
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

PULP-TCN: Optimizing temporal
convolutional networks on ultra-low
power multi-core RISC-V based edge

nodes

Supervisors

Prof. Daniele Jahier PAGLIARI

Dott. Alessio BURRELLO

Candidate

Alberto DEQUINO
Academic Year 2019-2020

Summary

The rapidly expanding IoT market is pushing Neural Network (NN) inference
directly directly on the edge sensors rather than depend on cloud computing. This
way, latency and energy consumption for data transfer is greatly reduced. However,
the scarcity of memory and energy resources of deeply embedded devices poses a
challenge for the development of smart applications. Optimization strategies, such
as quantization, have to be implemented to reduce computational cost and memory
footprint .

One area of interest in Machine Learning is Sequence Modelling, the ability to
automatically generate, interpret or re-model sequential data, such as audio or text.
Recurrent Neural Networks (RNNs) have been canonically considered the ideal
starting point for this kind of models. However, recent results prove that Temporal
Convolutional Networks (TCNs) can provide better performances with a simpler
and easier to understand architecture.

We present PULP-TCN, a set of 1-dimensional convolution kernels aimed for
TCN inference on IoT edge devices. These kernels have been developed on GAP-8,
an open source RISC-V and PULP (Parallel Ultra-Low Power) processing platform.
We used PULP-NN, a library for Quantized Neural Network (QNN) inference, as
base.

Experimental results show that PULP-TCN kernels provide better performance
and lower memory footprint than PULP-NN on convolution over 1 dimensional
data sequences. PULP-TCN also supports deployment of sequence dilation, which
allows the convolution layer to explore a wider history size without having to
increase the filter size, further lowering its memory footprint.

ii

Acknowledgements

First in order to be acknowledge are my parents, Milva Tolosa and Mario Dequino,
and my sister, Federica Dequino. They have always been extremely supporting
during my course of study, both economically and emotionally. I’m very happy to
know that they have always believed in my capabilities, and never stopped cheering
me during these years.

I want to thank my study colleagues, in particular Francesco Campanaro, Marco
Lentini, Cosmin Daniel Solomon and Alberto Solaro, who helped me by working in
group projects, sharing notes, or simply by keeping company during these years,
making attending classes not such a pain.

I also want to give my thanks to my supervisors, Daniele Jahier Pagliari and
Alessio Burrello, for helping me out so much during all the phases of the thesis.
They have always been ready for ask any question and very patient every time I
didn’t understand, and I’m very grateful for that.

Finally, a big THANK YOU to all my relatives and friends, near and far, who
have supported me during these years. I’d like to write down the name of you all,
but I’d never end, because you are so many.

iii

Table of Contents

List of Figures vii

1 Introduction 1

2 Background 4
2.1 Neural Networks . 4

2.1.1 Overview . 4
2.1.2 Convolutional Neural Network (CNN) 8
2.1.3 Temporal Convolutional Network (TCN) 11

2.2 PULP & GAP8 . 13
2.2.1 PULP . 13
2.2.2 GAP8 . 15
2.2.3 GVSOC . 17
2.2.4 GAP8-SDK . 18

3 Related works 26
3.1 CMSIS-NN . 26
3.2 PULP-NN . 29
3.3 DORY . 32

4 PULP-TCN 34
4.1 Overview . 34
4.2 No pad no dilation convolution kernel 37
4.3 Dilated convolution kernel . 38
4.4 Double Buffer Convolution Kernel 39
4.5 Indirect convolution Kernel . 40

5 Results 41
5.1 Parallelization . 41
5.2 Memory usage . 42
5.3 Kernel models . 43

v

5.4 Tiling models . 46

6 Conclusions and Future Works 48

A Mergesort example 49

B im2col buffering 53

Bibliography 55

vi

List of Figures

2.1 Neural Network example [20] . 4
2.2 Neuron structure [21] . 5
2.3 Sigmoid function [22] . 6
2.4 Hyperbolic tanget function [22] . 7
2.5 ReLU function [22] . 7
2.6 2D Convolution example [25] . 9
2.7 Max Pooling example [26] . 10
2.8 Dilation improving the reception field of the output sequence [10] . 12
2.9 Residual block structure and example [10] 13
2.10 PULP architecture [16] . 14
2.11 GAP8 architecture [14] . 16

3.1 2 × 2 MatMul kernel inner loop [17] 27
3.2 Weights reshuffling to be compatible with the 1x4 kernel [17] 28
3.3 (a): Dataflow of spatial convolution kernel (b):Convolution inner

loop as matrix multiplication [15] 30
3.4 Inner loop of the matmul kernel, considering different sizes [15] . . . 32
3.5 DORY loop nest, implementing the double buffering scheme[35] . . 33

4.1 Graphical representation of im2col buffer building, with dilation rate
2 and a filter size of 6. Green cells are the values required to compute
the first output time slot, while the orange ones are required for the
next one. 38

5.1 Performance of the convolution kernels considering the number of
cluster cores used. Left example includes the no_dilation kernel
since dilation rate is equal to 1. 41

5.2 Memory usage (in bits) of the L1 memory area by dirrent kernels,
using 8 cluster cores. 42

5.3 Memory usage using 8 cluster cores on a layer with a lower number
of input channels. 43

vii

5.4 Single-core models comparison between various input parameters.
Dashed lines are ideal models mathematically calculated, continued
lines are experimental results. 44

5.5 8-Cores kernel models comparison, built on the same convolution
layer as the previous figure. 45

5.6 Tiling performance over different layers. 3 different tiling constraints
are compared. 46

viii

Chapter 1

Introduction

Machine learning systems have been taking a more relevant role in the past few
years in computer science. Thanks to Deep Learning (DL), a subset of Machine
Learning, it is possible to create models that can automatically learn complex
representations from data[1]. A wide range of applications can be performed with
these models, such as computer vision, speech recognition, machine translation,
audio synthesis, health or structural monitoring[2].

The connected devices -also known as Internet of Things (IoT)- market has been
steadily growing and has been projected to reach 1 trillion devices by 2035[3]. Large
networks of wirelessly connected IoT devices are increasingly deployed. The edge
nodes act as sensors, collecting data of every kind (like images, audio, temperature,
humidity) to be processed and communicated to other nodes. Due to the sensors
technical limitations and the computational complexity of DL models, the majority
of neural network operations is usually executed on cloud, over high-performance,
specialized server Graphical Processing Units (GPUs).

The ever increasing number of connected devices causes an explosion in the
amount of data to be elaborated, saturating the bandwidth and increasing latency
on the application. Dependency on cloud computation can also be a problem in
areas with unreliable network connectivity. Therefore, new solutions are being
researched in order to move DL models on the edge nodes[4], where the data is
being directly collected. The training phase of the model should still be done on
cloud, while moving the inference phase on edge devices. Training is, in fact, a very
resource-hungry one-time task. NN inference is instead a lighter task, continuously
done on the incoming data stream. This solution removes the necessity to send
data to the cloud for processing, decreasing the overall system latency. Due to the
fact that wireless transmission is usually less efficient than computation, energy
consumption is reduced too[5].

Due to the edge sensors’ nature of being deeply embedded systems, the design
process for DL models must take in account their scarcity of of resources (such as

1

Introduction

memory) and energy issues derived by the fact that they are typically powered by
battery or energy harvesters. On the bright side, Micro-Controller Units (MCUs)
are highly flexible, very cheap and low-power. Optimization strategies for deep
learning on edge devices include trading off small accuracy losses for reduced
computational costs and memory footprints, by compressing the models’ weight
or activation parameters to 8 (or lower) bit data types, so called quatization[6],
or eliminating completely redundant or low-significant weights and activations,
so-called pruning [7].

One general application of Deep Learning is Sequence Modelling, which is the
ability to automatically understand, predict, re-elaborate or generate any kind of
sequential data[8]. Sequential data is any form of data where the temporal order
matters, such as audio, text, or electrograms.

In the field of Sequence Modelling, deep learning practitioners usually use
Recurrent Neural Networks (RNNs) as a starting point, as stated in canonical
textbooks too[9]. However Temporal Convolutional Networks (TCNs), a type of
Convolutional Neural Network (CNN) specifically designed to deal with temporal
sequence, have been recently revalued. Researchers have shown them to be better
suited for domains where a long history is required, thanks to their substantially
longer memory, outperforming RNNs on tasks such as music and voice modeling or
word/character level language modeling[10]. TCNs can be the base for a wide array
of applications working over sequential data, such as the analysis of bio-signals
gathered from wearable devices[11], voice recognition and synthesis for commercial
devices[12], accelerometer signal analysis[13] etc.

The TCNs are based on a 1D fully-convolutional network architecture, where the
input data sequence length remains constant in each layer, using causal convolutions
to guarantee that no information is "leaked" from future to the past. In causal
convolutions, an output at time t is convolved only with elements from time t
and earlier in the previous layer. The history size explored by a simple causal
convolution is linear in the depth of the network. This may pose a problem on
sequence tasks requiring long history. Introducing so-called dilation, i.e. spacing
between the input values in the kernel, every output value represent a wider range
of inputs, effectively expanding the receptive field of the net, without having to
increase the convolution’s filter size.

This work focuses on the study and development of TCN inference on multi-
core fully programmable edge devices, by presenting a set of kernels focused on
implementing convolution over 1-dimensional 8-bit data arrays. these kernels were
built upon GAP8, an open-source platform based on the Parallel Ultra-Low-Power
(PULP) RISC-V architecture[14].

There are currently no solutions proposed that can properly implement such
operations on MCUs. The closest one is PULP-NN[15], a library designed and
optimized to implement standard Convolutional Neural Networks that process

2

Introduction

2-dimensional data on multi-core architectures based on PULP platforms[16], like
GAP8. PULP-NN was used as starting point for the development of the new
convolutional kernels.

PULP-NN is in turn inspired by CMSIS-NN, a set of kernels for efficient imple-
mentation of neural network applications on Arm Cortex-M processors targeted for
intelligent IoT edge devices [17].

While the PULP-NN convolution kernel could, in fact, work on 1D inputs
without any modification, the performance were not at a desirable level. Moreover,
it did not support any dilation rate higher than 1 without . . . zero padding, with a
corresponding waste of operations and memory.

Four different convolution kernels have been created, each one implementing a
different optimization strategy:

• The first kernel got entirely rid of the buffering step that was necessary in the
original PULP-NN by exploiting the 1-dimensional input data pattern. While
testing reveals very good performance results, this kernel still doesn’t support
dilation.

• The second kernel implements dilation by reintroducing the buffering step,
exploiting MCHAN, a Direct Memory Access (DMA) engine specifically devel-
oped for integration in the PULP platform[18].

• The third kernel is an attempt to exploit the DMA’s parallel memory transfers
by doubling the buffering space.

• Finally, the fourth kernel is an implementation of the indirect convolution
algorithm[19], which replaces the data buffer with an "indirection" buffer of
pointers to data. This drastically decreases the memory usage, but adds an
extra execution loop in the multiply-and-accumulate phase due to the fact
that data cannot be accessed linearly this way.

Each one of these kernels is optimal under different conditions. By modelling
the testing results it’s possible to automatically choose the best convolution kernel
for each layer based on its parameters (input/output channels, filter and input size)
to be implemented.

The rest of the thesis is structured as follows.
Chapter 2 introduces the required background on deep learning, and the de-

scription of the PULP+GAP8 architecture and SDK.
Chapter 3 summarizes various works related to the Convolutional Neural Network

inference over IoT devices.
Chapter 4 is a description of the developed kernels, and chapter 5 contains

information about their performance and experimental results.

3

Chapter 2

Background

2.1 Neural Networks

2.1.1 Overview

Figure 2.1: Neural Network example [20]

The basic technical ideas behind deep learning aren’t recent at all, however only
recently they have started to take off. One of the main reasons of this sudden raise
in popularity is the explosion on availability of data for training, caused by the
radical changes in our society in the last decades. Traditional learning algorithms

4

Background

simply cannot profit from this amount of data. Combined with recent algorithmic
and technological innovations, and easy access to open-source frameworks, deep
learning managed to become one of the main focuses in the machine learning field
[1]. Neural Networks are artificial networks of Neurons, generic computational
units roughly inspired by the human brain. Their role is to elaborate multiple
input data to produce some output information.

