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Summary

In the last decade, the incessant miniaturization of CMOS devices, as predicted by
Moore’s law, caused limitations such as an increase of leakage current and power
consumption. For this reason, many researchers began to investigate other fields in
order to overcome these problematics. Among these, spintronics surely stands out.
It exploits electron spin properties, instead of electric charge (which is exploited by
CMOS technology), leading to many advantages. Indeed, spintronic devices can offer
higher computing speed and storage capacities by dissipating less energy, compared
with CMOS chips. Among all spintronic objects, skyrmion are the most interesting
one because of their outstanding properties. Indeed, these quasi-particle objects
require lower depinning current than other spintronic objects (like domain walls)
and their size is smaller, allowing a denser storage of information. For this reason,
they represent a promising technology that in the future could become the key of
modern computing devices.

Chapter 1 of this work focuses on skyrmion characteristics, examining all ap-
plications in which they are used to carry information. In particular, it has been
studied how skyrmions can be nucleated, annihilated, moved and detected. In addi-
tion, it shows some papers in which basic logic functions, such as AND, NOT, OR,
have been implemented and simulated by micromagnetic software.

Chapter 2 examines another important topic: modern computing architecture. It
is known that most of them are based on the Von Neumann paradigm, which is based
on the exchange of data between the central processor unit (CPU) and a memory.
Consequently, this paradigm performance is heavily based on the speed of CPU and
memory. However, in the last decades, CPU performance increased much more than
memory ones, leading to a bottleneck: CPU is limited by memory speed. Logic-in-
memory approach attempts to overcome this limitation by: (1) bringing computation
inside memory, deleting the bottleneck, and (2), as a consequence, external memory
requests decrease drastically, reducing the overall power consumption. The goal of
this thesis has been to exploit skyrmion in order to implement a logic-in-memory
architecture.

Next step has been to choose an algorithm that is able to exploit logic-in-memory
characteristic. Advanced Encryption Standard (AES) has all key properties, indeed,
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it has high level of parallelism and its operations are not that complex. Chapter 3
describes the algorithm, providing a mathematical background in order to let the
reader understand easily how operations are performed.

Eventually, Chapter 4 illustrates how the algorithm has been implemented. In
particular, all AES operation has been described, explaining how the writing process
works and how skyrmion are guided inside the nanotracks. Moreover, due to the
complexity of the algorithm, it has been used a technique called ”linked” state
machines, in which, instead of having only one FSM controlling the whole algorithm,
there are multiple one that call each other whenever a certain state is reached.
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Chapter 1

Fundamentals of skyrmion

1.1 Historical facts

The existence of skyrmions as particle-like states in acentric magnets was first stud-
ied theoretically by Bogdanov [1], who carried out and presented results on exper-
iments related on micromagnetic theory of surface-induced Dzyaloshinskii-Moriya
interaction [2]. In particular, a theory on the existence of chiral skyrmions in B20-
type bulk helimagnets caused an uproar among scientific community [3]. However,
it was 2009 when the first experimental observation of skyrmions in B20-type chi-
ral materials made by Mühlbauer [4] was performed, leading to physicists to focus
more on skyrmions. Recently, observing skyrmions at room temperature without a
magnetic field has been achieved [5], representing a key milestone for the practical
applications of skyrmions.

1.2 Physical properties

Skyrmions are topologically stable field configurations with particle-like properties
which have been predicted theoretically and observed experimentally in condensed
matter systems. A skyrmion is characterized by three numbers: the Pontryagin
number Qs, the vorticity Qv and the helicity Qh. It is called a skyrmion (anti-
skyrmion) when the Pontryagin number Qs is positive (negative). Vorticity of a
skyrmion is defined by the winding number of the spin configurations projected
into the sx-sy plane [6]. The skyrmion number Qs can be evaluated by taking into
account this formula:

Qs = − 1

4π

∫
dxdy

(
m(r) ·

(
∂xm(r)× ∂ym(r)

))
(1.1)
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1 – Fundamentals of skyrmion

A remarkable property is that the helicity number Qh does not contribute to the
topological number, which is uniquely determined by the type of the Dzyaloshinskii-
Moriya interaction (DMI) [7]. Different values of helicity Qh determines a different
skrymion configuration. In particular, a skyrmion with the helicity 0 and π cor-
responds to the Néel skyrmion, while a skyrmion with the helicity π/2 and 3π/2
corresponds to the Bloch skyrmion [8].

Figure 1.1: (Top) Bloch (left) and Néel (middle) skyrmions with topological charge
Qs = 1 and polarity p = 1. Antiskyrmion (right) with topological charge Qs = 1
and p = 1. (Bottom) For Néel skyrmion (left), Bloch skyrmion (middle), and
antiskyrmion (right) the moments wrap around a unit sphere upon application of
stereographic projection. Figures extracted from [9].

1.3 Elementary functionality of skyrmion

In order to employ skrymions in practical application, it is important to pinpoint
how these objects can be created, moved, detected and manipulated. Therefore,
these elementary functionality are discussed in this section.

1.3.1 Skyrmion creation and annihilation

Skyrmion creation (nucleation) can be carried out in different ways: by taking into
account an electrical current, or a magnetic field, or local heating using laser irra-
diation [10][11][12]. However, the most reliable and consistent way of nucleating a
skrymion is by injecting an external electrical current. Nucleation of skyrmion in
nanostructures of thin magnetic films has been achieved in [10], by exploiting the
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1 – Fundamentals of skyrmion

spin transfer torque (STT). Regarding nucleation by electric current, the procedure
consists in simply injecting electical current into the disk as Figure 1.2 shows.

(a)

(b)

Figure 1.2: (a) Schematic of skyrmion creation by injection of an electrical current.
(b) Time-resolved magnetization dynamics of a disk under a current density of
Jc = 9× 108A/cm2 for skyrmion creation.

Beside from conventional approaches, skryrmions can be obtained also by con-
verting a domain wall1(DW). A study carried out by Zhou et al. [14] explains how
this phenomena occurs. After a domain wall has been created inside a nanowire
(Figure 1.3), an external electrical current is injected, causing the motion of the
domain wall. As soon as the DW reaches the interface, both of its end points are
pinned at the junction interface, whereas the central region of DW proceeds its
motion. Eventually, a skrymion is obtained.

