
POLITECNICO DI TORINO

Department of Control and Computer Engineering
Master degree course in Computer Engineering

Master Degree Thesis

Lane detection algorithm for
automotive applications

Implementation of a GOLD-based machine vision algorithm on a
high-performance system on chip

Supervisor
prof. Massimo Violante

Candidate
Alberto Riorda
Student ID: 252788

July 2020

Alla mia famiglia, per i
sacrifici fatti e il
supporto datomi lungo
tutti questi anni di
percorso universitario,
e a Serena, senza la
quale non avrei
raggiunto questi
traguardi.

Contents

List of Tables 6

List of Figures 7

1 Introduction 9

I General introduction to addressed topics 11

2 Autonomous driving 13
2.1 Introduction to autonomous driving 13
2.2 Definition of autonomous driving according to SAE 15
2.3 General structure of an automated driving system 18

3 The lane detection problem 23
3.1 Introduction to lane detection . 23
3.2 Traditional algorithms . 26
3.3 Neural network-based algorithms 30

4 The GOLD system 35
4.1 Bertozzi and Broggi’s algorithm . 35

4.1.1 Image transformation . 35
4.1.2 Processing algorithm . 39

4.2 Results and conclusions on GOLD algorithm 40

II The GOLD-based lane detector implementation 43

5 The software implementation 45
5.1 Introduction to the system . 45
5.2 The application . 47

5.2.1 Graphical user interface module 47
5.2.2 Lane detection processing module 49

4

6 The hardware setup 61
6.1 Hardware description . 61
6.2 Simulation and final setups . 64

III Test results and conclusions 67

7 Results 69
7.1 Timing results . 70
7.2 Elaboration results . 74

8 Conclusions 85

IV Appendices and Bibliography 87

A Embedded Linux and the YOCTO project 89

B The pinhole camera model and 3D to 2D transformations 97

Bibliography 103

5

List of Tables

2.1 End-to-end design methods . 22
3.1 Sensors for lane detection task . 25
3.2 Model fitting methods . 28
7.1 System performance at 30 FPS . 70
7.2 Threads performance at 30 FPS - 1 71
7.3 Threads performance at 30 FPS - 2 71
7.4 System performance at 24 FPS . 72
7.5 Threads performance at 24 FPS - 1 72
7.6 Threads performance at 24 FPS - 2 73

6

List of Figures

2.1 SAE - J3016: table of levels of automation 17
2.2 Example of a Vehicular Ad hoc NETwork (VANET) 19
2.3 Architecture of a modular autonomous driving system 20
3.1 Lane detection process flow for traditional algorithms 29
3.2 Structure of a generic neural network, from: https://www.researchgate.

net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_
fig1_321259051, [accessed 22 Mar, 2020] 31

3.3 Structure of a generic convolutional neural network, from: https://
miro.medium.com/max/1255/1*vkQ0hXDaQv57sALXAJquxA.jpeg,
[accessed 22 Mar, 2020] . 32

4.1 World reference in [13] . 36
5.1 Directories structure of the target system 46
5.2 Application architecture: communication scheme between GUI and

Lane Detection modules . 48
5.3 Application architecture: Lane Detection module’s threads structure 51
5.4 Example of the gray-scale conversion handled by the input thread . 52
5.5 Example of the inverse-perspective mapping handled by the pre-

processing thread . 53
5.6 Graphical representation of the histogram describing the number of

non-zero pixels for each column of the R1 55
5.7 Graphical representation of the filtering operation performed on the

histogram . 56
5.8 Example of the GOLD-like algorithm application handled by the

processing thread. Given Image A as the processing input, Image B
represents the first elaboration step, Image C is the filtering result,
Image D is the output of the model fitting operation. 57

5.9 Example of the reverse transformation handled by the post-processing
thread . 58

5.10 Example of the output frame composition handled by the output
thread . 59

6.1 The iW-RainboW-G27M development board 62

7

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://miro.medium.com/max/1255/1*vkQ0hXDaQv57sALXAJquxA.jpeg
https://miro.medium.com/max/1255/1*vkQ0hXDaQv57sALXAJquxA.jpeg

6.2 Example of a sum of two vectors of 16-bit elements using NEON
registers . 63

6.3 Graphical scheme of a real-case system setup 65
6.4 Graphical scheme of the simulation system setup 66
7.1 Good result obtained in a highway scenario, Turin ring road 74
7.2 Good result obtained in a semi-urban scenario, Rivara (TO) 74
7.3 Good result obtained in a highway scenario at night, Turin ring road 75
7.4 Good result obtained in a highway scenario with traffic, Turin ring

road . 76
7.5 Good result obtained in a road in bad conditions, Salassa (TO) . . 76
7.6 Example of problems caused by sun light - 1, Rivara (TO) 77
7.7 Example of problems caused by sun light - 2, Rivara (TO) 77
7.8 Example of problems caused by sun light - 3, Rivara (TO) 78
7.9 Example of problems caused by sun light in front of the camera - 1,

Turin ring road . 78
7.10 Example of problems caused by sun light in front of the camera - 2,

Busano (TO) . 79
7.11 Example of problems caused by road paintings, Turin ring road . . 79
7.12 Example of detections with road works - 1, Turin ring road 80
7.13 Example of detections with road works - 2, Turin ring road 80
7.14 Example of problems caused by rain - good detection in absence of

incoming cars, Orbassano (TO) . 81
7.15 Example of problems caused by rain - bad detection due to light

reflection on the road, Orbassano (TO) 81
7.16 Good result obtained in a highway scenario in presence of rain, Turin

ring road . 82
7.17 Example of elaboration in an urban environment - 1, Rivara (TO) . 82
7.18 Example of elaboration in an urban environment - 2, Rivara (TO) . 83
7.19 Example of elaboration in an urban environment - 3, Turin 83
7.20 Example of elaboration in an urban environment - 4, Turin 84
7.21 Example of erroneous road model fitting, Rivara (TO) 84
A.1 The architecture of an Embedded Linux system 91
A.2 The OpenEmbedded work flow, from https://www.yoctoproject.org/

wp-content/uploads/2017/07/yp-how-it-works-new-diagram.png [Ac-
cessed 25 March, 2020] . 92

A.3 The content of the "local.conf" file of the custom distribution 94
A.4 The content of the "layers.conf" file defining the layers included into

the custom distribution . 95
B.1 A graphical representation of a pinhole camera 98
B.2 The pinhole camera model, from https://docs.opencv.org/2.4/_images/

pinhole_camera_model.png, [Accessed 27 March, 2020] 99

8

https://www.yoctoproject.org/wp-content/uploads/2017/07/yp-how-it-works-new-diagram.png
https://www.yoctoproject.org/wp-content/uploads/2017/07/yp-how-it-works-new-diagram.png
https://docs.opencv.org/2.4/_images/pinhole_camera_model.png
https://docs.opencv.org/2.4/_images/pinhole_camera_model.png

Chapter 1

Introduction

One of the most important research and commercial topics in the automotive in-
dustry today is the design and the development of systems capable to support the
human driver when traveling by vehicle, with different levels of intervention on the
vehicle control. These systems are called Advanced Driving Assistance Systems
(ADAS) and they are inserted into a larger research field, which is the autonomous
driving task. This topic, also named as Dynamic Driving Task (DDT) following
the Society of Automotive Engineering denomination, is one of the most important
multidisciplinary engineering challenges of the incoming years.

In this scenario, one of the most crucial tasks needed to improve the quality of a
system autonomously controlling the vehicle is the environment recognition, namely
the determination of areas where the car is allowed to go and the detection of ob-
stacles and hazardous situations. In particular, the lane detection task is the one
which is responsible to recognize the drivable area by detecting the lane markers
and elaborating the obtained information to describe the geometry of the road
ahead of the vehicle.

In the first section of this thesis, the autonomous driving and the lane detection
topics will be addressed. In the first chapter, a general definition of the autonomous
driving task will be given, and the state of the art of the most used system archi-
tectures and software/hardware components will be presented.

In the second chapter, the lane detection problem will be presented, analyzing
the state of the art about this kind of applications, the most common system struc-
tures and examples of implementations.

In the third chapter of the introduction section, a specific lane detection appli-
cation will be addressed, the GOLD system. The algorithm used for detecting lane

9

Introduction

markers in this system will be the base of the implementation of the thesis appli-
cation.

The core topic of this thesis is the implementation of a real-time lane detection
system on a high-performance system-on-chip running an Embedded Linux distri-
bution as operating system. The main lane detection algorithm is based on the
GOLD system, with some differences in certain low-level operations.

The system goal is to recognize the lane markers from a given image of the road
ahead the vehicle and to compute a visual and a geometric description of the lane
center. The system is composed by: a low-level module that takes as input a stream
of frames and provides as output a stream of frames in which the lane markers and
the center line of the current lane are highlighted; a graphical application, devel-
oped using the Qt framework, responsible to visualize the output stream on a screen.

In the second section of the thesis, the software architecture of the system will be
firstly presented, describing the methods and the optimizations applied to reach a
real-time elaboration of each incoming frame. Then, the description of the hardware
components used during the development and the testing phases will be addressed.

Finally, in the third section of the thesis, the testing results will be analyzed in
terms of computational time performances and in terms of effective correct detec-
tions.

As appendices, two topics will be addressed: the 3D to 2D image transformation,
to deeply explain the process followed during the pre-processing module of the al-
gorithm; the Embedded Linux and Yocto system, to explain how the operating
system used in this thesis is composed and how it was adapted to the application
needs.

10

Part I

General introduction to
addressed topics

11

Chapter 2

Autonomous driving

2.1 Introduction to autonomous driving
Nowadays, one of the most important and complex challenges in the automotive
field is the specification and the implementation of an automated system capable to
fully control and drive a vehicle, without the direct intervention of a human driver.
This is a very complex task, gathering multidisciplinary know-hows coming from
different engineering disciplines and applying the newest technologies in the topics
of sensors, actuators, electronics, computer vision, artificial intelligence and many
others.

Several examples of feasible and working systems already exist in the field of the
railway transportation (e. g. the Turin automated underground) and in the aero-
nautics industry (e. g. auto pilot implementations controlling the flight on planes).
Moreover, some driver-less automated applications will be soon released in the
ambit of the autonomous driving farming machines. Conversely, a real implemen-
tation of a fully automated system concerning automotive and commercial vehicles
is not present on the market and it is still in an open research phase. The reason
of this discrepancy can be found on the complexity of the different working sce-
narios. In the case of a train or an underground wagon, the path is constrained
by a railway, theoretically free of any incoming obstacle. In the aircraft case, the
flight trajectory is previously computed and obstacles (usually other planes) are
sensed at high distances and should not suddenly appear in front of the system.
The road scenario, instead, is composed by several elements of different types and
with a very dynamic and unpredictable behavior. For example, in an urban cross-
road, an automated driving system should take into account the traffic light, the
lane boundaries, the other vehicles position and behavior, possible other actors like
pedestrians and bikes that should suddenly cross the road, etc. A system operat-
ing in such environment must detect and distinguish every possible obstacle in a
reliable and efficient way, must be reactive to external threats and must be capable

13

Autonomous driving

to dynamically update its behavior in response to those inputs. Moreover, it must
work in every condition, for example during a heavy rain or snowfall, with daylight
or at night.

