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Abstract

In recent literature, increasing experimental and numer-
ical effort has been devoted to understanding and predict-
ing the behavior of glassy systems. Among those classes
of materials, of particular relevance are network glasses.
In such system the composing particles can form a small
number of bonds with their neighbors, leading then to an
overall network structure. Among everyday materials, com-
mon window glass is perhaps the most obvious example of
a network glass, but many others have, on the microscopic
scale, a disordered network structure.

To better understand these materials, it is of primary
importance to figure out the role and the local organiza-
tion of the bonds in the network structure. In literature,
a common way to study such systems is via the use of
patchy colloids as a simplified model. In this thesis we
analyze the behavior of patchy colloids by simulating them
as patchy particles. These patchy particles consist of hard-
spheres with a fixed number of patchy sites on their surfaces,
through which the bonds can form. Starting from a simu-
lated 2d system of such particles, we compare its behavior
with analytical results from Wertheim theory.

We then analyze the effect of the external conditions of
the system by constructing an approximated phase diagram.
Once the global behavior is fully characterized, the main
goal of this thesis is to investigate how different local
conditions drive the breaking and forming of bonds. In
particular, we apply supervised learning techniques to
predict which bonds are more likely to break in a certain
configuration, looking only at the information given by the
positions and connections of the particles. We essentially
show which local parameters associated with each bond,
from a picture of the system taken at equilibrium, are
sufficient to train a neural network and infer the breaking
time.

Even though the dynamics of the particles cannot be
completely predicted by their position at a certain time,
this approach can be a good starting point for understand-
ing the interplay between local structure and dynamics in
these complex materials.
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Introduction 1

1.1 What are glasses

It is hard to overstate the importance of the role glasses have played
in human history over the centuries. From art and architecture to
engineering and modern technological devices, glasses have found
a wide spectrum of applications in very different environments.
But an important question with a not necessarily easy answer is:
what is a glass?

In fact, even though many cultures in the history learned how
to masterfully produce and treat glassy materials, even to this
days this question remains poorly understood [3; 4; 5; 6]. From
many studies, we know that when we rapidly cool down a liquid
at a high temperature, it can reach a solid state before having
enough time to organize itself in a crystal structure. When a
liquid is cooled down beyond its freezing temperature Tm, but
has not yet had time to crystallize, it forms a metastable state
with respect to the crystal structure. We then get a glass. In
a liquid we can define quantities such as relaxation time τ and
viscosity µ, which are respectively the time the system needs to
re-equilibrate after a perturbation and a coefficient expressing the
resistance of the liquid to deformation. Both these two parameters
can be used to quantify then the propensity of the system to flow
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1. Introduction

and change its conformation: the smaller they are, the faster
the particles move. In a liquid at very high temperatures, τ
is on the order of 0.1-1ps, and µ on the order of 10−4Pa · s [7].
Decreasing the temperature the system slows down, and these
quantities increase more and more. When τ is high enough to
be comparable with the experimental time-scales (around 100-
1000s), the liquid would be too viscous to flow, behaving very
similar to a solid. Then in literature this empirical point is usually
known under the name of glass transition temperature (Tg) [3; 7],
below which we can effectively assume to deal with a material
identified as a glass. The fact that this transition originates from
an empirical observation makes the definition of a glass somewhat
ambiguous, and dependent on how long we are willing to continue
our measurements. One other possible starting point is to classify
a glass with respect to its differences with a crystalline solid. When
particles in the system start to crystallize, they tend to form a
geometrically ordered structure, where each of them occupies a
fixed position with only small variations given by the thermal
fluctuation. In glass formation, as already said, the system do
not have the time to organize in such a way, even though the
temperature is low enough to favor the crystal phase over the
liquid one. The result is that we have a “liquid” system which
would prefer to organize into a crystalline structure, but whose
dynamics are so slow that it may take a practically infinite time to
reach it. This means that the glass phase is an out-of-equilibrium
state of the system. Both the inherent out-of-equilibrium nature,
and the fact that the dynamics are extremely slow, make glassy
systems extremely challenging to study.

1.1.1 Studying glasses

As a common approach in physics, the structure of a system can
be reproduced and studied by the use of simplified models, enlight-
ening only the most relevant features. The case of simple glasses is
obviously not different. In past literature many different strategies
have been applied to resolve the open questions surrounding the
glass transition. There are two main ways of getting data on a
glassy system: experiments and numerical simulations.

The most natural way to analyze a glass transition, which has
also a long history in literature [8; 9; 10], is to take a molecu-
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1.1. What are glasses

lar or atomic liquid and measure its behavior after super-cooling.
This type of analysis reveals the most complex part of the glass
transition problem: the fact that the relaxation time changes 14
orders of magnitude between the liquid and glass states. While
experiments on atomic and molecular glasses in principle allow
access to this wide range of time scales, they come with an impor-
tant limitation: the small size of the building blocks forming the
glass make it essentially impossible to study the local structure
and dynamics of these systems in detail [6]. This restriction in
fact limits the use of these experiments only to the observation of
global properties.

One other possibility to explore the behavior of glasses is the
use of colloids , which are suspensions of particles of one type of
material in another substance. The interaction between the two
kinds of particles in the mixture (particles and solvent) causes
the suspended particles, which are generally bigger, to experience
random forces from the smaller solvent molecules encountered
during their motion. This phenomenon results in making these
particle follow random path due to the fact that they are contin-
uously deviated by the impacts, and was explained by Einstein
in 1905 [11]. In order to have a stable colloidal suspension, we
need particles that are significantly larger than a solvent molecule
(generally > 1nm) but small enough to move when impacted by
solvent molecules (so smaller than a few micrometers). Although
this random motion differs significantly from a ballistic motion
usual of atomic systems on short time scales, colloidal particles
still follow the same statistical physics of atoms and molecules.
For this reason they are in the same way capable of forming gases,
liquids, crystals and glasses. Then for our purposes a system of
this kind will behave as an atomic or molecular one, with the
difference that the particles (intended only as the bigger ones)
forming it will move at a more treatable velocity.

From an experimental point of view, a colloidal dispersion can
be obtained as a suspension of particles in any physical state in
another substance potentially in a different state. A colloid then
differs from a solution, in which only one phase is present, because
it present a dispersed phase (the suspended particles) inside a
continuous one. This means that, taking a cup of Cappuccino as
a prototype colloidal system, we can see a liquid solution of milk
and coffee, and a milk foam over it. The foam itself, differently

3



1. Introduction

from the liquid below, is made of one liquid phase of milk with
small clusters of air dispersed inside it. To be more precise, even
the milk we have put inside our cup is actually a colloid, with
discrete fat bubbles and protein molecules suspended into the
liquid phase. Going over our Cappuccino, a colloidal dispersion
can present a great variety of interesting features, mainly given
by their structure based on the multiple length scales of the
suspended particles and the molecules forming the solvent. First
of all the dispersed particles generally have a larger size than
single molecules, then they can more easily seen at the single
particle level, fixing the drawback of atomic systems by providing
direct access to their local structure. One other advantage of the
larger size results in a slower dynamics, making their behavior
easier to study in real time. Moreover, colloidal particles can be
created out of a variety of materials, and tuned in terms of their
size, shape, and surface chemistry. This allows us to adjust the
interactions between them, making them an ideal playground for
studying e.g. phase behavior, self-assembly, local structure, and
glassy dynamics.

Computer simulations of such systems can be performed using
e.g. Monte Carlo (MC) or molecular Dynamics (MD) algorithms.
Respectively making the system "evolve" through the most proba-
ble configuration and integrating Newton’s equations of motion for
particles. The system is then described as a set of particles inter-
acting with spherical symmetric potential (as the Lennard-Jones
potential). Both classes of methods permit a more controllable
evolution, where the particles position is known at every time,
moving the bottle-neck of the problem only to the required com-
putational power. This practically means that a simulation run
for a finite amount of time is able to analyze only a small section
in the time scale of the transition, namely a variation of about
5 decades of dynamic slowing of τ , making such simulations not
really powerful in this task [6].

1.2 Patchy particles

One extremely versatile way of tuning the interactions between
colloidal particles is by incorporating attractive sites on their
surfaces. These sites impose a strict directionality on bonds
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1.2. Patchy particles

between particles, representative of what one might find in certain
molecular systems.

The modeling of such potential requires some additional care,
since a usual framework with particles under the effect of of an
isotropic interaction, such as a Lennard-Jones potential, does
not reflect those characteristics. One way commonly adopted in
literature is the use of patchy particles, Hard-Spheres (HS) whose
surface is decorated with attractive sites, which can interact to
form bonds. These directional interactions can drastically impact
the phase behavior and structure of the system, giving rises to
the existence of substantially different equilibrium states, such as
empty liquids [12] or equilibrium gels [13]. In particular, patchy
particles with a fixed and small valence tend to reach a liquid phase
only at low temperatures, organizing in long chains interconnected
with each other in a small number of steps. This quasi-equilibrium
state, characterized by peculiar properties, takes the name of
equilibrium gel to emphasize the fact that the system reaches
and get stopped in one of its multiple local minima, defined
by the bonding pattern, but without incurring into changes of
the gel mechanical and thermal properties. One other unusual
characteristic that a patch particle model, with opportunely chosen
patches features, can show is the presence of a re-entrant shape
of the coexistence curve in the phase diagram, meaning that the
density of the region in which the system is in the liquid phase
decreases when the temperature is reduced [14]. The vast set
of peculiar properties that can be observed in a patch-particle
model by just modifying a small number of parameters reveals
how this class of models can be extremely powerful in capturing
the behavior of very different systems.

The first model made for patchy particles was introduced in
the 1980s, analyzing molecular fluids [15]. The idea underlying
this work was to develop a broader class of many-body systems.
To this end, the model can be extended to many materials by
changing different parameters, such as the position of the sites
or their mutual interaction. A systematic definition of a patchy
system will be given in the following chapters, while here we will
focus on part of the history of this class of models. The common
choice in all these works is that of modeling particles as hard
(or soft) spheres carrying a spherical repulsive interaction due
to excluded volume, plus a contribution associated with the site
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1. Introduction

Figure 1.1: Computer representation of patchy particles with
different types of sites positioned following predefined patterns.
Illustration from [1].

- site interaction, often modeled as an approximate square-well
potential. [16; 17].

As they are constructed, patchy particles have been used in
literature to model any system that presents a strong association
and a small coordination number of the particles. This feature
is simply reflected by decorating the hard-spheres with a number
of patchy sites that can mimic the system under investigation.
Once the number and types of the sites has been defined, a proper
interaction between them can be chosen. One other interesting
patchy potential to look at was introduced by Nezbeda in 1989
[18], analyzing the thermodynamic properties of water. Each
particles was reduced to a sphere with 4 bonds in a tetrahedral
structure, two of them representing the hydrogen bonds and the
other representing the oxygen ones. The different sites feel a
square-well attraction in the proximity of sites of the opposite
type. This means that a hydrogen site can form a bond only
with a lone-pair site (the oxygen), and feels no interaction near
another hydrogen site. The same reasoning applies for the oxygen
sites. Nezbeda et al. demonstrated that just this simple model
with short range interactions was sufficient to reproduce many
of the anomalies of water and its phase separation processes
[18]. In the same way, other groups applied similar models to
describe other materials with network structures, such as silica
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1.2. Patchy particles

[19]. These works are the precursors of the models used in modern
research projects on network glasses . What can be observed in
silica, which actually is the material that forms window glasses, is
the fact that the molecules can form a limited number of bonds
between each others. This characteristic has the result that the
overall structure organized itself effectively in a network topology,
still having the previously underlined features of a simple glass.
Network glasses can exist in both 2 and 3 dimensions, and the
dimensionality is one important parameter affecting the property
of the material. One other important parameter, partially related
to dimensionality, is the connectivity of the network, which is the
average number of bonding site each node in the network has. The
combination of the two suggests some relations with the order of
magnitude of the glass temperature transition, and is important
in the formation of oriented fibers out of polymeric glasses [20].
Due to its capability of forming only 4 hydrogen bonds with each
molecule, also (vitrified) water can be considered among the class
of network glasses . In the same way network-forming liquid or
glasses, which present a disordered structure but organized in a
network topology, cover also amorphous silicon and polymers.

More recently, patchy particles are also attracting interest for
the purpose of modeling biological systems, describing phenomena
such as protein crystallization [21; 22]. The reason for that is again
their ability to efficiently capture the short-ranged and anisotropic
attraction between the proteins in solution. Even though proteins
have a much more complex structure than water or silica molecules,
it is possible to gain useful insights even with simple models. There
are many ways to define the patchy sites and the pair potential,
depending on which it is possible to capture different features of
the real system. In 1999 Sear et al. introduced a minimal model
in order to describe the coexistence of phases for globular proteins
[21]. As in the primitive models previously described, the protein
are described as HS decorated with a geometrical pattern of sites.
Each site has now a numbered label and the attractive potential
is such that odd sites interact only with even sites and vice versa.
In this model the patches are defined as spots on the surface of
the spheres, which can interact with similar spots of other spheres
if all the conditions are fulfilled. Now the volume in which the
short-range potential exists is considered as a physical extension
of the particles. In this way the sites have a fixed height over
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1. Introduction

the surface and a bond forms only when two of them intersect.
One similar approach, with more generality in the interaction
between the differently labeled sites is the model introduced by
Kern and Frenkel in 2003 [23]. This will be the one that we adopt
for the modeling of our particles in the next chapters. With the
Kern-Frenkel (KF) model is also possible to add features like
having at most one bond at time for each site only by opportunely
tuning geometrical properties of the particles. One other major
advantage of the KF over models based on soft potentials is that
the bonds are clearly defined, since each bond is either absent or
fully formed, giving a fixed energy contribution.

The formation and organization of the bonds inevitably has a
strong impact on different phases that can appear in the study of
these systems [24; 25]. Besides the use of numerical simulations,
the relation between the appearing phases can also be achieved by
theoretical results. In particular it is possible to investigate phe-
nomena like gas-liquid phase separation through the perturbation
approach of Wertheim theory [16; 17]. This theory considers the
bonds in a mean field approximation, interpreting their effect as
mutually independent. Despite its intrinsic simplicity, this theory
has been widely used to predict and understand the behavior of
patchy particles . In the last few decades, many groups used its
result to study thermodynamic properties of different systems
[26; 27; 28].

Rather than simply study patchy colloidal particles through
simulations, some groups also create in laboratory object with
the same characteristics in different ways [29; 30]. The work of
Biffi et al. uses DNA chains that can self-assemble to form DNA
stars1.2. These stars can only form bond with the ending parts of
each chain, which are constructed in such a way to make possible
only bonds between patchy sites of the same type. This approach
permits to create ideally any kind of patchy particles and has
the advantage of of having biological objects that express all the
relevant features at temperatures comparable to room temperature
(the sequences self-assemble at Tsa ≈ 65◦C) [30].

