
POLITECNICO DI TORINO
Master of Science in Computer Engineering

Master Degree Thesis

Prototyping an eBPF-based
5G Mobile Gateway

Supervisors
Prof. Fulvio Risso
Ing. Sebastiano Miano, PhD

Candidate
Federico Parola

Academic year 2019-2020





Abstract

In the upcoming 5G network infrastructure, the virtualization of network function
is a key component to meet the flexibility and scalability requirements imposed by
the wide range of supported applications. The Mobile Gateway is the component
of the 5G core network responsible of interconnecting the mobile user equipment
located in the Radio Access Network to one or more Packet Data Networks (e.g. the
Internet). This work studies advantages and challenges of using eBPF (Extended
Berkeley Packet Filter), a novel technology that allows fast packet processing in the
Linux kernel, to implement such a network function. A modular prototype provid-
ing a subset of the functionalities of the Gateway is proposed, and its performance
is compared to equivalent network functions based on alternative data plane tech-
nologies. Results show that eBPF, thanks to its flexibility and integration with the
Linux kernel, can be an interesting solution in scenarios such as small, distributed
data centers for edge computing.

3



Contents

1 Introduction 6
1.1 Goal of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 8
2.1 5G Mobile Gateway . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 eBPF (Extended Berkeley Packet Filter) . . . . . . . . . . . . . . . 11

2.2.1 vCPU Architecture . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.4 Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.5 Tail Calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 Program Types . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.7 Tool chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Polycube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Cubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Polycube Daemon . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Polycube CLI . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Prototype Architecture 25
3.1 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 GTP Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Traffic Policer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Traffic Shaping vs Policing . . . . . . . . . . . . . . . . . . . 29
3.3.2 Rate limiting algorithms . . . . . . . . . . . . . . . . . . . . 30

3.4 Traffic Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 Linear Bit Vector Search algorithm . . . . . . . . . . . . . . 34
3.4.2 Dynamic generation of the classification pipeline . . . . . . . 36

3.5 Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4



4 Prototype Implementation 38
4.1 Automatic Code Generation . . . . . . . . . . . . . . . . . . . . . . 38
4.2 GTP Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Data model and control plane . . . . . . . . . . . . . . . . . 40
4.2.2 Data plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Traffic Policer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 Data and Control Planes . . . . . . . . . . . . . . . . . . . . 43
4.3.3 Fixed Window Counter implementation . . . . . . . . . . . . 44
4.3.4 Token Bucket implementation . . . . . . . . . . . . . . . . . 45
4.3.5 Sliding Window implementation . . . . . . . . . . . . . . . . 48

4.4 Traffic Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Data plane templates . . . . . . . . . . . . . . . . . . . . . . 50
4.4.2 Data plane generation logic . . . . . . . . . . . . . . . . . . 54

5 Evaluation 57
5.1 Benchmarking tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 MoonGen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.1.2 TIPSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Rate limit algorithms comparison . . . . . . . . . . . . . . . . . . . 63
5.2.1 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.2 Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Mobile Gateway performance . . . . . . . . . . . . . . . . . . . . . 65
5.3.1 Multiple users scalability . . . . . . . . . . . . . . . . . . . . 66
5.3.2 Multiple cores scalability . . . . . . . . . . . . . . . . . . . . 67
5.3.3 Modules overhead . . . . . . . . . . . . . . . . . . . . . . . . 68

6 Conclusions and future work 70

5



Chapter 1

Introduction

The upcoming fifth generation mobile network will bring a huge improvement in
system capacity, access speed, latency and energy efficiency in order to face the ever
growing requirements of an increasing number of services. 5G will support a wide
variety of use cases [1], each one with specific requirements, that can be subdivided
in three broad categories:

• Enhanced mobile broadband (eMBB): The evolution of the 4G broadband
providing faster data rates, a more widespread connectivity and increased
mobility, in order to enable advanced services like 360°high-resolution video
streaming, immersive AR and VR applications and real time monitoring.

• Ultra-reliable and low latency communications (URLLC): A class of services
with stringent requirements for reliability, latency and availability for mis-
sion critical applications such as industrial internet, remote surgery and au-
tonomous driving.

• Massive machine type communications (mMTC): A family of applications pro-
viding connectivity to a huge number of devices (usually IoT devices) that
typically produce sporadic small amounts of data, such as grid of sensors or
smart home systems.

To support this range of use cases the 5G architecture has been completely re-
designed, including concepts like Mobile Edge Computing (MEC), which provides
cloud computing capabilities in close proximity to users, reducing the overhead on
the core network and allowing the user equipment to offload complex tasks without
latency penalties, and Network Slicing, allowing to instantiate overlay networks on
a shared infrastructure in order to satisfy the needs of different vertical industries.

In this scenario the traditional mobile core architecture, based on hardware,
fixed-function middleboxes, lacks in flexibility, scalability and programmability.
As a consequence Network Function Virtualization (NFV) and Software Defined

6



Introduction

Networks (SDN) has been identified as key technology enablers for realizing 5G
networks [2]. Network Function Virtualisation allows to run network functions as
software application on top of container or virtual machines executed on Com-
modity Off-the-Shelf (COTS) hardware. This enables the use of cloud computing
practices to improve flexibility and scalability while reducing both capital (CAPEX)
and operational (OPEX) expenditures for the service provider. Software Defined
Networking complements this technology, providing the ability to programmatically
reconfigure the network in order to achieve traffic engineering and steering.

1.1 Goal of the thesis
Despite its many advantages, this softwarized approach highlights the performance
limits of general purpose hardware with respect to dedicated appliances. This
limits are especially visible in the software data plane that, due to the demanding
requirements of the 5G network, has to process packets at a very high rate. As a
consequence technologies for high speed packet processing are required, like kernel
bypass solutions such as Intel DPDK.

This thesis studies the possibility to use eBPF (Extended Berkeley Packet Fil-
ter), a novel technology that allows to run fast network functions in the Linux
kernel, to implement a 5G Mobile Gateway, the component responsible of handling
the User Plane Function in the Mobile Packet Core. A prototype is proposed and
evaluated, highlighting the challenges posed by the technology and the advantages
and drawbacks of the solution.

7



Chapter 2

Background

This chapter provides a description of the main elements and key technologies this
thesis is based on.

First, the 5G Mobile Gateway is presented, highlighting its main features and
the function it carries out inside the 5G Mobile Core network. Then, a detailed
description of the two main technologies used in the project, eBPF and Polycube,
is provided. In the end, an overview of related work studying the virtualization of
the Mobile Gateway function is proposed.

2.1 5G Mobile Gateway
The 5G Mobile Packet Core (MPC) [3] is the network responsible of providing
voice and data services to mobile user equipment. These devices are connected to
the network through radio base stations inside the so called Radio Access Network
(RAN). The 5G Core network is an evolution of the 4G Evolved Packet Core (EPC),
it heavily relies on Network Function Virtualization (NFV) and Software Defined
Networks (SDN) and is based on two key principles:

• Control and User Plane Separation (CUPS), that enables the User Plane Func-
tion to be deployed independently from the centralized control plane, in closer
proximity to the user, increasing flexibility and scalability of the system.

• Service Oriented Architecture (SOA), that allows a flexible and extensible
control plane based on independent and interchangeable services that commu-
nicated through HTTP based RESTful APIs.

Some of the main modules composing the control plane of the Mobile Packet Core
are:

• The Access and Mobility Management Function (AMF), that handles all sig-
naling messages needed to interconnect the RAN to the Mobile Core and is

8



Background

responsible of authenticating the user equipment and managing its mobility
between different base stations.

• The Session Management Function (SMF), that assigns and manages IP ad-
dresses of the user equipment, interacts with the RAN through the AMF to
send QoS and policy information, identifies the User Plane Function that is
more suited to serve a certain user and configures it with all parameters needed
to handle the corresponding session.

• The Policy Control Function (PCF), that provides policy rules to other control
plane functions, including policies related to QoS, network slicing, charging
and mobility management.

All functions related to the user plane (the User Plane Function) are grouped into
the Mobile Gateway, also known as Evolved Packet Gateway, that constitutes the
point of interconnect between the mobile user equipment and external Packet Data
Networks (PDN) such as the Internet or a corporate intranet. Multiple gateways
can be used by a single user device, also in cascade, to provide connectivity to
different or the same network. All the traffic that flows between a user device
and the Data Network is grouped in a PDU Session, composed by one or more
bi-directional radio bearers that connect the user to the Base Station and two uni-
directional GTP-U tunnels that connect the Base Station to the Mobile Gateway.
The GPRS Tunneling Protocol user plane (GTP-U) carries traffic in this last part
of the PDU Session and is based on the encapsulation shown in figure 2.1:

MAC
External IP

BS IP
GW IP

UDP
dport 2152 

GTP-U
TEID

Inner IP
UE IP

Remote host IP
PAYLOAD

Figure 2.1: GTP encapsulation.

• The external IP header contains the IP addresses of the Base Station and the
Mobile Gateway.

• UDP is used as transport layer, with destination port 2152.

• The GTP-U header contains, among other information, the Tunnel Endpoint
IDentifier (TEID), that uniquely identifies the uplink tunnel (BS to GW) on
the Gateway and the downlink tunnel (GW to BS) on the Base Station.

• The inner IP header contains the IP addresses of the mobile user equipment
and the remote destination on the Packet Data Network.

9



Background

A simplified representation of the 5G Mobile Packet Core Architecture is shown in
figure 2.2.

Other Control Plane functions

Session 
Management 

Function
(SMF)

Policy Control 
Function

(PCF)

Radio Access Network (RAN) Mobile Packet Core (MPC) Packet Data Network (PDN)

Base StationsUser Equipment

Access and Mobility
Management 

Function
(AMF)

Mobile Gateway
(User Plane Function)

Control messages

Data messages

GTP tunnels

Internet

Figure 2.2: 5G Mobile Packet Core Architecture.

Functions carried out by the Mobile Gateway include:

• Packets encapsulation/decapsulation.

• Forwarding and routing of traffic to/from the Packet Data Network.

• Access control, allowing only certain classes of traffic to transit.

• Policy enforcement and QoS handling.

• Traffic inspection.

• Charging support.

• Support the mobility of user equipment between different base stations.

The QoS model in the 5G network is based on the concept of QoS Flow, that
represents the finest granularity of QoS differentiation in the PDU Session. A
default QoS flow is instantiated upon session initialization and additional flows can
be requested (optionally with Guaranteed Bit Rate) to support specific services like
a VoIP call. QoS is enforced both in the Access Network and by the Mobile Gateway
and is managed by the SMF through dedicated rules. Every QoS Flow is identified
by a QFI (QoS Flow Identifier) that is carried with the packet in encapsulation
headers.

10



Background

2.2 eBPF (Extended Berkeley Packet Filter)
Extended Berkeley Packet Filter (eBPF) [4] is a virtual machine integrated into
the Linux Kernel that allows to execute custom bytecode injected at runtime in an
event-based way. eBPF was introduced in Kernel 3.18 and is the evolution of the
classic Berkeley Packet Filter (cBPF), once simply known as BPF.

cBPF was born in 1992 and was a very simple VM used to perform in-kernel
packet filtering. The network TAP, a component in the lower layers of the network-
ing stack, copied packets received by network interfaces to the BPF filter, where
injected bytecode decided whether the packet needed to be sent to the user space.
Matching packets were inserted into a buffer, that could be read by a user space
program, such as Tcpdump, through a dedicated API.

eBPF extends BPF architecture making it general-purpose, therefore becoming
an interesting technology not only for packet processing, but also for other aspects
like security management and kernel monitoring.

This technology allows to extend the behaviour of the vanilla Linux kernel,
without requiring the reboot of the system, the re-compilation of the kernel and
avoiding the cost of system calls and expensive kernel/user context switching.

Main features of eBPF are discussed in following sections.

2.2.1 vCPU Architecture
eBPF virtual CPU consists of eleven 64 bit registers with 32 bit subregisters, a
program counter and a 512 byte large stack. This vCPU executes a general purpose
RISC instruction set.

Registers are named r0 - r10: r10 is read-only and contains the frame pointer
to access stack space while other registers (r0 - r9) are general purpose. Upon
entering execution of the program, register r1 is loaded with the context for the
program. The context is defined by the program type, for example, a networking
program can have a kernel representation of the network packet (skb) as the input
argument. Register r0 is also the register containing the exit value for the BPF
program, whose semantic is defined by the type of program.

2.2.2 Safety
eBPF allows the injection of custom code at runtime. While providing a great flexi-
bility this feature is a source of potential risks for the stability of the kernel and the
security of user data. Furthermore eBPF programs are executed with preemption
disabled in a run-to-completion mode requiring the program to terminate in a brief
time and return the control to the kernel.

As a consequence, all programs are analyzed by a Verifier, that can reject them
in case one or more safety constraints are not respected. These constraints include:

11



Background

• Valid instruction opcodes.

• Access to valid memory zones.

• Limited program size: the maximum instructions count was initially set to
4096 and has been raised to above 1 million in kernel 5.1. Besides guaran-
teeing the termination of the program in a limited time this constraint is also
influenced by the desire to keep a low verification and injection time.

• Absence of unbounded loops: initially also bounded loops were forbidden but
the constraint has been lifted in kernel 5.3 thanks to the improvement of the
verifier. The same consideration made for the above point applies here.

Due to the presence of these constraints, eBPF does not implement a Turing-
complete machine, meaning it can not execute arbitrary computation tasks.

2.2.3 Helpers
Helpers are functions provided by the kernel that can be leveraged by eBPF pro-
grams. They are executed outside the eBPF context and therefore are not subject
to its constraints. Their main applications are:

• Overcoming eBPF limitations, like using the helper bpf_xdp_adjust_head()
to extend or shrink the packet buffer.

• Interacting with kernel structures, for example the helper bpf_fib_lookup()
allows to perform a lookup in the kernel routing table.

• Executing complex tasks, like handling VLAN encapsulation with
bpf_skb_vlan_pop() and bpf_skb_vlan_push() helpers.

Available helper functions may differ for each BPF program type. New helpers are
continuously added to the kernel, extending the system capabilities.

