
1

POLITECNICO DI TORINO

Department of Electronics and Telecommunication (DET)
Master Degree Program in Engineering

Communication and Computer Networks
Master Degree Thesis

Modern architecture for testing mobile applications

Supervisor

Prof. MALNATI GIOVANNI (DAUIN)

Candidate

Saeed Farkhondeh

July 2020

2

ACKNOWLEDGMENTS

First, I greatly appreciate all efforts of my dear professor Giovanni Malnati that his

effective guide conducts all my activities in the right direction.

Also, I would like to express my sincere gratitude to all friends who working in

Synesthesia Company because of their useful and technical help in terms of testing

applications. Their advice and tips significantly gained my knowledge in this field.

Furthermore, I thank all managers of this company who provided a friendly

atmosphere and needed tools for doing my project.

Moreover, I am grateful for friends who shared their valuable experience with

doing a thesis which it was useful to do my thesis appropriately.

Finally, I am so much thankful for my parents’ support which encouraged me to do

my best for this thesis.

3

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 8

 1.1 Architecture of an app and modularity 9
 1.2 Tools needed for testing . 10

 1.3 General technique for testing 11

 1.4 General form of testing in practice 11

 1.5 Resources and references . 12

2 Related literature and theoretical focus 13

 2.1 Agile and waterfall method for project management 14
 2.2 BDD approach for developing 14

 2.3 TDD approach for developing 15

 2.4 Clean architecture . 15

 2.4.1 Dependency rule . 16

 2.4.2 Dependency inversion principle 17

 2.4.3 Entities layer . 17

 2.4.4 Use case layer . 18

 2.4.5 Data layer . 18

 2.4.6 Frameworks and Drivers layer 18

 2.4.7 Presentation layer . 19

 2.5 Instrumentation tests . 19

 2.6 Android Unit test . 19

 2.7 Test Components . 20

4

 2.8 Mocking . 20

3 Testing approach for architecture 21

 3.1 IOS layers in architecture . 22

 3.2 Android layers in architecture 23

 3.3 Execute a bash file by android studio SDK and Xcode 23

 3.4 Test number of layers in architecture 24

 3.4.1 Test number of layers for Android 25

 3.4.2 Test number of layers for IOS 26

 3.5 Test dependency rule between layers 27

 3.5.1 Dependency rule for Android 28

 3.5.2 Dependency rule for IOS . 30

4 Unit and UI test for each layer of architecture 31

 4.1 Implementation of Rxjava . 31

 4.2 Mockito implementation for test 32

 4.3 Using Espresso for UI test . 35

 4.4 UseCase layer testing . 35

 4.5 Data layer testing . 38

 4.6 Unit test for IOS . 39

5 Conclusion and Bibliography 42

 5.1 Conclusion . 42

 5.2 Bibliography . 43

5

LIST OF FIGURES

Figure PAGE

Figure 2.3: TDD algorithm . 15

Figure 2.4: Clean architecture . 16

Figure 3.1: Layers of architecture in IOS app 22

Figure 3.2: Layers of architecture in Android app 23

Figure 3.3.1: Running a script in Xcode 24

Figure 3.3.2: Running a script in Android 24

Figure 3.4.1: Checking number of layers in Android 25

Figure 3.4.2: Print the result of test in script 26

Figure 3.4.3: Checking number of layers in IOS 27

Figure 3.5.1: Checking dependency rule for Android 28

Figure 3.5.2: print dependency rule for Android 29

Figure 3.5.3: Checking dependency rule for IOS 30

Figure 4.2.1: Mocking an interface . 32

Figure 4.2.2: Initial a mocking object 33

Figure 4.2.3: “Given” part of a test . 33

Figure 4.2.4: “When” part of test . 34

6

Figure 4.2.6: Compare the expected with the result 34

Figure 4.3.1: Espresso for UI test . 35

Figure 4.4.1: using Mockito for testing “UseCase” layer 36

Figure 4.4.2: Initial a mock object for UseCase layer 36

Figure 4.4.3: “Given” part of test for UseCase layer 37

Figure 4.4.5: “When” and “Then” part of the test for UseCase layer 37

Figure 4.5.1: Test for Data layer – getting cache exception . . . 38

Figure 4.5.2: Test for Data layer – without a cache exception . . . 39

Figure 4.6.1: Implement the XCTest framework in IOS for testing 39

Figure 4.6.2: Define an URL object for testing 40

Figure 4.6.3: Implement XCTestExpectation for testing 40

7

Summary:

This thesis topic describes one general approach for testing android applications

which its foundation is based on one of the android and iOS architectures.

