
POLITECNICO DI TORINO

Master’s Degree in Software Engineering

Master’s Degree Thesis

Analysis of commercial BCI solutions for

automotive applications

Supervisor

Prof. Massimo VIOLANTE

Candidate

Nicola SABINO

July 2020

Abstract

Nowadays the influence of modern technologies has dramatically changed the
concept of the vehicle in our community, moving from a simple means of transport
to a complex machine able to meet driver needs.

The automotive division of the Luxoft company, situated in Torino (Italy),
within its research and development branch, is studying different approaches and
techniques to improve and extend the driving experience. All the efforts are
concentrated on the Tele-Operated car, an electric vehicle that can be driven via a
network interface. It accepts UDP packets as input messages and converts them to
commands for electrical actuators situated on the steering column and the pedals
of the car. In that context, the Xavier project is born.

The Xavier project, named like the fictional character with telepathic powers
appearing in the X-men comic universe, is a long term development project for
interns in Luxoft. This project presents the development process of an end-to-end
infrastructure between driver and vehicle, thanks to the Brain-computer interface
technology. The main objective has been to deepen the effectiveness of commercial
BCI solutions such as an interface for drivers affected by disabilities. The project
is reaching, with the end of this internship experience, the third development
iteration. During these iterations, the whole know-how of BCI technology applied
to automotive applications has been transferred and enhanced.

The starting point of this thesis was the first implementation of the Xavier
application (version 1.1) implementing the base commands needed to achieve the
first ride, and a series of tests made directly on the road about the reliability of
the system.

During this thesis project, a new application (v2.0) has been developed looking
for an overall improvement in terms of capability and usability. A new graphic user-
interface has been provided and the new version is currently able to interoperate
directly with the official application provided by the BCI manufacturer. Besides
a complete, reliable, and safe simulation environment has been deployed to test
the system indoor; the simulation environment has been taught to be extensible,
easy-to-configure and to be as light as possible from a computational cost point of
view.

i

Table of Contents

Acronyms vi

1 State of the art 1
1.1 The Nervous system . 2

1.1.1 The Brain . 2
1.1.2 Neurons . 3

1.2 Neuroscience tools . 4
1.2.1 Electroencephalography . 4
1.2.2 Brain waves processing . 4
1.2.3 EEG devices . 6
1.2.4 10-20 system . 6
1.2.5 Advantages and Disadvantages 7
1.2.6 EEG and Brain-computer interface 7

2 Hardware Equipment 8
2.1 Headset . 8
2.2 Paravan system . 10
2.3 Additional virtual cockpit . 10

3 Application development 11
3.1 Qt framework . 11

3.1.1 Qt messages system . 12
3.1.2 QtQuick and QML . 12
3.1.3 Sub-directories system . 12

3.2 Cortex v2 API . 13
3.2.1 JSON-RPC . 14
3.2.2 Authorization and headset pairing 15
3.2.3 Session and data persistence 15
3.2.4 Commands . 16
3.2.5 Training procedure . 17
3.2.6 Commands detection . 19

iii

3.3 API mocking . 20
3.3.1 Node.js . 20
3.3.2 Mocked Cortex v2 . 20

3.4 Xavier . 21
3.4.1 Human-machine interface 22
3.4.2 Back-end communication . 24
3.4.3 Front-end integration . 25
3.4.4 Commands processing . 27

4 Simulation 30
4.1 Docker . 30

4.1.1 Architecture and deployment 31
4.1.2 Nvidia Docker . 31

4.2 ROS . 32
4.2.1 Architecture . 32
4.2.2 Rqt . 33
4.2.3 Rviz . 34
4.2.4 Gazebo . 34

4.3 Car demo simulator . 35
4.3.1 Project customization and final architecture 36
4.3.2 Stopwatch ROS package . 37
4.3.3 Watchdog ROS package . 38
4.3.4 Building and running procedure 39

5 Testing and conclusions 42
5.1 Testing with car demo . 43

5.1.1 Training . 43
5.1.2 Tests . 43

5.2 Tests assessment . 45
5.2.1 Student’s t-test . 46

5.3 Final considerations . 48
5.3.1 Operating system . 48
5.3.2 Headset maintenance . 48
5.3.3 Driving algorithm . 50
5.3.4 Xavier application . 50

Bibliography 51

iv

Acronyms

AI

Artificial intelligence

API

Application programming interface

BCI

brain-computer interface

CLI

command-line interface

CUDA

Compute Unified Device Architecture

EEG

Electroencephalography

FFT

Fast Fourier Transform

GPU

Graphics processing unit

MOC

Meta-object compiler

URDF

Unified Robot Description Format

vi

VM

Virtual machine

ROS

Robot operating system

SDF

Simulation Description Format

vii

Chapter 1

State of the art

The study of electrical phenomena in the brain was conducted on animals as far back
as 1875 when physician Richard Caton published his research from experiments on
rabbits and monkeys in the British Medical Journal.

In the 1920s, a German scientist named Hans Berger was the first recording
electrical signals produced by brain activity. During his research, he developed
a technique to record those signals by positioning electrodes on the scalp of the
patient: this method was called Electroencephalography - EEG.

In 1960s, psychologist Joe Kamiya with his experiments has shown the further
capabilities of EEG technology. He demonstrated that those brain signals could
explicitly be controlled by a human subject after a reasonable amount of training
time using the feedback received by the EEG machine.

Thanks to those researches, in the ’70s the term Brain-computer interface was
coined referring to systems that take a bio-signal measured from a person and
predict some abstract aspect of the subject’s cognitive state.

Nowadays this technology is widely spread and accessible thanks to the advance
in computational capabilities of modern calculators, the drop of in the cost in
chips manufacturing, and their miniaturization. Besides, thanks to its diffusion,
today we can find several types of BCI, with different types of electrodes, disparate
processing procedures, and various levels of usability and reliability.

1

State of the art

1.1 The Nervous system

The subject that analyzes and studies the nervous system is called neuroscience. The
nervous system is in charge to coordinate actions and collect sensory information
by transmitting signals to and from different parts of the body. It is composed of
two main parts, the central and peripheral nervous system: the first includes the
brain and spinal cord while the second consists mainly of nerves - cords made of
fibers.

1.1.1 The Brain

The brain, the main organ of the nervous system, can be divided into different
areas, each one with its purpose:

• Occipital lobe: recognize objects and vision.

• Temporal lobe: visual memory, language abilities, and emotion association.

• Frontal lobe: emotions, reasoning, planning, problem-solving, judgment, move-
ment, and parts of speech.

• Cerebral Cortex: thinking, voluntary movements, language, reasoning, and
perception.

• Cerebellum: movement, balance, posture, and coordination.

• Hypothalamus: body temperature, emotions, hunger, thirst, appetite, diges-
tion, and sleep.

• Thalamus: acts sensory and motor integration.

• Pituitary gland: hormones production

• Pineal gland: control growth.

• Amygdala: emotions.

• Hippocampus: learning and memory.

• Mid-brain: breathing, reflexes, and swallowing reflexes. (Includes the Thala-
mus, Hippocampus, and Amygdala)

• Pons: motor control and sensory analysis.

• Medulla Oblongata: maintains vital body functions, breathing, digestion, and
heartbeat.

2

State of the art

Figure 1.1: The brain - [Gray’s
Anatomy 4, H.V. Carter’s illustration]

SUP
 F

RONTAL

 M
IDDLE F

RONTAL

INF F
RONTAL G

YRUS

GYRUS

PO
ST

SUP TEMPORAL GYRUS

MID. TEMPORAL GYRUS

INF

SUP PARIETAL

INF PARIETALLOBULE

LOBULE

PARIETO -
OCC.

sulcus

Infr

P
os

tc
en

tr
al

sulcus

sulcus

Lat. occ.

Trans o
cc. sulc.

Parieto

occ. fiss.

Lat. C
ereb. fis

s.

Supr

Posterior ramus

Mid. te
mp. sulcus

S
U

P
R

A
M

A
R

G
. G

Y
R

U
S A

N
G

. G
Y

R
U

S

Pars

triangularis

A
nt

. a
sc

. r
am

us

Pars
orbitalis

Ant. horiz.

Pars
opercularis

TEMPORAL GYRUS

GYRUS

Supr
frontal

ramus

C
E

N
T

O
R

A
L

G
YR

U
S

su
lc

us

frontal
sulcus

temp. sulcus

P
re

ce
nt

ra
l

su
lc

us

Figure 1.2: Detailed representation of
the cerebrum - [Gray’s Anatomy 4, H.V.
Carter’s illustration]

1.1.2 Neurons

The nervous system is characterized by a special type of cell, called neuron. Neurons
can receive integrate and forward electrical and chemical signals. The electrical
signals are caused by a rapid, temporary change in membrane electrical charge
while the chemical signals - defined as neurotransmitters - are released from one
neuron as a result of the electrical signal.

Dendrite

Cell body

Node of
Ranvier

Schwann cell

Myelin sheath
Axon

Nucleus

Synapses

Figure 1.3: The Neuron cell -”Anatomy
and Physiology” by the US National Can-
cer Institute’s Surveillance, Epidemiol-
ogy, and End Results (SEER) Program.

3

State of the art

Neurons are composed by:

• The Soma, cell body containing the nucleus

• Dendrites, a structure composed of branches able to receive neurotransmitters
from other neurons.

• Synapses, end junction of a neuron connected with the dendrites of another
neuron.