2.2.4 Maps
Maps are efficient key/value data structures that reside in kernel space. They can
be accessed by eBPF programs through dedicated helper functions. Unlike other
memory areas, maps are preserved among different executions and can be used to
keep the state among one run and another. They can be shared between different
programs and can also be accessed by the user programs, providing an efficient
way to exchange data between kernel and user space. The kernel guarantees safe
concurrent access to maps using the Read-Copy-Update mechanism.

Different types of maps are available, characterized by specific behaviour and
structure, some of them are described below:

12



Background

eBPF Program

Verifier +
JIT

Kernel space

User space

MAPs

Userspace Application

eBPF bytecode

Kernel 
Networking 

Stack

Figure 2.3: Use scenario of a networking eBPF program.

• BPF_MAP_TYPE_ARRAY: behaves like a classic sequential array, provid-
ing the fastest possible lookup. All elements are pre-allocated and zero initial-
ized at init time.

• BPF_MAP_TYPE_HASH: data is stored using a hash table. Elements are
split into buckets based on the result of the hash function applied to the key.
Provides constant time access to data.

• BPF_MAP_TYPE_LPM_TRIE: this map allows to perform a longest prefix
match lookup on the key. Useful to implement lookup in routing tables.

• BPF_MAP_TYPE_PROG_ARRAY: contains file descriptors of eBPF pro-
grams. Is used by the bpf_tail_call() helper to pass the control to another
program.

• BPF_MAP_TYPE_PERF_EVENT_ARRAY: allows, among the other things,
to push raw data to a perf ring using the bpf_perf_output() helper. This
data can then be read by a program in user space polling the buffer.

13



Background

Some of these maps also have a PERCPU implementation (PERCPU_ARRAY,
PERCPU_HASH, etc.), that allows to have a different instance of the table for
every CPU core providing a performance improvement, since there is no need for
additional synchronization mechanisms and the map can be kept into the cache for
faster access.

2.2.5 Tail Calls
The mechanism of tail calls allows an eBPF program to call another one with
a minimum overhead. Unlike function calls, tail calls transfer the control to a
different program and never return. To perform such a call the bpf_tail_call()
helper must be used, passing it a PROG_MAP containing the file descriptor of the
target program and its index inside the map.

In order to avoid undefined execution time the number of consecutive nested
calls is limited to 32.

Tail calls can be used to overcome the limited number of instructions per pro-
gram, especially with older versions of the kernel, but most importantly they enable
the creation of complex and dynamic service chains. Modular programs performing
basic tasks can be developed independently and can then be combined to create rich
functions, sharing data through maps. Thanks to the atomicity of the update opera-
tion on the PROG_MAP, programs can be swapped at run-time, re-configuring the
chain without loosing any packet. This feature also enable the dynamic optimiza-
tion of the code, allowing to inject refined programs based on run-time parameters
such as the current configuration.

Tail call Tail call
Firewall Router Bridge

MAPs

Figure 2.4: Example of a service chain implemented using tail calls.

2.2.6 Program Types
The execution of eBPF programs is triggered by specific kernel events that take
the name of Hook Points. Different kernel events are handled by different pro-
gram types, each one invoked with specific metadata carrying information about
execution context. Hook points include all possible kernel events, for example:

14



Background

• Reception or sending of a network packet.

• Invocation of a system call.

• Access to disk.

• A page fault in memory.

There are two program types related to packet processing: eXpress Data Path and
Traffic Control.

eXpress Data Path (XDP)

The eXpress Data Path [5] enables high-performance packet processing in the Linux
kernel, by running the eBPF program at the earliest possible point, as soon as the
network driver receives the packet. No expensive operations have been executed by
the kernel at this point, such as allocating the socket buffer.

As a consequence very little data is provided to the program: the struct xdp_md
passed to the main function contains pointers to the begin and end of the packet
buffer, a pointer to a memory region to store additional metadata and indexes of
the receive interface and receive queue.

The return code of the program defines how the packet must be processed by the
kernel. It can be dropped (XDP_DROP or XDP_ABORTED), can be redirected to another
interface using helper functions bpf_redirect() and bpf_redirect_map() that
return code XDP_REDIRECT, can be sent back to the same interface (XDP_TX) or can
continue is path in the networking stack (XDP_PASS).

Thanks to its early processing XDP can bring huge performance improvements
in applications that do not require (all) the packets to traverse the networking stack.
For example it can be used for Firewalling or DDoS Mitigation, where part of the
packets can be immediately dropped, or in Forwarding and Load Balancing, where
the traffic can be redirected to other interfaces without requiring further processing
of the kernel.

XDP has three operation modes:

• Native XDP: default operation mode in which the packet is processed in the
driver of the NIC.

• Generic XDP: this mode can be used in case the driver does not support XDP
and is useful for debugging. The packet is processed at a higher level therefore
losing performance advantages of Native XDP.

• Offloaded XDP: allows the offload of the program to supported SmartNICs,
reducing the overhead for the host CPU and further improving performance.

15



Background

Traffic Control (TC)

This program type allows to process packets in the Traffic Control layer of the
networking stack.

At this point the packet has been parsed and copied in a data structure called
socket buffer and additional metadata are available to the eBPF program via
struct __sk_buff, such as the protocol, the priority, the reception timestamp,
VLAN associated metadata and layer 3 and 4 information.

While TC programs can’t achieve XDP performance they come with some ad-
vantages:

• No driver support is required, allowing this kind of programs to be attached
to any interface.

• Unlike XDP programs, TC ones can process packets in the egress path of the
networking stack.

• Thanks to additional metadata available, a richer set of helpers is provided,
allowing to perform complex operations like handling VLAN encapsulation or
updating L3 and L4 checksums.

2.2.7 Tool chain
eBPF programs can be written using restricted C code, with the restrictions due
to the safety constraints imposed by the Verifier. This code can then be compiled
into eBPF assembly using the LLVM (Low Level Virtual Machine) compiler in-
frastructure: the CLANG fronted, extended to support restricted C, converts the
program into the LLVM intermediate representation, LLVM core is then used to
apply optimizations and the backend generates the eBPF bytecode.

In older kernel versions the vCPU was realized with an interpreter, while now
the bytecode can be Just In Time compiled into native x64 code.

BCC (BPF Compiler Collection) is a toolkit for creating efficient kernel tracing
and manipulation programs. It provides macros and structures to simplify the
writing of eBPF C code, and includes frontends in Python and LUA to interact
with eBPF programs in user space. While being mostly focused on tracing its
infrastructure can also be used for network traffic management.

16



Background

2.3 Polycube
Polycube [6] is an open source framework that enables the creation of fast and
efficient in-kernel network functions chain based on eBPF and XDP technologies.

Polycube provides the user with a set of services, such as router, firewall, bridge,
etc., that can be dynamically connected and configured to provide custom connec-
tivity to namespaces, containers, virtual machines, and physical hosts. From the
developer perspective, Polycube provides the infrastructure to create complete net-
work functions, simplifying the implementation of control and user planes and the
management of the interaction between the two. Two standalone applications are
also available: pcn-iptables, a faster clone of iptables, and pcn-k8s, a CNI network
plugin for Kubernetes.

Polycube adopts a centralized architecture, in which all management tasks are
carried out by a userspace daemon, called polycubed. Interaction with the sys-
tem can happen using a command line interface, called polycubectl, or through a
RESTful API.

A schematic representation of Polycube architecture is shown in figure 2.5, main
aspects are discussed in the following sections.

Bridge

Router NAT

DDoS Mitigator

Load Balancer

pcn-iptablespcn-k8s

BPF XDPLinux

Applications

Cubes

CLI
polycubectl

. . .Firewall

polycubed

Polycube

Bridge

Router NAT

DDoS Mitigator

Load Balancer

pcn-iptablespcn-k8s

BPF XDPLinux

Applications

Cubes

CLI
polycubectl

. . .Firewall

polycubed

Polycube

Figure 2.5: Simplified Polycube architecture.

2.3.1 Services
Polycube services represent virtual network functions. Each service is described by
a YANG data model that defines its behaviour, the configuration it needs and the
interface that must be used to interact with it.

Services are composed by a data plane and a control/management plane.

17



Background

Data Plane

The data plane is responsible of the processing and forwarding of single packets
and is composed by a fast and a slow path.

The fast path is executed at kernel level by or more eBPF programs and performs
basic tasks like packet parsing and mangling and maps update.

The slow path is executed in user space and handles all that packets that require
a more complex processing, that either can not be achieved in the fast path due to
eBPF limitations or could cause an excessive slowdown. An example of slow path
processing is the handling of a packet after an ARP lookup miss. An ARP request
needs to be triggered and the packet needs to be buffered waiting for a response, an
operation that can not be accomplished in eBPF. After a packet has been processed
in the slow path it can be optionally sent back to the fast path, either to the next
service of the chain or to the fast path of the same service as a new packet.

Control and Management planes

The control plane is responsible of defining the behaviour of the network function,
handling control related protocols (e.g. Routing Protocols, Spanning Tree) and
configuring the the data plane, either updating maps or the eBPF code.

The management plane interacts with external entities through the service API,
receiving configuration parameters and exporting the status of the function.

Control/Mgmt
plane

Data plane

Service

User

Kernel

Fast path

Slow path

REST API

YANG Data model

eBPF

Figure 2.6: Polycube service architecture.

18



Background

2.3.2 Cubes
Cubes are instances of Polycube services, that can be connected together to create
complex service chains.

Before being injected into the kernel, eBPF data plane programs are augmented
with additional code that supports Polycube facilities and provides some helpers
to simplify the work of the developer. The main function of the program written
by the user is inserted into a wrapper function, that provides it with additional
metadata and handles its return codes in order to implement connectivity among
cubes.

Data plane of services can be instantiated both as a TC and as a XDP (XDP_DRV
for native XDP and XDP_SKB for generic XDP) program. To help the developer
writing code that is not bound to the program type Polycube provides unified
functions to perform tasks that needs a different implementation for TC and XDP
programs, such as VLAN encapsulation and packet checksum update.

Two kinds of cubes are available:

Standard Cubes

Standard cubes have forwarding capabilities and can be used to implement services
such as a Router or a Bridge.

Polycube introduces the concept of port, a connection point that can link a
standard cube to another cube or to a network device. Information about the port
on which the packet was received is carried in packet metadata.

Besides dropping the packet and sending it to the kernel networking stack with
RX_DROP and RX_OK return codes, a standard cube can redirect it to another port
using the pcn_pkt_redirect() function. The code of this function is dynamically
generated every time a new port is connected to the cube, in order to either perform
a tail call to the eBPF code of a peer cube, or to invoke the bpf_redirect() helper
to send the packet out of an interface.

Standard cubes can also be instantiated in shadow mode. In this case the cube
is associated to a Linux namespace and parameters are kept aligned among these
entities.

Transparent Cubes

Transparent cubes do not have forwarding capabilities and have to be attached to
a port of an existing standard cube or to a network device. They process packets
flowing in or out the entity they are bound to through their set of ingress and egress
programs, and can be used to implement services like a firewall or a NAT. Cubes
of this type inherit the parameters of the port they are attached to (MAC, IPv4,
etc.), multiple instances can be connected to the same port implementing a stack
of functions.

19



Background

Polycube wrapper code allows to correctly link programs in the ingress and
egress chain of an interface. Every time a transparent cube is attached or removed
this code can be updated injecting a new version of the program, to connect the
cube to the correct next entity.

When an instance of transparent cube lets the packet pass with return code
RX_OK, three situations may occur:

• There is another cube (transparent or standard) in the chain: in this case its
eBPF code is executed with a tail call.

• The next entity is a networking device: in this case the packet is redirected
using bpf_redirect() helper.

• The next entity is the networking stack of the host: the packet proceeds with
return code XDP_PASS or TC_ACT_OK.

Bridge

NAT

Firewall

Port 1

Port 4

Port 5

Port 6

Host

Router

Port 2 Port 3

Figure 2.7: Example of chain of cubes.

20



Background

2.3.3 Polycube Daemon
The Polycube system daemon, polycubed, implements the centralized point of con-
trol of the framework. It manages the lifecycle of cubes, handling their creation,
update, connection, and deletion.

The interaction with the system happens through a REST API, that provides
CRUD operations on available resources.

polycubed operates in a service agnostic way: it has no idea on how network
functions are implemented internally. Services can be added through a registration
phase in which, starting from their YANG data model, polycubed generates an
internal representation and a set of REST endpoint that can be used to interact with
the resources of the service. Every time a request is made to the API polycubed
operates as a proxy: it performs ancillary tasks like validation of the payload,
redirects the request to the corresponding method of the target service and sends
the response back to the user.

Besides handling the communication between users and services polycubed also
implements a kernel abstraction layer based on the BCC toolkit, used to manage
the interaction among the user space component of services and their in-kernel data
path. This layer provides methods to add, remove and update programs and to
access eBPF maps, it manages the facility that enables logging from the data plane
and handles the mechanism to exchange packets and metadata among the fast and
the slow path.

Fast and Slow path interaction

eBPF programs can send a packet to the slow path using the function
pcn_pkt_controller(). This method combines the content of the packet with
additional metadata, including the unique identifier of the cube and the reason the
slow path is invoked, and sends it to user space using a shared perf ring. Here a
thread polling the ring receives the packet, performs demultiplexing identifying the
target cube and invokes its packet_in() method.

On the other hand, packets directed to the fast path are sent to one of two
dedicated TAP interfaces: pcn_ctrl_xdp for XDP programs and pcn_ctrl_tc for
TC ones. An ARRAY_MAP is used to carry additional data needed to correctly
forward the packet, this map is handled as a circular buffer to avoid overrides when
multiple packets are sent to the fast path before being processed. Once the packet
is received by one of the above mentioned interfaces a Decapsulator eBPF program
is triggered: it retrieves data from the map, fills metadata of the packet and either
invokes the program of a cube, sends the packet to the networking stack or redirects
it to a net interface.

Architecture of polycubed and its interaction with services and the kernel are shown
in figure 2.8.

21



Background

Service #1

Management 
Interface

Instance cube #1

Ctrl/Mgmt plane

Slow path

R
EST A

P
I

Kernel abstraction layer

Service
proxy

Service controller

polycubed

User space

Kernel space
Perf ring TAP interfaceMaps

BCC + Clang/LLVM

Fast path eBPF
program Decapsulator

pcn_pkt_controller()

eBPF VM

Figure 2.8: Polycubed architecture.