8



1.3. Aim of the thesis

Figure 1.2: (a–c) Representations of DNA nanostars with differ-
ent coordination number. (d) Simulation snapshot of a mixture
of dimers and trimers. The image is taken from [2].

1.3 Aim of the thesis

Simple and network glasses materials, due their intrinsic complex
behavior, are a fertile ground for the development of new simula-
tion paradigms. Since the analytical study of these systems can
provide us with only a limited range of results in predicting their
behavior, new numerical approaches can instead lead us to notable
improvements. In particular, many studies have proved how the
characterization of the local network structure can be used to
predict the dynamic of the system from both a macroscopic and
a microscopic point of view [31; 32; 33]. This suggests the possi-
bility of developing simulation algorithms to infer the topological
changes, as formations and breaking of the bonds, starting from
the structure itself. Thanks to its general applicability, the use of
machine learning techniques is a natural choice to perform this
task. The main idea, supported by many works from the last few
years [34; 35], is to develop techniques able to catch the relevant
features from the local structure and aggregation of the particle
to determine the glassy dynamics, and to extend these promising
methods also to network glasses .
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1. Introduction

By looking at a movie of the particles evolving in our network
glass system, an observer could detect the evolution of the bonding
pattern, then guess which configurations are more likely to break
or to form. In this way, the observer could start considering
the fact that some local conformations, which are generally more
stable than others, may be stronger regardless of their history,
and may conjecture the possibility convinced by the possibility
that most of the future of the movie can be told just by looking
at one single frame. This story is the key point of the thesis, in
which we elaborate a way of translating the structural information
contained in a single snapshot of a simulation to a set of features
that can be used to feed a Neural Network (NN), which plays
the role of the observer. Such NN can be trained through the
observation of many snapshots of the system, then our goal is
to see if it is effectively able to predict how the bonding pattern
evolve.

Starting from a simulation framework of a 2-dimensional KF
model, we extract some properties of the system, in order to
characterize it and make a comparison with the analytical results
that can be achieved. Then moving to the study of the construction
and training of the NN, we investigate which information from
the underlying system are more useful to define a dataset. In
this first stage, the algorithm is implemented in order to predict
the breaking time of a bond which are already formed in the
snapshots contained in the dataset. In the same way a NN can be
trained to predict the formation of bonds for each pair of particles,
generating an instrument able to say which steps the system would
follow from one snapshot to the other. Going further, an accurate
algorithm predicting these information would then lead to an
extremely fast simulation technique to reproduce the dynamics of
model network glasses .

10



Thermodynamics 2

2.1 Description of the model

In this thesis we intend to analyze the behavior of a patchy colloid
system, made of hard spheres (or disks) in a 2-dimensional square
volume. The model that will be described in this section is known
under the name of KF model [23]. Each of the particles has a
fixed diameter σ and a certain number M of short-ranged square-
well attraction sites. This means that in addition to the non-
overlapping potential of hard spheres each particle can interact
with one other within a distance between σ and σmax, which is
the range of this attracting potential, if the orientation of the two
is such that 2 respective sites face each others. In this work all
sites are assumed to be identical, so that each site can form bonds
of the same strength with each of the other. Moreover, it will be
enforced the fact that each site can form at most one bond at a
time. This last assumption can be trivially achieved in numerical
simulations of this kind of particles by opportunely choosing the
radius of the disks and the aperture of the patchy sites.

More quantitatively each particle is modeled as a sphere (ac-
tually a disk in this 2-d representation) of diameter σ, feeling all

11



2. Thermodynamics

the others through a non-overlapping potential of the form

UHS(r) =

{
∞ if r ≤ σ
0 if r > σ

. (2.1)

Figure 2.1: Illustration of two patchy particles, each consisting
of a hard core with three equal attractive sites.

The bonding sites can then be graphically represented, as in
Fig. 2.1, as M sections of an annulus of inner radius σ/2 ad outer
radius σmax/2, equispaced along the circle, with a fixed aperture
identified by δ := cosφ. The total potential between two particles
is then given by

U(i, j) = UHS(rij) +
∑
α∈Γi

∑
β∈Γj

UαβW (rij ,Ωi,Ωj), (2.2)

with Γi denoting the set ofM patchy sites of particle i, i = {ri; Ωi}
the shorthand for position and orientation, and rij = ||ri − rj ||
the absolute distance between the two particles. UαβW (rij ,Ωi,Ωj)
is then the attractive well potential, dependent on rij , Ωi and Ωj .
This is expressed as a square-well interaction as

UαβW (rαβ) =

{
−ε C

0 otherwise
. (2.3)

The C condition fulfilled if and only if the sites are facing and
they are close enough to interact. Naming r̂ij the versor with

12



2.2. Wertheim theory

direction pointing from particle i to particle j and cos(φ) = δ,
this means that all these conditions have to be fulfilled together:

C =


r̂ij · d̂i,α > δ

−r̂ij · d̂j,β > δ

rij < σmax

, (2.4)

where di,αj and dj,β are respectively the versor pointing from the
center of particle i to the center of patch α in particle i and the
one pointing from the center of particle j to the center of patch β
in particle j.

2.2 Wertheim theory

2.2.1 Description of the theory

One powerful way to predict the behavior of patchy particles and
get some analytical results is Wertheim theory [16; 17]. The core
idea of this approach is to perform a thermodynamic perturbation
theory on a fluid of particles characterized by the possibility to
form a limited number of bonds with each others. Starting from the
unbonded system as the reference one, in a high temperature limit
the effects of the bond is weak with respect to the others energetic
terms and hence it is possible to consider it as a perturbation. We
can then expand the partition function around that reference.

Neglecting the effect of the sticky sites the reference fluid can
be expressed as a system of N particles interacting by a reference
potential Uref , for instance the one introduced to define hard
spheres. Then defining ρ = N/V as the density of the particles
and Γi = {ri,Ωi} as the set of positions and orientations for each
particle, we can write down the partition function of the system
as:

Zref =
1

Λ2NN !

∫ ∏
i

dΓi e
−βφref (Γ

N ) (2.5)

and
Fref(N,V, T ) = − 1

β
logZref(N,V, T ). (2.6)

Here and in the following, β is defined as 1
kBT

, then Λ the thermal
wavelength and φref(Γ

N ) the energy of the reference system related
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2. Thermodynamics

to the given interaction potential. For an isotropically interacting
reference system, Zref depends only on the position of the particles
since all the contribution of the orientation-dependent patchy sites
will be collected in the perturbation term. In order to evaluate
the contribution of this extra term it is then useful to consider
the effect of the formation of one single bond. Without loss of
generality, let us consider a bond between particles with label 1
and 2, obtaining a total potential energy of the form:

φtot(Γ
N ) = φref(Γ

N ) + φ′(ΓN ) = φref({ri}) + φ′(Γ1,Γ2), (2.7)

in which the extra term φ′ is the perturbation due to the formation
of this bond. In this framework the orientation of the particles
is only relevant for the particles making the bond and φ′ will
be negative when the particles 1 and 2 are positioned in such
a way to make possible the formation of the bond (i.e. in our
model following the condition in Eq. 2.4). In the following the
integrals without subscription will denote as before an integration
on all possible positions and orientations, and an integral with
the subscription bond will denote an integration only made over
positions and orientations satisfying the condition in Eq. 2.4.

We can then write down the partition function of the system
with a single bond, given by

Zbond =
1

Λ3NN !

∫
bond

∏
k 6=1,2

dΓk dΓ1dΓ2 e
−βφref (Γ

N )e−βφ
′(Γ1,Γ2)

=
1

Λ3NN !

∫ ∏
k 6=1,2

dΓk

∫
bond

dΓ1dΓ2 e
−βφref (Γ

N )e−βφ
′(Γ1,Γ2).

(2.8)

Then after defining the pair correlation function ρ(2)
ref (Γi,Γj) of

the reference system as

ρ
(2)
ref (Γi,Γj) = N(N − 1)

∫ ∏
k 6=i,j dΓk e

−βφref (Γ
N )∫ ∏

k dΓk de−βφref (ΓN )

∝ N(N − 1)

∫ ∏
k 6=i,j dΓk e

−βφref (Γ
N )

Zref
,

(2.9)
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we can write

Zbond
Zref

=
1

Zref

∫ ∏
k 6=1,2

dΓk

∫
bond

dΓ1dΓ2 e
−βφref (Γ

N )e−βφ
′(Γ1,Γ2)

=
1

N(N − 1)

∫
bond

dΓ1dΓ2 ρ
(2)
ref (Γ1,Γ2)e−βφ

′(Γ1,Γ2).

(2.10)

The pair correlation function expresses the probability density
associated with simultaneous finding two particles at two specific
positions and orientations, integrating out the effect of all the
others. Therefore, the presence of symmetries in the system can
simplify its structure a lot. In particular, since the reference
fluid is isotropic and homogeneous, ρ(2)

ref is only dependent on the
absolute distance between the 2 particles. In this case, the pair
correlation function is directly related to the radial distribution
function gref , characteristic of the system such that

ρ
(2)
ref (Γ1,Γ2) = ρ2gref(|r1 − r2|) = ρ2gref(r12). (2.11)

Such a function takes the name of radial distribution function.
Substituting this into Eq. 2.10 we obtain

Zbond
Zref

=
ρ2

N(N − 1)

∫
bond

dΓ1dΓ2 gref(r12)e−βφ
′(Γ1,Γ2)

' 1

V

∫
bond

dΓ12 gref(r12)e−βφ
′(Γ12),

(2.12)

where the last line is obtained by integrating out one of the dummy
variables and and taking the large N limit.

The evaluated ratio can be associated with the first correction
on the free energy of the full system, related to the formation of a
single bond. Such extra contribution is the difference between the
free energy of the bonded system and the reference one, so

∆F = Fbond −Fref = −kbT (logZbond − logZref) = −kbT log
Zbond
Zref

' −kbT log

(
1

V

∫
bond

dΓ12 gref(r12)e−βφ
′(Γ12)

)
.

(2.13)
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At this point, it is important to emphasize the fact that all the
previous reasoning is fully general and therefore valid for every
possible model provided that the reference fluid is isotropic and
homogeneous. In order to proceed with the calculation it is then
necessary to make some further assumptions. In particular, we
need expressions for gref and φ′. One of the simplest possible
choices for φ′ is the one from the KF model described in 2.3, and
so in this framework the integral performed onto the bond-subspace
are simply performed onto the space fulfilling the condition 2.4.
Then, since we are performing an expansion for a small effect of
the interaction, we can just start by neglecting it in gref . This can
be done by imposing gref(r) = 1, which means that the particles
do not interact with each other (even neglecting the excluded
volume interaction) and is a reasonable approximation for a dilute
gas (ρ ' 0). Under these extra assumptions Eq. 2.13 becomes:

∆F = −kbT log

(
1

V

∫
bond

dΓ12e
βε

)
= −ε− kbT log

(
1

V

∫
bond

dΓ12

)
= −ε− kbT log

(
Vbond
V

)
.

(2.14)

Here Vbond is defined as the bonding volume fulfilling the condition
of Eq. 2.4. In this formulation the two contributions to the change
in free energy are an energetic term, associated with the energy
gain due to the formation of a bond, and an entropic one, which
expresses the loss of entropy due to the constraint imposed by the
fact that one of the bonded particles has to stay in the bonding
region of the other.

Once the effect of the formation of a single bond on the free
energy of the system is clear, it is then possible to extend this
approach to any number of bonds. In the KF model each particle
hasM patches to form bonds with, and so the full system hasMN
patches in total. The contribution of all the possible bonds will
be performed in a combinatorial way by treating them as before
as a perturbation on the reference system. First of all, the free
energy of the reference system can be considered to have the same
structure as the one of the full model, but with a contribution
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2.2. Wertheim theory

per bond equal to 0. In this way even in the reference system
there will exists an extra quantity, nrefb , expressing the number of
“accidental” bonds, in the sense that even if they are present, their
presence does not affect the free energy count. If one assumes
that for each patch the average number of bonds is given by the
integration over the bonding space between two particles (again
without loss of generality taken as 1 and 2), the total number of
bonds (avoiding double counting) is given by:

nrefb =
NM2

2

∫
bond

dΓ12 gref(r12). (2.15)

We now want to consider the impact of adding multiple additional
bonds on the free energy. However, since each added bond has
a small impact on the overall structure of the system, it is not
trivially true that each successive bond changes the free energy
by the same amount. The simplest assumption that can be done
to get rid of the mutual relation between the formed bonds is to
adopt a mean-field approach, and so to consider the free energy
cost of the creation of one as the same for all of them. Such an
assumption can be seen as a mean-field approximation because
it neglects any interactions between the bonds. It also implies
that the structure of the fluid, and therefore the function g(r),
does not change much with the addition of the bonds. Moreover
we will have to neglect the formation of closed loops, or at least
assume that they have no extra contribution to the free-energy.

To see how this approach treats ring formation, consider the
fact that in an exact framework it would be reasonable to add
separately the contribution of each new bond as it is added to
the system as long as the involved particles do not come from the
same cluster. However, when adding a bond between two particles
already connected by a path of existing bonds, the addition of
an extra one would modify the free-energy contribution of all the
others in this now closed path, invalidating the assumption that
the effect of all bonds is uncorrelated. Moreover the presence of the
ring would add more constraints to all the particles of the sequence,
causing a possibly non-negligible loss of entropy. Although there
is no simple way to evaluate the effect of the extra bond forming
a ring with respect to the energy contribution of a simple string
with the same number of bonds,in Wertheim approximation this
problem simplify assuming those configurations as equivalent,
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2. Thermodynamics

saying that the effect of forming the extra bond to close the ring is
the same as the effect of forming any other bond. This assumption
is more reasonable when the number of rings is small and so the
error committed in ignoring them is not so relevant.

Both these considerations are reasonable if and only if the
total number of bonds is low, which is equivalent to having the
system in a high temperature regime. In this framework the total
free energy for nb formed bonds is:

F = Fref +
(
nb − nrefb

)
∆F + Fc(nb)−Fc(nrefb ). (2.16)

Where Fc(nb) is the combinatorial free energy contribution associ-
ated to the degenerate number of possible associations of particles
with the same nb, which can be written as:

Fc(nb) = −kbT log
[

[(MN)(MN−1)]·[(MN−2)(MN−3)]...[(MN−2nb+2)(MN−2nb+1)]
nb!2nb

]
.

(2.17)
In this equation, each product in square parenthesis inside the
logarithm represent a bond, which can be formed between all the
remaining patchy sites not already involved in the previous ones.
It is easy to see that the numerator has n of these products. Then
to avoid double-counting the total number is divided among all
the possible permutations of the n bonds and the two sites in each
of them. Then by defining pb = 2nb

MN as the probability of a patch
to be part of a bond and using Stirling’s approximation Eq. 2.17
becomes:

βFc(nb) = − log
(MN)!