Figure 2.2: Neuron structure [21]

A neuron is a weighted sum of multiple input features (with an optional bias).
The result is then passed in a non-linear Activation Function, in order to remove
the linearity of the algebraic addition. Figure 2.2 is a typical neuron structure that
can be represented by the formula:

yi = f(
nØ

i=1
wixi + b) (2.1)

Where wi are the weights assigned to each input xi, b is the bias and h the non-linear
activation function. Biases are used to shift the input activation on the x plane,
increasing the overall network flexibility. Weights and biases are updated during
the training phase of the model, which is based on gradient descent.

In particular, based on an error (or loss) function computed at the output of the
network, the weights and biases gradients are computed via a technique called back-
propagation. Also, if linearity is not removed, any benefit from stacking multiple
layers is lost, since they could all be replaced by a mathematically equivalent single
layer.

Some popular activation functions are:
• Sigmoid function

h(x) = 1
1 + exp(−x) (2.2)

5

Background

Figure 2.3: Sigmoid function [22]

The Sigmoid or Logistic function is one of the most classic and simple
activation functions in NN literature, forcing the output value to be in the
(0,1) range. Used in larger neural networks it could make the error gradient
vanish or explode, therefore it’s not the most optimal choice. However, this
function is still useful in the output layer of a binary classification network
(where output is either 0 or 1), because it allows to interpret the output as a
probability.

• Hyperbolic tangent function

h(x) = tanh(x) = exp(x) − exp(−x)
exp(x) + exp(−x) (2.3)

The Hyperbolic tanget function (tanh)is similar to the sigmoid, but moves
the output range to (−1,1). This makes the output mean to be closer to zero,
which helps the learning process of the next layer by saturating the gradient
slower than the Sigmoid function.

• Rectified Linear Unit

h(x) = max(0, x) =
0 x ≤ 0

x x > 0

The Rectified Linear Unit, also known as ReLU, is a function with a derivative
equal to 1 as long as the input is positive, and 0 when it’s not. It is steadily
becoming the standard activation function in most NN projects because it
doesn’t saturate when the input value is too large. It exists a different version
(called "Leaky ReLU) with slightly higher performances, which has a very

6

Background

Figure 2.4: Hyperbolic tanget function [22]

Figure 2.5: ReLU function [22]

small slope on the negative values instead of zero. This forces the learning
process on all nodes, regardless of the fact their sum is constantly negative or
zero (a rare phenomenon called the "dying ReLU").

Deep Learning refers to the training of the Neural Network’s weight parameters.
By stacking multiple layers of neurons like in figure 2.1, it’s possible to achieve high
levels of representation of complex transformation functions. These representations
have to be automatically "learned" by a general learning procedure, as it is unfeasible
for human engineers to do it by hand on non-basic problems.

The most common procedure used to train deep neural networks is supervised
learning [23]. It consists in feeding already labelled data to the network to be
elaborated. First, a forward pass is performer, in which the input data is fed to the
network to produce an output. Then, an error or loss function is applied to measure

7

Background

the difference between the output produced by the network and the expected one.
An example of error function for regression problems is the Mean Squared Error
(MSE), which uses the following equation:

L(w) =
nØ

i=1
(yi − fw(xi))2 (2.4)

Where yi is the correct value, and fw is the predicted one. Weights are modified in
order to minimize this cost, via the process of gradient descent.

Partial derivatives of the cost function in regards of the single weights are
calculated backwards, following the backward propagation pattern, starting from
the output layer. Then the weights are modified by a multiple of that derivative,
called the learning rate(α) of the network.

wt+1
ij = wt

ij − α(δL

δwij

) (2.5)

The process is then repeated with the new weight (w) values, until the cost is
minimized. Each iteration of the training process typically uses a small subset of
the available data, called a mini-batch.

The now trained model can now be used on unlabeled data. This is the process
of Inference, where only the forward passage is done, since it’s not possible to
calculate errors not knowing the real output values. This means that the weight
values remain unchanged.

In order to model complex functions, like those required by difficult regression
and classification tasks, it is necessary to have a large enough number of layers.
This is principle behind Deep Neural Networks (DNNs).

2.1.2 Convolutional Neural Network (CNN)
Convolutional Neural Networks (CNNs) are specialized networks usually used
on computer vision tasks [24] such as object detection, object localization, face
recognition and verification. The core of these networks is, as the name suggests,
the convolution operation. Those are implemented in special hidden layers (the
convolution layers) combined with the ReLU function. Here is an example of
convolution over 1D data:

xn
j = max(0,

KØ
k=1

xn−1
k ∗ wn

kj) (2.6)

In this operation, K values of the previous layer n − 1 (the input layer map) are
multiplied with a set of weights, and then summed together to produce a single
output value. By spatially moving the window of K analyzed elements, more values

8

Background

can be computed using the same set of weights, or kernel. Convolution can be
seen as a form of filtering of the input map, extracting only the most valuable
information from it. This information is saved in the next layers (the output layer
map). As shown in picture 2.6, convolution is mathematically a sequence of matrix

Figure 2.6: 2D Convolution example [25]

multiplications. The kernel weight values can be learned to be sensible to different
input features, like vertical lines on an image.

One of the main advantages of convolution is parameters sharing. It is the ability
of reusing the same weight parameters over different areas of the input feature
map. This greatly reduces the memory required for storing the different weight
parameters.

Convolution is not limited to single 2D images, but can be applied to any
input map, regardless of dimensions. Each output feature map dimension can be
calculated with the following formula:

d = n + p − f

s
+ 1 (2.7)

9

Background

Figure 2.7: Max Pooling example [26]

Where n is the dimension value of the input map, p is the number of zero-padding
elements introduced on that dimension, and s is the stride along it (the number of
pixels the kernel shifts each iteration).

For example, if we take a 32x32x3 input (like an RBG image), without padding
(p = 0), convolve it with a set of six 5x5x3 weight filters while using stride = s = 1
on every dimension, the output dimensions would be dxdxc:

d = 32 + 0 − 5
1 + 1 = 28 (2.8)

c = 3 + 0 − 3
1 + 1 = 1 (2.9)

However, since 6 different filter banks are used, the number of channels is also
multiplied by 6, ending up with a 28x28x6 output feature map.

In order to have the same result on a classic fully connected layer, like the ones
in figure 2.1, we’d have to train more than 14 million parameters, against the 456
of the cited example. The critically reduced usage of memory is one of the CNNs
strong points.

In order to discard unimportant features, Pooling layers are also employed in
CNNs. These layers do not have any weight parameter to be learned. In fact, they
are just composed by a sliding window over the input map, calculating summary
statistic of the framed values. The output map dimensions still follow the same
formula at 2.7.

Some of the most common pooling techniques are max pooling(figure 2.7) and
average pooling. As the names suggest, max pooling filters every value that isn’t

10

Background

the highest one in the selected window, while average pooling calculates a mean of
the values under it. Pooling further reduces the memory required by the NN, while
limiting accuracy losses.

In order to facilitate the training phase, Batch Normalization layers may be
also included [27]. Their task is to fix means and variance of each layer input map,
stabilizing the distribution of their values.

x̂
(k)
i = x

(k)
i − µ

(k)
Bñ

σ
(k)2

B + Ô
(2.10)

Because it’s impractical to normalize the entire training set in one go, it is divided
in multiple batches (B) of m elements. After calculating mean (µB) and variance
(σ2

B), each dimension is normalized separately (in the example, the k dimension is
being normalized). Ô is a small constant for numerical stability (avoids divisions by
zero). After normalizing, a transformation step is taken:

y
(k)
i = γ(k)x̂

(k)
i + β(k) (2.11)

Where γ and β are parameters to be learned.

2.1.3 Temporal Convolutional Network (TCN)
Sequence modelling has been canonically related to Recurrent Neural Networks
(RNNs) in literature. RNNs are special NNs that conserve a "memory" vector in the
hidden layers, with the objective is that at a certain timestamp t the computation
of an input value xt depends on the previous values.

Recent researches have put these notions under question [10]. Certain convolu-
tional architectures can reach state-of-art performance in sequence modelling tasks
like audio synthesys, word-level language modeling, and machine translation.

The Temporal Convolutional Network is a recently researched, generic and simple
architecture, combining best practises out of different successful convolutional net-
works. This architecture has been confronted with canonical recurrent architecture
(LSTM and GRU). Experimental results show that, with minimal tuning, TCNs
can outperform recurrent solutions on various sequence modelling tasks used to
benchmark RNNs themselves.

The key features of TCNs are:

1. Causality of convolution operations, which prevents any form of leakage of
information to the past layers or iterations.

2. TCN can take a sequence of any length. The output will also be a sequence,
of the same length of the input (like RNNs do).

11

Background

To achieve the second point, TCNs are built upon 1-D Fully-Convolutional
Networks (FNC). In order to have an effectively long history, a high number of
layers is required, therefore TCNs are, by design, very deep network.

Because simple causal convolutions can only look back to a number of history
data linearly proportional to the layer’s depth. They cannot be properly applied
to sequence tasks. Dilated convolution F is defined as:

F (s) =
k−1Ø
i=0

f(i)xs−di (2.12)

Where d is the dilation rate, f is the filter function, d the filter size. s − di is the
direction of the past, meaning that d is basically a fixed step between two adjacent
filter taps.

Figure 2.8: Dilation improving the reception field of the output sequence [10]

The effective history of a layer is therefore d(k − 1). d is tipically increased
exponentially with network’s depth, so that each input is effectively hit by the
filter, as shown in figure 2.8.

Perceived history depends on depth, kernel size and dilation rate, all factors
that can be increased by creating a very large and deep network. Big architectures
like this benefit from using residual blocks.

A residual block (figure 2.9) is composed by two parallel branches. The left one
leads to a series of transformations F , the right one is an identity. The branches
results are summed at the end of the block, before the activation function. The
output can be expressed with:

o = Activation(x + F (x)) (2.13)

12

Background

Figure 2.9: Residual block structure and example [10]

Residual blocks help the training phase in very deep neural networks. Spatial
Dropout [28] is also introduced after each dilated convolution layer for regularization,
which is a technique that randomly zeroes some features in the input sequence,
during training stage, to avoid model overfitting the training set.

An optional 1x1 convolution block may have to be used on the right branch.
This block is composed by n 1x1 filters with weight equal to 1. What the block
effectively does, is to change the number of channels on the input, in order to
match with the left branch’s output dimensions.

2.2 PULP & GAP8

2.2.1 PULP
Recent technological developments in embedded computing devices have shifted the
computer vision field of study to embedded applications, such as smart cameras [29]
or self-driving cars [30]. present many problem such as the scarcity of memory and
the low computation power. On the other hand, their power consumtion is really
low, usually in the order of few mWs. Nevertheless, the power consumption becomes
a bottleneck when integrating other kind of devices that cannot host a battery and
must rely on energy harvester, such as micro/nano-UAVs. These devices employ
MCUs to limit energy usage, but they have great difficulties when performing even
the most basic convolutional algorithms, due to their very scarce memory and
energy access. The PULP (Parallel processing Ultra-Low Power platform) project
[16] was born to respond to this unmet demand for high-computational power
at the edge with a low power budget. Many chips have been produced since its

13

Background

Figure 2.10: PULP architecture [16]

creation [14]. The features that all the chips share are as follow:

• Low-power platform, capable of switching to a sleep state with very low power
consumption when not performing any task.

• High-performance on demand, to manage high frame-rate requirements with
the lowest energy budget.

• High flexibility and programmability, to keep on track with the rapid develop-
ment in the computer vision field of study.

To achieve high computation performances, PULP uses a cluster of OpenRISC
cores, typically 4 to 8. They are called the Processing Elements (PEs), and allow
various degrees of data or task-level parallelism. The cores have been optimized to
reach high instruction-per-cycle values over a wide range of applications, including
control-intensive code. PEs share the same L1 multi-banked tightly coupled data
memory (TCDM). The TCDM has a number of ports equal to the number of PEs,
allowing concurrent access to different memory locations. Each PE also has a
private instruction cache, but no data cache. TCDM size is variable, but usually
smaller than the L2 memory.

A multi-channel DMA allows for fast memory transfers between cores, L2
memory (32 to 128 KB range) and peripherals. It’s connected to the TCDM with
a low latency interconnect, the same used by the PEs. This eliminates any form

14

Background

of internal buffering when managing L1 data transfers. The cluster domain is
connected to all external resources and peripherals via a peripheral interconnect.