In [15] Iwasaki et al. demonstrated the creation of skyrmion in a stripline-
shaped system with a square notch structure (Figure 1.4). Also in this method the
spin transfer torque assume a key role: as soon as electrical current flows, the spin
texture at the notch expands due to the STT. Afterwards, the presence of the DMI

1In magnetism, a domain wall is an interface separating magnetic domains. Their structure
and dynamics depend on the local properties of the material [13].
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1 – Fundamentals of skyrmion

Figure 1.3: Snapshots of a domain wall conversion into a skyrmion. Figures ex-
tracted from [14].

cause the curve of the spins, creating the skyrmion. Iwasaki et al. studied this
process by evaluting different parameters: the depth (d) and the width (w) of the
notch and the angle (θ) of the notch corner. They found out that, if d is not large
enough (relative to the skyrmion radius), only a small part of the skyrmion can be
nucleated, meaning that the skyrmion fades away after a short time. However, if d
is too large (d−w very small), the nucleation cannot be occur. Regarding θ, several
angles have been evaluated and it turned out that θ = 90◦ is the ideal angle.

Skyrmion annihilation can be achieved by exploiting similar method used for
nucleation: by applying local heat, magnetic field or electrical current. In addition
to these methods, skyrmion can be annihilated by simply pushing them to the
boundary under a driving current [16].

1.3.2 Skyrmion detection

Skyrmion detection can be accomplished by taking into account the Hall effect
(THE) or the magnetoresistance effect [17][18]. In [19], Crum et al. demon-
strated a spin-averaged electrical detection mechanism for single skyrmions in a
CPP-geometry2. In this experiment, two magnetic thin-film heterostructures have

2Current perpendicular-to-plane (CPP) giant magnetoresistance (GMR) effect is a resistance
change that depends upon the relative angle of the magnetization vectors in magnetic layers sep-
arated by thin non-magnetic layers, which can be utilized for magnetic sensor applications [20].
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1 – Fundamentals of skyrmion

Figure 1.4: Simulation snapshots showing the nucleation of a skyrmion around a
rectangular notch. Blue(red) represents the +z(−z) component of the magnetiza-
tion. Figures extracted from [15].

been considered (Figure 1.5), in particular fcc3 overlayers of Pd/Fe and Pd/Pd/Fe
on single crystal bulk fcc-Ir(111). The main reason why these materials has been
choosen lays on the fact that they generate large Dzyaloshinskii Moriya interactions
(DMI), which it has a key role in manipulating skyrmions.

Figure 1.5: Illustrative heterostructure cross-section for the perpendicular reading
of single nanoskyrmions. Figure extracted from [19].

In another study [21], skyrmion detection has been performed by exploiting the

3Face-centered cubic lattice (fcc), has lattice points at the eight corners of the unit cell plus
additional points at the centers of each face of the unit cell.

5



1 – Fundamentals of skyrmion

tunnel magnetoresistence effect at room temperature. The detection device consists
of a heavy metal (HM) layer, used, as in the previous case, in order to achieve high
values of DMI and spin hall effect (SHE). The ferromagnetic layers is used as point
contact for depositing the MTJ (Figure 1.6a).

Spin-polarized current

Whenever an electrical current passes through a ferromagnetic layer with fixed mag-
netization, it gets spin-polarized. It can be observed that the density of states (DOS)
of a ferromagnetic metal differs from the DOS of a normal metal. As Figure 1.6b
shows, each spin has a different DOS, indeed, the spin-up band at the Fermi level
is mostly filled, while there are many empty states available in the spin-down band.
Therefore, the conduction electrons injected in the ferromagnet feel a different value
of resistivity, according to their spin: the spin-down electrons have more states to
scatter into, meaning that the resistivity is higher (ρ↑) than the one felt by spin up
electrons (ρ↓).

(a)
(b)

Figure 1.6: (a) Schematic of the device. (b) Schematic of the density of states at
the Fermi level in a metal (left) and in a ferromagnetic metal (right). In the latter,
the density of states at the Fermi level is unbalanced for spin-up and spin-down
branches. Figure extracted from [22].

1.3.3 Skyrmion motion

Skyrmion can be moved by injecting an eletrical current through the spin Hall effect
(SHE) or the spin transfer torque (STT). Sampaio et al. studied skyrmion motion
in a nanotrack by taking into account the STT [10]. Firstly, spin-polarized currents
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1 – Fundamentals of skyrmion

are injected in-plane with adiabatic and non-adibatic spin tranfer torque 4 causing
skyrmion motion. As Figure 1.7 shows, initially, the skyrmion (t < 1ns) has a
longitudinal speed (along x-direction) and a transverse speed in the +y-direction for
β > α and the −y direction for β < α. It can be observed that the vertical motion
along y stops after ∆t, this phenomena occurs because of the repulsive interaction
caused by DMI. Eventually, the skyrmion moves with an horizontal speed which is
approximately equal to uβ/α, (u is proportional to the current density j).

Figure 1.7: Skyrmion motion in a nanotrack. Figure extracted from [10].

As discussed previously, spin Hall effect can be used in order to move skyrmion.
This phenomena originates in spin-Hall devices, where a ferromagnetic (FM) thin
film is deposited above a heavy metal (HM) substrate. In these devices, electrical
current is injected inside the HM layer. Due to spin-dependent scattering mecha-
nisms, the electrons will be diverted perpendicularly to their direction and to the
orientation of their spin. Consequently, an accumulation of charges region deploys
at the sides of the wire due to the SHE, each side is populated by electrons with
a well defined spin orientation. For istance, let us consider a current that flows in
the +x-direction and that the velocity acquired by the electrons is directed along
the +z-axis, charges accumulate at the top surface of the wire, making their spin
orientation pointing along the +y-axis. In addition, this spin current flowing in the
z-direction and polarized along the y-direction, can be collected by the FM thin film
deposited above the HM substrate. This transverse spin current then will interact
with the magnetization of the HM layer, again through the STT mechanism [23].

4Spin transfer torque is calculated by means of these formula, depending if it is an adiabatic or
non-adiabiatic function:

τadiab = um×

(
∂m

∂x
×m

)
, τnon−adiab = βm×

(
m×

∂m

∂x

)
(1.2)

β is the non-adiabatic parameter, whereas α is the Gilbert damping which is kept constant.
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1 – Fundamentals of skyrmion

(a) (b)

Figure 1.8: Illustration of current-induced skyrmion motion along a nanotrack
through either (a) STT or (b) SHE, respectively. Figure extracted from [7].

1.4 Advanced functionality of skyrmion

Thanks to their properties (low depinning current density, small size, low power
dissipation), skrymions can be manipulated in order to accomplish different tasks
such as duplication, merge or logic functions. In particular, a study carried out by
Zhang et al. [6] illustrates how skyrmion can be duplicated and merged (Figure
1.9). Firstly, skrymion is nucleated in a Y-shaped junction and, after applying an
electrical current, is converted into a domain-wall pair. As soon as the DW reaches
the central region of the Y-shaped junction, the domain-wall pair is split into two
domain wallpairs. Afterwards, they are converted back into two skyrmions, leading
to the duplication of the skyrmion. The information is stored by the position and
timing of a skyrmion. During this process, skyrmion quantum numbers (Qs, Qv,
Qh) change: (1, 1, 0) → (0, 0, 0) → (2, 1, 0). In a similar way, skyrmion can be
merged by converting in DW pair, and then converting back.