2.3.4 Polycube CLI
The Polycube CLI, polycubectl, provides a simplified way to interact with the sys-
tem, mapping user commands to HTTP requests directed to the REST API. Thanks
to its help command and auto-completion feature it can be used to quickly explore
the structure of available services.

22



Background

2.4 Related Work
Due to flexibility and performance constraints of the 5G core network, the virtual-
ization of its data plane functions has been subject of different research articles.

In [7] the authors focus on the possibility to dynamically compose simple func-
tions to create specific chains to handle the traffic of different users. They propose
a prototype based on the Click modular router, able to run in containers and to
process packets at high speed thanks to the acceleration provided by the kernel by-
pass technology Netmap. The architecture is based on a set of different nodes, each
one running an instance of the Click router, that can exchange packets and associ-
ated metadata using a custom tunneling mechanism. Every node contains (besides
tunnel encapsulation and decapsulation modules), a set of User Plane Functions
(three simple functions are defined: a packet counter, a marker and a header com-
pressor), and a Forwarding Element, that sends packets across related functions.
An handover mechanism is also proposed, with buffers in every node to allow the
movement of user equipment among different base stations without packet loss.
The performance of the system is then studied, varying the number of connected
users and the complexity of the of functions chain.

[8] targets those use cases of the 5G network where low latency and high data
rates are crucial aspects. It shows how programmable switch ASICs are an effective
instrument to handle these classes of traffic, allowing a higher performance with
respect to other virtualization techniques based on commodity servers, while losing
some flexibility. A mobile gateway pipeline is defined using the P4 language, and
is then compiled both for the Barefoot Tofino programmable ASIC and as a ODP-
DPDK program to run on a x86 server. Performance of the two solutions are
then compared, showing how the hardware switch achieves better results and is
not influenced by the number of configured flows. The paper highlights how a mix
of different technologies could be the right approach to meet the broad range of
requirements that 5G services ask.

In the end, [9] provides a study on scalability properties of the main pro-
grammable software switches currently available from a 5G vendor perspective.
Authors of the paper first provide a taxonomy for data plane scalability, distin-
guishing among static and dynamic workloads and identifying three main scalability
dimensions:

• Concurrency: the number of CPU cores dedicated to parallel packet process-
ing.

• Pipeline size: the number of VNFs composing the chain, the static number of
configured rules and the rate and type of updates applied at run-time.

• Active flows count: the number of individual transport layer sessions flowing
through the network function.

23



Background

The paper then presents TIPSY (Telco pIPeline benchmarking SYstem), a tool
to perform automated and reproducible tests on telco network functions. The
system allows to tune scalability dimensions described above, automates the process
of configuring the pipeline under test and provides different software switches as
backends.

10 5G pipelines are defined:

• 8 micro-benchmarks: a function to simply forward packets between two inter-
faces, used to test base performance, l2 and l3 forwarders, a firewall, a NAT,
a rate limiter and a tunnel encapsulator/decapsulator.

• 3 macro-benchmarks, based on a combination of the above ones: a Data Center
Gateway, a 5G Mobile Gateway and a Boradband Network Gateway.

Available backends include:

• Open vSwitch (OVS), the most popular programmable switch, allowing pro-
cessing packets both in-kernel using a kernel module or in user space with
DPDK.

• The Berkeley Extensible Software Switch (BESS), a DPDK based framework
for software switching that allows the composition of base modules into a VNF
graph using a Python interface.

• Other software switches: ESwitch (Ericsson proprietary solution), Lagopus
and t4p4.

Performance of these technologies are compared in different scenarios, highlight-
ing their strengths and drawbacks.

In conclusion, the authors show how analyzed software switches (with the excep-
tion of ESwitch) can’t match the scalability of fixed-function hardware appliances
in terms of costs and energy consumption, and highlight how further research in
this field is needed.

24



Chapter 3

Prototype Architecture

This chapter starts explaining the general architecture of the 5G Mobile Gateway
prototype and the design principles that led to its definition. It then gets into
more details on the functions carried out by the base modules composing the final
solution.

3.1 General Architecture
The prototype of the Mobile Gateway has been designed following the principles of
Network Functions Composition. A set of smaller modules carrying out basic func-
tions has been identified and then combined to obtain the final pipeline. Mentioned
modules have been designed and implemented with the goal of being general pur-
pose and therefore reusable in different applications. Building basic blocks that are
not bound to a specific use case (in this case the gateway) allows to combine efforts
in their development and exploit solutions already available and tested. Moreover
it pushes for further improvements of the solutions since the benefits can be shared
by different applications.

A set of simplifying assumptions has been made for the prototype:

• The management of GTP tunnels and QoS Flows has been merged in order
to have one tunnel for every QoS (in a similar way to how EPS Bearers in the
LTE core network work). As a consequence the TEID identifies both the GTP
tunnel and the QoS Flow.

• The same TEID is used for both the uplink (BS to MGW) and the downlink
(GW to MGW) tunnels.

A subset of the functionalities provided by the 5G Mobile Gateway has been se-
lected and mapped to different modules, that have then been connected to compose
the chain shown in figure 3.1. These functionalities are:

25



Prototype Architecture

• Encapsulation and decapsulation of GTP tunnels, carried out by the GTP
Handler module.

• Access control and rate limiting for QoS enforcement, provided by the Traffic
Policer module.

• Packets classification (mapping of packets the corresponding tunnel/QoS flow),
provided by the Traffic Classifier.

• Routing and forwarding of packets, carried out by the Router module.

Radio
Access

Network

External
Packet Data

Network

Polycube

R
EST A

P
I

VM Container

GTP
Handler

Traffic
Policer

Traffic
Classifier

Router

Mobile 
Gateway

User space

Kernel space

Ctrl/Mgmt Plane

Data Plane
Control traffic
Data traffic

Figure 3.1: Mobile Gateway prototype architecture.

Packets flowing from the user equipment towards a remote host on the Packet
Data Network, composing the Uplink traffic, traverse these blocks in the given
order, while packets directed to the user equipment, Downlink traffic, traverse it
in the reverse order. A single instance of the Router is needed, while a chain of
GTP Handler, Policer and Classifier is needed for every interface leading to the
user equipment.

Thanks to the modular approach additional functionalities of the Gateway, such
as a counter to support charging or a Deep Packet Inspector, can be easily designed
as independent modules and plugged into the chain.

Polycube provides the infrastructure to build and link the services together.
Every service is composed by an in-kernel data plane and a user space control /
management plane, is described by a YANG data model and can be accessed by a

26



Prototype Architecture

RESTful API, directly with HTTP requests or through the Polycube CLI. Packet
metadata is used by the GTP Hanlder, the Policer and the Classifier to share the
information on the Tunnel Endpoint ID (TEID) associated to the packet currently
processed.

The integration with the kernel provided by the eBPF technology allows to
deploy the solution in a traditional data center scenario, where it can either route
the packets towards different machines or external networks, or forward them to
other functions running on the same host in containers or virtual machines, all of
this without requiring a specific support from the virtualization infrastructure. This
can provide benefits in emerging use cases like edge computing, where all packets
coming from the user equipment could be handled on a single machine.

Following sections provide more details about building modules.

3.2 GTP Handler
This is a very simple module responsible of handling GTP tunnels, decapsulating
packets coming from the user equipment and encapsulating the ones coming from
the Packet Data Network.

The service is configured with:

• The set of user devices reachable through the current interface, each one iden-
tified by its IP address and associated to the IP address of the base station
terminating the GTP tunnel (Tunnel Endpoint).

• The IP and MAC addresses of the interface the service is attached to.

Actions carried out for uplink traffic (UE to PDN) are:

1. Check if incoming packet is an IP packet directed to this interface.

2. Check if packet is GTP encapsulated: UDP header with destination port 2152.

3. Extract the TEID from the GTP header and save it into packet metadata.

4. Remove external IP, UDP and GTP headers.

5. Pass the packet to the next module.

For downlink traffic (PDN to UE):

1. Check if incoming packet is an IP packet with an associated TEID.

2. Lookup the destination address to find the IP of the tunnel endpoint.

27



Prototype Architecture

3. Push external headers: the IP header with the IP of the current interface as
source address and the IP of the remote base station as destination address,
the UDP header with destination port 2152 and the GTP header with the
TEID read from packet metadata.

4. Send the packet out of the interface.

For both directions of traffic if a packet does not match one of the checks it is
passed to the next module without performing encapsulation / decapsulation. This
allows protocols such as ICMP or ARP to continue to work properly.

IP

GTP-U

UDP

IP

MAC

DATA

Uplink traffic Downlink traffic

GTP 
packet?

UE dst?

IP

GTP-U

UDP

IP

MAC

DATA

IP

MAC

DATA

Yes Yes

IP

MAC

DATA

Metadata

TEID
Metadata

TEID

Figure 3.2: GTP Handler functions.

3.3 Traffic Policer
The Traffic Policer module provides access control and rate limiting functionalities.
The service is configured with a list of contracts, each one defining how a specific
class of traffic must be handled. Three actions can be applied:

• Let the packet pass.

• Drop the packet.

• Apply rate limit.

The classification logic is not implemented into the service, that relies on packet
metadata to get this information. This allows the policer to correctly process both

28



Prototype Architecture

the packets coming from the GTP handler, whose class has been set using the TEID
of the GTP header, and the ones coming from the Packet Data Network, that are
classified by a dedicated module.

For the rate limiting functionality two techniques have been considered: traffic
policing and traffic shaping.

3.3.1 Traffic Shaping vs Policing
Policing and Shaping are two bandwidth management techniques used to guarantee
that traffic complies with a desired profile.

Shaping

Traffic Shaping requires a single input parameter, the average rate, and operates by
buffering incoming packets that exceed the given threshold and then sending them
out at the desired rate. This technique allows to handle bursty traffic without
loosing packets in case the size of the bursts doesn’t exceed the buffer. Shaping is
commonly applied at the network edge to control traffic entering the network, in
order to avoid congestion and latency increase.

It can be implemented with a Leaky Bucket algorithm in its bucket as a queue
version. This algorithm draws its name from its analogy with a bucket with a leak,
where water poured in it in an intermittent way then leaks out with a constant rate.
In a similar way, packets exceeding the desired rate are stored in a FIFO buffer,
one for each separately shaped class, until they can be transmitted in compliance
with the associated traffic contract.

One of the disadvantages of this technique is that, since it only sends packet at
a fixed rate, it can cause under-utilization of network resources when traffic volume
is low and resources could be consumed in a bursty way without contention.

Policing

On the other hand, Policing represents a more drastic approach to bandwidth man-
agement. This technique allows to control two parameters of the traffic profile: the
average rate and the maximum burst size. Packets exceeding one of the metrics
are either dropped or marked as non compliant. An alternative implementation
described in RFC 2697 provides a more granular control and requires three param-
eters: the Committed Information Rate (CIR), the Committed Burst Size (CBS)
and the Excess Burst Size (EBS). Packets can then be split in three different cate-
gories identified by a color: a packet is "green" if it doesn’t exceed the CBS, "yellow"
if it does exceed the CBS, but not the EBS, and "red" otherwise.

Different algorithms can be used to implement Policing [10]: Fixed Window
Counters, the Token Bucket (also known as the bucket as a meter version of the
Leaky Bucket), the Sliding Log and the Sliding Window.

29



Prototype Architecture

Among the two techniques Traffic Policing has been chosen due to the limitations
imposed by the eBPF data plane. The execution of fast path programs can only be
triggered by the reception of a packet and therefore doesn’t allow to buffer packets
and then send them out at a fixed rate without relying on the user space slow path,
that would bring an increase of overhead. Following section explains into details
algorithms analyzed for the prototype.

3.3.2 Rate limiting algorithms
Fixed Window Counter

The Fixed Window Counter represents the most simple rate limiting algorithm.
The time is subdivided in a set of fixed windows of size w and a counter is

used for every traffic class to store the number of bits forwarded in the current
time span. Counters are associated with a threshold that represents the maximum
number of bits that can be forwarded in every window, whose value is the product
of the desired average rate r and the window size. Every time a packet is received
a check is performed to verify that the counter can be increased by the size of the
packet without exceeding the threshold. In case the check is positive the counter
is updated and the packet is forwarded, otherwise the packet is dropped.

threshold

t0 t1 t2 t3

packet in

FORWARD

threshold

t0 t1 t2 t3

packet in

DROP

Figure 3.3: Fixed Window Counter.

This solution is very simple but suffers form different problems if compared to
subsequent ones:

• The maximum burst size can’t be set as an independent parameter but is the
product of the desired rate r and the window size w.

• If the the window is too long and the input rate is high the output traffic could
have a bursty profile, while if it is too short it could cause the maximum burst
size to be too small, therefore dropping more packets than expected.

30



Prototype Architecture

• If a burst of packets is forwarded at the end of a window and a new one is sent
at the beginning of the next window the output could result in a burst of up
to double the expected size.

Token Bucket

The algorithm requires, for every flow, two input parameters: the desired average
bit rate and the maximum burst size.

A bucket for every class of traffic is used and filled with tokens. A token repre-
sents one bit of information. Two parameters are associated to every bucket:

• The maximum number of tokens it can contain, equal to the maximum burst
size.

• The refill rate (expressed in tokens per second), equal to the desired average
bit rate (in bits per second).

Every time a packet is processed it needs to consume a number of tokens from
the corresponding bucket equal to its size. In case there aren’t enough tokens the
packet is discarded.

When the packet rate is below the desired one the output is not influenced by the
algorithm, since tokens are inserted into the bucket faster then they are consumed.
When the rate grows above the desired threshold initial packets are still forwarded,
producing a burst whose size can be at most equal to the size of the bucket, and
further packets are limited to the desired rate.

Packet
Enough 
tokens?

Packet

Refill rate

Bucket size

DROP

PASS

Figure 3.4: Token Bucket representation.

31



Prototype Architecture

Sliding Window

The Sliding Window algorithm [11] also allows to configure both the desired average
rate r and the maximum burst size B. These parameter are used to compute the
size of the window w = B/r. In every point in time the portion of the window that
precedes the point (located on its left on a temporal axis) represents the amount of
time that can be spent to forward traffic at the desired rate r. As a consequence,
every time a packet of size S is transmitted the window needs to be shifted forward
of an amount of time equal to its transmission time t = S/r.