In order to provide energy efficiency, each core can operate on private voltage
and frequency. To do so, a Frequency-Locked Loop (FLL) is implemented on SoC
level. A set of clock dividers (one for the Soc, and one for each cluster core) can
divide the FLL-generated clock frequency. For the voltage, a Body Bias Multiplexer
(BBMUX) is used. It works synergically with the Power Management Unit (PMU)
to quickly switch each part of the architecture between normal and "boost" mode,
whenever the computed task needs it. The PMU guarantees that the different
operating modes stay transparent to the software, by generating control signals for
fetch enables, clock gating units, and the BBMUX.

Other peripherals integrated are a set of two Serial Peripheral Interfaces (SPIs),
one for master and one for slave, a bootup ROM, and a JTAG interface used
for testing purposes. The SPIs can be set in single or quad mode depending on
bandwith, can be linked to various off-chips components (like sensors), up to 4
slave peripherals. The peripheral architecture allows for the system to be in two
different operating modes:

• Slave mode: PULP acts as a multi-core accelerator of a standard host processor.
The host has to load the application on PULP L2 by using the SPI master
interface, and synchronize the computation with dedicated signals.

• Standalone mode: PULP detects external flash memory on the SPI master
interface. If none are linked L2 is used instead.

2.2.2 GAP8
GAP8 is an IoT application processor developed by Greenwave Technologies [14].
It is built upon the open-source PULP platform, implementing an extended version
of the RISC-V instruction set. GAP8 enables cost-effective solutions for intelligent,
low-memory, low-energy devices. GAP8 focuses on a wide range of algorithms,
including convolutional neural network inference. This architecture can be used to
integrate artificial intelligence applications on IoT devices, such as image recognition,
machine health monitoring, automatic home security, smart toys etc.

As seen is figure 2.11, GAP8 architecture strongly resembles the original PULP
one, but with multiple additions:

• A Fabric Controller (FC) subsystem is used for control, communication and
security. It can be seen as a simple MCU. This core is a Risc-V core, identical
to the ones which are comprised in the cluster. The same applications can be
either run on the FC or on the cluster.

15

Background

Figure 2.11: GAP8 architecture [14]

• 8 RISC-V cores are used inside the cluster, coupled with a specialized Convo-
lutional Neutral Network accelerator (HWCE). The cluster is activated from
the FC and used as an hardware accelerator.

• DC/DC (Direct Current to Direct Current) regulators and clock generators
with ultra-fast reconfiguration times, to manage power and voltage for each
core and peripheral.

• A larger L2 memory (512 KB), and two TCDMs, one exclusive to the FC (16
KB), and one shared by the cluster cores and HWCE (64 KB).

• Multiple DMA units to allow fast transfers between cluster L1 and L2 memories,
and between L2 memory and peripherals. Two different DMA are present,
one for cluster - L2 communication and one for L2 - external peripherals
communication.

• A Memory Protection Unit (MPU), controlled by the FC. Works with different
address filters, directly implemented on the bus system, to secure specific
memory map areas. Security is based on the user/machine privilege mode
configured on FC and rules set in the MPU.

• A rich set of peripheral interfaces, like CPI for cameras, LVDS for radio
frequency, I2S for digital audio devices etc.

16

Background

All 9 (FC+cluster) cores share the same RISC-V extended instruction set
architecture. It has been extended to support the most common signal processing
and machine learning algorithms. Extensions include: zero overhead hardware
loops, pre/post pointer increment memory access, computation-control flow mixed
instructions (max, min etc.), multiply and accumulate, vector operations, fixed-
point operations, bit manipulation and dot product.

There is only a single shared instruction cache, instead of multiple private ones
like in the PULP architecture. This is because the cluster cores execute the same
area of code, while parallelization is done on data level. By using a single instruction
cache, memory access for instructions is generally reduced.

Because there is no data cache, autonomous DMAs and good memory manage-
ment is required for energy efficiency. Tools like the GAP8 auto-tiler can be used
to facilitate the process [14].

Up to two tasks can be queued for each peripheral. The µDMA schedules active
transfers by checking the peripherals’ signals in a round-robin fashion. The µDMA
is usually only directly used by the peripherals’ drivers, not by the programmer.
The cluster-DMA focuses on transferring data between L1 and L2 memory areas.
It can queue up to 16 requests and has very short instructions set to minimize
overhead and instruction cache pollution.

As stated before, FC is used as a micro-controller. The cluster can be seen as a
"peripheral" of the FC, specialized in doing high-precision, parallelized calculations
for image, audio and signal processing.

Each core is uniquely classified by two identification numbers. The first one is
the Cluster ID, set to 0x00 if the core is part of the cluster, 0x20 otherwise. The
second is the Core ID, always set to 0x00 for the FC, and from 0x00 to 0x07 for
the cluster cores.

By default, the cluster is turned off, and must be powered up first by the
FC. Once awake, the core 0 of the cluster (the one with both IDs at 0x00) is
regarded as the "master" core of the cluster. The master core is the only one
directly communicating with the FC, and has to manage the parallelization on the
remaining cores, by dispatching the tasks and applications suitably. The cluster
has to be turned off once the tasks are done to save energy, transferring memory
from L1 to L2 first.

2.2.3 GVSOC
GVSOC is a lightweight virtual platform, simulating the GAP8 IoT application
processor [31]. This allows to test out programs without any hardware limits. It is
also possible to simulate full applications with real device drivers, by using device
models. Currently, it is possible to simulate devices such as cameras, microphones
and LCDs. Installation of GVSOC is integrated with the GAP8-SDK, and can be

17

Background

easily called by setting the –platform options equal to "gvsoc" when compiling an
application.

Multiple options can be set by modifying the system configuration. This can be
done on command line by using the option –property=<path>=<value> option.
This will overwrite the desired value on the JSON file. The path is hierarchical,
similarly to a file system path.

In order to facilitate the debugging process for developers, the platform allows
dumping architecture events. For example, it can show instructions being executed
on assembly level, all DMA transfers, signals generated, memory access and so on.
This feature can be enabled by using the –trace=<path> option on command line.
The path argument is the architecture component to be dumped. More than one
component can be analyzed by calling the same option multiple times.

For example, in order to trace the operations done by cluster cores 0 and 1, the
following command line can be used:

1 pulp−run −−plat form=gvsoc −−c o n f i g=gap_rev1 −−binary=t e s t prepare
run −−t r a c e=pe0/ insn −−t r a c e=pe1/ insn "

The trace file has usually one line for every single event. Each line is divided in
three parts.

On the left part there’s the timestamp in picoseconds, followed by the number
of cycles. While the timestamp is linear, cycle number depends on the domain’s
frequency.

On the middle part there’s the location where the event has been registered.
Finally, in the right part, the core information about the event, including its name,
the memory locations and registers involved in it, and the values they had at the
time of the event.

By default, text is dumped on standard output. However it is possible to save
on a specified file by using the > or : operator.

GVSOC does not provide any particular feature for profiling, except for hardware
performance counters (see GAP8-SDK section). However, since the platform is
virtual, it is possible to implement all performance counters at the same time,
instead of just one as limited from the GAP8 hardware.

2.2.4 GAP8-SDK
GAP8’s software developer kit (GAP-SDK) is an extract of elements from the
PULP-SDK necessary for compiling and running applications over the GAP8 IoT
processor [32].

The SDK contains:

18

Background

• GAP8 RISCV GNU Toolchain: pre-compiled toolchain from the RISC-V
project

• PLPBRIDGE: a PULP project tool allowing comunication between PC and
PULP device such as GAP8. It allows to control the platform, debug it using
GDB, and load programs on the GAPuino (a board developed by GreenWave
Technologies for developing prototype applications [33]) flash memory.

• Four different open source operating systems/sets of API, ported by Greenwave
Technologies on GAP8:

– PULP OS
– Arm Mbed OS
– FreeRTOS
– PMSIS

A series of examples are provided during installation to learn the various functions
available. In order to run them once installation is over, we first set up the shell
environment on the terminal by running:

1 source ~/gap_sdk/ sourceme . sh

Then we can test the example programs, using the GVSOC platform.
Here is a quick analysis of the various examples, focusing on the most important

methods necessary to correctly program an application using the GAP8-SDK. In
this work we’ll use the PULP-OS operating system.

Hello world example

The hello world example is a very simple program showing how to turn on the
cluster, dispatch tasks on it, and then turn it off when it’s finished.

rt/rt_api.h is the main library to be included, that contains a large number of
sub-libraries, such as rt_event.h, rt_cluster.h, rt_utils.h etc.

The main() function is entirely executed by the FC, acting as a controller for
the cluster. In order to dispatch the tasks and manage concurrency, asynchronous
events are used.

1 i f (r t_event_al loc (NULL, 4)) re turn −1;

This function allocates 4 events and puts them in the free list. Later on, the
events get reserved and pushed into the scheduler appointed. If NULL is passed as

19

Background

the scheduler (like in the example), the default one is used. If the allocation fails,
the program stops immediately.

1 rt_event_t ∗p_event = rt_event_get (NULL, end_of_call , (void ∗) CID) ;

The next function pulls a free event from the scheduler list, and initializes it
with a callback function, end_of_call in the example, passing the core id (CID) as
an argument to it.

In order to use the cluster, we must first turn it on, because it is powered down
by default to save energy.

1 rt_cluster_mount (MOUNT, CID , 0 , NULL) ;

This function is also used to turn the cluster off. In the example, the MOUNT
flag is equal to 1, while the UNMOUNT flag is 0. CID is the ID of the target
cluster (0 in this case). It’s possible to pass an event too in order to notify when
the operation is done, or just NULL if we want the function to simply return, like
in the example.

Once mounted, the cluster can be woken up in the following step:

1 r t _ c l u s t e r _ c a l l (NULL, CID , c lus te r_entry , NULL, NULL, 0 , 0 , rt_nb_pe
() , p_event) ;

This is a coarse-grain job delegation to the cluster side. Specifically, it will wake
up the cluster core 0 and will make it do the specified entry function, using the
specified stacks, if appointed.

The first argument should only be set if multiple calls are enqueued at the same
time.

Two stack pointers (one for the master core, the other for the slave ones) are set
to NULL, allowing for their automatic allocation and deallocation. Those stacks’
sizes are set to 0, which gets automatically interpreted as the default size.

rt_nb_pe() is an utility method that returns the number of available cores. By
using it, we can wake up all of them.

Lastly, we pass the event we reserved earlier, that will be used to notify when
this function has been successfully executed.

1 whi le (! done)
2 rt_event_execute (NULL, 1) ;

20

Background

The FC locks itself up into an endless cycle, waiting for the done flag to be set to 1.
Each cycle, it executes any events present in the scheduler (the default one if NULL
is selected). If none is available, it will wait one because the second argument (the
wait flag) is set to 1.

Meanwhile, the cluster_entry task has been now dispatched to the cluster core
with CID equal to 0, also known as the "master" core. Once it returns, the p_event
will be automatically scheduled. The FC will execute it, triggering the end_of_call
function, which breaks the cycle by setting the done flag to 1.

1 s t a t i c void c lu s t e r_ent ry (void ∗ arg)
2 {
3 p r i n t f (" Enter ing c l u s t e r on core %d\n" , rt_core_id ()) ;
4 p r i n t f (" There are %d co r e s a v a i l a b l e here . \ n " , rt_nb_pe ()) ;
5 rt_team_fork (8 , he l l o , (void ∗) 0x0) ;
6 p r i n t f (" Leaving c l u s t e r on core %d\n" , rt_core_id ()) ;
7 }

Cluster entry first prints out the core ID of the "master" core, prints the number
of cores available in the cluster, then calls the rt_team_fork method. This is an
important function that creates a team of slave cores (including himself) to execute
a task, passing the third argument to it. The hello task, in this case, is just a single
instruction that prints the id of the core calling it.