Duplication and merge operations can be used in order to implement basic logic
function, such as AND and OR gates (Figure 1.10). First of all, it is important
to highlight that in skrymion logic, the ”presence” of the skyrmion corresponds to
1 logic, whereas the ”absence” of the skyrmion corresponds to 0 logic. Regarding
the OR gate, it can be implemented by using a merge structure, indeed, whenever
one of the input has a skrymion (A = 1, B = 0 or A = 0, B = 1), simply this
skyrmion, after been converted into DW, moves inside the Y-shaped junction and
then, after been converted back, reaches the output. If there is a skyrmion in both
input (A = 1, B = 1), these are merged in one skyrmion. The AND gate structure
differs from previous one: the output nanowire in the Y-shaped junction is slightly
wider. This small change leads to an huge difference, indeed, whenever there is
only one skyrmion in the input nanowire (A = 1, B = 0 or A = 0, B = 1), the
converted DW scatters towards the edge of junction, until it annihilates. Therefore,
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1 – Fundamentals of skyrmion

Figure 1.9: The top figures show the magnetization configuration at eight different
times; the middle figures show the time evolution of the average spin components
mx, my, mz; the bottom figures show the time evolution of the skyrmion number
Qs. Duplication snapshots are on the left, merging on the right.

only when there are two skyrmions in the input nanowires (A = 1, B = 1), the DW
can overcome the Y-shaped junction and converted back to skrymion. Trivial is the
case in which there is no input, obviously there is no output.

In [24] a different approach has been followed in order to implement skyrmion-
based logic gates. The authors of this work define the system, that can be obtained
by using these gate, ”conservative”, meaning that skyrmion are not lost after the
operation ends. This is huge advantage because there is no need to nucleate a new
skyrmion whenever another operation is performed, leading to less power consume.
In addition, thanks to this property, it is possible to link different basic gates in order
to get a complex logic function. Two different conservative basic logic function has
been proposed: AND/OR and INV/COPY. Since this function is conservative, the
total number of skyrmions N provided to the inputs is the same at the outputs.
This conservative logic function is performed by the structure shown in 1.11, with
micromagnetic simulations. Skyrmions are pushed towards the +y-direction due to
the spin-Hall effect, at the same time, the skyrmion-Hall effect generates a x-directed
force which is opposed by repulsion from the track boundaries. However, as soon
as the skyrmions reaches the central junction, they are free to move, therefore,

9



1 – Fundamentals of skyrmion

Figure 1.10: Skyrmion-based OR and AND gate.

the skyrmion-Hall effect causes leftward skyrmion propagation unless repulsed by
a second skyrmion. This phenomena occurs when A = 0, B = 1, for this reason
the left output nanotrack represents the OR function, whereas the right one is
the AND function. Interesting is the case in which there are two skyrmions as
input: the skyrmion on the right track cannot change direction due to the repulsion
skyrmion-skyrmion. INV/COPY gate provides the same result of a basic NOT gate
(Figure 1.12). In other words, this structure has two inputs: IN , which is the input
that needs to be negated, and CTRL, whose aim is to make the gate working by
introducing skyrmion-skryrmion repulsion. In particular, the NOT operation takes
place when CTRL = 1, indeed, when IN = 0, the skryrmion on the right track
changes direction as soon as the hole is reached due to skrymion hall effect, carrying
out a skymion at the NOT output. Instead, when IN = 1, the skyrmion-skyrmion
repulsion acts, meaning that only the skyrmion in the middle track turns on the left.
Moreover, this gate provides an additional functionality: the left (COPY1) and the
right (COPY2) tracks duplicates the IN skyrmion.
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1 – Fundamentals of skyrmion

Figure 1.11: Micromagnetic simulation of conservative AND/OR logic gate with
input combinations (a) A = 0, B = 1; (b) A = 1, B = 0; and (c) A = B = 1. Figure
extracted from [24].

Figure 1.12: Micromagnetic simulation of conservative INV/COPY logic gate with
input combinations (a) IN = 1, CTRL = 1; (b) IN = 0, CTRL = 1. Figure
extracted from [24].
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1 – Fundamentals of skyrmion

In addition to these two logic gates, a synchronization mechanism has been
proposed (Figure 1.13). This element behaves differently as function of the electrical
current injected: whenever this value is under a threshold, the skyrmion gets stuck
in this structure indefinitely; whenever the current is great enough, the skyrmion
size gets smaller, letting it to overcome the notch structure.

Figure 1.13: Micromagnetic simulation of conservative (a) notch element and (b)
the electrical current injected as function of time. Figure extracted from [24].

Thanks to these three components (AND/OR, INV/COPY gates and the notch
element), more complex function logic can be implemented. For example, a full-
adder structure can be created, as Figure 1.14 shows. As it can be seen, a XOR
function can be implemented by taking into account two INV/COPY gates and then
merging the outputs. The notch element allows to synchronize skyrmions that come
out from different gates.

Figure 1.14: Micromagnetic simulation of conservative full adder. Figure extracted
from [24].
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Chapter 2

Logic-in-Memory architecture

Nowadays, most of all computing systems are based on the von Neumann paradigm.
This paradigm is based on the exchange of data between a Central Processing Unit
(CPU) and a memory. In particular, the CPU performs operations, and then results
are stored back in the memory. This data-exchanging mechanism is influenced by
the speed of the CPU and memory. However, in the last decades, CPU performances
increased much more than memory ones, leading to a so-called ”bottleneck”: CPU
is limited by memory speed [25]. Especially, in data-intensive algorithm, this limi-
tation has an huge impact on power consumption due to a large quantity of memory
access. As a consequence of von Neumann paradigm drawbacks, alternative archi-
tecture have been studied. In particular, the approach Logic-in-Memory (LiM)
attempts to overcome those limitations. Its key benefits are mainly: (1) Bringing the
computation directly inside the memory, solving the memory wall problem; (2) data
are computed directly inside the memory without the need to move them between
the computing and the storage units, drastically reducing the amount of memory
accesses and, therefore, the overall power consumption.

2.1 State of art

In-memory architecture can be classified in four different categories [26]:

(A) Computation-near-Memory. Although logic and storage are brought closer,
they are still two separate entities. Interaction between them is possible thanks
to 3D stacked integration technologies [27]. This approach benefits both length
of interconnections, by reducing them, and memory bandwidth.