The reasons that drive the efforts to reach the autonomous driving goal are mul-
tiple. The most important one is the safety increasing. According to a recent
technical report drawn up by the US body of the National Highway Traffic Safety
Administration (NHTSA), the number of road accidents caused by a human error
is the 94% of the total ([1]). According to the Italian body ISTAT-ACI ([2]), in
Italy the number of vehicular accidents for the year 2018 has an amount of 172,344,
causing 242,621 injured and 3,325 deaths. The main causes are distraction, failure
to observe precedence rules and high speed, totaling the 40.8% of the cases. More-
over, the highest number of road accidents resulting in death happens during the
night, when drivers easily feel tired or drive under influence of substances, with a
peak of 9 death every 100 accidents between 5 am and 6 am. All these factors un-
derline the need for a system able to help the driver to avoid dangerous situations
for himself/herself and for other road users, substantially reducing the number of
traffic accidents.

Another problem that could be reduced thanks to autonomous vehicles is the traf-
fic congestion and, consequently, the emission of polluting gases ([3]). In fact, an
automated driving system should be able to collect traffic information from on-
line applications and to find an optimal way to reach the destination set by the
user, reducing also the traveling time ([4]). Moreover, controlling directly the engine
valve (in case of traditional fuel motors) may help to optimize the fuel consumption.

This kind of system will also permit a reduction of the stress and the fatigue
normally generated when driving in traffic situations or long trips ([20]). The time
that was used by drivers in such situations should be relocated and invested in
more useful activities. Finally, the usage of an autonomous vehicle permits to ex-
tend the mobility concept to portions of the population which normally may not
or are unable to drive a car. This aspect can have a huge impact on the quality of
life and productivity of those portions of population and the people near to them
([4]).

However, reaching the goal of a fully automated driving is very complex, and may
lead to a massive increase of the development and production costs of this kind of
systems. Some studies, like [5], underlined the fact that this technology may be
very expensive for producers, leading to a shared use of autonomous vehicles in
driverless taxi service, instead of selling vehicles directly to single customers.

Moreover, the doubts on this technology are mostly linked to the possibility of

14

2.2 – Definition of autonomous driving according to SAE

a system failure. There exist several examples of accidents caused by failures dur-
ing tests or during the real-world usage of semi-automated driving systems already
present on the market. For example, in 2016 a Tesla Model S equipped with a
semi-automated autopilot failed to recognize a white truck against the sky light
and crashed into it, killing the driver ([6]). In 2018, an Uber experimental car
killed a pedestrian who was crossing a road carrying a bike ([7]). The system, due
to the darkness of the view, firstly classified the person as an unknown object, then
as a vehicle and finally as a bike, delaying the moment of the emergency braking
activation. The reason of these accidents is that systems available today are still
not robust enough to handle all the situations that is possible to encounter in real
scenarios.

Finally, the concept of a vehicle without the control of a human driver has generated
a series of ethical and legal problems. In case of accident due to a sudden system
failure, who is responsible of the consequences? If there is a dangerous situation in
which the car has to choose between save the passengers or some pedestrian, what
will the car do?

2.2 Definition of autonomous driving according
to SAE

A precise definition of what the autonomous driving task is can be derived from the
SAE, the Society of Automotive Engineers ([8]). This association denominates it
“Dynamic Driving Task” (DDT), defining it as “the set of the real-time operational
and tactical functions required to operate a vehicle in on-road traffic”.

According to SAE, these functions can be gathered into some subsets:

• Lateral vehicle motion control via steering.

• Longitudinal vehicle motion control via acceleration and deceleration.

• Environment monitoring via object and event detection, recognition, classifi-
cation and response preparation.

• Response execution to objects and events.

• Local motion planning maneuvering.

• Conspicuity enhance via lightning, signaling and gesturing.

The trip scheduling by means of destination choose and way-points computation is
excluded from these subsets, as other strategic function which are considered not

15

Autonomous driving

strictly correlated to the Dynamic Driving Task.

SAE also defines the concept of an “Automated Driving System” (ADS) as “the
hardware and the software that are collectively capable of performing the entire
dynamic driving task, regardless of whether it is limited to a specific operational
design domain”. Moreover, the hardware and software performance of a specific
part or all of the dynamic driving task is named as “Driving Automation” (DA).
Finally, the Operational Design Domain (ODD) is defined as the “operational con-
ditions under which a given driving automation system is specifically designed to
function”. An example of an ODD can be a particular environment, such as a high-
way with some specific traffic and weather conditions: a given ADS is expected to
function in this ODD, but it can have an unreliable behavior in case of a sudden
weather change.

The general dynamic driving task can be fully or partially performed either by
a human driver or by an automated driving system. Depending on which actor
is performing determined tasks and which are the operating conditions, the SAE
distinguishes six discrete and mutual exclusive levels of driving automation:

• Level 0, or “No Driving Automation”. In this level, the entire dynamic driving
task is performed by the human driver at any time. It is possible, anyway, that
supporting active safety systems, such as the Anti-blocking System (ABS) or
the Electronic Stability Program (ESP) system, are present onboard of the
vehicle.

• Level 1, or “Driver Assistance”. In this level, an automated driving system
can take control of either the lateral or the longitudinal control sub-task of the
DDT, but only when activated and under a limited operational design domain.
The remaining tasks are under the control of the human driver. Examples of
ADS corresponding to this level can be the Adaptive Cruise Control (ACC)
or the Lane-keeping Assist (LKA).

• Level 2, or “Partial Driving Automation”. In this level, an automated driving
system can take control of both the lateral and the longitudinal control sub-
task of the DDT, only when activated and under a limited operational design
domain. The human driver has the responsibility to perform the other tasks,
such as the object and events detection and response and to supervise the
execution of the automated tasks. As in level 1, if a failure occurs in the
automated driving system or the vehicle exits from the ODD, the driver must
be reactive and immediately take control of the whole DDT. An example of
level 2 ADS can be the cooperative usage of an Adaptive Cruise Control and
a Lane Keeping Assist.

16

2.2 – Definition of autonomous driving according to SAE

Figure 2.1. SAE - J3016: table of levels of automation

• Level 3, or “Conditional Driving Automation”. From this level on, the auto-
mated driving system is capable to perform the overall dynamic driving task.
In this level, the ADS takes a full control of the vehicle while engaged and
only under specific operational design domains. However, the human driver
is responsible to immediately take control of the vehicle in case of a system
failure or in case the vehicle exits from the ODD.

• Level 4, or “High Driving Automation”. In this level, the automated driving
system is responsible of the overall dynamic driving task in limited operational
design domains. The system is also responsible of the fallback procedure, in
case of a failure or the exiting from the ODD. In this level, the human driver
is not responsible of any task and it is not expected that he/she is reactive to
a fallback procedure.

• Level 5, or “Full Driving Automation”. In this level, the automated driving
system is responsible of the overall dynamic driving task in every operational
design domain, without restrictions. As in level 4, the fallback procedure is

17

Autonomous driving

under the system control, while the human driver has not any responsibility
on the vehicle control and on its behavior.

Although autonomous driving is a topic on which automotive industry is impor-
tantly investing money, at the state of art of the vehicle production and product
release, currently sold automated driving systems typically belong to the level 2 of
the SAE classification. One of the most important examples of implementation in
this level is the Tesla Autopilot, capable to control both the longitudinal and the
lateral dynamic in limited situations, like highways. In the first half of 2019, Tesla
cars have reached the amount of 1.6 billion of traveled kilometers with this system
activated.

However, the majority of the standard vehicles available on the market today are
restricted to the level 1 of the SAE classification. In fact, the various systems intro-
duced permits an automated control of either the longitudinal or the lateral dynam-
ics, by using separately different Advanced Driving Assistance Systems (ADAS).
Examples of ADAS are the Adaptive Cruise Control (ACC), the Emergency Brak-
ing Assist (EBA) and the Lane Keeping Assist (LKA).

In terms of near future, many companies are currently testing and validating auto-
mated driving systems at level 3 and 4 of the SAE classification. One of the most
advanced development is carried by Waymo, a company controlled by Google that
has recently reached the 16 millions of traveled kilometers, while other companies
like Tesla, Uber and GM – Cruise released optimistic declarations saying that the
first level 3 and 4 vehicles might be ready in the first years of the 20s.

2.3 General structure of an automated driving
system

The task of developing and implementing a working and reliable automated driving
system is very complex. Several system architectures have been proposed among
last years to efficiently approach this problem ([9]). Among the state of the art in
architectural decisions, we can find two different approaches for what concern the
connectivity and two different approaches for what concern the algorithmic design.

For the first topic, we can define an “ego-only” system and a “connected” system.
Ego-only systems are based on the idea of having all the necessary hardware and
software component needed in order to perform the dynamic driving task already
onboard of the vehicle. This is the common approach used among the state of the
art. The main advantage is the independence of the system from the information
coming from other vehicles or infrastructure. All the inputs from the environment

18

2.3 – General structure of an automated driving system

needed to perform a task are coming from internal sensors, which may consider more
reliable than unknown external sources. Moreover, having a self-sufficient platform
can help the overall system development and validation phase. The disadvantages
are linked to the fact that certain information cannot be easily derived without an
external communication, causing the impossibility to obtain certain environmental
inputs or implying a delay collecting them.

Connected systems, instead, have an approach based on traffic and state infor-
mation sharing among peers and on communications with infrastructure elements.
In order to communicate, a Vehicular Ad hoc NETwork (VANET) is used: it is a
wireless broadcast network using 802.11p IEEE standard or exploiting the 4G/5G
cellular network. The communication can happen between two or more vehicles,
for example sharing the velocity and direction information; in this case, it takes
the name of V2V (vehicle to vehicle) communication. Otherwise, it can happen
between a vehicle and an infrastructural element, for instance a traffic light sharing
the time to the red-light power on; in this case, the communication takes the name
of V2I (vehicle to infrastructure). In general, referring to connected vehicles, it
is possible to use the acronym V2X (vehicle to everything) to describe both the
previously presented communication types. This kind of approach can enhance the
system environment sensitivity with respect to an ego-only system, but it has not
been operationally implemented yet due to complexity of the scenario where hun-
dreds or thousands of vehicles exchange data in small city portion.

