
POLITECNICO DI TORINO

Master Degree Thesis

Evaluation of the maintenance
required by web application

test suites

Supervisors
prof. Morisio Maurizio
prof. Riccardo Coppola

Candidate
QI SHUANG

Student number: s233329

Academic Year: 2019-2020

Abstract

Context: With the development of the Internet, the web application
occupied a large proportion in the market, every industry needs to have its
website, to provide web service. So the web application should be strong
enough for use, web application testing can test the application and find the
potentiality problems, and shows out how to maintain the web application
when it does the evolution. That’s why web application testing becomes
so important in the latest years, which requires an important effort from
developers.

Goal: The objective of this thesis is to understand the development of
web applications and four testing techniques for the web application, com-
pare their differences, analyze their advantages and disadvantages. Make
the experiment with an existing open-source web application, define some
metrics for evaluating the maintenance effort for the application evolution.

Method: Firstly, it will introduce the main research questions of defini-
tion Of Web Applications, High-level definition of Testing, Web Applications
Testing introduction, Web Application Testing Techniques, Maintenance,
and fragility of the web application. Secondly, Do an empirical experiment on
open-source web application projects(dolibarr), to analyze the testing suits
of web application and define the metrics for analysis. Lastly, Giving the
results and analysis by applying testing tools on a web application.

Results: The result of the review shows that many development frame-
works and testing tools have been released during the last years, Selenium
WebDriver is excellent used testing tool for the web application. Throughout
the exploratory study, it has been found that by using Selenium WebDriver
testing, by defining some metrics, it will show the maintenance and fragility
between web application evolution.

Conclusion: The web application can be tested by different techniques,
all of them expose issues that are discussed in the present thesis. Some native
testing tools can be leveraged, these testing tools, existing some advantages
and disadvantages, web application testing is a complex issue. Selenium
WebDriver is powerful for web application testing. It gives out maintenance
and fragility between web application evolution. The results of the thesis
show that testing technology should grow with the development of web ap-
plications for developers to do better testing work for the web application.

Acknowledgements

The candidate warmly thank her parents (father: QI SHI YU and mother:
YANG ZHAO XIA)and brother(QI DE TING), for all love and their en-
couragement, moral support, personal attention, and care. They encourage
her all time and support her when she feeling lost and depressed, takes care
of her, and loves her without any conditions.

Express candidate sincere gratitude to Asst. Prof. Morisio Maurizio and
Asst.Riccardo Coppola, for allowing her to conduct this research under their
auspices. She is especially grateful for their confidence and the freedom they
gave her to do this work also for the confidential information they have kindly
provided by her, and for the useful discussions they have allowed candidates
to improve her thesis.

2

Contents

List of Tables 5

List of Figures 6

1 Introduction 7

2 Background 11
2.1 Introduction to Web Applications 11

2.1.1 Definition Of Web Applications 11
2.1.2 Working Principle . 11

2.2 High-level definition of Testing 12
2.2.1 Definition Of Testing 12
2.2.2 The Objective Of Testing 13

2.3 Web Application Testing . 14
2.3.1 Functional Testing . 14
2.3.2 Performance Test . 15
2.3.3 Usability Test . 16
2.3.4 Client Compatibility Testing 17
2.3.5 Safety Test . 18

2.4 Qualitative Evaluation of Web Application Testing Techniques 18
2.4.1 Model based Testing 18
2.4.2 TestOptimal . 21
2.4.3 Script-based Testing 24
2.4.4 Capture-Replay(C&R) 29
2.4.5 Visual GUI Testing . 33
2.4.6 Exploratory comparison of testing techniques 37

2.5 Maintenance and fragility . 38
2.5.1 Fragility . 38
2.5.2 Maintenance . 39

3

3 Empirical experiment with dolibarr 41
3.1 Context . 41
3.2 Introduction Dolibarr . 42
3.3 Test cases . 44
3.4 Use case template for TC1 (new customer) 44
3.5 Metric Definition . 47
3.6 Procedure . 50
3.7 Results and Discussion . 50

4 Conclusion and Future Work 65
4.1 Conclusion . 65
4.2 Future Work . 66

Bibliography 69

4

List of Tables

3.1 Test cases table. 46
3.2 Use Case table. 55
3.3 Metric Definition. 56
3.4 Data for Application And Test Suites 56
3.5 Data Modified for Application And Test Suites 56
3.6 Results Metrics . 56
3.7 Results TCV . 58

5

List of Figures

2.1 V-Model. 13
2.2 Create New Model by using TestOptimal. 22
2.3 The simple Model for Wikipedia by using TestOptimal. 23
2.4 Model coverage by using TestOptimal. 24
2.5 Test sequence generated. 25
2.6 MSC graph. 26
2.7 Source code of Selenium WebDriver. 29
2.8 Result in console for Wikipedia by using Selenium WebDriver . 30
2.9 Selenium-IDE Capture-Replay 33
2.10 Example using Sikuli on Wikipedia. 36
2.11 Example code using Sikuli on Wikipedia. 37
2.12 Example log information using Sikuli on Wikipedia. 38
3.1 Dolibarr page. 45
3.2 Pseudo code for calculating Metrics. 57
3.3 The trend of TLR. 59
3.4 The trend of MTLR and MRTL. 60
3.5 The number of modified code of test cases in version evolution . 61
3.6 The number of modified code of application in version evolution. 62
3.7 The trend of TMR. 63

6

Chapter 1

Introduction

With the rapid development of network technology, especially the popularity
of the Web and its applications, various types of Web-based applications have
become the focus of software development due to their convenience, speed,
and ease of operation.

The Web is taking the world by storm with its breadth, interactivity, and
ease of use, and the number of web pages is growing rapidly by geometric
orders of magnitude.

Being able to attract as many users as possible and paying attention to it
for a long time is the main goal of the website, and it is also the main indicator
to measure the success of the website. So testing becomes an important part
of the application development process.

Web-based systems tend to evolve rapidly and undergo frequent modi-
fications, due to new technological and commercial opportunities, as well
as feedback from the users. For such reasons iterative development process
models, based on the notion of rapid prototyping and continuous change,
seem to fit the conditions in which Web sites are produced and maintained.

As web applications become more and more widely used, the requirements
for performance testing are also increasing. However, as web programs inte-
grate a large number of new technologies, such as HTML, Java, JavaScript,
VBScript, etc., they also rely on many other factors, such as Link, Database,
Network, etc., make web application testing very complex.

" Modern Web applications are sophisticated, interactive programs with
complex GUIs and numerous back-end software components that are inte-
grated in novel and interesting ways."[20]

Web testing is part of software testing. It is a type of testing for web ap-
plications. Because web applications are directly related to users and usually

7

1 – Introduction

need to withstand a large number of operations for a long time, the functions
and performance of web projects must be reliably verified.

Through testing, it can find as many errors as possible in the browser
and server programs and correct them in time to ensure the quality of the
application. Because the Web is distributed, heterogeneous, concurrent, and
platform-independent, its tests are much more complicated than ordinary
programs.

It can be used different testing techniques to test the software and compare
the advantages or disadvantages of different testing techniques. Use Selenium
web driver to test dolibarr, compare the differences between different versions
of dolibarr, and calculate some data. To see how the web application testing
is hampered by the fragility issues.

”For the purposes, it is possible to define a GUI test case as fragile if it
requires interventions when the application evolves (i.e., between subsequent
releases) due to modifications applied to the application under test (AUT).
”[6]

As system-level tests, Web application test cases are influenced by differ-
ent functionalities of the application also for even small interventions in the
appearance, definition, and arrangement of the GUI presented to the user.

In the work, it defines 15 test cases for testing dolibarr, for 5 versions of
this application. When updating the application from a lower version to a
higher version, it needs to modify the test cases to make the testing work.

It will be recorded the changes due to the evolution, and define some
metrics. It is measured the relevance of testing code concerning the total
production code for each project in terms of quantitative comparisons of the
respective amount of lines of code.

To estimate the fragility issue, It is possible to define a set of metrics that
can be obtained for each project by automated inspection of the source code.
Thus, "we can give a characterization and a quantification of the average
fragility occurrence for each of the testing tools considered. ”[6]

It did a proper quantitative analysis for the test suites for the application.
also, it is possible to define these metrics, they can be a standard to evaluate
the maintenance effort for updating the application.

Based on this fragility evaluation, it can be possible in the future to define
a taxonomy of fragility causes for scripted Web application testing and to
give more in-depth actionable guidelines for developers to circumvent some
of them.

The remainder of this paper is organized as follows. Part 2, give back-
ground information for web application and the high level of testing; The

8

1 – Introduction

definition of web application testing; Introduce 4 different techniques for
web testing; Maintenance and fragility. Part 3, the experiment by using se-
lenium WebDirver; introduction of dolibarr; define test cases; define metrics;
how to compute the metrics; the results from the work. Part 4, Conclusion,
and future work.

9

10

Chapter 2

Background

2.1 Introduction to Web Applications

2.1.1 Definition Of Web Applications
A web application is an application that operates on the Internet or an
intranet using a web browser. An application is written in a web language
(such as HTML, JavaScript, Java, or other programming languages) that
requires a browser to run."Web applications employ several new languages,
technologies, and programming models, and are used to implement highly
interactive applications that have very high-quality requirements."[20] It can
be run directly on various computer platforms without the need for pre-
installation or regular upgrades.

