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Summary

The thesis is linked to the ALOHA research project [1] and covers the investigation,
development and evaluation of an embedded keyword spotting system for industrial
applications. The specific goal of the thesis is the implementation of the modules
necessary for the integration of the speech module with a robotic arm (Comau e.Do),
the addition of the perception functionalities and the realization of a demonstrator
showing all the functionalities working together.

To do so, the thesis will be structured approximately as follow:

o Stereovision and feature extraction from pointcloud data;

Documentation about the behaviour of the movegroup interface;

Generation and filtering of grasps for sensed objects;

Integration of pointcloud data and grasp generation into a demonstrator.

Simulation of the demonstrator on Gazebo, to correctly calibrate both camera
and robot before the real demo implementation.

The demo to be implemented will consider only static target objects placed on
a support planar surface coming from a conveyor belt. The aim of the demo is to
sense and find a way to manage some specific objects, accordingly with the input
voice command coming from the KWS algorithm, running on the SensorTile board.

Basically, an operator can identify the target object as correct or faulty and
the robotic arm, accordingly with the voice command received, must be able to
distinguish and behave differently for these two cases. In principle, the demo will
be configured to perform the following tasks:

o Sense and add relevant object to the planning scene. Perform some pointcloud
preprocessing and identify objects of interest and their relative features;

o Find grasp poses. Possible grasps will be generated and filtered according to
some specific criteria, in order to obtain a vector of feasible grasps for the
object of interest;
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Manage the object of interest. Accordingly with the results coming from
grasping, the robotic arm will be moved to pick up the target object if a
feasible plan is found;

Wait input voice command for placing. Here a voice command will be sensed
by the KWS system running on SensorTile, that will recognize it with a certain
precision and will send it as serial command to the demo node;

Place the target object. Accordingly with the received voice command, the
robotic arm will place the object of interest in a predefined target pose with a
specified orientation;

Go back to rest position and wait new inputs. Look for other objects of
interest and wait for a new input.
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Chapter 1

Deep Learning at the Edge
using ALOHA Toolflow

Deep Learning (DL) algorithms are an extremely promising instrument in artificial
intelligence, achieving very high performance in numerous recognition, identification,
and classification tasks. To foster their pervasive adoption in a vast scope of new
applications and markets, a step forward is needed towards the implementation of
the on-line classification task (called inference) on low-power embedded systems,
enabling a shift to the edge computing paradigm. Nevertheless, when DL is moved
at the edge, severe performance requirements must coexist with tight constraints
in terms of power/ energy consumption, posing the need for parallel and energy-
efficient heterogeneous computing platforms. Unfortunately, programming for this
kind of architectures requires advanced skills and significant effort, also considering
that DL algorithms are designed to improve precision, without considering the
limitations of the device that will execute the inference. Thus, the deployment of
DL algorithms on heterogeneous architectures is often unaffordable for SMEs and
midcaps without adequate support from software development tools.

The main goal of ALOHA is to facilitate implementation of DL on heterogeneous
low-energy computing platforms. To this aim, the project will develop a software
development tool flow, automating:

o algorithm design and analysis;

o porting of the inference tasks to heterogeneous embedded architectures, with
optimized mapping and scheduling;

o implementation of middleware and primitives controlling the target platform,
to optimize power and energy savings.
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1 — Deep Learning at the Edge using ALOHA Toolflow

During the development of the ALOHA tool flow, several main features will be
addressed, such as architecture-awareness (the features of the embedded architec-
ture will be considered starting from the algorithm design), adaptivity, security,
productivity, and extensibility. ALOHA will be assessed over three different use-
cases, involving Surveillance of Critical Infrastructures, Smart Industry automation,
and Medical application domains|[1].

1.1 Toolflow Description and Application

As the ALOHA project evolves, the main goal was to define, for each use case, the
first complete set of inputs needed by the Toolflow. Here, the interest does not just
fall on describing the task that the Toolflow should perform, but also on providing
all the necessary data for the task to be completed.

The main idea here is that the use case providers can test the capability of the
Toolflow to provide design points that are coherent with the defined constraints.
Another goal is to provide the use case partners with the possibility to integrate
the Toolflow in their workflows. Later on, the use case providers will define other
projects based on the different aspects of each use case.

Table 1.1 outlines the baseline projects for each use case. Following elements
are defined:

e Dataset available: determines which dataset is provided by the use case. The
labels of the dataset define the task expected to be accomplished for the
optimized DNN algorithm;

o Initial reference algorithm: defines which Deep Learning reference network
will be used as starting point by the Toolflow;

o Reference implementation available: defines if there is already an implementa-
tion of the initial algorithm that could be used as reference for analyzing the
Toolflow results;

o Prospective target platform: the embedded hardware platform being targeted
by the baseline project. This will define which hardware description will be
used;

o Constraints: define the main constraints of the project regarding performance,
accuracy and security level. Following constraints are defined:

— Performance: Defines the inference time for each sample. A sample is one
single data element, as for instance an image. The performance constraint
is defined in milliseconds per sample (ms/sample);

2
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— Security: The security level expected. Three Values are available, with
the following meaning: HIGH means that accuracy does not drop more
than 33%, MED: accuracy drops more than 33% but no more than 66%,
LOW: accuracy drops more than 66%;

— Accuracy: The accuracy expected for the data set in percent. Note that
the actual measurement method depends on the task and depends on
the implementation of the training engine. Each use case provider will
explain the metric being used in their corresponding section;

— Power consumption: The energy needed to calculate the inference for
each sample in millijoule per sample (mJ/sample). For each constraint, a
priority level from 1 to 4, where 1 is the highest priority, will be selected.
This will be used by the Design Space Exploration engine for the algorithm
optimization

o Mandatory non-DL tasks: here the use case determines which algorithm must
be performed so that the results can be generated by the Toolflow and used
by the use case application. Examples are mandatory pre/post processing
algorithms.
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ALOHA Use Cases Surveillance Medical Audio
Yes
Yes (Google Speech
Dataset available (based on Cityscape Yes
Command Dataset
and COCO) v2)
Initial reference . KWS-NET
algorithm Tiny YOLO U-NET (cnn-tred-fpool3)
smplomentation ves ves s
available (on NCS) (on PC) (on SensorTile)
Perspective NEURAghe .
target platform NEURAghe/Orlando (ZC706) Sensortile/Orlando

Under 3 minutes
on NEURAghe.

anfs(frsll:tze_ 125 ms/sample Under 1 minute 250 ms/sample
periorman on the defined
high end PC
Constraints -
security and HIGH LOW HIGH
threat model
Constraints - Sensitivity>90%
accuracy > 60% AP Specificity>85% >90%
Constraints - 1250 mJ/ sa.mple
ower consumbtion (considering None 450 mJ/sample
P p 10W, SFPS)
Mandatory non-DL MaxQ.Al
task NMS for YOLO Ct+ Dlls MFCC

Table 1.1: Use cases reference baseline toolflow projects




1 — Deep Learning at the Edge using ALOHA Toolflow

1.2 Command Recognition in Smart Industry
Applications

In the smart industry use case, that is the starting point of this thesis, the aim
is to develop an embedded keyword spotting system that would activate/deacti-
vate a PLC-controlled tooling machinery or collaborative robot in an industrial
environment, without relying on a cloud backend.

1.2.1 Baseline Dataset Preparation
Google Spech Commands Datset Description and Organization

Considering the focus on keyword spotting and the license type, the Google Speech
Command Dataset has been chosen for model training and comparative test of
different models in ALOHA.

The Google Speech Command dataset [2] is a set of one-second .wav audio
files, each containing a single spoken English word. This data set is designed to
help train simple machine learning models and it was released under the Creative
Commons BY 4.0 license. Version 1 of the data set was released on August 3¢, 2017
and contained 64,727 audio files. Version 2 includes 105,829 audio files, released on
April 11*%, 2018.

The words included in the dataset are from a small set of commands and
are spoken by a variety of different speakers using crowdsourcing. The goal
was to gather examples of people speaking single-word commands, rather than
conversational sentences, so they were prompted for individual words over the
course of a five-minute session.

The original audio files were collected in uncontrolled locations by people around
the world without any quality requirements or control over the recording equipment
or environment. An open-source web-based application that records utterances is
available [3]. The data was captured in a variety of formats, and then converted
to a 16-bit little-endian PCM-encoded WAVE file at 16 kHz rate. The audio was
then trimmed to a one second length to align most utterances, screened for silence
or incorrect words, and arranged into folders by label.

In version 1 of the dataset twenty core command words were recorded, with most
speakers saying each of them five times. They include the digits zero to nine and
the words "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop", and "Go",
useful as commands in IoT or robotics applications. In version 2 of the dataset, four
more command words were added; “Backward”, “Forward”, “Follow”, and “Learn”.
To help distinguish unrecognized words, and ignoring speech that doesn’t contain
triggers, also the following ten auxiliary words were included: "Bed', "Bird", "Cat",
"Dog", "Happy", "House", "Marvin", "Sheila", "Tree", and "Wow". Some of these,
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such as “Tree”, were picked because they sound similar to target words and would
be good tests of a model’s discernment. The complete list of keywords, broken into
the categories and frequencies, is shown in Table 1.2. In the project version 2 of
the dataset is used.

World Number of Utterances
Backward 1.664
Bed 2.014
Bird 2.064
Cat 2.031
Dog 2.128
Down 3.917
FEight 3.787
Five 4.052
Follow 1.579
Forward 1.557
Four 3.728
Go 3.880
Happy 2.054
House 2.113
Learn 1.575
Left 3.801
Marvin 2.100
Nine 3.934
No 3.941
Off 3.745
On 3.845
One 3.890
Right 3.778
Seven 3.998
Sheila 2.022
Six 3.860
Stop 3.872
Three 3.727
Tree 1.759
Two 3.880
Up 3.723
Visual 1.592
Wow 2.123
Yes 4.044
Zero 4.052

Table 1.2: Words and frequencies in speech commands datset V2

Files are organized into folders, with each directory name labelling the word
that is spoken in all the contained audio files. No details were kept of any of
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the participants’ age, gender, or location, and random IDs were assigned to each
individual. These IDs are stable though, and encoded in each file name as the
first part before the underscore. If a participant contributed multiple utterances
of the same word, these are distinguished by the number at the end of the file
name. For example, the file path ‘happy/3cfc6b3a_nohash 2.wav‘ indicates that
the word spoken was "happy", the speaker’s ID was "3cfc6b3a", and this is the third
utterance of that word by this speaker in the data set.

A key requirement for keyword spotting in real products is to cope with noisy
environments and distinguishing between audio that contains speech, and clips
that contain non-speech sounds. To help train and test this capability, the “_back-
ground_noise_” folder, included in the target dataset, contains a set of longer
audio clips that are either recordings or mathematical simulations of noise.

Considerations

The neural network models are trained to classify the incoming audio into one of
the 10 keywords - "Yes", "No", "Up", "Down", "Left", "Right", "On", "Off", "Stop",
'Go", along with "silence'(i.e., nowordspoken) and "unknown' words, which is
the remaining 25 keywords from the dataset. The dataset is split into training,
validation and test sets in the ratio of 80:10:10 while making sure that the audio
clips from the same person stay in the same set.

The audio clips haven’t been separated into training, test, and validation sets
explicitly, but by convention a hashing function is used to stably assign each file to
a set. The results of running this over the current set are included in the dataset
archive as validation_list.txt and testing list.txt. These text files contain the paths
to all the files in each set, with each path on a new line. Any files that aren’t in
either of these lists can be considered to be part of the training set.

This format is compliant with the .txt encoding format, as described in the
dataset standardization representation [4], and in the next period it has been
considered to extend the dataset by recording background noise specific for the
target deployment environment and/or custom commands.

1.2.2 Target Embedded Hardware

In order to realize an initial reference implementation, the SensorTile has been
selected, a tiny IoT module based on STM32L4 ultra low-power microcontroller with
Arm-Cortex M4 core and featuring a development kit that simplifies prototyping,
evaluation and development of innovative solutions.

This allows to realize an early demonstrator with a simpler and commercial-grade
environment, and to reuse the results in the final demonstrator with the target
environment.
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In the following, the characteristics of the platform [5] will be outlined:

SensorTile Key Features

Vin1
(1.9-55V)

(Aslely VDD 1.8V

Vin2 >=VDD vDDIOo2 BALF-NRG-02D3
(VDD -3.3V) vDDUSB Integrated balun

STM32L4 BlueNRG-MS
Cortex-MAF SP! 4-wire Bluetcoth 4.1
80 MHz

2xGPIO NRST SPI UART LP.UART
(SWD) 125 USB 12C
PDM 2 xADC

Figure 1.1: SensorTile functional block diagram

Highly integrated and very compact module that can be plugged into form factor
prototypes to add motion, audio, environmental sensing and Bluetooth low energy
connectivity.

Host: Arm Cortex-M4 32-bit;

Frequency: 80 MHz;
On chip RAM: 128 KB, Flash: 1 MB;

MEMS audio sensor omnidirectional digital microphone.

1.2.3 Baseline CNN Algorithm

Input Data Preparation

To be suitable for CNN processing, speech signals need to be organized as a number
of feature maps. This is a term borrowed from image-processing applications, in
which it is intuitive to organize the input as a two-dimensional (2-D) array. For
speech-processing applications we first need to calculate Mel-Frequency Cepstral
Coefficients (MFCC) to extract spectral features [6].
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Speech Pre-emphasis Framing FFT Mel Log DCT
signal & Windowing filtering

MFCC

Figure 1.2: Diagram of MFCC Derivation Process ([7])

As shown in 1.2, the first step is to apply a pre-emphasis filter on the signal to
amplify the high frequencies and then to split the signal into short-time frames.
The rationale behind this step is that frequencies in a signal change over time, so
in most cases it doesn’t make sense to do the Fourier transform across the entire
signal since it can cause a lose of the frequency contours of the signal over time.
The input speech signal of length L is framed into overlapping frames of length
1 with a stride s, giving a total of T = L= + 1 frames. Typical frame sizes in
speech processing range from 20 ms to 40 ms with 50% (+/-10%) overlap between
consecutive frames. Assuming 30 ms analysis window, and shifting stride = 10
ms, since audio signal sample is 1 s each, it would results in %030 + 1 =98 time
frames.

After windowing, Fast Fourier Transformation (FFT) is calculated for each
frame to obtain the frequency features, and the logarithmic Mel-Scaled filter bank
(typically 40 filters) is applied to the Fourier transformed frames. The Mel-scale
aims to mimic the non-linear human ear perception of sound, by being more
discriminative at lower frequencies and less discriminative at higher frequencies.
The last step is to calculate Discrete Cosine Transformation (DCT) to decorrelate
the filter bank coefficients and yield a compressed representation as Mel-Frequency
Cepstrum Coefficients (MFCCs). From each frame, F speech features are extracted,
generating a total of TxF features for the entire input speech signal of length L.

KWS-NET Architecture

The initial CNN model selected for the smart industry use-case is referred in
this document as KWS-NET and it corresponds to the ‘cnn-trad-fpool3” model
presented in [8] and illustrated in Figure 1.3.

The key layers are: Convolutional (Conv) layer (multiple convolution filters to
obtain different features), Pooling layer (down-sampling by taking max operation
to reduce the amount of parameters and computation in the network, and hence
control overfitting), Dropout layer (only keep a neuron active with some probability
p, or set it to zero otherwise to control overfitting), Linear low-rank (Lin) layer
(perform linear multiplication and addition to transfer the output of Conv layer
to discrete nodes, reduce parameters and computation, control overfitting), and
Fully-connected (FC) layer (preserve full information, or make the final softmax
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prediction).