Figure 2.2. Example of a Vehicular Ad hoc NETwork (VANET)

Concerning the different architectural approaches in the algorithm design topic,
there exist two possible alternatives. The first one is the “modular system” design,
which consists in a structured pipeline of different components linking the envi-
ronment, the internal state inputs and the actuation outputs. This is the most
used choice in the state of the art. A commonly used pipeline is composed by the

19

Autonomous driving

following steps:

Figure 2.3. Architecture of a modular autonomous driving system

• Localization of the system and environment mapping, for example using a
GPS sensor.

• External and internal inputs perception, for example using cameras and radars.

• Environment assessment, by using an artificial intelligence algorithm.

• Planning and decision making, starting from the assessment outputs.

• Vehicle control through control algorithms and actuators.

• Human-machine interface.

The main advantage of this approach is the possibility of developing and testing
separately each module, dividing the dynamic driving task in several relatively
easier sub-tasks, each of them having solutions already consolidated in robotics,
computer vision and vehicle control system literature. Moreover, each module can
be reused between different systems and permits redundant parts only in critical
components. The main disadvantage regards the concept of error propagation: in
case of an error in the lower modules of the pipeline, the next module will compute

20

2.3 – General structure of an automated driving system

its output starting from an incorrect input, causing a system failure when actuating
the vehicle control.

Finally, the “end-to-end” design is based on the concept of generating motion con-
trol actions directly from the inputs, using a single module. This solution can be
applied by using three approaches related to the machine learning topic:

• Direct supervised deep learning, where the system learns which actions it must
take given some inputs, imitating a ground truth example (usually an expert
driver). The training can be performed offline, without already using the
system in a real environment. Being based on a limited supervised training,
this solution has a poor generalization capacity.

• Neuro-evolution learning, similar to the preceding solution, but based on evo-
lutionary algorithms to train the neural network. This approach does not need
a backpropagation nor a supervised learning.

• Deep reinforcement learning, that has a different approach with respect to the
preceding ones. In this case, the systems learns which actions it has to take
given the inputs in order to choose the “best” solution, trying to minimize
some reward functions. In this way, the system has not a human model to
imitate, but learns on its own the optimal way to approach a scenario. This
guarantees a better generalization capacity than the previous solutions, but it
needs an online training in real-world cases.

The biggest problem using this kind of solutions is related to the fact that these
networks has to massively interact with the environment and fail a lot of times
in order to obtain a functional and working implementation. Moreover, in case of
failure it is very hard to understand which errors occur and why, making difficult
to fix the problems.

In terms of basic hardware components, an automated driving system needs a set
of sensors in order to grab information from the environment, a set of actuators
performing the decided actions as output and a computing platform implementing
the previously presented system architectures. The actuation is performed on the
steering system to control the lateral dynamics, on the braking system and on the
power-train system to control the longitudinal dynamics in deceleration and accel-
eration respectively.

Sensors can be divided into two main types:

• Proprioceptive sensors. These are sensors measuring internal state quantities,
for example the velocity, the lateral and longitudinal acceleration, the roll,
pitch and yaw angles, etc. Some examples of this kind of sensors are encoders
and Inertial Measurement Units (IMUs).

21

Autonomous driving

Table 2.1. End-to-end design methods

Method Pros Cons
Direct supervised
learning

Can be trained offline Has a poor generaliza-
tion capacity

Neuro-evolution
learning

No needs for backpropa-
gation

It has not already
been successfully imple-
mented in real cases

Direct supervised
learning

It is not based on human
behavior

It has not already
been successfully imple-
mented in urban real
cases

• Exteroceptive sensors. These are sensors collecting data coming from the
external environment, such as obstacles, drivable areas like lanes, etc. Some
examples are optical cameras, radars and LiDARs.

The most used sensors in automated driving systems are cameras, radars, LiDARs,
GPS and IMUs. Cameras are mainly used for the objects and events detection task
and can be monocular, stereo (permitting to derive the distance information) or
360° cameras. The output can be a stream of RGB images, infrared images, etc.,
and is differentiated by parameters like the frame produces per second (fps), the
resolution of the single frame, the focal length and many others. They are passive
sensors, being that they do not emit any signal, but only collect color or infrared
information.

Radars and LiDARs, instead, are active sensors: both emit beams of electromag-
netic waves, that bounce back to sensors, permitting to measure the distance from
an object knowing the returning time and the signal speed. Radars emit radio
waves, permitting to sense objects at high distances, while LiDARs emit infrared
waves, obtaining more accurate results at nearby distances.

Finally, the Global Positioning System (GPS) and IMUs are cooperatively used
to compute the precise position of the vehicle in the environment. The GPS is a
satellite system computing the position of the receiving sensor given a set of in-
formation sent by a satellite. Being this computation effected by several physical
problems (such as the signal refraction and reflection due to obstacles), the ob-
tained measure should be fused with the internal state information coming from
the proprioceptive IMU sensor.

22

Chapter 3

The lane detection problem

3.1 Introduction to lane detection
One of the most crucial task that an automated driving system has to deal with,
as specified by the SAE definition, is the environment monitoring. This task is of
pivotal importance because allows the vehicle to act on the longitudinal and lateral
dynamics control in a proper way and to respond to external inputs in time. Nowa-
days, the main bottlenecks in development and research on this task are represented
by the obstacle detection and classification and by the road and lane detection, i.
e. the recognition of an area in which the vehicle can move into (named as drivable
area).

These two sub-tasks of the environment monitoring task have the same main crucial
problem: they must work in every environmental condition, including very variable
brightness (e. g. due to shadows) and any kind of extreme weather conditions.
Such a generalization ability is still a research open problem, alongside with the
need of detecting a variable number of lanes in different road topologies or with
different markings size and color in the case of lane detection. Moreover, this kind
of tasks are used to close the loop of lateral control algorithms, so a very low error
rate is required, in the order of few erroneous detection per hour in case of warning
systems and even less in active control systems. This reliability requirement is very
hard to obtain in computer vision-based applications.

In this thesis, the focus will be centered on the lane detection task, which is namely
the process to recognize the area in the road space belonging to a lane and delimited
by its lane markers. In order to solve this problem, many solutions were proposed
in literature, often based on the same perceptual inputs used by human drivers: in
particular, the road color and texture, the road boundaries and the lane markers.
However, it should be possible to integrate other inputs, such as vehicle-to-vehicle
(V2V) or vehicle-to-infrastructure (V2I) communications, but, especially for the

23

The lane detection problem

second type, it cannot be guaranteed that in every road this kind of service would
be implemented and maintained, due to the huge required costs.

Outside of the context of a full automated driving, the lane detection task is the
base perceptual input level of several advanced driving assistance systems. The
most important are:

• The Lane Departure Warning (LDW), which simply alerts the driver when the
vehicle is exiting the current lane.

• The Lane Keeping Assist (LKA), which corrects with a limited authority the
lateral direction in order to maintain the current lane.

• The Automatic Lane Keeping Control (ALKC), which acts as the LKA, but
having a full authority on the vehicle lateral control.

In these cases, the system must be able to recognize the current lane area within
relatively short distances (between 40 and 50 meters). In more advanced systems,
such as Tesla Autopilot, the lane detection module is also used to recognize adja-
cent lanes and perform an autonomous lane changing task. In this case, the system
should be able to detect multiple lanes at long distances (about 150 meters).

The first step for every lane detection algorithm is to obtain inputs from the ex-
ternal environment. In order to obtain this information, several sensors have been
proposed in literature, such as:

• Cameras (either single or stereo vision).

• Light Detection and Ranging (LiDAR) sensors.

• Inertial Measurement Units (IMU, sensors measuring vehicle dynamics).

• GPS systems.

• Digital maps.

The most frequently used sensing modality in literature is the camera-based one.
The reasons behind this choice are mainly two: the first is the fact that lane mark-
ings and road boundaries are designed for human drivers’ vision, therefore they
should be visible in almost every condition also for cameras; the second reason is
the low cost of such sensors that, jointly with their robustness, guarantees a good
cost-effective solution. Having a single camera, the implementation cost is very low,
but it is not possible to obtain a 3D description of the environment. Such target
can be reached by using a stereo vision system; however, this second solution can
lead to higher computational costs and to higher error probability.

24

3.1 – Introduction to lane detection

The other main solution is the LiDAR, a sensor that can efficiently measure the
3D structure of the vehicle surrounding environment and which can be efficiently
used alongside with cameras to handle situations where the first sensor is not able
to correctly produce effective results. For example, when road markings are not
visible or even absent, LiDAR can be able to detect the road boundaries and their
distance with respect to the vehicle. Moreover, this solution cannot be affected by
natural light issues or by low-visibility situations. LiDAR can be also used to com-
pute incoming slopes, in order to better adapt image transformations like inverse
perspective mapping (see Appendix B). The main drawback is the high cost of the
LiDAR sensors, but they can lead to a more precise and accurate 3D description
of the environment than the stereo vision solution.

Table 3.1. Sensors for lane detection task

Method Pros Cons
Mono cameras Very simple and cheap.

May perform well thanks
to the visual characteris-
tics of lane markers

Do not allow a 3D recon-
struction of the scene, af-
fected by bad weather
conditions

Stereo cameras Low cost, allow the com-
puting of a 3D recon-
struction if the environ-
ment

The distance computa-
tion can be complex and
not precise

LiDARs Very precise 3D recon-
struction, do not heavily
affected by bad weather
conditions

Very useful when detect-
ing road borders, but
not when detecting lane
markers; very high cost

GPS with IMUs and
digital maps

Do not affected by visi-
bility issues

GPS satellite communi-
cation is not reliable and
IMUs error probability
grows in time

Finally, it is possible to integrate GPS sensors information with IMU measures
in order to obtain the current vehicle position with an accuracy of 1 meter. In this
way, it is possible to guide the vehicle without considering a visual representation
of the current lane markings but using the digital maps description of the envi-
ronment. The main issues in this case is the low reliability, due to the need of a

25

The lane detection problem

continuous communication with GPS satellites and the calibration error probability.

From the same inputs, there exist two main approaches in literature to the lane
detection problem:

• Traditional methods, which rely on handcrafted features and heuristic algo-
rithms. This is the conventional approach mostly used in the industry.

• Machine learning-based methods, which are mostly based on convolutional
neural networks (CNN). This is a new approach addressed by researchers.