(MN − 2nb)! nb! 2nb

=
MN

2

[
pb + 2 log(1− pb) + pb log

pb
MN(1− pb)2

]
.

(2.18)

At this point it is important to note that Stirling’s approximation
applied to the previous equation is valid for nb and MN large,
and MN − 2nb � 1. Considering the relation between nb and
MN , these conditions are all valid in the thermodynamic limit of
large systems (N →∞), as long as the fraction of bonded sites
is finite. Then coming back to Eq. 2.16 and minimizing F with
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respect to pb in order to get the optimal value we get:

∂F
∂pb

=
∂nb
∂pb

∆F +
∂Fc(pb)
∂pb

=
MN

2
∆F +

1

β

MN

2
log

pb
MN(1− pb)2

= 0,

(2.19)

where prefb =
2nref

b

MN . Solving this for pb and repeating for ∂F
∂prefb

,
we obtain then

pb
MN(1− pb)2

= e−β∆F ;
prefb

MN(1− prefb )2
= e−β∆F . (2.20)

As previously said, in the second relation of Eq. 2.20, ∆F is
calculated in the absence of patchy interaction (ε = 0). This
minimization give us an expression for ∆F as a function of the
probability of formation of a bond, plugging it into Eq. 2.16 and
using Eq. 2.18 for the combinatorial free energies we get:

Fc(pb)−Fc(prefb )

=
MN

2

[
(pb − prefb ) + 2 log

1− pb
1− prefb

− β(pb − prefb )

]
(2.21)

and so

βf :=
βF
N

=
βFref

N
+
M

2
(pb − prefb ) +M log

1− pb
1− prefb

' βFref

N
+
M

2
pb +M log(1− pb)

(2.22)

Where the second line can be obtained by observing that in the
low density regime we are looking at it is reasonable to assume
prefb ' 0.

2.2.2 Predicting the number of bonds

The first relation of Eq. 2.20 can be solved in order to get
the probability of formed bonds in the system. This result [36],
which can be figured out as a function of the density and of the
temperature will be a good starting point to test the simulation
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framework. Multiplying both sides by V and defining x = 1− pb
the fraction of non-bonded sites, this equation becomes:

1− x = Mρ∆x2,

x =
2

1 +
√

1 + 4Mρ∆
,

(2.23)

with

∆ := V e−β∆F =

∫
bond

dΓ12 gref(r12)e−βφ
′(Γ12). (2.24)

The last relation for the new quantity ∆ directly derive from Eq.
2.13.

As discussed in the previous section, one first guess for evalu-
ating gref (r) can be made by observing that when the interaction
between particles is negligible (i.e. in the ideal gas limit), the pair
correlation of Eq. 2.11 does not depend on the distance between
the particles and so is simply ρ. This limit can be achieved at
low density, in which each particles is reasonably far from all the
others, then gref(r) ' 1. A comparison for this approximation
has a very poor agreement with the with the numerical results,
making necessary to look for a more accurate analysis. One im-
proved expression for the radial distribution can be obtained by
calculating it through its relation with the compressibility factor
Z, defined as:

Z =
p

ρkbT
. (2.25)

This parameter is useful to measure how much the current system
is far from an ideal gas, for which Z would be exactly equal
to 1. Thanks to the virial expression [37], this quantity can be
written as a function of ρ, or better of its the dimensionless form
η := ρπ(σ/2)2, defined as the packing fraction. For small density
ρ (i. e. for small η), Z can be expressed as a power expansion as
follows:

Z(η) = 1 +B1η +B2η
2 + · · ·

= 1 + 2η
∑
i,j

fifjgref(σ). (2.26)

The previous relation, for a 2 dimensional system under the as-
sumption, valid in this treatment, that all the particles have the
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same diameter. In the last line the factors fi represent fraction of
particles of all the possible species present in the system, defined
as the mole fraction ρi/ρ. Since the analyzed system has only one
type of particle, the relation can be simplified as:

Z = 1 + 2ηgref(σ), (2.27)

from which:
gref(σ) =

Z − 1

2η
. (2.28)

Moreover there exist many relations that can approximate the
behavior of Z [38]. One of the simplest ones is known under the
name of Scaled particle theory, and states:

Z(η) =
1

(1− η)2
. (2.29)

Now, recalling than φ′(Γ12) can be expressed through the KF
model as in Eq. 2.3, the equation for ∆ can be evaluated. Con-
sidering that the only dependence on the orientation is contained
in the Boltzmann weight, Eq. 2.24 become:

∆ =

∫
bond

dr12 gref(r12)〈e−βφ
′(Γ12)〉

= eβε
∫
bond

dr12
dΩ1dΩ2

(2π)2
gref(r12).

(2.30)

Since the bonding condition makes the integral different from zero
only in the space fulfilling condition 2.4, the integral over r12 can
be estimated by assuming that gref(r) is almost constant while
going from radius σ to σmax, and so we can substitute it with its
value in the middle of the range. The angular integral can be
instead calculated considering that the two vector connecting the
particles involved in a bond with the center of mass of both can
span an angle of φ = cos−1 δ, giving the overall result:

∆ ≈ eβε

2π
(2φ)2g

(
σmax − σ

2

)∫
drr

≈ eβε

π
φ2 2− η

2(1− η)2
(σ2

max − σ2)

ρ∆(ρσ2) =
eβε

π
φ2 16− 2π ρσ2

(4− π ρσ2)2
(χ2 − 1)ρσ2.

(2.31)
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The last line of the previous equation emphasize the dependence
on the dimensionless quantity ρσ2 of ρ∆, contained in Eq. 2.23,
which can be proved to be the absolute probability to form a
bond.

2.3 Simulation methodology

One other solution to the impossibility of exactly treating an
N -body system can be provided by the use of numerical simula-
tion. There are substantially two main strategies to perform this
task, which are Monte Carlo (MC) and Molecular dynamics (MD)
simulations. The first one solves the challenge by making the
system evolve through proposing random displacements of single
particles or portions of the system, drawing them from probabilis-
tic distributions that are related to the system conditions. In this
way each snapshot of the system taken after one movement is one
possible configuration at the given condition, but looking at the
full evolution we will not see the trajectory a real system would
follow in the phase state. One other possible way of thinking,
which has the advantage of adhering to the true evolution of
the system, is given by MD. In particular, one common choice
in simulating HS models, which we used in this work, is known
under the name of Event driven molecular dynamics (EDMD)
[39]. While in a usual MD approach the evolution of the system
is performed by discretizing the time into steps of duration ∆t
and integrating the equation of motion at each step to update the
position and momenta of the particles, in EDMD the evolution of
the system is resolved analytically until an event (i.e. a collision
between the particles) occurs. This idea can be performed by
constructing an ordered list of all the events that may take place
based on the current particle trajectory, which neglecting the
potential interactions are just straight lines, and updating the list
after each event.

Describing our particles as HS (which in our 2d case are just
disks) of diameter σ, each event to collect is the situation in which
two trajectories lead to a sufficiently small distance between the
their associated disks. To also consider the effects of interparticle
interactions, we start by also including a simple symmetric square-
well potential, representing the possibility that the disks can bond
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within a certain distance but not enforcing the directionality of
the bonds, namely:

Usymm(r) =


∞ if r ≤ σH
ε if σH < r ≤ σw
0 if r > σw

. (2.32)

This reasoning can be extended to the patchy particles we have
studied in the previous sections by enforcing the fact that a bond
can form only in the direction of the sites, i.e. by incorporating
in the code the condition of Eq. 2.4. From the previous notation
we would impose σH ≡ σ and σw ≡ σmax. One more precise look
into this will be given at the end of the section.

Independent of the the way bonds are formed, we can substan-
tially have two classes of interaction: the one in which the hard
cores of involved particles collide but they still remain bonded,
or the one in which they enter or leave their mutual potential
well, changing their bonding relation. In the first case we expect
from the laws of dynamics an elastic impact, which conserves both
kinetic energy and momentum. In the second case we have only
momentum conservation, while the kinetic energy is expected to
change of on amount equal to ε due to the total energy conser-
vation. One specific interaction between two identical particles
i and j, separated by a distance r = ri − rj and with relative
velocity v = vi−vj , will collide after a time τ which is the smaller
positive solution (if it exists) of the relation

| r + vτ |= σ. (2.33)

Of course we can expect an impact of both classes by putting σH
or σw in place of σ. Then in the same way for both the diameters
the solution will be of the form

τ =
−b+ s

√
b2 − v2(r2 − σ2)

v2

with b = v · r
(2.34)

The value of s, which can take values of +1 and −1, is set to give
the smaller positive solution of the equation and depends on the
situation in which the particles are before and after the collision.
If we start with two bonded particles (therefore σH < r < σw),
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we can have a core collision, then σ = σH and s = 1, and a well
collision. Such collision can result in either a bounce within a
well or a breaking of the bond, and in both cases we will have
σ = σw and s = 1. The difference between the two depends on
the starting kinetic energy, meaning that the bond breaks if the
relative motion between the two particles is strong enough to
overcome the energy barrier of height ε.The last possible impact
is finally a superposition of the wells, originating a bond. In this
situation we will have σ = σw and s = −1.

Imposing then the conservation of the momenta, we expect
that the change in the velocity of a particle would be the same
with opposite sign of the velocity change of the other, namely:

δvi = −δvj := φr. (2.35)

This variation φ can be calculated by imposing energy conservation.
We can introduce the effect of the eventual bonding/ unbonding
event as the variation δu, which can be either 0,+ε,−ε, depending
on the kind of impact we have. With m the mass of a particle,
will then have:

m

2

(
v2
i + v2

i

)
=
m

2

(
v2
i + v2

i + 2φ2, r2 + 2v · φr
)

+ δu

=⇒ δu

m
+ φ2r2 + bφ = 0,

(2.36)

having

φ =
−b+ s

√
b2 − 4r2δu/m

2r2
(2.37)

For a direct collisions between cores, δu = 0 and r = σH , while a
collision between wells can be found with δu = ±eps and r = σw.
We can find the energetic condition for the breaking of the bond
by looking at at the case of the particles reaching a distance of σw
from inside. In fact, in this case the only possible solution when
b2 < 4σ2

wε/m is obtained by imposing δu = 0 . Then we would
have a bounce event (δu = 0), with solution φ = −b/σ2

w.
In this way it is possible to give a complete physical analysis

of a single event in the system. Naively, we can simply predict
such events for all pairs of particles in the system. However, as
the system size increases, this leads to an extremely large number
of possible collision events, resulting in memory issues concerning
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the storage of the event list. A solution to this problem and some
other practical implementation concerns are briefly discussed in
the following Section.

2.3.1 Implementation

One first complication that may come from the simulation of
HS lies in the assignment of initial particle positions. In a usual
MD simulation the common choice would be the one of setting a
random particles configuration. The same can be applied to HS,
but we have to consider the fact that no disk is allowed to fall in
the area occupied by the others. This condition can be fulfilled
by randomly inserting only one particle at time, checking each
time if the new configuration has no overlap, and repeating the
attempt if an overlap was created. This approach is obviously
slower than a single random assignment, and becomes problematic
for high-density simulations, in which each particle assignment
from a certain time on can take an arbitrary long time to find
an admitted configuration, leading to a potential infinite time
even for the initialization process. One possible solution to this
problem is given by assigning a fixed position to each particle, e.
g. the points of a square grind, in order to have a pre-defined valid
set of position. Making the system evolve for a certain time, it
will typically recover a random configuration, as the one we would
get after equilibrating it generated with the previous assignment
strategy.

At the end of the initialization, each particle has a position
and a velocity, which define the trajectory the particle will follow.
All the intersection in the future between these trajectories can be
collected in the time-ordered sequence of collision. Since the route
of a particle get modified after any event involving it, only the first
event in the system is guaranteed to take place, as other events
may be recalculated after a collision. Once the occurrence τ of
the first event has been found, the whole system can be allowed to
evolve updating all the particle position up to that time. After a
collision, the only features that can change are the velocity of just
the particles involved in this collision, accordingly to Eq. 2.37,
and eventually the bonding relations between them. Since each
event involves a only two particles, we only have to check for new
events to add for them. This strategy is in principle valid, but
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generates one practical issue: in a system of N particles, each of
them can collide with all the N − 1 others. This means that the
computational cost required to find the possible collisions for each
particle involved in an event scales as the system size, making each
update of the list considerably computationally heavy. One way
to overcome this problem is given by separating the volume into
smaller cells, then consider for each particles the collision with
just the particles in the same cell or in the adjacent ones. The cell
size is typically chosen as a multiple of the disk diameter, in order
to fix the maximum number of particles each cell can contain to a
value independent of N . In order to use this strategy it will be
then necessary to add the fact that one particle crosses the cell
border as a collected event. In the same way we can treat also
periodic boundary conditions, by simply imposing that a particle
arrives to the cell in the opposite size of the system when passing
through a border. This extra kind of events to consider forces
the system to stop an overall greater number of times, but each
of them with a lower computational cost if the cell size has been
properly chosen. The way of storing and optimally dealing with
this list is then crucial to have quicker simulations and makes it
possible to work with bigger systems [40].

The use of EDMD can be extended to the anisotropic patchy
particles model we introduced in the previous sections by using
the different bonding conditions and predicting the behavior of
the particles once a bond is formed or broken. Both tasks are
much less straightforward than the isotropic case, in fact they
require the use of numerical algorithms [41; 42]. What we can
analytically predict from Eq. 2.34 are the times two incoming
particles would have spent to reach their well and core surfaces. in
particular we expect that the collision time τ should stay between
the time spent by the wells to touch each others (denoted as tmin)
and the time spent by the hard cores to collide (tmax). Obviously
if the calculation for tmin gives no solution,i. e. if the two particle
never come close enough to interact, there is no need to continue.
If the condition for finding tmin is already fulfilled (r < σw) when
the algorithm start looking for it, we can set tmin = tcurrent. While
if the hard cores never impact, tmax can be set as the first time
at which r exceeds σw again. This provides us a limited time
window to scan for the possible time τ at which a patch collision
may occur. Then we introduce the functions Φi = Φi(rij , {pi})
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and Φj = Φj(rji, {pj}), where rji = −rij are the distance vectors
between the two particles and {pi} and {pj} are the sets of the
patches orientation, which express how close the patches are to
interact. They can be written as:

Φ(r, {p}) = max
p∈{p}

(r̂ · p̂− cos(θpm)) . (2.38)

If Φi is negative, none of the patches of particle i are oriented
in the direction of r. This means that we can only have a bond
formation when Φi · Φj > 0. By looking at the evolution of these
two functions in time is then possible to determine the value of τ
numerically. In particular we have a bonding event when Φi(t) = 0
when Φj(t) is already positive. A bond breaking can instead occur
(still doing energetic considerations as before) at the first time in
which both Φi(t) and Φj(t) become 0. After the well event time
has been numerically found, it can be added to the event list.