• Axon hillock, able to forward signals emitted by the nucleus of the neuron, it
”merges” signals coming from multiple synapses

• Axon, a structure that propagates the signal. It carries the generated potential
- electrical signal - to the next neuron. A Neuron could have one or two axons.
Some axons are covered with an insulator material called myelin to minimize
the dissipation of the electrical signal.

1.2 Neuroscience tools

Nowadays the study of the nervous system can rely on a large collection of in-
struments exploiting different approaches along with different physical phenomena
related to brain activities. In this section, we will deep into EEG technology as the
main technique and its support to a Brain-computer interface.

1.2.1 Electroencephalography

The electroencephalography procedure allows us to record and evaluate the small
electrical activity on the scalp on the subject generated in the outer part of the
brain, the cerebral cortex.

The EEG procedure can help doctors in medical diagnosis comparing the collected
data against recognizable wave forms, researchers to study human behavior, and
could helps people to improve their productivity and wellness. This safe and
painless technique is also helpful for diagnosing or treating some disorders like
Brain cancer, damages from injury, sleep disorder, and so on.

1.2.2 Brain waves processing

The neurons emit and receive ionic currents causing bio-potentials registered by
electrodes up to several thousand times per second. EEG signals are then amplified,
digitized, and sent to a calculator for data processing.

There are different types of data processing available: the most common is to
analyze all the acquired signals and divide them into bandwidths to describe their

4

State of the art

functions. Most sophisticated techniques involve Machine Learning techniques
and classification algorithms with the purpose of properly distinguish and catalog
complex waveform without the judgment of a human being. These require a lot of
ground data to train and tune properly the algorithms.

Brainwaves are commonly classified by frequency into five main categories: β
Beta, α Alpha, θ Theta, δ Delta, and γ Gamma.

Figure 1.4: Brain waves with different frequencies.

• δ waves (0.5 - 4 Hz) arise during meditation, in a state of deep sleep or coma.

• θ waves (4 - 8 Hz) appear in sleeping or daydreaming.

• α waves (8 - 13 Hz) can be induced by closing the eyes and relaxing, and
they are rarely present during intense cognitive processes like thinking, mental
calculus, and problem-solving.

• β waves (13 - 32 Hz) characterize a conscious and alert state. These frequencies
are particularly distinguishable during logical-analytical reasoning.

• γ waves (32 - 100 Hz) are related to learning, memory, and information
processing.

5

State of the art

1.2.3 EEG devices

We can split EEG machines into two main categories: clinical and consumer devices.
Clinical devices impose participants to do not move while data collection , and
the monitoring has to be done in a controlled environment to avoid distorting the
signal. On the other end, consumer devices allow us to monitor brain activity in
movement, with a certain degree of freedom.

Furthermore, EEG devices could be wearable caps, usually preferred in clinical
applications since they support more sensors due to the larger surface area for
electrode placement; rigid headsets whit fewer electrodes, usually used in consumer
applications.

EEG devices support different types of electrodes. The most common are wet or
dry reusable electrodes. Wet electrodes ensure finer data accuracy since they use an
adhesive gel for better contact with the scalp of the patient: they are usually used
in caps devices for clinical solutions. Dry electrodes don’t require an adhesive gel,
these electrodes are often used in consumer applications since they allow quicker
setup time.

1.2.4 10-20 system

Cz T4C4C3T3

Pz

Fz

T6

O2

T5

F7 F8

O1

Fp1 Fp2

F4F3

P3 P4

A1 A2

INION

NASION

Figure 1.5: Electrode locations of the International 10-20 system
for EEG (electroencephalography) recording - wikimedia.org

The 10–20 system is an internationally recognized method to define the position
of the electrode on the scalp of the subject. This method was developed to ensure
the standardization of exams, avoiding external biases in different tests according
to the scientific method.

The system is based on the relationship between the location of an electrode
and the covered cerebral cortex section of the brain. Each electrode has a letter
to identify the covered brain area: pre-frontal Fp, frontal F, temporal T, parietal
P, occipital O, and central C. The letter Z - zero - refers to electrodes placed on

6

State of the art

the mid-line plane of the scalp while the A refers to the prominent bone process
usually found just behind the outer ear. Each electrode is also associated with a
number, even for the right-hand side of the head and odd for the left-hand side.

The method takes its name to the fact that the actual distances between adjacent
electrodes are either 10% or 20% of the total front-back or right-left distance of the
skull.

1.2.5 Advantages and Disadvantages

EEG offers two main advantages respect other brain measurement techniques.
The former is high precision time measurements. Changes in the brain’s electrical

activity occur very quickly, and extremely high time resolution is necessary to
detect accurately bio-potentials.

The latter, unlike other electrical recording devices that require inserting elec-
trodes into the brain, EEG electrodes are simply stuck onto the scalp of the subject.
It is a non-invasive procedure that allows researchers to efficiently access a human
brain without surgery.

Moreover, EEG equipment is more affordable respect other devices, simpler to
operate for the medical staff or researchers, easy to maintain, and also portable
and versatile for the ones with wireless capabilities.

On the other hand, the main disadvantage of EEG is the weak spatial resolution,
due to the usage of superficial electrodes on the scalp of the patient. The perceived
signal of a single electrode is the result of chemical-electrical interaction between
hundred of thousand neurons in one squared centimeter of the brain cortex. Besides,
particularly strong signals can be collected by several neighboring electrodes. Be-
cause of this, EEG cannot distinguish neatly specific signals coming from adjacent
locations of the brain cortex.

1.2.6 EEG and Brain-computer interface

EEG technology is capable to extract brain signals from a subject with a certain
degree of spatial and temporal accuracy. A Brain-computer interface collects these
signals and uses machine learning algorithms to translate these informations into
valuable and understandable commands for external actions. The machine learning
algorithms are trained to detect emotions, actions, and expressions by EEG signals.
When the algorithms match a trained command it runs a defined action like spin a
motor, turns on a relay, moves a cursor, and so on. The most common application
of this solution are usually Spellers, wheel-chair driving, control of synthetic body
joints, advanced in-game interaction, and so forth.

7

Chapter 2

Hardware Equipment

In this chapter, we will introduce the hardware equipment involved in our project.
The goal is to build a complete BCI interface between a driver and a car by
introducing as few components as possible, promoting ease of use, reliability, and
the comfort of the operator. The equipment chose has been performed preferring
commercial solutions instead of custom-built ones to increase the degree of security
as the task to be performed includes risks of injury for the driver.

2.1 Headset

The headset chosen for this project is the Emotiv epoc+, a wireless fourteen
channels device. It is a commercial solution composed of the headset itself and
some software tools for different activities like raw EEG data recording as well as
advanced data processing. Headset connectivity relies on Bluetooth low energy
technology and a proprietary USB receiver running at 2.4GHz.

The device is characterized by reusable, wet electrodes made of felt and soaked
with a common saline solution available in supermarkets and pharmacies. The
electrodes are arranged following the 10-20 standard in the following positions:
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, AF4. The device provides
128 or 256 samples per second with a resolution of 0.51µV and a bandwidth of 0.16
- 43 Hz. Moreover, the headset is equipped with an Inertial measurement unit whit
accelerometer, magnetometer, and gyroscope.

The Emotiv company sells this product with different licensing options for
developers: free subscription plan offers limited capabilities of the system, researcher
subscription plan allows advanced features while enterprise subscription offers
custom configuration and more flexibility.

8

Hardware Equipment

In this project, we adopted the free subscription plan for a set of Application
programming interface (API) using secure web socket connection which offers:

• Mental commands: the possibility to train and detect thoughts associated
with abstract concepts like left, right, up, down and so on.

• Performance metrics: 6 features that describe the cognitive state of the subject.
The available states are engagement, excitement, stress, relaxation, interest,
and focus. These metrics are available with a sampling frequency of 0.1Hz

• Frequency Bands: gives information on 4 brain waves β, α, θ, and γ.

• Facial expressions: the headset is capable to catch some facial expressions like
frown, smirk, smile, wink, and so forth.

• Motion data: gives information about the movement of the head.

The whole thesis project refers to the second version of the API. This version is no
longer compatible with older ones and offers a different syntax and new features.

Figure 2.1: Emotiv EPOC+ 14 Channel Mobile headset

Emotiv products hold CE FCC and UL certification marks, accomplish with
all international product safety standards including radio frequency emissions and
electrical safety, as well as other issues such as possibly toxicity or allergic reactions
to components.

This headset has been chosen for its reliability, construction materials, ease
of use, safety and, BCI capabilities. It is also an affordable product for an end
customer in a perspective of a final profitable solution, as an optional for a car.

9

Hardware Equipment

2.2 Paravan system

Paravan Gmbh company offers mobility solutions and automotive products for
people with different disabilities. The solutions offered include car conversion,
lifting and loading systems, custom security systems, and drive-by-wire integration.

The drive-by-wire system consists of an additional car control unit able to
communicate via bus with the main one and collect custom messages encoded
in a proprietary protocol. It is able to control stepper and linear electric-motors
installed on the steering column and the pedals. The product is certified ISO 16750:
Road vehicles — Environmental conditions and electrical testing for electrical and
electronic equipment.

In this thesis project the Paravan system is installed in a front-wheel-drive full
electric car; BMW i3, model-year 2013 with 43,5 horsepower.