In other words, this thesis topic targets this goal to figure out which application is

compatible and match with this architecture. In order to reach this aim, we will

check architecture and the functionality of each layer in this architecture and the

rule of interactions between different layers. All these things will be done by using

some tools and implement some methods for testing which describe in several

steps and mentioned in below lines:

 We will test the architecture to confirm it is based on the architecture that we

considered for developing our app.

 We will demonstrate why, what, how, and when we are going to test.

 During this research, we will investigate the methods of testing including

unit, UI, and integration test.

 Also, we will exploit Android Studio IDE, Gradle, Xcode (with swift

language) for our test project.

 Moreover, we will clarify the Clean Architecture and its layers.

 For implementing different kinds of methods for testing, we will use such

tools like Mockito or espresso. The main result of this thesis is about how

we can use this kind of tool for an application architecture such as Clean

Architecture.

8

Chapter 1

Introduction

In mobile application designing, the testing part helps to avoid lots of manual

testing. The more comprehensive testing code, the higher chance for discovering

hidden bugs.

Besides, writing tests for applications will give us a better notion to estimate the

requirements and also for bug detection. Furthermore, it is not possible to write a

test for a part of the code without knowing about its functionality.

Moreover, for testing applications, it is better to have an automated test. So, we can

run a part of the test or all part of the test again to be sure that after every change in

code, we have the same condition as before and this new code will satisfy all the

tests again. After that, we can introduce Continuous Integration as part of the

development process.

Generally, we can test all the parts of code, but instead of testing all parts of code,

it is feasible to reduce testing into a few parts of code and just consider some key

methods and functions for testing. In this thesis, we just focused on testing the

functionality of each layer and correlated methods.

We chose this topic because it is a critical part of designing applications and it will

help us to enhance and maintain the android applications. In other words, the

benefits of testing applications are to decrease the maintenance coast of software

and gain productivity.

9

1.1 Architecture of an app and modularity feature

On the other hand, through a testing approach, we can check the modularity of an

application. Why do we need to do that?

Well, the answer to this question refers to this fact that why we would need to

design an architecture for our app and make it modular.

One of the main and important points about designing mobile applications is that

the designers have to launch the app components individually and out of order and

the operating system or user can destroy them at any time. Because the events

related to ending the lifecycle of these components are not under our control, and

we shouldn’t store any app data or state in our app components, and our app

components shouldn’t depend on each other.

Now, a critical question arises. If it is not good to use app components to save app

data and state, how should we design our app? The solution related to the

“Separation of concerns” (SoC) concept in computer science which leads to the

design principle for dividing a computer program into distinct sections.

Generally, it is not correct to write all our codes in an activity, and the user

interface classes should only contain logic which has a task to represent UI and

also the interactions with the operating system. Therefore, by presenting these

classes in short form, we could avoid many lifecycle problems. Moreover, to

provide user satisfaction and create a manageable application, it is better to reduce

our dependency on Activities and Fragment classes.

Overall, by designing our app base on a model of classes with the well-defined

functionality of managing the data, our app will be more modular and

consequently, it can be more testable and consistent.

10

1.2 Tools needed for testing

Also, in this chapter, we will mention the requirements needed for testing

applications and the efficient tools for this aim. Moreover, we will justify our

approach for the testing base on a well-known architecture called "clean

architecture".

 Bash script: a part of this thesis will be done by writing a bash file. In order

to test the architecture design of projects.

 Mockito: one of the sophisticated tools for testing applications in terms of

unit test is the Mockito framework. Through this tool, we can create a mock

object for an interface or a class, and also we will define the expected output

value to be compared with the output of functions.