Depending on the arrival time of the packet three situations may occur:

• The portion of the window preceding the arrival time of the packet (on its left)
is greater or equal to its transmission time: the packet can proceed and the
window is moved forward of the corresponding time.

time

packet in

t0
tx time

W

PASS

Wnext

Figure 3.5: Sliding Window - Pass the packet.

• The portion of the window preceding the arrival time of the packet is shorter
than its transmission time: the packets needs to be dropped and the position
of the window is not changed.

• The packet arrives after the window (on its right): the window has not been
moved for too long, the packet can be forwarded (assuming its size is lower
the the maximum burst), and the window is moved forward in order to end at
packet arrival time plus its transmission time.

time

packet in

t0
tx time

W

PASS

Wnext

Figure 3.6: Sliding Window - Old window.

This algorithm can be seen as a different interpretation of the Token Bucket and,
given the same input parameters, behaves in the same way.

32



Prototype Architecture

3.4 Traffic Classifier
This module is responsible of classifying packet based on the fields of their headers.
Every class is identified with an integer id written into packet metadata.

According to the principle of building general purpose services a wide range of
fields is available for classification:

• Source and destination MAC addresses.

• MAC ethertype, supporting ARP and IPv4.

• Source and destination IP addresses. These values are expressed in address
and prefix length format (e.g. 10.0.1.0/24), allowing to perform match both
on single hosts (using /32 prefix) and on networks.

• Layer four protocol, supporting TCP, UDP and ICMP.

• Source and destination ports of UDP or TCP header.

The traffic class is also associated to the direction of the traffic, enabling to classify
packets only in the ingress, egress or both the directions. This allows to avoid
overwriting an existing class in case another service performing classification is
present and to prevent additional overhead in case this information is not needed
for packets flowing in a certain verse.

To avoid clashes among classes matching the same packet a priority is also used:
in case there are multiple matches the class with the higher priority is chosen.

In the Mobile Gateway pipeline use case the service is configured to classify only
the downlink traffic (egress packets), providing the value that is later used by the
Policer to apply optional rate limit and by the GTP Handler to identify the ID of
the tunnel (TEID). In the base configuration just a /32 destination address is used,
to split traffic in one tunnel for every user device. Additional fields can be used to
further subdivide traffic in classes related to different services, such as HTTP or
VoIP, that can than be handled with a dedicated QoS.

Implementing packet classification in an efficient way in the kernel is a challeng-
ing task, due to the restricted environment in which eBPF programs are executed.
The lack of support for unbounded loops, the limited size of the stack and the
possibility to only use a predefined set of data structures makes the implementa-
tion of widespread matching algorithms, such as cross-producting and approaches
based on decision trees, unfeasible. This problem has already been faced in [12],
where authors propose and eBPF based clone of iptables and need an efficient way
to classify packets. Solutions adopted in this work has proven to be applicable to
the implementation of the Traffic Classifier as well. This solutions include the Lin-
ear Bit Vector Search algorithm and the dynamic generation of the classification
pipeline.

33



Prototype Architecture

3.4.1 Linear Bit Vector Search algorithm
A trivial approach to packet classification encompasses the sequential scan of all
classification rules until a match is found. This technique has a linear complexity
(O(n)) requiring in the worst case, with n rules and k classification fields, a total
number of k ∗ n comparisons. As shown by Linux iptables, this algorithm leads to
poor performance when the the number of rules grows and therefore does not suit
the Mobile Gateway scenario, where the number of classes can go from a thousand
to multiple tens of thousands.

The Linear Bit Vector Search algorithm presented in [13], while still having a
linear complexity, allows to exploit the parallelism of CPU registers (64 bits in
modern processors) to speed up the classification process.

The algorithm requires a bi-dimensional table for every header field used for
matching. This table maps each value assumed by the field in the current set
of rules to a bit-vector. The bit-vector contains one element for every class, set
to 1 if the class is compatible with the current value and to 0 otherwise. An
additional wildcard entry can be added to handle those values of the field that
aren’t explicitly specified by any rule. When the bit-vector is computed, classes are
sorted by priority, therefore having the first (least significant) bit associated to the
highest priority class.

The classification is performed according to following steps:

1. Headers of the packets are parsed, saving fields of interest for subsequent steps.

2. A bit-vector responsible of storing partial results of the matching process is
associated to the packet. At this point the packet may match on all classes,
therefore all bits are set to 1.

3. A matching step is performed for every field: the field is looked up in the
corresponding table and the retrieved bit-vector is combined with the one
of the packet with a bit-wise AND operation. At this point two early stop
conditions may occur, allowing to immediately break the classification process
since there are no matching classes:

• The lookup on the table fails. This can happen when all classes specify a
value for the current field and no wildcard is therefore present.

• The result of the bit-wise AND operation is a bit-vector with all elements
set to zero.

4. The least significant bit set to 1 is retrieved from the resulting bit-vector and
its value is mapped to the corresponding class ID.

figure 3.7 shows a simplified example of successful LBVS classification while fig-
ure 3.8 show a possible case of early stop.

34



Prototype Architecture

Values
Matched
Classes

0/0 11110

10.0.0.0/8 11111

Values
Matched
Classes

* 01001

TCP 11011

UDP 01101

Values
Matched
Classes

* 00001

80 11001

53 00111

Dst IP L4 proto Dst port

Input packet:
ip.dst=10.1.0.1
ip.proto=TCP
tcp.dport=80 

11111 &
11111
_______
11111

11111 &
11011
_______
11011

11011 &
11001
_______
11001

11001
Packet belongs

to class #1

Figure 3.7: Example of successful Linear Bit Vector Search.

Values
Matched
Classes

0/0 11110

10.0.0.0/24 11111

Values
Matched
Classes

* 01001

TCP 11011

UDP 01101

Dst IP L4 proto

Input packet:
ip.src=10.0.1.1
ip.dst=10.0.5.1
ip.proto=TCP
tcp.dport=80 

11111 &
00001
_______
00001

00001 &
11110
_______
00000

Values
Matched
Classes

10.0.1.0/24 00001

10.0.2.0/24 00110

10.0.3.0/24 11000

Src IP

Early stop
No matching class

Figure 3.8: Example of early stop in Linear Bit Vector Search.

The number of operations performed in the parsing phase and in the final class
identification phase is not related to the number n of configured classes. The
complexity of the algorithm is therefore related to the tasks carried out in the
matching steps. In every step 2 main operations are performed:

• The lookup of the header field in the corresponding table, that has a worst case
complexity at most equal to O(log(n)) in case binary search is used (though,

35



Prototype Architecture

as shown in the implementation chapter, the lookup is usually faster thanks
to hash maps).

• The bit-wise AND among bit vectors, that, with a word size equal to w,
requires exactly n/w iterations.

The bit-wise AND operation therefore dominates the complexity of the algorithm,
leading to a final cost, considering k header fields, of k ∗ n/w operations.

3.4.2 Dynamic generation of the classification pipeline
Not all configurable header fields could be needed at a certain time and this could
cause the execution of useless operations. The possibility provided by eBPF to
update and re-inject the code at run-time can be useful to overcome this problem.

The eBPF program implementing the fast path of the classifier is generated every
time a class is added or removed from the service and is crafted to perform only
operations needed to match on fields currently configured. This allows to perform
two main optimizations, shown in section 3.4.2:

• Avoid the parsing of layer 3 and layer 4 header, in case no fields of these levels
are needed.

• Remove the code responsible of matching a field that is not specified by any
class.

Tag packet 
Parse L2 Parse L3 Parse L4

Parse headers Match fields

Match IP Src Match Dst Port

Class = 100:
IP Src = 130.0.1.0/24

Class = 200
IP Dst = 130.0.5.0/24
Dst Port = 80

Class = 300
IP Src = 130.0.0.1/32

Figure 3.9: Dynamic generation of the classification pipeline.

36



Prototype Architecture

3.5 Router
The router module is responsible of performing routing and forwarding of packets
between the Access Network and the Packet Data Network. To implement this
block the pcn-router service already available in the Polycube framework has been
chosen. This implements a very simple router that only supports IPv4 and static
routing.

The router connects to other elements with a set of ports, each one identified by
a name and configured with a primary IP address, a list of secondary IP addresses
and a MAC address. If the port is connected to a network interface of the host these
parameters are aligned between the two entities. If no MAC address is configured
(neither from port configuration nor from an existing interface) then a random one
is generated.

The static routing table can be configured with a set of routes, each one char-
acterized by the destination network (address and prefix length), the next hop and
the path cost. When an IP address is configured on a port an additional local route
toward the network the IP belongs to is added.

Besides routing IPv4 packets the service is also able to answer to ICMP Echo
Request messages and to handle the Address Resolution Protocol. Entries of the
ARP table can also be statically configured, setting the IP address of the host, its
MAC address and the port that allows to reach it.

In the Mobile Gateway pipeline the router is configured with a set of ports di-
rected to the Access Network, each one with an instance of the pipeline of the other
three modules attached, and a set of ports facing the Packet Data Network. These
could be either connected to physical interfaces of the host, leading to external
networks, or to virtual interfaces, allowing the communication with VMs or con-
tainers running on the same host. Besides routes toward remote network on the
PDN the routing table is configured with one /32 route for every user device, with
the next hop set to the IP address of the Base Station the device is connected to
or to another address if additional L3 entities are used to connect the Gateway to
the base station, such as a Data Center Gateway.

37



Chapter 4

Prototype Implementation

This chapter explains how concepts expressed in the Architecture section has been
implemented from a coding point of view, diving deeper in classes definition, their
interconnection and the workarounds used to solve problems encountered in the
process.

While the Router service already available in the Polycube framework defines
a standard cube, connecting to other network entities (interfaces or other services)
through a set of ports, the GTP Handler, the Policer and the Classifier have been
defined as transparent cubes, to be attached to ports of the Router facing the Access
Network.

Programming languages used in this phase are C++ for the implementation of
the control plane and C for the implementation of the in-kernel fast path of the
data plane (no slow path is needed by the solution). Additionally, the YANG data
modelling language has been used to describe the resources handled by each service.

4.1 Automatic Code Generation
The Polycube framework provides an automatic code generation tool, polycube-
codegen, that can be used to generate a stub of the source files needed to implement
the service starting from its YANG data-model.

Generated files have two main aims:

• They implement all the boilerplate code needed by the service to interact with
the Polycube framework.

• They provide a starting point for the implementation of the internal logic of
the service.

polycube-codegen operates by first using the pyang module to map the YANG
data-model into an intermediate JSON representation, compliant with the Ope-
nAPI specifications, and then, starting from this representation, creating a stub of

38



Prototype Implementation

the source files, through the swagger-codegen module.
Generated files include:

• src/base/{resource-name}Base.[h,cpp]: one base class is generated for
every resource defined in the data-model (including the service itself), this
classes define the interface that must be implemented to be compliant with
the management API.

• src/api/{service-name}Api.[h,cpp] and
src/api/{service-name}ApiImpl.[h,cpp]: these classes implement the en-
try point to the service, providing methods to map every operation exposed
by the REST API to operations on the resources. These methods are called
by the service proxy in the Polycube daemon.

• src/serializer/: contains classes that perform marshalling and unmar-
shalling of JSON data exchanged by the service.

• src/{resource-name}.[h,cpp]: These classes implement the corresponding
interface of the base directory, they provide a standard implementation for
some of the methods, while others must be written by the programmer to
define the actual behaviour of the service.

• src/service-name_dp.c: contains the fast path code for the service.

polycube-codegen

YANG datamodel
Base classes

API classes

Resources classes

Data plane source

Figure 4.1: Polycube code generation.

39



Prototype Implementation

4.2 GTP Handler
4.2.1 Data model and control plane
The data model of the service is very simple and defines a list of user equipment,
each one identified by its IP address and characterized by the IP address of the
tunnel endpoint (base station) used to reach the device.

The control plane of the service is composed by two classes:

• UserEquipment: stores information about a single user device. Its lifecycle is
bound to a corresponding entry in the user_equipment eBPF map. The entry
is added to the map in the constructor of the class, removed in the destructor
and updated in case the tunnel endpoint is modified.

• GTPHandler: stores an unordered_map of shared pointers to user devices and
provides getters and setters to manage the list. Upon creation of the service
two callbacks are registered using the subscribe_parent_parameter() pro-
vided by the TransparentCube class of Polycube library, to be informed on
changes of the MAC and IP addresses of the port the cube is attached to.
Every time a notification is received the code of the data plane is re-injected
with the updated parameters, needed to recognize packets directed to the
gateway and to set the IP source address of the external IP header in GTP
encapsulation.

4.2.2 Data plane
Two eBPF programs implement the data plane, one for the ingress and one for the
egress direction, carrying out tasks explained in the Architecture chapter. Depend-
ing on the program type, two helpers are used to expand and shrink the packet
buffer in order to add or remove encapsulation headers:

• bpf_xdp_adjust_head(): is used in programs of type XDP_DRV and
XDP_SKB, the space is added/removed at the beginning of the packet buffer,
therefore requiring to move the MAC header with a memcpy() before calling
the helper.

• bpf_skb_adjust_room(): is used in programs of type TC and allows to al-
locate/remove the space between the MAC and the IP headers using the flag
BPF_ADJ_ROOM_MAC.

When reading or writing the GTP header the TEID field is retrieved/stored in the
traffic_class field of the pkt_metadata structure shared by cubes in a Polycube
chain. Listings below show how additional headers are set in the encapsulation
program.