2.3 Additional virtual cockpit

The final user interacts whit the whole system through an additional cockpit
mounted into the car dashboard. The cockpit is composed of a fourteen inches
display and a windows personal computer with 8 GB of RAM, an Intel i7 processor,
and 275 GB of disk space; running all the required software for the Emotiv headset
and a further custom program explained more in details in the next chapter.

Figure 2.2: The teleoperated car

10

Chapter 3

Application development

The core section of this project is the realization of a comprehensive application
able to interact with the wireless headset, communicate efficiently with the end-user,
and forward all the collected information and commands to the Paravan system.

In the following chapter we will dive into the selected programming languages
and the Qt framework technology, which characterize the core application, called
Xavier.

The Xavier application is designed to offer a full and integrated experience of
the whole system, offering the possibility to configure, train, and run the headset
system and control the car with it.

We will deeply analyze the program structure, the design choices, and the
integration with the two external systems: Paravan and Emotiv.

Moreover, we will analyze in detail the features offered by the Emotiv Cortex
v2 API available with a free licensing plan.

3.1 Qt framework

Qt is a cross-platform application development framework written in C++ for
desktop, embedded, and mobile devices. In a Qt project, before the compilation
step, a preprocessor called MOC - Meta-Object Compiler - parses the source files
written in Qt-extended C++ and generates standard-compliant C++ sources. In
this way, all generated sources from the preprocessor can be compiled by any
standard C++ compiler like Clang, GCC, ICC, MinGW, and MSVC. Qt adopts
qmake as a default cross-platform build system, but it is also compatible with
CMake and others.

The Qt framework represents currently one of the leading technologies in resource-
aware applications, adopted as a reference in many commercial products.

11

Application development

3.1.1 Qt messages system

One of the significant improvements with the adoption of the Qt framework is the
inter-exchange of messages.

Each object in the Qt should extent the class QObject to inherit the capabilities
and core functions offered by the framework. Those objects acquire the possibility
to exchange messages via so-called slots and signals.

A signal is a public access functions emitted when a particular event occurs
while a slot is a normal C++ function that is called in response to a particular
signal. Qt offers several predefined slots for its QtObjects but it is also possible to
define custom slots and connect them to a signal via the connect() method.

This mechanism is also type-safe, supports customize-able parameters, ensures
correct timing, and relies on a loose connection: Objects which emit a signal don’t
care about which slots will receive it.

3.1.2 QtQuick and QML

The QtQuiclk module and the QML language are the latest instruments offered
by the Qt suit in support of human-machine-interfaces and user experience design.
These technologies establish different and intuitive approach respect to the older
approaches, meeting the needs of developers and designers. Using the QtQuick
module, those professional figures can easily build fluid animated user interfaces in
QML and have the option of connecting them to any back-end C++ libraries.

QML is a highly readable declarative language that was designed to describe
graphical user interfaces - GUI. Each GUI is described in terms of smaller ele-
ments, combined into a tree structure of complex components. It supports several
animations, built-in control commands for transitions, and can be extended with
JavaScript code.

When running QML, it is executed in a run-time environment implemented in
C++. It consists of an engine, responsible for the execution of QML files, holding
the properties accessible for each element or structured component.

Currently, this technology is strongly adopted in the realization of digital clusters
and cockpits in the automotive industry.

3.1.3 Sub-directories system

A good practice for larger software projects is to isolate its components into different
business-logic units: GUI files, logic, data persistence, and so on. The software
components belonging to the same unit are usually combined into software libraries:
.lib or .dll files in Windows, .a and .so files in Linux and .a or .dylib files in
MacOSx.

12

Application development

The Qt framework using the qmake built system can arrange those sub-directories
and define the correct pre-processing and compilation order. Each sub-directory of
this mechanism is a complete and autonomous Qt project with its qmake file and
configurations. The developer in this way is able to develop debug and test single
software modules separately and link them statically or dynamically.

3.2 Cortex v2 API

Cortex API, built on JSON and WebSocket, allows developers to built third-party
applications able to interact with the Emotiv BCI system. JavaScript Object
Notation - JSON - is a standard interchange format that uses text to serialize and
transmit data objects structured in key-value pairs and array data types. Respect
other language-independent data format like XML is more compact and supports
naively arrays, numbers, strings, and nested objects.

The WebSocket is a two-way full-duplex communication protocol layered over
TCP. According to the IETF definition in the RFC 6455, the goal of this technology
is to provide a mechanism for browser-based applications that need two-way
communication with servers that do not rely on opening multiple HTTP connections.

To access to this instrument, a developer has to be registered to the Emoitv
site, apply for one of the available plans, register the application and obtain a
Client Id and a Client secret tokes that have to be used at connection time by the
application. Once properly installed, On Windows and Mac PCs, the Cortex service
is a background process that communicates with the headset and the Emotiv cloud
and acts as WebSocket server on the port 6868. Furthermore, the Emotiv suite
offers two utility applications: Emotiv App and Emotiv BCI. Emotiv App is a
service application able to manage headsets and third-party apps permissions while
Emotiv BCI is the official Emotiv application that let the users or developers to
experiment with the headset.

13

Application development

3.2.1 JSON-RPC

Cortex server adopts a strict syntax in JSON messages called JSON-RPC which is
a stateless, light-weight remote procedure call protocol. Each request object sent
by a client must contain those fields:

• jsonrpc field containing the version of the protocol supported by the client.

• method specifying the name of the method to be invoked.

• params structure containing the parameter to be used during the invocation
of the method.

• id a String, Number, or NULL established by the Client. If a request does not
contain an id it is treated as a Notification and as such, no Response object
needs to be returned to the client.

For each received request messages, with the only exception of Notifications, the
server has to reply complying with the following structure:

• jsonrpc field containing the version of the protocol supported by the server.

• a result or error field containing a structured object.

• the same id as the value of the id member in the request object.

The following example shows the call of remote procedure subtract with its
parameters and the response by the server.

A request message from a client

{

"jsonrpc": "2.0",

"method": "subtract",

"params": {

"minuend": 42,

"subtrahend": 23

},

"id": 3

}

Response message from the server

{

"jsonrpc": "2.0",

"result": 19,

"id": 3

}

14

Application development

3.2.2 Authorization and headset pairing

The first part of the authentication procedure requires that a registered user is
logged in the Emotiv App application.

First, the method getUserLogin has to be performed to check if the user has
already logged in though Emotiv App. Then calling the procedure requestAccess

user is required to approve the third-party application directly in the Emotiv
App. If the user has already approved your application, then this API will prompt
nothing.

Finally, the call authorize generate a cortex token able to authenticate all the
further request for the server. Once properly authenticated a client can query the
API for available headsets with the queryHeadset procedure. From this point
forward a program can establish a connection with the available headsets.

3.2.3 Session and data persistence

Each connection with a headset is based on a Session object. When a user needs
to interact with the headset the application has to create a session first. Each
application is allowed to open a session with only one headset at a time but can
open several sessions with different headsets. Each session is opened and closed with
the methods createSession and updateSession. A session is implicitly bonded
to an application and is automatically closed when the application is disconnected
from the Cortex service or the headset is disconnected.

A session is a temporary in-memory object and after its closure, it is destroyed by
Cortex API. Changes of a session can be preserved calling the method setupProfile

specifying the field status to save. To obtain information about the stored data asso-
ciated with a profile is possible to call the method getTrainedSignatureActions.

15

Application development

3.2.4 Commands

Each profile is associated with a series of Training objects of two groups: fourteen
mental command labels and twelve facial expressions.

The available mental commands are:

• neutral

• push

• pull

• lift

• drop

• left

• right

• rotateLeft

• rotateRight

• rotateClockwise

• rotateCounterClockwise

• rotateForwards

• rotateReverse

• disappear

While using mental commands the user is required to choose up to four labels,
neutral included, and associate to them an abstract concept. At first, the user is
required to train the neutral command to recognize the background mental state,
then the user can train a new mental label.

It is strongly suggested by the Emotiv team to master one action and have good
control before adding a second action and so on. The user has to be focused for
eight seconds during the training and has to be relaxed so the algorithms don’t
have to cope with variable muscle signals. Train sessions can be varying from user
to user, but to master a single command is suggested to train it at least for twenty
minutes. It is up to the user what abstract concepts to associate to a mental
command label: usually, more experienced users tend to visualize simple objects
movement like moving a ball left, right, up and down.

The Emotiv headset has eight electrodes positioned around the frontal and
prefrontal lobes which acquire signals from facial muscles and the eyes. The Emotiv
detection system uses these signals to classify which muscle groups are causing
them and use efficient classifiers to detect many facial expressions. The available
facial expressions are dived into two groups:

16

Application development

Trainable commands

• neutral

• surprise

• frown

• smile

• clench

Non-trainable commands

• blink

• winkL

• winkR

• horiEye

• laugh

• smirkLeft

• smirkRight

Facial expressions are always detectable, even if they have not been trained and
also in this case the neutral has to be trained at first.

3.2.5 Training procedure

API lets a client to register to different streams with the remote procedure
subscribe. Once registered the client will receive periodical Notifications, messages
without id field, by the server. The Cortex system offers different streams with
different purposes:

• eeg - Raw EEG data, available only with paid subscription plans.

• mot - motion data from the headset.

• dev - Device data information like the battery level, the wireless signal strength,
and contact quality of EEG sensors.

• pow - The alpha, low beta, high beta, gamma, and theta brain signals bands.

• met - Performance metrics detection.

• com - Mental commands detection.

• fac - Facial expressions detection.

• sys - The system events. These events are related to the training of mental
commands and facial expressions.