2.1.2 Working Principle
The application has two modes, one is the client/server program, which
means that such programs generally run independently. Another is a browser-
side / server-side application. This type of application generally runs with the
help of a browser such as IE. Web applications are generally in browser-side
/ server-side application mode. Web applications are first "applications", and
are not fundamentally different from programs written in standard program-
ming languages such as C, C ++, and so on. However, web applications have
their unique features, that is, they are based on the web, rather than running
traditionally. In other words, it is the product of a typical browser/server
architecture.

A web application is composed of various web components that accomplish

11

2 – Background

specific tasks and expose services to the outside world through the web. In
practical applications, web applications are composed of multiple servlets,
JSP pages, HTML files, and image files. All these components coordinate
with each other to provide users with a complete set of services.

2.2 High-level definition of Testing

2.2.1 Definition Of Testing
Software Testing describes a process used to facilitate the verification of the
correctness, integrity, security, and quality of software.[11] In other words,
software testing is a review or comparison process between actual output and
expected output. The classic definition of software testing is the process of
operating a program under specified conditions to find program errors, mea-
sure software quality, and evaluate whether it can meet design requirements.

Organizations that are developing software solution are faced with the dif-
ficult choice of picking the right software development life cycle (SDLC).[10]
The SDLC defines the steps involved in the development of software at each
phase and covers the plan for building, deploying, and maintaining it.

The waterfall model is a sequential design process, which is usually used
in the software development process.[10]

In this process, the progress is considered to flow steadily downward (such
as a waterfall) through various stages. The V model represents an extended
software development process that can be regarded as a waterfall model.[10]

In software development,the V-model, also known as Verication and Val-
idation Model, is a Software Development Life Cycle (SDLC) model where
instead of moving down in a linear way (as in the waterfall model) the pro-
cess steps are bent upward having the development of each step directly
associated with its testing phase.[9]

There is the V-Model in figure 2.1:
The verification phase begins by collecting system requirements by an-

alyzing user requirements. In this step, a requirements document will be
generated. Later, the system is designed by studying the generated docu-
ments. After the design is completed, coding guidelines and standards will
be used to transform the coding stage. The final stage, V, is the verification
stage. In this step, the test designed with the counter part of the verification
step is performed in the reverse order. At this stage, we can determine four
main test levels:

12

2.2 – High-level definition of Testing

Figure 2.1: V-Model.

1. Unit testing

2. Component testing

3. System integration testing

4. Acceptance testing

2.2.2 The Objective Of Testing
Software testing is the process of executing a program to find errors. Testing
is to prove that the program is wrong, not to prove that the program is
error-free. (Finding errors is not the sole purpose) A good test case is that it
finds errors that have not been discovered so far. A successful test is a test
that has found no errors so far.

Testing is not just about finding errors. By analyzing the causes of errors
and the distribution characteristics of errors. It can help project managers
find defects in the software processes currently used for improvement. "Based

13

2 – Background

on the analysis for Web application characters and traditional software test-
ing process, the process for Web application testing is modeled, which de-
scribes a series of testing flows such as the testing requirement analysis, test
cases generation and selection, testing execution, and testing results analysis
and measurement." [21]At the same time, analysis can also help to design
targeted detection methods to improve the effectiveness of the test. A test
without errors is also valuable, and a complete test is one way to assess the
quality of the test.

2.3 Web Application Testing
Speaking of web application testing, Web testers must deal with shorter re-
lease cycles, and testers and test managers face a shift from testing traditional
Client/Server structures and framework environments to testing rapidly chang-
ing Web applications. There are many kinds of tests for Web applications,
such as the functionality testing, performance testing, safety testing, usabil-
ity testing and compatibility testing; and the testing methods are divided
into the white box testing, black box testing and grey box testing.[21]

2.3.1 Functional Testing
Link test

Link is a main feature of the Web application system, it is the main way of
switching between pages and guiding users to some pages that do not know
the address. Link testing can be divided into three areas.

Firstly, test whether all the links are linked to the linked page as indicated.
Secondly, test whether the linked page exists.
Finally, ensure that there are no orphaned pages on the web application.

The link test must be completed during the integration-test phase, that is,
the link test is performed after all pages of the entire web application system
have been developed.

Form test

When the user submits information to the Web application system admin-
istrator, it needs to use form operations, such as user registration, login,
information submission, and so on. In this case, it must test the integrity of
the commit operation to verify the correctness of the information submitted

14

2.3 – Web Application Testing

to the server. If the default value is used, also verify the correctness of the
default value.

Cookies Tests

Cookies are usually used to store user information and user operations in an
application. When a user accesses an application system using cookies, the
web server will send information about the user and store the information in
the form of cookies. If the web application uses cookies, it must check if the
cookies work.

Design Language Testing Differences

In the Web design language version can cause serious problems on the client
or server side, such as which version of HTML to use. This problem is espe-
cially important when developers are not working together when developing
in a distributed environment.

Database Testing

In the Web application technology, the database plays an important role,
the database provides space for the management, operation, query and im-
plementation of the user’s request for data storage. Two types of errors may
occur, namely data consistency errors and output errors. Data consistency
errors are mainly caused by incorrect form information submitted by users,
and output errors are mainly caused by network speed or programming prob-
lems.

2.3.2 Performance Test
Connection Speed Test

The speed at which users connect to a web application varies depending on
how they are connected. They may be dial-up or broadband. If the web
system responds too long (for example, more than 5 seconds), the user will
leave without waiting patiently. Besides, some pages have a timeout limit.
If the response speed is too slow, the user may not have time to browse the
content, and then need to re-login.

15

2 – Background

Load Test

The load test is to measure the performance of the Web system at a certain
load level to ensure that the Web system can work within the requirements.
The load level can be the number of users accessing the Web system at the
same time, or the number of online data processing.

Stress Test

Stress testing is the test system’s limitations and failure recovery capabilities,
that is, testing whether the web application system will crash and under
what circumstances it will crash. Hackers often provide erroneous data loads
until the web application crashes and then gain access when the system is
restarted.

2.3.3 Usability Test
Navigation Test

Navigation describes how the user operates within a page, between differ-
ent user interface controls, such as buttons, dialogs, lists, and windows, or
between different connected pages.

The users would quickly scan a Web application system to see if there is
information that meets their needs, and if not, they will leave quickly. so the
web application navigation help should be as accurate as possible.

Make sure that the user knows intuitively whether there is content in the
web application and where the content is. It is necessary to start testing the
user navigation function, so that the end user can participate in this test,
the effect will be more obvious.

Graphics Test

In the Web application system, the appropriate pictures and animations can
not only play the role of advertising, but also can beautify the page. A web
application’s graphics can include images, animations, borders, colors, fonts,
backgrounds, buttons, and more. The contents of the graphical test are:

1. To ensure that the graphics have a clear purpose, the image size of the
web application system should be as small as possible, and to clearly
explain something, it is generally linked to a specific page.

16

2.3 – Web Application Testing

2. Verify that the styles of all page fonts are consistent.

3. The background color should match the font color and foreground color.

4. The size and quality of the picture is also a very important factor, gen-
erally using JPG or GIF compression.

Content Testing

Content testing is used to verify the correctness, accuracy, and relevance
of the information provided by Web applications. The correctness of infor-
mation refers to whether the information is reliable or misrepresented. the
accuracy of the information refers to whether there are grammar or spelling
mistakes. This type of testing is usually done using some word process-
ing software, such as the "Pinyin and Grammar Check" feature of Microsoft
Word; the relevance of the information refers to whether the current page can
find a list or entry of information related to the currently viewed information,
that is, The so-called "related article list" in a general Web site.

The Overall Interface Test

The overall interface refers to the page structure design of the entire web
application system, which is a sense of overallity for the user. The general
web application system takes the form of a questionnaire on the homepage
to get feedback from the end user.

2.3.4 Client Compatibility Testing
Platform Testing

There are many different operating system types on the market, the most
common ones are Windows, Unix, Macintosh, Linux, etc. Which operating
system the end user of the web application uses depends on the configuration
of the user system. before the release of the Web system, it is necessary to
perform compatibility testing on the Web system under various operating
systems.

Browser Testing

The browser is the core component of the Web client. Browsers from different
vendors have different support for Java, JavaScript, ActiveX, plug-ins or dif-
ferent HTML specifications. In addition, the framework and hierarchy styles

17

2 – Background

are displayed differently in different browsers, or even not at all. Different
browsers have different settings for security and Java.

2.3.5 Safety Test
The security test areas of the Web application system mainly include:

• The current web application system basically adopts the method of regis-
tering first and then logging in. Therefore, it must test valid and invalid
usernames and passwords, be aware of the case sensitivity, how many
times it can try, whether it can browse a page without logging in, etc.

• Whether the web application system has a timeout limit, that is to say,
after the user logs in after a certain period of time (for example, 15
minutes), no page is clicked, and it is necessary to re-login to be used
normally.

2.4 Qualitative Evaluation of Web Applica-
tion Testing Techniques

2.4.1 Model based Testing
Model-based testing (MBT) is an automation of the black-box testing tech-
nique. Its main dissimilarity from the conventional black-box testing meth-
ods is that the test cases are automatically generated via software tools that
exploit the expected behavioral models of the software under the test (SUT).
[3] It is a lightweight, formal method of validating software systems.