40



Prototype Implementation

1 ip -> version = 4;
2 ip ->ihl = 5; // No options
3 ip ->tos = 0;
4 ip -> tot_len = htons(ntohs(inner_ip -> tot_len ) + GTP_ENCAP_SIZE );
5 ip ->id = 0; // No fragmentation
6 ip -> frag_off = 0x0040; // Don ’t fragment ; Fragment offset = 0
7 ip ->ttl = 64;
8 ip -> protocol = IPPROTO_UDP ;
9 ip ->check = 0;

10 ip ->saddr = LOCAL_IP ;
11 ip ->daddr = ue -> tunnel_endpoint ;
12 ...
13 __wsum l3sum = pcn_csum_diff (0, 0, ( __be32 *)ip , sizeof (*ip), 0);
14 pcn_l3_csum_replace (ctx , IP_CSUM_OFFSET , 0, l3sum , 0);

Listing 4.1: External IP header

1 udp -> source = htons( GTP_PORT );
2 udp ->dest = htons( GTP_PORT );
3 udp ->len = htons(ntohs(inner_ip -> tot_len ) + sizeof (* udp) +
4 sizeof ( struct gtp1_header ));
5 udp ->check = 0;

Listing 4.2: UDP header

1 # define GTP_TYPE_GPDU 255 // User data packet (T-PDU)
2 // plus GTP -U header
3 # define GTP_FLAGS 0x30 // Version : GTPv1 , Protocol Type: GTP ,
4 // Others : 0
5 ...
6 gtp ->flags = GTP_FLAGS ;
7 gtp ->type = GTP_TYPE_GPDU ;
8 gtp -> length = inner_ip -> tot_len ;
9 gtp ->tid = md -> traffic_class ;

Listing 4.3: GTP header

41



Prototype Implementation

4.3 Traffic Policer
Three versions of the Traffic Policer service have been implemented, each one lever-
aging one of the rate limiting algorithms explained in the Architecture chapter.
These versions have then been compared (details in the Evaluation chapter) to
show advantages and drawbacks of each one. Following sections explain the com-
mon parts of the data model, the control and the data planes and provide details
on the implementation of the different algorithms.

4.3.1 Data Model
The data model of the Traffic Policer defines a set of contracts that that allows to
instruct the service on how to handle different classes of traffic. Possible actions
are defined by the enumeration action-type and are:

• PASS: let all the packets pass.

• LIMIT: apply rate and burst limits to the traffic.

• DROP: drop all the packets.

Every contract is described by three items:

• action: one of the three actions defined above.

• rate-limit: the maximum average traffic rate (in Kbps).

• burst-limit: the maximum size of a burst of packets (in Kbits), not available
in the Fixed Window Counter implementation of the service.

rate-limit and burst-limit are optional values and have to be set only in case
the action is set to LIMIT. To avoid updates that could bring to an inconsistent
state, such as changing the action from PASS to LIMIT without setting burst and
rate limits, data of the contract can only be updated with a dedicated action,
therefore allowing to control the correctness of the operation in a single method
of the service. This is made possible defining two versions of the contract-data, a
fixed one and an updatable one, as shown below:

1 grouping contract -data {
2 leaf action { type action -type;
3 polycube -base:init -only - config ; }
4 leaf rate -limit { type uint64 ;
5 polycube -base:init -only - config ; }
6 leaf burst -limit { type uint64 ;
7 polycube -base:init -only - config ; }
8 }
9

42



Prototype Implementation

10 grouping updatable -contract -data {
11 uses contract -data;
12 action update -data {
13 input { uses contract -data; }
14 }
15 }

Listing 4.4: Contract data description

Two main resources are defined in the data model:

• The list of contracts, each one associating contract data to a traffic class,
expressed as a uint32 value.

• The default contract, applied to all traffic whose class has not been explicitly
configured (by default performing the PASS action).

4.3.2 Data and Control Planes
Data Plane

Information of every contract is stored in the struct contract data structure,
that holds the action to perform on the traffic along with additional fields needed
to handle the rate limiting functionalities, which depend on the implemented algo-
rithm. These structures are stored in two eBPF maps: an ARRAY_MAP with a single
element to store the data of the default contract and a HASH_MAP to map every
class id to its contract. The code of the data plane is injected both for the ingress
and the egress path, and maps are shared among the two direction declaring them
using BCC helpers shown in listing 4.5.

1 #if POLYCUBE_PROGRAM_TYPE == 1 // EGRESS
2 BPF_TABLE (" extern ", int , struct contract , default_contract , 1);
3 BPF_TABLE (" extern ", u32 , struct contract , contracts , MAX_CONTRACTS );
4 #else
5 BPF_TABLE_SHARED ("array", int , struct contract , default_contract ,1);
6 BPF_TABLE_SHARED ("hash", u32 , struct contract , contracts ,
7 MAX_CONTRACTS );
8 #endif

Listing 4.5: Maps declaration in the dataplane

Upon reception of a packet the traffic class is retrieved from the corresponding
field of the metadata (struct pkt_metadata) provided by Polycube to the function
and is used to perform a lookup on the contracts map. In case the lookup fails
the value of the default contract is retrieved from the corresponding map. In the
end the proper action is applied to the packet, either dropping it, letting it pass or
applying one of the rate limit functions described in following sections.

43



Prototype Implementation

Control Plane

The control plane is implemented by three main classes: Policer, Contract and
DefaultContract.

Policer is the access point of the service, it holds a shared pointer to an instance
of DefaultContract that is instantiated upon creation of the service and can’t be
deleted, and an hash map (unordered_map) to store all the contracts. It provides
getters and setters methods to read, add and delete specific contracts and to read
the default one.

Contract and DefaultContract store the action and the optional rate and burst
limits of the contract, plus the traffic class for the Contract class, all accessible
through getters methods. The updateData() method is used to update these data
with a single operation and allows to check that a consistent configuration is pro-
vided as explained in section 4.3.1. This method calls the updateDataplane()
method (also called on object initialization) that sets the information of the con-
tract in the corresponding eBPF map.

4.3.3 Fixed Window Counter implementation
In this solution a s64 counter is stored in the struct contract, holding the number
of bits that can still be forwarded in the current time window.

Every time a packet is processed it is first checked if the counter value is greater
or equal to its size (in bits), in case it is the counter is atomically decreased by the
size of the packet using the LLVM builtin __sync_fetch_and_add(), and the code
RX_OK is returned to let the packet pass, otherwise the packet is dropped with code
RX_DROP and the counter is not updated.

In the user space the resetCounters() function of the Policer class is run in a
separate thread and is responsible of resetting counters to their original value every
time a new window begins.

The size of the window has been set to one second.
1 void Policer :: resetCounters () {
2 auto t = std :: chrono :: system_clock :: now ();
3 while (! quit_thread_ ) {
4 {
5 std :: lock_guard <std :: mutex > guard( contracts_mutex_ );
6 if ( default_contract_ -> getAction () == ActionTypeEnum :: LIMIT)
7 {
8 default_contract_ -> updateDataplane ();
9 }

10 for (auto &entry : contracts_ ) {
11 if (entry.second -> getAction () == ActionTypeEnum :: LIMIT) {
12 entry.second -> updateDataplane ();
13 }
14 }
15 }

44



Prototype Implementation

16 std :: this_thread :: sleep_until (t + std :: chrono :: seconds (1));
17 t = std :: chrono :: system_clock :: now ();
18 }
19 }

Listing 4.6: resetCounters() function

The function has to scan the contracts_ map to handle all the contracts with
a LIMIT action and the contracts_mutex_ is used to prevent other methods of the
class from updating the structure while this operation is ongoing.

The updateDataplane() function of Contract and DefaultContract classes
writes the action and the initial value of the counter in the corresponding entry of
the eBPF map and a mutex specific of every contract guarantees that this opera-
tion isn’t performed concurrently by the counter reset thread and another thread
updating the data of the contract.

While this solution has the disadvantages explained in the Architecture chapter
it has the advantage of allowing a very fast data plane since counters are reset in
the control plane and no additional synchronization is needed in the data plane.

4.3.4 Token Bucket implementation
The main challenge of this solution is guaranteeing the atomicity of update op-
erations on the data of the token bucket, made difficult by the little amount of
synchronization primitives available in the eBPF virtual machine.

The first considered implementation encompassed the periodic addition of tokens
to the bucket in user space while leaving only the task of consuming tokens for every
packet in the data plane, similarly to what has been done in the Fixed Window
Counter. Unlike the reset of the counter however, the addition operation requires
different steps that include two accesses to maps, and eBPF does not provide a
synchronization method to make these user space operations atomic with respect
to the data plane. This produces the following situation:

1. The number of tokens currently available in the bucket is read from the eBPF
map.

2. The value is increased of the defined amount: while this operation is performed
packets in the data plane continue to consume tokens and be forwarded.

3. The map is updated with the increased value, therefore overwriting all consume
operations happened after the map reading.

This can cause an output rate that is higher than the expected one and the prob-
lem is more evident with higher input rates or a higher frequency of bucket refill
operations.

45



Prototype Implementation

To overcome this problem a solution relying only on the data plane for the update
of the bucket has been adopted, leaving to the control plane the only responsibility
of its initialization. The solution is only available starting from Linux kernel version
5.1, thanks to the introduction of spinlocks to handle concurrent access to eBPF
maps.

Spinlocks

The spinlock is one of the most simple synchronization primitives, in which the
thread needing to acquire it continuously check if the locking variable is available
with a loop, performing what is called a busy waiting. The update operation on the
variable holding the lock requires to be atomic and is therefore usually implemented
with special assembly instructions such as atomic exchange or atomic test-and-set.
Spinlocks have the advantage of having a very little overhead, since waiting threads
doesn’t need to be put in a waiting queue, but require the program holding the lock
to release it in a short time. This makes them ideal for the use in eBPF programs.

To use spinlocks in eBPF program a field of type struct bpf_spin_lock must
be added to the value of the protected map. The lock can then be acquired with
the bpf_spin_lock() helper and released with bpf_spin_unlock().

eBPF implementation of spinlocks comes with some restrictions:

• Only HASH and ARRAY maps support spinlocks.

• Only one lock can be acquired at a time, to avoid the risk of deadlocks.

• No other helper functions can be called while holding a lock.

• Maps using a spinlock must be annotated with BTF (BPF Type Format) to
allow safety checks in the verification phase, therefore requiring compilation
with LLVM 9 or later.

• Only kernel space programs can manipulate spinlocks, for access to map items
in user space the spinlock just assures that read and update operations are
atomic but doesn’t provide an instrument to atomically perform complex op-
erations.

Final solution

Since the execution of eBPF programs can not be periodically triggered but is
event-based the refill of the bucket in the data plane must be performed upon
packet reception. The adopted solution therefore requires to associate to each
bucket the timestamp of its last refill, allowing to compute, for every packet, the
time passed since the operation and the resulting number of tokens to add.

eBPF provides the bpf_ktime_get_ns() helper to get the number of nanosec-
onds elapsed since the boot of the system. This helper however, as shown in the

46



Prototype Implementation

Evaluation chapter, has proven to have a non negligible overhead if compared to
other operations of the data plane. To overcome this problem a manually managed
clock has been adopted, stored in a single cell PERCPU_ARRAY_MAP and updated in
user space every millisecond. This solution brings to a slight boost in performance
without a measurable loss in precision.

The final structure used by the eBPF program to hold information about the
bucket is the following:

1 struct bucket {
2 u64 tokens ; // Number of tokens currently in the bucket
3 u64 refill_rate ; // Refill rate of the bucket in tokens /ms
4 u64 capacity ; // Capacity of the bucket
5 u64 last_update ; // Timestamp of the last time the bucket
6 // was refilled in ms
7 };

Listing 4.7: Bucket data structure

The code applying rate limit to each packet, shown in listing 4.8, operates as follows:

1. Retrieve current timestamp from the clock map.

2. Acquire the spinlock of the bucket.

3. If the current timestamp is greater than the one of last refill compute the
number of new tokens and add them to the bucket, making sure that the new
number doesn’t exceed the bucket capacity.

4. Try to consume a number of tokens corresponding to the size of the packet,
if there aren’t enough tokens in the bucket store the RX_DROP return action,
otherwise RX_OK.

5. Release the spinlock.

1 int limit_rate ( struct CTXTYPE *ctx , struct contract * contract ) {
2 int zero = 0;
3 struct bucket * bucket = &contract -> bucket ;
4 void *data = (void *)(long)ctx ->data;
5 void * data_end = (void *)(long)ctx -> data_end ;
6

7 u64 * clock_p = clock. lookup (& zero);
8 if (! clock_p ) {
9 return RX_DROP ;

10 }
11 u64 now = * clock_p ;
12

13 bpf_spin_lock (& contract ->lock);
14

15 if (now > bucket -> last_refill ) {

47



Prototype Implementation

16 u64 new_tokens =
17 (now - bucket -> last_refill ) * bucket -> refill_rate ;
18 bucket -> tokens += new_tokens ;
19 if (bucket -> tokens > bucket -> capacity ) {
20 bucket -> tokens = bucket -> capacity ;
21 }
22 bucket -> last_refill = now;
23 }
24

25 u64 needed_tokens = ( data_end - data) * 8;
26 u8 retval ;
27 if (bucket -> tokens >= needed_tokens ) {
28 bucket -> tokens -= needed_tokens ;
29 retval = RX_OK;
30 } else {
31 retval = RX_DROP ;
32 }
33

34 bpf_spin_unlock (& contract ->lock);
35

36 return retval ;
37 }

Listing 4.8: Token bucket rate limit function

4.3.5 Sliding Window implementation
The implementation of the Sliding Window algorithm is similar to the one of the
Token Bucket, requiring timestamping and the use of spinlocks to update the in-
formation of the window. Unlike the token bucket however the granularity of the
timestamp can not be reduced, due to the lack of floating point support in the
eBPF virtual machine. The transmission time of packets is computed with the
ratio between the size of the packet and the maximum rate and could result in a
fractional number, whose decimal part is discarded. Having a high time granularity
guarantees that the this decimal part is negligible and doesn’t impact the behaviour
of the algorithm. As a consequence the bpf_ktime_get_ns() helper is used de-
spite its overhead, since a clock can not be updated in user space with nanoseconds
precision.

listing 4.9 shows the implementation of the algorithm:
1 struct window {
2 u64 start; // Timestamp of window start in ns
3 u64 size; // ns
4 u64 rate; // maximum rate in bits/s
5 };
6 ...
7 int limit_rate ( struct CTXTYPE *ctx , struct contract * contract ) {
8 u8 retval ;

48



Prototype Implementation

9 struct window * window = &contract -> window ;
10 void *data = (void *)(long)ctx ->data;
11 void * data_end = (void *)(long)ctx -> data_end ;
12

13 u64 tx_time = ( data_end - data) * 8 * 1000000000 / window ->rate;
14

15 u64 now = bpf_ktime_get_ns ();
16

17 bpf_spin_lock (& contract ->lock);
18

19 if (window ->start + tx_time > now) {
20 retval = RX_DROP ;
21 } else if (window ->start + window ->size < now) {
22 window ->start = now - window ->size + tx_time ;
23 retval = RX_OK;
24 } else {
25 window ->start += tx_time ;
26 retval = RX_OK;
27 }
28

29 bpf_spin_unlock (& contract ->lock);
30

31 return retval ;
32 }

Listing 4.9: Sliding Window algorithm implementation

4.4 Traffic Classifier
The data model of the service is very simple and defines a list of traffic classes, each
one identified by a uint32 id and characterized by a mandatory priority (uint32)
and the optional fields to identify a packet: the direction (INGRESS, EGRESS or BOTH)
that defaults to BOTH if not specified, source and destination MAC addresses, the
ethertype (ARP or IP), source and destination IP addresses, layer 4 protocol (TCP,
UDP or ICMP) and source and destination ports.