This architecture allows to keep the total number of parameters below 250k,
however a main issue is the huge number of multiplies in the convolutional layers,
which get exacerbated in the second layer because of the 3-dimensional input,
spanning across time, frequency and feature maps, as shown in Table 1.3.

Drop

Predicted
Result

98x40 20x8x64 1x3 10x4x64 32 128 FC
MFCC Convl MaxPool Conv2 Lin FC (Softmax)

Figure 1.3: Structure of the KWS-NET architecture ([7])

Type m r n p q Par. Mul
Conv 20 8 64 1 3 10.2K 4.4M
Conv 10 4 64 1 1 164.8K 5.2M
Lin - - 32 - - 65.5K 65.5K
FC - - 128 - - 4.1K 4.1K
SoftMax - - 4 - - 0.5K 0.5K
Tot - - - - - 244.2K | 9.7TM

Table 1.3: CNN architecture for cnn-trad-fpool3 ([8])

Other CNN Architecture Considered

In order to limit the number of multiplies, [8] proposed an alternative architecture
with one convolutional layer rather than two, and the time filter span all of time.
The output of this convolutional layer is passed to a linear low-rank layer, and then
two FC layers. Moreover instead then pool in frequency stride the filter in frequency
by four. (For a stride of one it moves across and down a single neuron. With higher
stride values, it moves large number of neuron at a time and hence produce smaller
output volumes). As shown in Table 1.4 this architecture, called ‘cnn-one-stride4’,
cut the multipliers number by a factor of ten, compared to ‘cnn-trad-fpool3’.

10
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Type m T n p q Par. Mul
Conv 32 8 186 1 4 47.6K 428.5K
Conv - - 32 - - 19.8K 19.8K
Lin - - 128 - - 4.1K 4.1K
FC - - 128 - - 16.4K 16.4K
SoftMax - - 4 - - 0.5K 0.5K
Tot - - - - - 88.4K 469.3K

Table 1.4: CNN architecture for cnn-one-stride4 ([8])

Another promising architecture considered for the implementation of the smart
industry use-case is the DS-CNN (depthwise separable convolution) model, which
has been recently proposed as an efficient alternative to the standard 3-D convolution
operation in the area of computer vision [9]. By decomposing the standard 3-D
convolutions into 2-D convolutions followed by 1-D convolutions (see Figure 1.4),
DS-CNNSs result more efficient in terms of computational requirements (i.e. number
of parameters, operations), which makes them suitable for deployment in resource-
constrained devices [10].

1.2.4 Baseline Constraints

As shown in Table 1.5, cnn-one-stride4 presents a Latency/sample and Energy /sam-
ple sensibly lower than the cnn-trad-fpool3 but also an Accuracy performance much
worse, therefore it will be considered only in case the constraints cannot be met
with the cnn-trad-fpool3 and a more compact model is required.

Peak

it | T B o

(W)

cnn-trad-fpool3 89.43% 227 431 2.20
cnn-one-stride4 70.28% 40 28 0.99
Feature extraction only - 31 19 0.80

Table 1.5: Performance of CNN variants on the Raspberry Pi ([11])

Power Comsumption

Due to always-on nature, a KWS application presents highly constrained power
budget if batteries are used. However, in industrial settings, it is often possible
to plug the system on a charger. Therefore, for this parameter, a value of 450
mJ/sample and priority 3 have been set.

11
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MFCC Features

Shape:T x F
Convi1
,L .-=""| Depthwise
Lt Conv
DS-Conv v
J, Batch Norm +
RelLU
DS-Conv2 'L
; e, Pointwise
: Conv
DS-ConvN Batch Norm +
¢ RelLU
Average Pool
Output layer

Figure 1.4: Depthwise separable CNN architecture ([10])

Security

In a smart industry use-case, devices must work in rugged, often noisy environments.
Most of the input will be silence or background noise, not speech, so false positives
on those must be minimized. Moreover, most of the input that is speech will
be unrelated to the voice interface, so the model should be unlikely to trigger
on arbitrary speech. Since some commands are phonetically similar, it is also
important to avoid misunderstanding. For these reasons, this constraint value has
been set as HIGH and with priority level equal to 2.

Performance

The voice control in an industrial environment task requires real time response.
In an embedded implementation there are no network delays due to cloud back-
end, but limited memory footprint and compute resources. However the priority

12
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could be relaxed as the task requires commands recognition and not continuous
speech. Therefore, for this parameter a value of 250 ms/q and priority 4 have been
set.

Accuracy

High accuracy is required to avoid operator frustration. The metric that was
considered is the Top-One, as described in []. The rates reported in literature for
this task are around 85-95%. As this parameter is of paramount importance for
the system acceptance it has been set as >90% and the priority as 1.

1.3 System Design and Implementation

The goal of Smart Industry use case would be the ability to operate machinery
through speech recognition. REPLY aims at developing an embedded keyword
spotting system that would activate/deactivate a collaborative robot in an industrial
environment, without relying on a cloud backend. In order to make the keyword
spotting system adaptable to different industrial scenarios, a very popular type
of interface has been chosen to dialogue between the recognition system and the
system to be controlled: a serial standard interface on which the recognition system
sends commands to the industrial machinery.

Practically the cobot can be controlled in two different ways and it is possible

to switch among them through the KWS command yes. Below the differences are
highlighted:

e joint mode. The cobot is controlled through Movelt sending directly a target
angle to joints. Six different commands are available in this configuration:

— up, down, left and right, that correspond to the four poses that can be
seen in Figure 1.5;

— off that corresponds to the cobot idle position (candle shape);

— on that shakes the robot forward and backward;

o spatial mode. The cobot is controlled in terms of cartesian coordinates x, y
and z through the Movelt inverse kinematics. Also in this case six different
commands are available:

— up and down to increase and decrease respectively, the z coordinate;
— left and right to increase and decrease respectively, the x coordinate;

— on and off to increase and decrease respectively, the y coordinate;

13
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In Figure 1.5 and Table 1.6, a simple representation of the scenario to develop
and its commands and relative actions are shown respectively:

=

Figure 1.5: ¢.DO demo set-up

Command Action
Ves Move object to
correct area
Move object to
faulty area

No

Table 1.6: Scenario’s commands and their relative actions

It is important to notice that:

o The objects of interest are assumed to be cylinders of known dimensions but,
with some approximation, can be generalized to other shapes;

o The relative poses of cobot, camera, objects initial area, correct and faulty
boxes must be identified and fixed in space;

o The management of the object orientation must be verified.
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Set-up KWS on SensorTile

To set-up the SensorTile board, the instructions reported in the “STEVAL-
STLKTO01V1 Quick start guide” available on STMicroelectronics web site [12]

has been followed.
The SensorTile has been connected to the Expansion Cradle and Nucleo board

(see Figure 1.6) and both boards to the PC through two micro USB cables. To build
and deploy the embedded software, we used the System WorkBench Integrated

Development Environment for STM32 [13].

EEEs

L =TT
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uw
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Figure 1.6: SensorTile configuration with Expansion cradle and Nucleo Board

The data transmitted by the SensorTile board over serial USB connection to
the personal computer, are available through PuTTy[14] SSH and telnet client, as

shown in Figure 1.7.
As can be seen in Figure 1.7, the application captures audio signals thorough the

SenorTile on-board microphone, processes them and returns the detected keyword
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£® COM9 - PuTTY

Figure 1.7: SensorTile output (PuTTy)

and its associated probability (the probability threshold has been set to 95%).

1.4 References

For any reference to experienced models, power consumption, KWS on uC, CNNs
for small footprint and speech commands, please take a look respectively to [11],
[10], [15], [8], [7]-
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Chapter 2

Robotic Arm Control

2.1 e.Do Cobot

e.DO Cobot [16] is a modular, multi-axis articulated (anthropomorphic with 6
DOFs) Educational Robot, with an integrated open-source intelligence, produced
by COMAU. It is available in different versions and configurations:

1. e.DO with 6 central axis;
2. €.DO with 6 side axis;
3. e.DO with 6 central axis, with gripper;

4. ¢.DO with 6 side axis, with gripper.

2.2 Mechanical Characteristics and Kinematics

The anthropomorphic manipulator e.DO has 6 degrees of freedom, due to the six
revolute joints, to which it is possible to add another DOF thanks to the gripper.
The geometry of the mechanical system and its workspace are shown in Figure 2.2,
meanwhile in table 2.1 are listed the main dimensional and working characteristics.

2.2.1 Direct Kinematics

The direct kinematic problem consists in the identification of the end-effector pose
and orientation as a function of the joint variables. Considering that the pose
of a body in space is described by the position vector of the origin and the unit

17
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central e.DO side e.DO

Figure 2.1: Available configurations for e.DO Cobot

vectors of a frame attached to the body, considering the frame Op-231,2, the direct
kinematic functions can be expressed by the following homogeneous matrix

ni(q) si(q) al(q) pi(q)
T)(q) = (2.1)
0 0 0 1

where ¢ is the (n x 1) vector of joint variables, ne, S, a. are the unit vectors of
a frame attached to the end-effector and p. is the position vector of the origin of
such a frame with respect to the origin of the base frame Oy-zy1y525, as shown in
Figure 2.3. It is important to notice that n., s., a. and p. are function of q.

Considering the open-chain structure of the e.DO cobot, the computation of
direct kinematics is derived by the description of kinematic relationship between
consecutive links, from which it is possible to obtain the overall description in a
recursive fashion. To this purpose it is worth defining a coordinate frame for each
link, considering that the coordinate transformation describing pose and orientation
of the end-effector with respect to the first frame is given by
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174,50

268

210,50

827.73

202

135

Figure 2.3: Description of the position and orientation of the end-effector frame

T, (q) = Al(q1)Ay(q2) .- A} (gn)

where n is equal to 6. In this way the computation of direct kinematics function
is recursive and can be obtained in a systematic way, by simple products of
homogeneous transformation matrices A;(q;) (for i=1, ..., n), each of which is a
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Specifications Value

Number of axis 6

Max payload 1 Kg

Max reach 478 mm

Stroke (Speed)

Axisl +/-180° (38°/sec)
Axis2 +/-113° (38°/sec)
Axis3 +/-113° (38°/sec)
Axisd +/-180° (56°/sec)
Axish +/-104° (56°/sec)
Axis6 +/-2700° (56°/sec)
Total weight 11.1 kg

Robot arm weight 5.4 kg

Structure material Ixef 1022

Power source

Universal external power source
with 12 V power adapter

Connectivity 1 external USB port
1 RJ45 Ethernet
1 DSub-9 Serial Port
Motherboard Raspberry Pi running Raspbian
Jessie
ROS Kinematic Kame

Control logic

Proprietary open-source e. DO

Additional Features

External emergency push button

Table 2.1: Cobot specifications

function of a single joint variable.
So the actual coordinate transformation describing the position and orientation of
the end-effector frame with respect to the base frame can be computed as

T;(q) = T, T (q)T7

where T,® and T.™ typically are two constant homogeneous transformations
describing the position and orientation of Frame 0 with respect to the base frame,
and of the end-effector frame with respect to Frame n, respectively. A general case
of the direct kinematic computation can be seen in Figure 2.4

e.DO is characterized by 6 degrees of freedom, thanks to the presence of the six
independent revolute joints. Applying the convention described in Appendix B.1,
it is possible to describe the geometric transformation from triad 7 to triad i+1
only by the four DH parameters:

1. a; — Distance between O; and O;’;

2. d; — Coordinate of O;’ along z;_;;
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T (a)

Figure 2.4: Coordinate transformations in an open kinematic chain

3. a; — Angle between axis z;; and z; about axis x; (positive for counter-
clockwise rotations);

4. 0; — Angle between axis x; ; and x; about axis z;.; (positive for counter-
clockwise rotations).

Once all the link frames have been fixed as in figure 2.5

edo_link_ee edo_link_ee edo_lihk_ee
1

edo_link_4 edo_link_5 edo_link_6

edo_link_3 edo_link_3 edo_link_3

edo_link_1 edo_linn_?2 edo_linn_?2

world world

Figure 2.5: DH convention link frames
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we obtain DH parameters reported in table 2.2

7 a; Q4 dz 01'

10| n/2 |06,

2| Ly 0 0 |6, i | L;
31 Ly | —7/2 ] 0 | 65 1] 2105
410 [ —7/2| 0 |6, 2| 268
510 #/2 | 005 31745
6] 0 0 Ls | 06

Table 2.3: ¢.DO links in mm
Table 2.2: DH kinematics parame-
ters

Once the DH parameters are available, each couple link-joint can be described as
a coordinate transformation between two reference frames associated to the joints.
Since the X, axis is oriented along the common normal between axis Z,,.; and Z,,
the homogeneous transformation matrix is defined as a series of two consecutive
roto-translations

T' ' =Trasl,, ,(d,)Rot.,  (0,)Trasl,, (a,)Rot,, (a,)

where:
1 00 O
01 0 O
Trasl., ,(d,) = 00 1 d,
00 0 1
cosf, —sinf, 0 O
sin@n COSHTL 00
Rot., ,(6h) = | 0 10
0 0 0 1
100 a,
01 0 0
Trasl,,(a,) = 001 0
000 1
1 0 0 0
0 cosa,, —sina, 0
ROtxn<&n) - 0 Sjnan COS Oy, 0
0 0 0 1

that results in the complete homogeneous transformation matrix
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cosf, —sinb,cosq, sinb,sinc, a,cosb,
-1 _ sin#, cosf,cose,, —cosf,sina, a,siné,
" 0 sin ay, cos Qv d,
0 0 0 1

Recalling 2.1 and computing the transformation matrices with the values ob-
tained by the DH convention, the following results are obtained

Lycicy + Lacicoz + Ls(c1(ca3caSs — Sa3C5) — $154S5)
0
pﬁ = L18102 -+ L281€23 -+ L3(81(6230485 — 82365) + 018485)
LySg + Lasos + Ls(cozcs + S23¢455)

ng = 81(023(040506 — 8486> + 5238506) + 61(840566 —+ C486)
—C9355C6 + 523(C4C5C6 — 5456)

c1(—cas(cacsse + s4C6) — S235556) — S1(CaCe — S4C5S6
81(—623(046586 -+ 8466) — 8235586) -+ C1 (C4C6 — S54C5Sg
235556 — S23(CaC5S6 + SaCo)

c1(ca3(cacsce — $486) + S2385C6) — S1(SaC5¢6 + 0486)>
)
)

O

C1(023C455 - 52305) — 515455
0
ag = | s1(ca3CaSs — S23C5) + 15485
C23C5 + S$23C4S55

where s; = sin(6;), ¢; = cos(6;), sij = sin(0; + 60;) and c;; = cos(0; + ;) [17].

2.2.2 Inverse Kinematics

The inverse kinematics problem consists in the determination of the joint variables
corresponding to a given end-effector pose and orientation. The solution of this
problem allows to transform the motion specifications assigned to the end-effector in
the operational space, into the corresponding joint space motions. Usually it is not
guaranteed to have a unique solution to this problem but if the given end-effector
pose and orientation belong to the manipulator dexterous workspace the solution
is ensured. It is important to notice that for particular end-effector configurations
the inverse kinematics problem does not admit solutions.