"Model-based testing (MBT) is a variant of testing that relies on explicit
behavior models that encode the intended behaviors of a SUT and/or the
behavior of its environment".[22]

First of all, model-based testing of the software system to be tested (of-
ten referred to as System Under Test, SUT for formal modeling), to de-
sign a machine-readable model; Second, different from other formal methods,
model-based testing is not designed to keep the software system under test
consistent with specifications in all possible situations, but rather to system-
atically generate a set of test cases from the model, using this set of test cases
to test the software system under test. There is sufficient evidence that the
behavior of the system under test is consistent with the model expectations.

18

2.4 – Qualitative Evaluation of Web Application Testing Techniques

First, It needs to create a machine-readable model that expresses all possi-
ble behaviors expressed by the requirements. This step is done manually and
is the most productive step in the entire process. The key to model design
work is the correct abstraction.

A modeler should focus on one aspect of the system to be tested without
having to care about the rest of the system. Different parts can be covered
by different models, but each model ensures that it is on a clear abstraction
level.

Although the workload of creating a model is large, the rewards are huge.
By translating informal requirements into formal models, it will be able to
easily identify missing parts of the requirements, and it can get feedback on
the requirements by analyzing the models.

In terms of MBT, the necessity of validating the model implies that the
model must be simpler (more abstract) than the SUT, or at least easier to
check, modify, and maintain. Otherwise, the efforts of validating the model
would equal the efforts of validating the SUT.[22] And then it is possible to
use that model to derive or generate test cases. These test cases provide a
test sequence to control the system under test while observing the return
value of the system to be tested, and comparing it with the expected value,
and then making a decision whether the test passed or failed.

Test cases can be executed repeatedly to complete one MBT iteration.
During each MBT iteration, models are refined and enhanced, new models
are created to respond to new requirements and requirement changes. As
the resulting model grows in size and complexity as more functionalities are
added to the application.

The advantages of MBT

The approach provides automated support for fine-grained control of work-
load characteristics. For example, the approach would make it easy to create
controlled workloads to study how varying the characteristics of a particular
workload attribute impacts system performance. [1]

It can help reduce the escaped defects compared with the traditional test-
ing approach, which means it can catch requirement defects much earlier in
the development process. This is because requirements defects are often de-
tected during the modeling process while the software is still being designed
and developed.

19

2 – Background

The disadvantages of MBT

The main liability of MBT is to know how to model SUT. [4] For producing
the prototype or model, the testers need to have essential abilities, also it
is quite complex to create the model, it takes a long time to do this task.
a small increase in the complexity of the web application would cause an
explosion in the number of additional states and transitions.[4]

The kind of models are used by model based testing tools

There are three models that can be used for testing.

1. Finite State Machines
A finite state machine is a tool for modeling object behavior. Its function
is mainly to describe the sequence of states that an object has experi-
enced during its life cycle, and how to respond to various events from
the outside world.

2. State Charts
A state charts is a dynamic behavior that describes an entity’s event-
based response, showing how the entity reacts to different events based
on the current state.

3. Unified Modeling Language (UML)
UML is a standardized modeling language consisting of a set of di-
agrams UML has notations such as: Activities,Actors,Business Pro-
cess,Components,Programming language.

Existing tools using this technique

These years, many MBT tools are developed and used widely in the testing
area.

1. Conformiq Creator(Activity Diagrams, DSL).

2. GraphWalker(FMS).

3. MaTeLo(Markov chains).

4. TestOptimal(FSM).

TestOptimal will be introduced.

20

2.4 – Qualitative Evaluation of Web Application Testing Techniques

2.4.2 TestOptimal
TestOptimal is a model-based (MBT) test design and test automation toolset
that provides an integrated solution from modeling to test case generation,
test automation and test execution, which brings flexibility and efficiency,
improve test procedures, and shorten test cycles.[18]

The model has been automated for online model-based testing, which
means when the model executes it generates test cases at the same time
executes them in real-time.

With TestOptimal, creating a model is quite easy. It’s simple as right
mouse clicking and right mouse drag and drop. To automate the model, just
writing a few lines of MScript for each transition. MScript is essentially an
XML script that is very simple and easy to learn.

The general steps of development process using TestOptimal is :

1. Modeling

2. Test Generation

3. Automation

4. Execution

5. Analysis

then come back to modeling, that’s why MBT process is an interactive pro-
cess.

Model used by TestOptimal

The model is described as a state diagram, also known as finite state machine
diagram(FSM)

Example of model extraction from Wikipedia with Test Optimal

First, it is possible to install testOptimal, also it needs use Firefox browser
with WebMBT builder Add-On installed, after IDE is opened, here it will
show “FileList”, inside there is a “DemoModel” list, and it shows some demo
examples.

So now It starts to create model for Wikipedia, From “File” button, it will
show “New Model”, click it , then there is the page in figure 2.2:

21

2 – Background

Figure 2.2: Create New Model by using TestOptimal.

Put on “Model Name” the model name, write some words in “Description”,
put on “AUT URL/File Path” the URL of the web application, in themodel,
it is the main page of Wikipedia. Then click “OK”. Now there is an empty
model.

Click “Model”- “WebMBT Builder”, then it will be in the main page
of Wikipedia, for creating the initial state of the model, right-click it will
show “TestOptimal MBT Builder ”, inside of this there are many choices like
“Create State”, “Create Transition”, “MScript-click ” and so on, so choose
“Create State”, then come back to the IDE page it will show a new state will
be created, then it creates other states like before.

Now creating transitions between different pages, selecting the main page
state as the current state, then it will go to Wikipedia main page, right-click,
select “Create Transition”, so in the IDE it can be chosen the “To State” the
destination page, so here chooses “ Portal: Content ”, it is possible to define
Trans ID. It is possible to create other transitions in the same way.

And also define “Final state” of model. Finally it shows model in figure
2.3:

In this model, it just tests some links of Wikipedia pages, There are not

22

2.4 – Qualitative Evaluation of Web Application Testing Techniques

Figure 2.3: The simple Model for Wikipedia by using TestOptimal.

complex operations. So now it can start to run this model, there are three
ways to run the model: Run, Debug, Animate/Play. So it is possible to try
“ Animate/Play”, then it will show the model run with animation.
1. Check model coverage in figure 2.4.

Green means covered.

2. View test sequence generated in figure 2.5.
This is traversal graph to visualize test cases on the model, failures will
be highlighted with red color.

3. View test cases in MSC graph in figure 2.6.
MSC gives a better visualization of test cases. Failures will be high-
lighted.

Come back to IDE, It can be seen in the right side there is “MScript”,
double click it , it will show the full code of the model,this code is auto
generated MScript from WebMBT Builder, MScript is organized by triggers
for states and transitions, it can be edited as well. Until now the steps of
creating the model based testing of Wikipedia by using TestOptimal finished.

23

2 – Background

Figure 2.4: Model coverage by using TestOptimal.

2.4.3 Script-based Testing

When talking about Scripted based Testing, it means the testing technique
that uses testing scripts to test the system. What is testing scripts? It
generally refers to a series of instructions for a particular test, which can be
executed by automated test tools.

To improve the maintainability and reusability of testing scripts, they
must be built before the test scripts are executed.[28] A testing script is a
computer-readable instruction that automatically executes a test process (or
part of a test process).

Testing scripts can be created (recorded) or automatically generated using
testing automated functional GUI tool(such as HP QuickTest Professional,
Borland SilkTest, IBM TPNS and Rational Robot), or programmed in a pro-
gramming language(such as C++, Tcl, Expect, Java, PHP, Perl, Powershell,
Python, or Ruby).

Test engineers write programs using scripting languages (e.g., VBScript),
and these programs (test scripts) mimic users by performing actions on GUI
objects using underlying testing frameworks.[29] The test scripting language

24

2.4 – Qualitative Evaluation of Web Application Testing Techniques

Figure 2.5: Test sequence generated.

is a kind of scripting language. It is precisely a branch of the scripting lan-
guage in the testing field, which is the basis of the automated software testing
design. To understand the testing scripting language, it should understand
the scripting language.

The scripting language is a programming language that is interpreted by
interpreting during execution. For example, various shells of common Perl,
python, PHP, TCL, guile, ruby, and UNIX systems are scripting languages.
The efficiency is inferior to the program that is executed after compilation,
such as programs written in C, C++, Java, Pascal, etc.

The advantages of Scripted based Testing

Cases require non-trivial programming skills, the involved effort being com-
parable to that required for normal code development. [2] The scripting lan-
guage syntax is simple and flexible, and it is not very relevant to efficiency.
It is convenient to use scripts. Especially for the processing of multiple files,
data flow and processing are more complicated.

25

2 – Background

Figure 2.6: MSC graph.

The disadvantage of Scripted based Testing

All benefits of modular programming can be brought also to the test cases,
such as parametric and conditional execution, reuse of common functionali-
ties across test cases, robust mechanisms to reference the elements on a web
page. [2] It lacks strict compilation process, variable definitions, function
definitions, etc. So it is more likely to occur problems which will trouble the
testers. The program code lines, functions, code segments, and scripts can
be controlled at different granularities. The test is more thorough.

Existing tools using this technique

1. Selenium (Ruby, Java, NodeJS, PHP, Perl, Python, Groovy).

2. Sahi(Sahi script).

3. Maveryx(Java).

4. Ranorex Studio(VB.NET).

5. Selenium WebDriver.

26

2.4 – Qualitative Evaluation of Web Application Testing Techniques

Selenium WebDriver will be introduced.