 Espresso: this framework is a powerful tool in android for user interface

testing. Google designed Espresso framework testing in Oct.2013 and it is a

part of the Android Support Repository.

 XCTest: it is a testing framework that allows us to generate and execute unit

and UI tests for our Xcode project. More likely to Espresso and Mockito, it

demonstrates that if specific conditions are satisfied during code execution,

and show us test failures if those conditions are not satisfied.

 Rxjava: in the company projects, they exploit widely Rxjava libraries for

composing asynchronous programs by using observable sequences.

11

 Clean architecture: mobile applications in a company designed based on an

architecture called Skeleton (clean architecture). This architecture composed

of 5 different layers with different tasks including entities layer, use case

layer, data layer, frameworks layer, and presentation layer.

1.3 General technique for testing

Generally, the testing techniques that imply different test inputs are categorized in

4 different groups including 1- model-based, 2- symbolic execution, 3-

combinational testing, 4- random, and pseudo-random testing.

The most relevant findings for testing approaches refer to the improvement of the

model-base technique.

1.4 General form of testing in practice

In the general form of testing, we will give the fake data as an input to a class that

has specific functionality, and then we will get output. This output would be

compared with the expected value that we expect of this class. If the expected

value and output match together, so it is reasonable to conclude that our class

passed the test successfully, otherwise, we should say there is a problem or a bug.

Finding the bug or problem is related to another process which is debugging or

troubleshooting of app.

12

1.5 resources and references

In order to get the result, we exploited the company documents and resources and

also the experience of experts working in this company. Moreover, some provided

documents and research in this field provided by google and Github were useful.

13

Chapter 2

Related literature and theoretical focus

In this chapter, we will go through different literature which refers to the main

concepts needed for explaining the testing approaches.

(i) Agile and waterfall method for project management

(ii) BDD approach for developing

(iii) TDD approach for developing

(iv) Clean architecture

(a) Dependency rule

(b) Dependency inversion principle

(c) Entities layer

(d) Use case layer

(e) Data layer

(f) Frameworks and Drivers layer

(g) Presentation layer

(v) Instrumentation tests

(vi) Android Unit test

(vii) Test Components

(viii) Mocking

14

2.1 Agile and waterfall method for project management

The agile approach is one of the most effective methods for cooperation between

mobile developers and continuous communication between members of the team

and customers in a project.

In this method, the whole process will break into many sub-tasks which each of

these sub-tasks will be considered as a mini-project for the development team.

On the other hand, the waterfall approach is a sequential design process. By that

means, we have eight stages for development (conception, initiation, analysis,

design, construction, testing, implementation, and maintenance) and when each of

these stages completed, the developers can start another stage.

One of the differences between the two methods is their approach to quality and

testing. The “Testing” phase will be performed after the “Built” phase in the

waterfall method, but, in the Agile method, the testing part will be done

concurrently with the programming part.

2.2 BDD approach for developing

The BDD (Behavior Driven Development) approach consists of three steps

including Given-When-Then. The Given step refers to a specified scenario and the

When step declares an action that takes place. In the last step (“Then” step), we

ensure that the new state of the system is correct or we will check some behavior

as a result of the system. Also, in this approach, we are no longer defining ‘test’,

but we are defining ‘behavior’. Furthermore, there is another advantage of this

method which is better communication between developers, testers, and product

owners.

15

2.3 TDD approach for developing

Figure 2.3: TDD algorithm.

In TDD (Test Driven Development) approach, the coding will be done before

testing compared with the common development approach. With the TDD method,

we will write tests upfront for functions that don’t yet exist. Also, we know that

there is a high possibility of failing the test at the beginning of the testing process,

but by coding more at each stage, we will make sure that all classes and methods

will pass the test at some points.

2.4 Clean architecture

Clean architecture code is a software designing approach which separates the

elements of design into ring levels. In this architecture the outer circles include

mechanisms and the inner circles are about the policies. More similar to other

16

software design philosophies, clean architecture has this aim to provide a structure

for coding in order to make it easier for developing.