2.3.2 Comparison of theoretical and numerical
results

At the end of this analytical treatment, we were able to express
the fraction of bonded particles as a function of the dimensionless
density by the use of Eq. 2.23. The same quantity can be obtained
as average of many samples taken after the equilibration of the
simulated system. Then, in order to enforce the fact that the
algorithm actually simulates the physical system described by
Wertheim theory , we can compare these results. This is the first
step that will permit us to go beyond the analytic treatment we
have done at this point, then to explore the features of the real
system the theory is not able to predict. In the following are
present some comparisons for different temperatures.
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Figure 2.2: Plot of the comparison between the fraction x of
unbonded patches evaluated via Wertheim theory (lines) and simu-
lations (points), for different temperatures. Here the adimensional
temperature is T̂ = (βε)−1

In Fig. 2.2 are presented the analytical and numerical results,
respectively as solid lines and squares of the same colours repre-
senting the points of the measures. As can be seen the two curves
are more and more similar as the temperature increase, meaning
that the analytical approximations are actually more accurate
in those situations. This result is in total accordance with the
previously stated assumptions.
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2.4. Characterization of the Phase Behavior

2.4 Characterization of the Phase Behavior

As seen in the previous Section, the thermodynamic conditions of
the system are crucial in order to understand its overall connec-
tivity. From basic statistical physics, it is easy to understand that
bonds between particles are more likely to form at low temperature
and high density. A simple reason for this result is given by the
fact that at low temperatures, bonds are harder to break due to
lower particle velocities, and at high densities, the probability that
particles find each other during the random movements obviously
increase. What can be noticed so far is that even if we are able to
fully understand global quantities, such as the concentration of
the bonds, Wertheim theory does not predict how these bonds are
organized. Systems of patchy particles , like many other materials,
can exist in a variety of phases (e.g. gas, liquid, crystal), and
one important step in studying them is to map out where we
should expect these phases. Moreover, one of the reasons a direct
application of Wertheim theory does not work well for predicting
bond concentrations at low temperatures is the fact that you have
not taken into account the possibility of phase coexistences yet.
Nevertheless, Wertheim theory can also be used to predict phase
coexistence [12].

As we decrease the temperature, we can expect to see the
formation of clusters of particles of different sizes, related in some
way with the system conditions. Since formation, distribution
and size of such clusters are in fact what determines the physical
state of the system, a deeper comprehension in this direction is
crucial for the determination of its the properties. A further step
can be therefore achieved by analyzing the phase behavior of the
model, in order to look for the presence of regions in which each
admitted state can be reached. Starting from various theoretical
analysis [27], we can expect to see both fluid and crystal phases,
but also phase separated regions and gelation. Knowing the phase
our simulation is in is important because many quantities, such
as the diffusion coefficient and the local structure of the system,
are strongly related to the phase behavior. This implies that, in
order to correctly interpret our results, we have to be certain of
the phase we are simulating. In particular, in most cases, we want
to ensure that our simulations contain a single phase, rather than
a coexistence between two phases. A direct phase coexistence in
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fact can lead to strong non-equilibrium and finite-size effects due
to the interface that forms between the two phases.

Statistical mechanics tells us that in equilibrium, any system
will exist in the phase (or coexistence of phases) that minimizes
the free energy. Hence, each point of the hyperplane of the rel-
evant variables will be associated with a stable phase (or phase
coexistence). These points and in particular the limits of stability
of these phases can be collected, getting the phase diagram. Look-
ing at many snapshots taken from different state points, we can
observe three classes of possible configurations, which are collected
in Fig. 2.3. In Fig. 2.3a we can clearly see the presence of areas
with different densities, which we can associate with regions in a
liquid and a (highly dilute) gas phase. In contrast, the other two
other pictures present a homogeneous density in the whole system.
While in Fig. 2.3b we observe that the bonds, which are actually
a small number, does not form any particular pattern, in Fig.
2.3c many of the bonds are organized into preferential directions
forming a hexagonal configuration, which is the most stable one
with the kind of particles we are studying. We would conclude
that the last snapshot, which bonds picture has been emphasized
in Fig. 2.3d, represents in fact a phase separation, in which part
of the system is fluid and part of the system is crystalline.

30



2.4. Characterization of the Phase Behavior

(a) (b)

(c) (d)

Figure 2.3: (a) Snapshot representing a phase separation, taken
at ρσ2 = 0.4 and βε = 10. (b) Fluid phase, taken at ρσ2 = 0.4
and βε = 10. (c) Solid-fluid phase coexistence taken at ρσ2 = 0.95
and βε = 6.36. (d) Same snapshot of the system in the solid
phase, but indicating the bonds between the particle in order to
emphasize the preferential directions.

At this first stage, we can then separate the phase diagram into
a fluid single phase region, a fluid phase separated region, and a
crystal one. Obviously we could expect to be able to separate the
gas and liquid phase, or even to find a liquid-solid phase separated
region, but since their definition is not explicitly clear from the
snapshots, we will partially neglect them at this point. Since the
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state of the system can be inferred only by the global quantities
describing its thermodynamics, we can plot the phase diagram in a
2−d plane as a function of ρσ2 and kbT/ε. Each point would then
correspond to the system at a specific density and temperature,
and the other thermodynamic quantities will depend on them. The
nature of these point can then graphically show in which region
the system is stable in a certain phase (or coexistence of phases).
By defining Tc as the maximum temperature at which we can
encounter phase separation, everything in the single fluid phase
region above Tc is simply a fluid (with no distinction between gas
and liquid), while below Tc the single-phase fluid to the left of
the phase separated region is the gas, and to the right of it is the
liquid. In order to find the location of the regions, in principle
we need to look at the free-energy minima calculated at each
point. A system reaching the equilibrium will always tend to
minimize its free energy, and hence the preferred phase will be
the one corresponding to the minimum calculated at each point
of the phase diagram. In this way it is easy to understand the
coexistence of more phases, being it associated with the presence
of two (or in principle more) competing global minima of the free
energy. This analysis can be systematically done through the
use of simulation techniques, with which it is possible to find the
phase transition curves, which are the separation bounds between
the different regions. Full free energy calculations are hard to
perform in practice, because they are time consuming procedures.
Instead a reasonable approximation of the phase diagram can
be obtained simply by performing simulations at different state
points and observing what phase forms. One straightforward way
to do this is to follow an horizontal or vertical line in the phase
diagram (i. e. keeping constant temperature or pressure) and look
when a transition event occurs [43; 44]. Phase transformations
can be detected by looking for evident variation of the behavior
of the system. For instance, when the system transforms from
one physical state to one other, the bonding pattern is expected
to change, re-organizing the particles into a different structure.
This phenomenon can then be detected e.g. via a variation in
the potential energy and in the pressure of the system. This
strategy has serious drawbacks when encountering hysteresis in
the transition, usually present in first order ones, [45]. Hysteresis
phenomena make it possible to find different phases at a given
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state point depending on the history of the system (e.g. when
gradually cooling it or gradually heating it). Hence, different initial
conditions in a simulation may result in different phase. The reason
for that is the fact that first order phase transitions present a free
energy barrier separating the phases near the coexistence. The
height of this barrier will depend on the formation of interfaces
between the two separated phases. The larger the interface, and
the larger the surface tension, the higher the barrier is, resulting
in a more relevant hysteresis. This issue can be solved by studying
the system without creating such interface, preparing it with an
already existing interface from the beginning of the simulation or
by eliminating its effect. There exist several methods performing
this tasks, among which the most famous is the Gibbs ensemble
method [46; 47]. We will not treat them in the detail since we
only need information about the different phases at a lower degree
of precision. Here, we simply perform an observation by eye of
snapshots like the ones of Fig. 2.3, in order to assign them a label
and have a simple separation of the regions of stability for the
various phases. In order to collect more information about the
position of the phase separation curves, it is then also possible
to look at the equilibrium value of thermodynamic quantities the
system reaches in the different points of the phase diagram. In
Fig. 2.4 we plot for different temperatures the average values of
pressure (Fig. 2.4a and potential energies (Fig. 2.4b) measured
from the simulated system after equilibration.
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Figure 2.4: (a) Dimensionless pressure measured in the system
at variable density for different values of temperature. (b) Same
analysis for the internal energy per particle.
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From the analysis of the snapshots we are able to identify the
presence of a phase separated region from very low density to
density of the order of ρσ2 ≈ 0.6, in a range which decreases as
the system temperature increases. Over this region, the system
behaves as a single fluid phase. Finally, at high pressure (around
ρσ2 ≈ 0.95) we observe the appearance of a solid phase. A
qualitative phase diagram starting from these observations is
shown in Fig. 2.5. In both the plots of figure 2.4 it is possible
to observe a change in the first derivative for some temperatures
at density around ρσ2 ≈ 0.6, confirming the transition curve
in this points. Moreover the curves in Fig. 2.4b also present
analogous slope variations for low densities, giving a more precise
instructions also for the position this curve. From Fig. 2.4a it
is also possible to infer the position of another transition around
densities of ρσ2 ≈ 0.7, suggesting the fact that some clusters of
the system in the solid phase could appear from this point.
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Figure 2.5: Phase diagram of the system. The regions has been
found after a by eye classification of points of the plane in a grid.

In this thesis, we are interested in studying the dynamics in a
homogeneous fluid phase as a function of temperature. By looking
at Fig. 2.5 we can observe that the ideal region for this task is the
one with densities from 0.7 to 0.85, in which no phase separation
or crystallization can be observed at any temperature. In the
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following chapter we will then focus our attention on this region
in order to analyze the local properties of the system.
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Breaking and Formation of bonds 3

3.1 Definition of the Problem

As explained in the previous chapter, the analytical study provided
by Wertheim theory does not provide any information on the
dynamical features of the system. In particular, due to the fact
that all the bonds are considered in the same way, any attempt
to use the same theory to predict bond dynamics would simply
state that all of them are equally like to form or break. This
approximation is obviously not sufficient to trace the evolution
of the bonding patterns, because we expect that some regions,
due to the local connectivity, may present different tendencies
to change in terms of local structure. In order to check this
assumption, we run a set of simulations from a fixed snapshot of
our system equilibrated at dimensionless density ρσ2 = 0.8 and
inverse temperature βε = 5. In each evolution we measured the
time that each particle spent to run into a breaking/ forming
event, and expressed the averaged result by accordingly coloring
them as in Fig. 3.1. The particles with red colors are the slowest,
while the blue are the fastest. All the times we will consider in this
chapter are expressed in dimensionless units as t̂ = t/τ0, where τ0
is the simulation time unit

τ0 =
√
βmσ2. (3.1)
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(a) (b)

Figure 3.1: Snapshot of a system simulated at ρσ2 = 0.8 and
βε = 5. Particles are colored to highlight differences in the
averaged time of the first occurrence of a bond event for each
particle, with red indicating longer times and blue shorter times.
Snapshot (a) shows the particles, while in (b) the same snapshot
is shown, but highlighting only bonds between particles (and a
few unbonded particles).

Here we can observe that there are significant variations in the
bond breaking and bond forming times in the system. Moreover,
we observed that the gap between the fastest and the slowest
particles increases when moving to lower temperatures and higher
densities. This suggest that the presence of the rings, not consid-
ered in Wertheim theory, becomes more and more relevant in these
conditions, and will play an important role in determining the rate
for breaking and forming the bonds. One first observation to Fig.
3.1b shows that in our snapshot there are 6 particles which start
with no bond, and 5 among them have a relatively long waiting
time. This can be explained by observing that they are contained
in closed ring, such that a bond formation can happen only after
the breaking of one bond among the ones involved in the cycle.
This is not the case for the 6th particle, which is contained in a
cycle with another particle which has two unbonded patches. In
this situation is reasonable to expect that a bond between the two
can form more quickly.

This hand-waving reasoning can be easily applied to unbonded
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particles, but it is a sort of hard to extend to the others starting
from the information in Fig. 3.1. At this moment we are measuring
in each simulation the lowest of the waiting times for each patches
of a particles, without having a clear information on whether a
bond forms or breaks. If we expect that the time of each bond
forming/ breaking event is in some sense related to the presence
of the rings, we need a way to evaluate their strength. This
problem can be solved by extending this reasoning and measuring
the waiting time for each patch on each particle separately. This
also implies that we have to split the analysis into breaking times,
involving the bonded patches, and the forming times, involving the
unbonded ones. For its simplicity in visualization and treatment
of the data, in the remainder of this thesis we will only consider
the first class of events. However, we conjecture that an analogous
reasoning can in principle be applied to the second. A color
representation of the bond breaking time from a snapshot taken
at the same conditions of the previous example is shown in Fig.
3.2.

In Fig. 3.3 it has been shown how the bond breaking time (tb)
can assume different values in different conditions. In this chapter
we will develop a method to predict such variability starting
from the topological differences of the system, both regarding the
external conditions and the local structure. To perform this task
we built a NN that will defined in the following sections.

3.2 Neural Network implementation

The main idea behind the construction of a NN is the possibility to
create a program which is able to improve itself using natural brain-
like learning processes. In a more general sense, a method which
involves learning can be any program able to extract information
from a set training samples in order to create classifiers, predictive
functions or even new data from them [48]. For NNs, the key idea
is to define an extremely general non-linear function, which is then
trained to follow desired behavior. Training is basically done via an
algorithm which aims to reduce the value of a certain cost function
through many iterations on the training data. This reduction is
performed by optimizing a set of parameters associated with the
neural network, and in a broad sense of the underlying non-linear
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0.0 0.5 1.0 1.5 2.0 2.5

Figure 3.2: Snapshot of a system simulated at ρσ2 = 0.75
and βε = 5. Patches forming bonds between the particles are
colored to highlight differences in their averaged bond breaking
dimensionless time tb/τ0, with red indicating longer times and
blue shorter times.

function. A NN is in fact nothing but a function, which can be
written in the form:

ȳ = f(x; Ω), (3.2)

which takes the input values x and returns the answer ȳ. The
parameters in Ω are the characteristic ones of the NN and they
will be defined later. The way to reduce such cost is made by
modifying the set of parameters of the non-linear function. A
basic data set is a structure made of input points x from a d-
dimensional hyperspace. The collection of these points will be
recalled as X. Each point of this set is associated with a label.
The meaning of this labels, collected into the set y, depends on
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Figure 3.3: Gaussian fits to the distribution of the bond breaking
times, in dimensionless units for different temperatures.

the type of learning algorithm but generally refers to the value
that the network is supposed to return once trained.