The expected output will look like this:

1 Enter ing main c o n t r o l l e r
2 Enter ing c l u s t e r on core 0
3 There are 8 co r e s a v a i l a b l e here .
4 [c l u s t e r ID : 0x 0] He l lo from core 5
5 [c l u s t e r ID : 0x 0] He l lo from core 0
6 [c l u s t e r ID : 0x 0] He l lo from core 1
7 [c l u s t e r ID : 0x 0] He l lo from core 4
8 [c l u s t e r ID : 0x 0] He l lo from core 2
9 [c l u s t e r ID : 0x 0] He l lo from core 3

10 [c l u s t e r ID : 0x 0] He l lo from core 6
11 [c l u s t e r ID : 0x 0] He l lo from core 7
12 Leaving c l u s t e r on core 0
13 [c l u s t e r ID : 0x20] He l lo from core 0
14 Test s u c c e s s : Leaving main c o n t r o l l e r

The described example is a solid base to be expanded for more complex programs.
In fact, all the examples follow the same schema:

1. Initialize synchronization event with a callback function

2. Mount the cluster

21

Background

3. Dispatch master task on the cluster core with CID = 0

4. Dispatch slave tasks on the team of cluster cores

5. Execute callback function

6. Unmount the cluster

Also more complex programs share the same programming paradigm.
In the next code analysis, we’ll solely focus on useful directives for programming

on GAP8-SDK that haven’t been shown already.

Cluster_alloc example

This example shows API functions useful for manual allocation of memory on the
FC and the cluster cores. We are going to use these for dynamically allocate the
supporting buffers in the convolution kernels.

1 void ∗ s ta ck s = r t _ a l l o c (RT_ALLOC_CL_DATA, STACK_SIZE∗rt_nb_pe ()) ;

After mounting the cluster, it’s possible to manually allocate stack to be used
future dispatched tasks. RT_ALLOC_CL_DATA is a flag specifing that the data
must be stored in the cluster’s L1 memory.

1 rt_al loc_req_t req0 ;
2 rt_free_req_t req1 ;
3 char ∗ a ;
4

5 r t _ a l l o c _ c l u s t e r (RT_ALLOC_L2_CL_DATA, a l l o c _ s i z e , &req0) ;
6 a = (char ∗) r t_a l loc_c lus te r_wai t (&req0) ;
7

8 i f ((a)==NULL) { p r i n t f ("L2 A l l o ca t i on Error . . . \ n ") ; r e turn ; }
9

10 free_mem (a , a l l o c _s i z e ,& req1) ;

Cluster cores can dynamically allocate data on the L2 memory. In order to do so
they have to use the rt_alloc_req_t and rt_free_req_t structures. This operation
is not fast, and requires waiting for it.

Cluster_notif

This other example illustrates some synchronization mechanisms provided by the
GAP-SDK, useful for synchronizing the parallel tasks on the different cores.

22

Background

1 s t a t i c r t_not i f_t n o t i f ;

This structure declared at global level manages the notification mechanism at
runtime.

1 r t _ c l u s t e r _ n o t i f _ i n i t (& no t i f , 0) ;

The FC has to initialize the notif structure, declaring the cluster ID it has to work
on.

1 r t _ c l u s t e r _ n o t i f _ t r i g g e r (& no t i f , 0x03) ;
2 r t _ c l u s t e r _ n o t i f _ t r i g g e r (& no t i f , RT_TRIGGER_ALL_CORE) ;

Once the cluster cores are working, the FC can notify one specific core by
passing the core ID as argument, or all of them at the same time, using the
RT_TRIGGER_ALL_CORE flag.

1 i n t event = rt_c lus te r_not i f_event (& n o t i f) ;
2 r t_c lus te r_not i f_wai t (event) ;

The cluster cores, in the example, extract the blocking event from the notif structure
and call a wait over it. They go into a low-powered state until the FC triggers the
event with the previous instructions.

1 rt_team_barrier () ;

This is a very important synchronization directive. This blocks the execution of
each calling block, until every single core of the slave team reaches the barrier. A
team is created every time rt_team_fork is called, the barrier always refers to the
last team created. By using barriers, it is possible to manage task synchronization
over multiple cluster cores.

Performance example

Performance profiling is a vital part of software developing. GAP-SDK provides a
wide range of performance counters to profile on both the GVSOC simulator and
GAP8 hardware.

1 s t a t i c rt_perf_t ∗ c l u s t e r _ p e r f ;

23

Background

The hardware performance counters can be invoked by using this structure, declared
at global level.

When performing performance tests, it is recommended to wrap the entire
program in a loop. Skip the first few cycles (the "warm up" cycles), and calculate
the mean of the selected performance counter over the remaining cycles. This is
done to guarantee profiling accuracy.

The cluster_perf is allocated in L2 memory by the FC.

1 r t_per f_ in i t (p e r f) ;
2 rt_perf_conf (per f , (1<<RT_PERF_CYCLES) | (1<<RT_PERF_INSTR)) ;
3 r t_per f_rese t (p e r f) ;
4

5 r t_per f_star t (p e r f) ;
6

7 /∗Code s e c t i o n to be p r o f i l e d ∗/
8

9 rt_perf_stop (pe r f) ;
10 rt_perf_save (p e r f) ;
11

12 i n s t r = rt_perf_get (per f , RT_PERF_INSTR) ;
13 c y c l e s = rt_perf_get (per f , RT_PERF_CYCLES) ;
14

15 p r i n t f (" \ tPerformance o f funct2monitor : c y c l e s %d i n s t r u c t i o n s %d\n" ,
cyc l e s , i n s t r) ;

After initializing the performance structure, we configure the hardware counters
we want to use for profiling. There are many counters available, useful for in-depth
code analysis. They can count the number of cycles, instructions, load data hazards,
jumps, instruction cache misses, memory loads/stores, branches, etc.

Usually, the most meaningful counters are the number of cycles and instructions,
analyzed in the example. We’ll be also focusing mostly on those two counters when
profiling PULP-TCN.

SoC_Cluster_Frequency example

This example highlights how to change the frequency settings on each single system
core.

1 rt_freq_get (__RT_FREQ_DOMAIN_FC) ;
2 rt_freq_get (__RT_FREQ_DOMAIN_CL) ;
3 r t_freq_set (__RT_FREQ_DOMAIN_CL,175000000) ;

Frequency in the FC and cluster cores can be accessed and modified separately at
any moment by the programmer.

24

Background

Cluster_mergesort example

This is an handcrafted example, showing how to implement a non-elementary
algorithm, such as the parallel mergesort, on GAP8 using its SDK.

Full code can be read on appendix A.
The main function is very similar to the example ones, following the same

directives for starting up the cluster core and dispatching instructions over it.
Because the dispatched task can only accept a single argument, it is necessary to
wrap the int array and its size in a single vector structure. This structure is the
argument passed to the cluster master core in rt_cluster_call.

Parallelization on the 8 cores is done over data. In this example, the master
cluster core splits the input vector in 8 equivalent chunks, one for each core, to be
passed as argument in the rt_team_fork call.

First, each core has to apply the merge_sort algorithm on its appointed chunk.
Then, every core has to merge his chunk with its neighbour’s, a number of times
that depends on its own ID: core 0 has to merge three times, core 1 has to do it
two times, cores 2 and 3 have to do it once, while the rest of the cores don’t have
to do it. Synchronization is guaranteed by a series of rt_team_barriers.

The mergesort algorithm allocates a support buffer on L2 memory. Merge takes
a vector that has the left and right side (with respect to the element at the m
position) already sorted, and generates a new, fully sorted vector. Merge_sort
takes an unsorted vector and splits it multiple times, until it reaches single-element
arrays, which are sorted by construction, then recursively merges them back in
order.

25

Chapter 3

Related works

3.1 CMSIS-NN
CMSIS-NN is a set of efficient kernels [17] developed for maximizing NN applications
performances on Arm Cortex-M processors for IoT edge devices, while minimizing
their memory footprint.

The kernel code is divided in two parts: NNFunctions and NNSupportFunctions.
The first group contains functions used to implement popular NN layer types,
such as convolution, pooling, activation etc. Kernel APIs are simple, to ease
implementation in any machine. There are multiple versions for the most common
layers, like the fully connected, to optimize execution in specific environments.

The second group has utility functions such as data conversions and activation
tables. They are used by NNFunctions, and can help when building more complex
NN architectures.

While training a NN higher precision data types are preferred, but during
inference it is possible to use lower-precision data type to save up memory, suffering
negligible drops in accuracy [6].

CMSIS-NN adopts, as the name suggests, the same data types of the CMSIS
hardware abstraction: q7_t as int8, q15_t as int16 and q31_t as int32. Quantiza-
tion is done with a fixed-point format and power-of-two scaling. The values are
represented in the A × 2n format, where A is the integer value and n the location
of the radix point. The scaling factors are passed as arguments in the kernels. The
scaling operation is done with bitwise shifts, thanks to the power-of-two format.
This design decision is taken to avoid inter-layer floating point de-quantizations,
because some devices don’t have a Floating Point Unit (FPU) to efficiently process
such operations.

Most NNFunctions use 16-bit Multiply-And-Accumulate (MAC) instructions,
requiring to convert 8-bit data to 16. CMSIS has an utility function just for that,

26

Related works

arm_q7_to_q15. In the first step, it extends the data by using the sign extension
instruction. In the second step, data is reordered to follow the original pattern. In
CMSIS-NN, the second step is omitted, assuming the operands always follow the
same ordering.

The Matrix Multiplication (MatMul) operation is the most important in NNs.
Similar to the original CMSIS implementation, CMSIS-NN’s MatMul kernel is
implemented using 2 × 2 kernels for preventing stalls.

Figure 3.1: 2 × 2 MatMul kernel inner loop [17]

Both operands (input map and weights) must be 16-bits precision, while the
accumulators are 32-bits. Each loops computes the dot product between 2 columns
and 2 rows, resulting in a total of 4 outputs.

In fully-connected layers with a batch size of one the Matrix-Matrix operation
simplifies to a Matrix-Vector one. A 1 × 2 kernel could be used to optimize the
operation. But by reordering the weight values it is possible to implement a 1 × 4
kernel, which obtains superior performance. In this reordering process, weights are
interleaved every 4 rows and shuffled every 4 entries. Additional rows do not get
reshuffled. Refer to figure 3.2 for an example.

For the Convolution kernel, input decomposition and reordering is necessary.
The Image to Column (im2col) process transforms a image-like input into columns

27

Related works

Figure 3.2: Weights reshuffling to be compatible with the 1x4 kernel [17]

containing the data required for each convolution filter. This allows to implement
convolution as a standard matrix-matrix multiplication, taking advantage of the
optimized kernels for this operation. However, this causes a memory overhead,
given that multiple pixels are repeated in different columns.

CMSIS-NN implements partial im2col, only expanding 2 columns at a time,
sufficient for the MatMul kernel structure mentioned above (2 × 2).

When 3D data is involved, the two most common data layouts found in software
libraries are Channel-Width-Height (CHW), where channels are the outermost
dimension, and Height-Width-Channel (HWC), where channels are innermost. In
HWC, data along the channel dimension is stored with a stride of 1, data along
width is stored with stride equal to the number of channels, and data along the
height is stored with stride = n.channels ∗ imagewidth.

HWC is more efficient due to the fact that data regarding the same pixel is
stored contiguously, allowing efficient memory transfers for SIMD instructions.

CMSIS-NN also supports depth-wise separable convolutions, which are often
found in compact network architectures.

Pooling kernels in CMSIS-NN are implemented following the split x-y approach,
instead of the classic window-based pooling. This involves splitting the pooling
operation first by width, then by height. Pooling is done in situ, making it a
destructive task on the input.

For the activation functions, Sigmoid and Tanh are both implemented with

28

Related works

look-up tables, using the MSB and LSB to find the corresponding value. ReLu,
instead, uses the MSBit of the 8-bit number as sign bit and extends it as a mask
using a byte-level subtraction instruction.

With CMSIS-NN, Neural Network inference achieves 4.6× improvement in run-
time/throughput, and 4.9× in energy efficiency for a CNN targeting the CIFAR−10
[34] image dataset, compared to previous existing solutions [17].

3.2 PULP-NN
PULP-NN is an open-source library optimized for PULP-like architectures [15].
The key innovation is a set of kernels for Quantized Neural Network (QNN) [6]
inference parallelized on the 8 cluster-cores. The data types being targeted are
8-bit long or lower, down to single bit precision, following the trend of aggressive
quantization in DNNs.

The main focus of this library is multi-core execution on fully programmable
edge devices, with low bit-width operations. PULP-NN is based on CMSIS-NN
[17]. It optimizes its convolution kernel by improving data reuse.