In the control plane, the Classifier class allows to read, add and delete traffic
classes and holds a shared_ptr to every configured class into an unordered_map.
Every time a change in the configuration is applied its updateProgram() method
(that will be explained in details in following sections) is called to update the
classification eBPF program.

The TrafficClass class stores information of a single class of traffic, upon its
initialization and every time an update is performed the isValid() method is used
to check that compatible values are set for classification fields.

One of the main features of the service is the dynamic generation of the program
implementing the Linear Bit Vector Search algorithm in the data plane, that allows

49



Prototype Implementation

to support a wide range of header fields for classification while only injecting the
code needed by the actual configuration.

To achieve this behaviour two components are used:

• A series of data plane templates used to compose the final data plane code.

• A data plane generation logic in the control plane, responsible of compiling
and combining the templates.

4.4.1 Data plane templates
Three template files are used to implement the the classification steps shown in
figure 4.2:

1. Headers Parsing
2. Headers matching

2. Headers matching 3. Class identification

Figure 4.2: Classification steps.

Classifier_dp.c

This file contains the skeleton of the code of the data plane and implements point
1 and 3 of figure 4.2.

The bit-vector responsible of storing partial results across matching steps of the
algorithm is declared as an array of 64 bit values and stored in a PERCPU_ARRAY
map, as shown below:

1 struct bitvector {
2 u64 bits[ _SUBVECTS_COUNT ];
3 };
4 BPF_PERCPU_ARRAY ( pkt_bitvector , struct bitvector , 1);

Listing 4.10: Packet bit-vector declaration

The parameter _SUBVECTS_COUNT defines the number of 64-bit subvectors needed
build the complete bit-vector. The data structure is not stored as a local variable
because of the limited stack size of 512 bytes in eBPF programs, that would allow
to handle a maximum of less then 4096 classes, also taking into account the need to
allocate other variables on the stack. The use of a PERCPU_ARRAY is an acceptable
compromise since its access is very fast.

The initial part of the main function is responsible of parsing the headers of the
packet and storing them in the local structure shown below.

50



Prototype Implementation

1 struct pkt_headers {
2 __be64 smac;
3 __be64 dmac;
4 __be16 ethtype ;
5 __be32 srcip;
6 __be32 dstip;
7 u8 l4proto ;
8 __be16 sport;
9 __be16 dport;

10 };

Listing 4.11: Packet headers structure.

Two Boolean parameters, _PARSE_L3 and _PARSE_L4, are used in compiler di-
rectives to dynamically enable or disable the compilation of the code responsible of
parsing the layer 3 and layer 4 headers.

The packet bitvector is retrieved from the corresponding map and all bits are
set to 1.

At this point the _MATCHING_CODE parameter allows the insertion of the code
responsible of perform matching on the various header fields, whose details will be
explained later.

After this step the packet bit-vector contains a bit set to one for every matching
class. To identify the highest priority class the least significant bit must be found.
Many CPUs have a dedicated instruction to quickly achieve this task that can be
called with compiler built ins, such as __builtin_ffs() in GCC/Clang. Unfor-
tunately the eBPF instruction set doesn’t support this operation and to overcome
this problem a multiply and lookup approach based on de Bruijn sequences [14] has
been adopted.

1 int matching_class_index = -1;
2 u16 * matching_res ;
3 for (int i = 0; i < _SUBVECTS_COUNT ; i++) {
4 64 bits = pkt_bv ->bits[i];
5 if (bits != 0) {
6 int index = (int)((( bits ^ (bits - 1)) * 0 x03f79d71b4cb0a89 ) >>

58);
7 matching_res = index64 . lookup (& index);
8 if (! matching_res ) {
9 return RX_DROP ;

10 }
11 matching_class_index = * matching_res + i * 64;
12 break;
13 }
14 }

Listing 4.12: De Bruijn method.

A de Bruijn sequence of length n is cyclic sequence of n 0s and 1s where every
substring of length log2(n) appears exactly once. For example with n = 2 a valid

51



Prototype Implementation

sequence is 0110, that contains substrings 01, 11, 10, and 00 (wrapping). Assuming
that the bit-vector x contains at least one bit set, the method operates as follows:

1. The least significant bit set to 1 is isolated performing a bitwise XOR between
x and x−1 (an alternative is performing a bitwise AND between x and its two’s
complement).

2. A de Bruijn sequence of size n staring with log2(n) zeroes is chosen and used
to apply the following hash function to y:

h(y) = (y ∗ deBruijn) >> (n − log2(n))

Since y only contains one bit set to 1 in position i, the multiplication corre-
sponds to left-shifting the de Bruijn sequence by i positions, that followed by
the right shift allows to isolate the ith de Bruijn substring. Since this substring
is unique the hash function is free of conflicts.
The sequence chosen for this use case, with n = 64, corresponds to value
0x03f79d71b4cb0a89.

3. The hash value is used to retrieve the corresponding position in the word,
performing a lookup on an array of log2(n) elements. In this implementation
an ARRAY_MAP of 64 elements is used to store the array and is filled in the
control plane with the following values corresponding to the chosen de Bruijn
sequence:

1 const uint16_t index64 [64] = {
2 0, 47, 1, 56, 48, 27, 2, 60, 57, 49, 41, 37, 28, 16, 3, 61,
3 54, 58, 35, 52, 50, 42, 21, 44, 38, 32, 29, 23, 17, 11, 4, 62,
4 46, 55, 26, 59, 40, 36, 15, 53, 34, 51, 20, 43, 31, 22, 10, 45,
5 25, 39, 14, 33, 19, 30, 9, 24, 13, 18, 8, 12, 7, 6, 5, 63
6 };

Listing 4.13: index64 map content.

At this point, if an index has been found, the value is used to perform a lookup on
the class_ids ARRAY_MAP to retrieve the ID of the corresponding class, that is then
saved in the traffic_class field of packet metadata to be used by downstream
cubes.

MatchingTable_dp.c

This template contains the code to declare maps used in matching steps. One map
for every header field is declared, containing for every value specified in configura-
tion the corresponding bit-vector of compatible classes.

An LPM_TRIE_MAP is used if the match is performed only on the prefix of the
value (in the case of IP addresses), while a HASH_MAP is used if the match is exact.
Following parameters are used:

52



Prototype Implementation

• _PREFIX_MATCHER: whether matching is based on lpm trie or hash map.

• _FIELD: the name of the packet field to perform the match on, used to give
unique names to the maps.

• _TYPE: the C type of the matching field, used to define the keys of the maps.

• _CLASSES_COUNT: the number of traffic classes, used to set the maximum size
of maps.

• _WILDCARD: whether there is a wildcard to match on.

1 #if _PREFIX_MATCHER
2 struct _FIELD_lpm_key {
3 u32 prefix_len ;
4 _TYPE key;
5 };
6 BPF_LPM_TRIE ( _FIELD_rules , struct _FIELD_lpm_key , struct bitvector ,
7 _CLASSES_COUNT );
8 #else
9 BPF_HASH ( _FIELD_rules , _TYPE , struct bitvector ,

10 _CLASSES_COUNT + 1);
11 #if _WILDCARD
12 BPF_ARRAY ( _FIELD_wildcard_bv , struct bitvector , 1);
13 #endif
14 #endif

Listing 4.14: MatchingTable_dp.c template.

Matcher_dp.c

This template contains the logic to perform a match on a single header field. The
same parameters of the MatchingTable_dp.c template are used, plus the
_SUBVECTS_COUNT parameter to define bounded loops (the only ones supported in
eBPF) on the bit-vector and _DIRECTION for debug purposes.

The code of the template performs the lookup of the configured field in the
corresponding map to retrieve the bit-vector. In case the lookup fails and a wildcard
is present, its bit-vector is read from the corresponding ARRAY_MAP. If no wildcard is
available, code RX_OK is returned and the packet proceeds without being classified.
In case of success a bitwise AND is performed between the retrieved bit-vector and
the one associated to the packet. If the result has all bits set to zero the classification
is stopped, otherwise the packet proceeds to the next matching field or to the final
phase.

53



Prototype Implementation

4.4.2 Data plane generation logic
The hierarchy of C++ template classes shown in figure 4.3 has been implemented
to support the generation of matching code. A specialization of these templates is
instantiated on service initialization (in the constructor of the Classifier class)
to handle matching on every header field. The use of templates (both in classes
and in data plane code) allows to to generate a logic that is not bound to specific
fields an therefore provides an easy way for future introduction of additional fields,
such as the ones of application layer headers.

MatcherInterface

Matcher<Type>

ExactMatcher<Type> PrefixMatcher<Type>

smac
<uint64_t>

dmac
<uint64_t>

ethtype
<uint16_t>

l4proto
<uint8_t>

sport
<uint16_t>

dport
<uint16_t>

srcip
<uint32_t>

dstip
<uint32_t>

class

object

Figure 4.3: Matchers hierarchy.

Two types of matchers have been defined:

• ExactMatcher: allows to configure code to perform an exact match on a field,
relying on a HASH_MAP.

• PrefixMatcher: allows to perform matching only on the initial part of a field,
usign a LPM_TRIE_MAP.

MatcherInterface and Matcher classes define the methods common to all match-
ers:

• initBitvector(uint32_t size): re-initializes the matcher with a clean bit-
vector (all bits set to 0), discarding all traffic classes formerly configured.

• getTableCode(): returns the table declaration code obtained compiling the
MatchingTable_dp.c template with the current configuration of the matcher.

• getMatchingCode(): returns the matching code obtained compiling the
MatchingCode_dp.c template.

54



Prototype Implementation

• isActive(): tells whether a matching step on the represented field is needed
(i.e. if at least one specific value is set).

• appendWildcardBit(): appends a 1 bit to the wildcard bit-vector and, as a
consequence, also to bit-vectors of all other values currently configured.

• loadTable(...): loads configured bit-vectors in the corresponding eBPF
maps. For the exact matching type the bit-vector of the wildcard is loaded in
a dedicated single-item ARRAY_MAP, while for prefix matching a \0 entry in the
lpm trie is used.

Following methods are specific to the ExactMatcher class:

• appendValueBit(T value): appends a 1 bit to the bit-vector of the given
value while a 0 bit is left in all other bit-vectors (including the wildcard one).
If the value is configured for the first time its bit-vector its initialized from the
wildcard.

• appendValuesBit(std::vector<T> values): allows to append a 1 bit to bit-
vectors of multiple values (used for example when a class can match on bot
TCP and UDP protocols).

Following method is specific to the PrefixMatcher class:

• appendValueBit(T value, uint32_t prefix_len): appends a 1 bit to the
bit-vector of the given prefix. Since the lpm trie performs a longest prefix
match but any prefix match is valid in this use case, the bit must also be
added to longer prefixes that include the configured one.

The process of updating the data plane requires, beside reloading the eBPF pro-
gram, to clear and fill the maps, since insertion or removal of a single class implies
the update of all bit-vectors. While program reload is an atomic operation, filling
the maps can bring to a transitory time in which the service behaves into an unde-
fined way. To overcome the problem two classification programs for every direction
are used, and while the active one is processing packets the new one is configured.
The entry point of the pipeline is moved to a selector program (Selector_dp.c) that
allows either to switch between these two programs with a tail call or to disable
the classification.

The updateProgram(ProgramType direction) method of Classifier allows
to inject the updated classification program for the given direction and operates by
the following steps:

1. Classes for the given direction are selected.

55



Prototype Implementation

Selector

Classification
prog 1

Classification
prog 2

UPDATE

Figure 4.4: Classification program selection.

2. If no classes are found the selector program is updated to disable the clas-
sification, if a classification program is present it is deleted and the function
ends.

3. Bit-vectors of all matchers are reset.

4. Classes are sorted by decreasing priority.

5. Classes are scanned in the given order and for every matching field specified
by the class a 1 bit is appended to the bit-vector of the desired value in the
corresponding matcher.

6. Classification code is generated retrieving map declaration and matching code
from active matchers and inserting them in the Classifier_dp.c template. The
code is injected as a new eBPF program.

7. Maps of the new program are populated.

8. The selector program is updated to point to the new program and the old one
is deleted.

56



Chapter 5

Evaluation

This chapter presents a set of tests performed to evaluate the performance and
feasibility of the proposed solution.

First, an overview of the benchmarking tools used and the testing methodologies
is provided. Then a comparison of the different rate limit algorithms is performed,
in order to chose the best solution taking into account both precision and cost.
The performance of the pipeline is then compared with alternative solution based
on different technologies, and its scalabilty is studied varying the complexity of the
configuration and the number of CPU cores assigned to computation. In the end
a micro-benchmark is presented in order to highlight the cost introduced by single
modules composing the pipeline and to spot possible weak points and space for
improvement.

The testbed is composed by two physical machines connected with two direct
links using dual-port Intel XL710 40Gbps NICs. One machine operates as DUT
(Device Under Test), executing the pipeline under test and forwarding packets
between its interfaces, the other acts as tester, generating test packets on one
interface and measuring processed traffic on the other one.