Starting from 2.1, the goal is to determine the matching joint variable to the
pose and orientation of the end-effector. Considering the particular configuration
of the e.DO cobot, composed by the combination of an anthropomorphic arm and
a spherical wrist. As can be seen in Figure 2.5, the last three consecutive joints
axis intercept in a common point and this particular configuration (spherical wrist)
ensure the presence of a closed form inverse kinematics solution.
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The presence of a spherical wrist allows to decouple the inverse kinematics
problem into two subproblems since it guarantees the presence of point along the
structure, whose position can be expressed both as function of a given end-effector
pose and orientation and as a function of a reduced number of joint variables.
For the particular configuration of the e.DO cobot, it is convenient to locate such
point W at the intersection of the three terminal revolute axis. In fact, once the
end-effector pose and orientation are defined in terms of p, and R.=[n. s. a., the
wrist position can be computed as

Pw = Pe — dnae (22)

where d,, is the link between the intersection point of the wrist and the end-
effector. The expression 2.2 is a function of the sole joint variables that determine the
arm position and if it is a (non-redundant) three-DOF arm, the inverse kinematics
can be solved according to these steps:

Compute the wrist position pw(q1,q2,q3) as in 2.2;

Solve the inverse kinematics for (¢1,¢2,q3);

Compute R3%(q1,q2,93);

Compute Rg*(04,05,05)=R3°T R;

Solve the inverse kinematics for orientation (6y,05,0).

From the direct kinematic computation the following results hold

pwa = ¢1(Lacag + Lico)
Pwy = s1(Lacas + Lic2)

Pwz = Lasgs + L1sg

Solving the inverse kinematics problem and omitting for brevity all the math-
ematical computation, that is treated in detail in Appendix B.2, the following
results are obtained

L] 03
Osre|—m,m
05 = atan2(ss,c3) =< 7 [=, 7] (2.3)
U301 = =031
2 2 2 2 2
Py tPy TP .—Lo—L
where ¢z = ==t e 22 and s3 = £4/1 — 3
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e 0Oy
0y = atan2(ssy, c2) (2.4)
where ¢ — /Py i, (L1+Lacs)+pw ez Lass and s, — pw = (L1+Lacs)F/ Py, +pjy, Lass
2 L2 L2+2L1Lycs 2 L24L2+2L1Lyc3

So, according to the sign of s3, four possible solution are available, two for
s3 = +4/1 — ¢ and two for s; = —/1 — ¢
. 0

01,11 = atan2(—pwy, —pwaz)

— atan? >0
Since atan2(—y, —x) = —atan2(y, —x) = 7w — atan2(y, x) zf y >
—m —atan2(y,x) if y <0

the final result is

9 - — atan2(pwy, pwz) — T if pwy =0
1,11 = ;
atan2(pwy, pwa) + 7 if pwy <0

It is important to notice that for pw, = pw, = 0 the inverse kinematics
problem does not admit a solution and the robot is in a SINGULARITY
configuration.

In Appendix B.4 are shown all the possible configurations of an anthropomorphic
arm compatible with a given wrist position.

For the spherical wrist, the inverse kinematics problem consists in the solution
of the Euler angles set ZYZ with respect to Frame 3. So, starting from

3 3
P B L s
R; = ngfﬁ 573{6 ag(s
nz6 526 CLz6

the solution can be directly computed as follow
. 0,

3

_Jatan2(als, alg) if 05 €0,
- |atan2(—als, —ads) if 05 € [—m,0]

. 0

%_{ P+ (@) o) if 65 € [0.7]
atcmZ(—\/(a?;ﬁ)2 + (a36)% alg) if 05 € [—m,0]
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b — atan2(s3s, —n3s) if 05 € [0, 7
° atan2(—s3;,n3s) if 05 € [—m,0]

An introduction to the ZYZ FEuler Angles is shown in Appendix B.3 [17].

2.3 Development Environments

2.3.1 Robot Operating System

Robot Operating System is a trending robot application development platform
that provides various features such as hardware abstraction, low-level device control,
message passing, distributed computing, code reusing and so on [18]. Similarly to
an operating system, the ROS files are organized in memory in a particular fashion.
Figure 2.6 shows how files and folders are organized on the disk

(Filesystem Level>

Metapackages
¥
Packages
E%%ﬁ?egsﬁ Messages Services Code Others

Figure 2.6: ROS File System Level

where each block performs a different task, as shown below:

« Packages = The ROS packages are the most basic unit of the ROS software.
A package contains the ROS runtime process (nodes), libraries, configuration
files, and so on, which are organized together as a single unit. Packages are
the atomic build item and release item in the ROS in the ROS software;

« Package manifest = The package manifest file is inside a package that
contains information about the package, author, license, dependencies, compi-
lation flags, and so on. The package.xml file inside the ROS package is the
manifest file of the package;
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« Meta packages = The term meta package is used for a group of packages for
a special purpose. In an older version of ROS such as Electric and Fuerte, it was
called stacks, but later it was removed, as simplicity and meta packages come
to existence. One of the examples of a meta package is the ROS navigation
stack;

« Meta packages manifest = The meta package manifest is similar to the
package manifest. Differences are that it might include packages inside it as
runtime dependencies and declare an export tag;

o Messages (.msg) =The ROS messages are a type of information that is sent
from one ROS process to the other. It is possible to define a custom message
within the msg folder of the package (Package name/msg/custom_msg.msg).
The extension of a message file is .msg;

 Services (.srv) =The ROS service is a kind of request/reply interaction
between processes. The reply and request data types can be defined within
the srv folder of the package (Package name/srv/custom__srv.msg);

» Repositories = Most of the ROS packages are maintained using a Version
Control System such as Git, subversion, mercurial, and so on. The collection
of packages that share a common VCS can be called repositories. The package
in the repositories can be released using catkin release automation tool called
bloom.

For more details about implementation of different blocks, take a look to [19].

2.3.2 Ryviz

Rviz is a 3D visualization tool for ROS applications. It allows the visualization of
robot models and incoming information acquired from sensors and can display data
form video cameras, lasers and 3D and 2D devices, including images and point
clouds.

For more details, take a look to [20].

2.3.3 DMovelt

Movwelt is a set of packages and tools for doing mobile manipulation in ROS. The
official webpage [21] contains the documentations, the list of robots using Movelt,
and various examples to demonstrate pick and place, grasping, simple motion
planning using inverse kinematics, and so on. It contains a state of the art software
for motion planning, manipulation, 3D perception, kinematics, collision checking,
control, and navigation. Apart from the command line interface, Movelt has some
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good GUI to interface a new robot to it. Also, there is the Rviz plugin which
enables motion planning from Rviz itself. It allows also to plan the robot motion
using the Mowvelt C++ APIs.

For more details about Movelt architecture, take a look to [19].

2.4 Connection to the Robot

Once the robot has been turned on, two available connection methods are available,
to boot the control algorithm and control it:

o Wired connection, setting manually the laptop IP;
o WiFi connection.

More details about the step-by-procedure to follow are shown in Appendix B.5.
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Chapter 3

Perception Pipeline

A vision system allows to acquire geometrical and qualitatively information about
the environment in which the robot works. To obtain these kind of information the
raw image must be processed through different steps, starting from filtering and
feature extraction up to extraction of information about scene’s objects, according
to epipolar geometry algorithms.

A visual system for robotics is characterized by different aspects:

o Type of camera: simple camera or stereo-camera (provides 3D information
about the objects in the scene);

o Camera configuration:

1. if the camera is fixed on a plane, the configuration is said eye-to-hand;

2. if the camera is mounted on the robot end-effector, the configuration is
mobile and is said eye-in-hand,

3. it is also possible to have more than one camera with different configura-
tions, this case is said hybrid configuration.

In the eye-to-hand configuration, the visual system looks at the objects with a
pose fixed with respect to the robot base link. This configuration has the benefit
of a static field of view that, theoretically, maintain constant the measurements
accuracy. On the other hand, when the manipulator is moving within the field of
view of the camera, it is possible that it overlaps a portion of the camera’s field of
view, covering objects in the scene that can be of paramount importance.

In the eye-in-hand configuration, the visual system is mounted on the end-
effector of the robot, with two available positions: upstream or downstream the
wrist. In the first configuration, the camera looks at the end-effector with a favorable
position, without occlusion for the scene, meanwhile in the second configuration,
the camera moves statically with the end-effector, looking exclusively at the scene.
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In both the configurations the field of view of the camera changes radically
during motion and this aspect cause a huge gap in the accuracy of the measure-
ments. Anyway, this configuration has the benefit to achieve a constant accuracy
in measurements when the end-effector is close to the object of interet within
the camera scene and practically, the problem of the overlapping end-effector is
practically solved.

In the hybrid configuration it is possible to achieve all the benefits of the two
configurations, solving the problem of the overlapping end-effector at the same
time.

The aim of this section is to identify specific objects (to realize the demonstrator
for the Aloha Smart Industry applications use case) within the Field of View
of the camera, in the particular case all the cylinders that are available in the
scene. To achieve this target, the raw image coming from the camera is processed
through some modules of the PCL library, as will be described in details in the
next paragraphs.

3.1 Intel RealSense D435i

The configuration chosen for this thesis is the eye-to-hand one with the camera fixed
on the same plane of the robot with the following transformation characteristics
with respect to edo_ base_link:

e [z, y, 2] = [1.5, 0, 0.23] (meters)
o [r, p, y] =10, 0.349, 3.14] (rad)

The device selected as camera sensor is the Intel RealSense D435i, having the
following structure an characteristics:

e Features:

— Use environment: Indoor/outdoor;

— Image Sensor Technology: Global Shutter, 3um x 3um pixel size;

— Maximum Range: Approximately 10 meters. Accuracy varies depending
on calibration, scene and lighting condition.

e Depth:

— Depth Technology: Active IR Stereo;
— Depth Field of View (FOV): 87°£3° x 58°+1° x 95°+3°;
— Minimum Depth Distance (Min-Z): 0.105 m;
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USB3 Cap

Glass Lens Mask  Aluminum D430 RGB Heat Sink PCB + Aluminum
Front Module Components Back

Figure 3.1: Internal structure of the Intel RealSense D435i camera

— Depth Output Resolution & Frame Rate: Up to 1280*720 active stereo
depth resolution. Up to 90 FPS.

« RGB:

— RGB Sensor Resolution & Frame Rate: 1920*1080;
— RGB Frame Rate: 30 FPS;
— RGB Sensor FOV (H x V x D): 69.4° x 42.5° x 77°+3°.

e Major Components:

— Camera Module: Intel RealSense Module D430 + RGB Camera;
— Vision Processor Board: Intel RealSense Vision Processors D4.
e Physical:

— Form Factor: Camera Peripheral;
— Connectors: USB-C* 3.1 Gen 1%*;
— Length x Depth x Height: 90mm x 25mm x 25mm;

— Mounting Mechanism: One 1/4-20 UNC thread mounting point, two M3
thread mounting points.
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3.2 PCL Library

The Point Cloud Library (PCL) is a large scale, open project for point cloud
processing. The PCL framework contains numerous state-of-the art algorithms,
including filtering, feature estimation, surface reconstruction, registration, model
fitting and segmentation. These algorithms can be used, as examples, to filter
outliers from noisy data, stitch 3D point cloud together, segment relevant parts
of a scene, extract keypoints and compute descriptors to recognize objects in the
world based on their geometric appearance, create surfaces from point clouds and
visualize them.

PCL is cross-platform, and has been successfully compiled and deployed on
Linux, MacOS, Windows, and Android. To simplify development, PCL is split into
a series of smaller code libraries, that can be compiled separately. This modularity
is important for distributing PCL on platforms with reduced computational or size
constraints.

Furthermore it is released under the terms of the BSD license and is open source
software. It is free for commercial and research use [22].

The whole chapter is dedicated to the explanation of software project to achieve
the target described previously, considering as camera reference frame the triad in
Figure 3.2. It is important to notice that this triad is used within the software to
make computations of objects characteristics and to spawn them in the planning
scene.

‘ caméra_dgpth.!_optical_frame

cr.uera_tink

Figure 3.2: Camera reference triad chosen for the software development (right
triad)

A brief introduction is shown here to highlight the main steps performed by the
software:

1. Subscribe to the topic containing data coming from the stereo camera and
call the CloudCB (Cloud Call Back) function;

2. Convert the sensor msgs data to pcl::PointCloud<pcl::Point XYZRGB> type;

3. Add a pass-through filter to reduce the region of interest within the desired
ROI;
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4. Apply a statistical outlier filter to reduce noise of the point cloud;
5. Remove the planar surface on which items lie;
6. Extract clusters from the Point cloud and then, for each cluster:

(a) Smooth cluster through polynomial reconstruction;
(b) Compute normals;
(¢) Perform 3D object recognition through hypotheses verification;
(d) If hypotheses are verified:
o Extract normals;
o Estimate the cylinder parameters;
o Extract pose and height of the cylinder;
Estimate the color of the cylinder according to HSV colorspace;

o Add the cylinder to the planning scene;
7. Skipping only the first acquisition, update the planning scene;

8. Wait an input from keyboard (or a serial input from SensorTile) to make a
new acquisition.

3.2.1 Filter in ROI

The first step consists in the conversion of the sensor msgs raw data coming from
the camera, to a point cloud object containing information about points coordinates
and color (in terms of RGB standard). Once all the data have been converted, the
Point Cloud is filtered to contains only data within a certain Region Of Interest,
fixed along the Z axis of the triad in Figure 3.2, between these minimum and
maximum values: [0.3m, 1.1m]. After the filtering process, the result can be seen
in Figure 3.3.

3.2.2 Statistical Outlier Removal Filter

The aim of this step is to solve some irregularities by performing a statistical
analysis on each point’s neighbor, and trimming those which do not meet a certain
criteria. This filter is based on the compensation of the distribution of points to
neighbor distances in the input dataset.

For each point, the mean distance from the point to all its neighbors is computed.
Assuming that the resultant distribution is Gaussian with a mean and a standard
deviation, all points whose mean distances are outside an interval defined by the
global distances mean and standar deviation, can be considered as outlier and
trimmed from the dataset, as shown in Figure 3.4.
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Figure 3.3: Point Cloud before (left) and after (right) filtering

Figure 3.4: Point Cloud before (left) and after (right) Statistical Outlier Removal

3.2.3 Removal of Planar Surface

Once the Point Cloud has been confined within the ROI, all the point indices
that correspond to a planar surface are stored to clear the Point Cloud. In this
way the Point Cloud will contain only information relative to the objects available
in the captured scene, as can be seen in Figure 3.5. This step is based on the
RANSAC method, which is an iterative method to estimate a model’s parameter
from a starting set of data containing outlier. It is a non deterministic algorithm
that produces a result with a certain probability, that increase with the maximum
iterations allowed.

A basic assumption is that the data consists of inliers, that are data whose
distribution can be explained by some set of model parameters, and outliers which
are data that do not fit the model (data coming from extreme values of the noise
or from erroneous measurements or incorrect hypotheses about the interpretation
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of data). RANSAC assumes that, given a set of inliers, typically small, there exists
a procedure that can estimate the parameters of a model that optimally explains
or fits these data [23].