In PULP-NN, quantization of real-valued weight parameter w to a Q-bit signed
fixed-point values is implemented with the following formula:

q(w) = clip[−1,1)(2−(Q−1) · round(w · 2(Q−1))) (3.1)

Where clip is:
clip[a,b)(x) = max(a, min(x, b)) (3.2)

Then, the Q-bit representation of w is defined as:

W = q(w) · 2(Q−1) (3.3)

This quantization method also works for activation values. As long as both
weights and activation values are represented by the same Q-bit data type, the
convolution is mathematically a sum of products in the integer domain:

φ(w, x) = 2−2(Q−1) Ø
iÔC

WiXi
.= 2−2(Q−1)Φ(W, X) (3.4)

Where C is the number of input channels, φ is the convolution operation and Φ is
the high-precision accumulator, 32 bits if Q = 8, 16 bits if Q is lower precision. The
accumulator is compressed back to Q bits before producing the output activation
value for the next layer, using scaling and clamp operations in case Q is 8 bits,
threshold if Q is 4 or 2 bits. For a Q-bit output, it is necessary to store 2Q − 1
threshold values per channel to compare, on each single layer.

29

Related works

In case Q = 1, the quantization operation simplifies to:

Φbin(X) = popcount(WxnorX) (3.5)

Where popcount is the bit counting instruction, returning the number of bits
set to 1 in the xnor output.

Like in CMSIS-NN, PULP-NN implements the convolution in two steps. The
first step being the im2col buffer construction, the second step being a dot product
between the loaded buffer and the filter weight banks.

Figure 3.3: (a): Dataflow of spatial convolution kernel (b):Convolution inner loop
as matrix multiplication [15]

The inner loop of the convolution dot product is realized with a matrix multipli-
cation kernel. As stated previously, CMSIS-NN works on two spatially adjacent
output pixels of two consecutive channels each iteration. We called this the 2 × 2
MatMul kernel.

PULP-NN Implementation

PULP-NN accelerates the cycle computation by using hardware loops. Data access
on the im2col buffer is extremely regular by construction. This allows usage of
load and store instructions with the post-increment pattern, that further improve
the MatMul operation.

30

Related works

PULP-NN also uses SIMD vectorial instructions to allow processing multiple
sub-word data in parallel. Most of them require just one clock cycle. These
instructions use specific vectorial data types: v4s is a 32 bit data operand that can
store up to four INT-8 data, whereas v2s is a 32 bit operand that can store two
INT-16 data. Some vectorial instructions include sdotp4, which computes the sum
of the dot products on two v4s data, max4, that computes an element-wise max
operation on two v4s in a single cycle, etc.

When working over INT-8 data, PULP-NN fills 2 im2col buffers to compute 2
adjacent output pixels. Then, it loads 4 consecutive elements from the buffers and
filter weight banks, by casting the INT-8 pointers to v4s ones. With a total of 4
load instructions, it is possible to execute 4 sdot4 operations, which are equivalent
to 16 MAC operations.

When implementing a fully connected layer, data reusage is maximized by using
the 2 × 1 MatMul Kernel, like proposed in CMSIS-NN. Using sdot4 instructions,
it’s possible to execute 8 MACs after 3 load operations.

Ancillary operations also take advantage of the DSP extensions. The hardware
loops and post-increment load/store help in the ReLu kernel, that also uses the
max4 SIMD instruction. Max Pooling also uses these features, while splitting the
workload on the height and width dimensions (like in CMSIS-NN).

INT-8 is the smallest natively-supported data type. INT-2 and INT-4 have to
be scaled up to INT-8 with additional support functions. To reduce overhead, the
SIMD’s bextract and pack4 are used. The first one extract a selected number of
bits from a register and sign-extends them in a single cycle, while the second stores
4 INT-8 values into a v4s in two clock cycles. The result will be compressed back
to the original size by comparing it with a series of threshold values.

No casting or unpacking operations are needed for INT-1 data. Different support
operations are already provided by the ISA for binary operations. The result will
still be on a 16 bit accumulator, which gets compressed by comparing it with a
single threshold value.

The HWC data layout is used, like in CMSIS-NN. For parallelization, it is
convenient to split the workload between the various cluster cores over the height
dimension of the output feature map. In order to do so, the kernel divides the
output height by the number of available cores, approximating by excess. That is
the "chunk" dimension, which is the number of rows on the output feature map
each core has to compute. The start and stop row index of the chunk are calculated
using the core’s ID:

Start_Row = min(Chunk_Dimension · Core_ID, Output_Map_Height)
(3.6)

31

Related works

Figure 3.4: Inner loop of the matmul kernel, considering different sizes [15]

Stop_Row = min(Start_Row + Chunk_Dimension, Output_Map_Height)
(3.7)

In this way, if the chunk dimension is higher than the leftover rows the core has to
compute, the last output row is set as that core’s Stop_Row. It certain cases, like
when the output height is very small or not a multiple of the number of cores, the
most optimal parallelization strategy may exclude one or more cluster cores from
the task. In this case, both the start and stop row indexes are set on the last row,
forcing the core to skip the main execution cycle.

In order to maximize data re-usage in a very memory intensive kernel such
as MatMul, PULP-NN reuses the weight elements in the inner loop to compute
a second sdotp4 operation on the second im2col buffer, adding the cost of an
additional load. PULP-NN upscales the MatMul kernel to the 4 × 2 size, which
consists in computing 4 consecutive channels over 2 adjacent output pixels on the
output feature map each loop iteration. This is the most that the register structure
can support without spilling variables into the stack. A 2 × 4 kernel is also viable,
but requires 2 extra im2col buffers, doubling the memory requirements.

Splitting the rows to be worked on implies the necessity for each core to have
private im2col buffers, 2 each for the 4 × 2 MatMul kernel. Parallelization profits
come with an increased memory footprint.

3.3 DORY
IoT endnodes usually couple a fast but small L1 memory with a larger but slower
L2 as background memory. By not using hardware caches, the energy usage is

32

Related works

Figure 3.5: DORY loop nest, implementing the double buffering scheme[35]

much lower, but every memory transfer has to be explicitly managed, complicating
the development of complex algorithms with high memory footprint, like DNN
inference.

DORY is a lightweight software level cache dedicated to DNN Deployment
Oriented to memoRY [35]. It uses static data tiling and DMA-based double
buffering to hide the L1-L2 manual memory transfers complexity. Experimental
results reach less than 4% performance overhead when using activation and weight
values stored in L2 instead of L1.

DORY has two main blocks: DORY Optimizer and DORY SW-cache.
The DORY Optimizer takes as input the maximum L1 memory and layer con-

straints passed as a PyTorch layer (PyTorch is a popular open source machine
learning library [36]), like the number of channels, dimension of the zero-padding
required and spatial dimensions. The optimizer has to maximize back-end per-
formance and energy efficiency, mathematically abstracted to a integer constraint
problem. To solve it, DORY Optimizer uses the open-source OR-tools from Google-
AI [37], a tool specialized in matching user-defined constraints over data. By solving
the problem, OR-Tools defines the most optimal tiling dimensions, that can fit in
L1, to be applied on the input feature map.

The DORY SW-Cache is used whenever a DNN layer can’t fit in L1 memory.
It automatically generates code to minimize overhead in the target layer, like the
asynchronous DMA transfers and implementing double buffering, without any input
from the programmer.

Figure 3.5 shows the scheduling scheme, looping over the output channels, width,
height and input channels. Looping limits are found by the DORY Optimizer’s
tiling tool. Minimal imbalance is added thanks to the fact that DMA transfers are
asynchronous and non-blocking.

33

Chapter 4

PULP-TCN

4.1 Overview

PULP-TCN is a computing library optimized for TCN inference on IoT edge
devices. It uses the PULP-NN libray [15] as a starting point, optimizing its strong
points in the field of convolutional operations over one dimensional sequential data.

Besides the four convolutional kernels accurately described in this chapter,
PULP-TCN also includes a set of kernels for implementing Fully Connected,
Add, Max/Average Pooling layers, necessary for creating a real, complete TCN.
These supporting kernels are very similar to the PULP-NN’s implementation, but
with slight modifications to reduce overhead by exploiting the fact that data is
1-dimensional.

The PULP-NN convolution kernels can be used with 1D data sequences without
editing the source code. This is done by considering width or height as the time
dimension, while setting to 1 the unused dimension. This workaround, however,
negatively impacts on the performance level. If the width dimension is converted
to the time dimension, parallelization is not possible because the height dimension
would be set to 1, bringing the number of MAC operations per cycle to less than one
if the input data sequence length is non-optimal. Converting the height dimension
gives better results, but with a lower performance level than the one documented
in [15]. Furthermore, the PULP-NN library offers no support for dilation. The
only way to implement it is by using zero-padding on the weight banks, critically
increasing the memory footprint and reducing the convolution kernel’s speed even
more.

PULP-TCN solves these problems by adapting the existing solution to the field
of one dimensional sequential data, and by exploring new optimization strategies
to be integrated.

34

PULP-TCN

Multi-core Parallelization

TCN’s main field of applications is sequence modelling tasks [10]. As explained in
chapter 2.1.3, both input and output features of the convolutional layer are temporal
data sequences over multiple channels. The chosen data layout to represent them
is:

• Data along the channels, referring to the same time slot, is stored with a stride
of 1.

• Data along time, referring to the same channel, is stored with a stride equal
to the number of channels.

With this layout, parallelization can be done done on the time dimension, equally
dividing the number of output time slots to be computed by each core. This is
done in a similar fashion of PULP-NN, as illustrated in chapter 3.2. The starting
and stopping time slots delimiting the area computed by each core are calculated
using the core ID, like in PULP-NN.

MatMul kernels

The core operation for convolution is done by the MatMul kernel. Despite the fact
that we operate over 1D sequential data, the PULP-NN solution designed for 2D
feature maps is an excellent starting point. In fact, the im2col support buffer was
used to "flatten" input data, while we already use linear sequences. Thanks to the
chosen data layout, access to adjacent channels on the same time slot is extremely
regular, allowing us to use hardware loops and load/store operations with post
increment in the inner loop. Slightly different versions of the MatMul 4 × 2 kernel
have been developed for each convolution kernel, but they all share the same design
choices:

1. Get as argument the pointers to the memory areas where the necessary data
to compute the 2 output sequence time slots are stored.

2. Load 4 INT-8 values from each input pointer, storing them into two v4s
variables from the SIMD architecture.

3. Load 4 INT-8 weight values from 4 adjacent weight filter banks, saving them
in four v4s variables.

4. Multiply each input v4s variable with the weights, for a total of 8 element-
wise v4s multiplications. Each product is summed to a different INT-32
accumulator.

5. Increase the pointers to load the next values.

35

PULP-TCN

6. When reaching the end of the filter weight banks, accumulator values get
quantized before being saved in the output sequence. The quantization method
is chosen by the programmer using specific flags.

The differences between the MatMul kernel versions are highlighted in the convolu-
tion kernel descriptions.

Quantization

Accumulated values in the MatMul kernels have to be quantized from 32 to 8 bit.
Three quantization methods are available, by setting the appropriate flags in the
convolution kernels. Those flags depend on the optimization techniques applied to
the convolution layer.

If no flags are set, clip8 is used. This method calls __builtin_pulp_clipu_r(x,
255), a simple built-in instruction that sets x to 0 if it’s a negative value, or to the
max value if higher than it. In this case, the maximum value is set to 255, the
highest number representable by an unsigned 8-bit integer.

If only the relu flag is set, pulp_nn_quant_u8 is called. this function multiplies
then shifts the accumulated value by out_mul and out_shift, respectively. These
two are constant values passed to the convolutional kernel. After these operations,
clip8 gets called once again.

If both the relu and batch_norm flags are set, pulp_nn_bn_quant_u8 is invoked:

integer_image_phi = (k ∗ phi) + lambda; (4.1)

Where phi is the accumulator, while k and lambda are constant values that depend
on the output channel. In fact, k and lambda are nChannels-sized vectors of
constant INT-32 values passed to the convolutional kernel. This allows us to
implement both quantization and normalization in a single function.

Convolution kernel main loop

Developed kernels share a common base structure. First, each core calculates the
output time slots they have to work on (see "Multi-core Parallelization" above),
then they enter the main execution loop.