First of all, the size of the space of possible outcomes assumed
by the labels defines whether the problem is a classification, if
the labels can assume only a discrete number of values, or a
regression, if the algorithm has to infer a continuous value. In
order to get into the framework it can be useful to look at how
a Learning algorithm should work through one simple example.
Let’s consider a classification problem in which our problem has
to predict one of two possible outcomes, for instance the words
"Yes" and "No" from human speech. In this situation the set X
will be a collections of recordings of peoples saying one of these
two words, and for simplicity we can assume the possibility to
extract just 2 relevant features from each of them, as for instance
the amplitude of two harmonics in the Fourier transform of the
signal. In other words, we want to condense all the information
contained in the recorded files in two real-valued order parameters,
which are obviously more treatable by a program. The data set
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of this toy model of a text-to-speech problem will then be made
of points in a 2d plane, each of them associated with a "correct
answer" label that the algorithm has to predict. Recalling the
functional representation from above, we will want to optimized
f(x1, x2,Ω) such that it returns "Yes" on point with this label
and "No" on the others. The data set is generally split into a
training set, which the program will use to "learn", and a test-set,
used to see if after the training it performs well on new data.
One classifier which learns too much from the training set may
expect to find some features that are contained in it without being
representative of all the space of entering data. If this happens,
the algorithm ran into an overfitting problem. We will say more
about this in the following.

x1

x
2

Figure 3.4: Red spots are the data with label "Yes", blue squares
with label "No". The dashed line is the separation between the
two classes inferred by the learning algorithm.
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The general idea is use the training set to find a rule to divide
the plane into K sub-planes, where K is the number of possible
values the labels can assume, and then assigned a predicted label
to the points depending on where they fall into the plane. In our
example we can assume that the best possible way to separate
the data set is to find a line. If a point falls to the left of it, the
program will say that the answer is "No", otherwise it will say
"Yes". The algorithm will then optimize the parameters of this
line in order to minimize a cost function, which increases if the
prediction is wrong and decrease if it is correct. For this example,
a logical choice of cost function would simply be the fraction of
points for which the label was incorrectly predicted.

After some iteration, in which the algorithm applies the cur-
rent version of f on the training set and consequently update
its parameters in order to make the cost function decrease, the
program will find the optimal solution through linear regression
like algorithms. While finding an optimal solution is likely pos-
sible in the simple linear example provided here, in practice the
solution will just be locally optimal. Then in more complex cases
the algorithm also needs to span more regions in the space of the
solutions and it may be beneficial to make changes to the network
that do not always decrease the cost function. In general the cost
function is updated through the use of a GD like algorithm which
is optimized in such a way to present a variable learning rate that
permits both to move from one minima of the cost function to one
other and to avoid large oscillation in the vicinity of a minimum.

From the example of Fig. 3.4 we can see that the solution
the program found does not provide the correct answer to all
the analyzed points, this is done to emphasize one of the main
problem of the learning procedure: the risk of overfitting. A naive
approach to the problem would be to substitute the divider in the
figure with an higher order polynomial, i.e. increase the number of
parameters to tune in our fitting function. This would allow us to
completely separate the blue from the red spots. This correction,
which in some cases can also lead to better results, is in general
problematic because in this way we are complicating the model
in order to make it exactly fit the training data, but we have no
guarantee that it will remain good for any other new point. The
reason for that, as can be easily visualized in the example, is that
all the information in the spoken words has been condensed down

43



3. Breaking and Formation of bonds

into only two real variables, meaning that a lot of information
can be lost in the conversion. The resulting error can be seen as
a noise that can even allow two points with the same values for
(x1, x2) to have different labels. In other words we can say that
each label can be primarily found in separated regions, but they
follows gaussian-like distribution that can overlap in other regions.
For a good choice of order parameters (x1, x2), the probability
of being in such a region is low, but it is often not possible to
fully eliminate it. One of the powers of Machine Learning (ML)
techniques is actually their capacity to find the best solution even
where analytical results may fail. Moreover, there are several
common ways to avoid overfitting, such as keeping the number
of parameters in the model relatively low and limit the number
of iterations. Such hand-waving rules can actually be made more
strict when looking at a specific case. In the following we will
outline the main types of ML algorithms and the broad types of
problem they typically aim to solve.

Unsupervised Learning — In unsupervised learning the labels
of the input data are not predetermined and so the algorithm
has to understand the best grouping by itself (i.e. there
is no teacher). What can often be defined a priori is the
number of groups and some of the rules the program should
use for the clusters. An example problem solvable with this
technique is the classifications of news in an online provider,
such as Google News. Here there is no a priori label for
the incoming news, since no one knows the day before what
will happen. The goal of the program is to find the best
clustering of the different information, in order or collect
the ones talking about the same topic.

Supervised Learning — In supervised learning we do have a
teacher, so each input comes with a true desired output and
the algorithm has to find the underlying rule to assign labels.
The example previously discussed is a typical problem of
supervised classification. As previously said, the space of
possible answers can also be continuous. In the case, then
the goal is to find a function, typically getting a real number
from all the order parameters. This type of regression
problem is exactly the one we want to solve in this thesis.
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Reinforcement Learning — A slightly different approach, ap-
plicable to classification problems, is the reinforcement learn-
ing. Here we still have a data set composed of points with
label, but the teacher plays the role of just saying if a pre-
dicted solution is right or not. This means that the only
feedback the algorithm receives is a critic, a binary signal
with no information on the correct classification if the given
answer is wrong (obviously if the possible classifications are
just two, supervised and reinforcement learning are equiva-
lent). The idea behind this way of learning is the fact that
the program have to understand not only how to decide, but
also which parameters are more important in this task.

3.2.1 What is a Neural Network?

Focusing on supervised learning, there is a vast collection of
possible methods for designing and training the classifiers. One
of the most widespread and in some sense most natural ways of
learning are provided by the use of so called artificial NNs [48]. A
NN (fig. 3.5) is a series of connected units, the neurons, usually
separated into layers. Each neuron is able to produce an output
signal based on its inputs arriving from the previous layer using
some characteristic weights, which are the parameters that have to
be optimized in the learning process. In principle, a multilayered
network of this kind can in principle solve - which means find the
relation minimizing a certain cost function - any classification or
regression problem thanks to the Universal approximation theorem
[49]. A clever choice of such cost function and of parameters
properly describing the system under study are then fundamental
to make this solution close to the real solution of the problem. The
key power of a NN is not a magical ability to understand the data
given to it, but simply lies in its possibility to use simple algorithms
to catch and extract the non-linearity of the solution from the
training data. One of the most widespread methods to accomplish
this is backpropagation, which calculates the error derivatives with
respect to the weights, in order to apply then GD like procedures.
This algorithm has a relatively simple theory, but it is generally
implemented with a series of tricks used to increase performance
and training speed. Another point of primary importance in the
construction of the network is the attention to dealing with the
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model selection (meaning the complexity of the network) and
the regularization. The parameters entering in the NN network
implicitly reflect the nature of the system, because they are the
ones chosen to feed the network, but this is no longer true when
looking at the hidden layers. In fact it is possible to chose an
arbitrary number of them made of any number of neurons, with
consequent no constraint at the complexity of the model. This
is problematic because if the network is too simple, it would not
be able to catch all the features of the system, but if it is too
complex, it could easily suffer of overfitting problems. Deciding
the right level of complexity is then crucial in getting the best
result, and in some way this can be inspired by the model we want
to predict. Even though research on this field has been ongoing
for decades [50; 51], there is no perfect recipe for deciding how to
design the optimal network for a given problem. Although some
guidelines exist, the network features will need to be adapted to
the question under consideration.

The algorithmic idea behind a neural network is to iterate
a process that modifies the weights on the neurons and verifies
the effect on the cost function. While the backpropagation is
used to find the best way to update the weights backwards as
a feedback of the previous ones, each step make also a forward
passage through the network, which is the feedforward operation.
Both these element of the algorithm are schematically shown in
Fig. 3.5 as arrows following the respective directions.

3.2.1.1 Feedforward passage

The example NN of Fig. 3.5 shows n neurons, labelled as x, in the
input layer, representing the vector of n order parameters used to
characterize the system. Each of them is is connected with all the
neurons of the first hidden layer (m1 neurons labelled as a), which
are interconnected with all the neurons of the second hidden layer.
The network can have an arbitrary number of hidden layers, and
the last produces the output (here only a neuron, representing the
quantity that has to be predicted). Each connection in Fig. 3.5 is
associated with a modifiable weight, indicating how strongly the
output of the source neuron affects the output of the target one.
More specifically each neuron represents a function that linearly
combines the weighted inputs from the previous layer, getting for
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Figure 3.5: Basic structure of a NN. The network presented here
has an input layer, an output layer, and two hidden layers between
them. The connections between the layers are represented with
different colors and thicknesses in orther to emphasize the fact
that they have different weights.

the first hidden layer:

a′j =

n∑
i=1

xiw
(1)
i,j + w

(1)
j,0 ≡ (w

(1)
j )tx. (3.3)

In the previous equation can be observed the presence of the
parameter w(1)

j,0 , which is the bias of the linear function of the
neuron. This extra parameter can be thought as a weight by
adding one more fictitious input parameter x0 with value 1. In
this way it is possible to define the vectors w

(1)
j and x, respectively

as the vector collecting all the weights and the one containing
the order parameters and x0 as entries. Then the summation
can be written as a scalar product, as in the last equivalence of
Eq. 3.3. To make again a comparison with a physiological brain,
these interconnection between the neurons carrying the stimuli are
nothing but synapses. Hence, the values w can be called synaptic
weights. Instead of emitting exactly the signal a′j , each output of
the hidden unit is generally a nonlinear function of it, such that
the signal provided by a neuron to the outgoing synapses is given
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by:

aj = φ(a′j). (3.4)

In this equation f(·) is the activation function of the unit, which
can in principle be different for each layer or even for each neu-
ron. A NN constructed without this correction would be a linear
function of the entries. Then any added layer would simply make
more complex the relations for the parameters of the output, with
no possibility of changing its structure. Obviously such network
would be ineffective for fitting most of the possible functions it
may have to predict.

One more reason for adding this function can again be taken
from the physiological features of the neurons. In a first approx-
imation we can think of each unit as having just two possible
states, excited or not, depending on the intensity of the entering
signal. In other contexts it may be useful that an output is al-
ways positive, or should be necessary to prevent it to increase to
much as the input increase. To summarize up, depending on the
problem we want to analyze, or even for stability reasons, it is
generally useful to pre-process each signal in order to provide it
features that can not come from a linear combination. Moreover,
the backpropagation step will require a derivative of the signals
related to the inputs, because it is necessary to keep a sort of
track of where the most important signals come from. In Tab.
3.1 there are briefly presented some of the most common transfer
functions (also called activation functions).

The composition of this function and the linear combination
of the entries is known under the name of Linear Perceptron (LP).
The NN we are now analyzing consist of more layers connected
together, then it is called Multi-layer Perceptron (MLP). One
of the major advantages of using more layers instead of just one
is that it makes the network much more effective at fitting a
nonlinear behavior. The use of deep (i.e. made with more layers)
NNs has been demonstrated to be much more efficient to train in
fitting complex data, being able to distinguish even not linearly
separable data [52]. These advantages gave raise in the last two
decades to the popularity of the so called Deep learning.

The approach of Eq.3.4 can then be applied to all layers,
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Function Expression Features

Heaviside
step function

φ(x) =

{
0 for x < 0

1 for x ≥ 0
Binary signal

Sigmoid func-
tion

φ(x) = σ(x) = 1
1+e−x Preventing

“jumps” in
output values.

Hyperbolic
tangent

φ(x) = tanh(x) Same features
as Sigmoid but
symmetric and
centered in zero.

ReLU (Rec-
tified linear
unit)

φ(x) =

{
0 for x < 0

x for x ≥ 0
Simple but still
having a deriva-
tive dependent
on the input.

ELU (Expo-
nential linear
unit)

φ(x) =

{
α(ex − 1) for x ≤ 0

x for x > 0
Same as ReLU
but significant
also for values
approaching
zero

Table 3.1: Most common activation functions.

getting:

bk = φ
(

(w
(2)
k )ta

)
= φ(b′k)

y = φ
(

(w(3))tb
)

= φ(y′).
(3.5)

3.2.1.2 Backpropagation algorithm

Backpropagation is the part of the algorithm which permit to give
a feedback to the learned parameter every time they are improved.
It can be seen as a generalization of a Least mean square (LMS)
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analysis that works for linear systems. In the supervised learning
approach we are looking at, we have a cost function which have
to be related to the error committed comparing the predicted
value and the real ones. In the following we will start by briefly
explaining the logic of this algorithm applied to a network with
just two layers and a number M of outputs. The same reasoning
can be extended to a larger number of layers. Here we would have
for k ∈ {1 : M} as in Eq. 3.4

yk = φ
(
(wk)tx

)
. (3.6)

One natural choice of the cost function will then be the LMS one:

J(w) :=
1

2

N∑
k=1

(ȳk − yk(wk))2 =
1

2
(ȳ − y(w))

2
, (3.7)

where the dependence of J by the weights of the network in
emphasize by introducing w as the vector containing the weights
of the layer. In order to minimize J , the weights have to be
modified following the direction reducing the error. In other
words they have to be changed of an amount proportional to the
inverse of its partial derivative with respect to the weight:

∆w = −α ∂J
∂w

, (3.8)

which in components means

∆wi,k = −α ∂J

∂wi,k
. (3.9)

The parameter α is the learning rate, and is a measure of how
much each weight can change. Obviously a clever choice of it,
which can also vary during the training procedure. is fundamental
to get ion good results. Each step of the computation then will
simply update the weights from the previous as

wt+1 = wt + ∆wt. (3.10)

Adding more layers, as in the example of Fig. 3.5 , the extension
straightforwardly obtained by applying the chain rule to the
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derivatives. Going deeper into the evaluation of the derivatives,
the last series of weight derivatives will be:

− ∂J

∂w
(3)
k

= − ∂J
∂y′

∂y′

∂w
(3)
k

:= δ
(3)
k

∂y′

∂w
(3)
k

= (y − ȳ)φ′(y)bk, (3.11)

where the two derivative are evaluated respectively from Eq. 3.5
and Eq. 3.7. We have also defined the sensitivity of the layer
as δ(3)

k = − ∂J
∂y′ . Being the derivative with respect to the signal

entering the activation function, this parameter in fact measure
how the error changes with the neuron activation. With the same
procedure the other partial derivatives can be evaluated going
backward as follows:

∂J

∂w
(2)
i,k

=
∂J

∂y′
∂y′

∂bk

∂bk

∂w
(2)
i,k

= (y − ȳ)φ′(y)φ′(bk)ai (3.12)

3.2.1.3 Learning step

Once we have defined the procedures forming each computational
step, we need to understand how to effectively feed the network
with the training set and perform the improvements of the weights.
There are substantially tree GD like protocols to perform this
task, which mainly differ from each other for the portion of data
presented to the network at each step[53]. To summarize up the
passages done at this point we can see the learning procedure
as in Alg. 1. Here the NN with all the weights is represented
through the function f(·). The GD variant that we are going to
introduce will then define the strategy to define the subset {x} of
the training set in line 2 and the way of updating the weights in
line 4.