(B) Computation-in-Memory. The structure of the memory array is not modified,
while its intrinsic analog functionality is exploited to perform computation.
In particular, in-memory computation is achieved by reading data from the
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2 – Logic-in-Memory architecture

memory which is then sensed by sense amplifiers (SAs). The result is then
written back in the memory array [28].

(C) Computation-with-Memory. In this kind of approach, the memory is seen as a
Content Addressable Memory (CAM), that fetches data from a look-up-table
(LUT) [29].

(D) Logic-in-Memory. Data are processed inside the memory, allowing to exploit
full bandwidth. As a consequence, memory access are less frequent than with
other architecture, meaning that there is less power consumption [30].

Figure 2.1: Main in-memory architectures. Figure extracted from [26].

2.2 Technologies supporting LiM architecture

Several studies show possible implemention for LiM paradigm, by exploiting differ-
ent technologies. In [31] perpendicular NanoMagnetic Logic (pNML) has been taken
into account. In this technology, magnets with perpendicular magnetic anisotropy
(PMA) are exploited [32]. Binary information is encoded by considering two stable
magnetization states. The logic 0 is represented by the magnetization up, whereas
the logic 1 by the down magnetization. In order to create a nucleation point, fo-
cused ion beam (FIB) is used, this tecnique irradiates on a single spot, reducing

14



2 – Logic-in-Memory architecture

the magnetic anisotropy [33] and, consequentally, making the magnet more sensible
to external magnetic fields. The magnetization state of a magnet depends on the
ferromagnetic (F) and/or anti-ferromagnetic (AF) coupling, that it is influced by
the position of neighbour magnets. Nevertheless, since coupling fields are not strong
enough, it is important to guarantee the presence of an external field (clock) that
let possible the information propagation.

Figure 2.2: (a) pNML elementary cells; (b) Nucleation by FIB irradiation; (c) Anti-
ferromagnetic coupling between adjacent magnets lying in the same plane; (d) Fer-
romagnetic coupling between magnets lying above each other in different layers; (e)
DWs pinned within a notch; (f) Energy barrier reduced by the in-plane field. Figure
extracted from [31].

Thanks to the monolithic 3D integration of pNML, logic-in-memory architecture
can be easily implemented, in a similar way as systolic architectures [34]. Figure 2.3
shows an implementation of a 2-bit accumulator, by applying pNML technology.

Matsunaga et al. proposed a logic-in-memory architecture based on magnet
tunnel junction (MTJ) in combination with MOS transistors [35]. Thanks to its
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2 – Logic-in-Memory architecture

Figure 2.3: A 2-bit accumulator exploiting the monolithic 3D integration of pNML
technology. Figure extracted from [31].

properties, such as low access time and small dimensions compared to CMOS tech-
nology, MTJ is able to fully take advantage of the logic-in-memory architecture.

(a)

(b)

Figure 2.4: (a) General structure of an MTJ-based logic-in-memory circuit. (b)
Overall circuit structure of the full adder with nonvolatile stored inputs. Figure
extracted from [35].

In Figure 2.4a, it can be seen the general structure of this logic-in-memory circuit.
It is possible to pinpoint three basic components: cross-coupled keeper (CCK) whose
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2 – Logic-in-Memory architecture

aim is to provides binary outputs, z and z′ (these values depends on signal current Iz
and I ′z), a dynamic current source (DCS), that cuts off steady current from VDD to
GND, and logic-circuit tree, that can be customized in order to get the wanted logic
function. Figure 2.4b shows a possible application of this architecture: a full adder.
Dynamic power dissipation is reduced to 23% then CMOS-based full Adder, thanks
to the fact that the present circuit structure makes it possible to reduce the number
of current paths from VDD to GND. The proposed nonvolatile logic-in-memory
circuit makes it possible not only to eliminate the static power consumption but
also to reduce the chip area. In the nonvolatile logic-in-memory circuit, write time
of an MTJ is one of the most important elements, because it also dominates the
write energy when updating stored inputs (Figure 2.5).

Figure 2.5: Full-adder specs, CMOS-based vs. MTJ-based architecture. Figure
extracted from [35].

2.3 Configurable logic-in-memory architecture

In [26], an interesting logic-in-memory approach has been proposed. In particular,
this architecture is a sort of mix of all in-memory computing (Section 2.1). This
increases the level of flexibility since the architecture can adapt to the algorithm
that needs to be implemented. Indeed, as Figure 2.6 illustrates, operations that
can be performed in-memory are sent to CLiM array. On the other hand, whenever
an operation cannot be execute in-memory, data are elaborated by computing-near-
memory unit. In addition, some extra-array (row and column) logic are available in
case cells need to exchange data with neighbours. The main property of a CLiM cell
is being able to configure itself to perform different types of operations. Beside local
data computation inside each cell, CLiM cells are interconnected between them:

• Intra-row operation among cells that belongs to the same row;

• Intra-column operation among cells that belongs to the same column;
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2 – Logic-in-Memory architecture

• Inter-row operation among cells that belongs to different rows;

• Inter-column operation among cells that belongs to different columns.

An example of how these interconnections can be exploited is the computation
of an array multiplier (AM). This logic block can be built by connecting two ripple
carry adder (RCA), different cells can be connected together to propagate the carry,
which, in turn, can be implemented by full adders. In other words, each CLiMa cell
implements a single full adder, and by exploiting intra-row operation, RCA can be
built. Eventually, AM is built by carrying out inter-row computation.

Figure 2.6: CLiMa structure. Figure extracted from [26].
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Chapter 3

Advanced Encryption Standard
algorithm

The Advanced Encryption Standard (AES) is a block cipher1 algorithm adopted
as standard for the encryption of data by the United States of America. It was
developed by two belgian cryptographers, Joan Daemen e Vincent Rijmen, who
won the AES selection process. Thanks to its speed, AES can be implemented in
both software and hardware, providing a good level of protection and security.