The main loop is divided in two stages: Buffering and MatMul. An exception
is the first described kernel (the No Pad, no Dilation one) where buffering is not
required. In the buffering stage, the core prepares the memory array containing
the input features required to compute the 2 output time slots currently being
targeted. Once the buffer is completed, the core proceeds to pass a pointer to the
buffer as argument on the MatMul 4 × 2 kernel, then shift the target to the next
two time slots, until the stopping time slot is reached.

36

PULP-TCN

If the number of time slots to be computed is odd, the last one will be left over
from the main cycle. In this case, half of the support buffer is used by the MatMul
4 × 1 kernel. This kernel is basically the same as its 4 × 2 counterpart, but only
takes input values from a single input buffer, and produces output sequence values
on a single time slot.

The following sections present more detailed information of the convolution
kernels. Each one presents different advantages and disadvantages, which motivates
the need to model their individual performance, then evaluate which kernel is best
using considering the layer parameters.

4.2 No pad no dilation convolution kernel

The first approach taken to maximize performance was to eliminate the buffering
step from the convolution kernel. This is possible when the convolution does not
include padding nor dilation, due to the fact that the input sequence is extremely
regular by construction, and doesn’t require any "flattening" operation because it’s
already one-dimensional.

There is a linear relation between the input and output sequence, in fact the
pointer to the first input feature required for computing the i-th output time slot
can be found with:

pF irst = pInputSequence + (i · Stride · n._Channels_Input) (4.2)

Where pInputSequence is the pointer to the start of the input sequence.
The MatMul kernel takes pFirst as input. It also calculates the pointer to the

first input feature required for computing the next time slot. This is simply done
by adding the product of stride and the number of channels to the first pointer.
From there, it extracts the necessary values for computing the output sequence
directly from the input layer, without using any supporting buffer or preparation
process.

This convolution kernel presents the best overall performance out of the four (see
results chapter). This is due to the heavily reduced number of memory transfers
required. However, complete removal of the support buffer precludes the kernel
from automatic padding and implementing dilation, one of the key features of
TCNs.

While padding can be introduced manually by the programmer on the input
sequence, dilation requires the reintroduction of support buffers, as seen in the
next convolution kernels. This kernel is still useful when dilation is not required or
the history size to be explored is not very large.

37

PULP-TCN

Figure 4.1: Graphical representation of im2col buffer building, with dilation rate
2 and a filter size of 6. Green cells are the values required to compute the first
output time slot, while the orange ones are required for the next one.

4.3 Dilated convolution kernel
The second developed kernel reintroduces the buffering step in the main cycle.
This process is similar to the im2col buffer construction already seen in PULP-NN.
Appendix B shows the source code used to build the im2col buffer while managing
automatic padding and dilation rates higher than 1.

Similarly to the original solution, the support buffer holds all the input sequence’s
values required for computing two sequential output time slots. The memory
transfers from the input feature map to the buffer are delegated through MCHAN-
DMA calls, instead of being explicitly done by the programmer.

Despite using the im2col name in the support buffer and methods, the input
layer doesn’t need to be flattened because it’s a temporal sequence. The im2col
buffer is used to artificially store non-adjacent input time slots in a sequential
fashion.

Like in the previous kernel, the pointer to the first input element required for
computing the i-th output time slot is found by using the equation 4.2.

1 void pulp_nn_im2col_uint8 (uint8_t ∗ pInput , uint8_t ∗ pOutput ,
unsigned i n t b l o ckS i z e)

2 {
3 mchan_transfer (b lockS ize , 1 , 1 , 0 , 1 , 0 , 0 , (unsigned i n t) pInput

, (unsigned i n t) pOutput , 0 , 0) ;
4 }

mchan_transfer accepts an input and an output pointer, transferring blocksize
bytes from one to the other. In our case, the block size is equal to the number
of input channels. This moves all the input data available regarding the selected
time slot in the im2col buffer. While this function is usually used to move data

38

PULP-TCN

from L2 to L1 memory and vice-versa, in this case it’s used to move data from a
L1 location to another.

In order to automatically manage padding, we pass to the mchan_transfer a
pointer to a memory area filled with 0 as input, moving it inside the support buffer.

Using mchan_transfer is more efficient than simply implementing software copy
instructions. The DMA is a high-performance hardware component working in
parallel with the cluster. The cluster cores can therefore delegate multiple memory
transfers on it and then execute other tasks in the meantime. Using mchan_barrier
guarantees that all delegated memory transfers have been successfully completed.
In case they are not, the calling core is pushed on a low-energy consumption waiting
routine, that is interrupted by an event register.

Dilation is implemented when moving the input sequence pointer after each
memory transfer delegation. The pointer is moved by dilation_rate · n_channels
elements, effectively skipping dilation_rate − 1 time slots over the input sequence.

The buffering phase is repeated until the im2col buffer isn’t filled with all the
necessary data for the MatMul 4 × 2 kernel, which means that this buffer stores a
number of values from the input sequence equal to:

n_Channels_Input · filter_size · 2 (4.3)

Once the buffer is complete, the main cycle can proceed to the second phase,
where the output sequence is actually computed.

The MatMul 4 × 2 kernel is basically the same used by the the first convolution
kernel, and described in this chapter’s overview. The main difference are the two
pointers used to extract data: in this version, the first pointer points to the start of
the im2col buffer. The second one points exactly to the middle point of the buffer
(p2 = p1 + n_Channels_Input · filter_size).

If the chunk dimension is not even, one output time slot will be left over. All
data required to compute it is stored in the first half of the im2col buffer, passed
as argument to the MatMul 4 × 1 kernel. This method is the same used by the
first convolution kernel.

4.4 Double Buffer Convolution Kernel
As stated before, delegating memory transfers to the DMA allows cluster cores to do
some other tasks in parallel. This kernel is an attempt to exploit the asynchronous
and non-blocking nature of memory transfers to implement a pipeline using the
double buffering pattern.

As the name suggests, two im2col buffers are used. After filling the first one,
the MatMul 4 × 2 kernel is not immediately invoked. Instead, the core starts
delegating memory transfers to the DMA to fill the second buffer. Once all

39

PULP-TCN

necessary mchan_transfers are invoked, the convolution kernel executes MatMul
4 × 2 over the first buffer. Meanwhile, the DMA is busy transferring values on the
second buffer. Once the MatMul operation is done, the two buffers swap their roles:
the core calls mchan_transfers to fill the first buffer, then calls MatMul 4 × 22
over the second buffer, swap the buffers’ roles, and so on. This continues until
the stopping time slot is reached. At that point, MatMul 4 × 2 is called one last
time, using the last stored buffer. MatMul 4 × 1 may be used too, if the number of
output time slots is not even.

While this solution is theoretically faster than the previous kernel, the DMA
speed is so high that, in practice, real speedups are only achieved on very long
sequences. In smaller sequences the pipeline overhead actually slows the solution
down. Is it also worth noticing that the memory footprint of this kernel is doubled,
due to the fact it uses two im2col buffers.

4.5 Indirect convolution Kernel
The Indirect convolution algorithm is a solution more focused on reducing memory
footprint than improving execution performances [19].

The im2col buffer is replaced by an indirection buffer. This buffer doesn’t store
the input sequence values, instead it stores the pointers to the input time slots.

The kernel structure is basically the same as the previous ones. In the buffering
phase, there’s no need to invoke the DMA. Instead, the pointer to the first item of
the targeted input time slot is directly copied into the indirection buffer. Dilation is
implemented like in the previous kernels, by shifting the input sequence pointer over
the time dimension, skipping dilation_rate − 1 time slots. Padding is implemented
by copying a pointer to a memory area filled with zeros beforehand.

This solution dramatically reduces the memory footprint, especially if the number
of input channels is very high. It only requires to memorize a single INT-32 pointer
for each required time slot, instead of all the time slot’s values.

Performance, however, takes a hit when executing the MatMul kernels. Data
access is not completely sequential like in im2col, therefore an extra loop is required
in the computational kernel, whenever loading a new pointer from the indirection
buffer.

Even considering this, the kernel still has better performances than the PULP-
NN solution. Also, the greatly reduced memory usage makes it a very suitable
solution on convolution layers involving a great number of channels.

40

Chapter 5

Results

5.1 Parallelization

Figure 5.1: Performance of the convolution kernels considering the number of
cluster cores used. Left example includes the no_dilation kernel since dilation rate
is equal to 1.

In this section we analyze the multi-core parallelization of the kernels. In
figure 5.1 are illustrated experimental results. The kernels have been tested
on an input sequence of 256 time slots over 32 channels, with a filter size of
32 × 9 × 32 (outputchannels × filtersize × inputchannels). The test was repeated
twice, to compare performance between a normal (dilationrate = 1) and dilated
(dilationrate = 2) convolutions. The tests have been deployed on the GVSOC

41

Results

virtual platform, and results collected using GAP-8 built in performance counters.
The PULP-NN convolution kernel was tested too, using a 256 × 1 × 32 (HWC data
layout) input tensor and a 32 × 9 × 1 × 32 filter.

The kernel speedup is almost linear with the number of cores, achieving up to
∼ 7.87× speedup in the best case and never going below 7.5× with 8 cores. Results
show that complete removal of buffering leads to the highest overall performance,
however this kernel does not support dilated convolution.

The indirect convolution algorithm performance are worse than the PULP-NN
solution in a normal convolution. When considering a dilated convolution, however,
PULP-NN has to extensively use zero padding on the weight filter bank, in this
case to increase its size to 32 × 17 × 1 × 32 by simulating the dilation with zero
filling. This is done to increase the history window, like dilation does (as stated in
chapter 2.1.3, the effective history size of a dilated convolution layer is (fd − 1) · dr,
where fd is the filter bank dimension and dr the dilation rate). Because of this,
the PULP-NN has to compute a large number of useless MAC operations, making
the indirect convolution a better solution.

As stated before, the double buffering solution has almost identical performance
as single buffer solution, but with a slightly higher speedup rate for multi-core
execution.

5.2 Memory usage

Figure 5.2: Memory usage (in bits) of the L1 memory area by dirrent kernels,
using 8 cluster cores.

For profiling the memory footprint of each kernel, we consider a different
convolution layer. This one has a smaller, 24 time slots long input sequence, over a
large (512) number of channels, with a filter size of 4 × 9 × 512. Like earlier, we
compare memory footprint during a normal and a dilated convolution. Results are
readable on figure 5.2. These results have been calculated considering all the 8

42

Results

cluster cores available being used.
Memory footprint on PULP-TCN normal convolution kernel is almost the

same as PULP-NN’s, while the double buffer increases it by more than 70%.
Removing buffering altogether massively reduces the memory required for a normal
convolution, but precludes us from implementing a dilated one without occupying
too much memory.

The indirect convolution kernel allows dilation with very minimal memory
footprint over the no-buffer solution. This makes it the most optimal kernel to be
used for this particular layer, memory wise.

To be noted on the right graph: increasing dilation rate does not affect memory
usage in any significant way on the developed kernels. However, dilation is very
impactful on the PULP-NN convolution kernel. In the example, PULP-NN requires
more memory usage than the double buffer solution by just increasing the dilation
rate to 2.

Figure 5.3: Memory usage using 8 cluster cores on a layer with a lower number
of input channels.

In figure 5.3 we compare memory usage when the input layer is only over 32
channels. Memory footprint is less of a problem, in this case, and the differences
between the kernels aren’t as big as the previous layer. The no-buffering kernel is
still the one with the lowest memory footprint in normal convolutions, followed
tightly by the indirect convolution kernel. Increasing dilation rate still introduces
a considerable memory footprint on the PULP-NN convolution kernel, while it
doesn’t affect PULP-TCN ones.

5.3 Kernel models
In order to compare the kernels’ different performances, ideal single-core models
have been built by studying the low-level assembly code of the solutions. These
models use as base a convolution layer taking an input sequence 112 time slots
long, over 32 channels, using a 32 × 9 × 32 filter. We then explored changes in

43

Results

Figure 5.4: Single-core models comparison between various input parameters.
Dashed lines are ideal models mathematically calculated, continued lines are
experimental results.

performace by adjusting each parameter singularly. Figure 5.4 show how these
models are influenced by the main layer parameters(number of channels in input,
number of output channels, filter size, input sequence length). We also compared
the accuracy of these models with the experimental results obtained by testing the
kernels, without multi-core parallelization, on GVSOC. As shown in the graphs,
the real performance follow the same trend of the ideal models, and almost overlap
in certain cases. Real performance are always lower than the ideal ones, because
they ignore a number of factors, such as instruction cache misses and delays, load
and store stalls.