Machines are configured as follows:

• DUT : Intel Xeon Gold 5120 @2.60GHz processor with 14 cores (hyper-threading
disabled) and 19,25 MB of L3 cache, 64 GB of DRAM and Ubuntu 18.04.4
LTS. Different versions of the kernel have been used according to the pipeline
under test and will be specified in following sections.

• Tester : Intel Xeon E3-1245 v5 @3.50GHz processor with 4 cores (plus hyper-
threading) and 8 MB of L3 cache, 32 GB of DRAM and Ubuntu 18.04.4 LTS
with kernel 5.0.

57



Evaluation

5.1 Benchmarking tools

5.1.1 MoonGen
MoonGen [15] is a flexible high-speed packet generator that can saturate a 10 GbE
link with minimum-sized packets while using only a single CPU core on commodity
hardware. It relies on the Intel DPDK framework to achieve high speed packet
processing and uses the Lua scripting language compiled with the LuaJIT compiler
to provide the possibility to customize the packet generation logic.

MoonGen’s architecture is shown in figure 5.1. Its core is represented by a Lua
wrapper for DPDK that provides utility functions for packet generation and an
API to configure hardware-related features like timestamping and rate control.

This can lead to exhausted receive queues or starving trans-
mission queues. Pause times introduced by the JIT com-
piler are in the range of “a couple of microseconds” [21].
The garbage collector (GC) works in incremental steps, the
pause times depend on the usage. All packet buffers are
handled by DPDK and are invisible to the GC. A typical
transmit loop does not allocate new objects in Lua, so the
GC can even be disabled for most experiments.
Pause times are handled by the NIC buffers: The cur-

rently supported NICs feature buffer sizes in the order of
hundreds of kilobytes [11, 12, 13]. For example, the smallest
buffer on the X540 chip is the 160 kB transmit buffer, which
can store 128µs of data at 10GbE. This effectively conceals
short pause times. These buffer sizes were sufficient for all
of our tests.

3.3 Hardware Architecture
Understanding how the underlying hardware works is im-

portant for the design of a high-speed packet generator. The
typical operating system socket API hides important aspects
of networking hardware that are crucial for the design of
low-level packet processing tools.
A central feature of modern commodity NICs is support

for multi-core CPUs. Each NIC supported by DPDK fea-
tures multiple receive and transmit queues per network in-
terface. This is not visible from the socket API of the op-
erating system as it is handled by the driver [10]. For ex-
ample, both the X540 and 82599 10GbE NICs support 128
receive and transmit queues. Such a queue is essentially a
virtual interface and they can be used independently from
each other. [12, 13]
Multiple transmit queues allow for perfect multi-core scal-

ing of packet generation. Each configured queue can be as-
signed to a single CPU core in a multi-core packet genera-
tor. Receive queues are also statically assigned to threads
and the incoming traffic is distributed via configurable filters
(e.g., Intel Flow Director) or hashing on protocol headers
(e.g., Receive Side Scaling). [12, 13] Commodity NICs also
often support timestamping and rate control in hardware.
This allows us to fulfill (R1) without violating (R4).
MoonGen does not run on arbitrary commodity hard-

ware, we are restricted to hardware that is supported by
DPDK [14] and that offers support for these features. We
currently support hardware features on Intel 82599, X540,
and 82580 chips. Other NICs that are supported by DPDK
but not yet explicitly by MoonGen can also be used, but
without hardware timestamping and rate control.

3.4 Software Architecture
MoonGen’s core is a Lua wrapper for DPDK that provides

utility functions required by a packet generator. The Moon-
Gen API comes with functions that configure the underly-
ing hardware features like timestamping and rate control.
About 80% of the current code base is written in Lua, the
remainder in C and C++. Although our current focus is on
packet generation, MoonGen can also be used for arbitrary
packet processing tasks.
Figure 1 shows the architecture of MoonGen. It runs a

user-provided script, the userscript, on start-up. This script
contains the main loop and the packet generation logic.
The userscript will be executed in the master task initially

by calling the master function provided by the script. This
master function must initialize the used NICs, i.e., config-

MoonGen Core

DPDK

U
se
rs
cr
ip
t

M
oo

nG
en

H
W NIC NIC

Port

Q0 ... Qn

Port

Userscript

Lua VM

Userscript
spawn

Userscript
slave

Lua VM

Userscript
master

Lua VM

Config API Data API

Config API Data API

Figure 1: MoonGen’s architecture

ure the number of hardware queues, buffer sizes and filters
for received traffic. It can then spawn new instances of it-
self running in slave tasks and pass arguments to them. A
slave task runs a specified slave function. It usually receives
a hardware queue as an argument and then transmits or
receives packets via this queue. Starting a new slave task
spawns a completely new and independent LuaJIT VM that
is pinned to a CPU core. Tasks only share state through the
underlying MoonGen library which offers inter-task commu-
nication facilities such as pipes. All functions related to
packet transmission and reception in MoonGen and DPDK
are lock-free to allow for multi-core scaling.
MoonGen comes with example scripts for generating load

with IPv4, IPv6, IPsec, ICMP, UDP, and TCP packets, mea-
suring latencies, measuring inter-arrival times, and generat-
ing different inter-departure times like a Poisson process and
bursty traffic.

4. SCRIPTING API
Our example scripts in the git repository are designed to

be self-explanatory exhaustive examples for the MoonGen
API [5]. The listings in this section show excerpts from the
quality-of-service-test.lua example script. This script
uses two transmission tasks to generate two types of UDP
flows and measures their throughput and latencies. It can
be used as a starting point for a test setup to benchmark
a forwarding device or middlebox that prioritizes real-time
traffic over background traffic.
The example code in this section is slightly different from

the example code in the repository: it has been edited for
brevity. Error handling code like validation of command-line
arguments is omitted here. The timestamping task has been
removed as this example focuses on the basic packet gener-
ation and configuration API. Most comments have been re-
moved and some variables renamed. The interested reader
is referred to our repository [5] for the full example code
including timestamping.

Figure 5.1: MoonGen architecture.

A user-provided script, the userscript, is used to describe the packet generation
logic. A master function initializes the used NICs, i.e. the number of hardware
queues, buffer sizes and filters for received traffic, and then spawns a set of slave
tasks, each one executed in an independent LuaJIT VM that is pinned to a CPU
core. These tasks usually receive a hardware queue as an argument and contain
the loop responsible of transmitting or receiving packets via this queue.

MoonGen allows to obtain precise rate control, either by exploiting the rate

58



Evaluation

liming function embedded into supported NICs or via software. In this case invalid
packets with a wrong CRC are used to evenly distribute valid packets and avoid
micro-bursts. Invalid packets are then discarded by the NIC of the receiving host
without any impact on the CPU.

The tool can also exploit timestamping capabilities of supported NICs, originally
intended for clock synchronization across networks, to measure latencies with sub-
microsecond precision.

5.1.2 TIPSY
TIPSY (Telco pIPeline benchmarking SYstem) [16] is a benchmark suite to eval-
uate and compare the performance of programmable data plane technologies and
network-function virtualization frameworks over a set of standard scenarios rooted
in telecommunications practice.

The tool provides a set of pipelines of increasing complexity, starting from a
simple L2 forwarder (a switch) and going up to the 5G Mobile Gateway. These
pipelines are implemented with different data plane technologies, such as OvS,
BESS, t4p4, Lagopus, etc. The system has been extended adding the support for
Polycube-based eBPF/XDP pipelines. Currently only the Mobile Gateway and the
Port Forward (simple forwarding of packets between two ports) are available.

The setup needed to run a benchmark is show in figure 5.2 and reflects the one
described at the beginning of the chapter. In relation to how the traffic flows,
TIPSY distinguishes between the uplink direction (user-to-network direction) and
the downlink direction (network-to-user direction). An additional management
connection relying on SSH is used by the tester to configure the DUT.

TESTER DUT

Packet
generator

Pipeline 
under test

Controller
MGMT (SSH)

Control logic

UL
PORT

DL
PORT

DL
PORT

UL
PORT

CONTROL

DATA

Figure 5.2: TIPSY setup.

59



Evaluation

TIPSY allows to run a completely automated benchmark starting from a JSON
configuration file. The control logic on the tester drives all the benchmarking
process shown in the control flow of figure 5.3: it parses the high level benchmark
description and generate detailed pipeline configuration (e.g. IP address and base
station of every user equipment) and a PCAP traffic trace, it connects to the
DUT and instructs the controller (either a simple script or an SDN controller for
OpenFlow based solution) on how to configure the pipeline, it uses the packet
generator to replay the trace and then collects the results.

TESTER DUT

Parse 
configuration

Configure
pipeline

Update 
pipeline

Shutdown
pipeline

Replay 
packet trace

Collect
results

Figure 5.3: TIPSY control flow.

Every benchmark is described by four sections:

• pipeline: this section specifies which is the pipeline under test (name prop-
erty) and how it is configured. Fields available for the configuration vary based
on the selected pipeline. For the Mobile Gateway (mgw) they include:

– IP and MAC addresses of the gateway.
– The number of user devices (user), base stations and routes toward re-
motes networks on the PDN (server).

– The number of cores dedicated to the pipeline.
– The rate limit applied to the traffic of the user equipment (in bits/s).
– A set of dynamic updates to run during test execution, expressed in up-
dates per second: addition and removal of user devices and remote routes,
handover operations (user equipment moving from one base station to
another).

60



Evaluation

• traffic: defines parameters of the packet trace sent to the DUT, including
the number o packets, their size, the direction of the traffic (uplink or down-
link) and the encapsulation type (VXLAN and GTP are available) in case of
pipelines handling tunneled traffic.
The packet trace is generated using the Scapy library according to the pro-
vided configuration, randomly choosing source and destination parameters for
every packet among the available set of users and servers. The random-seed
parameter can be used to produce the same trace across different tests.

• sut: defines the parameters of the system under test (alias of DUT), like its
hostname, needed by the tester to connect to it through SSH, the id of uplink
and downlink ports and the backend used to implement the pipeline.

• tester: Defines the parameters of the tester, including uplink and downlink
ports, the duration of the test, the number of cores to be used by the packet
generator and the type of test. Two types are currently available, both relying
on the MoonGen packet generator:

– moongen: the packet trace is repeatedly replayed to the DUT either at the
given rate or at the maximum rate supported by the packet generator, in
order to test the average bandwidth handled by the pipeline. Additional
packets are periodically sent to measure latencies. Unfortunately this last
feature doesn’t work with the Mobile Gateway pipeline, since MoonGen
requires the packet to be unmodified to compute its processing time, but
tunneling breaks this mechanism.

– moongen-rfc2544: this kind of test allows to measure the maximum
throughput that can be obtained by the pipeline according to criteria
expressed in RFC2544. A binary search is performed, gradually adjust-
ing the rate at which the trace is replayed in order to find the maximum
throughput that produces a packet loss lower than the configured one
(loss-tolerance parameter).

Multiple values can be set for every parameter (using a JSON array). In this case
an additional option (scale) allows to specify how these values should be scaled in
order to produce multiple tests, either performing the outer product, obtaining all
possible combination, or scaling them jointly.

An example of complete benchmark configuration is shown in listing 5.1.
1 " pipeline ": {
2 "bst ": 1,
3 "core ": 1,
4 " fakedrop ": false ,
5 "fluct - server ": 0,
6 "fluct -user ": 0,

61



Evaluation

7 "gw -ip": "200.0.0.1" ,
8 "gw -mac ": "aa :22: bb :44: cc :66" ,
9 " handover ": 0,

10 "name ": "mgw",
11 "nhop ": 2,
12 "rate -limit ": 40000000000 ,
13 " server ": 10,
14 "user ": 100
15 },
16 "scale ": "joint",
17 "sut ": {
18 " coremask ": "0 xff",
19 "downlink -port ": "0000:65:00.0" ,
20 " hostname ": "dut - hostname ",
21 "tipsy -dir ": "/ home/test/tipsy",
22 "type ": "ovs",
23 "uplink -port ": "0000:65:00.1"
24 },
25 " tester ": {
26 "core ": 1,
27 "downlink -port ": "1",
28 "moongen -cmd ": "/ home/test/ MoonGen /build/ MoonGen ",
29 "rate -limit ": 3000 ,
30 "test -time ": 60,
31 "type ": " moongen ",
32 "uplink -port ": "0"
33 },
34 " traffic ": {
35 "conf ": " pipeline .json",
36 "dir ": " downlink ",
37 "pkt -num ": 1000 ,
38 "pkt -size ": 60,
39 "random -seed ": 1,
40 "tunneling - method ": "vxlan"
41 }

Listing 5.1: Example of Mobile Gateway benchmark configuration

62



Evaluation

5.2 Rate limit algorithms comparison
This set of tests aims to compare the proposed rate limit algorithms in order to find
a good compromise between precision and processing overhead. The Helloworld
service available in Polycube has been used to forward packets between the two
interfaces of the DUT and the Policer has been attached to one of the ports to
provide rate limit, assigning a single core of the DUT to packet processing.

5.2.1 Precision
In the precision test the packet generator has been configured to send packets at the
maximum rate achievable with a single core, both using 64 bytes frames, producing
around 22 Mpps, and 1518 bytes frames, producing about 3 Mpps. The Policer
service has been configured with an increasing rate limit, starting from 100 Kbps
up to 1 Gbps, and for algorithms allowing it a burst limit of 1/100th of the desired
rate has been set, in order to prevent the initial burst from having an impact on
the measured average rate.

figure 5.4 and figure 5.5 show the percentage of error of the output rate with
respect to the desired one, for both 64 and 1518 frame size.

100K 1M 10M 100M 1G
0

2

4

6

8

10

12

Desired rate [bps]

T
hr
go
ug

hp
ut

er
ro
r
[%

]

TB
WC
SW

Figure 5.4: Rate limit algorithms precision with 64 bytes frames.

63



Evaluation

100K 1M 10M 100M 1G
0

0.5

1

1.5

2

2.5

3

Desired rate [bps]

T
hr
ou

gh
pu

t
er
ro
r
[%

]

TB
WC
SW

Figure 5.5: Rate limit algorithms precision with 1518 bytes frames.