3.1 Mathematical background

In AES algorithm data are split in blocks of byte, each bit of every byte represents
the coefficient of a polynomial expression of the finite field GF (28), called Galois
field [37]:

{
b7,b6,b5,b4,b3,b2,b1,b0

}
⇒ b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x

1 + b0x
0

For example, let us consider the conversion of an hexadecimal-base number in
GF (28):

(
49
)
16

= 4 · 16 + 9 · 160 =
(
73
)
10

=
(
1001001

)
2

=
(
x7 + x4 + x1

)
GF (28)

The addition of two GF (28) elements can be carried out by performing a sum
mod 2 operation for each bit:

1A block cipher is a deterministic algorithm in which data are fixed-length groups of bits, these
blocks are, then, transformed by taking into account a key [36].
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3 – Advanced Encryption Standard algorithm

• GF (28): (x6 + x4 + x2 + x+ 1) + (x7 + x+ 1) = (x7 + x6 + x4 + x2)

• Binary: (01010111)2 ⊕ (10000011)2 = (11010100)2

• Hexadecimal: (57)16 ⊕ (83)16 = (D4)16

The symbol ⊕ represents the XOR operation, that provides the same output
of mod 2 sum. In GF (28), A(x) · B(x) can be performed by multplying polyno-
mials followed by a modular reduction with an irreducible eighth degree polynomial
m(x) = x8 +x4 +x2 +x+ 1 [37]. Let us consider an example in order to understand
better this operation. In particular, let us suppose to evaluate the multiplication
of f(x)g(x) where f(x) = b7x

7 + b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0 and

g(x) = x:

x× f(x) = (b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x) mod m(x)

If b7 = 0, the result is a polynomial of degree less than 8, which is already in
reduced form, meaning that no further operations are needed. However, if b7 = 1,
then reduction modulo m(x) needs to be performed by taking into account this
equation:

x8 mod m(x) =
[
m(x)− x8

]
= (x4 + x3 + x+ 1)

To sum up, multiplication by x – that has an huge importance in AES mix
columns operation – can be carried out as 1-bit left shift and, in case of b7 =
1, followed by a conditional bitwise XOR with (00011011), which corresponds to
(x4 + x3 + x+ 1):

x× f(x) =

{
b6b5b4b3b2b10 if b7 = 0,

b6b5b4b3b2b10⊕ 00011011 if b7 = 1.

3.2 Algorithm description

In AES algorithm, the plaintext is divided in fixed length block of 128 bits, whereas
the key can assume three different values: 128, 192 or 256 (Table ??). AES operates
on a 4× 4 matrix, defined as state, which is modified at every stage of encryption
and decryption. After the last stage is performed, chipertext is copied to an output
matrix. The key size used for an AES cipher specifies the number of transformation
rounds. An AES round carries out four different operations. In particular:
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3 – Advanced Encryption Standard algorithm

• SubBytes: each byte is replaced by examining a S-box;

• ShiftRow: bytes in the same row rotates;

• MixColumns: GF (28) multiplication are performed;

• AddRoundKey: each bytes executes a bitwise XOR with the key;

Key size 4/16/128 6/24/192 8/32/256
Plaintext block size 4/16/128 4/16/128 4/16/128
Number of rounds 10 12 14
Round key size 4/16/128 4/16/128 4/16/128
Expanded key size 44/176 52/208 60/240

Table 3.1: AES parameters, data are expressed in words, bytes and bits.

As Figure 3.1 shows, when the algorithm starts, an additional AddRoundKey
operation is executed; the final round does not performs a MixColumns transforma-
tion.

Figure 3.1: AES rounds.
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3.2.1 SubBytes

In this operation, each byte is substituted by means of a S-box. In particular, each
word is split in two groups of four bits, the most significant group selects the row
of the S-box, whereas the least significant one selects the column. The element that
replaces the initial value belongs to the row and column choosen.

Figure 3.2: SubBytes operation.

3.2.2 ShiftRow

ShifRow trasformation involves the shift of each row by a number of position. In
particular, no shift is performed by the first row, one shift for the second one, two
for the third one and, eventually, three for the fourth one.

Figure 3.3: ShiftRow operation.
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3.2.3 MixColumns

In this operation, each column undergoes to a invertible linear transformation. In
particular, a multiplication with a constant matrix occurs, whose coefficient are
determined by fixed polynomial c(x) = 3x3 + x2 + x+ 2.

Figure 3.4: MixColumns operation.

3.2.4 AddRoundKey

Each element of the state matrix is XORed with each element of the key, whose
values differs from each round.

Figure 3.5: AddRoundKey operation.
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3.2.5 Key scheduler

At each round, the key undergoes to several transformation (Figure 3.6). In partic-
ular, each element of the last column (k0i,3) is rotated of one position:

[k00,3 k
0
1,3 k

0
2,3 k

0
3,3]⇒ [k01,3 k

0
2,3 k

0
3,3 k

0
0,3]

Afterwards, each words is replaced by means of the S-box:

[k01,3 k
0
2,3 k

0
3,3 k

0
0,3]⇒ [k0s(1,3) k

′
s(2,3) k

′
s(3,3) k

′
s(0,3)]

Next step involves the use of constant matrix 4× 10:

RCON =


01 02 04 08 10 20 40 80 1b 36
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00


The S-boxed elements are XORed with one of the column of RCON , this one is
choosen in function of the round (i.e. round 1 → Rcon[0]):

k0s(1,3) ⊕Rcon[0,i]

k0s(2,3) ⊕Rcon[1,i]

k0s(3,3) ⊕Rcon[2,i]

k0s(0,3) ⊕Rcon[3,i]

 =


k0r(1,3)
k0r(2,3)
k0r(3,3)
k0r(0,3)


Then, the result is XORed again with the first column of the key:

k0r(1,3) ⊕ k00,3
k0r(2,3) ⊕ k01,3
k0r(3,3) ⊕ k02,3
k0r(0,3) ⊕ k03,3

 =


k10,0
k11,0
k12,0
k13,0


Eventually, the columns of the original key left are XORed with the columns of the
new key:

k10,0 ⊕ k00,1
k11,0 ⊕ k01,1
k12,0 ⊕ k02,1
k13,0 ⊕ k03,1

 =


k10,1
k11,1
k12,1
k13,1

 ,


k10,1 ⊕ k00,2
k11,1 ⊕ k01,2
k12,1 ⊕ k02,2
k13,1 ⊕ k03,2

 =


k10,2
k11,2
k12,2
k13,2

 ,


k10,2 ⊕ k00,3
k11,2 ⊕ k01,3
k12,2 ⊕ k02,3
k13,2 ⊕ k03,3

 =


k10,3
k11,3
k12,3
k13,3
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Figure 3.6: Key scheduler schematics.
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Chapter 4

AES algorithm based on magnetic
skyrmion

4.1 Memory array structure

The architecture based on skyrmions that has been developed is illustrated in Fig-
ure 4.16. In particular, it is structured as a matrix 4 × 4, in which each element
represents a single word. Thanks to the fact that skyrmions are already non-volatile
information carriers, data memorization occurs in an easier way than traditional
CMOS-based architecture. Indeed, it is enough to nucleate them inside a nanotrack
for having a storing of information: it is not necessary to move them anywhere else.
In other words, whenever a bit needs to stored, the control unit sends a signal to
a write head, placed at the beginning of the racetrack, that nucleates the skyrmion
and shift it.

Figure 4.1: Words organization.

Therefore, since there are in total 16 words, a racetrack is present in each of them,
leading to 16 nanotrack totally. During the design process, it has been decided to
position the write head of each racetrack on the bottom of the word. This has been
done in order to exploit better skyrmions properties. In addition, the MSB occupies
the top cell (each word is composed of 8 cells, since it represents a byte), therefore,
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the first skyrmion to be nucleated is the MSB (Figure 4.1). This action is repeated
until the LSB is initialized.