Kernels performances grow with each parameter, but with different rates. Models
and experimental results show that the most influencing parameter is the number
of input channels. On the other side, the input sequence size doesn’t influence
kernels performance by much. To be noted, if filter size is 1 performance tank to
minimal levels no matter the chosen core, making it the worst-case scenario for
PULP-TCN.

In figure 5.5 are shown the same models, but build while using all the 8 available
cores. Even with parallelization, these models still follow the same trend as the

44

Results

Figure 5.5: 8-Cores kernel models comparison, built on the same convolution
layer as the previous figure.

single-core ones. Some features are highlighted in these models:

• The indirect convolution provides higher performance than the single and
double im2col buffer kernels when the input layer has a large number of
channels.

• Performance of the kernels implementing im2col buffers is very similar to the
no-buffer kernel with a large number of output channels.

• The filter size model is extremely non-linear, presenting multiple local maxi-
mums.

• Input size has more influence on the kernel performance, but it’s still very
minimal compared to the other models.

The difference between the real results and the ideal models is higher than the
single cores models. This is because the models also ignore delays due to the
parallelized environment, such as stalls due to synchronization barriers and TCDM
contestantions.

45

Results

5.4 Tiling models

Figure 5.6: Tiling performance over different layers. 3 different tiling constraints
are compared.

When testing the kernels, we used the GVSOC virtual platform’s options to
artificially increase the L1 memory area available, to test out larger layers. However,
on a real chip, this isn’t feasible. In order to work around the problem, tiling of the
input layer is necessary. Tiling is the process of splitting the input sequence that
doesn’t fit in memory into tiles that do fit, and work on them separately. Finally,
recollect their output into a single output sequence, equivalent to the one that
would have been computed if tiling wasn’t used.

We use Google’s Or-tools [37] to develop an auto-tiler that calculates the most
optimal tile dimensions to minimize overhead. This is done by imposing numerical
constrains over the tile dimensions to achieve the following conditions:

• Each tile must be small enough to fit into L1 memory, especially if we are
using all 8 cluster cores.

• The overall performance (MACs/Cycle and MACs/Instruction) must be maxi-
mized. This is equivalent to minimize the number of cycles and instructions
required to compute all the tiles.

Google Or-tools offers a set of classes that allows automatic optimization of the
problem. We use the Original Constant Problem solver tool [38]. We pass as
argument the input layer parameters and a set of numerical constraints, such as
making sure the tile dimensions fit in L1 memory. We then call the Phase method

46

Results

to maximize the number of MACs/instruction of the entire layer. This will return
the most optimal tile dimensions that meet the numerical constraints.

After calculating the tile dimensions, we can compare performance between each
kernel to choose which one is more fit for computing the input layer. In fact, since
each kernel has different memory requirements, each input layer geometry has a
different optimal convolution kernel.

In figure 5.6 we analyze the performance of the kernels when tiling is applied
on different layers. Three different optimization sets have been applied in the
automatic tiling of the layers. Model uses as maximization criteria the 8-cores
models calculated in section 5.3. Heuristics uses similar heuristics to the ones
applied in the DORY optimizer, already cited in chapter 3.3. Finally, Memory
max. simply forces the tile dimension to be the maximum it can fit in L1 memory.
Results show that using the calculated models to compute the tile dimensions
brings the best performance in each kernel, no matter the layer’s dimensions. Also,
by introducing tiling, the most optimal kernel is not always the same. In fact, by
greatly increasing the number of channels, the indirect convolution kernel has better
performances than the im2col solution, and very similar to the no-buffer kernel.
This results is achieved since the creation of the im2col, given the high number of
input channels, creates a very high memory overhead. Note that the input channels
are never tiled in DORY and hence never reduced for im2col creation. With 1024
ch_in, the memory overhead is 1024*2*8, 16 KBs.

47

Chapter 6

Conclusions and Future
Works

We presented PULP-TCN, a set of convolutional kernels developed for TCN
inference on IoT edge nodes devices.

Compared to the PULP-NN kernels, overhead has been reduced to improve the
overall computing performance for convolution over 1-dimensional input sequences.
New optimization strategies, including buffering removal, integration of DMA
memory transfers and double buffering, have been explored to further improve
the kernels’ performance. We also explored how to reduce memory footprint, by
trying to remove buffering and implementing a different kernel which doesn’t rely
on im2col buffer, using the indirect convolution algorithm.

We also introduced dilation deployment, an alternative way to increase the
history size explored by the kernel without enlarging the weight filter. This was
done with very minimal overhead and no additional memory footprint. This feature
is vital for TCN inference, and was not supported in PULP-NN.

Future works include integration of this library in the DORY framework, and
executing the kernels as back end for complete networks. Once they have been fully
optimized, we can proceed to implement PULP-TCN on bio-medical application
(such as intelligent cardiograms) for IoT wearable sensors.

48

Appendix A

Mergesort example

1 #inc lude " r t / rt_api . h "
2 #inc lude <s t d i o . h>
3 #inc lude <s t d l i b . h>
4

5 #d e f i n e STACK_SIZE 2048
6 #d e f i n e MOUNT 1
7 #d e f i n e UNMOUNT 0
8 #d e f i n e CID 0
9

10 unsigned i n t done = 0 ;
11 #i f d e f PRINTF_UART
12 unsigned i n t __rt_iodev=RT_IODEV_UART;
13 #e n d i f
14

15 typede f s t r u c t {
16 i n t ∗v ;
17 i n t s i z e ;
18 } vec to r ;
19

20 s t a t i c void merge (i n t ∗a , i n t n , i n t m) {
21 rt_al loc_req_t req0 ;
22 rt_free_req_t req1 ;
23 r t _ a l l o c _ c l u s t e r (RT_ALLOC_L2_CL_DATA, n∗ s i z e o f (i n t) , &req0) ;
24 i n t ∗ x ;
25 x = (i n t ∗) r t_a l loc_c lus te r_wai t (&req0) ;
26 i n t i , j , k ;
27 f o r (i = 0 , j = m, k = 0 ; k < n ; k++) {
28 x [k] = j == n ? a [i ++]
29 : i == m ? a [j++]
30 : a [j] < a [i] ? a [j++]
31 : a [i ++];

49

Mergesort example

32 }
33 f o r (i = 0 ; i < n ; i++) {
34 a [i] = x [i] ;
35 }
36 r t_ f r e e_c lu s t e r (RT_ALLOC_L2_CL_DATA, x , n∗ s i z e o f (i n t) , &req1)

;
37 r t_free_c luste r_wai t (&req1) ;
38 }
39

40 s t a t i c void merge_sort (i n t ∗a , i n t n) {
41 i f (n < 2) {
42 re turn ;
43 }
44

45 i n t m = n / 2 ;
46 merge_sort (a , m) ;
47 merge_sort (a + m, n − m) ;
48 merge (a , n , m) ;
49 }
50

51 s t a t i c void para l l e l_merge_sort (void ∗ arg) {
52 vec to r ∗ args=(vec to r ∗) arg ;
53 i n t id=rt_core_id () ;
54 i n t i ;
55 merge_sort (args [id] . v , a rgs [id] . s i z e) ;
56 rt_team_barrier () ;
57 i f (id <4){
58 i n t s i z e=args [((2 ∗ id))] . s i z e ;
59 i n t s i z e 2=args [((2 ∗ id)+1)] . s i z e ;
60 args [(2 ∗ id)] . s i z e+=s i z e 2 ;
61 f o r (i =0; i<s i z e 2 ; i++){
62 args [(2 ∗ id)] . v [s i z e+i]= args [((2 ∗ id)+1)] . v [i] ;
63 }
64 merge (args [(2 ∗ id)] . v , a rgs [(2 ∗ id)] . s i z e , s i z e) ;
65 }
66 rt_team_barrier () ;
67 i f (id <2){
68 i n t s i z e=args [((4 ∗ id))] . s i z e ;
69 i n t s i z e 2=args [((4 ∗ id)+2)] . s i z e ;
70 args [(4 ∗ id)] . s i z e+=s i z e 2 ;
71 f o r (i =0; i<s i z e 2 ; i++){
72 args [(4 ∗ id)] . v [s i z e+i]= args [((4 ∗ id)+2)] . v [i] ;
73 }
74 merge (args [(4 ∗ id)] . v , a rgs [(4 ∗ id)] . s i z e , s i z e) ;
75 }
76 rt_team_barrier () ;
77 i f (id==0){
78 i n t s i z e=args [id] . s i z e ;
79 i n t s i z e 2=args [id +4] . s i z e ;

50

Mergesort example

80 args [id] . s i z e+=s i z e 2 ;
81 f o r (i =0; i<s i z e 2 ; i++){
82 args [id] . v [s i z e+i]= args [id +4] . v [i] ;
83 }
84 merge (args [id] . v , a rgs [id] . s i z e , s i z e) ;
85 }
86 rt_team_barrier () ;
87 p r i n t f (" Core id %d f i n i s h e d merge_sort ! \ n " , id) ;
88 re turn ;
89 }
90

91 s t a t i c void c lu s t e r_ent ry (void ∗ arg)
92 {
93 p r i n t f (" Enter ing c l u s t e r on core %d\n" , rt_core_id ()) ;
94 p r i n t f (" There are %d co r e s a v a i l a b l e here . \ n " , rt_nb_pe ()) ;
95

96 vec to r ∗ a=(vec to r ∗) arg ;
97 vec to r args [8] ;
98 i n t ∗ v=a−>v ;
99 i n t n=a−>s i z e ;

100 i n t c=n /8 ;
101 i n t r=n−(c ∗7) ;
102 p r i n t f (" c=%d , r=%d\n" , c , r) ;
103 i n t i ;
104 i n t j ;
105 f o r (i =0; i <8; i++){
106 i f (i !=7) {
107 args [i] . v=mal loc (c∗ s i z e o f (i n t)) ;
108 args [i] . s i z e=c ;
109 f o r (j =0; j<c ; j++){
110 args [i] . v [j]=v [(i ∗c)+j] ;
111 }
112 }
113 e l s e {
114 args [i] . v=mal loc (r ∗ s i z e o f (i n t)) ;
115 args [i] . s i z e=r ;
116 f o r (j =0; j<r ; j++){
117 args [i] . v [j]=v [(i ∗c)+j] ;
118 }
119

120 }
121 }
122

123 rt_team_fork (8 , para l le l_merge_sort , a rgs) ;
124

125 p r i n t f (" Sorted vec to r : \ n ") ;
126 f o r (i = 0 ; i < args [0] . s i z e ; i++)
127 p r i n t f ("%d%s " , args [0] . v [i] , i == n − 1 ? " \n " : " ") ;
128

51

Mergesort example

129 p r i n t f (" Leaving c l u s t e r on core %d\n" , rt_core_id ()) ;
130 }
131

132 s t a t i c void end_of_cal l (void ∗ arg)
133 {
134 p r i n t f (" [c l u s t e r ID : 0x%x] He l lo from core %d\n" , r t_c lus te r_id () ,

rt_core_id ()) ;
135 done = 1 ;
136 }
137

138 i n t main ()
139 {
140 p r i n t f (" Enter ing main c o n t r o l l e r \n ") ;
141

142 i n t a [] = {65 , 4 , 2 , −31, 0 , 99 , 2 , 83 , 782 , 1 , 84 , −12, 88 , 23 ,
92 , 124 , 5 , 18 , 182 , 234 , 33 , 21 , 2 , 43 , 25} ;

143 i n t n = s i z e o f a / s i z e o f a [0] ;
144 i n t i ;
145 f o r (i = 0 ; i < n ; i++)
146 p r i n t f ("%d%s " , a [i] , i == n − 1 ? " \n " : " ") ;
147

148 vec to r arg ;
149 arg . v=a ;
150 arg . s i z e=n ;
151

152 i f (r t_event_al loc (NULL, 4)) re turn −1;
153

154 rt_event_t ∗p_event = rt_event_get (NULL, end_of_call , (void ∗) CID)
;

155

156 rt_cluster_mount (MOUNT, CID , 0 , NULL) ;
157

158 r t _ c l u s t e r _ c a l l (NULL, CID , c lus te r_entry , &arg , NULL, 0 , 0 ,
rt_nb_pe () , p_event) ;