Figure 3.5: Point Cloud before (left) and after (right) planar surface removal

3.2.4 FEuclidean Clusters Extraction

This method is based on the Euclidean Cluster Extracion. A clustering method
needs to divide an unorganized point cloud model P into smaller parts so that
the overall processing time for P is significantly reduced. A simple data clustering
approach in an Euclidean sense can be implemented by making use of a 3D grid
subdivision of the space using fixed width boxes, or more generally, an octree data
structure. This particular representation is very fast to build and is useful for
situations where either a volumetric representation of the occupied space is needed,
or the data in each resultant 3D box (or octree leaf) can be approximated with
a different structure. In a more general sense however, it is possible make use of
nearest neighbors and implement a clustering technique that is essentially similar
to a flood fill algorithm. The aim is to find and segment the individual object point
clusters lying on the plane. Assuming to use a Kd-tree structure for finding the
nearest neighbors, the algorithmic steps for that would be:

1. create a Kd-tree [24] representation for the input point cloud dataset P;
2. For every point p; € P, perform the following steps:

(a) Set up an empty list of clusters C, and a queue of the points that need to
be checked Q;

(b) Add p; to the current queue Q;
(¢) For every point p; € @ do:
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i. Search for the set P} of point neighbors of p; in a sphere with radius
r < dy;

ii. For every neighbor pf € PF, check if the point has already been
processed, and if not add it to Q;

iii. When the list of all points in Q has been processed, add Q to the list
of clusters C, and reset Q to an empty list

3. The algorithm terminates when all points p; € P have been processed and
are now part of the list of point clusters C.

It is important to set correctly the parameters and variables for extraction and
in particular it is of paramount importance the parameter setClusterTolerance(),
because if it is chosen too small, it can happen that an object is interpreted as
multiple clusters and if too high, it can happen that multiple objects are seen as a
single cluster.

Smooth Clusters through Polynomial Reconstruction

This step is introduce to smooth and resample noisy data, coming from the device.
In this application it is necessary, since accordingly to the camera settings, the raw
point clouds become more noisy with the temperature of the device, preventing the
correct execution of all the next steps of 3D recognition and object parametrization.

This algorithm is based on a Moving Least Square (MLS) surface reconstruction
and is useful to remove some data irregularities, caused by small distance measure-
ments errors, that can be very hard to remove through statistical analysis. On the
other hand, this method guarantees the creation of complete models, taking into
account the presence of glossy surfaces as well as occlusions.

Practically this method performs a resampling algorithm, which attempts to
recreate the missing parts of the surface by higher order polynomial interpolations
between the surrounding data points. The surface defined by a local neighborhood
of points p;, ps, ..., pr and point ¢ is approximated by a bivariate polynomial
height function, defined on a robustly computed reference plane.

According to the scene presented in Figure 3.5, the clusters extracted from the
Point Cloud are shown in Figure 3.6.

Computation and Extraction of Point Normals

Surface normals are important properties of a geometric surface, and are heavily
used in many areas such as computer graphics applications, to apply the correct
light sources that generate shadings and other visual effects. It is typically trivial
to determine the direction of the normal at a certain point on the surface as the
vector perpendicular to the surface in that point. Anyway, considering that a point
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Figure 3.6: Cloud clusters before (left) and after (right) polynomial reconstruction

cloud dataset represents a set of point samples on the real surface, two possibilities
are available:

e Obtain the underlying surface from the acquired point cloud dataset, using
surface meshing techniques, and then compute the surface normals from the
mesh;

o Use approximations to infer the surface normals from the point cloud dataset
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directly.

In this case, the latter solution has been adopted, that given a point cloud
dataset, directly compute the surface normals at each point in the cloud.

A surface normal at a point needs to be estimated from the surrounding point
neighborhood support of the point (the so-called k-neighborhood). The specifics
of the nearest-neighbor estimation problem raise the question of the right scale
factor, that consists in the identification of the correct parameter k (given by
pcl::Feature::setKSearch) or r (given by pcl::Feature::setRadiusSearch) that should
be used to determine the set of nearest neighbors of a point.

This issue is of extreme importance and constitutes a limiting factor in the
automatic estimation of a point feature representation. In Figure 3.7 the differences
between selecting a small or large scale can be seen.

It is important to notice that the normal extraction step is performed after the
3D object recognition, to avoid useless computations if no match with the cluster
is found.

Figure 3.7: Normals computation with small scale (left) and large scale (right)

The left part of the figure depicts a well chosen scale factor, with estimated
surface normals approximately perpendicular to the two planar surfaces. Anyway
if the scale factor is too high (right part of the figure), the set of neighbors is
larger covering points from adjacent surfaces and the estimated point feature
representation get distorted, with rotated surface normals at the edges of the two
planar surfaces, smeared edges and suppressed fine details.

So, to set this value, it is sufficient to assume that the scale factor for the
determination of a point’s neighborhood has to be selected based on the level of
details that is required by the application. Practically, if the greatest part of the
details in the image is necessary to go on in the image processing, the scale factor
needs to be small enough to capture those details, and large otherwise.

Once all the normals have been computed and their relative indices have been
extracted, the normals that correspond to the plane on which cylinder lies, will be
used to extract the object form the cluster.
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For this step and for all the normal estimations steps, the PCL additional OMP
implementation has been used, which uses multi-core/multi-threaded paradigms to
speedup computation.

Hypotheses Verification for 3D Object Recognition

1. Prerequisites:

o Within the folder "src/edo__perception/add/models/" add all the models
relative to the objects of interest, in the form "cloud_ cluster _model_n.pcd"
and modify the models number within the file "models cnt.tat";

o Start the node from the workspace directory, to avoid path mismatches.
2. Step-by-step description:

e Load cluster model and normal computation = Load the ".pcd" file relative
to the model through the PCL method. At this point if the file is not
correctly loaded for any reason, the execution of the 3D object recognition
is interrupted and the cylinder parametrization is skipped. For the normal
estimation the procedure is the same as Computation and Extraction
of Point Normals already discribed;

o Downsample both model and cluster to to find a small number of keypoints,
which will then be associated to a 3D descriptor, in order to perform
keypoint matching and determine point-to-point correspondances;

o Associate a 3D descriptor to each model and scene keypoint through SHOT
descriptors. They estimate the Signature of Histogram of OrienTations
descriptors for a given point cloud dataset containing points and normals;

e Determine point-to-point correspondances between model and scene de-
scriptors. To do so, a KdTreeFLANN (a generic type of 3D spatial locator
using KdTree structure that makes use of Fast Library for Approximate
Nearest Neighbor) is use, whose input cloud has been set to the cloud
containing model descriptors. For each descriptor associated to a scene
keypoint, it efficiently finds the most similar model descriptor based on
the Euclidean distance, and it adds this pair to a correspondences vector
only if the two descriptors are similar enough (i.e. their squared distance
is less than a threshold set to 0.25);

e Perform a clustering algorithm on the previously found correspondances,
based on an Hough Voting process. The Hough Voting algorithm requires
to associate a Local Reference Frame (LRF) to each keypoint belonging
to the clouds which are passed as arguments. To do so, the set of LRFs is
computed using BOARDLocalReferenceFrame estimator (BOrder Aware
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Repeatable Directions algorithm for local reference frame estimation),
before calling the clustering algorithm;

o Apply some ICP (Iterative Closest Point) iterations, to improve the
"coarse" transformation associated to each object hypothesis. To do
so, an "instances" list is created, whose aim is to store the "coarse"
transformations. Then ICP runs over the instances with respect to the
scene, in order to obtain the vector of "registered__instances". This step
provides information about the status of each instance with respect to the
model, practically identifying if the cluster is and the model are aligned
or not;

o Perform the Global Hypotheses Verification step. It takes as input the
list of registered instances and the real scene (the cluster) to perform
a verification step between them to obtain a hypotheses mask, that
practically is a bool array with a TRUFE value for the i-th element if
"registered__instances[i]" is a verified hypothesis, and a FALSE value if it
has been classified as a false positive (and it must be rejected);

o (Optional) Visualization step. It performs the results visualization ac-
cording to the following rules:
— Display good keypoints in scene and model with a styleViolet color;
— iterate on each instance to:
« Display "instance[i]" with a styleRed color;
« Display "registered__instance[i]" in styleGreen color if it is verified
("hypotheses_mask[i] = TRUE);
« Display "registered_instancefi]" in styleCyan color if it is not verified
("hypotheses_mask[i] = FALSE).

This last step can be omitted from the computation simply toggling the
"visualization_flag" to FALSE, within the file "3DObjRecognition.cpp".

All the just described steps are performed according to the following rules:

 If no instances are found, repeat each step until at least a GOOD instance is
found or all the models have been checked;

o If a GOOD instance is found, stop the 3D object recognition algorithm and
return the integer 1 to go on with the computation of the object parameters;

e If BAD instances are found, iterate over all the models and if no match is
found return the integer 0 to skip the parameter’s computation for the actual
object.

Here the models used for the use case are reported in Figure 3.8.
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Figure 3.8: Point Cloud models

Object’s Parameters Estimation

Through RANSAC robust estimator the cluster is analyzed to extract cylinder
coefficients. In this step the radius of interest for the cylindrical object is set within
0 cm up to 10 cm. This value has been set taking into account the maximum
opening of the robot gripper an adding some threshold to identify all the cylinders
of interest. In fact, considering that the maximum opening value is about 8 cm,
the only objects of interest would be all the cylinders having a radius at most equal
to Mgemng — thr, where thr has been experimentally set to 0.5 cm. Then the
cylinder inliers and coefficients are computed and the inliers are extracted from
the input cloud.

At this point a check on the cluster is done and if it is not empty, the information
about the cylinder are stored into a structure with four fields, whose aim is to hold
all the parameters that are necessary to define the collision object. The structure
fields are:
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double radius = Field containing the radius of the cylinder;

double direction_vect[3] = Field containing the direction vector towards the
z-axis of the cylinder;

double center_pt[3] = Field containing the center point of the cylinder;

double height = Field containing the height of the cylinder.

Anyway not all the parameters are defined and the available data are not enough
to define a collision object, since the actual pose and height are still unknown. So
to compute the last two unknowns, standard geometry is used, as reported in the
next paragraph.

Pose and Height Extraction

Consider a point within a point cloud and imagine that this point is formed on an
XY plane, where the perpendicular distance from the plane to the camera is Z.

The perpendicular drawn from the camera to the plane XY hits at center of
it, obtaining the z and y coordinates of the point on the plane. Considering X as
the horizontal axis, Y as the vertical axis, as shown in Figure 3.2 and C' as the
center point of the plane, which is Z meters away from the center of the camera, to
compute the geometric distance from a generic point to the camera, it is sufficient
to compute the hypotenuse that connect these two points. Since this distance is
not of interest in the definition of the cylinder parameters (it is basically the Z
coordinate of the plane on which the point lies), a loop over the whole point cloud
is introduced to find the highest and the lowest point of the cylinder thorough the
following steps:

1. Define a variable for the maximum and minimum angles and set them respec-
tively to 0 and oo;

2. Define two vectors that will contain the coordinates of the highest and lowest
points;

3. For each point in the point cloud do:

(a) If the angle between axis Y and the point is lower than the minimum
value of the angle, update the minimum angle and save the coordinates
of the new lowest point;

(b) If the angle between axis Y and the point is greater than the maximum
value of the angle, update the maximum angle and save the coordinates
of the new highest point;
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4. Once the highest and lowest points have been found, compute the center point
of the object as:

e Cp, = 7HI2+Z$7
_ Hy+ly .

. ¢y = y2 v
Hz+lz

.Cz: 5

5. Finally compute the height of the cylinder considering that highest and lowest
points can be identified in two different parallel planes (X, Y) and/or with
different = coordinate. In fact it would be appropriate to compute the height
of the cylinder as the geometric distance between these two points:

h=\/(l, — H,)? + (l, — H,)? + (I. — H.)?

A graphical representation, considering two points of the point cloud can be
seen in Figure 3.9.

bovz) Section of the

cylinder in plane
(X, Y) and distant Z
form the center of

the camera.
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/[ X
\

Figure 3.9: Graphical representation of the center point and height estimation

HSV Color Estimation

Another important characteristic for the demonstrator is to differentiate the avail-
able objects on the plane by colors. To achieve this goal a function has been
generated, whose aim is to convert the RGB color channels to the HSV colorspace
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representation. This conversion is necessary since reduces to the minimum the
possibility to obtain wrong color estimation from clusters.
The HSV colorspace representation is based on the following three parameters:

o HUE: Identifies the monochromatic color of the spectrum. It is defined by a
value within 0° and 360°, measured as the angle around the vertical axis of
the color cone in Figure 3.10;

o SATURATION: Identifies the brilliance and intensity of a color;
o VALUE: Identifies the lightness or darkness of a color, in term of light reflected.

A graphical representation of the colorspace cone is shown in Figure 3.10

180°

Figure 3.10: HSV cone and parameters definition

Here, for each point in the cluster, the following steps are performed:

1. According to the PCL documentation [25], the point RGB value is unpacked
into the three different channels R, G and B;

2. The color channels are normalized as follow (notice that after unpacking the
three channels are of type unsigned char so to obtain their numerical values
casting to integer is necessary):

« double 1’ = 240,

255
_ ant(g)
s double ¢' = "
__ int(b)
o double t/ = "=~

44



3 — Perception Pipeline

Color Hue Saturation | Value
Black 0° < H < 360° 0<S<100 | V<10
Gray 0° < H < 360° S<15 10 <V <65
White 0° < H < 360° S<15 V > 65
Red H < 11°, H > 351° | S > 70 V>10
Pink H < 11°,H > 351° | S< 70 V> 10

310° < H < 351° S>15 V> 10
Orange 11° < H < 45° S>15 V> 175
Brown 11° < H < 45° S>15 100< V<7
Yellow 45° < H < 64° S>15 V> 10
Green 64° < H < 150° S>15 V> 10
Blue-Green | 150° < H < 180° S>15 V>10
Blue 180° < H < 255° S>15 V>10
Purple 255° < H < 310° S > 50 V> 10
Magenta 255° < H < 310° 15<S<5H0 | V>10

3. After normalization, the conversion from RGB to HSV is performed:
Crnae = mazx{r', ¢’ b’}
Crin = mun{r’, ¢', b’}
A = Cymax} — Cymin}
0° if A=0
60°(45") if Conar =1

600(1)/;7"/ + 2) Zf Cmax _ g/
60°("XL +4) if Crpaw =1V

HUE =

0 Zf Cmaa: =0
SATURATION = {Cﬁw if Chuaw 0

VALUE = Cha

Notice that SATURATION and VALUES will be used in percentage values,
so all the results are multiplied by the scale factor 100.

4. Since no particular requests has been requested on color identification, the code
has been structured to identify colors according the following assumptions:

5. Once the color of the point has been identified, a vector containing all the
colors occurrences is generated and the occurrences are updated at each cycle,
until all the points in the cluster are processed.

Once all the points have been processed, the occurrences vector is scanned to
check which is the color with the greatest number of occurrences and the object
color is approximated as the color with the maximum occurrences in the vector.
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To identify it, the list is scanned and the index of the vector corresponding to the
maximum occurrences is stored, once the index is know it is easy to identify the
color, considering that the occurrences vector is generated always in the same order,
reported below:

BLACK OCCURRENCES
GREY OCCURRENCES
WHITE OCCURRENCES
RED OCCURRENCES
PINK OCCURRENCES
ORANGE _OCCURRENCES
BROWN_OCCURRENCES
YELLOW OCCURRENCES
GREEN OCCURRENCES
BLUE — GREEN OCCURRENCES
BLUE _OCCURRENCES
PURPLE OCCURRENCES
MAGENTA OCCURRENCES

Adding Object to the Planning Scene

At this point of the computation all the parameters of the object have been correctly
computed and are available to generate and add the collision object to the planning
scene.

A moveit_ msgs::CollisionObject object is created to hold the characteristics of
the item that has to be added to the planning scene, and the pipeline proceeds
according to two main steps:

1. Only for the first run of the script, the point cloud is processed according to the
procedure described above and the collision objects are added to the planning
scene as CYLINDER primitives. In this step all the cylinders parameters
are stored in a vector of double in the order [center pt_ x; center pt_y;
center _pt_ z; height; radius| and all the names relative to these cylinders are
stored in a vector of strings;

2. For all the next cycles, the code becomes a little bit complex, including a
control sequence on the objects already available in the scene. In particular:

e To check if an incoming object is the same of a previous computation,
considering that the objects order may be different in each computation,
the procedure is the following.