Selenium WebDriver

SeleniumWebDriver is a tool that supports browser automation. It includes a
set of libraries and "drivers" for different languages to automate the actions on
the browser."Selenium webdriver directly communicate with the browser".[18]

Selenium webdriver supports multiple web browsers and also support for
Ajax applications. "The main goal of the selenium webdriver is to improve
support for modern web application testing problems." [18] Selenium web-
driver supports multiple languages to write the test scripts.

It is a programming interface to create and execute test cases by using El-
ements locators/Object locators/WebDriver methods. Selenium WebDriver
interacts with browser directly, each browser has its own driver on which the
application runs, Selenium WebDriver makes direct calls to the browser.

Speaking of WebDriver, it provides libraries for many languages:

• Java

• Ruby

• JavaScript

• Python

• PHP

• Perl

and other languages. This allows developers to use WebDriver to use their
most familiar language without having to learn WebDriver’s unique scripting
language. Using WebDriver is like using a third-party library in the project.

WebDriver uses a "driver" to control different browsers. Currently, sup-
ported browsers include Firefox, Chrome, Safari, and IE. Microsoft is devel-
oping a new driver for Microsoft Edge. Firefox drivers are built-in, so Firefox
is the first choice for automated testing of most projects.

What does WebDriver do?

WebDriver automates the browser. WebDriver can open the URL to interact
with the rendered page:

27

2 – Background

1. Create a new browser instance

2. Open a URL in the browser

3. Click on the link on the page

4. Enter information in the field

5. Execute JavaScript on the page

The advantages of Selenium WebDriver

Support most programming languages, browsers, and operating systems.
Overcomes limitations of Selenium like file upload, download, pop-ups. Web-
Driver’s API is simpler than RC’s API, it does not contain redundant and
confusing commands. Supporting Batch testing, Cross browser testing, and
Data-driven testing.

The disadvantages of Selenium WebDriver

Detailed test reports cannot be generated, RC generates detailed reports. No
centralized maintenance of objects/elements. It doesn’t have IDE, difficult
to create test cases.

Example using Selenium WebDriver on Wikipedia

First, download "Eclipse IDE for Java Developers", Click Eclipse IDE for
Java Developers, then click “INSTALL”, after click “LAUNCH”, it will show
the eclipse neon IDE.

Second, download the Selenium Java Client Driver, then it is possible to
create a new java project, also create a new package and new java class.
After it needs to import the selenium libraries. Then it can write the code.

In this example is testing Wikipedia, it uses the WebDriver to get the
URL, then click search input text to search “apple”, in the end, close the
browser, it shows in figure 2.7.

The result in console in figure 2.8.
When running the program, it shows the Firefox is opened automatically,

in the input text area, insert “apple”,
After some seconds, the browser jump to the “apple page”,
In the end the browser is closed cause it have been written “driver.quit()”

to let the browser end the operation. For now the simple test of Wikipedia
by using Selenium WebDriver finished .

28

2.4 – Qualitative Evaluation of Web Application Testing Techniques

Figure 2.7: Source code of Selenium WebDriver.

2.4.4 Capture-Replay(C&R)

“Capture-replay(C&R) web testing is based on the assumption that the test-
ing activity conducted on a web application can be better automated by

29

2 – Background

Figure 2.8: Result in console for Wikipedia by using Selenium WebDriver .

recording the actions performed by the tester on the web application GUI
and by generating a script that provides such actions for automated, unat-
tended re-execution.”[2] It means it will produce the test cases simply by
recording the actions on a web page, then just replay the recording to see if
everything is good or not.

C&R web testing is based on capture/replay automated tools. Cap-
ture/replay tools have been developed as a mechanism for testing the cor-
rectness of interactive applications (GUI or Web applications).[27] Using a
capture/replay tool, a software tester can run a Web application and record
the entire session. The tool records all the user’s events on the navigated Web
pages, such as the key presses and mouse clicks, in a script, allowing a session
to be rerun automatically without further user interaction. Finally, a test
case is produced by adding one or more assertions to the recorded script. By
replaying a given script on a changed version of the Web Application Under
Test (WAUT), capture/replay tools support automatic regression testing.

The advantages of C&R

“C&R test cases are very easy to obtain and actually do not require any
advanced testing skill. Testers just exercise the web application under test
and record their actions.”[2]

30

2.4 – Qualitative Evaluation of Web Application Testing Techniques

The disadvantages of C&R

“During software evolution the test suites developed using a C&R approach
tend to be quite fragile. A minor change in the GUI might break a previously
recorded test case, whose script needs to be repaired manually, unless it is
re-recorded from scratch, on the new version of the web application. ”[2]

Existing tools using this technique

1. Abbot(a framework for GUI testing).

2. Jacareto(a GUI capture & replay tool supporting the creation of ani-
mated demonstrations).

3. Pounder(focused on capturing and replaying interactions for GUI test-
ing).

4. JFCUnit(an extension that enables GUI testing based on the JUnit6
testing framework).

5. Selenium IDE (a tool for recording scripts).

.

Selenium IDE

Selenium-IDE is a tool for recording scripts, these recording scripts are Se-
lenium test cases." the Selenium IDE (originally called the Recorder), which
allows users to navigate their applications in Firefox and record their actions,
forming tests. [13] Selenium-IDE is Chrome and Firefox extension, it is the
most efficient way to develop test cases. It records the users’ actions in the
browser, using existing Selenium commands, with parameters defined by the
context of that element. It helps to save time, it is a good way to learn
Selenium script syntax.

Selenium-IDE is a linear script, A script that records a manually exe-
cuted test instance. "Selenium IDE, Capture, and replay tests from within
Firefox."[12] This script includes all the keystrokes, function keys, arrows,
control keys that control the test software, and numeric keys that enter data.

31

2 – Background

Example using Selenium-IDE on Wikipedia

After installing in Firefox, it can start a recording on Wikipedia, by opening
IDE, then choosing “Record a new test in a new project”, then put a name
for this record, after put the Wikipedia main page URL in the BASE URL,
Then start recording, just click some links and search some information, it is
very easy. And all the operations are recorded by Selenium-IDE, fill in the
Test Case Panel script commands, the commands are following types:

1. Click on a link - one click command

2. Enter a value - enter the command

3. Select a value from the drop-down list - select command

4. Click on checkboxes or radio buttons - click on the command

After finished the operations, it stops recording then it will show in figure
2.9 :

On the top, it will show the menu bar, where it can control how to operate
the test cases. Also, it will show the Test Case Panel, it shows the recording
details.

The Command, Target, and Value input fields display the currently se-
lected command and its parameters. These are the input fields that can
modify the currently selected command. The first parameter specified for the
command in the Reference tab of the bottom pane is always in the Target
field. If the second parameter is specified by the Reference tab, it is always
in the Value field. The Comment field, which is allowed to add comments to
the current command for later reading.

To save a Selenium IDE project, click the save button at the top right-
hand side, Selenium IDE will download a .side file, which contains all test
cases and suites.

Then it is possible to run the test cases, by clicking ” Run current test”.
Here are also some special ways to run, for example, “Stop in the Middle”, in
this one setting break point, which is good for debugging. Also “Start from
the middle”, “ Run any Single Command”, and so on.

It will show the testing result in the Log panel, it will show the execut-
ing procedure. Until now the testing by using Selenium IDE on Wikipedia
finished .

32

2.4 – Qualitative Evaluation of Web Application Testing Techniques

Figure 2.9: Selenium-IDE Capture-Replay .

2.4.5 Visual GUI Testing

Visual GUI Testing(VGT) is an interactive graphical software testing method-
ology, it verifies if the image appears correctly to users. "Visual GUI testing
is a script based testing technique that uses image recognition, instead of
GUI component code or coordinates, to find and interact with GUI bitmap
components, e.g. images and buttons, in the SUT’s GUI. "[14]

The test tool can visually identify (see) the position on the screen to
interact with just like a manual tester. "Visual GUI Testing is performed to
acquire data about the technique’s maintenance costs and feasibility."[15] It
is defined as “a tool-driven test technique where image recognition is used to

33

2 – Background

interact with, and assert, a system’s behavior through its pictorial GUI as
it is shown to the user in user-emulated, automated, system or acceptance
tests”.

"Testers can write a visual test script that uses images to specify which
GUI components to interact with and what visual feedback to be observed.
"[16] The programmer can use a visual GUI testing tool to examine and
manipulate the system under testing.

GUI interaction based on image recognition allows visual GUI testing to
mimic user behavior, treat the SUT as a black box, whilst being more robust
to GUI layout change.

It is therefore a prime candidate for better system and acceptance test
automation. However, the body of knowledge regarding visual GUI testing
is small and contain no industrial experience reports or other studies to
support the techniques industrial applicability.[14] A realistic evaluation of
industrial-scale testing problems is key in understanding and refining this
technique.

The body of knowledge neither contains studies that compare different
visual GUI testing tools or the strengths and weaknesses of the technique in
the industrial context.

For VGT the important point is image recognition allows the technique’s
tools to automate test cases that previously had to be conducted manually
with equivalent input and output to a human user. VGT tools can emulate
end-user behavior on almost any GUI-based system, regardless of implemen-
tation language, operating system, or platform.