3.2 Traditional algorithms
Traditional lane detection algorithms are methods based on a handcrafted feature
selection, relying on an a priori knowledge of the problem and on its perceptible
characteristics. A low-level pixel elaboration is performed on these selected features
and the final results are obtained in a deterministic way. Considerably more than
neural network-based methods, these algorithms highly rely on the quality of the
input images, which have to contain the wanted features with a good visibility.
However, due to the a priori feature selection, the image can be divided in smaller
regions of interest (ROI), leading to a lighter and faster elaboration.

Almost all traditional lane detection algorithms proposed in literature follow a
similar flow ([10], [11], [12]), divided in several steps, which are:

• Pre-processing (image cleaning).

• Low-level processing (feature extraction).

• Post-processing (lane model fitting).

• Temporal integration.

• Image to world correspondence.

The image cleaning process is the first module of the typical flow. In this module,
the input image is elaborated in order to enhance the characteristics on which the
feature extraction will be based. Some examples of image cleaning operations are:
the obstacle detection and removal, based on 2D or 3D points tracking mechanisms;
the shadows removal, based on color-space transformations; the reject of parts of
the image that do not contain relevant features. This last operation is based on
regions of interest selection, which will be the only parts of the input that will be
elaborated by the other modules. In [16], a vanishing line is dynamically computed
and then all pixel above this line are discarded. In many others works, like [13], [14]
and [15], an image transformation is applied, in order to remove the perspective

26

3.2 – Traditional algorithms

effect and select only a limited remapped area.

The feature extraction process in lane detection systems is the module where the
relevant features, namely the lane boundaries, need to be detected. The elabora-
tion is performed taking into account the low-level pixel description of the image.
Generally, these boundaries are represented by lane markers, which can have differ-
ent physical characteristics: they can have various colors (from shades of white to
yellow or orange), various widths and shapes (continuous lines, dashed lines), etc.
However, being lane markers designed to be recognizable by a human being, some
assumptions can be taken. The simplest assumption is the fact that the markers
are brighter with respect to the road, leading many proposed algorithms (e. g. [13]
and [15]) to search for dark to light to dark pixel brightness intensity bumps, even-
tually filtered with adaptive or fixed thresholds. In other cases, like [14], Gaussian
filters are applied to the cleaned image. In [16] the assumption is that lane markers
are lines that converge into the perspective focusing point.

The lane model fitting is the process in which the markers extracted features from
the preceding module are fitted into a priori lane geometric models, which can
usually be divided into:

• Parametric models.

• Semi-parametric models.

• Non-parametric models.

Parametric models are usually straight lines, parabolic curves or circumference arcs.
These are the simplest models, based on the assumption that to obtain a good con-
trol algorithm relatively short distances are needed, where the lane boundaries can
be approximated. The most used method to fit the features to a linear model de-
scription is the Hough transform, which searches for the most frequent line inclina-
tion angle. Some example are: [13], that assumes the road markings as parallel lines
after an inverse-perspective mapping transformation; [17] solution uses a clothoid,
a curve whose curvature is in linearly proportional with its curve length; [15] uses
the RANSAC method to remove outliers and fit to a linear or hyperbolic model.

Semi-parametric models, e. g. spline curves, are more precise models, that do not
take any assumption on the expected lane geometry. Moreover, differently from
parametric models, a small parameters changing leads to a small curve geometry
change. The drawback is the possibility of an over-fitting, with unrealistic curves
as outputs. In [14] a RANSAC method is used to fit the features to a third-degrees
Bezier spline. In [18], b-splines, i. e. curves with higher local parametrization
control with respect to Bezier curves, are used. Finally, non-parametric models
are based on a continuous description of the boundaries. This is a less common

27

The lane detection problem

Table 3.2. Model fitting methods

Method Pros Cons
Parametric models Simple and fast, may

provide good approxima-
tion at near distances

May not be precise

Semi-parametric
models

More precise, small ge-
ometry variation with
small parameters varia-
ton

Can overfit the extracted
features, leading to unre-
alistic results

geometric model.

The temporal integration process of a lane detection system is the module respon-
sible to integrate the results of the current image elaboration with the knowledge
of the previous results. This technique can lead to three main results:

• The improvement of the detection output accuracy, thanks to the possibility
of smoothing the results over the time.

• The elaboration time reduction, that is obtained by computing a prediction
of the future geometric model parameters. If in the next frame, the feature
pixels are in the predicted position, the model fitting operation can be skipped,
saving time.

• The error detection correction, obtained by filtering feature detection outputs
that are too distant from the preceding ones, which are probably erroneous.

Commonly, the used methods are Kalman filters and Particle filters, which are
typically applied to the image transformed into real world coordinate, for example
using an inverse perspective mapping. An example can be found in [15], where a
Kalman filter is applied.

The last module is the image to world correspondence, which is used alongside
all the proposed common pipeline elements. In fact, the transformation from the
pixel coordinates of the input image to 3D real world coordinates can be useful in
several modules. Many algorithms in literature use the inverse perspective mapping
transformation in order to project each pixel to the plane Z = 0 in the real world,
removing the perspective effect (see Appendix B). This transform is also used to
compute the coordinates of the resulting path in the center of the lane, in order to
use this data as input in lateral dynamics control loops. However, these geometric

28

3.2 – Traditional algorithms

methods are usually based on the assumption of a flat road, leading to possible
errors when a slope in encountered by the vehicle.

Figure 3.1. Lane detection process flow for traditional algorithms

The evolution of these traditional methods is linked to two main fields: the re-
liability of the system and the environment understanding improvement. The first
is the problem which has the hardest level of difficulty to be solved. Being all the
system proposed in literature mainly based on computer vision techniques, the ro-
bustness is a crucial point; in fact, all the possible image noises and environment
condition may importantly affect the overall system performance. In order to re-
duce this lack of reliability, algorithms should be as generic as possible, without
making strong assumptions on the scenario that the system should handle. More-
over, multiple algorithms should be executed in parallel in a weighted manner or
be applied in series and, when the assumptions of the first algorithm are not met,
dynamically switch to the best algorithm for every situation.

Concerning environment understanding improvement, the next steps to reach should
be the capacity of detecting and distinguish multiple lanes, the capacity of detecting
lane markers in far distances and the ability of understanding the road structure
even in absence of clearly visible markers, like in country roads or in scenarios where
road works are present.

Finally, in order to improve the algorithms ability of understanding the environment
and filtering outliers at any level, different modalities than computer vision should
be fused together. For example, LiDAR systems might help in lane segmentation
and in road boundaries detection when lane markers are not clearly visible; GPS
and IMUs data can be merged to provide additional information to the low-level

29

The lane detection problem

process (like signaling the current road slope for a more precise inverse perspective
mapping image transformation).

3.3 Neural network-based algorithms
In the last years, an approach particularly different with respect to traditional
lane detection algorithms has been proposed in literature. Instead of working at
low-level with pixels and relying to an a priori knowledge of the perceptible char-
acteristics of the lane markers and the structure of the lane, many researchers have
proposed a machine learning-based solution.

As explained, the major problems that lane detection systems have to face with
are represented by extremely variable environmental factors, such as daylight con-
ditions (especially at sunrise and at sunset), artificial lights noises during the night,
variable road types and structures, shadows projected onto the road surface, ob-
stacles that can occlude the lane markers, the presence on the road of very tiny or
hardly visible lane markers, bad or extremely bad weather conditions, such heavy
rain, snowfalls, etc. Traditional lane detection algorithms have an approach that
can be very effective in limited driving scenarios, like the highway one, if a good
feature selection has been taken while designing them. However, this kind of algo-
rithms can be importantly reduced in their effectiveness, due to their poor gener-
alization ability with respect to the previous mentioned external condition changes.

In such a complex scenario, new approaches based on neural networks have been
designed, due to the deep learning-based methods ability to perform an automatic
feature selection, importantly simplifying this complex process and providing a
more robust solution, able to better generalize the algorithm against extremely
variable conditions coming from the environment.

The most used networks for lane detection algorithms are convolutional neural
networks (CNN). This kind of networks have a design which is very effective for
inputs organized into matrices, like images.

A neural network is an architecture where inputs (in the case of an image, the
set of single pixels) are connected with functional blocks, called neurons. Each
neuron applies an operation on its inputs (typically a weighted sum) and provides
an output to other neurons (typically, the result of the operation normalized be-
tween 0 and 1). Neurons are organized in layers, divided in one input layer, one
output layer and a certain number of internal layers called hidden layers. If every
neuron in a layer is connected with every neuron of the preceding layer, the network
is called "fully connected".

30

3.3 – Neural network-based algorithms

In order to train a network to provide a certain results given similar inputs, it
is necessary to set properly the network parameters, i. e. the weights used in
the neuron sum operation. Typically, the train operation is performed by start-
ing from random weights and giving some inputs which expected result is known.
This set of inputs is called train set. The result of the network is compared with
the expected value and the weights are modified properly. This operation is called
back-propagation and must be repeated until the results are acceptable. Finally,
the weighted network efficiency is tested given inputs not already used during the
training. The set of those inputs is called test set.

Figure 3.2. Structure of a generic neural net-
work, from: https://www.researchgate.net/figure/
Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_
321259051, [accessed 22 Mar, 2020]

In a convolutional neural network, there exist several types of layers, in which the
most used is called convolutional layer. In a convolutional layer, neurons of each
layer are organized in a 3D way, divided into width, height and depth. Instead of
been connected to all the neurons of the preceding layer, each neuron is connected
to a smaller portion; this allows to reduce the number of connections, thus reducing
the network computation time and the number of weights needed to be set in order
to train the algorithm. In case of images, each neuron provide an output applying
a matrix convolution operation on a portion of the input image; neurons with the

31

https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051
https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051

The lane detection problem

same depth coordinate in the 3D representation work together on the whole image,
looking for the same characteristic. Putting all together, a single layer takes as
input a matrix (for example, an image) and provides as output a set of N values,
where N is the depth of the convolutional layer, describing N characteristics of that
input. Those output values are then passed to other layers (not necessarily of the
convolutional type), until the final output is computed.

The convolutional neural network method particularly fits the lane detection prob-
lem, as the architecture of convolutional layer permits to check at the same time
several different features of the image in order to recognize a lane structure. More-
over, the training phase permits to automatically select and set properly all these
features by the assignment of the weights, optimizing the choice in complex scenar-
ios. The general lane detection problem is thus reduced to an image binarization,
recognizing if a pixel belongs to the lane or not.