17

Application development

At first, the client must subscribe to the data stream sys to receive the training
events from Cortex. Then it has to perform the following steps:

1. Start the training by calling training procedures specifying the action to
train and the control field start.

2. On the sys stream, the client receives the event started.

3. After eight seconds, it receives one of these two events:

• The Event succeeded, the training is a success. The client can accept or
reject it.

• The Event failed, the data collected during the training is of poor quality,
the client must restart the training

4. Call training with the control accept to add the training to the profile. Or
using the control reject to dismiss this training.

5. Cortex API sends back the event completed to confirm that the training was
successfully completed.

Clients must save the profile to preserve new training otherwise it will be lost
unloading the profile. Furthermore, after the second and third step, it is even
possible to send the control reset to cancel the training.

In the end, the client can conclude a training session unsubscribing from the
sys stream with unsubscribe remote procedure.

18

Application development

3.2.6 Commands detection

The API let the possibility to register to several streams. Once properly subscribed
to a stream that is different from the sys one, the client receives messages with
regular frequency without and id field, Notifications in the JSON-RPC glossary,
defined as events in the Cortex documentation. For our purposes, we focus on fac

com and met streams.
The API classify facial commands in three main classes: eye movements, upper

face, and lower face actions. Upper and lower face actions are accompanied by
the upper and lower power fields, specifying the intensity of the command with a
floating number over a range of 0 to 1.

["eyeAct","uAct","uPow","lAct","lPow"]

The facial stream provide events with 32 Hz in the following format

{

"fac":["neutral","neutral",0,"clench",0.0576],

"sid":"a4f69c56-9769-4a4d-950c-490eb5ebe372",

"time":1559903035.2961

}

The mental stream presents data with a frequency of 8 Hz in the form of
["act","pow"] where act is the label of the detected action and pow is the relative
power expressed as a floating number over a range of 0 to 1.

{

"com":["pull",0.564],

"sid":"79cc669b-af2e-465a-bdc2-0e9bd4aebe80",

"time":1559903099.348

}

Each performance metric is a decimal number between 0 and 1. For each metric,
with the exclusion of excitement, there is also a flag isActive set to true if the
detection is running properly. It is set false if the detection cannot be performed,
for instance, due to a lack of EEG signal.

["eng.isActive","eng","exc.isActive","exc","lex",

"str.isActive","str","rel.isActive","rel","int.isActive",

"int","foc.isActive","foc"]

{

"met":[false,null,false,null,null,false,

null,true,0.266589,false,null,true,0.098421],

"sid":"6a68b92a-cb1f-4062-bf1f-74424fbae065",

"time":1559903137.1741

}

19

Application development

3.3 API mocking

Create mock-ups is a consolidated modern practice that improves the development
process within complex projects. Mocking can be done at many levels; code, API,
service, and can be used for multiple scenarios. Specifically, API mocking can
support both development and testing operations.

To speed up the development of the Xavier application, a mocked version of
Cortex v2 API has been developed to allow code testing in the absence of the real
headset.

3.3.1 Node.js

Node.js is an open-source development platform, useful for building highly scalable
and fast JavaScript applications. Node.js is built on v8, the JavaScript run-time
engine that powers the Google Chrome browser. It is designed to be used in
intensive asynchronous I/O applications, utilizing the non-blocking event-driven
architecture. Each Node.js application runs in a single-thread environment and
it can collect incoming requests in an event-queue. The main drawback of this
design architecture is the fact that the system is poorly efficient in CPU-intense
applications.

Node.js and its programming language JavaScript, together represent one of the
most diffused and popular solutions in the market of web technologies, counting a
very solid base community and a wide ecosystem of powerful modules.

3.3.2 Mocked Cortex v2

Mocked Cortex v2 is a Node.js application composed of a single JavaScript file. It
is capable to emulate only a subset of the whole procedures available in Cortex v2;
it supports login operations, training, and streaming remote procedures.

The Mocked application relies on the WebSocket node packet, provides a server
service on port 7000, and is composed of a main call-back function a series of
JavaScript functions, each one for a specific remote procedure. Each login and
training procedure sends back to the client a predefined well-formed JSON response
while streams subscriptions emulate a series of commands with random strength
intensity.

Facial expressions and Mental commands subscriptions are stored in global
variables using the setInterval() method and are released when clients request
unsubscriptions with clearInterval().

20

Application development

3.4 Xavier

Xavier is an exhaustive Qt application that is in charge to directly interact with
the end-user, collect data from the headset, and send commands to the vehicle.

It has been developed to be fully functional with Cortex v2 API as well as the
programs offered by the Emotiv company. The user can operate both from the
Xavier program or using official Emotiv programs, loading saving and using the
same profile; in this way, the user can do intensive training whenever he wants and
uses the same training-profile while driving the car within our application.

The final goal was to provide a fully functional instrument to the user directly
embedded in the car cockpit, taking care about ease of use and reliability exploiting
the capabilities offered by the headset.

Xavier_v2

Xavier_v2.pro

src

gui

gui.pro

qtquickcontrols2.conf

...

qml.qrc

cortexclient

cortexclient.pro

...

businessLogic

businessLogic.pro

...

qmsgpack

qmsgpack.pro

...

The whole Xavier project is divided
into three independent sub-modules,
each one with its resources and a
qmake file. Furthermore, a master
qmake file has been provided to estab-
lish the correct built order at compile
time.
The gui sub-module is composed of a
.conf file that specifies the look-and-
feel appearance, a series of qml scripts,
and .qrc qml resource file that list
all the available scripts.
The cortexclient sub-module is a
customized version of an official C++
the library offered by the Emotiv com-
pany page.

The sub-module named businessLogic is the supporting column of the whole
program, composed of key components able to coordinate the interaction between
gui and cortexClient.

In the end, we have the qmsgpack submodule that is used to convert lightweight
text messages to a from Paravan system.

Besides, the sub-directories cortexclient, businessLogic, and qmsgpack has been
treated as static libraries to speed up the compile time while the gui module
contains the entry point of the program.

21

Application development

3.4.1 Human-machine interface

Figure 3.1: Xavier graphic user interface - drive page during a driving session

The whole GUI adopts the Microsoft Universal Design Guidelines with a dark
theme to highlight the virtual elements and ensure good levels of contrast and
visibility in every condition. The overall effect is minimal and essential to keep the
user focused on the road.

The view is structured in a mainframe with two tool-bars; the one in the upper
part used for navigation in the application while the one at the bottom is used as a
prompt to notify the user for events, errors, and so on. The two tool-bars surround
the content composed by three overlapped pages: login page, training page, and
drive page.

At first, the login page is displayed to require the user’s credentials. During the
login procedure, the app is capable to notify errors like no headsets detected by
the system, wrong credentials, missing permissions in the bottom bar.

The training page lets the user select between two training sets: mental com-
mands and facial expressions. The user has to train neutral state at first in both
modalities, after that can select new commands to train or remove them, enforce
their response with further training sessions and also reset their history. Each train

22

Application development

session is supported by essential textual instructions and visual elements. The page
also drives the user through the correct usage of the application locking components
during training or when the neutral state has not been trained first.

Once the user is satisfied with his training sets it can move on the next page
with the drive button. The drive page is divided into three parts. In the center
part the user can bind trained commands with the four car operations: throttle,
brake, steer left, and steer right. For each car action, the UI offers a card layout
showing the command, a process bar of the detected intensity of the command, a
slider that controls the sensibility of the command, and a combo-box that gives
the possibility to choose the command. In the bottom part, there is a connection
box that let the possibility to specify the IPv4 address of the Paravan system and
the stream button that starts sending the flow of detected commands to the car.
In the upper part, the user has visual feedback of the detected commands by the
Cortex system and the corresponding operation on the steering wheel and pedals
of the car.

The entire application exploits the capability of qml language to natively handle
animations and use them to increase the feedback with the user and keep it aware of
critical operations. For instance, when the user presses the start button the whole
connection box starts to glow regularly with the accent color while the steering
wheel and the pedals move accordingly to empathized the fact that the commands
will be sent to the car.

Figure 3.2: Xavier application - login
page

Figure 3.3: Xavier application - train-
ing of the Surprise facial expression

23

Application development

3.4.2 Back-end communication

The application is structured in a way to obtain a neat division and independence
within modules. For this purpose, the cortexclient sub-module has to be maintained
as much consistent with the official release of this component while the businessLoic
sub-module coordinates the application behavior.

Cortexclient main characters are:

• cortexClient class, in chargeof establishing a web-socket connection and
exchange messages or events with Cortex API service.

• headset class, representing a physical Emotiv headset.

• headsetFinder utility class, able to search connected headsets.

• sessionCreator class that creates a logical connection between the Emotiv
headset and the Xavier application

The application logic relies on a MainController class that has to create a secondary
thread to handle asynchronously API events from the ones fired by the HMI.
Qt framework offers different solutions for multi-threading implementations; the
selected one is the GUI thread - worker thread one. It consist to keep all the classes
devoted to interact with the graphical user interface in the main thread and to
wrap all the other operations in a utility class that will be inflated in a secondary
thread: binder class in our case.

The binder is the common interface to all the functionalities offered by the
cortexclient sub-module and it is connected to MainController with several qt
signals. The MainController holds an instance of QThread via a QScopedPointer,
a wrap in the qt framework of std::uniqueptr smart pointer that ensures a safe
release of resources.