For each element in previous computation vector, do:
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(a) Check if the height of the incoming object is equal (within a certain
tolerance) to the height of one of the previous objects. If this condition
is respected, check the radius of this object;

(b) Check if the radius of the incoming object is equal (within a certain
tolerance) to the radius of the object highlighted in the first step. If
also this condition is respected, the incoming object is probably one
of the previous computation;

(c) At this point a check on the center point is performed to check if the
object position has undergone changes or not. If it has been moved
(within a certain tolerance), it is removed and updated, otherwise it is
left unchanged in the planning scene.

o If the incoming object does not match one of the previous, a new object
is added to the planning scene with a new name.

For this sequence, the main design parameter was the tolerance used for the
control. In fact, considering that the uncertainty of the end-effector pose can
assume significant values according to the position that it has to reach within the
workspace, the tolerance value has been set to half of a centimeter, in order to have
a simulation setup as realistic as possible.

In Appendix C.2 is shown the procedure to estimate the pose of the collision
object according to the quaternion representation.

3.2.5 Update the Planning Scene

Once all the new objects have been added and all the previous objects have been
updated, the last control sequence of the script perform the update of the planning
scene. This section checks the objects available in the planning scene and, through
a control on the name vectors, check which are the elements that are still present
in the scene and which not. At this point, the objects that are no longer available,
are removed from the planning scene.

Code snippets of the last two steps are shown in Appendix C.
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3.3 Obtained Output

Here a behavioural example is shown:

Figure 3.11: Simulation configuration before (left) and after processing(right)

As can be seen from the computational results, each cluster extracted from the
pointcloud is compared with respect to each available model, generating a list of
instances that can correspond to a correct or wrong match. In particular, if there is
no match with the current model the process iterates over all the models as shown
from Figure 3.12 to Figure 3.18. On the other hand if a good match is found for
the instance, as can be seen in Figure 3.19, the process stops, starting to perform
the computation of the cylinder parameters within the good match cluster. It is
important to notice that the 3D object recognition algorithm perform just a match
between model and cluster, meanwhile the parameters computation is computed
through the SAC__ CYLINDER segmentor, which allows the computation of
very good results also with a limited number of valid data and a reduced number
of iterations.
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PC model cloud_cluster_model_1 contains 3392 points.
Model sampling si:
Cluster Sampling si:
LRF support radiu
escriptor radius
Clustering bin size:

Model total point

Hypotheses Verification

Instance @ Aligned!

Instance 1 Aligned!

--- Hypotheses Verification
occlusion cloud not set, using scene_cloud instead...
Scene not organized... filtering using computed depth buffer
Computing cues took 23ms.
computing clutter cues took 5lms.
. took 57ms.
is BAD
Instance 1 is BAD!

PC model cloud_cluster_model : points.
Model Sampling S:

Cluster Sampling S

LRF support radius

SHOT Descriptor radius:

Clustering bin s

Model total points

Cluster total points:

for model cloud cluster 2 Hypotheses Verification

Instance
Instance 1 Aligned!
Instance 2 Aligned!

Instance 3 Aligned!

otheses Verification ---
occlusion cloud not set, using scene_cloud instead...
Scene not organized... filtering using computed depth buffer
Computing cues took 67ms.
ues took 71ms.

PC model cloud cluster model 3 contains 2552 points.
Model Sampling S: 0
Cluster Sampling Si.
LRF support radius:
SHOT D iptor radius
Clustering bin size:
Model total peints e ed keypoint Hypotheses Verification
Cluster total point . Selected keypoints:
Correspondances found: 4
gnized Insta 3 for loud cluster 3

Instance 8 Aligned!

Instance 1 Align

Instance 2 Aligned!

ypotheses Verification
occlusion cloud not set, using scene_cloud instead...
Scene not organized... filtering using computed depth buffer
Computing cues took 43ms.
Computing clutter cues took 73ms.
SA search.
Instance 0 is
Instance 1 is B
Instance is

Figure 3.14: 3D Object Recognition wrt Model3 for cluster 1
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PC model cloud cluster_model 4 contains
Model Sampling Size:

Cluster Sampling Si

LRF support radius:

SHOT Descriptor radi

Clustering bin si

Model total point

luster total points

Correspondances foun

Recognized Instances

--- I
Instance 0 Aligned!
Instance 1 Aligned!
Instance 2 Aligne
Instance 3 Aligned!
Instance 4 Aligne

Instance 5 Aligne

tion ---
occlusion cloud not set, using scene_cloud instead. .
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Chapter 4

Planning of Robot
Movements

The MoveGrouplnterface class is a simple user interface that provides easy to use
functionality for most operations that a user may want to carry out, specifically
setting joint or pose goals, creating motion plans, moving robot, adding objects into
the environment and attaching/detaching objects from the robot. This interface
communicates over ROS topics, services and actions to the MoveGroup node [26].

The process of managing objects within the planning scene is of paramount
importance for the purpose of this work and the process of picking up a specific
object is performed passing through a particular message, the moveit__msgs::Grasp
message. It allows the definition of the various poses and postures involved in a
grasping operation and the complete documentation about this particular message
can be seen at [27]. In this section only the most relevant sections of this message
will be analyzed:

trajectory msgs/JointTrajectory pre_grasp posture: Defines the trajectory
position of the joints in the end effector group before going in for the grasp;

o trajectory msgs/JointTrajectory grasp posture: Defines the trajectory posi-
tion of the joints in the end effector group for grasping the object;

» geometry msgs/PoseStamped grasp_pose: Defines the pose of the end effector
to attempt the grasping;

» moveit_msgs/GripperTranslation pre grasp approach: Defines the direction
from which to approach the object and the distance to travel along a specified
direction axis;
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« moveit_ msgs/GripperTranslation post_ grasp_retreat: Defines the direction
in which to move, once the object is grasped and the distance to travel along
a specified direction axis.

For the place pipeline the message is structured basically in the same way of the
grasp step, defining the pre, post and place configurations for placing the object in
a certain point within space with a certain orientation. It can be seen at [28].

4.1 Pick Place Pipeline

To clarify the usage of the just explained messages, let’s go through a simple
simulated pick-place demo. It is composed by the following steps:

o Initialize the ROS node;

o Generate the planning scene;

Pick;

Place;

Wait for shutdown.

4.1.1 Generate the Planning Scene

In this step the planning scene is set up for the simulation and for this purpose, some
specific objects are generated with respect to the same reference (edo__base_link):

o A support surface on which the grasping object will be spawned. It character-
istics are:

— Pose: [xy z] =1[0.6 00.2];
— Orientation: [wrpy]=/[1000];
— Dimensions: [Xdepth Xwidth Zheight] = [0.2 0.4 0.4].
» A support surface on which the object will be placed. It characteristics are:
— Pose: [xyz] =[00.6 0.2];
— Orientation: [wrpy]=/[1000];

— Dimensions: [Xdepth Xwidth Zheight] = [0.4 0.2 0.4].

o The object to manage. It characteristics are:
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— Pose: [xyz] =[0.6 00.5];
— Orientation: [wrpy|]=1[1000];

— Dimensions: [Xdepth Xwidth Zheight] = [0.02 0.02 0.2].

All the described objects are added as BOX primitives and the coordinates
in terms of [x y z] represent the position of the center of gravity (CoG) of the
item with respect to the edo_base_link reference frame. This aspect imposes some
constraints on the generation of the grasping object. As can be seen in Figure
4.1, the two support surfaces are located at the same level on the z axis, equal to
ZCoGTable# T+ w =04 = Zsurf-

So according to the zheighton; Of the grasping object, the following constraint
must be respected:

ZheightObj
2

that in this case leads to the result already described in the object CoG coordi-
nates for the z parameter.

ZCoGObj = Zsurf +

Figure 4.1: Pick Place planning scene configuration
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4.1.2 Pick

Once the planning scene has been correctly configured, the pick pipeline is performed,
according to the following steps:

» Generation of a vector of possible grasps (useful if used together with a grasp
generator). In this case this vector is limited to a single grasp defined manually;

o Define the RF with respect to which the grasp is performed (edo_base_link);

o Define the gripper orientation and pose for grasping (basically in this step the
grasp pose is defined, shown in Figure 4.2).

Figure 4.2: Grasp
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The target object pose is generated taking into account the gripper physical
limits in terms of maximum width between the two fingers and reachable
positions in space of the cobot. In particular all the area represented by the
support surface has been set to be completely reachable by the cobot. Moreover
the gripper has been configured to have a grasp pose in the central-top portion
of the target object (with respect to the z axis of the edo_base_link RF),
including some extra padding with respect to the x axis of the same RF. In
this way it is guaranteed that the gripper reaches a position with respect to
edo base link RF that ensure to have the whole object within the grasping
area of the fingers (i.e. to do so the TCP must reach on the z coordinate a
value equal to x = T2 4 10000y,

For the orientation, the gripper has been aligned to the y axis of edo_base link,
applying a classic RPY rotation. This rotation basically represents the orien-
tation of the edo_ gripper_link ee RF as a new rotated RF with respect to
edo_base_link obtaining so that, to achieve the desired orientation a simple
rotation of 90 degrees with respect to edo base link y axis is sufficient, as can
be seen in Figures 4.3 and 4.4, taking as complete reference scenario Figure

4.5.

Figure 4.3: Gripper pose at rest Figure 4.4: Gripper pose at grasp

It is important to notice that the gripper orientation is defined in terms of Euler
angles but it needs a quaternion representation, so once defined, these angle
representation is converted using the setRPY method of the ¢f2::Quaternion
class [29];
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Figure 4.5: Pick Place planning scene with e.DO at rest

o Definition of the pre-grasp approach setting the grasp RF, the direction with
respect to which the target object must be approached and the desired and
minimum distances of the pre-grasp approach from the target object (in
meters), as can be seen in Figure 4.6;
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Figure 4.6: Pre-Grasp approach

e Definition of the post-grasp retreat setting the grasp RF, the direction with
respect to which move the picked object and the desired and minimum distances
to reach with respect to the original target object pose, as can be seen in
Figure 4.7;

e Once all the pre, post and grasp configurations have been set, it is necessary
to set the eef status at each different step, basically opening the gripper during
the pre-grasp approach and closing it during the grasp step. Once the object
has been picked it is important to keep the gripper closed, setting the new
gripper status only when the target pose have been reached (i.e. during place
step). Notice that both the pick and place methods need to know which is
the object that must be picked and on which support surface is available or it
must be brought respectively;
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Figure 4.7: Post-Grasp retreat

4.1.3 Place

Basically this pipeline is similar to the pick pipeline, with proper changes. In the
following the main conceptual changes are summarized in brief with the relative
results:

o It uses another type of message called moveit_msgs::PlaceLocation [28], that
is composed in the same way of the grasp message;

o The pre-place approach direction vector has been set toward the negative
direction of the z axis of edo_base_link RF, to move the object vertically
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when the place pose has been reached. In Figures 4.8 and 4.9 are reported
the configurations for pre-place and place;

Figure 4.8: Pre-place approach

Figure 4.9: Place
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o The post-place retreat direction vector has been set toward the negative
direction of the y axis of edo base link RF to move the cobot backward,
avoiding any possible collision if a new motion request incomes. In Figure
4.10 it is possible to see the post-place retreat configuration for the cobot.

Figure 4.10: Post-place retreat

4.2 Grasp Pipeline

As previously said, for the grasp pipeline is really useful to use a grasp generator, in
order to obtain different possible grasps for the same object, avoiding to hard code
this step. This aspect is of paramount importance to have no limitations relative
to IK or collision objects near to the target one. For this purpose the generator
available in Movelt has been rearranged to fit the necessities of the e.Do cobot. It
is a generator for objects such as blocks or cylinders and provides functionality for
filtering grasps based on reachabiliy and Cartesian planning of approach, lift and
retreat motions.

Its algorithm is based on simple cuboid shapes and does not consider friction
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cones or other grasp dynamics. Below some results about grasp computations
obtained for simple objects (i.e. cuboid and cylinder) will be reported. To make
more easy to understand how the grasp generator works, only the example of a
simple cuboid will be handled, considering that for a cylindrical object the steps
performed are exactly the same.

Movelt grasps is based on three main components:

« Grasp Generator: Uses the eef kinematics and the object shape for sampling
grasp poses and optimizing them, using geometric scoring functions;

« Grasp Filter: Validates the feasibility of grasp candidates by searching for
IK solutions to verify their reachability, as shown in Figure 4.11;

s/launch/grasp_pipeline_demo.taunch http://localhost:11311

/home/andreajws_edofsrc/edo_grasps/launch/grasp_plpeline_de... a -

Using planning interface 'CHOMP'
: added 216 of 216 grasp poses created
1: added 216 of 216 grasp poses created
added 216 of 216 grasp poses created

[ INFO] [1587751479
[ INFO] [1587751480

: Grasp Filter Duration : 1.12559

: GRASP FILTER RESULTS
Total candidate grasps
Total valid grasps

retreat

pregrasp
[ INFO] [1587751480. 446 tered_by_cutting
[ INFO] [1587751480. grasp_filtered by orienta
[ INFO] [1587751480.13 4]: grasp_filtered_by_ik
[ INFO] [1587751480. : pregrasp_filtered_by_ik
[ INFO] [1587751480. S
[ INFO] [1587751480.1372 6 ec per solution
[ INFO] [1587751480.13 ----
[ INFO] [1587751480.1 grasp filtered by cutting plane
grasp filtered by orienta
- grasp filtered by ik
- grasp filtered by collision
- pregrasp filtered by ik
- pregrasp filtered by collision
misc filtered

arn solutio
: alid grasp candidates, 324 rematning
: Sorted valid grasps, highest quality is 0.661754 and lowest qual
ity is 0.253387
[ INFO] [1587751566.423660093]: 324 remain after filtering
[ INFO] [1587751506.429598188]: RemoteControl Ready

Wait t ce pr = |

Figure 4.11: Results for grasps generation and filtering

o Grasp planner: Compute Cartesian approach, lift and retreat trajectories
that compose a complete grasp motion.

To work correctly, these three components need to be applied in sequence.
Additionally, the grasp generator uses a Grasp Scorer. It is a component that
supports a number of heuristics for judging which grasp are favorable, given known
information about the problem /application. In Figures 4.12, 4.13, 4.14 and 4.15
all these four configurations are shown for the case of a simple cuboid (at mid-air)
with no obstacles in the planning scene.

The next section, will describe some configuration notes, chosen for the specific
robot used during this work.
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Figure 4.12: Pre-grasp approach

Figure 4.13: Grasp

64



4 — Planning of Robot Movements

.cueat

m’nﬂ pregrasp
'S

S

Figure 4.14: Post-grasp lift

retn

pregrasp

WY
"ﬂh“sp

Figure 4.15: Post-grasp retreat
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4.2.1 Robot-Agnostic Configuration

The robot configuration can be loaded through the .yaml configuration files as
rosparams with the grasping application/ROS node, as shown in the following code
snippet:

<node name ="edo_grasps_demo" pkg="edo_grasps"
type="edo_grasps_grasp_pipeline_demo">
<param name="ee_group_name" value="edo_gripper" />
<param name="planning group_name" value="edo" />
<rosparam command="load" file=$(find edo_grasps)/config robot
/edo_grasp_data.yaml" />
<rosparam command="load" file=$(find edo_grasps)/config
/edo_grasp_config.yaml" />
</node>

where:

e ce_group_name specifies the robot eef group;

e planning group__name specifies the robot planning group.