Figure 3.3. Structure of a generic convolutional neural network, from:
https://miro.medium.com/max/1255/1*vkQ0hXDaQv57sALXAJquxA.
jpeg, [accessed 22 Mar, 2020]

In literature, several examples of usage of convolutional neural networks to detect
lanes have been presented. One of the first examples of this methods is presented
in [19], where a convolutional neural network was combined with a RANSAC al-
gorithm, starting from an edge detection operation performed on the input image.
However, in this implementation, the machine learning approach is used only for
image enhancement and, for performance reasons, only when the captured scene is
complex, with obstacles and lane intersections.

In recent proposal, end-to-end approaches are implemented, i. e. the whole de-
tection is performed by the convolutional neural network starting from raw images,
without preliminary pre-processing operations. For examples, in [20], convolutional
neural networks are applied to the highway scenario for both lane and obstacle de-
tection. In [21] an end-to-end detection was performed both in the front view and

32

https://miro.medium.com/max/1255/1*vkQ0hXDaQv57sALXAJquxA.jpeg
https://miro.medium.com/max/1255/1*vkQ0hXDaQv57sALXAJquxA.jpeg

3.3 – Neural network-based algorithms

in a top view, in order to combine the results excluding false detections; this model
is called Dual-View CNN.

Other approaches have been proposed in order to avoid specific problems encoun-
tered in the previous examples. For example, [23] proposed a Spatial CNN (SCNN)
in order to avoid performance reductions due to obstacles occluding lane markings,
imitating the human capacity to fill the gap in the occluded part. This goal is
achieved by permitting a communication also between neurons belonging to the
same convolutional layer, not only between neurons of different layers. This ad-
ditional level of communication permits to achieve a smoothness in the resulting
lanes, without interruptions due to obstacles.

Another problem is linked to the need of detecting multiple lanes in the same
road image. The first simple solution is to design the network to perform a multi-
class classification, in which each lane is mapped to a class. The main drawback of
this solution is the obligation to perform the detection on a fixed number of lane,
reducing the system robustness. In [24], the proposed architecture is a multi-task
CNN, divided into a segmentation branch and in an embedding branch. The first
performs a binary segmentation of the image into two classes: lane or background.
The second, starting from the binarized image, assigns to each lane pixel a lane
identification number, dividing the different lanes. In this paper, also the model
fitting phase uses a deep learning approach. In fact, in order to better parameter-
ize the resulting lane description curve, an inverse perspective mapping is applied.
As mentioned, this kind of transformation relies to the fact that the road is flat,
returning wrong mappings if the road has a consistent slope. To avoid this prob-
lem, a neural network is trained in order to find the sub-optimal transformation
parameters, permitting to have a good perspective view in every road condition.

A similar approach to lane detection with multi-task CNNs is presented in [25],
where we have: a binary segmentation branch, dividing between lane pixels and
background; another binary segmentation branch, dividing between drivable areas
and background; a lane point regression branch, to estimate the lane points value;
a lane embedding branch, to subdivide the different lanes; a clustering branch, to
process the output of the embedding branch.

Despite the advantages that deep learning-based approach may give, there exist
some problematic factors that have to be handled. The main problem is due to the
complexity of the convolutional neural network model which may be incompatible
with real time elaboration requirements needed in control loop algorithms. In fact,
the number of the neurons and the type of operations they are applying on the
input data (i. e. convolution of matrices) lead to a high computational cost, that
can be reduced implementing the algorithm on a specific hardware (for example, a

33

The lane detection problem

specific GPU) or by lightning the network. In this case, there exists a trade-off be-
tween the network performances in terms of correct detections and computational
time.

Finally, as every deep learning-based method, lane detection systems based on
convolutional neural networks need a huge amount of data to use in training and
testing phase. Moreover, these images must be as diversified as possible, due to
the fact that the system may encounter very dynamic situations and different road
structures, so it must be robust in every case.

34

Chapter 4

The GOLD system

4.1 Bertozzi and Broggi’s algorithm
GOLD (Generic Obstacle and Lane Detection system) is a stereo vision-based hard-
ware and software architecture proposed in 1998 by Massimo Bertozzi and Alberto
Broggi for lane detection and obstacle detection tasks ([13]). The two tasks are
addressed at the same time thanks to a parallel hardware architecture, obtaining
the input images from the same source. The lane detection algorithm is built on
a pattern-matching technique, based on the assumption of the presence of bright
lane markers above a dark road; the object detection algorithm is based on the
determination of the free-space areas in front of the vehicle, without any 3D world
reconstruction. These two algorithms are based on a common structure: an image
transformation is firstly applied to inputs, then a low-level parallel processing is
performed and finally the resulting data are inversely transformed to original im-
age space. In the next sections, only the lane detection process will be treated,
being the base of the thesis algorithm implementation.

4.1.1 Image transformation
Due to its structure, an image is mapped in a computing system as a matrix of
pixels. This representation allows the low-level processing to be efficiently executed
by single instruction multiple data (SIMD) systems, which are systems performing
the same operation in a parallel way to multiple input data. This approach is very
efficient in case of uncorrelated data or when applying operations considering the
input as such; for example, noise reduction algorithms can be applied to images in
such a way.

Conversely, more sophisticated filters and algorithms may require knowing the cor-
relations among data. For example, in the case of lane markings recognition, the
processing algorithm must be aware of the presence of a perspective effect, causing

35

The GOLD system

a different lane marking width between near and far pixels. To avoid this problem,
both the lane detection and the object detection algorithms presented in the GOLD
system are based on the image warping approach, namely the transformation of the
input image before the system elaborates it.

In particular, the technique applied in the GOLD system is the Inverse Perspective
Mapping (IPM). The Inverse Perspective Mapping is a geometrical transformation
which allows to remove the perspective effect from the input images, with the as-
sumption of a flat road. This result is obtained by mapping each image pixel in a
new two-dimensional space, creating a new two-dimensional pixel array.

Firstly, two Euclidean spaces are defined:

• The 3D world space W = {(x, y, z)}, representing the coordinate of each pixel
in the real world, where the z axis is the vertical axis.

• The 2D image space I = {(u, v)}, representing the coordinate of each pixel on
the image 2D array.

The input image coming from the camera belongs to the second space, the image
obtained after the IPM belongs to the 3D world space and it is mapped to a 2D plane
representation, setting the vertical component z to zero (see 4.1). The mapping

Figure 4.1. World reference in [13]

transformation can be expressed in different ways. Bertozzi and Broggi define it

36

4.1 – Bertozzi and Broggi’s algorithm

as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(u, v) = h × cot
[
(θ − α) + u

2α

n − 1

]
× cos

[
(γ − α) + v

2α

n − 1

]
+l

y(u, v) = h × cot
[
(θ − α) + u

2α

n − 1

]
× sin

[
(γ − α) + v

2α

n − 1

]
+d

z = 0

where the camera position is defined in W space as C = (l, h, d), namely the lateral
distance, height and longitudinal distance of the camera with respect to the origin
of the world coordinate reference; the camera direction is defined by the camera
pitch angle γ and the camera yaw angle θ; the camera characteristics are defined
by the camera angular aperture equal to 2 × α and by the image resolution n × n.
The dual transformation, from 3D world coordinates to 2D pixel coordinates is
described as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(x, y, z = 0) =
arctan

[
h sin γ(x, y, 0)

y − d

]
− (θ − α)

2α

n − 1

v(x, y, z = 0) =
arctan

[
y − d

x − l

]
− (γ − α)

2α

n − 1

Another way to represent the transformation is by using matrices ([27]). In this
case, the 3D world coordinates are described in a space W = {Xw, Yw, Zw}, where
the Yw axis is the vertical axis. The plane to which the road points belong is defined
by setting Yw = 0, assuming the road as flat. The image coordinates, belonging to
the space I = {u, v}, are mapped from the 3D coordinate system as:

R = Rz(α)Ry(β)Rx(γ) =⎡⎢⎢⎢⎣
cos α − sin α 0 0
sin α cos α 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

cos β 0 sin β 0
0 1 0 0

− sin β 0 cos β 0
0 0 0 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
1 0 0 0
0 cos γ − sin γ 0
0 sin γ cos γ 0
0 0 0 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

⎤⎥⎥⎥⎦ (4.1)

37

The GOLD system

T =

⎡⎢⎢⎢⎣
1 0 0 −tx

0 1 0 −ty

0 0 1 −tz

0 0 0 1

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 − h

sin β
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (4.2)

K =

⎡⎢⎣fx × ku s u0 0
0 fy × kv v0 0
0 0 1 0

⎤⎥⎦ (4.3)

⎡⎢⎣u
v
1

⎤⎥⎦ = KRT

⎡⎢⎢⎢⎣
Xw

Yw

Zw

1

⎤⎥⎥⎥⎦ =

⎡⎢⎣p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34

⎤⎥⎦
⎡⎢⎢⎢⎣
Xw

Yw

Zw

1

⎤⎥⎥⎥⎦ (4.4)

where the R matrix describes the overall rigid rotation of the camera with respect
to the 3D world axis, obtained multiplying the rotation matrices of the yaw (α),
the pitch (β) and the roll (γ) camera angles; the T matrix is the matrix describing
the rigid translation of the camera position with respect to the 3D world reference
point, in this case having translation offset equal to the height in which the camera
is posed (h) divided by the sin of the pitch (β) angle; the K matrix represents the
camera intrinsic parameters, such as the focal length (f), the optical center coor-
dinate (u0, v0), the pixel skew parameter (s) and the expected ratio scaling factor
of the resulting pixels (ku, kv). Having in this case the Yw axis as vertical axis, to
obtain the road mapping, Yw is put equal to zero; the overall matrix transformation
becomes: ⎡⎢⎣u

v
1

⎤⎥⎦ = KRT

⎡⎢⎢⎢⎣
Xw

Yw

Zw

1

⎤⎥⎥⎥⎦ =

⎡⎢⎣p11 p13 p14
p21 p23 p24
p31 p33 p34

⎤⎥⎦
⎡⎢⎣Xw

Zw

1

⎤⎥⎦ (4.5)

The dual transformation, to re-map the image coordinates into the 3D world coor-
dinates is defined as: ⎡⎢⎢⎢⎣

Xw

Yw

Zw

1

⎤⎥⎥⎥⎦ = (KRT)−1

⎡⎢⎣u
v
1

⎤⎥⎦ (4.6)

For a more detailed description of the matrix representation of the IPM transfor-
mation, see Appendix B.

38

4.1 – Bertozzi and Broggi’s algorithm

4.1.2 Processing algorithm
The lane markers detection algorithm takes as input a stream of images on which
the inverse perspective mapping transform has already been applied. It is based
on an a priori assumption: in the 3D space W = {(x, y, z = 0)}, the lane markers
are represented as almost-straight lines composed by bright pixels surrounded by
darker pixels representing the road. Moreover, another assumption is the fact that
the road is considered flat.