The QThread class offers predefined interfaces in terms of signals and slots to
handle its correct life cycle; the nested Class can be linked to those signals to start
its job and release gracefully its resources when the thread has to be closed. The
complete thread creation is shown in figure 3.4.

24

Application development

Figure 3.4: Creation of secondary thread

3.4.3 Front-end integration

The QML scripting language provides a fast way to prototype and create complex
graphics but its capabilities can sometimes be limiting. Qt framework offers the
possibility to extend the QML run-time engine with C++ functionalities, preferred
in high computational cost situations. The sub-module businessLogic provides a
special class called Bridge, able to interact with the QML engine. Thanks to the
macro PROPERTY() the developer can expose QML interfaces in the form of signals
and slot. Each property is composed by:

• attribute name to distinguish the property in the QML environment.

• private variable to store changes of the property.

• setter method to modify the attribute safely from both QML and C++ side.

• getter method to get the property value.

• slot to detect a change in the private variable.

25

Application development

The class is instantiated at the beginning of the program and after that inflated
in the QML engine thanks to the method setContextProperty(). In this way,
a Bridge global object is directly available in each QML script and each exposed
property is accessible via the dot operator. Each time a property is modified the
engine triggers the exposed slot to advise the back-end of the program.

On the other hand, the MainControler holds a reference to the Bridge object,
and using the getter and setter methods can modify safely its properties since the
engine can detect changes via the provided slot. The bridge properties were used
to handle interactions with the graphic user interface, prompt warning, and error
messages to the user.

Q_PROPERTY(

QString promptMessage

READ promptMessage

WRITE setPromptMessage

NOTIFY promptMessageChanged

)

Figure 3.5: Definition of the property promptMessage used to show warnings and
errors in the bottom nav-bar.

Figure 3.6: Interaction between the QML engine and C++ libraries. GUI element
represents whatever qml object belonging to the gui sub-module.

26

Application development

3.4.4 Commands processing

The Xavier application collects several commands from the headset with a frequency
of 8 Hz or 32 Hz, according to the selected set of trained features. These commands
are then processed by the CommandManager class to be compliant with the Paravan
system and filtered against several tuning indexes available in the user dashboard.
The user is allowed to choose between two modalities: normal mode drive and
assisted mode drive. In both, the user can manipulate the response intensity of
brake and steering wheel, setting the following parameters:

• Steering wheel:

– Steering duration, expressed in seconds

– Maximum angle in module, expressed in degrees where the 0 represent the
car going straight away

• Brake pedal:

– Brake duration, expressed in seconds

– Max Brake intensity expressed as a floating number in a range 0 1.

The command manager class, each time streaming begins, is fed with those parame-
ters and produces two vectors, vectorSteeringAngles, and vectorBrakeIntensity,
containing the cubic progressions of intensity that control the car behavior during
the drive session following the given specifications.

Figure 3.7: vectorBrakeIntensity with 1 second of duration time and 100%
max intensity - each time the command Brake is detected the program follows this
cubic function tho mitigate the brake intensity.

27

Application development

In normal drive mode, the detected commands are processed sequentially against
the produced vectors to forward actions with different intensity. For instance,
each time the brake command is held by the user the program iterate through the
vectorBrakeIntensity to progressively increase the brake power. Once reached
the end of the vector command manager holds the command with max intensity as
long as the user holds the command.

Commands are stored in a circular buffer and filtered against the
getFilteredAction function. Each new incoming command is pushed into the
buffer, customize-able via the buffer size field, and at each iteration, the filter
function returns the most relevant command in the buffer keeping consistent and
smooth command transactions. The last two customize-able fields in normal drive
mode are Steering acceleration intensity, which specifies the amount of throttle
needed during a steering and acceleration intensity that locks the amount of throttle
while going straight away. This mode is quite sensible to a lack of concentration
and detection errors. On the other, hand is easy to configure and ready to go.

Figure 3.8: Xavier application - assisted mode settings panel

In Assisted drive mode detected commands are still stored in a circular buffer but
are filtered with a further parameter called elementsThreshold which represents
the minimum number of occurrences in the buffer, for a given command to let it
be detected. For instance, if we set this parameter with 3, each command has to
be present at least 3 times to be sent to the car. The assisted mode drive supports

28

Application development

all the features provided in the normal one plus three more parameters:

• Constant steering duration: the number of seconds to hold the steering position

• Acceleration duration: seconds to hold the acceleration in a straight way

• minimum number of elements in the buffer: that represents the command
manager elementsThreshold

Figure 3.9: vectorSteeringAngles with 3 second of duration time and 5 seconds
of const steering time

29

Chapter 4

Simulation

In the next part of this thesis project, a simulation environment has been provided
to test the Xavier application in a safe way.

The simulators are composed of a Linux operating system, the robot operating
system framework - ROS - and a collection of Python and C++ programs. Then
simulator systems have been deployed using Docker technology.

In the following section, we will analyze the stack of technologies that compose
the simulation and illustrate the judgment metrics with which to evaluate the
quality of the Xavier BCI system.

4.1 Docker

Virtualization, the abstraction of physical hardware, could be very useful to wrap
an application ensuring isolation. On the other hand, this technique suffers in
performances since needs to include in a virtual machine a full copy of the required
operating system, the application itself, and all the libraries and binaries.

Docker is a smart software solution for packaging and deploy code into stan-
dardized units called containers. Respect to virtualization, Docker offers a common
infrastructure layer, letting containers to share OS dependencies and packing only
the necessary for the application, assigning for each container unit an isolated
lightweight process in user-space.

A system administrator can deploy oodles containers on the same machine,
configure their ports as interfaces for clients as well as other containers, and ensure
at the same time good performances, security among units, and scalability.

Nowadays docker and its containers represent a huge trend in application
deployment and it is supported by the most relevant players in hosting business.

30

Simulation

4.1.1 Architecture and deployment

Once properly installed, Docker is present in the form of a daemon program and it is
in charge to administer containers. Furthermore, that daemon offers the possibility
to interact with the Docker environment via a CLI application and a REST API.

Each running container is associated with a single process in the user space and
can interact with its private file system only, stored in a so-called Docker image.
Docker images include all needs by the application, binaries OS objects, and so on.
Different containers can start from the same image, customize it, and produce an
extended one for its purposes. Available official Docker images are collected on an
online service called Docker hub.

The programmer can automatically deploy a Docker image with a script doc-
ument called Dockerfile copying source codes, build them, install programs from
package managers, and also expose ports.

4.1.2 Nvidia Docker

Hardware Infrastructure (CPU + GPU)

Host OS

Docker Engine

Container A

Bins/Libs

CUDA driver

CUDA toolkit

App_1 Container B

Bins/Libs

App_2

Figure 4.1: Docker architecture - Stack representation of the docker abstraction
layer and two deployed applications. Boxes in green represent Nvidia drivers and
tool-kits

Docker containers are remarkably efficient for service deployment and formal
computation but can suffer in performances while used for graphics applications like
3D simulations. Intense graphics computation required special equipment called
the graphics graphics process unit - GPU. A GPU will support the CPU addressing

31

Simulation

directly in hardware expensive parallel computation that involves matrices and
arrays. The Nvidia company, a producer of GPU, offers a complete platform for
parallel computing called CUDA - Compute Unified Device Architecture. Since
Docker does not support GPU computation, a third-party toolkit has been developed
by Nvidia to support its CUDA API to interface with their products. The toolkit
its an open-source project available on the official GitHub page of the company
and currently has support only Linux machines. For the scopes of that project
version 2.0 has been used.

4.2 ROS

The robot operating system is an open-source project started by the Stanford
Artificial Intelligence Laboratory in 2007, supported nowadays by the OSRF - Open
Source Robot Foundation. ROS is a software platform that provides tools and
libraries for hardware-independent robotic applications.

It offers a high degree of scalability and re-usability: ROS projects are structured
as independent packages, a collection of run-able programs called nodes, capable to
communicate within the system via a publisher-subscriber paradigm. It supports
data communication among multiple operating systems allowing interaction within
different hardware facilities. Besides it collects several tools for debugging and
program development, all of them available with both command-line and graphical
user interface and guarantees compatibility with the most relevant programming
languages like C++, Python, Java, MATLAB and so on.

That framework has been shipped with two licensing plans, BSD and Apache,
promoting collaboration among different projects and encouraging the growth of
the platform itself.

4.2.1 Architecture

Once installed upon a Linux distribution, some steps are required to properly run
ROS projects :

1. source ROS commands in /opt/ros/<ros-version>/setup.sh

2. run the command roscore in a separate terminal, which is a collection of
programs that are mandatory for a ROS system.

The roscore is composed of three main components: the master node, a parameter
server, and a logging node.

ROS master node is in charge to administrate the nodes, classifying them as
publishers and subscribers, and holds their subscriptions to topics as well as services.
It consists of an XMLRPC server that allows a node to locate one another. Once

32

Simulation

these nodes have detected each other they can communicate peer-to-peer without
the interaction of the master. To do so that node exposes an XMLRPC-based API
accessible via client libraries like roscpp or rospy.

The parameter node is used by nodes to keep track of configuration parameters
at run-time. This component is directly connected to the master one and for this
reason, its API is available in the same way through the XMLRPC protocol.