4.2.2 Additional Configuration

e tcp__to__eef mount_ transform: Represents the transform from the tool
center point used for grasp poses to the mount link of the end effector. This
parameter is provided to allow different URDF end effectors to all work
together without recompiling the code.

In Movelt, the actuated end-effector fingers should always have a parent link,
typically the wrist or palm link. The wrist link should have its palm with a
z axis pointing towards the object to grasp (i.e. where the pointer finger is
pointing). This is the convention laid out in 1955 by John Craig in Robotics,
but considering that a lot of URDF models do not follow it, this transform
allow to fix the problem. Additionally the z axis should points up along the
grasped object, meanwhile the y axis should point towards one of the fingers;

» Switch from Bin to Shelf Picking: In grasp generator two methods can
be used to select an ideal grasp orientation for picking:

— setldealGraspPoseRPY ();
— setldealGraspPose ();
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These two methods are used to score grasp candidates favoring grasps that
are closer to the desired orientation. This is useful in applications such as bin
and shelf picking where the pick step for an object, needs to be done from a
bin with a grasp that is vertically aligned and from a shelf with a grasp that is
horizontally aligned. In the case of this e.DO cobot the favourite orientation
for the gripper has been set to be [r p y] = [0 90° 0] with respect to world RF
(that coincides with edo_base_link RF). In this way all the remaining grasps
from filtering step, are sorted to put as favourite solutions all the grasps that
ensure a gripper orientation as the one shown in Figure 4.4.

The gripper of the e.DO cobot moves the fingers according to an angular
opening of the joint, but the Movelt grasp pipeline is able only to manage
gripper with linear finger opening expressed in meters, meanwhile the e.DO
gripper requires a fingers opening in radiant. To solve this problem a new
function has been added to the Movelt grasp class to convert the finger opening
from meters to radiant, as shown in Figure 4.16.
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Figure 4.16: Conversion from linear to angular finger opening
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The result can be easily obtained applying the trigonometric theorem:

X X
5 = rsin (openingAngle) — openingAngle = — arcsin o

’
The negative sign is due to the fact that the gripper opens with a clock-
wise rotation, that is negative for convention and the value of X represents
the maximum width between fingers. The class has been modified just
adding two variables (modifying the two files two_finger grasp data.cpp

and two__ finger _grasp__data.h):

— bool variable to chose the gripper type (false means linear opening, angular
otherwise);

— double variable that contains the result of the conversion function.

In this way is possible to select the gripper type and to provide the function
result just adding these two lines in the code:

//Select the gripper behaviour

grasp_data_->ee_type = false;

//Set the values of width and distance from TCP to convert

//linear (m) distance in angular opening (rad)

grasp_data_->distance_btw_fingers rad = widthToAngle(0.082,
0.04);

Notice that as a default setting, if noting is specified in code, the class works
with the original linear opening settings provided by the original Movelt class.
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Chapter 5

Demonstrator Design and
Results

In this section, the design implementation to realize the final demonstrator will be
explained. The main structure can be summarized with the following steps:

e Setup planning scene;

o Select the target objects method: if the perception node is up, use it to
generate the target objects, otherwise generate it randomly on the support
surface, according to some specific constraints;

o For all the available target objects in the planning scene perform:
— Grasps computation;
— Pick pipeline;

— Wait for input command: According to the input command, the picked
object will be placed to a specific position in space, with a certain orien-
tation;

— Remove the target object already managed;
e Move the robot to its idle state;

o Wait input command to start a new acquisition or to kill or the nodes relative
to this demo.
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5.1 Setup Planning Scene

This section is performed only once and its aim is to prepare the planning scene,
adding the support surfaces necessary to realize the demo. Here the parameters
of the support surface on which the object is generated (i.e. CoG, Xdepth; Ywidth
and Zpeight) are stored for the grasps computation. This is necessary for the grasps
computation, to filter out all the generated grasps that would cause a collision
between robot and support surface.

The planning scene components are:

o Tuble: support surface on which the target objects are generated. Its charac-
teristics are:

— Position: [xy z] =[0.6 0 0.2];
— Orientation: [wxy z =[1000];
— Dimensions: [Xdepth Ywidth Zheight] = [0.2 0.4 0.4];

o faultyBox: support surface on which the target objects is placed if it is
recognized as faulty. Its characteristics are:
— Position: [xy z] = [0-0.6 0.1];
— Orientation: [wxyz] =[1000];
— Dimensions: [Xdepth Ywidth Zheight] = [0.4 0.2 0.2];

e correctBox: support surface on which the target objects is placed if it is
recognized as OK. Its characteristics are:

— Position: [xy z] =[00.6 0.1];
— Orientation: [wxyz] =[1000];
— Dimensions: [Xdepth Ywidth Zheight] = (0.4 0.2 0.2];

The final setup can be seen in Figure 5.1.

5.2 Object Generation

Once the planning scene is ready, it is possible to select the target objects generation
through a bool variable directly set in the shell, during the .launch file execution.
This variable starts the perception node and allows the generation of the target
objects through it if true, otherwise the perception node is not launched and the
target object generation task is left to the random generator.

Notice that it is possible to select the target object generation method only
when the node is started up, it is not possible to modify it during the execution.
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Figure 5.1: Demo planning scene setup

5.2.1 Random Generator

If the bool variable is not set, as default it is assumed as false and the target object
is generated through a random generator, respecting some specific constraints.
Since the robot is able to reach each position on the upper surface of the spawn
support surface, the only constraints that must be imposed are the ones that
guarantees to obtain the target object entirely within the support surface and in
contact with it. This means to impose:

e 1 < 0.04 meters. This constraint has been set according to the maximum
width of the gripper;

e h: There is no particular constraint on the object height but, considering
that the target objects generated by the perception node have an height value
between 0.05 and 0.07 meters, to make the simulation as realistic as possible,
this value has been set as upper and lower limits;
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° COGOij

—x€(0.5+1;07-1);
—ye(-02+r1;02-1);
—Z=0.4+%.

The final result can be seen in Figure 5.2.

Figure 5.2: Demo planning scene setup with random generator
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5.2.2 Perception Generator

If the bool variable useCam is set to true, the perception node is started up and
the target objects are generated through the perception pipeline. For this case it is
necessary to add some delay in order to guarantee the generation of all the target
objects before starting the execution. In this way all the objects are considered
avoiding to neglect one or more of them.

It is important to notice that the perception pipeline is always up during the
demo execution, but it is executed only when the following particular conditions
are respected:

o There is no object in the planning scene whose name starts with "cylinder";

e There is no attached object to the robot in the planning scene.

Through this solution, the perception node is executed only when all the target
objects have been processed and removed. This design choice was made to improve
efficiency and reduce the computational footprint, since it is useless to search for
other target objects, if the planning scene is already populated. The final result
can be seen in Figure 5.3.

Obviously, in this particular case, the camera position with respect to the world
RF is set so that the objects sensed are generated and added on the spawn support
surface, respecting the same constraints imposed for the random generation. This
can be done specifying the pose of the camera in terms of coordinates [x y z R P
Y].

Moreover, the octomap has been limited to avoid the introduction of useless
constraints for the robot movements (i.e. it is considered as a collision object for
the planning computation, so it has a paramount importance for the computation
of the inverse kinematics solution).

5.3 Target Objects Management

Once at this step, the grasp and pick-place pipelines are executed, but before going
on, let’s point out some specific design choices taken for the random and perception
generators:

o For the random generation, the number of target objects has been limited to
a single one;

o For the perception generation, the number of target objects has no limits and all
the objects sensed will be managed serially. Anyway it is important to respect
the constraints imposed by the Fuclidean Cluster Ezxtraction method, which
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Figure 5.3: Demo planning scene setup with perception generator

impose to have the different objects at least at 2 centimeters, to avoid that
different objects are interpreted as a single cluster. Moreover, an additional
control sequence has been added for objects whose plan fails at the first
computation.

Basically, if an object planning fails, and it has been processed only once, its
characteristics are pushed back to the tail of the object vectors and all the
other objects are processed. Once all the movable objects have been correctly
managed and removed, a new grasps and planning trial are executed to check
whether the failed planning objects are not reachable or if they were initially
not reachable due to presence of collision. If at the second computation they
can be managed, they are picked and placed accordingly to the default chain.
On the other hand, if the planning fails again, probably these objects are not
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reachable by the robot and so they are removed from the planning scene.

Here the code snippet that manages this control is shown:

/* If the object cannot be picked, it is stored
at the vector tail to be processed again.
This can be done basically checking if the
iterator is greater than the maximum_iteration
value. */
if (iterations == MAX_ITERATIONS && 'pickOK){
object_name.push_back(object_name[obj_cnt]);
object_pose.push_back(object_posel[obj_cnt]);
radius.push_back(radius[obj_cnt]);
height.push_back(height [obj_cnt]);
doNotRemove = true;
for (size_t i = 0; 1 < obj_cnt_original; ++i) {
if (object_name[obj_cnt] == object_name[i]) {
object_occurrences[i] += 1;
if (object_occurrences[i] > 1){
// The object has been processed two times,
// so it can be removed
doNotRemove = false;

* X X %

if (!doNotRemove) {
removeObject (planning scene_interface,
object_name[obj_cnt]);

Notice that, calling the .push_back() method within the for cycle that scans
all the available objects, each time an object is added to the tail the for
cycle iterations are incremented by one element. This is good to dynamically
manage all the original and the pushed back objects whose planning fails, but
in this way there is no control on the number of times the same object has
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been processed. To solve this problem, a new vector declared outside the for
cycle is used. It is initially resized to the original object vector dimension and
it stores the occurrences of each element. In this way, checking the number of
occurrences of the physically available target objects, it is possible to decide if
a new computation is necessary or if the object is not reachable and so can
be removed. Moreover the number of times the planner is called has been
fixed to a maximum value and also the time to compute the planning has
been increased. This is due to the particular planner used for this purpose,
the OMPL planner, that is not the most powerful planner available but for
the moment is the most convenient one that works correctly with all the
components of the e.Do cobot. For more information about this planner,
please take a look to [30].

5.3.1 Grasps Computation

Once the planning scene has been correctly set up, and the target objects have
been added, randomly or thought the perception node, the grasps generator is
called taking the following inputs:

e Object information:

— object_ poseli] (position and orientation);
— radiusli];
— heightli];

— object_ nameli];
o Support surface information:

— table_pose (position and orientation);
— Xdepth;
— Ywidth;
— Zheight;

— table name.

o Vector of the resultant available grasps (moveit msgs::Grasp).

The value returned by the grasps generator is used to check if at least a solution
is available after filtering. If true, then the pick-place pipelines can be performed,
meanwhile if false, the object is removed and the computation is brought back to
the target objects generation. This aspect is useful to define the resolution to use
for the grasps generation.
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Grasps are generated on all the object’s faces, edges and along the x and y axis
with variable angle. Notice that also if the target object is a cylinder the grasp
generator works on the bounding box of the object, with dimensions [radius radius
height] allowing to generate grasps not only along the selected axis with variable
angle, but also each 45 degrees with respect to the object z axis.

All the parameters relative to the grasp generator can be set within the
"edo__grasp__data.yaml" file, highlighting that:

« grasp_ resolution represents the translation, in meters, between one grasp
candidate and the other;

« angle_ resolution represents the angular rotation, in radiant, between one
grasp candidate and the other with respect to the same axis;

e tcp__to__eef mount_ transform represents the distance, in meters, from
the eef mount to the palm of the end effector, where the z axis points toward
the object to grasp, the z axis is perpendicular to the movement of the gripper
and the y axis is parallel to the movement of the gripper;

5.3.2 Pick-Place

The pick and place pipeline are performed basically as already described in the
previous chapter, introducing the keyboard input for the latter and a correct
planning check for both. In fact both the ".pick()" and ".place()" methods returns
an error code if the planning fails. Converting this error code into a bool variable,
it is possible to check if the pick is performed correctly (if the object fails for
more than once, as already described, it is removed and the input command wait,
together with the place pipeline, are skipped). Similarly, if the place pipeline fails,
the object is removed, paying attention to the fact that once picked, the collision
object becomes an attached object, so it is necessary to detach it from the robot
before deleting.

Notice that, with respect to what explained for the pick place in the previous
chapter, in this case both these methods takes a vector of possible Grasp and
PlaceLocation. While the first is the result of the grasps generator after filtering,
for the place pipeline the vector is generated considering some specific aspects of
the particular application. Since the aim of the demo is just to separate the correct
from the faulty objects, there are no particular needs on the object orientation,
limiting the place pipeline to respect only the target position. Considering what
just pointed out, and considering that the objects sensed from the perception
pipeline are generated with the z axis parallel to the z axis of the edo_ base_link
RF, is it possible to assume that at the target position, the object can assume a
random orientation with respect to its z axis.
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For this reason, the place vector has been generated as a variable length vector,
whose dimension depends on the angular resolution that the final user wants to
have, with respect to the object’s z axis, in degrees.

It is also important to highlight that in the final demo, the input commands
will not be provided from keyboard (K — Correct and F — Faulty), but they will
be represented by a KWS command (among the KWS commands available from
the KWS algorithm), received serially from the SensorTile board. This temporary
solution was imposed by the pandemic situation and will be fixed as soon as it
will be possible to make some tests on the real board. In Figures 5.4 and 5.5 the
positions assumed by the robot for the K and F configurations are shown.

Figure 5.4: Faulty Placing
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Figure 5.5: Correct Placing

5.4 Return to Idle State

Once all the objects have been managed and removed, the perception node (if
started) add the new sensed objects, and the robot is moved to its rest state. To
do so it is sufficient to set:

o For the "edo" move_ group:

— joint_1 = 0.0;
— joint_ 2 = 0.0;
— joint_ 3 = 0.0;
— joint_ 4 = 0.0;
— joint_ 5 = 0.0;
— joint_ 6 = 0.0;
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o For the "edo__gripper' mouve_group: joint_ gripper_left base = 0.0;

The values of the joint are expressed in radiant and for the gripper group only
the joint_gripper left base is modified since it is the only revolute joint.

At this point th computation is stucked, waiting a new input command from
keyboard, considering that:

e Pressing Enter a new computation is performed;

e Pressing q the computation is stopped and both the demo and perception
nodes are killed.

5.5 How to Use It

To start the demo, according to the presence of the perception node, type on
different shells:

o roslaunch realsense2 camera rs__camera.launch filters:=pointcloud
Only if the perception pipeline is used and the realsense camera is plugged to
a USB port;

o roslaunch edo__scenarios rvizConfig.launch simulated:=true
If the real robot is connected, omit the argument simulated:=true, since its
default value is false;

e roslaunch edo_scenarios demo.launch useCam:=true

To use the random target object generation, remove the useCam argument,
since its default value is false, and do not run the launch file of the first shell.
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Chapter 6
Gazebo Simulation

Gazebo is a robot simulation tool that allows to rapidly test algorithms, design
robot, perform regression testing, and train Al system using realistic scenarios.

It offers the ability to accurately and efficiently simulate populations of robots
in complex indoor and outdoor environments.

Basically it is a robust physics engine, high-quality graphics, and convenient
programmatic and graphical interfaces.