Thus, the first phase of the algorithm is focused on detecting every bright-dark and
dark-bright variation of horizontally contiguous pixels value. Every pixel brightness
quantity (b(u, v)) is compared with the left and the right pixel at distance m, and
then it is remapped to a 2D array R, such that:

r(u, v) =

⎧⎨⎩dm+(u, v) + dm−(u, v) if (dm+(u, v) > 0) ∧ (dm−(u, v) > 0)
0 otherwise

(4.7)

where

dm+(u, v) = b(u, v) − b(u, v + m)

dm−(u, v) = b(u, v) − b(u, v − m)
(4.8)

In this way, the values of the R matrix are relative to the brightness difference
between pixels and not to an absolute threshold value, in order to be more robust
to possible homogeneous noise, for example shadows. However, shadows and ob-
stacles in the image view can cause small brightness variation between neighbor
pixels; to avoid erroneous situations, the R matrix is mapped into a control ma-
trix applying a certain number of iterations of a geodesic morphological dilatation.
This kind of filter gives to a pixel the maximum value of all the pixels near to it in
vertical and horizontal directions. In this way, the value of the pixels belonging to
the lane marker increases, except in the direction in which the pixel values are zero.

Finally, the resulting image is obtained through a two-level binarization, given
an adaptive threshold:

t(u, v) =

⎧⎪⎨⎪⎩1 if e(u, v) ≥ m(u, v)
k

0 otherwise
(4.9)

where e(u, v) is the image enhanced by the geodesic morphological dilatation,
m(u, v) is the maximum value among a given neighborhood c × c of the given
(u, v) point and k is a constant. After this phase of the algorithm, the result is a

39

The GOLD system

binary image in which pixels belonging to the road are set to zero and the remaining
pixels belong to the lane markers.

The next phase consists into the determination of the geometry of the road. Firstly,
the image is scanned row-by-row and every two nonzero non-contiguous pixels are
considered in pairs. For each pair, a ci value, representing the coordinate of the
road medial-axis, and a wi value, representing the lane width, are computed. These
data are then filtered, and a histogram is built from the remaining pairs. The value
of road width w that has a peak in the histogram is considered as the actual lane
width value and, subsequently, all the pairs with a road width close to w are con-
sidered. The center line of the road is finally reconstructed using the ci values of
the selected pairs.

The last step of the algorithm consists into apply the dual inverse perspective
mapping transformation to the image with the detected lane markers and superim-
pose it to the input original image.

4.2 Results and conclusions on GOLD algorithm
The hardware architecture of the original GOLD system was divided in two main
devices:

• The PAPRICA system, a low-cost parallel processing system implemented on
a FPGA, composed by 256 processing elements working by using the SIMD
approach.

• The Host workstation, a SPARC embedded processor connected with the pre-
vious system.

The first section of the system is responsible to interface with the input cameras
through an acquisition system and with the output screen through a frame buffer.
It is also composed by a main memory device to store the inputs and the elaborated
images (up to 8 MB), an image re-mapper module, a 16 × 16 processor matrix and
a control unit. The PAPRICA system executes the low-level part of both the lane
detection and the obstacle detection tasks, obtaining some intermediate data that
will be sent to the host computer to continue the elaboration. In the case of the
lane detection algorithm, the result is represented by the image matrix in which
pixels belonging to the road are set to zero and the remaining pixels belong to the
lane markers.

As explained, the first part of the algorithm takes an important advantage in terms
on performance thanks to the parallel execution of the same instruction on all the

40

4.2 – Results and conclusions on GOLD algorithm

128×128-byte image matrix, having each processing element able to apply the elab-
oration on 64 bytes a time. The inverse perspective mapping is also implemented
on the PAPRICA system in a dedicated device, which is able to map 512 × 256
image matrices coming from cameras to 128 × 128 matrices to give as input to the
system in 3 milliseconds.

The host workstation, instead, is responsible to take as input the matrices coming
from the obstacle and lane detection low-level algorithms and to implement the
medium-level part. In the case of the lane detection, in this level the road geom-
etry determination is implemented. This computation is executed in a different
hardware device with respect the PAPRICA system, with a different architecture:
in fact, being the elaboration of the medium-level based on highly connected data,
the advantage represented by a parallel execution on several low-cost processors is
not satisfying as it was in the low-level section. The elaboration on this device is
based on software, while in the previous case a hardware solution was used.

The performances in terms of timing on the original system were:
• The data acquisition from the two cameras and the output results took 20

milliseconds.

• The remapping of the two 512 × 256 images to two 128 × 128 matrices took 6
milliseconds in total.

• The obstacle detection pre-processing on PAPRICA, taking as input two 128×
128 matrices and giving as output a 128 × 128 matrix, took 25 milliseconds.

• The lane detection pre-processing on PAPRICA, taking as input a 128 × 128
matrix and giving as output a 128 × 128 matrix, took 34 milliseconds.

• The obstacle detection part on the host workstation took from 20 to 30 mil-
liseconds

• The lane detection part on the host workstation took about 30 milliseconds.
Considering the delays due to the data exchange between the PAPRICA system
and the host workstation, the total amount of latency from the moment when the
images are grabbed by cameras to the moment when the output is sent to the screen
frame buffer is about 100 milliseconds. Thus, the overall GOLD system runs at 10
Hz.

In terms of results accurateness, the GOLD system reached the 95% of success-
ful lane detection in 1998, among a total of 3000 km traveled with the system
activated. The tests were taken in extra-urban roads and freeways under different
traffic and illumination condition, with a speed up to 80 km/h.

41

42

Part II

The GOLD-based lane
detector implementation

43

Chapter 5

The software
implementation

5.1 Introduction to the system
The main content of this thesis is the implementation of a Lane Detection algo-
rithm based on the GOLD system previously presented. This application receives
a stream of images from a camera device, from a file or from a network stream.
The output is composed by a stream of images that will be displayed into a screen
by a HDMI connection and by geometrical information provided through a shared
portion of the RAM memory. Eventually, the output stream can be saved into an
AVI video file, for testing or results storage purposes.

This GOLD-based application is a traditional lane detection algorithm, follow-
ing the architectural scheme presented in chapter 3 (see fig. 3.1). It is logically
composed by:

• A pre-processing block, responsible to reduce the input image into a smaller
pixel matrix, transforming the input through an inverse-perspective mapping.

• A low-level processing block, extracting pixels belonging to lane markers.

• A post-processing block, computing the pixels belonging to the center of the
lane starting from the extracted lane markers.

• An image to world correspondence block, computing and applying the transfor-
mation between original image space and inverse-perspective mapping space.

The implementation is based on the GOLD system lane detection algorithm. In
fact, an inverse-perspective mapping is performed before elaborating the input im-
ages and the reverse transformation is applied to provide visual results. Moreover,

45

The software implementation

the low-level elaboration approach is similar, looking for dark-to-bright ad bright-
to-dark bumps in the pixel brightness. However, the filtering and the model fitting
processes are handled differently.

The algorithm runs on a custom distribution of an Embedded Linux operating
system. The system is based on the Poky distribution and it was built using the
Yocto project tools (see Appendix A). The distribution has been developed includ-
ing the necessary software modules to run the final application and to permit the
debugging and testing phase. In particular, the Qt5 library has been added to
implement the graphical user interface (GUI), the OpenCV library was used for
low-level computations and OpenSSH module was used to remotely deploy, debug
and test the application.

The algorithm has been written using the C++ language and was compiled in
order to exploits the ARM extension for single instruction multiple data (SIMD)
called NEON. Thanks to this hardware component it has been possible to consider-
ably increment the overall system performances. It takes as inputs Full HD frames,
thus having a resolution of 1920x1080 pixels at rates of either 30 or 24 frames per
second.

Figure 5.1. Directories structure of the target system

In order to properly work, the system needs a specific directories configuration in-
side the file system. When started, the application checks the existence of the folder
/home/root/GOLDLaneDetector and its three sub-folders input, output and log.
If the folders do not exist, the program creates them. Under the input folder,
the input video files used for testing are contained; the output folder is where
the optional output video files are saved; the log folder is where a textual log
file is created and updated with every useful information. Finally, a folder named

46

5.2 – The application

configurations has been created and placed under the /home/root/ directory, to
contain the configuration JSON files used during the testing phase. This folder is
not needed by the system to correctly run but is useful to organize files.

The application has been developed using the QtCreator IDE for the graphical
user interface part and for the final modules assembling, while the lane detection
part has been developed and debugged using the Eclipse IDE and then trasposed
into the QtCreator project.

5.2 The application
The thesis application is composed by two logical levels: a graphical user interface
and a lane detector processing module. Both the two software entities interact with
the operating system through the file system, while the processing module can also
interact with camera devices, shared memory streams and network streams.

The system is linked with two main peripherals, which are used during the standard
execution of the program:

• The USB peripheral, from which is theoretically connected a camera device
providing the image stream.

• The HDMI peripheral, providing the graphical output produced by the GUI
architectural level containing the final results overlaid to the original frames.

Moreover, the system exploits a shared memory allocation to provide lane geometric
information extracted from the image stream, which are useful for control loop
algorithms such as Lane Keeping Assist.

5.2.1 Graphical user interface module
The graphical user interface software module is developed using the Qt5 framework.
Qt is an open source toolkit for graphical user interfaces developing, based on C++
language. This framework provides an additional level of abstraction with respect
to native applications: in fact, its code provides transparent interfaces which can
be reusable within different operating system platforms such as Linux, Windows,
Android and embedded distributions of Linux. This mechanism can be particularly
useful when developing applications like the one proposed in this thesis, abstract-
ing the low-level description of the hardware and the low-level operating system
interfaces and moving all the complexity to the library itself.

This module is responsible to retrieve the configuration information, to start the

47

The software implementation

Figure 5.2. Application architecture: communication scheme between GUI
and Lane Detection modules

lane detection process and to visualize the output stream. The configurations pa-
rameters are loaded into the application through a JSON file located in the file
system, which is parsed by exploiting the Qt JSON parsing module (QJsonDoc-
ument). The configuration file contains necessary information to correctly set up
the application, as:

• The input file name, if the system is configured to retrieve the image stream
from a file.

• The input USB stream device name, if the input stream comes from a camera
device.

• The input GStreamer pipeline, if the stream is provided by other sources as
the network or a shared memory;

• The output file name, if the system is configured to save the output stream
into a file.

• The camera intrinsic parameters, as the vertical and horizontal focal lengths
and the image center coordinates in pixels, necessary for inverse-perspective
mapping.

• The camera extrinsic parameters, as the rotation angles and the translation
distances where the camera is posed with respect to the road 3D reference,
necessary for inverse-perspective mapping.