Results show that the Token Bucket (TB) and Sliding Window (SW) present a
similar behaviour, with a high precision rate limiting and an error that is almost
constant in absolute terms, therefore becoming negligible when the desired rate
grows. The Fixed Window Counter (WC) on the other hand has an average lower
precision than other solutions with an irregular behaviour and an error that can
exceed 10% in some cases. The reason of these results is not fully clear at the
moment, but it is worth noticing that the error of the Fixed Window Counter
decreases as the input rate gets closer to the desired one, while other solutions are
not affected by this parameter.

5.2.2 Overhead
This test aims to evaluate the cost introduced by proposed rate limit solutions.
To do this the Policer has been configured with a high rate limit (40 Gbps) in
order not to influence the output rate, and an RFC2544-like measurement has been
performed, obtaining the maximum rate that can be handled by the function with
at most 1% packet drop rate. A baseline is also provided, configuring the PASS
action on the Policer.

figure 5.6 show the results. The Window Counter (WC) solution has the mini-
mum cost, allowing to achieve a throughput almost equal to the baseline, and this is
due to its very simple data plane implementation, that just requires to decrease the
counter stored in a map. The Token Bucket (TB) on the other hand has to perform
a greater number of operation in the data plane, requiring both to add and consume
token from the bucket. Most of the overhead however is due to the use of spinlocks

64



Evaluation

Base WC TB TB-K SW
0

1

2

3

4

5

Pa
ck
et

ra
te

[M
pp

s]

Figure 5.6: Rate limit algorithms overhead.

to manage concurrent access to data structures. The TB-K column shows an al-
ternative implementation of the TB algorithm that uses the bpf_ktime_get_ns()
helper to retrieve the timestamp, showing the advantage of a user space updated
clock. The solution with poorest performance is the Sliding Window (SW), having
to rely both on spinlocks and on the ktime helper.

The Token Bucket solution has been chosen for following tests on the whole
Gateway pipeline, representing a good compromise between precision and perfor-
mance, and allowing to configure both rate and burst limits, like other solutions
(such as OvS meters) do.

5.3 Mobile Gateway performance
This set of tests evaluates the performance of the Mobile Gateway prototype and
studies its scalability with an increasingly complex configuration of the service and
with the number of cores dedicated to packet processing.

To provide some context the same tests have been run on equivalent pipelines
available in the TIPSY repository and implemented with different technologies:
BESS (Berkeley Extensible Software Switch) and OvS (v2.13.0), both in its user
space, DPDK based, implementation and in its in-kernel mode. The eBPF ver-
sion of the Gateway has been executed with kernel version 5.6, in order to take

65



Evaluation

advantage of the last eBPF features and performance improvements, while other
implementation has been run on kernel version 5.0 using DPDK version 19.10 when
needed. A preliminary test shows that packet size does not impact the resulting
throughput. As a consequence following benchmarks has been performed using
minimum sized packets. In the downlink direction this corresponds to 64 bytes. In
uplink the encapsulation has to be taken into account: OvS and BESS pipelines use
VxLAN due to the lack of GTP support in the framework, resulting in minimum
sized encapsulated packets of 112 bytes, while the GTP encapsulation in the eBPF
implementation produces 98 bytes packets.

5.3.1 Multiple users scalability
In this test the number of user devices has been scaled form 1 to 3000, contemporary
configuring one base station every 100 users and 1 remote route on the PDN every
10 users. Both the uplink and the downlink directions have been tested taking
RFC2544-like measurements, and using a packet trace composed of an average of
10 UDP flows per user.

100 101 102 1030

2

4

6

8

Number of users

Pa
ck
et

ra
te

[M
pp

s]

eBPF
BESS

OVS-DPDK
OVS-KERNEL

Figure 5.7: Multiple users scalability in the downlink direction.

Results of figure 5.7 and figure 5.8 show that the eBPF pipeline greatly out-
performs its in-kernel counterpart. In relation to user space solutions eBPF can’t
reach the high packet processing speed of DPDK when the number of users is low.
The situation changes when this number grows above 100. BESS shows a very
poor scalability and its throughput quickly drops below that of in-kernel solutions.

66



Evaluation

100 101 102 1030

1

2

3

4

5

6

7

8

Number of users

Pa
ck
et

ra
te

[M
pp

s]

eBPF
BESS

OVS-DPDK
OVS-KERNEL

Figure 5.8: Multiple users scalability in the uplink direction.

OvS is greatly influenced by the direction of the traffic: while in downlink it main-
tains a high number of processed packets per second, in the uplink direction it is
outperformed by the eBPF solution.

5.3.2 Multiple cores scalability
This test shows the ability of the solution to take advantage of parallel execution.
The number of cores assigned to packet processing has been scaled from 1 to 8
adding 100 user devices, 1 base station and 10 remote routes for every new core, in
order to have constant per-core load. As in the preceding test measurements have
been taken in RFC2544 mode with a packet trace containing an average of 10 flows
per user. In this specific scenario having a high number of flows is fundamental to
allow the NIC to evenly distribute the traffic among different cores.

Results of figure 5.9 and figure 5.10 show that the multi-core scalability of the
prototype is in line with the one of other solutions.

67



Evaluation

1 2 4 6 80

2

4

6

8

10

12

14

Number of cores

Pa
ck
et

ra
te

[M
pp

s]

eBPF
OVS-DPDK

OVS-KERNEL

Figure 5.9: Multiple cores scalability in the downlink direction.

1 2 4 6 80

2

4

6

8

10

12

Number of cores

Pa
ck
et

ra
te

[M
pp

s]

eBPF
OVS-DPDK

OVS-KERNEL

Figure 5.10: Multiple cores scalability in the uplink direction.

5.3.3 Modules overhead
This last test studies the impact that every module has on overall performance. The
pipeline has been benchmarked in the downlink direction, starting only with the
Router and then gradually adding the Classifier, the Policer and the GTP Handler.
The results have been taken both with a simple configuration (single user, remote

68



Evaluation

route and base station) and with a complex one (1000 users, 100 remote routes and
10 base stations), in order to highlight the influence of the configuration on every
module.

figure 5.11 shows the average time needed to process every packet in function of
the modules inserted into the pipeline.

Router +Classifier +Policer +GTP
0

200

400

600

800

Pa
ck
et

pr
oc

tim
e
[n
s]

1 user
1000 users

Figure 5.11: Overhead of modules on per-packet processing time

Results show that with a configuration of little complexity all modules present a
similar overhead, with the Classifier having the lowest one. Things change when the
number of users increases: in this scenario the Classifier becomes the more resource
hungry component, introducing more than double the overhead of other modules.
The reason of this behaviour is related to the algorithm chosen for classification,
the Linear Bit Vector Search, that has linear cost on the number of classification
rules. This is confirmed by the results presented in section 5.3.1, where the eBPF
gateway shows a better scalability in the uplink direction, where classification is
not required.

69



Chapter 6

Conclusions and future work

This thesis has presented a prototype of high-performance 5G Mobile Gateway
running into the Linux kernel thanks to the use of eBPF/XDP, showing how this
technology can be an interesting alternative for the implementation of telco data
plane network functions and can be successfully leveraged in the deployment of the
upcoming 5G mobile network.

A modular architecture has been proposed, composed by four basic components:
a GTP Handler, a Traffic Policer, a Traffic Classifier and a Router. The chain
implements a subset of the functionalities of a full Gateway but thanks to the
modular approach can be easily be extended with new functions with low effort.
Modules has been designed with the aim of being as general as possible and can
therefore be reused to build different pipelines.

In the implementation phase different challenges have been faced due to the
limitations imposed by the eBPF execution environment, including the event-based
execution of programs, the limited number of synchronization mechanisms and the
restricted access to memory. Solutions and workarounds to this problems have
been found adopting different techniques for rate limiting and an efficient traffic
classification algorithm.

The evaluation of the prototype shows that an eBPF-based Mobile Gateway is
able to outperform other in-kernel packet processing solutions (OvS) and can com-
pete with kernel bypass data plane technologies such as DPDK. While providing
higher raw packet processing speeds, DPDK is less flexible than eBPF, since it
requires a rigid partitioning of the resources of the machine it runs on. When en-
abled, DPDK acquires complete control over the NIC bypassing the kernel and, as a
consequence, applications based on it can not leverage the consolidated Linux net-
working stack. Additionally this technology requires a set of cores to be exclusively
dedicated to packet processing, while its polling of the NIC for new packets causes
these cores to always run at 100%. This requirements may be too restrictive in a
scenario like Edge Computing, composed of a great number of small, distributed

70



Conclusions and future work

data centers, where servers have to run both data plane functions and more tradi-
tional cloud native applications, like control plane functions and user defined jobs.
In these case eBPF could represent a more appealing solution, allowing more elastic
sharing of the resources of the system and a higher level of integration with the
Linux kernel.

The source code of the modules developed during this work is open source and
available online in the Polycube repository1. A poster named "A Proof-of-Concept
5G Mobile Gateway with eBPF" has also been submitted to the 2020 SIGCOMM
Call for Posters, Demos, and Student Research Competition.

One possible future work is the extension of the modules of the pipeline to
implement additional features of the Mobile Gateway, like deep packet inspection
and charging support. Another interesting aspect is the possibility to exploit the
run-time injection capabilities of eBPF to achieve a dynamic optimization of the
pipeline, based on the current global configuration, in order to reach better perfor-
mance. A cross-modules optimization mechanism should also be studied, in order
to improve the performance while maintaining an high level modular representation
of the pipeline.

1https://github.com/polycube-network/polycube/tree/mobile-gateway

71



Bibliography

[1] Mansoor Shafi et al. “5G: A tutorial overview of standards, trials, challenges,
deployment, and practice”. In: IEEE journal on selected areas in communica-
tions 35.6 (2017), pp. 1201–1221.

[2] Faqir Zarrar Yousaf et al. “NFV and SDN—Key technology enablers for 5G
networks”. In: IEEE Journal on Selected Areas in Communications 35.11
(2017), pp. 2468–2478.

[3] 5G; System architecture for the 5G System (5GS). Tech. rep. 3GPP TS 23.501.
Version 15.9.0 Release 15. ETSI, 2020.

[4] The Cilium Authors. BPF and XDP Reference Guide. url: https://docs.
cilium.io/en/v1.8/bpf/. (accessed: 06.2020).

[5] Toke Høiland-Jørgensen et al. “The express data path: Fast programmable
packet processing in the operating system kernel”. In: Proceedings of the 14th
International Conference on Emerging Networking EXperiments and Tech-
nologies. 2018, pp. 54–66.

[6] Sebastiano Miano et al. “A Service-Agnostic Software Framework for Fast and
Efficient in-Kernel Network Services”. In: 2019 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS). IEEE.
2019, pp. 1–9.

[7] Balázs Pinczel et al. “Towards high performance packet processing for 5G”.
In: 2015 IEEE Conference on Network Function Virtualization and Software
Defined Network (NFV-SDN). IEEE. 2015, pp. 67–73.

[8] Suneet Kumar Singh et al. “Offloading Virtual Evolved Packet Gateway User
Plane Functions to a Programmable ASIC”. In: Proceedings of the 1st ACM
CoNEXT Workshop on Emerging in-Network Computing Paradigms. 2019,
pp. 9–14.

[9] Tamás Lévai et al. “The price for programmability in the software data plane:
The vendor perspective”. In: IEEE Journal on Selected Areas in Communi-
cations 36.12 (2018), pp. 2621–2630.

72

https://docs.cilium.io/en/v1.8/bpf/
https://docs.cilium.io/en/v1.8/bpf/


BIBLIOGRAPHY

[10] Nikrad Mahdi. An alternative approach to rate limiting. 2017. url: https:
//www.figma.com/blog/an-alternative-approach-to-rate-limiting/.
(accessed: 06.2020).

[11] Quentin Monnet. Stateful packet processing: two-color token-bucket PoC in
BPF. url: https://github.com/qmonnet/tbpoc-bpf. (accessed: 06.2020).

[12] Sebastiano Miano et al. “Securing Linux with a faster and scalable iptables”.
In: ACM SIGCOMM Computer Communication Review 49.3 (2019), pp. 2–
17.

[13] TV Lakshman and Dimitrios Stiliadis. “High-speed policy-based packet for-
warding using efficient multi-dimensional range matching”. In: ACM SIG-
COMM Computer Communication Review 28.4 (1998), pp. 203–214.

[14] Charles E Leiserson, Harald Prokop, and Keith H Randall. “Using de Bruijn
sequences to index a 1 in a computer word”. In: Available on the Internet
from http://supertech. csail. mit. edu/papers. html 3.5 (1998).

[15] Paul Emmerich et al. “Moongen: A scriptable high-speed packet generator”.
In: Proceedings of the 2015 Internet Measurement Conference. 2015, pp. 275–
287.

[16] The TIPSY Authors. TIPSY: Telco pIPeline benchmarking SYstem. url:
https://github.com/hsnlab/tipsy. (accessed: 06.2020).

73

https://www.figma.com/blog/an-alternative-approach-to-rate-limiting/
https://www.figma.com/blog/an-alternative-approach-to-rate-limiting/
https://github.com/qmonnet/tbpoc-bpf
https://github.com/hsnlab/tipsy

	Introduction
	Goal of the thesis

	Background
	5G Mobile Gateway
	eBPF (Extended Berkeley Packet Filter)
	vCPU Architecture
	Safety
	Helpers
	Maps
	Tail Calls
	Program Types
	Tool chain

	Polycube
	Services
	Cubes
	Polycube Daemon
	Polycube CLI

	Related Work

	Prototype Architecture
	General Architecture
	GTP Handler
	Traffic Policer
	Traffic Shaping vs Policing
	Rate limiting algorithms

	Traffic Classifier
	Linear Bit Vector Search algorithm
	Dynamic generation of the classification pipeline

	Router

	Prototype Implementation
	Automatic Code Generation
	GTP Handler
	Data model and control plane
	Data plane

	Traffic Policer
	Data Model
	Data and Control Planes
	Fixed Window Counter implementation
	Token Bucket implementation
	Sliding Window implementation

	Traffic Classifier
	Data plane templates
	Data plane generation logic


	Evaluation
	Benchmarking tools
	MoonGen
	TIPSY

	Rate limit algorithms comparison
	Precision
	Overhead

	Mobile Gateway performance
	Multiple users scalability
	Multiple cores scalability
	Modules overhead


	Conclusions and future work