The clean architecture is proper for testing because of regularity for functions inside

each layer. Therefore, we can write a test for functions in each layer base on its

task.

Figure 2.4: Clean architecture

2.4.1 Dependency rule

One of the main rules of clean architecture is code dependencies which imply that

source code can only point to the inner circle of this architecture. By that means,

all the things inside the inner circle are not allowed to know anything at all about

something inside an outer circle. This implies that if something which defined in

an outer layer must not be used by the code in the inner layer. That includes

functions, classes, variables, or any other software entity.

17

Another important thing about the dependency rule is that as we move towards

inner layers the level of abstraction will increase, so it is reasonable to expect low-

level concrete details for outermost circles in this architecture.

2.4.2 Dependency inversion principle

The main question about clean architecture and its dependency rule is that how an

inner layer (for example Data layer) can communicate with an external layer?

This is possible through the dependency inversion principle which includes two

general rule:

A. High-level modules should not rely on low-level modules. Both should

depend on the abstraction layer.

B. Abstractions should not depend on details, instead, details should depend on

abstractions.

Usually, for Dependency Rule, we inject the dependency (we can use Dagger or

kodein for this aim) or add the dependency inside the Gradle. But for Dependency

Inversion, we should define an interface (refers to case B which mentioned to

“depend on an abstraction”)

2.4.3 Entities layer

In this architecture, an entity can be an object with methods, or it can be a set of

data structures and functions. Entities are including the most general rules. For

instance, in one of the company projects, they used the Movie class and the

Subtitle class for showing the list of movies. Ideally, it should be the biggest layer,

18

though it’s correct to say that Android Apps usually tend to just use an API in the

screen of a phone, so a great portion of core logic will just compose of requesting

and persisting data.

2.4.4 Use case layer

Usually, this layer called interactors because it describes mainly the actions that the

user can cause. This kind of action categorizes into two groups that can be active

actions (the user clicks on a button) or implicit actions (the App navigates to a

screen).

2.4.5 Data layer

A set of adapters defined in this layer that convert data from a suitable for the use

cases and entities to the format proper for some external components such as the

Database or the Web. The Controllers and presenters all defined here. The models

are passed from the controllers to the use cases and then return from the use cases

to the views and presenters.

2.4.6 Frameworks and Drivers layer

This layer (Driver layer) encapsulates the interaction with the framework so that

the rest of the code can be reusable in case we want to exploit the same App on

another platform. With the framework layer, we are not only referring to the

19

Android framework, but to any external libraries that we want to deform in the

future.

2.4.7 Presentation layer

This is the layer that communicates data with the UI (Fragments & Activities) for

display data. For example, in this layer, that will wholly include the Model-View-

Controller pattern of a GUI.

2.5 Instrumentation tests

This kind of test will run on Android devices and emulators instead of running on

JVM. Also, these kinds of tests have access to the mobile phone and its resources

and are useful to unit test functionality which it is not possible to be mocked by

mocking frameworks.

In this approach, the foundation for the test is InstrumentationTestRunner which

will initial and load other test methods. It can interact with the Android system

through the instrumentation API.

2.6 Android Unit test

In this type of test, we verify that the logic of individual units is correct. Usually,

unit testing makes use of object mocking. Mock objects are created and configured

to present a certain behavior during testing. In fact, in the unit tests, we will create

a mock object to separate each unit of code from its dependency in order to have

different parts for test and repeat the test any number of times. Also, Junit is a

standard tool for unit tests on Android.

20

Typically, we are using some methods for the unit test including the setUp()

method, tearDown() method, and test method.

Inside the setUp() method, we are going to initialize the test and the related code

state.

Inside the tearDown() method, we can release resources that we used for test and it

will be invoked "after" every test.

All the methods in which their names start with the “test” keyword will be

considered as a test method. When the test method executes the other methods

inside itself, it will return some values that should be compared with the expected

value. JUnit provides a set of methods (“assert”) for this comparison and it will

issue an exception if the conditions are not met.