In summary, Visual GUI Testing is a technique that gives the user the
ability to transition from manual testing into automated testing, lower lead
times, and create a culture of continuous software integration, development,
and delivery.

Advantages of Visual Testing

Visual GUI Testing is applicable to any GUI driven AUT, due to the use of
image recognition.[5] It is not expensive, and easy to understand and explain.
More efficiency and flexible.

Disadvantages of Visual Testing

Suffer from false test results due to possible image recognition failure.

34

2.4 – Qualitative Evaluation of Web Application Testing Techniques

Existing tools using this technique

1. eggPlant is a black-box GUI test automation tool.

2. AutoIt is an automate Windows GUI and general scripting tool.

3. Ranorex is a commercial Windows GUI test automation tool.

4. Sikuli is an open source framework to automate GUI testing tool.

Sikuli

"Sikuli is a visual approach to search and automation of graphical user in-
terfaces using screenshots."[17] It is based on image retrieval technology, it
provides a set of Jython-based scripting language and integrated development
environment. "Sikuli allows users to take a screenshot of a GUI element (such
as a toolbar button, icon, or dialog box) and query a help system using the
screenshot instead of the element’s name." [17] Sikuli also provides a visual
scripting API for automating GUI interactions, using screenshot patterns to
direct mouse and keyboard events.

Sikuli Script, a scripting system that enables programmers to use screen-
shots of GUI elements to control them programmatically. [17] The system
incorporates a full-featured scripting language (Python) and an editor inter-
face specifically designed for writing screenshot based automation scripts.

Sikuli allows users or programmers to make direct visual reference to GUI
elements.[17] To search a documentation database about a GUI element, a
user can draw a rectangle around it and take a screenshot as a query.

The real-time image retrieval of the current screen captures the operational
object, simulates the user’s behavior, and matches the screen area to verify
the true visual display. The user can use the screenshot to directly reference
the GUI elements to the program and complete the interaction.

Example using Sikuli on Wikipedia

After installing Sikuli , it will show IDE in figure 2.10:
In the top, there is menu bar, it is possible to do some operations like :

• "Take screenshot"

• "Insert image"

• "Region"

35

2 – Background

Figure 2.10: Example using Sikuli on Wikipedia.

• “Run”

• “Run in slow motion”

In the left part , there are commands to operate on the web page, like :

• “find()”

• “findAll()”

• “wait()”

• “click()”

• “doubleclick()”

• “type(text)”

36

2.4 – Qualitative Evaluation of Web Application Testing Techniques

In the lower part It will show “Message”,when running the test , the
execution result will come out.

Simple example in figure 2.11,

Figure 2.11: Example code using Sikuli on Wikipedia.

It double clicks Firefox, on the search bar it types “Wikipedia”, then clicks
“enter”, it will jump to Wikipedia page, after it searches “apple”, then clicks
“enter”, it will jump to the page about “apple” which contains many different
meanings of “apple”.

In the “Message” , it will show the “log information” in figure 2.12,
For now the example for Wikipedia finished.

2.4.6 Exploratory comparison of testing techniques
Model-based testing automatically creates the test model, reducing the es-
caped defects compared with other testing approaches. This method is good
for the project which is not so complicated, cause for a complicated project,
it is very difficult to create the model.

Scripted based Testing is very powerful cause it uses scripting language
syntax which is simple and flexible, but it lacks the strict compilation process,
variable definitions, function definitions, etc. So it is more likely to occur
problems which will trouble the testers. In general, this technique is very

37

2 – Background

Figure 2.12: Example log information using Sikuli on Wikipedia.

efficient for the processing of multiple files, data flow and processing are
more complicated.

Capture-replay(C&R) web testing is very easy to get and do not require
any advanced testing skill, just record the actions. But it is very weak for
testing, any little change in GUI will influence the previous recording test
cases, it just useful for a very simple project.

Visual GUI Testing is applicable to any GUI driven AUT, due to the use of
image recognition. It is not expensive, and easy to understand and explain.
More efficient and flexible. Suffer from false test results due to possible image
recognition failure.

2.5 Maintenance and fragility

2.5.1 Fragility
Testing fragility is defined as when it fails or needs maintenance due to
the natural evolution of the AUT, which is a very important issue for web
application testing. A little failed test case will show a big problem for the
system design, needs a deep investigation to find out what causes this failure.
"We define the concept of fragility of test classes, and provide metrics to
estimate the fragility of a project by automated inspection of its test suite."[7]
A set of possible reasons that will cause frailties specific to web testing will
be introduced.

"A GUI test class is said to be fragile when:

38

2.5 – Maintenance and fragility

• it needs modifications when the application evolves;
• the need is not due to the modification of the functionalities of the

application, but to changes in the interface arrangement and/or definition."[7]
When it fails or requires maintenance due to the natural evolution of the

application under testing, provided the specific capabilities it produces have
not been altered.

The heuristic can be seen as a second-order stress test to detect nonlineari-
ties in the tails that can lead to fragility.[23] Fragility testing is that it should
not affect the change of test results under any circumstances. "Any time a
pre-existent method of a GUI test class is modified it is assumed the change
is due to test fragility." [7] The example most encounter is when changing a
part of the code and break a test that should not be broken. However, there
may be other influencing factors: test data, current date and time, or part of
other contexts or other tests. As long as these factors affect the test results,
there will be Fragility tests.

2.5.2 Maintenance
Website maintenance is the regular checking of websites for issues and errors
and security updates to keep them relevant. To keep the website healthy,
drive continued traffic growth, it needs to do this consistently.

"Keeping a website well maintained is important for big and small busi-
nesses to attract and retain their customers."[8] For companies, Website
maintenance tends to be one of these issues because it doesn’t always cause
immediate problems. The invention relates to the maintenance of a website.
In particular, the invention relates to gathering website user help data and
modifying the website through the use of a feedback loop using the gathered
data.[24] However, just as it can be too long without regular checking, it can
damage the website.

The things should be done for maintenance:

• Renewing the domain name of website,make sure that all domain names
are renewed in a timely manner.

• Test the loading speed of website. If it takes a long time to load, it needs
to improve.

• Update the core plugins and website software,Update dates and copy-
right notices.

39

2 – Background

• Check the website for 404 errors and if there are any, fix or redirect
them.

• Security updates and bug fixes. Make sure web developer and hosting
provider update the software and install upgrades, security patches, bug
fixes or any other updates that may compromise the operating system,
web server, database.

• Analyze the security scans and if there are any problems, make sure
they’re resolved. Set aside time to methodically and thoroughly review
all pages of the website.

Categorize the changes in a test code under four categories:

• Perfect maintenance, when a test code is upgraded to increase quality
(e.g., to increase coverage age or adopt well-known test patterns);

• Adaptive maintenance, to make the test code evolve in line with the
evolution of the production code;

• Protective maintenance, to alter parts of the code that may require
intervention in future notifications;

• Corrective maintenance, to perform bug fixing. According to the defini-
tion of GUI testing sensitivity, adaptive maintenance is important.

Website Maintenance is very important. "With regular website updates
and maintenance, the business will attract and retain customers, offer useful
content, and maintain good search engine rankings."[8]

For this thesis, some maintenance metrics for web application testing are
defined.

40

Chapter 3

Empirical experiment
with dolibarr

In this chapter, the experiment with web application dolibarr will be done,
the purpose is writing some test cases to test the application, and defin-
ing some metrics to analyze the maintenance effort during the application
evolution. To make some good suggestions for web application testing.

3.1 Context
The work is the following steps:

1. Writing the test suites for the web application dolibarr;

2. Count the modified lines for the evolution of the application;

3. Make a characterization of the fragility issue and an estimation of its
occurrence in a open-source project.

Defining some metrics for the evolution, “How much are GUI test classes
associated with the analyzed set of tools modified through consecutive re-
leases of an open-source Android project?” [6] also for the fragility, “How
fragile are GUI test classes associated with the analyzed set of tools to mod-
ifications performed on open-source Android projects and their graphical
appearance?” [6]

Five released versions source code of the application are cloned from
GitHub, then 15 test cases for the earliest release application are written,
then it should update the application, also need to modify the test cases

41

3 – Empirical experiment with dolibarr

for adopting the application. It compares file-by-file between consecutive re-
leases. And the modifications of each test case are recorded. Then using
“Test evolution” metrics and “Fragility of test cases and methods” metrics.

3.2 Introduction Dolibarr
Dolibarr is an ERP / CRM system, it is a modern software package to
manage your company or foundation activity (contacts, suppliers, invoices,
orders, stocks, agenda, accounting, ...).

It’s open-source software (wrote with PHP language) designed for small
and medium companies, foundation, and freelances. It is easy to use, study,
modify or distribute according to its Free Software license.It is possible to
use it as a standalone application or as a web application to be able to access
it from the Internet or a LAN.