48

5.2 – The application

• The low-level algorithm parameters needed during the processing phase.

• Other parameters, like the target frame per seconds value, used for validation
tests, a scale factor, introduced for optimization purposes and the degree of
the polynomial geometrically describing the lane center.

When those configuration parameters are gathered, the graphical module starts
the lane detection process. Practically, the worker paradigm is exploited: in this
paradigm, the user interface creates a new thread and loads a “worker” object in
it; the worker is an object which is previously initialized, providing an entry-point
function, run inside the secondary thread. In this way, the user interface part of
the application can proceed its execution without blocking and eventually obtain
data from the worker, updating the graphical aspect. Meanwhile, the worker object
is running, executing a processing operation and periodically providing data to the
user interface.

In this application, the worker is initialized with the input parameters obtained
from the JSON file. Then, it executes the lane detection computation, periodically
sending the output frame to the user interface. When this happens, the frame
is displayed on the screen. When the working object execution ends or an error
occurs, the application receives this information, deletes the secondary thread and
exits, eventually signaling the error.

The graphical interface, instead, simply provides an image visualizer, in which the
output frames are displayed whenever set available by the worker. Those outputs
are composed by an image with lane markers and center of lane pixels colored in
green, superimposed onto the original input frame.

5.2.2 Lane detection processing module
In parallel to the previous presented module, the lane detection process is executed.
It is run inside the secondary thread allocated by the user interface level and it is
contained into the worker object. This is the part of the application where the
GOLD-based algorithm is actually performed.

Apart from the output stream display operation, which is carried by the graph-
ical user interface, the application interfaces with the system are handled in this
module. In fact, depending on the configuration parameters set in initialization
phase, the input stream is captured from the file system, from a camera device or
from another source, like the network or a shared memory. Moreover, the geometric
output data are sent to whichever process that needs them through a shared mem-
ory and, if defined, the output stream can be saved as an AVI file by this module.

49

The software implementation

The input data stream is handled by using the OpenCV library, that is an open-
source project for computer vision application development. The library permits to
use the same interface for extracting frames from the stream, independently from
the source. OpenCV itself exploits other libraries as back-end for interfacing with
videos in file system, USB devices and other types of streaming sources. The most
used are GStreamer and FFmpeg, software platforms for the audio and video man-
agement.

Logically, the lane detection module is subdivided into three procedural steps:

• The pre-processing: in this step, every frame coming from the image stream is
transformed by using the inverse-perspective mapping. The result is a smaller
image, containing the road pixels only, in which the perspective effect is re-
moved, and lane markers are mapped to parallel lines, in the assumption of a
flat straight road.

• The processing: this is the step in which, starting from the perspective-free
image, the actual algorithm is performed, obtaining an image where pixels
belonging to lane markers and to the lane center are set to specific values (255,
in decimal representation), while all other pixels are set to 0. The geometric
description of the lane center is also computed.

• The post-processing: in this step, the processed image is re-mapped to the
original coordinates system using the reverse transformation of the one applied
in the first step. Then, the result is superimposed onto the original frame and
provided externally.

This module should be as fast as possible in terms of computing time, being that
the application should work in real-time. When a Full HD frame is retrieved as
input, the result must be computed before the arrival of the next frame. In case of
a stream with rate equal to 30 frames per second, the time interval between each
frame is approximately 33.33 milliseconds, with a stream at 24 frames per seconds,
the interval is 41.66 milliseconds.

However, it is important to underline that the embedded Linux distribution on
which the application is executed is not a real-time operating system, therefore
there is not any hardware/software assurance that a frame, whatever is the mean
time to complete the processing operation, can be elaborated before the exceeding
of a given threshold time. With the "real-time" term it is meant that the avarage
time needed by the application to process a frame is less than the stream inter-
frame time interval.

50

5.2 – The application

The first implementation of the module was structured to execute the three comput-
ing steps sequentially. However, the overall execution time considerably exceeded
the time limit to guarantee the end of the computation of a frame before the next
is given as input. To importantly improve the frame computing rate, the module
has been split into five different threads, exploiting the multiprocessor hardware
architecture.

Figure 5.3. Application architecture: Lane Detection module’s threads structure

For this purpose, the C pthread library has been used. Moreover, to improve
the overall system performances, the CPU affinity mechanism has been exploited:
through the pthread library interface, in fact, it is possible to define in which CPU
cores the thread will be executed. In this implementation, each thread has been
assigned to one CPU core only, in order to reduce the time lost when the thread is
waiting to be scheduled by the operating system. Moreover, the scheduling policy
of all the application threads has been set to "Round Robin", that is a scheduling
algorithm capable to avoid the starvation effect between threads.

The module architecture has been then structured as a pipeline: in a pipeline,

51

The software implementation

the elaboration is split into a sequence of a given number of sub-modules, each of
them interacting with the previous and the next one in the sequence by retrieving
and providing inputs and outputs, respectively. At any time, every sub-module
elaborates a different input in a parallel way. The time to elaborate a single input
is the same as it would be if all the operations were executed sequentially, but the
throughput, i. e. the rate of completed elaboration, is ideally the overall execution
time divided by the number of sub-modules. Actually, if the time needed by each
sub-module to complete the operation is different, the overall throughput depends
on the elaboration time of the slowest one.

Using the pipeline structure, the lane detector module has become able to reach a
throughput compatible with the real-time requirement. The actual delay from the
time of the input frame retrieving to the time when the output is provided to the
user interface has remained the same.

Every thread is responsible of a specific operation, taking different time amounts
to complete. The first thread, namely the input thread, is responsible to retrieve
each frame from the stream, to convert it from BGR color-space (Blue-Green-Red)
to gray-scale (passing from a pixel representation based on three bytes to one byte
only), to provide the gray-scale matrix to the next thread and to temporally store
the original colored image, which will be necessary when composing the final out-
put. The transformation of the input from a BGR image to a one-byte per pixels
matrix permits the reduce the computation time of the next blocks and remove
redundant information, being that the core algorithm is only based on pixel bright-
ness values, not on color-based information.

Figure 5.4. Example of the gray-scale conversion handled by the input thread

The second thread, namely the pre-processing thread, is responsible of the pre-
processing logical step of the lane detection algorithm, transforming the gray-scale
pixels matrix by applying an inverse-perspective mapping (see Appendix B). In this

52

5.2 – The application

thesis, the transformation is applied by means of the matrix operation described in
chapter 4.1.1. The transformation matrix is computed starting from the extrinsic
matrix, describing the position and orientation of the camera in the space, and from
the intrinsic matrix, describing the camera characteristics. The necessary parame-
ters are provided by the graphical user interface module at the initialization. The
overall transformation matrix is computed once at the beginning of the application
execution and then is applied to every frame of size 1920 × 1080, in order to obtain
a mapped representation of the road of size 150 × 746 bytes.

Figure 5.5. Example of the inverse-perspective mapping handled by the
pre-processing thread

The transformation was originally applied using the OpenCV library functions, but
the results were not acceptable in terms of computation time, exceeding the time
limit to afford a real-time elaboration. The solution was to exploit a tool con-
tained into the MATLAB environment, called MATLAB Coder. This tool permits
to automatically translate a MATLAB script into a generated code written in C,
enabling important optimizations. Thus, one script computing the transformation
matrix and one script applying the mapping were written using the functions pro-
vided by a special software module for computer vision, called Computer Vision

53

The software implementation

Toolbox. Then, the automatic code generation was performed, obtaining two sets
of C functions able to obtain the same results of the scripts. Using this solution,
the execution time of this step considerably decreased.

The third thread, namely the processing thread, is the one performing the actual
low-level processing for feature extraction. The algorithm is based on the GOLD
lane detection process in the first part of the elaboration, but there exist consid-
erable differences in the remaining parts. As the original algorithm, the extracted
features are the lane markers, which are assumed to be described as bright elements
over a darker background. Moreover, being that in the previous thread the perspec-
tive effect has been removed, it is also possible to take the assumption of a parallel
linear description. Therefore, in this step, the algorithm looks for dark-to-bright
and bright-to-dark bumps inside the mapped image. A temporary pixel matrix R0,
with the same size of the mapped image, is created, such that:

R0(i, j) =

⎧⎨⎩dm+(i, j) + dm−(i, j) if (dm+(i, j) > th) ∧ (dm−(i, j) > th)
0 otherwise

(5.1)

where

dm+(i, j) = image(i, j) − image(i, j + m)

dm−(i, j) = image(i, j) − image(i, j − m)
(5.2)

and where m is the distance in pixel from the current pixel where to look for a
darker value and th is a threshold given as parameter. More the current pixel
image(i, j) has a brightness value higher than the value to the left and the value
to the right, higher would be the value of R0 in that point.

The next step after having obtained the temporary R0 matrix is to filter possible
outliers, thus pixels having higher bright values with respect to the neighborhood
but not actually belonging to the lane markers. Firstly, a median blur filter is ap-
plied to delete “salt and pepper noise”, i. e. isolated pixels scoring high brightness
values. Practically, this operation substitutes every pixel with the median value
among a squared kernel of size N pixels, centered in the current elaborated pixel.
In this implementation, a special OpenCV library function is used to perform this
filtering, setting the N value to 3.

Then, every pixel in the resulting matrix is compared with a minimum thresh-
old value (thmin): if the pixel value is less than the threshold, then its value is set
to 0. Finally, as last filtering step, the algorithm must recognize pixels belonging
to lane markers only. Thanks to the assumption about the markers’ representation

54

5.2 – The application

as straight parallel lines, it is possible to define a pixel as part of a lane marker if,
in accordance to the first part of the elaboration, pixels on top or on bottom still
have a similar value. Practically, the resulting matrix is defined as:

R1(i, j) =

⎧⎨⎩150 if R0(i, j)! = 0 ∨ (R0(i − mfilter, j)! = 0 ∧ R0(i + mfilter, j)! = 0)
0 otherwise

(5.3)
where mfilter is the distance in pixel from the current pixel where to look for a
darker value.

Then, a last filtering operations is applied. Firstly, each matrix column is scanned,
creating a histogram having the column index as x-axis and the total amount of
non-zero pixels belonging to the given column as y-axis. Then, starting from the
center of the histogram, the left and the right peaks are detected. Being the assump-
tion of a straight-line representation of the lane markers, the indices corresponding
to peaks should describe the position of the markers in the matrix. Every non-zero
pixel belonging to the columns described by the two peaks and to the contiguous
columns are maintained. A column is considered contiguous to the peak if there is
not a zero in the histogram between the given column and the peak.