Algorithm 1 Learning step

for t ∈ [0 : T ] do
y ← f({x}) . Calculates the output through feedforward
∇J ← backpropagation(J,w)
w← w + ∆w

Batch GD — This procedure computes the gradients of the cost
function for all the element of the training set together at

51



3. Breaking and Formation of bonds

each step, then in Alg. 1 we will have {x} as the whole set.
The fact that for each update it is necessary to perform
the derivative for all the input data makes this strategy
potentially very slow and needs a large amount of memory.
This can be done by defining the total error J as the sum
of the errors committed by the network for all the training
examples contained in the input set.

Stochastic GD — The GD is performed for one training ex-
ample at each step. This means that at each step just
one pattern is taken at random from the training set, as
if it would be a random variable drawn from the unknown
distribution the network has to learn (from this the name
stochastic). One one hand, this method avoids the redun-
dancies in the computation of the gradients we would have
in a Batch GD, making each step much faster. Moreover the
different example can be taken online, meaning that they
can even be generated one at time during the training itself.
On the other hand, each pattern, and then the updates,
can present a high variance which cause the presence of
heavy fluctuations in the values of the cost function that
gets updated.

Mini-batch GD — A strategy in the middle of the previous two
is Mini-batch GD, acting on both reducing the variance of
the updates and the dimension of the pattern shown at each
step. This can be done by separating the whole training set
into smaller subset, then presenting one of them at a time
to the NN.

Since these methods does not guarantee a good convergence in
all cases, people usually associate them with the use of optimization
algorithms. There are in fact many points can be looked with
more attention in the definition of the weight update. One among
the other is the introduction of a variable learning rate α [54].
We can think this parameter as a measure of the distance the
network can travel in the space of the solutions during one single
update. For sure we can expect that an high rate at the beginning
of the computation can be a good choice to make the system
able to space more region in search of the minima of the cost
function. On the other hand, in the proximity of a minimum one
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weight too high would make the NN oscillate around it, without
reaching a convergence. The direction followed by the system
in the minimization procedure without a proper choice of the
learning rate can lead to some strange behaviors, like the one
schematized in Fig. 3.6. When the system encounters these saddle-
like configuration of the cost function, a naive application of the
GD algorithm would make the ball follow a path like the red one.
In fact every time the gradients are performed on the top of the
hill, the preferential direction is the one to the center of the saddle,
but a too long movement will drive the ball to the opposite side
of the valley. Iterating this step the network would eventually
reach the minima, but following a path that is obviously not the
optimal one. Also in this kind of situations the use of an optimizer
would make the system smarter, becoming in some sense able to
understand the configuration in which it is located and modify α
accordingly.

There is actually a broad range of possible optimization func-
tion which can solve these challenges. The one we will use in our
algorithm is known under the name of Adaptive Moment Esti-
mation (ADAM) [55]. The main idea of the algorithm is to keep
trace of the path the ball is following when it is going down, and
modify it before it goes up again. This is practically done by
storing the first order gradient in order to estimate their first and
second moments, used to compute different learning rates for each
parameters.

3.2.2 Characterization of the system

As previously described a Neural Network can be used to predict a
property of the system starting from some input parameters. The
goal is then to find some clever set of order parameters which could
be able to characterize each bond. As observed in 3.2 the expected
breaking time of a bond is strongly related to the presence of
rings involving it. For that reason a useful starting point could
be to collect the lengths of the rings for each bond. Remembering
that each particle can have at most 3 nearest neighbors, each edge
can be associated with a maximum of 4 loops: 2 involving the
edge itself and one extra loop for each of its vertices, as can be
seen in fig. 3.7. Moreover, while the rings are a suitable starting
point, any other parameter characterizing the local structure of
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Figure 3.6: Graphical representation of the NN, schematized as
a ball on the potential, encountering a saddle point in the space
of the solutions. The red path represents a naive application of
a GD-like algorithm. The green path is instead the result of an
optimizer on the algorithm.

the network can in principle be a good candidate for the task. In
the following, we will present all order parameters we employed
to characterize the local structure around an edge.

3.2.2.1 Order Parameters

Our neural network aims to predict an expected breaking time
for each bond. As its input, it accepts a set of order parameters
describing the local structure around a single bond. The particle
system can be considered as an undirected graph, meaning that
each bond (i, j) which is present in the graph comes with its
reverse (j, i). This implies that the edge-list can be simply contain
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sets of two points in which the order is not important. Despite
that, in order to give an univocal convention, each edge (i, j) is
taken as if i is the smaller and j is the bigger of the two involved
vertices. Then for each edge k, we define a vector xk containing
the set of the related order parameters. This set consists of:

Involved cycles — In principle each edge can be involved into
at most 2 rings, one to the left and one to the right of it.
They are found by iterating an algorithm finding the next
connected vertex in the graph, consistently turning left or
right with the use of geometrical information of the bonds.
The algorithm stops when it comes back to the starting
vertex, collecting all the encountered vertices. After this
process it is possible that the loop passes over one vertex
multiple times, meaning that the program enters one impasse
and comes back. In order to exclude these passages, which
actually are not part of the searched cycle, the loop has to
be cleaned, deleting all the touched vertices between two
occurrences of the same one, obviously excluding the starting
point. All the rings with length smaller than 3 at the end
of this process have to be neglected, since the are just the
edge itself.

Moreover, in order to avoid extremely large ring sizes to
carry large weights in the neural network, we set the length
of any ring containing more than 16 particles to 16. Non-
existing rings are set to the same value, as a not closed ring
could be seen as an infinitely long one.

Extra rings — When considering the edge (i, j), if the particle
i is also connected with two other vertices k and l, there
may exist up to one ring more with respect to the ones
previously considered, passing through l, i, k. The same is
true for particle j, allowing for a total of up to two additional
rings. These extra ones have been obtained using the same
algorithm as before. The rings detection has been accelerated
by the use of a dictionary, a data structure which saves all
previously found rings and hence avoids considering the
same ring multiple times. The basic version of the function
used to find the rings is reported in Alg. 2. The function
requires a direction (left or right) in order to find the right
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one cycle. In order to store all rings correctly, the convention
used is to name the left ring involving i − j (with i < j)
as the first (r1

ij) one and the right as the second one (r2
ij).

In this way, once a ring is collected, it can be stored in the
correct position for each of the edges present by keeping
the correct direction for each. In this way the extra cycle
connected with i would be the one to the left of the edge
connecting i with its neighbor k in {k : r1

ij ∩ ∂i, k 6= j} if
i > k, or the right one in the reverse. The same reasoning
can be done for the eventual extra ring of j. In Alg. 2 the
function bondafter(·) in the code looks for the edge in the
chosen direction with respect to i−j by looking at the actual
position of the particles, while cleancycle(·) excludes from
the loop all the overcounted edges as described before.

Algorithm 2 Cycle counter

function cycle(i, j, direction)
if {{i, j}, direction} ∈ Dict then

return Dict({{i, j}, direction})

loop← [i, j]
while loop[−1] 6= loop[0] do . Stops when closes the loop

loop.append(bondafter(loop[−1], loop[−2], direction))

loop← cleancycle(loop)

if len(loop) < 3 then . Loops of smaller length are not
rings

return Dict({{i, j}, direction}) = {·}

for e ∈ loop do . Spans over all edges {ei, ej} in the loop
reverse direction if ei > ej

if {e, direction} /∈ Dict then
Dict({e, direction}) = {loop}

return Dict({{i, j}, direction})

Bonded Neighbors — two numbers from 1 to 3 indicating how

56



3.2. Neural Network implementation

many patches on both i and j are involved in a bond.

Average second nearest neighbors — Two parameters col-
lecting for both i and j the average number of bonds their
neighbors are involved in. This results in real numbers
between 1 and 3 measuring the local connectivity of the
system.

Nearby particles — Tree parameters indicating for differed
radii how many particles are located in a circular region
centered in the mid-point of i, j, regardless of whether these
particles are bonded or not.

Convexity — Two binary values stating if the first two cycles
involving the edge are fully convex. These are calculated by
looking at the angle between the new added edges and the
previous one in a ring when it has been found.

Angle deformation — Four numbers indicating how much the
angles between the edge i, j and the one formed with the
neighbors differs from 2/3 π. These last order parameters
come from the idea that the preferred angle between two
consecutive bonds in a ring is 2/3π. Hence, the expectation
is that large deviations from this angle will indicate rings
that are under stress, and hence bonds that are likely to be
broken early. We can resume this order parameter for the
kth edge with angle θ(k) as:

x
(k)
deform = θ(k) − 2π

3
(3.13)

One first analysis that can be done on these data is the study
of the correlation between them. While not being a necessary
condition, an high linear correlation between an order parameter
and the target time would imply that such parameter is more rel-
evant in the prediction. On the other hand, two order parameters
highly correlated between each others would in principle share the
same information. This issue actually has minor effects on the
predictions when using a NN, since the use of more layers allow
the algorithm to catch features even from input data of this kind.

In Fig. 3.8, we collect a graphic representation through an
heatmap of the correlation between the order parameters and
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Figure 3.7: Cycles associated with the edge (i, j)

the target and between each others. The diagonal of the matrix
obviously contains the maximum value, since they represent cor-
relation between the same object. As we can see, none of the
parameters has a correlation with the target time (the last line)
with modulus higher that 0.2 ∼ 0.3. This order of magnitude
for the correlation is relatively low, meaning that a significant
prediction can be obtained only by looking at all the information
we have, because all the order parameters taken separately are
not sufficient to catch the target behavior.

3.2.2.2 Breaking time calculation

All the points in the data set are collected starting from one
snapshot of the system taken at a specific time, after equilibration.
In order to obtain a good statistics of the breaking times, the
common strategy would be to take many results and averaging
among them, i. e. simulating the evolution of the system many
times from the picture. This idea is obviously a pretty long and
computationally heavy task, since each repetition of the process
has to last sufficient time to let all the bonds break at least one
time. Moreover, this approach has the clear downside to relate
the breaking of the first bond with all the ones after, because it
influences the structure of the system. Since we are interested in
the bond breaking time given a specific network structure, this
undesired effect is definitively a problem to avoid.

A more clever idea is to take just one simulation, but modify
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Figure 3.8: Heatmap of the linear correlation between the order
parameters of the neural network and the target. The data are
for ρσ2 = 0.75 and βε = 0.5.

the system in such a way that it is able to store each bond-breaking
event without actually changing the bonding configuration in the
system. In other words, we can perform an EDMD simulation in
which the breaking of a bond (or the formation of a new one) is
prevented by an infinitely high potential energy barrier, and we
simply count how often a bond would have broken if that potential
energy barrier were not there. Then, under the assumption that
energy associated with the bonds is much higher than the kinetic
energy, which is the more valid the lower is the temperature, it
is possible to assume that the system configuration evolving in
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such way always remains the same, even if the particles move
from their starting position. In other word we can say that the
system status is totally contained in the bonding pattern, while
the instantaneous particle positions have only a minor effect.

With this approach each simulated time between one bond
breaking event and the next one can be considered as an indepen-
dent measurement of a bond breaking time, and we can obtain
statistics on the expected breaking time for each bond from a
single simulation. Using a fixed simulation time tsim, the expected
breaking time tb for each bond present in the starting pattern can
be computed through the number of occurrences nb of a breaking
event as follows:

tb =

(
nb
tsim

)−1

(3.14)

At sufficiently low temperatures, we expect the breaking of bonds
to be a rare event. In this regime, we can assume that the breaking
time for each bond follows an exponential distribution, with a
different decay time for each edge, corresponding to the mean of
the distribution. If tsim is sufficiently large, it will be considered
exactly as the total time of nb samples from this distribution, then
tb calculated in this way is just the average as

tb =
tsim
nb
≈ t1 + t2 + ...+ tnb

nb
= 〈t〉. (3.15)

Then for each bond k, t will be sampled from

P k(t) =
1

tkb
e−(t/tkb ). (3.16)

The accuracy of our estimate for tb can be evaluated by considering
the expected error we would obtain if we measured tb by drawing
nb samples from the distribution of Eq. 3.16 and taking the mean.
Via the Law of Large Numbers, this error will scale with the
inverse square root of the number of samples. Recalling that the
standard deviation of an exponential distribution is equal to its
average, we obtain a standard error:

σerr =
tb√
nb

=
tsim

n
3/2
b

(3.17)
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3.2.3 Implementation of the network

The neural network has been implemented with a python pro-
gram, through the use of PyTorch libraries [56]. This deep learning
framework is a powerful instrument that allows for efficient calcu-
lations by the use of NumPy-like operations and structures, and
can be accelerated using the strong parallel computation power
of GPU cards. PyTorch has found widespread use due to its
simplicity, efficiency, and open-source nature. The commands
defining a NN straightforwardly reflect the theoretical structure
described in the previous chapters, and the implementation is
generally intuitive [57]. The building blocks necessary to construct
the NN in PyTorch are the following:

Data preparation — the data set has to be converted in a
pytorch tensor to be used. This data structure can also be
treated using GPU, then easily allows to switch between
GPU and CPU, in order to improve the performances.

Loss function — Since the algorithm starts with random weight
attributes, the predicted result can be at any arbitrary
distance from the real value. then the measure of such
prediction we used is a Mean Square Error loss. This is
simply obtained at each steps by summing up all the squares
of the differences between the prediction and the targets.

Optimizer — The optimizer is used to better perform the update
of the weight. We chose the previously introduced Adam
optimizer.

Network definition — The network can be defined as the series
of the layers composing it. Each layer has been defined as a
LP, with a linear combination of the entries and a subsequent
activation function. An example 4 layer NN definition is
introduced in 3. The layers have respectively N , M1, M2
and 1 neurons each, while the activation function is the
ELU previously introduced.
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Algorithm 3 Neural Network

1 net = torch . nn . Sequent i a l (
2 torch . nn . Linear (N, M1) ,
3 torch . nn .ELU( ) ,
4 torch . nn . Linear (M1, M2) ,
5 torch . nn .ELU( ) ,
6 torch . nn . Linear (M2, 1)
7 )

Loading Data — In order to deal with the input set, Pytorch
provides an utility that allows to automatically shuffle the
elements, batching the data, and eventually use multipro-
cessing workers to load them in parallel. In this way we are
able to perform a Mini-batch GD on each learning step.