On Github1, there are three "Setup" ways to install Dolibarr,

• Simple setup: packaged version

• Advanced setup: standard version

• Saas/Cloud setup: commercial version

according to different purpose to install it.
Main application/modules (all optional):

• product and service catalog

• inventory management

• bank account management

• customer directory

• order management

• business proposal

• contract management

• invoice management

1https://github.com/Dolibarr/dolibarr

42

3.2 – Introduction Dolibarr

• invoice and payment management

• manufacturing expense list

• Transportation

• plug and play

Dolibarr is written in PHP and supports all versions higher than 5.5.0+
As it shows below, there are many functions on the dolibarr application,

• Customer prospect or supplier directory features

• Product and service management capabilities

• Inventory management functions

• Bank account management functions

• Business Operations Management Functions

• Order management functions

• Contract management functions

• Invoice management functions

• invoice and payment management

• Payment management functions

• Inquiry management function

• Logistics management functions

• Expense report management function

• Following social and fiscal tax payments feature

• EDM (electronic document management) function

• Employee leave function

• Mass mailing function

• Realize surveys

43

3 – Empirical experiment with dolibarr

• POS function

• Donations management

• Report function

• The ability to generate PDF documents (invoices, proposals, orders, etc.
to generate PDF documents ...)

• Import and export tools (CSV or Excel)

• Bookmark management function

• LDAP connection capabilities)

It is possible to click them to do some opeartions.
It shows "Home" page of Dolibarr in figure 3.1,

3.3 Test cases
15 test cases for 5 versions of dolibarr are developed. According to web
application, some test cases for most parts of web functions are defined,
like create new customer,supplier or products, add, delete or modify the
information and so on. All the test cases show in the table 3.1:

3.4 Use case template for TC1 (new customer)
All test cases were defined and documented by using use case templates."A
use case model defines the functional scope of the system to be developed.
Attributes of a use case model may therefore serve as measures of the size and
complexity of the functionality of a system."[25] An use case is a description
of how the system responds to external requests in software engineering or
system engineering, is a technology to obtain requirements through user use
scenarios."Use cases are assumed to be developed from scratch, be sufficiently
detailed and typically have less than 10–12 transactions."[25] Each use case
provides one or more scenarios that illustrate how the system interacts with
the end user or other systems, that is, who can use the system to do something
to achieve a clear business goal.

Avoid using technical terms when writing use cases. Instead, use the lan-
guage of the end-user or domain expert.[30] Use cases are typically authored

44

3.4 – Use case template for TC1 (new customer)

(a) Dolibarr page 1.

(b) Dolibarr page 2.

Figure 3.1: Dolibarr page.

45

3 – Empirical experiment with dolibarr

Table 3.1: Test cases table.

Test Cases Description
TC1 Login Test: Test if login successfully
TC2 New Customer: Create a new customer for company
TC3 New Supplier: Create a new supplier for company
TC4 Modify Customer:Modify some information for one customer
TC5 Add Bank for Customer: Add bank information for customer
TC6 Delete Customer: Delete one customer
TC7 Check all links: Click all links on to do page
TC8 Change setup: change some setup for display
TC9 New Product: Create a new product
TC10 New Project: Create a new project
TC11 New Leave: Create a new leave
TC12 New Service: Create a new service
TC13 New Task: Create a new task
TC14 Modify Product: Modify information for one product
TC15 New Invoice: Create a new invoice

by software developers and end-users. There are many ways to write a use
case in the text, from use case brief, casual, outline, to fully dressed, etc.
And with varied templates. Writing use cases in templates devised by var-
ious vendors or experts is a common industry practice to get high-quality
functional system requirements.

Write detailed or complete use cases. There is no universal template.
There are many competing templates. At the same time, programmers are
encouraged to use templates that are suitable for their work or their projects.

Compared to the details of a specific template, the standardization of the
project is much more important, but the key parts of these templates are
Roughly the same, so although there are differences in some terminology or
other aspects, these use cases are essentially the same.

Typical sections include:

• Use case name

• Roles

• description

46

3.5 – Metric Definition

• precondition

• Event flow

• Elementary stream

• Alternative stream

• Post condition

• Extension point

• Business Rules

• special requirement

• Iteration

Different templates often have other parts, such as:

• assumptions

• abnormal flows

• recommendations

• industry details

In this section it is possible to create a use case template for a single test
case,that is "New Customer" in table 3.2.

3.5 Metric Definition
To count the modifications in the test code, It is possible to define some
metrics, with the goal of describing change histories in the source files. “Tdiff”
is used to count the number of line codes added, deleted, modified. “Pdiff”,
the amount of added,deleted, or modified lines of code on which are based
on several of the metrics, can be computed as the sum of LA (Line of code
added) and LD(line of code deleted) for all the files of the release.

Here is the list of definitions of the metrics about “Test Evolution”(“describe
the evolution of open-source projects and the respective test suites; they
have been computed for each release or for each couple of consecutive tagged
releases.”[6]):

47

3 – Empirical experiment with dolibarr

• TTL: Total tool LOC(line of code), is the number of lines of code be-
longing to classes.

• NTC: Number of tool classes.

• TLR: Tool LOCs ratio is defined as:

TLRi = TTLi

P locsi
;

Where Plocsi is the total number of application LOCs for release i. This
metric, the range in the [0, 1] interval, allows to quantify the relevance
of the testing code associated with a specific tool.

• MTLR: Modified tool LOCs ratio is defined as:

MTLRi = Tdiffi

T locsi− 1;

Where Tdiffi is the number of lines added, deleted,modified in the ap-
plication from release i− 1 to i; “This quantifies the amount of changes
performed on existing LOCs that can be associated with a given tool
for a specific release of a project.”[6]; If this value is more than 1, which
means a large amount lines added, deleted and modified in the applica-
tion evolution.

• MRLTi: is defined as:

MRTLi = Tdiffi

Pdiffi;

Tdiffi and Pdiffi are, respectively, the number of lines added, deleted,
or modified tool and production LOCs in the transition between releases
i− 1 to i. It is computed only for releases featuring code associated with
a given testing tool (i.e., TRLi > 0). This metric lies in the [0, 1] range,
and values close to 1 imply that a significant portion of the total code
churn during the evolution of the application is needed to keep the test
cases written with a specific tool up to date.

• TMRi: Tool modification relevance ratio is defined as:

TMRi = MRTLi

TLRi− 1;

48

3.5 – Metric Definition

“This ratio can be used as an indicator of the portion of code churn
needed to adapt classes relative to a given testing tool during the evolu-
tion of the application.”[6] Only computing this value when TLRi− 1>0.
When this value is greater than 1, this metric is an indicator that the
amount of work required to change the test code is greater than the
actual relevance of the test code to the test code. Also considering the
lower value of this indicator makes it easier to prove code associated
with a specific test device for changes device under test.

• TCV: Tool class volatility can be computed as:

TCV j = Modsj

Lifespanj
;

“where Modsj is the amount of releases in which the class j is modified,
and Lifespanj is the number of releases of the application featuring the
class j.”[6].

For the “Fragility of Test Classes and Methods”, from the metrics defined
in the previous part, the information about the modified methods and classes
can be obtained, based on these data, it can define the metrics about the
approximated characterization of the fragility of test suites.

Modified classes can be three different ways : first, modify some unim-
portant things like comments,imports,declarations; second, add some test
methods; Last, Delete some test methods. Also combinations of these three
ways.

“Additions and removals of test methods are considered the consequence of
a new functionality or a new use case of the application; hence, they are not
considered as evidence of fragility of test classes.”[6] In the meanwhile, when
modifying the test method, it indicates the changes of the application, so
make the test classes that contain them as fragile according to the definition.

So the definition of Modified tool classes ratio(MCR),

MCRi = MCi

NTCi− 1;

“where MCi is the number of classes associated with a given testing tool that
are modified in the transition between releases i− 1 and i, and NTCi− 1 is
the number of classes associated with the tool in release i− 1(the metric is
not defined when NTCi− 1 = 0). The metric lies in the [0, 1] range: the
larger the values of MCR, the less the classes are stable during the evolution
of the app”[6])

the table of the definition in table 3.3.

49

3 – Empirical experiment with dolibarr

3.6 Procedure
In this section, it will introduce how to calculate the metrics defined before.
“In the exploration of the history of Android repositories, the versions that
have been considered for tracking the evolution of test classes are the tagged
points of release histories.”[6] To use git diff to get the differences between
two consecutive versions of the application, using “cloc” command to the
total lines of code of the application or test cases. After getting these values,
it can calculate TLR, MTLR, MRLT, and TMR for each test tagged release
of any project.

For the work, it cloned five release version of dolibarr, they are version 6,
version 7, version 8, version 9, version 10. It defines 15 test suites for version
6, after starting to update the version 6 to version 7, then it needs to modify
the test suites to make the testing work properly.

The data for the application and the test suites in table 3.4.
The data modified during the evolution of release version in table 3.5.:

3.7 Results and Discussion
In this part, it will give the result which gets from the previous procedure.

A program are written which will calculate the results , it is a bash script.
The content of code is: it reads the pathnames of the test cases and applica-
tion(the input are pathnames), using ’Cloc’2 to calculate the number of lines
respectively for different versions(contains different versions for test cases
and application), it stores these values and calculates ’number lines modi-
fied in test cases’ during evolution, also calculates ’number lines modified in
application’ during evolution.

For TLR, MTLR, MRTL, the program contains the code part according
to the definition of these metrics, also for TMR. There is a code part also
for the average values of TLR, MTLR, MRTL, and TMR. In the end, it will
output the values and average values of TLR, MTLR, MRTL, and TMR.