4.2 Writing process

The writing process requires the use of a shift register. Input data is, firstly, saved in
this block, and, then, by enabling the control signal CTRL WORD SHIFT, each
bit comes out from the register. The output controls the write head MTJ W.

Figure 4.2: Words organization.

In particular, Figure 4.3 shows how each cells interface with the racetrack. After
being nucleated, CTRL Vbl is asserted, leading to skyrmion movement. This process
is repeated until all skyrmion have been written. Eventually, as soon as all of them
reach the first lateral track labeled Vmov, the control unit stops the injection of
current Vbl. As a consequence, skyrmions stand still until another operation begins.

Figure 4.3: Writing process structure.
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Deviation and lateral input block

Before explaining next process steps, it is important to describe how skyrmions
can be deflected and which kind of physical structure allows this operation. Experi-
ments have been carried out by exploiting a micromagnetic simulator called Mumax :
a GPU-accelerated simulation software that, given a structure and given a subdi-
vision of this structure into cells (Figure 4.4), solves the LLG equation in each cell
providing, among the possible outputs, the time evolution of the magnetization. In
writing the code to be simulated is necessary to describe the structure and the initial
magnetization state. In each cell a different value of current is injected.

Figure 4.4: Nanotracks splitted in cells.

In this structure, skyrmion is, firstly, pushed down by applying a current in the
racetrack whose direction is toward the bottom. If this is not enough, skyrmion
gets stuck due to the notch. In case of deviation, another current is injected in the
lateral track, pushing the skyrmion to the left (Figure 4.5). On the other hand, in
case of skyrmion going straight, the current density in the racetrack needs to have a
high value (2× 1011A/m2), in order to overcome the notch (Figure 4.6). Moreover,
another lateral track has been added for the sake of studying skyrmion behaviour in
case of lateral input. Whenever skyrmion reaches the end of the lateral input track,
it gets driven down by the current of the racetrack, independently from its value
(Figure 4.7).
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(a) (b)

(c)

Figure 4.5: Mumax simulation with Jracetrack = 2 × 1011A/m2 and JlateralTrack =
0A/m2. Skyrmion does not change track and overcome the notch.
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(a) (b)

(c)

Figure 4.6: Mumax simulation with Jracetrack = 5 × 1010A/m2 and JlateralTrack =
2× 1011A/m2. Skyrmion changes track due to JlateralTrack.
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(a) (b)

(c)

Figure 4.7: Mumax simulation with Jracetrack = 5 × 1010A/m2 and JlateralTrack =
5 × 1010A/m2. Skyrmion comes out from lateral track and is pushed down in the
racetrack.
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4.3 AddRoundKey operation

AddRounKey operation starts as soon as skyrmion reaches the first lateral track,
labelled Vmov. Here, respectively, CTRL Vmov and CTRL Vtop are asserted, leading
to the skyrmion to reach the duplication element (x2). The bottom output keeps
moving until it is stopped by the notch element of the synchronizing net. On the
other hand, the top output is sent back to the racetrack and then flushed, by enabling
CTRL Vbl.

Figure 4.8: AddRoundKey datapath: inputs initialization.

The write head in Figure 4.8 nucleates a skyrmion if the bit of the key is a
’1’ logic. In that case, CTRL Vext is enabled causing the movement of the key
skyrmion, that ends as soon as the synchronizing net is approached. Afterwards,
the actual XOR operation takes place: skyrmions are guided inside the INV/COPY
gates (whose functionality is explained in Section 1.4) by applying CURRENT Vxor.

Figure 4.9: AddRoundKey datapath: XOR operation.

Outputs are, then, joined together, providing the XOR result. Next step is send-
ing back the output by exploiting the deviation block: CTRL VfeedA is asserted,
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enabling skyrmion deflection. Subsequently, CTRL Vdev and CTRL Vret are as-
serted, bringing the output inside the racetrack and, at the same time, ending the
AddRoundKey operation.

Figure 4.10: AddRoundKey datapath: sending back output.

4.4 SubBytes operation

SubBytes first steps are the same as AddRoundkey. The main difference involves
the deviation block at the end of the XOR block: skyrmion are not deviated, but
sent straight. Here, the output is read by a MTJ R that, in presence of a skyrmion,
generates an impulse of 10ps.

Figure 4.11: SubBytes datapath: (a) skyrmion path and (b) reading.
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Since the impulse generated by the MTJ R lasts for dozens picoseconds, this
value must be stored, otherwise, it will not be sensed at next clock rising edge. SR
latch are used:

Figure 4.12: SR Latch.
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Latch outputs are sent to a look-up-table (S-BOX), that contains the value of
the byte that needs to be substituted. At this point, control unit compares the latch
output with S-BOX output. Table below shows all four cases that can occur:

LATCH S BOX

0 0 The subytes operation ends
0 1 A skyrmion must be nucleated
1 0 The skyrmion sensed is annihilated
1 1 The skyrmion sensed is guided back to the racetrack

Table 4.1: Truth table.

In the second case (the first one is trivial), a skyrmion must be nucleated. This
can be performed by exploiting the write head in Figure 4.13.

Figure 4.13: SubBytes operation: second case.

In the third case, the MTJ R senses a control signal, that enables the skyrmion
annihilation. In the last case, the procedure consists in guiding back the skyrmion to
the racetrack. This is executed by enabling the second deviation block by asserting
CTRL VfeedB.

4.5 ShiftRow operation

Figure 4.14 shows the elements needed in order to perform ShiftRow operation.
In particular, after completing SubBytes operation, skyrmion are pushed down in
the racetrack until they reach the lateral track labelled Vshr. Here, by asserting
CTRL Vshr, skyrmions from words of the same row get in a sort of ”circular”
nanotrack, thanks to the join elements. After the first word overcomes the last
join, three different cases can occur, depending on the number of shift that needs to
be performed. As soon as skyrmion reaches its cell destination, deviation block is
enabled thanks to CTRL Vback. ShifRow operation ends.
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4.6 MixColumns operation

Since its complexity, this operation has been splitted in two sub-process. Firstly,
all multiplication with costant matrix are performed, and, then, XOR operation
between all results is executed.

Multiplication sub-process

First step involves the use of the duplication element whose lateral track is labelled
VdupA (Figure 4.16). This must be done in order to preserve the initial data, since
MixColumns operation is repeated for four times. Next step depends on which kind
of multiplication needs to be performed. In particular, in case of X1, skyrmion are
pushed inside the first lateral track (from the bottom) labelled Vmov. In case of X3,
skyrmion gets inside the second lateral track labelled Vmov. This is done for two
reasons: storing the initial data1 and reading the MSB (Section 3.1).