The main features of this simulator are:

o Dynamic Simulation: Access multiple high-performance physics engine
including ODE, Bullet, Simbody, and DART;

e Advanced 3D Graphics: Utilizing OGRE, Gazebo provides realistic render-
ing of environments, including high-quality lightning shadows, and textures;

» Sensors and Noise: Generate sensor data, optionally with noise, from laser
range finders, 2D /3D cameras, kinect style sensors, contact sensors, force-
torque, and more;

o Plugins: Develop custom plugins for robot, sensor, and environmental control.
Plugins provide direct access to Gazebo’s API,

« Robot Models: Many robots are provided including PR2, Pioneer2 DX,
iRobot Create, and TurtleBot. It is also possible to build a custom robot
using SDF description;

« TCP/IP Transport: Run simulation on remote servers, and interface to
Gazebo through socket-based message passing using Google Protobufs;

e Cloud Simulation: Use CloudSim to run Gazebo on Amazon AWS and
GzWeb to interact with the simulation through a browser;
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e Command Line Tools: Extensive command line tools facilitate simulation
introspection and control.

For more information about Gazebo, have a look to [31].

6.1 Preliminary Settings

Before showing the simulation results, it is important to highlight some configuration
aspect to make the simulation works correctly:

e Camera plugin: Since the Intel RealSense D435i cam is not available, the
camera model and plugin has been added directly as a zacro:macro part of
the robot model developed for the simulation. This sensor has been moved
from the edo_base_link RF according to the following transform [1.1 0 0.55 0
0 3.14]. Notice that in this simulation, the sensor does not include any kind
of noise;

o World definition: The Gazebo simulation is opened with a custom .world
file that contains all the information about the item pose, in terms of visual
and collision objects. For the purpose of this demo, in the custom world, has
been added the models of all the grasping objects, the support surface and
the dropboxes;

o Gripper Plugin: Since the gripper is actuated through a position controller,
during grasping this is not able to sense the presence of an object between
fingers, producing a not realistic performance. To solve the problem, some
precautions must be taken into account.

Firstly the Gazebo Grasp Fiz Plugin [32], has been added within the robot
description model. It basically fixes an object which is grasped to the robot
hand to avoid problems with physics engines and to help the object staying in
the robot hand without slipping out.

Moreover the actuation through a position controller, cause a non-realistic
behaviour for the grasp, because it tries to reach the target fingers position
without taking into account the presence of the grasped object. To solve this
problem, the gripper joint that actuate the fingers, takes as target pose the
equivalent opening of the fingers (in radiant) that correspond to the grasping
object width.

In this way the gripper is closed around the grasping object and the plugin
fixes it to the gripper creating a realistic grasp behaviour for the simulation.

Finally it was necessary to correctly calibrate the grasp configuration file to
ensure a correct behaviour during grasping.
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6 — Gazebo Simulation

6.2 Simulation Results

Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, show the obtained results:

Figure 6.1: Start simulation: cylinders have been sensed and added to the
planning scene.

Figure 6.2: First object Pick.
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Figure 6.3: First object Place.
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Figure 6.4: Second object Pick.
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Figure 6.5: Second object Place.
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Figure 6.6: Third object Pick.
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Figure 6.7: Third object Place.
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Figure 6.8: Simulation end: The robot moves back to its rest position. New
objects are sensed and added to the planning scene, waiting for a new computation.
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Chapter 7

Conclusions

The aim of this work is the implementation of a demonstrator scenario related to
the Command Recognition in Smart Industry Application use case of the ALOHA
project.

The main results achieved in this thesis are:

 Integration of 3D stereocamera:
— Pointcloud preprocessing, including noise and useless data removal (i.e.
support plane);
— Polynomial pointcloud reconstruction;
— Pointcloud clusterization;
— 3D cluster matching with predefined models;
— Cluster object color and shape identification;

— Object feature’s extraction from clusters.
o Computation of grasps candidates for target objects:

— Grasp generation, given object’s characteristics (i.e. [Xdepth, Ywidths Zheight])-
Grasp configuration searches for:
« Grasps with respect to y axis with parallel gripper (X-Z plane);
* Grasps with respect to x axis with parallel gripper (Y-Z plane);
* Grasps on faces of object bounding box;
* Grasps on edges of object bounding box;
— Grasp filtering. Reduction of possible grasps, removing not feasible

solutions due to grasp IK, grasp collision check, grasp cutting plane, grasp
orientation, pre-grasp IK and pre-grasp collision check.
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o Pick&Place pipeline using 3D sensed objects and grasp generator:

— Management of dynamic objects in the planning scene, through 3D per-
ception;

— Grasps computation and movegroup actuation;

— Management of target object according to the input command.
e Simulation through Gazebo :

— Introduction of physical aspects, as the presence of gravity and friction
between target object and gripper;

— Highlighted the constraints on the color identification due to the presence
of reflective surface for target objects;

— Highlighted the constraints imposed by the presence of a position controller
for the gripper fingers.

Some possible future applications regards the implementation of improvements
to brush up the performances:

o Perception: In this step is it possible to define some criteria to identify as
interest objects not only cylinders. To do so it would be enough to introduce
new models for 3D object recognition, but the tricky steps would be the
identification of the position and orientation in space of these objects and their
characteristics. Another possible improvement could be the implementation
of an algorithm stronger with respect to the light conditions and objects
occlusion;

o Demo: Using the input command follow. it would be interesting to develop a
dynamic pick place system that, respecting the rules of KWS input command
recognition, would be able to manage moving objects in space;

o Simulation: To make the simulation much more realistic it would interesting
to switch the robot simulation controllers from position_ controllers, to ef-
fort__controllers, since the real gripper takes into consideration the constraints
imposed by a grasping object, allowing to neglect the opening width of the
gripper during pick.
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Appendix A

Toolflow setup guide for
Smart Industry use case

A.1 Main Steps

This project implements the containerised architecture with all the tool, the DSE
engine, the mongoDB, the RedisDB.

1. Clone this project;

2. Follow the steps in the following paragraphs.

A.1.1 Docker arch

Clone all the other needed projects:
» make clone

the clone target also creates a folder that will contain the data shared among
the tools. To know the local repository status of all the tools run:

e make status

Before building the docker architecture, edit the parameters in the file
docker _arch/.env for your installation, if needed:

e docker-compose build

The first time you build the architecture it can take a while. Ensure to have
enough disk space (50 GB should be ok).
To bring up the whole architecture run:
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e docker-compose up

Once started it is possible to connecct to the MongoDB and RedisDB through
the ports chosed. Use a toolkit like robo3T to browse the MongoDB
(https://robomongo.org/download). Use:

e redis-cli

to browse the RedisDB.
To list all the containers run:

e docker container ls: it will show IDs, Names, Ports, ...;

docker stop $(docker ps -a -q): it forces stop of all the containers;

docker logs container__name -f: it prints the stdout of a container;

docker exec -it name__of the__container /bin/bash: it logins into a
container using bash;

A.1.2 Orchestrator

Edit the file docker__arch/orchestrator-frontend/src/configuration/config.js, with
thee URL to the orchestrator Backend API. For example, if your backend is listening
in at the port 5000 in the localhost:

o export const ALOHA FRONTEND CONFIGURATION = {
orchestratorAPIUrL: "http://localhost:5000/,
orchestratorWSUrl: ’http://localhost:5000/,

%

NOTE: The port must be the same chosen in docker__arch/.env.

Edit the file docker _arch/orchestrator-frontend/.env with the public port for the
Orchestrator Frontend. For example if you want the frontend webserver listening
at the port 80, add to the .env file the line PORT=80.

The backend and the frontend ports must be different.

The orchestrator backend starts when you bring up the docker architecture.

A.1.3 Webserver (orchestrator frontend) installation

N.B.: Before launching the frontend you need to install NodeJS 10.13 or higher
and npm. Using Ubuntu:

o curl -sL https://deb.nodesource.com/setup__10.x | sudo -E bash -;
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o sudo apt-get install -y nodejs;
e sudo apt-get install npm.

Take a look to: https://github.com/nodesource/distributions/blob/
master/README .md#installation-instructions
After the installation of NodeJS and npm, install the frontend’s dependencies:

» cd orchestrator-frontend/;
o npm install;

e cd ..

A.1.4 Run the webserver

To launch the orchestrator frontend run:
e sudo make webserver

sudo is required if you want to use port 80 or any port under the 1000. If you
select the port i.e. 8088 you can launch the frontend without root privileges.
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Appendix B

Kinematics

B.1 DH convention

It is a systematic general method to define the relative pose and orientation of two
consecutive links. With reference to Figure B.1

JOINT 71 JOINT 2 JOINT 2 +1

Figure B.1: Denavit-Hartemberg kinematic parameters

let axis i to denote the axis of the joint connecting link i-1 to link 7. The so
called Denavit-Hartemberg convention is adopted to define frame link 4:

o Choose axis z; along the axis of Joint i-1;
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o Locate the origin O; at the intersection of axis z; with the common normal to
axes z.; and z;. Also, locate O, at the intersection of the common normal
with axis z;_;;

e Choose axis ; along the common normal to axes z;.; and z; with direction
from Joint ¢ to Joint i+1;

o Choose axis y; so as to complete a right-handed frame.

The Denavit—Hartenberg convention gives a non-unique definition of the link
frame in the following cases:

o For Frame 0, only the direction of axis zj is specified, then Oy and zy can be
arbitrarily chosen;

o For Frame n, since there is no Joint n+1, z, is not uniquely defined while z,,
has to be normal to axis z, ;. Typically, Joint n is revolute, and thus z, is to
be aligned with the direction of z,_;;

o When two consecutive axes are parallel, the common normal between them is
not uniquely defined;

o When two consecutive axes intersect, the direction of x; is arbitrary;

e When Joint 7 is prismatic, the direction of z;; is arbitrary.

In all such cases, the indeterminacy can be exploited to simplify the procedure;
for instance, the axes of consecutive frames can be made parallel.

Once the link frames have been established, the position and orientation of Frame
i with respect to Frame i-1 are completely specified by the following parameters:

a; — Distance between O; and O;’;

d; — Coordinate of O;’ along z;_¢;

a; — Angle between axis z;; and z; about axis x; (positive for counter-
clockwise rotations);

0; — Angle between axis x;; and x; about axis z;; (positive for counter-
clockwise rotations).

Two of the four parameters (a; and «;) are always constant and depend only on
the geometry of connection between consecutive joints established by Link 7. Of
the remaining two parameters, only one is variable depending on the type of joint
that connects Link ¢-1 to Link 7. In particular:
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o If Joint 7 is revolute the variable is 6;;

o If Joint 7 is prismatic the variable is d;.

e Choose a frame aligned with Frame i-1;

o Translate the chosen frame by d; along axis z;; and rotate it by 6; about axis
2;.1. This sequence aligns the current frame with Frame i’ and is described by
the homogeneous transformation matrix

cos); —sinb; O

i—1 | sin@; cos; 0O
A= 0 0 1
0 0 0

— & o o

o Translate the frame aligned with Frame i’ by a; along axis z;" and rotate it by
«; about axis z;. This sequence aligns the current frame with Frame 7 and is
described by the homogeneous transformation matrix

1 0 0 a;

i 0 cosa; —sing; O
Al = )

! 0 sina; cosa; O

0 0 0 1

o The resulting coordinate transformation is obtained by post-multiplication of
the single transformations as

cosf); —sinb;cosce; siné;sinco; a;cosb;

Al Al AT sinf; cosf;cosa; —cosb;sina; a;sinb;
i =4 A= o , d.
sin oy cos oy i
0 0 0 1

Notice that the transformation matrix from Frame ; to Frame ;; is a function
only of the joint variable ¢;, that is, 6; for a revolute joint or d; for a prismatic joint.
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To summarize, the Denavit—Hartenberg convention allows the construction
of the direct kinematics function by composition of the individual coordinate
transformations expressed in terms of an homogeneous transformation matrix. The
procedure can be applied to any open kinematic chain and can be easily rewritten
in an operating form as follows.

1.

10.

Find and number consecutively the joint axes. Set the directions of axes z,

ces Anels

Choose Frame 0 by locating the origin on axis zy; axes xy and y, are chosen
so as to obtain a right-handed frame. If feasible, it is worth choosing Frame 0
to coincide with the base frame;

Execute steps from 3 to 5 for i=1, ..., n-1:

Locate the origin O; at the intersection of z; with the common normal to axes
zi.; and z;. If axes z;.; and z; are parallel and Joint 7 is revolute, then locate
O; so that d; = 0. If Joint ¢ is prismatic, locate O; at a reference position for
the joint range, e.g., a mechanical limit;

. Choose axis z; along the common normal to axes z;; and z; with direction

from Joint ¢ to Joint ;,1;

Choose axis y; ; so as to obtain a right-handed frame.

To complete:

Choose Frame n. If Joint n is revolute, then align z, with z,_;, otherwise, if
Joint n is prismatic, then choose z, arbitrarily. Axis z, is set according to
step 4;

For i =1, ..., n, form the table of parameters a;, d;, a;, 0;;

On the basis of the parameters in 7, compute the homogeneous transformation
matrices A ' fori=1,...,n

Compute the homogeneous transformation T°(q) = AY... A"~! that yields
the position and orientation of Frame n with respect to Frame 0;

Given T¢ and T, compute the direct kinematics function as T?(q) = TeT T
that yields the position and orientation of the end-effector frame with respect
to the base frame[17].
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B.2 Inverse kinematics computation

In this section, all the mathematical computation for the inverse kinematics problem
is explained.
Starting from result of direct kinematics problem

Pwaz = Cl(L2023 + Lico)
Pwy = s1(Lacos + Lic2)

pwz = Lasas + Lysg

the inverse kinematics problem is solved through the following steps:
L] 03

]?IQ/Vm + p%vy +p12/VZ = Lg + L? + 2L1L2(02(6263 — 8283) + 82(0283 + 8203>)
= L2+ L3+ 2L Locs

obtaining the formulation for c3 as

2L, Ls

C3

Recalling that the cos(6) function has validity only in the interval [-1, 1], it is
easy to say that the wrist point of the robot is within the reachable workspace
of the manipulator if B.1 is respected:

20,1, -
= L} 4+ L3 — 2L1Ly < piy, + Piy, + Doy, < LT+ L5 + 2L, Ly

—1<e<l=-1<

obtaining finally

Ly — La| < \/p¥, + Phy + Phs < |L1 + Lo (B.1)

Recalling that s3 = 41/1 — ¢3, the following two solutions are obtained:

051 € [—m, 7]

03 = atan2(ss3, c3) = {0 o
301 = —Us
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Pive +p124/y = (Lycz + Locas)?
pwz = Losos + L159

After obvious mathematical computation, the following result is obtained:

{i\/m = CQ(Ll -+ LgCg) — L28283

__ pwz—Locoss
S2 = Lyi+Lacs

that, substituting sy in the first equation, finally leads to:

+£4/Py P, (L1+Lacs)+pw. Lass

Cy =

L%+L%+2L1 Lics
_ pws(Li+Lacs)Fy /iy, +piy, L2ss
S2 = L%+L§+2L1Llc3

So 0y = atan2(sy, cy) and according to the sign of s3, four possible solution
are available, two for s3 = +1/1 — ¢2 and two for s3 = —/1 — c3

\/p%/[/x + P%/vy = Ly1ca + Lacos

Pwa = c1(Lica + Locas)
Pwy = s1(Lica + Lacas)

01

from which

Pwa

€1 = /3 2
+ pW;v+pWy

Pwy

1= /2 2
+ pWat+pWy

that lead to two different solutions

9171 = ata'nz(prpr)
0111 = atan2(—pwy, —pwaz)

m—atan2(y,xz) if y>0

Since atan2(—y, —x) = —atan2(y, —x) =
(=4 —2) v, —2) {—7? —atan2(y,z) if y<0

the final result is

0 atan2(pwy, pwz) — T if pwy =0
1,11 = ;
atan2(pwy, pwz) + 7 if pwy <0
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It is important to notice that for py, = pw, = 0 the inverse kinematics
problem does not admit a solution and the robot is in a SINGULARITY
configuration.