In the end, the rosout node is responsible to collect all the messages coming
from the running systems and present them to the programmer within 5 verbosity
levels:

• DEBUG debugging, a run-time inspection of variables

• INFO Meaningful information presented to the end-user

• WARN Situation that may lead to errors

• ERROR Fixable problems

• FATAL Unrecoverable problems that cause the end of execution

From now on the user can build packages stored in the catkin_workspace folder
and run them via the CLI interface or launching a roslaunch file, a script document
written using the XML language.

4.2.2 Rqt

Rqt is a wrapping framework around the already presented Qt that allows expanding
nodes capabilities with flexible and customize-able graphic user interfaces. It is struc-
tured in three meta-packages: the rqt framework library itself, rqt_common_plug,
and rqt_robot_plugins. Rqt custom plugins can be written in python or C++
and they provide GUI components via the legacy widget mode where interfaces are
described via XML files.

The Rqt plugins also allow the user to interact directly with the ROS environment,
manipulating perimeters, showing logs, plot data, control movements, send messages,
and so on.

This library is very useful for fast prototyping and usually used to experiment
with nodes at development time, before realizing the final structure of nodes. In this
thesis project, the rqt_graph plugin has been very useful to debug and understand
relationships between nodes and topics.

33

Simulation

4.2.3 Rviz

Rviz is the ROS built-in 3D visualization tool, allowing us to easily visualize and
interpret messages in a three-dimensional Cartesian plane. Thanks to the support
to the Unified Robot Description Format - URDF - this tool is able to show a
3D representation of a machine that can be directly manipulated from the user
according to the device description, and visualize the collected sensing information
from robot’s built-in devices like proximity sensors, LIDAR sensors, sonar sensors,
cameras and so forth.

4.2.4 Gazebo

Gazebo is an open-source project supported by OSFR that offer a comprehensive
3D simulation environment. The application is shipped into two versions: A stand-
alone version and a gazebo_ros_pkgs collection of packages which is a wrapper
around the former. It supports several high-end physics engines like ODE, Bullet,
and Simbody. The environment and objects in Gazebo are usually represented in
the SDF open format, an XML-like textual format used to describe the objects in
the space, the simulation environment, physical characteristics, and so forth.

34

Simulation

4.3 Car demo simulator

Figure 4.2: Car demo - View of Gazebo with the car on the starting line

Car demo is an open-source project available on the official page of the OSRF
foundation which allows us to set up a complete simulation environment for
automotive applications. It is a mock-up ROS project structured in a way to easily
deploy it in a container thanks to the Nvidia Docker technology.

The project offers a ready-to-run simulation of a Toyota Pius car, equipped with
cameras, Lidars, and proximity sensors. It is composed of three ROS packages, a
dockerfile script, and two bash scripts for building and deployment procedures.

Prius_description contains all the necessary scripts to describe the car struc-
ture, behavior, and appearance in the simulator. The car is rendered based on
several mesh files in png format and the overall car structure and equipment are
described in the prius.urdf script.

Prius_msgs defines the main interface with which the Toyota car accepts mes-
sages. The car has 3 gears expressed as eight-bit integer numbers - neutral, forward,
and reverse - while throttle, brake, and steering are expressed as sixty-four-bit
floating numbers.

35

Simulation

The last and main package is called car_demo and contains:

• A Ros node used to interpret messages coming from a controller

• The Rviz configuration file

• The description of the world rendered by Gazebo

• A launch file used to run all the nodes required for the project

.
For our purposes, that mock-up project has been consistently modified to produce

an efficient and light-weight simulator used to test maneuvers with the car controller
via the Xavier application and keep notes about the times.

4.3.1 Project customization and final architecture

The first modification applied to the mock-up was to remove all the unnecessary.
The car description file has been reduced to the only part that belongs to the
chassis and mechanical components, all the sensors have been removed to decrease
the computational effort made by the hosting machine and the Rviz panel has been
disabled from the ROS launch file as well as the joystick translator. Besides, a
following point-of-view where added to let the user control the car having always
the vehicle in the center of the screen.

In the end, the project has been extended with further ROS packages:

• cmd_prius_w_msgpack that emulates the Paravan system, It is composed of
a simple UDP client and a C++ ROS publisher that converts messages into
ones suitable with the standard accepted by the simulator.

• a stopwatch script written in Python able to interact with the ROS environ-
ment.

• tf_watchdog, a collection of python scripts in charge of rendering a path in
the simulator and check the car position in the map

Figure 4.3: Car demo - Final structure of nodes, each node communicate within
the system thanks to the topics, the arrows.

36

Simulation

4.3.2 Stopwatch ROS package

Figure 4.4: The Stopwatch application

The stopwatch is an application written in Python that lets the user record
time intervals using the system clock, to take some notes for each recording and
also allow to export a whole recording session into a CSV file. The graphic user
interface has been developed via the Tkiniter library and present two buttons for
start and stop the recording, an export button used to export info into CSV file,
an input field box that let the user take notes about the recordings and a large
output field for logging purposes.

Furthermore, the stopwatch application offers an extended version of the regular
application which allows this node to define a ros-topic and listen for messages. In
this way, the start and stop commands can be triggered by others nodes in the
system simply publishing a message to that topic.

37

Simulation

4.3.3 Watchdog ROS package

That ROS module is composed of two python scripts, the cone spawn-er and the
watchdog itself.

The cone spawn-er is in charge to render a predefined path in Gazebo rendering
some road cones in the virtual environment. This module automatically computes
a quadratic Bézier curve, a particular parametric curve used in computer graphics.

P0

P1

P2

B(t) = (1− t)[(1− t)P0 + tP1] + t[(1− t)P1 + tP2] , 0 ≤ t ≤ 1

= (1− t)2P0 + 2t(1− t)P1 + t2P2 , 0 ≤ t ≤ 1

Figure 4.5: Given the points P0 P1 and P2, a quadratic Bézier curve is described
by the function B(t)

Each path is composed by two parallel curves, saved in a dictionary specifying
the three points and the cones are spawned accordingly using the code snippet
depicted below.

1 de f compute t ra j ec to ry (p0 , p1 , p2) :
2 path x = []
3 path y = []
4 dt = np . arange (0 , 1 , 0 . 1)
5 f o r t in dt :
6 # b(t) = (1− t) ˆ2∗p0 + 2 t (1− t) ∗p1 + t ˆ2p2 , t in [0 , 1]
7 # a = (1− t) ˆ2
8 # b = 2 t(1− t)
9 # c = t ˆ2

10 a = (1− t)∗(1− t)
11 b = 2∗ t∗(1− t)
12 c = t ∗ t
13 x = (a∗p0 . x) + (b∗p1 . x) + (c∗p2 . x)
14 y = (a∗p0 . y) + (b∗p1 . y) + (c∗p2 . y)
15 path x . append (x)
16 path y . append (y)
17 re turn path x , path y

38

Simulation

The watchdog node itself is in charge to check the car position on the map in
gazebo, trigger the stop command of the stopwatch when the finish line has been
reached and re-positioning the car on the starting line in order to run another drive
session. This goal has been achieved thanks to the transformation /tf topic of
ROS. The ROS tf package is used to keep track of multiple coordinate frames over
time and allow to transform points and vectors.

An instance of the TransformListener class has been instantiated in the script
to subscribe to ROS transform messages via the lookupTransform() method. This
function will return lists: the linear transformation of the child frame relative to
the parent and the quaternion required to rotate from the parent orientation to
the child orientation.

4.3.4 Building and running procedure

The whole project has been built via the the Dockerfile. Each command in that
script file represent a layer. The Docker system keeps track of each layer computing
its hash in a way that layers already computed can be cached, speeding up the
entire building procedure.

1 # official ROS image hosted on dockerhub by the OSRF foundation
2 FROM osrf/ros:kinetic−desktop
3

4 RUN apt−get update \
5 && apt−get install −y \
6 wget \
7 lsb−release \
8 sudo \
9 mesa−utils \

10 && apt−get clean
11

12

13

14 # Get gazebo binaries
15 RUN echo ”deb http://packages.osrfoundation.org/gazebo/ubuntu ‘lsb release −cs‘ main” > /

etc/apt/sources.list.d/gazebo−stable.list \
16 && wget http://packages.osrfoundation.org/gazebo.key −O − | apt−key add − \
17 && apt−get update \
18 && apt−get install −y \
19 gazebo9 \
20 ros−kinetic−gazebo9−ros−pkgs \
21 ros−kinetic−fake−localization \
22 && apt−get clean
23

24

25

39

Simulation

26 # Get msgpack http s://msgpack.org/
27 # It is used to parse UDP packets coming from the Xavier application
28 RUN git clone https://github.com/msgpack/msgpack−c.git \
29 && cd msgpack−c \
30 && cmake . \
31 && make \
32 && sudo make install \
33 && cd ..
34

35 # setup the ROS workspace environment under the /tmp folder
36 RUN mkdir −p /tmp/workspace/src
37 COPY prius description /tmp/workspace/src/prius description
38 COPY prius msgs /tmp/workspace/src/prius msgs
39 COPY car demo /tmp/workspace/src/car demo
40 COPY tf watchdog /tmp/workspace/src/tf watchdog
41 COPY stopwatch /tmp/workspace/src/stopwatch
42 COPY cmd prius w msgpack /tmp/workspace/src/cmd prius w msgpack
43 RUN /bin/bash −c ’cd /tmp/workspace \
44 && source /opt/ros/kinetic/setup.bash \
45 && catkin make’
46

47

48 CMD [”/bin/bash”, ”−c”, ”source /opt/ros/kinetic/setup.bash && source /tmp/workspace/
devel/setup.bash && roslaunch car demo demo.launch”]

After the building porcedure a car_demo image has been produced and can be
launched using the ./run_demo.bash. That scripts is able to run the container via
the rocker program, provided by OSRF, that help to run graphic programs within
a container.

rocker --nvidia --x11 \

--oyr-run-arg "--name=car_emulator -p 6071:6071/udp" \

-- osrf/car_demo

The nvidia parameter specifies that the container has to be triggered with CUDA
enabled, the name parameter defines the name assigned to the generated container
while the p parameter designates the ports mapping between host machine and
container. The last parameter is required to properly forward UDP messages coming
from Xavier to the container, reaching the cmd_prius_w_msgpack node. After
launching the container it can be reached for further analysis running a terminal
session via the command: docker exec -it car_emulator bash or terminate
the container via docker kill car_emulator.

