Fig. 3.16. It is clear that the detector performance is not sensitive to the

length and probably even shorter devices could be designed, if the specifications

concern only the frequency response. In fact, only at high input optical power,

and for the mode evolution configuration at 1.31 µm, there is a reduction of the

cutoff frequency, while in all the other cases it remains practically invariant with

respect to the detector length.

Then, we will focus only on the variation of the detector width. As for the

variation of the Ge length, only at high input optical power there is significant

variation, while in all other cases the sensitivity is very low. This behaviour is

expected and it has can be derived from the discussion in 1, since the detector

can be seen as a parallel plate capacitor, so only the distance of the plats is

important, and since the detector is biased on top and from the bottom trough
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the substrate, the important quantity for the frequency response is the height of

the detector.

Finally, the variation of the height of the detector is reported in Fig. 3.18.

It is clear that the height has a strong impact on the cutoff frequency, and its

optimization might be crucial. Reducing the height of the device, the cutoff fre-

quency increase has a behaviour like 1/x, and probably even better performance

might be obtained reducing even further the height. Also the power dependence

becomes less evident when the detector is thin, and this can be described by

means of the travel time of photogenerated carriers through the device towards

the contacts. Since the device is thinner, carriers take less time to exit from the

device, increasing the instantaneous response of the device.

These considerations emphasize the need of a trade-off for our final design

goal: the objective is achieving an acceptable responsivity at both wavelengths,

and a good frequency response, i.e., as high as possible and as independent of

the input optical power as possible. In the following (and last section), a possible

implementation has been presented.
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Figure 3.15: Responsivity evaluated with the variations of the length, width and

height of the devices with respect to the reference case. Both configuration and

wavelength are reported
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Figure 3.16: Cutoff frequency for both wavelength and with the variation of the

length of the device
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Figure 3.17: Cutoff frequency for both wavelength and with the variation of the

width of the device
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Figure 3.18: Cutoff frequency for both wavelength and with the variation of the

height of the device
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3.5 Conclusions

After the different values that have been tested in the previous section, a possible

solution has been implemented. The detector is 6 µm long, 1 µm wide and 0.6 µm
height. In Fig. 3.19 the butt coupling configuration is reported.

Figure 3.19: Butt coupling configuration with the new dimensions used

In Fig. 3.20 the PI curves of the optimized devices show that the responsivity

at 1.31 µm is almost unchanged with respect to the reference case, with a values

of around 1A/W. Instead, a decrease in the 1.55 µm can be observed, leading to

a responsivity of around 0.4A/W in the butt coupling case and a responsivity of

around 0.3A/W in the mode evolution case. This seems a very low responsivity

value, but, as we introduced at the beginning of the chapter, the analysis has

been performed in a worst case scenario, leading to an underestimation of the

responsivity a 1.55 µm, since in a real device strain of the Si on the Ge layer

should strongly increase the absorption of the detector.

On the other hand, the frequency response improves for both wavelengths,

reaching, for low input optical power, to a cutoff frequency higher that 60GHz.

The new device is also less sensitive to the input optical power, and in particular,

in the mode evolution case, the cutoff frequency decreases only of few GHz

increasing the optical power.

Probably, more sophisticated solutions are needed to further improve the

device performance. Not only, the configurations proposed in this work are

inspired from the literature, where experimental data are also present, and so

these new devices could be fabricated with very similar processes.
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Figure 3.20: PI curve for both wavelength and with the new dimensions chosen

for the detector
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Figure 3.21: Cutoff frequency for both wavelength and with the new dimensions

chosen for the detector
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Appendix A
Synopsys TCAD Sentaurus: design flow

and tool description

The simulation software used is a CAD (computer aided design) software pro-

vided by Synopsys.

It is made by different tools,that have different tasks inside the simulation.

To perform parametric simulation as it has been done in this thesis, the graphical

user interface (GUI) is provided by Sentaurus Workbench (SWB), a software that

is able to drive parametrically all the tools. The user has to choose the tools and

the simulations are performed one after the other, substituting the parameters

that the user has chosen. In fig. A.1 a screenshot of the software is reported.

Figure A.1: Screenshot of the tool used in Synopsys TCAD Sentaurus

As it is possible to see, SWB is a big table where parameters can be inserted

(in the figure reported the parameters are input optical power and waveguide

width, in the thesis project there is also the Ge parameters, such as height,

width and length). The simulations are performed from the left to the right and

each tool is used to complete a specific task.

Let us now describe each of the tools one after the other. SDE (Sentaurus

Device Editor) is the tool that takes care of the geometry, the contacts and the
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mesh that will be used in the whole simulation. As input, the tool takes a com-

mand file written in Scheme scripting language (Scheme is its default scripting

language), which is used to describe dimensions and position of each of the com-

ponents of the device that it is considered (as for example the length of the Ge,

as well as the dimension of the computational box, . . . ). Not only, inside the

command file there are also present the position of the contacts, i.e. where in

the following tools the device is connected to the external circuit (for example

a source used to fixing the bias point), the material composition of each com-

ponent and the doping profile of the device. It is possible also to specify the

density of the mesh in certain region of the device. In the photodetector stud-

ied, very few points are used for the description of the oxide around the device,

while a very high density mesh is used for the detector region, since it is crucial

for understanding of the device, to have a precise description of all the involved

quantities. The output of this tool are two files with tdr extension (an extension

that implements HDF5). The first file is essentially a list of all the region of the

device, with all the dimension, but without the contacts and the doping profile.

This file is essential since it is the input file of the optical solver. The other file

is the complete description of the geometry, with the mesh that will be used in

the electrical simulation.

The following tool sVisual (Sentaurus Visual) is a visualisation tool of the

tdr files that are the output files of all the other tools. It is possible to directly

export plots and elaborate the quantities inside this tool, or, as it has been done

in this thesis, it allows the export of 1D quantities, and a following MATLAB

post processing can be used.

The optical solver is called RSoft FullWave and it provides a numerical solu-

tion of the Maxwell equations with the FDTD method (see chapter 2). It takes

as input the first tdr file generated by the first SDE tool and it converts it with

an internal utility to a RSoft project, where it is possible to set the monitored

values and region, the boundary condition, the initial field distribution, the ma-

terial description, . . . . The source that has been chosen in called mode source,

where the first step that the solver does is to evaluate the mode of the optical

waveguide, and then start to propagate it trough the device. In this way, al-

most all the light of the source is reaching the detector. The chosen boundary

condition are called Perfect Matched Layer (PML), that are numerical boundary

conditions that absorb all the light that reaches them, so no reflected light from

the boundary is absorbed in the device. As output, it provides multiple files,

according to the monitored values chosen during the setup process. In our case,
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using the software utility tdrutils, the power absorbed in the whole detector is

directly converted in a tdr file that can be read and used as generation rate in

the electrical simulation.

Finally, sDevice (Sentaurus Device) is the tool related to electrical simulation.

It is able to perform different kind of simulations, but in this thesis the quasi-

stationary simulation has been used. After evaluating the equilibrium solution,

modifying the boundary condition, it evaluates the new solution until reaching

the goal that has been set (more details provided by the manual of the tool [15]).

The sDevice tool is also able to introduce a netlist in order to add components

connected to the device under study. So a 50Ω ideal resistor is connected to

the device under study and the frequency response is evaluated with the method

that the tool calls ac-coupled [15].
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