A pseudo code shows in figure 3.2.:
The results of the metrics in table 3.6.
From the table, some conclusions can be obtained,

• For TLR, it shows that the relevance of the testing code associates with

2http://cloc.sourceforge.net/

50

3.7 – Results and Discussion

the application, as the application is very huge, while the test cases are
very small, so only testing very little parts of the application.
The average value of TLR is 0.084%, which is a very small value, this
should be considered as a consequence of small test suites.
Also, it decreases from version 6 to version 7, this means for the evolu-
tion, the application has added more functions and more modules be-
comes more strong and powerful.

• For MTLR, it shows the number of changes performed on the existing
LOCs that can be associated with a given tool for a specific release of a
project, if this value is larger than 1, this means more lines added, deleted
and modified in test classes in the transition between two consecutive
releases, In the results, the average value of MTLR is 8%, so around 8%
of test cases code have been changed between two consecutive releases.
From the result, it shows from version 6 to 7, the value is 7%, is very
small, so this means small modified amount LOCs will lead to a small
value of MTLR value. In the meanwhile from version 7 to 8, the value
of MTLR is 16%, so from this evolution, the application changed a lot,
so the test cases must also change according to the application.

• For MRTL, this value is in the [0, 1] range, and values close to 1 imply
that a significant portion of the total code churn during the evolution of
the application is needed to keep the test cases written with a specific
tool up to date.
The average value of MRTL is 18.5%, this means in every two consecutive
releases, around 20% of code in the application has been modified.
From version 6 to 7, this value is 40%, which is very big, this means in
this updating a big amount number of code in the application changed.
While from version to version 9, MRTL is only 7%, it shows only slight
modification in this evolution.

• For TMR, this is computed only when TLRi− 1 > 0. It considers a
value greater than 1 of this metric as an index of greater effort needed
in modifying the test code than the actual relevance of testing code with
respect to the modification of application code.
It speculates lower values of this indicator as evidence of easier flexibility
of code associated with a specific test device for changes in the AUT.

51

3 – Empirical experiment with dolibarr

In general , “those values imply that the amount of churn needed for the
code associated with a specific testing framework is not linear with the
relative amount (with respect to total production LOCs) of such code
inside the application”[6].

The result table of TCV in table 3.7.

• TCV: The average value for TCV is 0.42. which signifies the wonder
of variability from the point of view of a view of the individual classes
associated with a particular test framework, clarifying that each test
class must modulate, on average, every ten tagged notifications in which
it appears.

The value is small means this test case is very stable. While if the value
is large means every time it needs to modify this test case, it is not
powerful for the work.

Also plotting the trend for TLR in figure 3.3:
From the plot, it shows that the trend of TLR is decreasing during the

version evolution, it means the relevance of the test cases code associated
with dolibarr is going down, that’s because during the application evolution,
the developer add new functions and new parts for the application, but the
test cases was start from the earliest version, so it only according to the old
version, write the test cases, it can’t cover so much parts for the application,
so as the updating of the application, it appears more new things. so TLR
is decreasing during the evolution.

Also plotting the trend for MTLR and MRTL in figure 3.4:
From the plot, it can compare the trend of MTLR and MRTL, it shows

that from version 6 to version 7, there is a big jump for MRTL, which means
there was a significant portion of the total code changed during the evolution
of the application is needed to keep the test cases written with dolibarr up
to date.

While MTLR doesn’t change too much, this is because the changes in the
application are mainly about adding new functions, while in the test cases
doesn’t contain these new functions, so test cases don’t change too much, so
MTLR is just slightly increasing a bit.

Then from version 7 to version 8, MRTL decreases, this means the de-
veloper is just maintaining the application, so the MRTL is slightly going
down.

52

3.7 – Results and Discussion

And also from version8 to version 9, from version 9 to version 10, this rate
doesn’t change too much, this means the application is very stable during
the evolution, only doing some basic maintenance for the application.

While for MTLR, its value is stable, doesn’t change a lot during the ap-
plication evolution, it is not a good phenomenon, if the application changed
a lot while the test cases don’t change according to the application, which
means out test cases is not very related to the application, it should pay
attention about this, and write the test more relative to the application.

Also plotting the number of modified code of test cases in version evolution
in figure 3.5:

From the plot, the red color is the number of code for test cases, while the
blue color is the number of modified code of test cases in version evolution.

It can be observed that during every evolution, the code modified in the
test cases code is occupied around 8 %. in version 7 to 8, its value is higher.

During the other code release, the code modified is less. It can be noticed
that during every evolution the amount of code changed in the test case is
not a big number, this is a normal situation, cause the application changed,
while for the test cases it only modifies them to keep be consistent with the
application. For the developer, it is important to make the test cases fit for
the application.

Also plotting the number of modified code of application in version evo-
lution in figure 3.6:

From the plot, the red color is the number of code for the application,
while the blue color is the number of modified code of the application in
version evolution.

From the result, it shows that in the evolution version 6 to version 7, the
amount changed in the application is a big number, occupied around half of
the amount of the application, this shows that in this evolution application
changed a lot(Add the new functions and modified some parts).

While in the evolution version 7 to version 8, the code modified is around
13%, it is slightly modified during the evolution. While in version 8 to version
9, the number of code modified is small, is only 7%. And for the version9 to
version 10, it is around 14%.

Also it can be noticed that the number of application code is increasing
during the evolution, which means the application is more powerful and
stronger. It a good thing for the user to have a nice experience when using
the web application.

Also plotting the trend for TMR in figure 3.7:
From the polt, it shows the average of this value is 201.5, From version 6

53

3 – Empirical experiment with dolibarr

to 7, this value is big, is 400, this is because in this version evolution, TLR is
small. While from 8 to 9, this value is very small, is only 87, in this evolution,
TLR is higher.

54

3.7 – Results and Discussion

Table 3.2: Use Case table.

Test Cases Description
Use case Create a new Customer
Scope Third parties
Level User Goal

Intention in context Add a new customer information in the database
Primary actor –
Support actor –

StateHolders’ interest –
Precondition Already known the information of customer

Minimum guarantees –
Success guarantees –

Trigger –
Main Success scenario

1. Click the web page, and login.

2. Click the "Third parties",then click "New Cus-
tomer".

3. Insert information, "Thirds-party
name","Alias name",choose "Customer"
from "Prospect/Customer" box, se-
lect "No" from "Vendor" box, in-
sert "Bar code", "Address", "Zip
code","City","Country","State/Province","Email",
"Web","Phone","fax",these information.

4. Then click "CREATE THIRD PARTY".

5. Click "List of Customer",find the customer.

Extensions
• 4a. Web failure of "insert customer wrongly".

• 4a1.System reports failure to user with advice,
back up to previous step.

• 4a2. User either back out of this use case, or
tries again.

• 5a. Website does not return the needed infor-
mation.

• 5a1. Reload the webpage to update.

55

3 – Empirical experiment with dolibarr

Table 3.3: Metric Definition.

Group Name Explanation Type Range
Size NTC Number of Tool Classes Integer [1,∞)

TTL Total Tool LOCs Integer [1,∞)
Test Evolution TLR Tool LOCs Ratio Real (0,1]

MTLR Modified Tool LOCs Ratio Real [0,∞)
MRTL Modified Relative Tool LOCs Real [0,1]
TMR Tool Modification Relevance Ratio Real [0,∞)
TCV Tool Class Volatility Real [0,∞)

Fragility MRC Modified Tool Classes Ratio Real [0,1]

Table 3.4: Data for Application And Test Suites

lines of code|version Version 6 Version 7 Version 8 Version 9 Version 10
Test Cases 928 941 943 946 957
Application 698221 999572 1113041 1133130 1300839

Table 3.5: Data Modified for Application And Test Suites

Modified lines|version Version 6-7 Version 7-8 Version 8-9 Version 9-10
Test Cases 69 152 106 102
Application 321351 133469 23089 167709

Table 3.6: Results Metrics

Version|Metrics TLR MTLR MRTL TMR
Version 6 0.1% – – –
Version 7 0.09% 7% 40% 4
Version 8 0.08% 16% 13% 1.44
Version 9 0.08% 11% 7% 0.87
Version 10 0.07% 10% 14% 1.75

56

3.7 – Results and Discussion

Figure 3.2: Pseudo code for calculating Metrics.

57

3 – Empirical experiment with dolibarr

Table 3.7: Results TCV

Test Cases Modified LifeSpan TCV
TC1 0 5 0
TC2 4 5 0.8
TC3 3 5 0.6
TC4 2 5 0.4
TC5 3 5 0.6
TC6 0 5 0
TC7 1 5 0.2
TC8 2 5 0.4
TC9 3 5 0.6
TC10 4 5 0.8
TC11 0 5 0
TC12 4 5 0.8
TC13 3 5 0.6
TC14 0 5 0
TC15 2 5 0.4

58

3.7 – Results and Discussion

Figure 3.3: The trend of TLR.

59

3 – Empirical experiment with dolibarr

Figure 3.4: The trend of MTLR and MRTL.

60

3.7 – Results and Discussion

Figure 3.5: The number of modified code of test cases in version evolution .

61

3 – Empirical experiment with dolibarr

Figure 3.6: The number of modified code of application in version evolution.

62

3.7 – Results and Discussion

Figure 3.7: The trend of TMR.

63

64

Chapter 4

Conclusion and Future
Work

This chapter concludes the thesis recapping the experimental results and
future works that can be done to the tool and for the future of the project.

4.1 Conclusion
Web applications can be tested with many techniques, all of them expose
issues that are discussed in the present thesis. Many literatures reviews
were collected to define the development of web application and four testing
techniques for the web application, compare their differences, analyze their
advantages and disadvantages.