The last command specified on the Dockerfile at row forty-eight, once the
container has be ran, will source the ROS commands, the built packages in the
workspace directory and finally launch the demo.launch script

40

Simulation

1 <?xml version=”1.0”?>
2 <launch>
3 <arg name=”model” default=”$(find prius description)/urdf/prius.urdf”/>
4 <param name=”robot description” textfile=”$(arg model)”/>
5

6 <include file =”$(find gazebo ros)/launch/empty world.launch”>
7 <arg name=”verbose” value=”false”/>
8 <arg name=”world name” value=”$(find car demo)/worlds/mcity.world”/>
9 </include>

10

11 <node pkg=”robot state publisher” type=”robot state publisher” name=”
robot state publisher”/>

12 <node pkg=”fake localization” type=”fake localization” name=”fake localization”/>
13 <node pkg=”tf2 ros” type=”static transform publisher” name=”very inaccurate odom”

args=”0 0 0 0 0 0 odom base link”/>
14

15 <node name=”spawn urdf” pkg=”gazebo ros” type=”spawn model” args=”−param
robot description −urdf −x 3 −y −12 −z 0.5 −model prius”/>

16

17 <node pkg=”tf watchdog” type=”watchdog.py” name=”prius tf watchdog”>
18 <param name=”/use sim time” value=”true”/>
19 </node>
20 <node pkg=”cmd prius” type=”cmd prius node” name=”cmd prius node”/>
21 <node pkg=”tf watchdog” type=”cone spawner.py” name=”cone spawner”/>
22 <node pkg=”stopwatch” type=”stopwatch.py” name=”stopwatch”/>
23

24 </launch>

The first half of the script, from line 3 up to line 16, is the legacy one in charge of
launching the Gazebo application, setup the car model, spawn it in the simulation
environment and enable the model tracing withing ROS.

The second half instantiate all the custom nodes that explained in the previous
sections: the stopwatch, the watchdog, the cone spawn-er, and the Paravan system
emulator.

41

Chapter 5

Testing and conclusions

Figure 5.1: The Stopwatch application

In this final chapter we will present all the results obtained by the whole
system, the training procedure, the drive simulations, and some results in terms
of accuracy, exploiting the different driving combinations: facial expressions or
mental commands, normal drive mode, or assisted mode. In the end, we will
trace some conclusions about the goals achieved by the project, some proposals for
the next iteration of the Xavier application, and the expectations for the further
developments of the entire project.

42

Testing and conclusions

5.1 Testing with car demo

After the release of the Xavier application and the simulator, several free drive
sessions were conducted in order to judge the overall response of the car to the
headset inputs and let the user be enough confident with the system. In the end,
more formal tests have been conducted.

All the tests were attended by a single subject since the training procedure, the
environment setup, and taking confidence with the headset is quite time-consuming.

5.1.1 Training

Before the actual ride, the BCI system requires a training session that has to last
≈ 20 minutes per mental commands and a few minutes for facial expressions to be
effective, as suggested by the official Emotiv guide. The system does not restrict
the kind of signals that can be used in any way. Each user is free to use whatever
type of tough, with the only requirement that it has to be reproducible. Usually
the most frequent inputs are tough concerning the movement of objects or body
parts like arms or feet.

The training has been performed via the official Emotiv application.

5.1.2 Tests

Tests have been divided into two so-called drive sessions; One with Facial expressions
has been last ≈ 45 minutes while the one with Metal commands ≈ 2 hours.

For each drive session, has been asked to the user to run as much as ride as
possible, in both left-curve path and right-path, using assisted and normal mode.
For each combination 5 ride has been selected and assessed. The results are reported
in Table 5.1, Table 5.2, Table 5.3, and Table 5.4. In the end, means and standard
deviation have been computed and reported in Table 5.5

m = 1
n

nØ
i=1

xi = x1 + x2 + · · ·+ xn

n

Figure 5.2: Arithmetic mean of n
elements x1 · · ·xn

σ =
óqn

i=1(xi −m)
n

Figure 5.3: Standard deviation of n
elements x1 · · ·xn

43

Testing and conclusions

Table 5.1: Facial expression
normal mode

Path Time (s)
1 Left curve 17.032
2 Left curve 19.041
3 Left curve 23.347
4 Left curve 26.676
5 Left curve 31.244
1 Right curve 16.637
2 Right curve 20.168
3 Right curve 21.041
4 Right curve 23.111
5 Right curve 24.593

Table 5.2: Facial expression
assisted mode

Path Time (s)
1 Left path 28.666
2 Left path 31.462
3 Left path 37.112
4 Left path 37.501
5 Left path 40.664
1 Right path 28.932
2 Right path 31.341
3 Right path 32.52
4 Right path 37.989
5 Right path 39.396

Table 5.3: Mental commands
normal mode

Path Time (s)
1 Left curve 164.824
2 Left curve 170.848
3 Left curve 213.579
4 Left curve 234.832
5 Left curve 269.069
1 Right curve 152.619
2 Right curve 153.743
3 Right curve 203.291
4 Right curve 213.057
5 Right curve 275.448

Table 5.4: Mental commands
assisted mode

Path Time (s)
1 Left path 196.263
2 Left path 224.825
3 Left path 234.808
4 Left path 256.426
5 Left path 280.094
1 Right path 172.905
2 Right path 176.985
3 Right path 190.464
4 Right path 219.246
5 Right path 241.612

Table 5.5: Means and standard deviations

BCI mode Drive mode Mean Standard deviation
Facial exp Normal 22.289 4.275
Facial exp Assisted 34.559 4.220

Mental com Normal 205.131 42.720
Mental com Assisted 219.363 33.389

44

Testing and conclusions

5.2 Tests assessment

The results of the tests shown a significant difference in time performances between
driving with Facial expressions and Mental commands; The paths have been
covered in an average time of 28,42390959 seconds with facial commands against
the 212,246977 seconds with mental ones.

Indeed, the implementation of the assisted mode algorithm has been judged
looking at the average time covered against rides performed in normal mode, with
both mental commands and facial expressions. The data depicted in Figure 5.4
and Figure 5.5 shown better results in favor of normal mode in both drive sessions.
Further investigations have been conducted to statistically prove the meaningfulness
of that assessment.

Figure 5.4: Facial expression test results - distribution, mean and standard
deviation of tests conducted in normal mode (on the left) and assisted mode (on
the right)

Figure 5.5: Mental commands test results - distribution, mean and standard
deviation of tests conducted in normal mode (on the left) and assisted mode (on
the right)

45

Testing and conclusions

5.2.1 Student’s t-test

The Student’s t-test is a statistical tool used to tell if there is a significant difference
between the means of two groups. We used that tool to assess that the higher average
(less performance) obtained in the assisted mode is due or not to randomness.

The judgment process starts defining a null hypothesis H0, which states that
there is no statistical difference between the means of two populations, and an H1
hypothesis that states the opposite.H0 : µ1 − µ2 = 0

H1 : µ1 − µ2 /= 0

The test will produce a t-statistic ts value which is the fraction of the difference
between sample means and the pooled standard deviation s12

ts = (X1 −X2)− (µ1 − µ2)
s12

ñ
n1+n2
n1n2

H0−→ ts = X1 −X2

s12
ñ

n1+n2
n1n2

s12 =
ó

(n1 − 1)s12 + (n2 − 1)s22

n1 + n2 − 2
T-statistic can be interpreted by comparing it to critical values from the t-
distribution. The critical value can be calculated using the degrees of freedom and
a significance level with the percent point function (PPF).

In the end the null hypothesis can be accepted if and only if

|ts| ≤ tc

These test has been conducted using python and the open-source libraries scipy
and numpy, with a significance level of 0.05 - 95% of confidence.

1 def ttest eval (a,b,alpha=0.05):
2 t statistic , p value = stats. ttest ind (a,b)
3 # degrees of freedom
4 df = len(a) + len(b) − 2
5 t critical = stats.t .ppf(1.0 − (alpha/2), df)
6 print(’ ts : %s’ % t statistic)
7 print(’ tc : %s ’% t critical)
8 if abs(t statistic) <= t critical) :
9 print(’ [abs(ts) <= tc] Accept null hypothesis that the means are equal.’)

10 else :
11 print(’ [abs(ts) > tc] Reject the null hypothesis that the means are equal.’)

46

Testing and conclusions

>>> import data as d

>>> d.ttest_eval(d.facial_normal, d.facial_assisted)

ts: -6.12816409020712

tc: 2.10092204024

[abs(ts) > tc] Reject the null hypothesis that the means are equal.