159

160 whi le (! done)
161 rt_event_execute (NULL, 1) ;
162

163 rt_cluster_mount (UNMOUNT, CID , 0 , NULL) ;
164

165 p r i n t f (" Test s u c c e s s : Leaving main c o n t r o l l e r \n ") ;
166 re turn 0 ;
167 }

52

Appendix B

im2col buffering

1 i f (i_out_y < padding_y_top) {
2 f o r (i = i_out_y ∗ str ide_y − padding_y_top ; i < i_out_y ∗

str ide_y − padding_y_top + (dim_kernel_y∗(1+ d i l a t i o n)−d i l a t i o n) ;
i += (1+ d i l a t i o n)) {

3 i f (i < 0 | | i >= dim_in_y)
4 pulp_zero_mem_dma(pIm2Col , ch_in , ze ro) ;
5 e l s e
6 pulp_nn_im2col_uint8 ((uint8_t ∗) pInBuf fe r + (i ∗

ch_in) , pIm2Col , ch_in) ;
7

8 pIm2Col+=ch_in ;
9 }

10 }
11 e l s e i f (i_out_y < dim_out_y − padding_y_bottom) {
12 f o r (i = i_out_y ∗ str ide_y−padding_y_top ; i < i_out_y ∗

str ide_y − padding_y_top + (dim_kernel_y∗(1+ d i l a t i o n)−d i l a t i o n) ; i
+= (1+ d i l a t i o n)) {

13 pulp_nn_im2col_uint8 ((uint8_t ∗) pInBuf fe r + (i ∗
ch_in) , pIm2Col , ch_in) ;

14 pIm2Col += ch_in ;
15 }
16 }
17 e l s e {
18 f o r (i = i_out_y ∗ str ide_y − padding_y_top ; i < i_out_y ∗

str ide_y − padding_y_top + (dim_kernel_y∗(1+ d i l a t i o n)−d i l a t i o n) ;
i += (1+ d i l a t i o n)) {

19 i f (i < 0 | | i >= dim_in_y)
20 pulp_zero_mem_dma(pIm2Col , ch_in , ze ro) ;
21 e l s e
22 pulp_nn_im2col_uint8 ((uint8_t ∗) pInBuf fe r + (i ∗

ch_in) , pIm2Col , ch_in) ;

53

im2col buffering

23

24 pIm2Col+=ch_in ;
25 }
26 }

54

Bibliography

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. «Deep learning». In:
nature 521.7553 (2015), pp. 436–444 (cit. on pp. 1, 5).

[2] Riccardo Miotto, Fei Wang, Shuang Wang, Xiaoqian Jiang, and Joel T
Dudley. «Deep learning for healthcare: review, opportunities and challenges».
In: Briefings in bioinformatics 19.6 (2018), pp. 1236–1246 (cit. on p. 1).

[3] Philip Sparks. The route to a trillion devices. url: https://community.arm.
com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-
trillion-devices (cit. on p. 1).

[4] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
computing: Vision and challenges». In: IEEE internet of things journal 3.5
(2016), pp. 637–646 (cit. on p. 1).

[5] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. «Efficient
processing of deep neural networks: A tutorial and survey». In: Proceedings
of the IEEE 105.12 (2017), pp. 2295–2329 (cit. on p. 1).

[6] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and
Yoshua Bengio. «Quantized neural networks: Training neural networks with
low precision weights and activations». In: The Journal of Machine Learning
Research 18.1 (2017), pp. 6869–6898 (cit. on pp. 2, 26, 29).

[7] Song Han, Huizi Mao, and William J Dally. «Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman coding».
In: arXiv preprint arXiv:1510.00149 (2015) (cit. on p. 2).

[8] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. «Sequence to sequence learning
with neural networks». In: Advances in neural information processing systems.
2014, pp. 3104–3112 (cit. on p. 2).

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016 (cit. on p. 2).

[10] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. «An empirical evaluation
of generic convolutional and recurrent networks for sequence modeling». In:
arXiv preprint arXiv:1803.01271 (2018) (cit. on pp. 2, 11–13, 35).

55

https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices
https://community.arm.com/iot/b/internet-of-things/posts/white-paper-the-route-to-a-trillion-devices

BIBLIOGRAPHY

[11] Md Zia Uddin. «A wearable sensor-based activity prediction system to facili-
tate edge computing in smart healthcare system». In: Journal of Parallel and
Distributed Computing 123 (2019), pp. 46–53 (cit. on p. 2).

[12] Masanari Nishimura, Kei Hashimoto, Keiichiro Oura, Yoshihiko Nankaku, and
Keiichi Tokuda. «Singing Voice Synthesis Based on Deep Neural Networks.»
In: Interspeech. 2016, pp. 2478–2482 (cit. on p. 2).

[13] Ruize Xu, Shengli Zhou, andWen J Li. «MEMS accelerometer based nonspecific-
user hand gesture recognition». In: IEEE sensors journal 12.5 (2011), pp. 1166–
1173 (cit. on p. 2).

[14] Eric Flamand, Davide Rossi, Francesco Conti, Igor Loi, Antonio Pullini,
Florent Rotenberg, and Luca Benini. «GAP-8: A RISC-V SoC for AI at
the Edge of the IoT». In: 2018 IEEE 29th International Conference on
Application-specific Systems, Architectures and Processors (ASAP). IEEE.
2018, pp. 1–4 (cit. on pp. 2, 14–17).

[15] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca
Benini. «PULP-NN: A Computing Library for Quantized Neural Network
inference at the edge on RISC-V Based Parallel Ultra Low Power Clusters».
In: 2019 26th IEEE International Conference on Electronics, Circuits and
Systems (ICECS). IEEE. 2019, pp. 33–36 (cit. on pp. 2, 29, 30, 32, 34).

[16] Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, and Luca Benini.
«PULP: A ultra-low power parallel accelerator for energy-efficient and flexible
embedded vision». In: Journal of Signal Processing Systems 84.3 (2016),
pp. 339–354 (cit. on pp. 3, 13, 14).

[17] Liangzhen Lai, Naveen Suda, and Vikas Chandra. «Cmsis-nn: Efficient neural
network kernels for arm cortex-m cpus». In: arXiv preprint arXiv:1801.06601
(2018) (cit. on pp. 3, 26–29).

[18] Davide Rossi, Igor Loi, Germain Haugou, and Luca Benini. «Ultra-low-latency
lightweight DMA for tightly coupled multi-core clusters». In: Proceedings of
the 11th ACM Conference on Computing Frontiers. 2014, pp. 1–10 (cit. on
p. 3).

[19] Marat Dukhan. «The Indirect Convolution Algorithm». In: arXiv preprint
arXiv:1907.02129 (2019) (cit. on pp. 3, 40).

[20] Lin Meng, Takuma Hirayama, and Shigeru Oyanagi. «Underwater-drone with
Panoramic Camera for Automatic Fish Recognition Based on Deep Learning».
In: IEEE Access PP (Mar. 2018), pp. 1–1. doi: 10.1109/ACCESS.2018.
2820326 (cit. on p. 4).

56

https://doi.org/10.1109/ACCESS.2018.2820326
https://doi.org/10.1109/ACCESS.2018.2820326

BIBLIOGRAPHY

[21] Rajat Gupta. Getting started with Neural Network for regression and Tensor-
flow. url: https://medium.com/@rajatgupta310198/getting-started-
with-neural-network-for-regression-and-tensorflow-58ad3bd75223
(cit. on p. 5).

[22] Michael Cooper. «A Deep Learning Prediction Model for Mortgage Default
A Deep Learning Prediction Model for Mortgage Default». PhD thesis. May
2018. doi: 10.13140/RG.2.2.21506.12487 (cit. on pp. 6, 7).

[23] Xiaojin Zhu and Andrew B Goldberg. «Introduction to semi-supervised
learning». In: Synthesis lectures on artificial intelligence and machine learning
3.1 (2009), pp. 1–130 (cit. on p. 7).

[24] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Imagenet classi-
fication with deep convolutional neural networks». In: Advances in neural
information processing systems. 2012, pp. 1097–1105 (cit. on p. 8).

[25] Shan-Hung Wu. 1D and 2D Convolution. url: https://www.youtube.com/
watch?v=yi7eZ_F39UY (cit. on p. 9).

[26] Jay Riccou. What is max pooling in convolutional neural networks? url:
https://www.quora.com/What- is- max- pooling- in- convolutional-
neural-networks (cit. on p. 10).

[27] Sergey Ioffe and Christian Szegedy. «Batch normalization: Accelerating deep
network training by reducing internal covariate shift». In: arXiv preprint
arXiv:1502.03167 (2015) (cit. on p. 11).

[28] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. «Dropout: a simple way to prevent neural networks
from overfitting». In: The journal of machine learning research 15.1 (2014),
pp. 1929–1958 (cit. on p. 13).

[29] Wayne Wolf, Burak Ozer, and Tiehan Lv. «Smart cameras as embedded
systems». In: computer 35.9 (2002), pp. 48–53 (cit. on p. 13).

[30] Mariusz Bojarski et al. «End to end learning for self-driving cars». In: arXiv
preprint arXiv:1604.07316 (2016) (cit. on p. 13).

[31] Germain Haugou. GVSOC documentation. 2019. url: https : / / gvsoc .
readthedocs.io/en/latest/ (cit. on p. 17).

[32] GreenWaves Technologies. GAP8 SDK Manual. url: https://greenwaves-
technologies.com/manuals/BUILD/PULP-OS/html/index.html (cit. on
p. 18).

[33] Greenwave Technologies. GAPuino User’s Manual. url: https : / / gwt -
website-files.s3.amazonaws.com/gapuino_um.pdf (cit. on p. 19).

57

https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-58ad3bd75223
https://medium.com/@rajatgupta310198/getting-started-with-neural-network-for-regression-and-tensorflow-58ad3bd75223
https://doi.org/10.13140/RG.2.2.21506.12487
https://www.youtube.com/watch?v=yi7eZ_F39UY
https://www.youtube.com/watch?v=yi7eZ_F39UY
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
https://www.quora.com/What-is-max-pooling-in-convolutional-neural-networks
https://gvsoc.readthedocs.io/en/latest/
https://gvsoc.readthedocs.io/en/latest/
https://greenwaves-technologies.com/manuals/BUILD/PULP-OS/html/index.html
https://greenwaves-technologies.com/manuals/BUILD/PULP-OS/html/index.html
https://gwt-website-files.s3.amazonaws.com/gapuino_um.pdf
https://gwt-website-files.s3.amazonaws.com/gapuino_um.pdf

BIBLIOGRAPHY

[34] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. «The cifar-10 dataset».
In: online: http://www. cs. toronto. edu/kriz/cifar. html 55 (2014) (cit. on
p. 29).

[35] Alessio Burrello, Francesco Conti, Angelo Garofalo, Davide Rossi, and Luca
Benini. «Work-in-progress: DORY: lightweight memory hierarchy management
for deep NN inference on IoT endnodes». In: 2019 International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ ISSS). IEEE.
2019, pp. 1–2 (cit. on p. 33).

[36] PyTorch. url: https://pytorch.org/ (cit. on p. 33).
[37] Google AI. Google OR-Tools. 2015. url: https://developers.google.com/

optimization (cit. on pp. 33, 46).
[38] Google AI. Original CP Solver. 2015. url: https://developers.google.

com/optimization/cp/original_cp_solver (cit. on p. 46).

58

https://pytorch.org/
https://developers.google.com/optimization
https://developers.google.com/optimization
https://developers.google.com/optimization/cp/original_cp_solver
https://developers.google.com/optimization/cp/original_cp_solver

	List of Figures
	Introduction
	Background
	Neural Networks
	Overview
	Convolutional Neural Network (CNN)
	Temporal Convolutional Network (TCN)

	PULP & GAP8
	PULP
	GAP8
	GVSOC
	GAP8-SDK

	Related works
	CMSIS-NN
	PULP-NN
	DORY

	PULP-TCN
	Overview
	No pad no dilation convolution kernel
	Dilated convolution kernel
	Double Buffer Convolution Kernel
	Indirect convolution Kernel

	Results
	Parallelization
	Memory usage
	Kernel models
	Tiling models

	Conclusions and Future Works
	Mergesort example
	im2col buffering
	Bibliography