2.7 Test Components

This kind of test includes several parts for different components like test “activity”

(usually use Espresso), test “service” component, and test “content provider”

component.

For the testing service component, we use the ServiceTestRule class provided by

the Android Testing Support Library. This rule provides a simplified mechanism to

trigger and shut down your service before and after your test.

2.8 Mocking

Unit testing also makes use of object mocking. In this case, the real object is

exchanged by a replacement which has a predefined behavior for the test. Mock

objects are configured to perform a certain behavior during a test.

21

Chapter 3

Testing approach for architecture

We will implement our method for testing through using one of the demo projects
which is based on clean architecture. This application has a task to retrieve movie
data from a remote server and present this information on the screen. There are 4
different layers defined in this project, as we expected for clean architecture.

The first step of our testing is related to checking the architecture of the
application. In order, to reach this goal, we run a program that can be implemented
for both IOS and android. The programming language used for this aim is the bash
script. The shell file will be executed by the Gradle in android studio and also it
runs by building phases in Xcode.

This bash script program will target two main features of clean architecture for
testing including the number of layers and the dependency rule between these
layers.

For checking the number of layers, we will query base on the name of layers in the
group of classes name and for dependency rule. The key point for checking the
dependency rule is to extract the name of classes in a higher layer and search in the
lower layer classes for an object with the same name.

 STEP 1: determine how many layers do we have based
on the architecture that we are going to use in our project?!

 STEP 2: Check the rules between layers.

Entities

UseCase

Controlle

r

22

3.1 IOS layers in the architecture

For example, for the IOS layer, we can check the group of class’s base on the name

of these groups, and then we can count the number of layers.

Figure 3.2: Layers of architecture in IOS app

As we can see, in the above hierarchy of groups of classes Views and

ViewController, UseCases, Entities are 4 different layers of clean architecture that

considered for an application. However, these names could change for every layer

depend on the programmer who wants to choose a name, but generally, in a

company which works with an agile approach, they would choose the same names

for layers in their project. Also, the script for checking the number of layers is

changeable and easily could be adapted for different names for layers.

23

3.2 Android layers in the architecture

Also, for android, we have a group of java or Kotlin classes and we can use their

names for checking the architecture.

Figure 3.2: Layers of architecture in Android app

3.3 Execute a bash file by android studio SDK and Xcode

For executing the bash file by Xcode, we will add the bash file in the TEST

SCRIPT part of the project.

24

Figure 3.3.1: Running a script in Xcode

Moreover, for executing the bash file in Android studio, we can add it in Gradle

that we called it here “testArchitectureAndroid.sh”

Figure 3.3.2: Running a script in Android

3.4 Test number of layers in the architecture

Now, the question is, how this piece of code would check the number of layers?!

Well, simply when the bash code is running by Gradle or Xcode, it will start

searching between groups of classes for common names that usually developers are

going to use in the structure of code. It is a list of possible names for each layer and

our script is going to search in all subfolders these names. If it success to find the

names, then it will confirm that the layer exists. If the number of layers is not

matched with the expected number of layers in our architecture, the test would fail

and print a message in the log bar.

25

3.4.1 Test number of layers for Android

Figure 3.4.1: Checking the number of layers in Android

In the above code, for android, we checked the number of layers. For example, the

number of common names for using in layer 1 highlighted.

26

Figure 3.4.2: Print the result of the test in the script

In the previous part of the script, we will issue a message as a warning or a note to

print the result for testing.

3.4.2 Test number of layers for IOS

If we check the below code, obviously we can see, the peace of cod for the IOS

part is slightly different from the Android part.

27

Figure 3.4.3: Checking the number of layers in IOS

3.5 Test dependency rule between layers

Now, we are ready to check the dependency rule between all these layers. So,

based on the dependency rule, we will search inside the inner layer classes the

objects related to the outer layer classes. If the result of the search is positive, then

testing for the dependency rule is failed. Otherwise, if there is not any object

related to outer layer classes inside the inner layer, thus the dependency rule testing

is successful.

28

Moreover, we don’t need to check the dependency rule for the first inner layer.