>>> d.ttest_eval(d.mental_normal, d.mental_assisted)

ts: -0.7874355997696234

tc: 2.10092204024

[abs(ts) <= tc] Accept null hypothesis that the means are equal.

As we can see the null hypothesis was rejected for the two facial groups, meaning
that they belong to different means i.e we can confirm that the assisted mode
affected negatively the performances of the driver.

On the other hand, the test applied to the mental groups confirms the null
hypothesis meaning that we cannot judge as separate results the two means since
they belong to the same distribution with the same global mean µ.

In the end, the assisted mode seems to decrease the system performances using
facial expressions, slowing down the overall reaction while we do not observe the
same issue driving with mental commands, but at the same time, that mode does
not increase the ease-of-use and reliability of the system.

Figure 5.6: t-test graphic representation - facial expressions on left, mental
commands on the right. The green zone represents the acceptance region of the H0
hypothesis between [-tc,tc]

47

Testing and conclusions

5.3 Final considerations

The third iteration of the Xavier project is more mature and robust, with the
possibility to extend and scale the project in the future, but it is not exempt from
problems and some issues have been found an presented in the following sections.

In conclusion, the Xavier application could be considered as a starting point for
the development of more sophisticated algorithms, that have to be tested with a
larger number of testers.

5.3.1 Operating system

Cortex API is (currently) available for personal computers only with Windows and
MacOSx. Consequently, the system needs a secondary x86 architecture machine
directly installed into the car to run the Xavier program and interact with the
Headset. Cannot run the application on a Linux OS system is quite limiting
since the majority of the infotainment car’s systems relies on it. In general, the
impossibility to run that code on a RISC system on chip discourage the usage of
the Emotiv system in resource-aware systems.

On the other end, the company is releasing many updates for the system and
recently it has also launched a mobile application to experiment with the helmet.
This should suggest the company’s interest in mobile/RISC development and a
further version of the Cortex API compatible with these systems.

5.3.2 Headset maintenance

One of the crucial points of the system was the headset itself. The Emotiv Epoc+
device has a lot of pros respect other products available in the market but it is not
free from defects.

The principal point of failure of the Epoc+ is the electrode. These compotes
need to bee attached and removed for each session with the system and treated
with the saline solutions. The following problems have appeared emerged with
them:

• The locking mechanism of a single electrode is composed of a thin piece of
plastic used to anchor the component on the root of one of the mounting points.
This piece is way too unreliable for common use for a driver since it is brake
prone. Once broken the lock mechanism, the electrode is not able to keep a
good connection with the headset, affecting the results of the monitoring or
even worst the impossibility to set the electrode in place. The Epoc+ headset
must have all the electrodes in place to run a session since missing electrodes
cause noise and they will stain the overall recording.

48

Testing and conclusions

• Each electrode presents a small coated metal plate used to transmit bio-
potentials received from the soaked felt. After an intense use of the headset for
several months, the plates started to being oxidized. This issue is reported by
the user manual of the headset, saying it should not affect the performances.

• Electrodes are soaked before each ride with a common saline solution available
on the market. The system will ensure a good capture of the signals if and
only if all the electrodes are soaked enough. In the longest test sessions, some
tests were judged unreliable due to the low precision of the Epoc+ device
caused by drying electrodes. This phenomena also affect the ease-of-use of the
system since once removed all the electrodes and re-positioned in place, the
user should train again commands for better results.

Further issues came along with the charge of the headset; during several tests, we
experienced a lack of precision when the Epoc+ is not fully charged. It is also
unusable if the charge is lower than 25%.

Indeed long driving sessions (2 hours and more) with the headset may cause
headaches and itch on the head of the subject.

Nowadays commercial BCI solutions are not so expansive and the market offers
a lot of different solutions: An headset with fewer electrodes like the Epoc one,
from the same company, could be much easier to use, already compatible with our
system, more accessible, better power consummations but less accurate ad with
same issues about electrodes. A completely distinct solution could be a headset
with fixed electrodes which does not require a saline solution, like the Muse two
headset. Unfortunately, this device currently does not offer any public API for
developers and presents only a few channels in the 10-20 positional system, being
poorly accurate for our purposes.

Figure 5.7: Muse 2 headset

49

Testing and conclusions

5.3.3 Driving algorithm

During the tests, we notice good results and performances with facial expression,
given by both user satisfaction and times per lap. We also demonstrate the
inefficiency of the assisted mode using facial expressions statistically but we also
hi-light the huge time gap between facial expression and mental commands driving
sessions.

We suggest for future developments to exploit different algorithm strategies and
new headset features, combined to enhance the driving experience, and to find
further testing tetchiness that could speed up the testing process in Gazebo.

Possible solutions could be to pair the headset with other sensing devices like
a camera and a Lidar to assist the driver with some ADAS-like systems. The
car demo emulator already provides all the necessary to explore in that direction.

Indeed we propose to study the possibility to use raw data from the headset and
train by our self a neural network since the Cortex API, as closed source code, does
not give us a real comprehension of what is behind the training and live mode.

5.3.4 Xavier application

At the end of the project, the Xavier application itself has achieved a higher level of
maturity respect the predecessors, but during the intense test sessions we registered
some issues:

• Despite the huge step over in the HMI, some use cases like the training has to
be re-designed since they don’t give the necessary feedback to the user. We
experienced that a training session can be more engaging if the user could
have visual feedback from the program, like a moving cursor or object. The
same strategy has been applied by the latest official Emotiv applications.

• The version 1.0 of the Xavier application had serious problems with dangling
pointers due to a bad implementation of the framework. The new version fixes
this problem but it showed some issues concerning code design, also in terms
of memory allocation. We suggest for for further implementations to re-design
the two thread interaction and to reconstruct the linking between back-end
components

50

Bibliography

[1] J. Richard Caton. «The electric currents of the brain». In: British Medical
Journal 2 (1875).

[2] Mario Tudor. «Hans Berger- the history of electroencephalography». In: Acta
Med Croatical 59,4 (2005), pp. 307–313.

[3] J. Kamiya. «Conscious Control of Brain Waves». In: Psychology Today 1
(1968), pp. 56–60.

[4] Henry Gray. Gray’s Anatomy of the Human Body. London, GB: John William
Parker, 1858 (cit. on p. 3).

[5] Martin Strmiska Zuzana Koudelková. «Introduction to the identification of
brain waves based on their frequency». In: MATEC Web of Conferences
(2018).

[6] Emotiv co. The Introductory Guide to BCI. url: https://www.emotiv.com/
bci-guide/.

[7] Cassidy AndrewJoseph. Mastering Mental Commands. url: https://www.
emotiv.com/knowledge-base/training-mental-commands/.

[8] Emotiv co. Cortex v2 API. url: https://emotiv.gitbook.io/cortex-
api/.

[9] Qt co. Qt and QML 5.15 API. url: https://doc.qt.io/qt-5/reference-
overview.html.

[10] Docker co. Docker documentation. url: https://docs.docker.com/.

[11] Nvidia co. Nvidia-docker poroject. url: https://github.com/NVIDIA/

nvidia-docker.

[12] Open robotics. Ros wiki. url: http://wiki.ros.org/Documentation.

[13] Open robotics. Car demo. url: https://github.com/osrf/car_demo.

[14] Gianmarco Altoè. Notes from course: Corso di Psicometria Progredito. url:
https://people.unica.it/gianmarcoaltoe/files/2012/04/lezione4.

1_test_t.pdf.

51

https://www.emotiv.com/bci-guide/
https://www.emotiv.com/bci-guide/
https://www.emotiv.com/knowledge-base/training-mental-commands/
https://www.emotiv.com/knowledge-base/training-mental-commands/
https://emotiv.gitbook.io/cortex-api/
https://emotiv.gitbook.io/cortex-api/
https://doc.qt.io/qt-5/reference-overview.html
https://doc.qt.io/qt-5/reference-overview.html
https://docs.docker.com/
https://github.com/NVIDIA/nvidia-docker
https://github.com/NVIDIA/nvidia-docker
http://wiki.ros.org/Documentation
https://github.com/osrf/car_demo
https://people.unica.it/gianmarcoaltoe/files/2012/04/lezione4.1_test_t.pdf
https://people.unica.it/gianmarcoaltoe/files/2012/04/lezione4.1_test_t.pdf

	Acronyms
	State of the art
	The Nervous system
	The Brain
	Neurons

	Neuroscience tools
	Electroencephalography
	Brain waves processing
	EEG devices
	10-20 system
	Advantages and Disadvantages
	EEG and Brain-computer interface

	Hardware Equipment
	Headset
	Paravan system
	Additional virtual cockpit

	Application development
	Qt framework
	Qt messages system
	QtQuick and QML
	Sub-directories system

	Cortex v2 API
	JSON-RPC
	Authorization and headset pairing
	Session and data persistence
	Commands
	Training procedure
	Commands detection

	API mocking
	Node.js
	Mocked Cortex v2

	Xavier
	Human-machine interface
	Back-end communication
	Front-end integration
	Commands processing

	Simulation
	Docker
	Architecture and deployment
	Nvidia Docker

	ROS
	Architecture
	Rqt
	Rviz
	Gazebo

	Car_demo simulator
	Project customization and final architecture
	Stopwatch ROS package
	Watchdog ROS package
	Building and running procedure

	Testing and conclusions
	Testing with car_demo
	Training
	Tests

	Tests assessment
	Student's t-test

	Final considerations
	Operating system
	Headset maintenance
	Driving algorithm
	Xavier application

	Bibliography