Selenium WebDriver is powerful for web application testing. It gives out
maintenance and fragility between web application evolution. Furthermore,
these development and testing tools have many challenges.

Growing with the application is the most critical challenge that belongs
to testing tools. By testing web application dolibarr(clone 5 version from
GitHub), it evaluates the Selenium WebDriver testing tool.

For the test suits does not support the translation of everything that may
be appealing with the application, it should be assumed that the translation
tests will be incorrect if cracks were present in the original test suits.

Regarding the evolution of test code, on average, close to 10% total number
of rows changed between successive releases The same project belongs to
the code associated with the selected test architecture. If the percentage
is considered low, inevitable code confusion during the development of the

65

4 – Conclusion and Future Work

application, Testing must adapt to changing requirements or any kind of
change AUT.

4.2 Future Work
Future works would cover the missing element and would do more by val-
idating. Tests require more maintenance during the normal evolution of a
web application.

The common project would simplify the creation of test cases devices start-
ing from one of them, it should seek a correlation between LOCs or modifier
classes, for example, TLR, MTLR MRTL, TMR metrics are recommended in
this paper) and developers’ effort or apply better predictions as recommended
literature, try to measure how is the test code related to the application.

Besides, dynamic evaluations can be carried out to quantify the extent of
the unfamiliar test code maintained by the council.

Developers do not undertake maintenance projects and assess how devel-
opers deal with the aging test code.

The fragility of the tests can be assessed by two metrics based on the
number of classes and methods changed.

Based on this evaluation, it is possible to plan soon.
Provide the definition of separation cause classification by using a theo-

retical method based on Git description of various documents that will help
to avoid these documents.

Finally, adapt automatically to an equipment development application or
at least changed test case signs that developers are starting to weaken specific
test types.

Check for test cases that are hidden or unchanged. It makes the piece
unusable and still works. Even if they are innovative or still exist No adjust-
ments made.

In another database study for open source projects different testing frame-
works or types of different platforms and private source commercial applica-
tions It is also designed.

There may be some improvements to this study. It can be updated cross-
platform test automation tools that do not have compatibility problems as
it appears in this study.

Additionally good and compatible guidelines can be developed for helping
developers to avoid common issues.

Furthermore, the efforts from researchers in the area of web application

66

4.2 – Future Work

testing should be focused on finding ways to overcome compatibility, layout
and widget specification for Web View, documentation, problems which are
described in the taxonomy of challenges.

67

68

Bibliography

[1] A Model-Based Approach for Testing the Performance of Web Applica-
tions Mahnaz Shams Diwakar Krishnamurthy Behrouz Far.

[2] Capture-Replay vs. Programmable Web Testing: An Empirical Assess-
ment during Test Case Evolution.

[3] M. Utting, B. Legeard. Practical Model-based Testing: A tools approach.
Morgan Kaufmann, 2007.

[4] A MODEL BASED TESTING TECHNIQUE TO TEST WEB APPLI-
CATIONS USING STATECHARTS Hassan Reza, Kirk Ogaard, Amar-
nath Malge.

[5] Conceptualization and Evaluation of Component-based Testing Unied
with Visual GUI Testing: an Empirical Study.

[6] Mobile GUI Testing Fragility: A Study on Open-Source Android Appli-
cations Riccardo Coppola , Maurizio Morisio , and Marco Torchiano.

[7] Scripted GUI Testing of Android Apps:A Study on Diffusion, Evolution
and Fragility.Riccardo Coppola, Maurizio Morisio and Marco Torchiano.

[8] Prevalence and Maintenance of Automated Functional Tests for Web Ap-
plications. Laurent Christophe, Reinout Stevens, Coen De Roover, Wolf-
gang De Meuter. Software Languages Lab, Vrije Universiteit Brussel,
Brussels, Belgium.

[9] Implementation and evaluation of a tool for translating Visual to Layout-
based android tests.Simona Saitta.

[10] WATEERFALLVs V-MODEL Vs AGILE: A COMPARATIVE STUDY
ON SDLC S. Balaji, M. Sundararajan Murugaiyan.

[11] Software fault interactions and implications for software testing DR
Kuhn, DR Wallace, AM Gallo, IEEE Transactions on Software Engi-
neering (Volume: 30 , Issue: 6 , June 2004).

[12] A. Bruns, A. Kornstadt and D. Wichmann, "Web Application Tests with
Selenium," in IEEE Software, vol. 26, no. 5, pp. 88-91, Sept.-Oct. 2009,
doi: 10.1109/MS.2009.144.

69

Bibliography

[13] A. Holmes and M. Kellogg, "Automating functional tests using Sele-
nium," AGILE 2006 (AGILE’06), Minneapolis, MN, 2006, pp. 6 pp.-275,
doi: 10.1109/AGILE.2006.19.

[14] Automated System Testing Using Visual GUI Testing Tools: A Com-
parative Study in Industry.Emil Borjesson ; Robert Feldt.

[15] Maintenance of automated test suites in industry: An empirical study
on Visual GUI Testing. E Alégroth, R Feldt, P Kolström - Information
and Software Technology, 2016 - Elsevier.

[16] GUI testing using computer vision. Tsung-Hsiang Chang,Tom
Yeh,Robert C. Miller.

[17] Sikuli: using GUI screenshots for search and automation. Tom Yeh,
Tsung-Hsiang Chang, Robert C. Miller.

[18] O. Zeitouni, J. Ziv and N. Merhav, "When is the generalized likelihood
ratio test optimal?," in IEEE Transactions on Information Theory, vol.
38, no. 5, pp. 1597-1602, Sept. 1992, doi: 10.1109/18.149515.

[19] Analysis and Design of Selenium WebDriver Automation Testing Frame-
work.Satish Gojare,Rahul Joshi.

[20] TestingWeb applications by modeling with FSMs Anneliese A. Andrews,
Jeff Offutt, Roger T. Alexander.

[21] Lei Xu and Baowen Xu, "A framework for Web applications testing,"
2004 International Conference on Cyberworlds, Tokyo, Japan, 2004, pp.
300-305, doi: 10.1109/CW.2004.7.

[22] A taxonomy of model-based testing approaches. Mark Utting, Alexander
Pretschner , Bruno Legeard.

[23] A New Heuristic Measure of Fragility and Tail Risks: Application
to Stress Testing.Nassim N. Taleb, Elie Canetti, Tidiane Kinda, Elena
Loukoianova, and Christian Schmieder

[24] Method and system for website maintenance.Arlyn Asch,Ronald Lin-
yard,Arie Trouw,Mark Wineman,Jonas Salling,Brian Sparks.

[25] P. Mohagheghi, B. Anda and R. Conradi, "Effort estimation of use cases
for incremental large-scale software development," Proceedings. 27th In-
ternational Conference on Software Engineering, 2005. ICSE 2005., Saint
Louis, MO, USA, 2005, pp. 303-311, doi: 10.1109/ICSE.2005.1553573.

[26] I. Ku, Y. Lu and M. Gerla, "Software-Defined Mobile Cloud: Architec-
ture, services and use cases," 2014 International Wireless Communications
and Mobile Computing Conference (IWCMC), Nicosia, 2014, pp. 1-6, doi:
10.1109/IWCMC.2014.6906323.

70

Bibliography

[27] M. Leotta, D. Clerissi, F. Ricca and P. Tonella, "Capture-replay vs. pro-
grammable web testing: An empirical assessment during test case evolu-
tion," 2013 20th Working Conference on Reverse Engineering (WCRE),
Koblenz, 2013, pp. 272-281, doi: 10.1109/WCRE.2013.6671302.

[28] W. Hargassner, T. Hofer, C. Klammer, J. Pichler and G. Reisinger, "A
Script-Based Testbed for Mobile Software Frameworks," 2008 1st Inter-
national Conference on Software Testing, Verification, and Validation,
Lillehammer, 2008, pp. 448-457, doi: 10.1109/ICST.2008.51.

[29] Qing Xie, Mark Grechanik and Chen Fu, "REST: A tool for re-
ducing effort in script-based testing," 2008 IEEE International Con-
ference on Software Maintenance, Beijing, 2008, pp. 468-469, doi:
10.1109/ICSM.2008.4658108.

[30] D. Kung, "An agent-based framework for testing Web applications," Pro-
ceedings of the 28th Annual International Computer Software and Ap-
plications Conference, 2004. COMPSAC 2004., Hong Kong, 2004, pp.
174-177 vol.2, doi: 10.1109/CMPSAC.2004.1342704.

71

	List of Tables
	List of Figures
	Introduction
	Background
	Introduction to Web Applications
	Definition Of Web Applications
	Working Principle

	High-level definition of Testing
	Definition Of Testing
	The Objective Of Testing

	Web Application Testing
	Functional Testing
	Performance Test
	Usability Test
	Client Compatibility Testing
	Safety Test

	Qualitative Evaluation of Web Application Testing Techniques
	Model based Testing
	TestOptimal
	Script-based Testing
	Capture-Replay(C&R)
	Visual GUI Testing
	Exploratory comparison of testing techniques

	Maintenance and fragility
	Fragility
	Maintenance

	Empirical experiment with dolibarr
	Context
	Introduction Dolibarr
	Test cases
	Use case template for TC1 (new customer)
	Metric Definition
	Procedure
	Results and Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