In Alg. 4 we report a simplified version of the algorithm we
used to train the network in order to emphasize these elements.
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Algorithm 4 Learning Procedure

1

2 Loader = Data . DataLoader (
3 datase t=dataset ,
4 batch_size=BATCH_SIZE, s h u f f l e=True )
5

6 #Optimizer : Adam
7 opt imize r = torch . optim .Adam( net . parameters ( ) ,
8 l r =0.0025 ,
9 weight_decay =0.00001)

10

11 f o r t in range (T) :
12 f o r ( batch_x , batch_y ) in Loader :
13

14 p r ed i c t i o n = net ( batch_x ) # input x and
p r ed i c t based on x

15

16 l o s s = loss_func ( p r ed i c t i on , batch_y )
17

18 opt imize r . zero_grad ( ) # c l e a r g r ad i en t s f o r
next t r a i n

19 l o s s . backward ( ) # backpropagat ion and
g rad i en t s

20 opt imize r . s tep ( ) # apply g rad i en t s
21 pred_test = net ( X_test )

3.3 Results

We apply the NN to systems simulated at different values of
temperature and density, observing different conditions of the
system in the single liquid phase. We preferred to not analyze for
the moment crystallization and phase separation events, since a
longer time for equilibration and a slightly bigger data set would
be probably required to get sensible predictions. Hence, we focus
only on state points where the system remains in a homogeneous
fluid state. Nonetheless a learning approach can in principle be
applied to all the state points of our system.

We generated data for density of ρσ2 = 0.75 and 0.8, in order
to have a significant presence of rings while still avoiding the
formation of solid state clusters. In order to measure the accuracy
of each test, we make use of the linear correlation coefficient, which
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expresses how much the predicted values are linearly correlated
with the real ones. The so called R − correlation function is
defined as:

acc = R =

∑
(yp − 〈yp〉)(yr − 〈yr〉)√∑

(yp − 〈yp〉)2
∑

(yr − 〈yr〉)2
. (3.18)

For simplicity of notation, the subscript in the summation has
been omitted: the sums span actually all the elements of the
vectors yp and yr. This quantity is normalized in such a way that
it can take values in the range [−1,+1], where the extremes mean
total correlation or total anti-correlation. Since we do not expect
the net to produce predictions anti-correlated to the real values,
we assume this quantity to be positive at the end of the training,
and the higher it is, the more accurate is the prediction.

Varying the temperature we see different behaviors of the NN,
both in terms of accuracy and in terms of resulting predicted
values. In the following we analyze the prediction for two state
points, at high and low temperature, in order to emphasize these
peculiarities.

(a) (b)

Figure 3.9: Snapshots of the system taken at density ρσ2 = 0.75
and respectively βε = 200 (a) and βε = 500 (b).
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3.3.1 High temperature

When studying the system at temperature relatively high (here
kbT
ε = 0.5), we observe the presence of many small clusters of

particles and rather few rings. The obtained distributions for the
order parameters are summarized up in Fig. 3.10.

Here we can see that, as observed in Fig. 3.9a, most of the
particles are not involved in any ring, as the distribution of the
first four order parameters are highly peaked around the default
value of 16. One other interesting remark is the fact that most of
the rings are convex, which is reasonable because the small rings
are more likely to assume regular shapes.

In Fig. 3.11 are plotted the data predicted by the trained NN
over the real values. The red dotted line represents the ideal result
(namely in the x − y plane the line y = x), such that the more
the result are adherent with it, the better the prediction is. For
completeness the graph also shows the upper and lower bounds
in accordance with the statistical error of Eq. 3.17. Looking at
the times obtained in this way, a prediction is reasonably true if
contained within a range of 2σerr from the exact line, where (from
rearranging Eq. 3.17) σerr(tb) is:

σerr(tb) =
t
3/2
b√
tsim

=
(〈tb〉 · y)

3/2

〈tb〉
√
tsim

(3.19)

where in the second equality σerr is expressed as a function of
the normalized time y. In Fig. 3.11, the orange spot represent
the training set, while the blue ones are the test set. The fact
that the two populations have almost the same distribution is a
reasonable starting point to say that the network does not run into
over-fitting problems. All the times from now on are measured
in a normalized scale, defined as treal := tb/τb, where τb is the
averaged time for each measure.
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Figure 3.10: Distributions of the order parameters for ρσ2 = 0.75
βε = 2
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Figure 3.11: Result of the trained NN for ρσ2 = 0.75 and βε =
2.0. The dashed line shows the true bond breaking times. The
green lines enclose an area around the target values corresponding
to ±2σerr, indicating the statistical uncertainty in the measured
bond breaking times. The resulting accuracy of the prediction is
R = 0.82.

Here we can observe that the resulting R − correlation is
pretty high when compared with other simulations, even though
the result is not properly a straight line. Looking at the graph, it
can be observed that the trend of the true line has been generally
caught, but the predictions tend to be localized in separated
areas, probably associated with clusters of particles with similar
properties. In Fig. 3.12 the breaking times of each edge are
coloured in such a way to emphasize how the prediction are
distributed. The different kinds of edges are separated in 4 classes
of prediction with very similar colours. These are the opened
clusters, with a low breaking time, their ending edges, with a
slightly longer one, and the closed rings together with the single-
edge clusters, with the longest time to break. This result can be
explained by saying that while trained to get a continuous output
function, in some sense the NN learns how to classify this types
of bonds, getting instead a quasi-discrete signal as result.
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0.8 0.9 1.0 1.1 1.2 1.3 1.4

Figure 3.12: Representation of the predicted breaking time for
a snapshot of the system taken at ρσ2 = 0.75 and β = 2.0.

In order to see which order parameters are more valuable in
the training of the network, we tried to exclude some of them. The
relevant result from this analysis is the fact that the parameters
associated with the rings are of primary importance even if there
is a very small number of them. When training the NN without
these values we in fact obtain a dramatic decrease in the final
accuracy. One reason for that is the fact that in this case the
network as almost no way to distinguish between the particles
involved in loops from the others. Then, even if the former are
much less than the latter, the whole prediction is affected by this.

Finally, despite this anomalous classification feature the NN
present, by looking at the representation of Fig. 3.13 it can be
observed that the prediction is pretty accurate for most of the
bonds. A more accurate comparison of the two values for each of
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the bonds would give that the greatest error is associated with
the big central ring. Such observation may suggest the fact that
the training set does not contain enough rings to make the NN
able to deal with them.

Real Value

(a)

Predicted Value

(b)

0.8 0.9 1.0 1.1 1.2 1.3 1.4

Figure 3.13: Comparison between the real and the predicted
breaking times of the bonds in a snapshot taken at ρσ2 = 0.75
and βε = 2.0.

3.3.2 Low temperature

In the case of lower temperatures (here kbT
ε = 0.2), the system

is already organized in one system-spanning cluster, where most
of the particles have at least one connection with the others and
there is a high distribution of rings. From Fig. 3.9b it is possible
to observe the presence of many rings of small length, but also
some rings much larger, in a network which is significantly more
connected when compared to the previous one. This observation
can suggest the fact that predicting this situation could be more
interesting than the previous case. One more more hint enforcing
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3. Breaking and Formation of bonds

this is the fact that the values of the breaking times are much more
spread out, meaning that some bonds break fast, but for others
the local connectivity make this event much slower. Going deeper
in the analysis of the data distribution (Fig. 3.14) is it possible
to observe that the highest part of the rings is now concave. The
reason is that all the big rings that are now present tent to be
stretched in the network, resulting concave.

By training the network on this data we observe that it needs
more iterations to reach a significant accuracy. This is one more
observation confirming the fact that the system is now more
complex to predict. Plotting the result in a graph displaying the
real values over the predictions as before (Fig. 3.16) we observe
that the accuracy is lower than in the previous case, but the
predictions are spread in one single cluster. Despite the error in
the predicted value is high if compared with the statistical error,
the resulting direction of the distribution of point follows the true
line. In fact by looking at one analyzed snapshot at Fig. 3.16, it
can be observed that the predicted times (Fig 3.16b) are for most
of the bonds pretty similar to the real values (Fig 3.16a), meaning
that the result of the NN is promising also in this situation.

Figure 3.15: Result of the trained NN for ρσ2 = 0.75 and
βε = 5.0. The resulting accuracy of the prediction is R = 0.62.
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Figure 3.14: Distributions of the order parameters for ρσ2 = 0.75
βε = 5
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Real Value

(a)

Predicted Value

(b)
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Squared Error

(c)

Figure 3.16: (a) Representation of the real breaking time of the
bonds in a snapshot. (b) Predicted value of the breaking time. (c)
Absolute error in the prediction, shown in arbitrary units.
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Moving then to Fig. 3.16c, we color bonds based on the squared
error between the predicted and the real result. Analyzing this
graph it can be seen that most of the largest errors the NN com-
mits come from small rings. One possible way to improve the
result would be the one of incorporating some extra information on
the rings by adding more complex order parameters. Anyway this
figure does not emphasize any pattern, suggesting no particular
way of constructing new input parameters. On the other hand,
both tests done excluding some order parameters and modifica-
tions on the NN structure do not give any relevant improvement,
suggesting that in some sense the predictive capacity of a MLP
on this problem has been reached.

3.3.3 Overall view

In order to have a more organic look at the performances of a neural
network to our system, we repeated the training procedure for a
larger set of points and for different NN structures. Tuning the
number of hidden layers and neurons per layer we built 4 different
NN structures and considered for each point the one giving the
best correlation. As previously stated, in all these comparisons
we observed that the accuracy was very similar for all the NNs
analyzed, confirming the fact that at this point the predictions are
robust with respect to changes in the learning model complexity.
A plot collecting theR−correlations for different temperatures at
fixed density ρσ2 = 0.75 is shown in Fig. 3.17. We can observe that
the predictive power of the network decreases as the temperature
decreases. This can be explained by assuming that the breaking
time variability increases as as the temperature decreases (i.e.
the inverse temperature increases), making breaking times more
and more difficult to predict. Another possible explanation is the
possibility that at sufficiently low temperatures, bond breaking
times become dependent on the local structure over a larger local
region, which is not considered by our order parameters. This is
a reasonable interpretation because, as in many physical systems,
we expect that the correlation length tent to increase when the
temperature goes down. One further step will be the one of taking
these higher order correlations into account. One possibility to
perform this task is the Graph Network (GN) method, which we
will discuss in the next section.
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Figure 3.17: R − correlation trend for predictions at density
ρσ2 = 0.75 and variable temperature.

Summing up where we are, the predictions up to now aim
to find the bond breaking time when the system is equilibrated
at fixed density and temperature. We have proven that a NN
is actually able to work with reasonably high accuracy in those
situations by only considering the information of particle position
and bonding pattern of single snapshots. This is an interesting
result, but at this point nothing can be said about the possibility
to use an algorithm of this kind to study the most interesting
problems on glasses, such as glassy phase transition. In order to
perform this task, a NN trained at a certain state point has to
maintain a stable and sufficiently high accuracy in the predictions
done even at different conditions. In this way it would be able to
follow the system evolving at varying temperature and/or density.
Starting from a network trained at each temperature, we then
evaluated the R− correlation it reaches when predicting from the
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datasets of all the others. The result of this analysis is summarized
in Fig. 3.18. Here we observe the fact that in some cases the
trained network is more effective for temperatures different from
the one it has been trained on (indicated in each curve with
a larger spot). However, most of them effectively maintain a
reasonably high correlation for a certain range temperatures. This
suggests the idea that the structural information the algorithm
learns from the snapshots is to some extent independent of the
global parameters at which they are taken. Then the effect of
the topology in the proximity of a bond is the same for different
temperature within a certain range, and so one of the trained NNs
can in principle follow the evolution of the system despite the fact
that quantities such as temperature chance during the simulation.

2 4 6 8 10

βε

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R

βε = 3.33

βε = 4.00

βε = 5.00

βε = 6.00

βε = 8.00

βε = 10.00

Figure 3.18: Correlation of NNs trained on snapshots taken at
different temperatures and tested for some points in the range
βε = 2 ∼ 10.
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3.4 Possible improvements

One possible way to improve the performance of the NN can be
provided by the use of a slightly more complex structure, whose
complexity can be inferred by the system itself, a GN [58]. This
approach is relatively new in this field of research, but has already
proven to be surprisingly effective for several machine learning
problems [59; 60],including predictions for particle mobility in
glassy materials [61].

The core idea of the method is to feed the algorithm with
more information about the real system by constructing a NN
that has a structure similar to the system under consideration,
starting from the particles and the connection between them.
Interpreting our system as a graph of nodes connected by bonds,
it is sensible to assume that the output for any bond can be
affected by information only related to nearby other bonds, or
nearby particles. By constructing our NN to include so-called
graph layers, adopting the same graph structure of the bonding
graph of our system, we can explicitly incorporate this idea into
our model.

At this point it is useful to recall that the object that we want
to predict, which is the bond breaking time, is expected to be
strongly related with the stresses in the network. In the previous
approach, we were considering only local order parameters (such
as cycles and neighbors positions). We can imagine that the NN
extracts such non-local relations as an approximation from the
local stresses to which it has access. Moreover, since the NN is
fed with points from a data-set in which the edges are treated
as independent, we were implicitly excluding all the information
beyond the relation between the nearby ones, or at least we were
again hoping the network would be able to learn how to extrapolate
it from local data. Starting from this, it is not unreasonable to
think that we can achieve better predictions by basing them also
on the intermediate or final results (i.e. node outputs within the
neural network) produced for the bonds close to the one we are
considering.

In order to better visualize the advantages of a more careful
approach, we can see the NN as a random walker (RW) moving
its steps in the space of the possible solutions. It starts following
totally random paths at the beginning, then the learning procedure
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suggests him how to find the right way. This strategy, as previously
said, gives sensible result as long as the RW is actually able to
span a broad region of the space, then it is also required that
the space is deep enough. This second condition means that a
not broad enough point of view (i.e. a higher dimension of the
space) easily lead to the existence of many equally good solutions,
which could not be exactly equal if the algorithm has enough
information to distinguish between them. In this framework, the
extra information we are adding is seen as what in literature is
called a relational inductive bias [58], which is in some sense a
hint that allows the RW to prioritize some class of solutions with
respect to others. The improvement is obviously given by the fact
that a less generic network can focus on relevant solution much
faster, and hopefully reach even better predictions.