3.5.1 Dependency rule for Android

Figure 3.5.1: Checking dependency rule for Android

As we can see, our testing for dependency rule starts from layer 2 and first extract

the name of classes in this layer. Then, in the next step, we will search any object

based on the names of these classes only in layer 1.

29

Figure 3.5.2: print dependency rule for Android

As we can observe in the previous code, the value will be set to 1 for

“flagMatch2”, if there will be any object inside layer 1 (inner layer) related to layer

2 (outer layer). Finally, the code will issue a message based on the value of this

flag.

There is also another point, which is about the pattern for objects defining by

different programming languages. For example, in Kotlin language we have these

prefixes for creating a new object of classes such as “.kt”. This could be also

modified for different languages.

30

3.5.2 Dependency rule for IOS

Also, for IOS, by looking at the code for dependency rule between layers, we

figure out that the implemented algorithm is as same as the Android part.

Figure 3.5.3: Checking dependency rule for IOS

In the above figure for testing dependency rule between layers in IOS, we tried to

find the classes with suffixes ".swift", then extract the name of the class for search

in other classes as an object.

31

Chapter 4

Unit and UI test for each layer of architecture

In this chapter, mainly we will work on the “UI” and unit “test”. Moreover, we will

employ our methods for testing by using one of the projects designed based on

clean architecture. More likely to chapter 3, this application retrieves data for

movies from a remote server and shows this information. But before going through

codes and analyze each layer, we need to know about Rxjava and its functionality

in this project.

4.1 Implementation of Rxjava

Rxjava allows us to form the reactive components in Android applications. By that

means, it provides a scheduler that schedules on the main thread or any given

looper for asynchronous tasks.

In the framework and driver layers of this project, we defined a class

"RemoteDataSourceImpl" to retrieve data from the remote source and display it on

the UI. There are some descriptions about the classes that we used and later, we

will mock them in the testing part.

One of the functions used in this class is “Observable” which has a task to observe

the outcome on the main thread.

For example, in a class:

Observable.just("one", "two", "three", "four", "five")

 .subscribeOn(Schedulers.newThread())

 .observeOn(AndroidSchedulers.mainThread())

 .subscribe(/* an Observer */);

32

This will run the Observable on a new thread, and send outcomes via onNext on

the main thread.

Another function is flatMapIterable which maps each item receiving from the

server-side into a list of items.

Also, “compose (traktShowToWatchableEntity())” transforms an observable

source by applying a particular transformer function to it.

Generally, the first function in this class is used to get a single pattern from a

remote source through an Id (getshow()) and then convert it to an observable object

(in order to be showed elements of this pattern via main thread). In the next step of

this function, we will transform (compose) these observable sources. Finally, we

will emit (singleOrError) them one by one.

4.2 Mockito implementation for test

Now, we are going to write a test for this function. In the Test class, we first Mock

the two interfaces to generate the fake response from the server side later in the

“RemoteDataSourceImpl” class. This will be done by using @Mock annotation for

these interfaces.

Figure 4.2.1: Mocking an interface

33

In the next step, before running any test case (after @Before annotation), we will

populate the annotated fields via MockitoAnnotations.initMocks and create an

object of a class that we want to test (here RemoteDataSourceImpl ()).

Figure 4.2.2: Initial a mocking object

Afterward, we will test the function through @Test annotation based on the BDD

approach which has 3 main steps Given-When-Then.

Figure 4.2.3: “Given” part of a test

In the When and Given part of test approach, we have

34

Figure 4.2.4: “When” part of the test

Moreover, we will generate the expected value to compare with the returned values

from class.

Figure 4.2.5: Expected values for comparison

Finally, we will compare the returned value and the expected one.

Figure 4.2.6: Compare the expected with the result

The result of this simple test if the expected value will be matched with the

returned one, we will get a match mark. Otherwise, the testing will fail and it will

return exception error with code 1.

35

4.3 Using Espresso for UI test

In terms of testing UI with espresso, there is a simple example of the project for

login.

In this class, we have two edit text fields for email and password. In the testing

class, we will set the value for them and then check if the button for login is

enabled or not.