Figure 4.15: Multiplication operation: initialization. This figure shows the last cell
of the word, in which there is a read head in the second lateral track labelled Vmov.

Afterwards, since the multiplication for 2 can be carried out as 1-bit left shift,
this can be done by, simply, asserting the CTRL Vbl. This causes the skyrmion to
reach next cell first lateral track labelled Vmov. It is important to highlight that,
in case of X2, the MSB reading occurs at the end of the racetrack. Moreover, as
explained in SubBytes operation, the output of the read head must be stored in
a latch in order to preserve the information. Therefore, two latches for each word
needs to be used. Then, control unit checks latches output and, in case they are ’1’,
a XOR operation with a constant value needs to be performed (Section 3.1). After
this operation is executed, two different case can occur: in case of X3, the results

1Multiplication for three can be done by exploiting a mathematical trick: (11)2 can be written
as (01)2⊕ (10)2. This means that X3 can be performed as X2 and the result is XORed with initial
data. For example, (56)16 · (03)16 = (56)16 · [(56)16 · (02)16].
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must be feeded back in order to compute the second round of XOR operation with
the initial data, which is sent to the synchronization net by asserting CTRL Vbot;
in case of X2 and X1, skyrmions keep going straight and are blocked by the notch
after the deviation block.

Figure 4.16: Multiplication operation: XOR operation.

Addition sub-process

After all multiplication ends, the second sub-process of MixColumns operation be-
gins. As Figure 4.17 shows, firstly, two preliminary XOR operations are performed,
and, then, outputs are XORed again. Therefore, each MixColumn round needs two
addition sub-process.

Figure 4.17: Addition operation: schematic.
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As Figure 4.18 illustrates, skyrmion are pushed into a ”circular” nanotrack (sim-
iliar to the one used for ShiftRow operation) thanks to join elements. It is important
to highlight that only skyrmions not belonging to ”host words2” get inside this track.

Figure 4.18: Addition operation: skyrmion transfer.

Skyrmion destination depends on the addition round. For example, in the first
round, skyrmions coming from word 3 transfer in word 1, whereas those coming from
word 2 transfer in word 0. Aftewards, XOR operations take place and the output is
sent again to the ”circular” track: addition output of word 1 gets inside XOR block
of word 0, here last operation is executed, ending the first round of MixColumns.
Multiplication and addition sub-process are repeated other three times.

4.7 Reading process

At the end of each round, data is written in an output register, by exploiting the
read head at the end of each racetrack. By implementing in this way, not only the
final output is avalaible to be read, but also partial results of each round.

4.8 Key expansion block

This section explains how key scheduler is performed. Firstly, words from column
3 are extracted from a register file. After rotating these data, their bits are split in
two groups of four and compared with S-BOXes. Subsequently, outputs are XORed
with the elements of column 0 and a costant value RCON. The result is written in
the register file of column 0 and, at the same time, XORed with the elements of
column 1. Same procedure is repeated until all key columns are updated. As it can
be seen in Figure 4.28, multiplexer inputs are the inital key and the updated key.

2Host words are those words in which the XOR operation takes place. For example, in the first
round of XOR sub-process, host words are 00 and 01, in the second one only 00.
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4.9 Control unit

Due to the complexity of the algorithm, it has been decided to implement linked
FSMs (Figure 4.20), instead of having only one FSM that controls the whole al-
gorithm. In particular, the master FSM executes ”some states” until state SA is
reached. Here, a START signal enables a low-hierarchically FSM, allowing that
state machine to move from IDLE state into the counting sequence. When the
low-hierarchically state machine reaches state SB, the signal DONE is asserted,
which acts as input to the master FSM, allowing to move it to next state. The
low-hierarchically state machine returns to the IDLE state.

Figure 4.20: Linked state machines.

Each AES operation has its own state machine, except for MixColumn opera-
tion. Indeed, due to its complexity, it has been decided to split it in multiplication
FSM and addition FSM. Beside enabling each operation, the master state machine
executes the writing process and the reading process. As Figure 4.21 shows, after
completing S 21, master FSM starts next round and update a counter that takes
into account the round number. When round number = 10, the writing of the final
result begins, ending the algorithm computation. SubBytes FSM performs different
computation as function of the output of latches and the output of the S-BOX (Fig-
ure 4.23). In addition, ShifRow FSM receives a input signal (ROTATE) generated
by the master that identify the number of shifts that needs to be done. In a sim-
ilar way, master FSM sends a signal (MULTIPLICATION) to multiplication FSM
that specify which product to execute (Figure 4.24). Moreover, since the addition
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sub-process in MixColumns requires four rounds, it has been decided to split this
operation in two FSM, a master state machine that performs the addition (Figure
4.26) and a slave one that performs the skyrmion transfers between words of the
same column (Figure 4.27). These state machines communicate with signal START
and DONE.

Figure 4.21: MasterFSM diagram state.
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Figure 4.22: AddRoundKeyFSM diagram state.
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Figure 4.25: MultiplicationFSM diagram state.
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Figure 4.27: AdditionFSM diagram state: slave.
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4.10 VHDL Model

To verify the functioning of the architecture that have been discussed, a VHDL
behavioural description has been implemented. The main goal has been on repro-
ducing in the simplest way possible the behaviour of each of the components used
inside the cells. In particular, these following components have been taken into
account:

• Line: In the line element, the simulation step is 10 ps. Whenever a skyrmion
is detected at the input, its position will be (0.0, 0.0); coordinates are refreshed
every 10 ps only if the current is higher than the depinning current value. If
this is the case, the new x coordinate is computed as the old x coordinate,
plus the elapsed time multiplied by the horizontal speed, while the y coordinate
remains always equal to zero. Therefore, only the horizontal movement of the
skyrmion is taken into account. Whenever a skyrmion reaches the end of the
line, it is emitted by generating an impulse of 10 ps.

• Join: The join element is quite similar to the line: instead of one input,
two are taken into account. However, they are considered as point-like and
coincident, that is, a skyrmion can enter from two different inputs, but both
these inputs are considered exactly like the single input of a line element. In
addition, this implementation lacks of the skyrmion-skyrmion collision at the
junction. From this point on, the description of the gate is exactly the same as
for the line: the y coordinate never changes and the x coordinate is updated
each 10 ps.