Moving to the details of the method, we can assume to gather
all the information of our system, collected into snapshots, in the
following data structures:

Din = {vi; ej}, i = 1, . . . , Nv; j = 1, . . . , Ne

Gin = {(sj , tj)}, j = 1, . . . , Ne,
(3.20)

where Nv is the number of particles in the snapshot and Ne is the
number of bonds. All the information of the order parameters
associated with the edges is now stored into the vectors ej , with
extra attributes associated with the vertices contained in the
vectors vi. The particle order parameters we added are the number
of nearest neighbors and their directions. The data structure Gin

is then the graph representation of the snapshot made through the
edge-list of the formed bonds. The bonds are stored as directed
edges, meaning that in the edge (sj , tj) sj and tj are respectively
source and target for that bond. Obviously for this problem bonds
are symmetric relations, then in the edge-list both (sj , tj) and
(tj , sj) have to be present. We want now to use these features to
train a new network, incorporating the graph idea in a new deep
learning component, as the LP and MLP previously used. This
block, which we can call a GN, has to take as input both the
attributes in Din and the structural information in Gin, returning
updated attributes in Dout. The difference is that each new
feature is calculated using the same function, which only takes
into account the features of edges or vertices that are from at most
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one bond away. In a certain way of thinking, the improvement
does not come the presence of a particular new object, but from
the absence of something, namely some edges. In other words,
the network now knows that each vertex directly depends only
on its neighbors, being less and less sensible to the changes of
the other vertices as they are far in term of connection from it.
Moreover, in this way the (non-linear) function which calculates
the updated features for each vertex is the same for each of them,
independently on the graph size. This means that the complexity
of the NN does not need to grow when considering a larger system
of particles (which would correspond to a larger graph).

Assuming a GN as a black-box, that will be defined further on,
we can construct a final NN as in Fig. 3.19. The two parts of Din

enters in the graph layers through two different encoders, which
are MLPs. These are implemented in order to turn the number
of order parameters to the desired dimension of the nodes and
edges attributes. The subsequent Graph layer is then fed with
the pre-processed features and with Gin, which remains the same
for all the following layers. Information can travel further along
the network, getting updated by all the chained GNs, which take
the Dout of the previous layer as input attributed and return it
modified for the one after.

3.4.1 Graph network implementation

In the framework of the GN layer proposed in Ref. [58], the graph
that it operates on can be defined as the structure G = (V,E),
where V and E are respectively the set of vertices and edges of
a usual graph. Both vertices and edges are also associated with
one or more attributes, which is supposed to change during the
learning process. Hence, we have V = {vi}i=1:Nv

, where Nv is
the number of vertices and vi is the attribute (a vector of values)
related to the vertex i. In the same way E = {(ej , sj , tj)}j=1:Ne

,
with Ne the number of edges and ej the attribute of the edge j,
which connects sj with tj . In our model, ej is a set of values that
are converted to a single parameter through the edge decoder,
turning into the predicted breaking times of the network. The
attributes for the vertices are instead parameters which do not
appear in the final output, since they are not necessary in our
study. Hence, they will be used in the learning process to carry
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Figure 3.19: Diagrammatic representation of the full network.
The hexagons represent the GN layers, while the trapezoids are
the MLP encoders and decoder

information between edges but the output will be neglected at the
end. This framework is fully general, meaning that in principle
a GN can be defined on an directed multi-graph, in which the
nodes i, j can be connected by any number of edges, each of them
with a defined direction (i.e. (i, j) 6= (j, i)). In our system we
have a symmetric bonding relation as the definition of the edges,
so a connection between two particles is always encoded as two
directed edges with opposite direction.

3.4.1.1 Computational Step

The execution of the network with this extra learning block is
essentially similar to the one described in the previous section.
We will then have repetition of steps of feedforward passage and
a consequent backpropagation algorithm to update the weights.
The difference lies in the way we update the block of information
that passes through the network within the graph layers. For a
given graph layer, we define V ′ = {v′i}i=1:Nv

as the set of all the
updated attributes of the vertices, E′i = {(e′j , i, tj)}j=1:Ne,tj∈∂i
as the set of the updated attributes of the edges starting from the
vertex i, and the set of all the updated attributes of the edges
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as the union E′ =
⋃
iE
′
i. It is then possible to introduce the

relations:

e′j = φe(ej ,vsk ,vtk)

v′i = φv(ē′i,vi)

ē′i = ρe→v(E′i).

(3.21)

The φ functions are the “update” relations for the attributes of the
network which, as in a usual linear layer, would be the composition
of a linear combinations and an activation functions. The last
line of Eq. 3.21 instead introduces the “aggregation” function,
which take a set as an input and give a reduced single element
representing the aggregated information. It is important to observe,
as mentioned before, that the updated attribute for the nodes
only depend on the neighbors of each through the aggregated
parameter ē′i. Since the update function must be the same for
each node, regardless of the number of neighbors, the function
ρe→v is used for condensing the vector of data into just one value.
This can be done by designing this function to be invariant under
permutations of its inputs. One logical choice will then be to
return the sum of all the entering parameters. In general it can
be constructed as any commutative relation of all the inputs, such
as summations, means and and maximum values.

Starting from the current values of the attributes, at each step
the GN starts updating through φe the edge ones, which only
depends on the old parameters. The new values obtained in this
way are collected in sets E′i for each node, used as an input for the
ρe→v functions to get the aggregated attributes for the neighbors.
Then the node attributes can be updated by applying φv on its
argument for each vertex. Finally the procedure outputs the
updated attributes in V ′ and E′. These passages are summarized
in algorithm 5. Note that this approach closely follows the method
outlined in Ref. [58], but leaves out the possible effect of any
global parameters.

3.4.1.2 Implementation details

One of the most natural ways to define the previously introduced
functions is to treat them as a generalization of the usual LP
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Algorithm 5 Update step for a GN block

1: function GN_step(E, V )
2: for j ∈ {1..Ne} do
3: e′j ← φe(ej ,vsk ,vtk) . Updates edge attributes
4:
5: for i ∈ {1..Nv} do
6: E′i ← {(e′j , i, tj)}j=1:Ne,tj∈∂i
7: ē′i ← ρe→v(E′i) . Aggregates edge attributes per node
8: v′i ← φv(ē′i,vi) . Updates node attributes
9:

10: V ′ ← {v′i}i=1:Nv

11: E′ ← {(e′j , sj , tj)}j=1:Ne

12: return (E′, V ′,u′)

update functions. This can be done constructing the φ functions
as a standard MLPs, consisting of a sequence of linear NN layers
and activation functions as described in the previous Section. An
analogous reasoning can be applied to interpret this approach also
to the edges attributes. Since the two update functions have a
different number of input variables, they are in principle different,
but both are MLPs taking in a single vector of inputs:

φe(ej ,vsk ,vtk) := MLPe([ej ,vsk ,vtk ])

φv(ē′i,vi) := MLPv([ē
′
i,vi]).

(3.22)

In the previous relation, the symbol [·] indicates a vector concate-
nating all the attributes inside, as they are the signals arriving
from the previous layer of the GN, or (for the first graph layer)
from the encoder.

On the other hand, any symmetric relation of the entries can
be used to define the aggregation function. In order to keep
both information on the number of the neighbors for each input
(indicated as ni for the node i) and an average of the features each
of them carries, we constructed ρe→v(E′i) as a concatenation of
the summation of all the inputs and its mean value, normalized to
the number of neighbors ni. The resulting aggregation function is
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the following:

ρe→v(E′i) :=

 ∑
{k:k∈∂i}

e′k;
1

ni

∑
{k:k∈∂i}

e′k

 (3.23)

A GN constructed in such way can be thought as a black-box
accepting input signals, processing them returning some output
with a well-defined update procedure. The most important feature
here as that each GN layer only updates the local edge and node
properties based on their immediate surroundings. However, a
series of such layers allow variations in local structure progressively
further away to affect the final result for any given edge in the
systems. All these ingredients are enough to make it usable as a
building block for the wider NN.

3.4.2 Results

Training the new network structure on the same data we observe
significant improvements for low temperatures, as shown in Fig.
3.20. This is a confirmation of the idea that introducing more
information on the correlation between bonds over a larger region,
as the GN implementation does, is effective in this regime. For
relatively high temperatures the GN does not bring improvement,
and instead it gets even worse results when compared with the
MLP. This can be explained by the fact that at these temperatures
it is sufficient to look at the correlations only with the order
parameters defined in the previous sections. In this way, the
increase in complexity introduced by the use of the graph layers
can not be justified. Moreover the snapshots at these state points
induce highly disconnected topologies, which can result in a drop
down of the performances. Similar to the results from the MLP
predictions we observe a decrease in the correlation at very high
temperatures (βε > 8). This may be attributable to the lower
quality of the data at these low temperatures, where the number
of bond-breaking events observed in a given simulation is relatively
low.
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Figure 3.20: Comparison between the R− correlation trend of
the GN and the and the MLP for predictions at density ρσ2 = 0.75
and various temperatures.

As we did for the MLP, the trained GN can be tested on
datasets collected at variable temperatures, in order to verify its
capability to analyze eventual out of equilibrium simulations. In
Fig. 3.21 are gathered some of the performance trend for different
starting temperatures. Looking at the curves, we observe that
the ones at sufficiently low temperature present a plateau in the
proximity of the state point of the training, confirming the fact
that also this method can be effective for this purpose. Comparing
the overall performances of MLP, and with even better results
the GN approach, we are finally able to say that both methods
can catch the features behind the bond breaking events, with a
certain degree of robustness to changes in the conditions of the
system.
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Figure 3.21: Correlation of GNs trained on snapshots taken at
different temperatures and tested for some points in the range
βε = 2 ∼ 9.
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We now come back to our movie observer from the introduction,
who speculated on the possibility of reconstructing the full time
evolution of a glassy system only starting from a single snapshot.
In the previous chapter we effectively see how this idea can be
concretely implemented through the use of NN. Applications
of this technique are widespread in a huge amount of modern
research environments. We can in fact predict information about
a physical system, a social community, a human speech, and in
principle an infinite number of other fields [62; 63; 64]. The only
limit is to find a smart way to translate our perception from the
world into a quantitative model and then in a set of parameters
that a universal black-box can read and base its answer on. This
is obviously not completely true. In fact, while not considering
the difficulties underlying the definition of a really representative
model of our problem, we saw how even this black-box should be
specialized in order to give sensible results.

In the previous chapter we saw that a classical MLP applied to
our patchy-particle network can get reasonably good predictions,
but every configuration of neurons and layers seems to present a
sort of upper bound in the reachable accuracy. The improvement
we adopted was to consider the data in a different way, incorporat-
ing the global network topology by using a GN. This effectively

85



4. Conclusions

led to a gain in the network performance, suggesting the possibility
that the information contained in the snapshots is sufficient to
perform the task, but the local way we were looking at them was
not sufficient to catch all the features. From another point of view,
rather then modifying the way of considering the data, what we
did was change the NN structure in order to incorporate in it the
topological information of the real system. The resulting network
is obviously less general, in the sense that this structure is not
guaranteed to have better performances also when looking at other
problems, but for this reason it is in some sense more specialized
to execute its actual job. In particular, the GN structure allows
the NN to also consider features of the system further away from
the particle or bond under consideration, improving its predictive
power.

This interpretation does some damage to the idea that a NN
can be a universal solver for all problems, preferring instead a
different network structure to solve different problems. Neverthe-
less looking from a broader level, machine learning is for sure an
extremely powerful instrument to get to solve almost any problem,
as long as we consider it from the right perspective.

The results we got from our implementations reflect one other
relevant fact: even by constructing a NN which is specific for our
problem, the error in the predictions are still not negligible for
some configuration. Moreover this choice had the drawback of
considerably increase the complexity of the predictive algorithm.
Obviously we have no guarantee that our algorithm is the best
possible one to predict bond breaking times for patchy particles.
In principle there may be another method capable of perfectly
performing this task. While admitting the existence of such perfect
algorithm, which we do not have right now, in would be useful
to look again with more attention to the main question of this
thesis: is the information contained in a single snapshot sufficient
to predict the system evolution?

Many studies shows that the local structure allow to predict
in which regions rearrangement events are more likely to occur
[65; 66], but the question is actually more profound. Our tendency
to lean towards a positive answer increased when we incorporate
in our learning model the global topological information as a
relational inductive bias [58]. This could suggest us to move a
step back and ask ourselves which is the role of such biases, or
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in other way of some a priori information, in making predictions
on our or any system. One first answer to this arrives from what
theoreticians call the Ugly Duckling theorem [67]. This theorem,
developed for classification problems but which can be conceptually
extended also to regressions, asks whether it is possible to make
classifications without any sort of bias. It takes its name form the
story of The Ugly Duckling from H. C. Andersen, which effectively
shows that a duckling may be as similar to a swan as two duckling
are between each others. The argument says that without any
prior information about the classification we have to perform (i.
e. without knowing if we have to distinguish between a duckling
and a swan) it is impossible to build a classifier, because in some
way all the possible classification are equivalent.

Figure 4.1: A duckling can be as similar to a swan as to another
duckling.

Coming back to our problem, in all the supervised learning
algorithms we built, useful information to distinguish between
different configuration was given by the supervised training proce-
dure. Rather that asking if our NN is capable of recognising or
not a swan, this reasoning is useful to stress out one more time
the fact that a good choice of the information given to the algo-
rithm is of primary importance in determining its performances.
Then if a Universal algorithm is impossible, it is reasonable to
assume that even a perfect algorithm, able to predict in the same
way all the features of a system as the one we are studying, is
likewise unachievable. Then one further step would be the one
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of optimizing an algorithm in order to find the best compromise
between generality for our purposes and accuracy.

In this thesis the NNs were trained in order to predict which
bonds are more likely to break from a certain configuration, follow-
ing the idea of being able to determine the evolution of the system.
Going further in this direction, the next step would be the one of
repeating an analogous reasoning to the bond formation. Looking
at a fixed snapshot, it is straightforward to state which are the
pairs of particles to analyze when looking for possible breaking
events, because they can only be chosen among the connected
ones in the snapshot topology. Less direct but still doable would
be to predict the most likely formed bonds, which can instead
originate from every particle with the unbonded patches of all
the others. Moreover, in a 2D system where the bond network
percolates, bonds can only form between two free patches that
are both on the inside of a closed loop, which drastically restricts
the possibilities. What we learned from glasses, and in particular
network glasses, is that their dynamics are dominated by rare
rearrangement events involving the bonds with long time-scale
compared with the fast movement induced by thermal fluctuation.
As said in the previous chapters, this separation of time scales
makes studying the full evolution of such materials difficult in
experiments. This issue is partially solved by computer simula-
tions, but is still problematic for very low temperatures, because
the gap between the two time-scales grows more and more as the
temperature decreases. As a consequence, even the equilibration
of the system at very low temperature becomes practically unfea-
sible, setting a limit to the power of usual simulations, and then
to our comprehension of these materials. A reliable method of
predicting these events can then become a key feature of a new
class of machine learning-based simulation algorithms, which can
overcome this barrier.

As we saw, our NN trained at one state point is capable of
making predictions even for different ones. At this stage we only
used this feature to study situations which could be analyzed also
with usual methods, but in principle NNs could even be used to
predict the dynamics of networks at temperatures too much low
to sample in conventional simulations. Then these results lay the
foundation for this new way of simulating network glasses, which
can bring our understanding of these materials to a next level,
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and maybe lead to a new frontier of their application to everyday
life.
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