B.3 ZYZ FEuler Angles

The rotation described by ZYZ Euler Angles is based on the composition of three
elementary rotations shown below:

« A first rotation of the origin triad of an angle ¢ about Z axis, defined by the
rotation matrix

cosp —sing 0
R.(p) = |siny cosp O
0 0 1

o A second rotation of the new triad of an angle # about Y axis, defined by the
rotation matrix

cosf@ 0 sind
R, 0) = 0 1 0
—sinf 0 cosf

o A third and final rotation of the new triad of an angle ¢ about Z axis, defined
by the rotation matrix

cosy —siny 0

R.» () = |siny  cosyp 0
0 0 1

as shown in B.2.

Figure B.2: Representation of ZYZ Euler Angles
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Concatenating all the rotations, the following result is obtained

CPCYCy — SPSy  —CPCeSy — SPCy  CpCa
R=R.(0)Ry(0)R.#(1)) = | spcocy + CpSy  —5PCeSy + CpCy S50
—SQC¢ 8981/, Co

To solve the inverse kinematics problem, start from the complete rotation matrix

11 Ti2 T3
R = |12 7122 723
31 T32 T33
and compute the angles ¢, fandi) as follow:
» ¢ Looking at the elements [1, 3] and [2, 3], in the hypothesis that 713 # 0 and

ro3 # 0, it results:
© = atan2(raz, 113)

0 Looking at the elements [1, 3] and [2, 3], squaring and adding these two
elements and using the element [3, 3], it results:

0 = atan2(\/r3; + 135,733)

« 1) Choosing the positive sign for the term y/r?; + rZ;, narrows the membership
range to (0, m). Considering this assumption and considering the elements [3,
1] and [3, 2], it results:
Y = atan2(rsa, —r31)

Finally, two different solutions are available, according to the sign of \/r?; + r3,

o positive sign for \/ri; + 735
@ = atan2(raz, 113)
0 = atan2(y/ri; + r35,733)

Y = atan2(rse, —rs31)

« negative sign for /72y + r3;:

© = atan2(—ra3, —713)
0 = atan2(—/r%5 + ri;, r33)
Y = atan2(—r32, 31)

These two solutions degenerate for sy = 0. In this case it is possible to determine
only the sum or the difference of ¢ and . In fact, if 6 = 0,7, the successive
rotations of ¢ and v are made around axis triads that are parallel to each other,
giving the same contribution to the complete rotation[17].
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B.4 Anthropomorphic arm configurations

Figure B.3: The four configurations of an anthropomorphic arm compatible with
a given wrist position

According to the results obtained by 2.3, 2.4 and 2.5, it is evident that four
possible solutions are available:

61,[7 62,[7 63,])

Ov1,02,111,0511)

(

(
o (0111,0211,051)
o (Ov11,02,1v,0511)
According to B.3, the four possible solutions are respectively:
 Shoulder-right /Elbow-up
« Shoulder-left /Elbow-up
« Shoulder-right /Elbow-down

« Shoulder-left /Elbow-down

It is important to notice that it is possible to find the solutions only if at least:

In the case pw, = pwy = 0, an infinity of solutions is obtained, since it is
possible to determine the joint variables 6, and 63 independently of the value of 6;.
In such configuration the arm is kinematically singular[17].
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B.5 Detailed steps for e.DO connection

Firstly start the cobot using the external switch on the base. After few seconds
a WiFi net will become available (edo.wifi.3d:ca:23). The automatic boot of the
control software has been disabled, so it is necessary to link the cobot with a
laptop or with the dedicated app, to start the control software. When available,
it is preferable to use the wired connection. Anyway, to use the two available
connections, follows this procedure:

o Wired connection Connect the Ethernet wire to the laptop and configure
manually the IP address of this connection. This step is necessary since no
DHCP is available.

To configure the wired connection, set:

— IP: 10.42.0.1
— Mask: /24

The robot will become available at the IP address 10.42.0.49.

o Connect the laptop to the WiFi net edo.wifi.3d:ca:23 and insert the password
edoedoedo. Since in this case the DHCP is available, an IP address will be
assigned to the laptop. The robot will become available at the IP address
192.168.12.1.

Once connected to one of the two available nets, it is possible to connect to the
robot through SSH using, on a new shell, ssh edo@<Robot IP> and raspberry as
password.

To calibrate the robot or to check easily the status of the brakes, use the
dedicated app, following the procedure described in it. The serial number to which
the app refers at the beginning of the procedure is the one that starts with 2018-. ..
on the base of the robot.
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Perception Pipeline

C.1 Code Snippets

C.1.1 Code snippet of the addCylinder() function

void addCylinder()
{
double thr = 0.005;
std::string cyl = "cylinder";
std::string cyl_name;
moveit::planning interface::PlanningScenelnterface
planning_scene_interface;
// Adding Cylinder to Planning Scene
[/ TTTTTTTTmmmnnnanannaanaaananananen
// Define a collision object ROS message.
moveit_msgs::CollisionObject collision_object;
collision_object.header.frame_id
= "camera_depth_optical_frame";

//Skip the first cycle
if (skip_first == false) {
for (size_t k = 0; k < prev_names.size(); k++) {
//Check if the new obj_i is the same as one of the previous
//estimation
if (abs(abs(cylinder_ params.height)
-abs (previous_computations[h_cnt]))<thr){
r cnt = h cnt + 1;
if (abs(abs(cylinder_params.radius)
-abs(previous_computations[r_cnt]))<thr){
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CoG_cnt = h cnt - 3;
find = true;
//Remove previous object if the cylinder CoG is
//different within a tolerance of 5 mm!
std::cout << "Estimation uncertanty wrt previous
estimation: "<< ’\n’;
for (size t i = CoG_cnt; i < CoG_cnt + 3; i++) {
std::cout << abs(abs(cylinder params.center_pt[i])
-abs (previous_computations([i])) << ’\n’;
if (abs(abs(cylinder_params.center_ pt[i])
-abs(previous_computations[i])) > thr
&& rmv_obj == false) {
rmv_obj = true;
if (rmv_obj == true) {
new_names.push_back(prev_names[prev_name_index]);
std::cout << "\n";
ROS_INFO("Removing object from the world...");
collision_object.id = new_names.back();
collision_object.operation
=collision_object.REMOVE;
planning scene_interface.
applyCollisionObject(collision_object);
+
}
}
if (rmv_obj == false){
new_names.push_back(prev_names[prev_name_index]) ;
std::cout << "The object " << new_names.back() <<
" has not changed!" << ’\n’;
}
}
}
else {
h_ cnt = h_cnt + 5;
+

prev_name_index++;

std::cout << "\n\n" << ’\n’;

CoG_cnt = 0;
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h cnt = 3;
r_cnt = 4;

if (find == false) {
new_obj_cnt = new_obj_cnt + prev_names.size();
new_names .push_back(
"cylinder" + std::to_string(new_obj_cnt));
new_obj = true;

std::cout << "\n\n" << ’\n’;

if (skip_first == true || rmv_obj == true || new_obj == true) {
//Save previous values of the CoG, Height and Radius to make
//the comparison with the new estimation
//CoG
previous_computations.push_back(cylinder_ params.center pt[0]);
previous_computations.push_back(cylinder_params.center_ pt[1]);
previous_computations.push_back(cylinder_params.center_pt[2]);
//Height
previous_computations.push_back(cylinder params.height);
//Radius
previous_computations.push_back(cylinder_ params.radius);

if (skip_first == true) {
cyl_name = cyl + std::to_string(cyl_cnt);
collision_object.id = cyl_name;
//Save first names
new_names.push_back(cyl name);

}

else if (new_obj == true) {
collision_object.id = new_names.back();

}

else {

collision_object.id = prev_names[prev_name_index-1];
//Save previous names
new_names.push_back(prev_names[prev_name_index-1]);

}
// Define a cylinder which will be added to the world.
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shape_msgs::SolidPrimitive primitive;
primitive.type = primitive.CYLINDER;
primitive.dimensions.resize(2);

/* Setting height of cylinder. */
primitive.dimensions[0] = cylinder params.height;
/* Setting radius of cylinder. */
primitive.dimensions[1] = cylinder params.radius;

// Define a pose for the cylinder
//(specified relative to frame_id).
geometry_msgs: :Pose cylinder_pose;
//Computing and setting quaternion
//from axis angle representation.
Eigen::Vector3d cylinder_z_direction(
cylinder_params.direction_vec[0],
cylinder params.direction_vec[1],
cylinder_ params.direction_vec[2]);
Eigen::Vector3d origin_z_direction(0., 0., 1.);
Eigen::Vector3d axis;
axis = origin_z direction.cross(cylinder_z_direction);
axis.normalize();
double angle=acos(
cylinder_z_direction.dot(origin_z_direction));
cylinder_pose.orientation.x = axis.x() * sin(angle / 2 +
cam_roll / 2);
cylinder_pose.orientation.y = axis.y() * sin(angle / 2 +
cam_pitch / 2);
cylinder_pose.orientation.z = axis.z() * sin(angle / 2 +
cam_yaw / 2);
cos(angle / 2);

cylinder_pose.orientation.w

// Setting the position of cylinder.

cylinder_pose.position.x = cylinder_ params.center_pt[0];
cylinder_pose.position.y = cylinder params.center_pt[1];
cylinder pose.position.z = cylinder_ params.center_pt[2];

// Add cylinder as collision object
collision_object.primitives.push_back(primitive);
collision_object.primitive_poses.push_back(cylinder_pose);
collision_object.operation = collision_object.ADD;
planning scene_interface.applyCollisionObject(
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collision_object);
if (skip_first == true) {
std::cout << "\nCollision object "<< cyl name
<< " has been added.\n\n";
}
else if (new_obj == true) {
std::cout << "\nCollision object "<< new_names.back()
<< " has been added.\n\n";
}
else {
std::cout << "\nCollision object "
<< new_names [new _name_ index]
<< " has been added.\n\n";
}

new_name_ index++;

C.1.2 Code snippet of the Update Planning Scene Control
Sequence

ROS_INFO("Updating the planning scene...");
//Remove all the elements that are not
//present in the scene anymore
for (size_t i = 0; i < prev_names.size(); i++) {
for (size_t j = 0; j < obj_index.size(); j++){
if (prev_names[i] == "cylinder" +
std::to_string(obj_index[j])){
ext_obj = true;
}
}
if (ext_obj == false){
ROS_INFO("Removing objects that are
not present in the scene anymore...");
previous_computations.erase(
previous_computations.begin()

+ b%i,
previous_computations.begin()
+ B5%i + b5);

moveit::planning interface::PlanningScenelnterface
planning scene_interface;
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moveit_msgs::CollisionObject collision_object;
collision_object.header.frame_id
= "camera_depth_optical_frame";
collision_object.id = prev_names[i];
collision_object.operation = collision_object.REMOVE;
planning scene_interface.applyCollisionObject(
collision_object);
}
ext_obj = false;

}

C.2 Quaternions and Pose Estimation

Firstly let’s introduce the key concepts for the object orientation identification.

C.2.1 Axis Angle representation

It is a non minimum representation of the object orientation, starting from four
parameters, with express the rotation of a certain angle around a rotation axis in
space.

With reference to Figure C.1, the rotation matrix of R(6,r), that represents
the rotation of an angle # around the axis r, can be expressed as a composition of
elementary rotations with respect to the axis of the reference triad as follow:

1. Align r with z, which is obtained as the sequence of a rotation by —a about z
and a rotation by —f about y;

2. Rotate by 6 about z;

3. Realign with the initial direction of r, which is obtained as the sequence of a
rotation by 8 about y and a rotation by «a about z.

The resulting rotation matrix is:
R(0,r) = R.(a)R,(B)R.(0) R, (—P)R.(—«)
Solving the rotations, the following result is achieved:

r2(1 — cg) + co rory(1 —cg) — 1280 1u7.(1 — co) +1ySp
R(0.7) = |rory(1 —co) + 7250 1mo(1—co)+co  ryro(l —co) — 71250 (C.1)
roro(1—co) —ryseg ryro(1—co) +1zs0 121 —cp) + o
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Figure C.1: Rotation of an angle about an axis

for which holds:
R(—0,—7) = R(0,7)

that involves a non-unique representation, since a rotation by 6 around r cannot
be distinguished with respect to a rotation by —6 around -7.
For more details about Azis Angle representation take a look to [17].

C.2.2 Quaternion

It represents the extension of the complex number set, based on a four parameters
representation. A wunit quaternion is the mathematical component defined as

Q(n, €), where:

0 .
n=cos; 1is the scalar part
.0 . . T
€ =sin—r is the vectorial part €= [e;, €y, €,]
2
On this component, the following relation is always valid:
772+ei+6§+e§: 1

For more details about Quaternion take a look to [17].
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C.2.3 Pose and Orientation for the Collision Object

For the identification of the Pose of the collision object the task is relatively
simple, since the coordinates of the center point are provided directly by the
coefficient__cylinder structure, meanwhile for the identification of the orientation,
the task is a little bit complex.

In detail, starting form the direction vector, already estimated by the extract-
Cylinder function, the aim is to compute the quaternion components. This task
can be performed, following these steps:

1. Cross product between the unit vector along which the object should spawn
(in this case the z axis of the camera_infral_optical frame) and the direction
vector of the cylinder (result saved in a Vector3D called axis);

2. Normalization of the vector representing the triad of the collision object;

3. Computation of the angle § = acos(dot_product_of the_two_vectors). It
represents the rotation about the direction vector;

4. Definition of the collision object orientation:

For what concern the object orientation it is necessary to take care of the
camera RPY configuration wrt the scene, as can be seen in Figure C.2. Prac-
tically, considering the non-null cam_ roll angle, an orientation compensation
for the x component of the quaternion is necessary. This consideration is valid
for all the components of the quaternion and for convention, the sign is chosen
positive if the rotation is counterclockwise and negative otherwise, obtaining:

Camyoll ) .

o orientation.x = aris.x() * sin (5 + “5el );

9

2
« orientation.y = axis.y()  sin (§ 4 “pieh).
9
2

camMyaw

e orientation.z = awxis.z() * sin (5 + =5*);

0

o orientation.w = cos 5

The code snippet that computes these steps is shown below:

// Define a pose for the cylinder (specified relative to frame_id).

geometry_msgs: :Pose cylinder_pose;

//Computing and setting quaternion from axis angle

//representation.

Eigen::Vector3d cylinder_z_direction(
cylinder_params.direction_vec[0],
cylinder params.direction_vec[1],
cylinder_params.direction_vec[2]);
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Cam_roll

=5

Real scene

Figure C.2: RPY cam configuration wrt scene

Eigen::Vector3d origin_z direction(0., 0., 1.);

Eigen::Vector3d axis;

axis = origin_z _direction.cross(cylinder_z_direction);

axis.normalize();

double angle = acos(cylinder_z_direction.dot(origin z direction));

cylinder _pose.orientation.x = axis.x() * sin(angle / 2 +
cam_roll / 2);

axis.y() * sin(angle / 2 +
cam_pitch / 2);

cylinder pose.orientation.z = axis.z() * sin(angle / 2 +

cam_yaw / 2);
cylinder_pose.orientation.w = cos(angle / 2);

cylinder_pose.orientation.y
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