Figure 4.3.1: Espresso for UI test

4.4 UseCase layer testing

In another case, by testing a class in use case layer, we can check the fidelity of its
functionality. Furthermore, this class in the usecase layer has a task to search a
keyword for a specific title or description related to the list of movies.

Like the previous procedure, at first, we mock the class that we want to use in our
test.

36

Figure 4.4.1: using Mockito for testing “UseCase” layer

Then, we will initiate the values in setUp() and after Test annotation, we will
define the expected value and the fake value as an input.

Figure 4.4.2: Initial a mock object for UseCase layer

37

Figure 4.4.3: “Given” part of the test for UseCase layer

Finally, we will compare the returned value and the expected one.

Figure 4.4.5: “When” and “Then” part of the test for UseCase layer

38

4.5 Data layer testing

In another case for testing different layers, inside the data layer of this application,
we have a class that its functionality is to receive data from the cache, and then if
any error happens, it will try to retrieve data from the remote data server. In this
case, the testing part only tests the calling functions for 2 different states of the
cache. In the first state, we get a Cache exception and data (list of single items)
retrieved from the remote data source. In this state, we will check if the function
related to the remote data source called.

Figure 4.5.1: Test for Data layer – getting cache exception

In the second state, we are not getting a cache exception and also we would never
call the function related to the remote data source.

39

Figure 4.5.2: Test for Data layer – without a cache exception

4.6 Unit test for IOS

Now, we are going to do a “Unit test” in the IOS app. This “Unit test” will be

performed by XCTest for asynchronous cod (specifically, network operations and
using a URL for retrieving data).

For this aim, we will use the XCTestExpectation class which performs long-
running tasks or background tasks, then wait for these tasks to satisfy expected
conditions.

After adding a new “Unit Test Case Class” to our project which called

“GetImageTests”, we will import the GetImage app below the “import XCTest”.

Figure 4.6.1: Implement XCTest framework in IOS for testing

Moreover, we are going to define an object named “urlUnderTest” inside setup()
function, in order to send a request to a server that contains information about
movies and series. Later, we will release this object in the teardown() function.

40

Figure 4.6.2: Define an URL object for testing

Now, we can add an asynchronous part in our test code.

Figure 4.6.3: Implement XCTestExpectation for testing

41

In the above code, we check if sending a simple request to the “tvmaze” server

return with status 200 then our expectation will satisfy (fulfill) and our test will be

successful. Otherwise, with another status code, the test will be failed. However, if

get a local error from the server, it will be considered also.

42

Chapter 5

Conclusion and Bibliography

5.1 Conclusion

In this thesis, we tried to figure out how much our method for testing can affect
development team performance for designing applications in both agile and
waterfall approaches.

Well, after applying this method for testing and first checking the architecture of
an application in advance, the development part and also putting different layers of
the application under test would be less time consuming for all team members.
Moreover, project managers have a better chance to conduct team efforts and
monitor the development process. Later, after the delivery of products, it is
completely obvious what is the structure and rules between different classes (since
we test the application architecture).

However, this approach has some drawbacks also, such as increasing the
complexity of code for testing architecture when the number of languages using in
development increases.

Overall, using architecture for the development and follow a procedure for
development would lead to a better quality for the product, faster debugging, more
objective testing, and maintenance.

43

5.2 Bibliography

[1] Paul Blundell, Diego Torres Milano “Learning Android Application
Testing”

[2] Synesthesia documents, “International Software Testing Qualification

Board”

[3] Synesthesia documents, “Mobile Architecture” [1] Paul Blundell, Diego
Torres Milano “Learning Android Application Testing”

[4] https://developer.android.com/topic/libraries/architecture/

[5] https://github.com/synesthesia-it/Murray

[6] https://developer.apple.com/

[7] https://www.raywenderlich.com/960290-ios-unit-testing-and-ui-testing-
tutorial

https://github.com/synesthesia-it/Murray
https://developer.apple.com/library/archive/referencelibrary/GettingStarted/DevelopiOSAppsSwift/