• Notch: There are two different depinning current: one allows skyrmion move-
ment, the others let the skyrmion overcome the notch. Subsequently, skyrmion
speed changes as function of the injected current. If the current applied is
equal or higher than the current value needed for making the skyrmion go
through the notch, this element can be considered as simple line. On the
other hand, whenever the current injected is intermediate between the two
depinning current values, a more complex behaviour is described. Firstly,
it is important to understand if the skyrmion, whose coordinates are be-
ing updated, crossed already the notch: in this case, updated x coordinate
can be evaluated as usual (this time using the lowest velocity value). If in-
stead it still has to go through the notch, it is important to check if there
other skyrmion already stuck in the notch. The minimum distance from
the notch that is allowed for the considered skyrmion, as a function of the
number of blocking skyrmions, is computed by adding to the diameter of
a skyrmion the minimum skyrmion-skyrmion distance. If notch distance =
notch xCoordinateold xCoordinate is greater than minimum distance by at
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least ∆ distance = horizontalV elocity · elapsedT ime, then the new x coordi-
nate can again be computed as usal, adding to the old x coordinate the value of
∆ distance. On the other hand, if the skyrmion is not allowed to complete its
movement due to the presence of other blocked skyrmions, then the skyrmion
queues up.

• MTJR: If a skyrmion has been detected and if the input current is greater
than depinning current, an impulse is generated; in any other case the output
is 0.

• MTJW If the input CTRL is asserted, an impulse is generated (meaning that
a skyrmion has been nucleated); in any other case the output is 0.

• Duplication: If a skyrmion is detected on the input, and if the input current
is greater than depinnin current, both outputs generate an impulse (the input
skyrmion is duplicated); in any other case both outputs are 0.

• Deviation: This element takes into account two different depinning currents,
similarly to notch element. There are two inputs and two outputs. If the
current of the racetrack is greater than notch depinning current, this element
behaves like a line. In case it is lower but greater than the current needed to
move it, it will gets stuck at the notch. Here, in case the skyrmion needs to
change track, a lateral current is applied.

• Cross: If a skyrmion has been detected on input A and the current in this
input is greater than depinning current, the output A generates an impulse.
Similarly, if a skyrmion has been detected on input B and the current in this
input is greater than depinning current, the output B generates an impulse.
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4.11 Simulation

Simulations have been carried out by using ModelSim software, Figure below shows
the benchmark used in order to verify the functionality of the architecture. Signal
that have been plotted are: DATA IN (it is a matrix 4x4 of the data that needs to be
encrypted), DATA OUT (it is a matrix 4x4 of the data that have been encrypted,
these register are updated each round) and ROUND that it is a counter that is
updated each round.

Figure 4.28: Simulation results.

Afterwards, output data have been compared with a python script (it uses the
package PyCryptodome [38]) by providing same data input and key.

4.12 Architecture performance

Finally, some parameters have been evaluated: throughput, latency and power con-
sumption. In particular, it has been considered writing latency, that it is the time
needed in order to nucleate the skyrmions of a word, and encryption latency. Criti-
cal path has been also taken into account and it corresponds to the time from when
the skyrmion is nucleated in the racetrack to when it reaches next cell (740 ps).
Regarding power dissipation, it have been evaluated by considering both the sheet
resistance3 and the electrical current that flows in the track. Power can be obtained

3Sheet resistance, often called sheet resistivity, is a measure of resistance of thin films that are
nominally uniform in thickness. In a regular three-dimensional conductor, the resistance can be
written as:

R = ρ
L

A
= ρ

L

Wt
(4.1)

where ρ is the resistivity, A is the cross-sectional area, and L is the length. The cross-sectional
area can be split into the width W and the sheet thickness t. By managing Equation (4.1), the
sheet resistance Rs can be obtained:

R =
ρ

t

L

W
= Rs

L

W
(4.2)
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by taking into account this equation:

P = Rs · I2 (4.3)

The tracks in which skyrmions move is composed of two layers, a platinum layer
(Pt) and a cobalt layer (Co). The sheet resistance value of this particular alloy is
40Ω [39]. Table below shows power consumption for each AES operation:

Operation Power(nW)

Writing 6.4
AddRoundKey 153.6
SubBytes 104.96
ShiftRow 32.8
MixColumns(Multiplication) 153.6
MixColumns(Addition) 27.2

Table 4.2: Power consumption for each operation.

In order to have a complete analysis, it has been choosen to evaluate power
dissipation of control unit. This has been accomplished by exploiting a design com-
piler (Synopsis) that has an useful tool that allows to calculate power consumption.
Eventually a comparison4 with other AES implementation has been carried out:

Design Power Latency Throughput

Feldhofer [40] 4.5 µW 10.32ms 12.4 Kbps
Kaps [41] 20.23 µW 1.07ms 119.6 Kbps
Lin [42] 40.9 mW 30ns 4.2 Gbps
Hawng [43] 0.69 µW 3.56ms 35.9 Kbps
This work 1.1 mW 3.55µs 36 Mbps

Table 4.3: Architecture parameters compared with previous works.

4Since the power consumed by the FSM is much greater (∼ mW) than the one dissipated by
the datapath (∼ nW), only the first one has been considered in the comparison.
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Conclusions

Starting from the description of skyrmion basic functionality, it has been shows how
these magnetic objects can be manipulated in order to perform logic functions such
AND/OR and INV/COPY.
Secondly, it has been showed how modern computing devices are limited due to the
presence of a ”bottleneck” between CPU and memory performance. This limitation
can be solved by using a logic-in-memory architecture in which logic and mem-
ory become only one entity, and not two separated one. Thanks to their property
(small size, low depinning current, low power consumption), skyrmion assumes the
role of information carrier in this kind of architecture. Advanced Encryption Stan-
dard algorithm has been taken into account in order to show how powerful mixing
skyrmions and logic-in-memory architecture is. In particular, Chapter 4 illustrated
how skyrmions can be manipulated by only applying an electrical current and how
complex AES operation such as ShiftRow and MixColumns can be implemented.
From an energetic point of view, it has been shown that each operation dissipates a
really low amount of power (∼ nW). On the other hand, controlling all signals that
enable the injection of current in each track requires an higher amount of energy
(∼ mW). A future study can be focused on optimizing control unit in order to reduce
the power consumption. The architecture proposed showed how high throughput
can be reached (∼ 37 Mbps) without consuming too much energy. This result has
been compared with previous work.
In addition, there are still some issues that need to be solved: it has been assumed
the possibility of allowing two nanotracks to cross without causing any alteration of
the information. Until today, any solution have been provided in literature. Until
today, any solution have been provided in literature. Another assumption made in
this thesis that should be verified from a physical point of view is related to the pos-
sibility of separating two metal traces with some dielectric in between, indeed this
could cause the annihilation of the skyrmion. This is extremely important in cross
regions in which sneaky current could deviate the skyrmion from its path. If this
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assumption was proved wrong, some other mechanisms for dynamically controlling
the skyrmion motion needs to be studied, otherwise the architecture would not work
properly.
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