Figure 5.6. Graphical representation of the histogram describing the number of
non-zero pixels for each column of the R1

At the end of the elaboration, the result is a binary matrix where pixel belonging
to lane markers are set to a defined value greater than 0 (namely, 255) and road

55

The software implementation

Figure 5.7. Graphical representation of the filtering operation per-
formed on the histogram

pixels are set to 0.

In order to improve the image processing, alongside with the lane boundaries de-
tection a lane center detection process is performed. Firstly, the filtered matrix is
scanned row-by-row in order to find the pixel corresponding to the center of the
lane for each row: at any row, starting from its center, the algorithm searches for
the first non-zero pixel both in left and right directions. If a non-zero pixel is found
in both directions, the medium value between the two pixels column indexes is
computed and added to the lane center points list.

At the end of the elaboration, a list of points belonging to the lane center is ob-
tained, having the image space as coordinates reference. The next step consists in
translating those points into a world reference description. Coherently with the pre-
processing phase, the MATLAB Computer Vision Toolbox is exploited. Starting
from a MATLAB script, a proper function has been generated in order to transform
the list of points from image coordinates to real world coordinates.

Then, the polyfit MATLAB function is used to fit the real-world points into a
geometric description of a polynomial of degree n. The n geometric parameters of
the polynomial are then provided externally through a shared memory. Finally, the
obtained polynomial points are translated back to the image reference and high-
lighted into the processed matrix, to provide a visual feedback of the model fitting

56

5.2 – The application

results.

This fitting operation is based on a very simplified model, in which the lane is
considered straight, and it could be fitted into a linear model description (the poly-
nomial degree is set to 1 by default). This data has to be intended as an additional
information alongside the lane markers description, which is considerably more ac-
curate.

Figure 5.8. Example of the GOLD-like algorithm application handled by the
processing thread. Given Image A as the processing input, Image B represents
the first elaboration step, Image C is the filtering result, Image D is the output
of the model fitting operation.

The final result elaborated by the processing thread is a 150 × 746 matrix with
pixels belonging to the center of the lane and to each lane marker set to 255 and
all other pixels set to 0. The whole processing is performed exploiting the OpenCV
interfaces, that guarantee a fast pixel-per-pixel elaboration.

The fourth thread, namely the post-processing thread, is responsible to re-map the

57

The software implementation

image elaborated by the processing thread to the original coordinate references.

Figure 5.9. Example of the reverse transformation handled by the
post-processing thread

In a similar way to the pre-processing and the processing threads, in this block
functions generated from MATLAB are used, being that OpenCV library was not
fast enough to handle this kind of elaboration. Practically, the transformation ma-
trix used during the inverse-perspective mapping is inverted and then applied to
the processed image. However, the reverse process to re-map the 150 × 746 image
to the original 1920 × 1080 size took more time with respect to the pre-processing
one, exceeding the time limit for the real-time computation. The adopted solution
was to perform the re-mapping operation to an image scaled by a given factor. For
example, setting the scaling factor to 3, given the input image of size 150 × 746,
the result is an image of size 640 × 360, which leads to an important reduction of

58

5.2 – The application

the computing time. The matrix transformation must be modified such that:

Tinv = T −1

⎡⎢⎢⎢⎢⎣
1
s

0 0

0 1
s

0
0 0 1

⎤⎥⎥⎥⎥⎦ (5.4)

where T is the transformation matrix used during the pre-processing and s is the
scaling factor.

The re-mapping transformation matrix is computed once during the initialization
phase and then applied to every image during post-processing. Then, in order to
bring the image back to the original frame size, the OpenCV resize function is used.

Figure 5.10. Example of the output frame composition handled by the output thread

The last thread, namely the output thread, has been introduced to handle the re-
sulting frames. It is responsible to superimpose the post-processed image onto the
original input frame to provide visual feedback of the lane detection process, to
send the output image to the graphical user interface module and, if requested by
configuration parameters, to save the elaborated frames into a AVI video on the
file system.

The first operation is performed though the Qt signal/slot mechanism. This mech-
anism is based on signals, that can be considered as events triggered by a Qt object,
and slots, which are a sort of callback functions. Through the Qt framework it is
possible to connect signals to slots, in order to obtain the execution of the slot
function whenever the signal event is raised. In this case, the signal (containing
the output image) is emitted by the worker object whenever the output thread is
ready to send the result. In the graphical user interface module, the correspon-
dent slot is responsible to grab the sent image and visualize it onto the screen. The

59

The software implementation

eventual file saving operation, instead, is performed through the OpenCV interface.

The last operation handled by the post-processing thread is the final output image
composition: the processed image (re-mapped to the original coordinates reference
and scaled to the original size) is superimposed to the original input frame. Being
that the original image is represented with the BGR color representation, the post-
processed frame is firstly converted into a BGR image, setting the green component
equal to the gray-scale pixel value and the other two components to 0.

Every thread, in order to properly work, needs to exchange data with the pre-
vious and the next thread in the pipeline. The communication is handled through
an implementation of the producer-consumer pattern. This pattern is composed by
two processes sharing a memory buffer, to which the first process writes and from
which the second process reads. In order to avoid problems due to the concurrent
usage of the same memory space, the buffer access must be regulated by locks:
when a process wants to obtain the access to the buffer, firstly it must obtain the
lock; if the lock is free, the operation can be executed, if the lock is engaged, the
process must wait until it is released.

In this implementation, every thread that have to exchange images with the next
thread in the pipeline shares an unbounded list with it. The list must be accessed
by specific functions, using locks to guarantee the mutual access to the resource.
Every thread, apart from the input thread, firstly executes a check on its input list;
whenever the preceding thread writes an image in it, the list is mutually accessed,
and the input is elaborated. Finally, the result is written to the output list shared
with the next thread in the pipeline, apart from the output thread.

60

Chapter 6

The hardware setup

6.1 Hardware description
The thesis application has been deployed and tested on a development kit called
iW-RainboW-G27M. This kit is used as demonstration for applications to be im-
plemented on the NXP’s iMX8 system on chip. In fact, the final application of the
GOLD-based lane detector should run on a custom board based on such architec-
ture.

The system on chip used for this thesis, in particular, is the iMX8 QuadMax version.
It is composed by eight processors, namely:

• Two ARM Cortex A72 cores, which are processors based on a 64-bit architec-
ture, equipped with the specific hardware components needed in order to run
a Linux distribution, such as a memory management unit (MMU) to handle
memory paging. The nominal working frequency is 1.6 GHz, and they are
equipped with a L1 48 KB instruction cache and a 32 KB data cache. The
two processors are part of the same CPU platform, sharing a 1 MB L2 cache.

• Four ARM Cortex A53 cores, which are 64-bit architecture-based processors
too. As the A72 cores, they are equipped with the necessary hardware compo-
nents to run a Linux-based operating system. The nominal working frequency
is 1.2 GHz and the L1 cache is subdivided into a 32 KB instruction cache and
a 32 KB data cache. As before, the four processors are part of the same CPU
platform, sharing a 1 MB L2 cache.

• Two ARM Cortex M4F cores, which are 32-bit architecture-based processors,
used for real-time control purposes. These processors may not run a Linux
distribution, but can be interfaced with the previously presented CPU plat-
forms and other components through the serial bus. The nominal working

61

The hardware setup

frequency is 266 MHz and it is equipped with a 256 KB embedded tightly
coupled memory (TCM).

Figure 6.1. The iW-RainboW-G27M development board

The GOLD-based lane detector is executed on a Linux distribution running on the
six 64-bit architecture-based processors. The two ARM Cortex M4F cores can be,
instead, used to implement a control loop algorithm that exploits the geometrical
information about the lane center computed by the lane detection algorithm.

The iMX8 QuadMax is also equipped with a hardware video processing unit (VPU).
This component is able to accelerate the decoding and the encoding operations for
many video formats, including the H264 format used in the presented application.
The embedded RAM on the chip is a DDR4 memory of 4 GB, which was big enough
to handle the frames lists shared among threads for intra-thread communication.

The iMX8 QuadMax system on chip is connected to the iW-RainboW-G27M mod-
ule peripherals through a 314-pin edge connector. In particular, in this thesis three
main peripherals were used:

• The Debug UART port, that was exploited during the programming phase
and testing phase.

62

6.1 – Hardware description

• The 1 Gb Ethernet ports, that were used to remotely connect to the system
and test the application.

• The HDMI 2.0 out port, from which the graphical output of the application
is provided externally.

In a real-case implementation of the GOLD-based lane detector, a USB port should
also be used to obtain the image stream as input.

Both the ARM Cortex A72 cores and the A53 cores are equipped with a hard-
ware component called NEON, which is a 128-bit extension for single instruction
multiple data (SIMD) operations. This module is composed by 16 registers of 128
bits, that can be treated as 32 registers 64 bits-long also and allows to perform
the same operation on all the registers at the same time. For example, two vectors
made by 16 unsigned integer of 8 bits can be summed at the same time using only
two NEON registers for the two vectors and one register to store the results.

Figure 6.2. Example of a sum of two vectors of 16-bit elements using NEON registers

This architecture is extremely useful in a matrix-based application like the one pre-
sented in this thesis and may lead to an important performances increasing. The
C/C++ code was compiled in a compatible way by enabling the “-O3” optimization
option provided by the g++ compiler for 64-bit ARM architectures.

63

The hardware setup

In order to obtain test video to introduce into the system to verify the output
results, a GoPro Hero 7 Black camera was used. The videos was recorded at a
resolution of 1080p (1920x1080 pixels) with a framerate equal to 30 frames per
second. The camera has a sensor resolution of 12 MP and a shooting angle of 120
degrees. A useful feature is the HyperSmooth stabilization system: the camera is
able to process each frame before recording it into the video to reduce disturbances
due to sudden camera movements. In this way, for example, the recorded videos do
not suddenly change the pitch angle with respect to the road when the vehicle en-
counters a pothole, reducing the possibility of a wrong inverse perspective mapping.

6.2 Simulation and final setups
The real-case implementation of the final system should be structured into the
following components:

• The two 64-bit architecture-based CPU platforms of the iMX8 QuadMax sys-
tem on chip, where the Linux distribution runs, and the GOLD-based lane
detector is executed.

• The 32-bit architecture-based CPU platform composed by the two Cortex M4F
cores, where a control loop algorithm using the output from the lane detector
should be implemented.

• A camera device, connected through USB to the system, providing real-time
streams of images to give as input to the lane detector.

• A display device, connected through HDMI to the system, visualizing the
graphical output of the lane detector.

• A communication protocol interface, to communicate externally the actuation
commands computed by the control algorithm.

As the thesis is focused on the development and on the testing phase of the lane
detector module only, the final setup used to simulate and to test the system is
composed by:

• The two 64-bit architecture-based CPU platforms of the iMX8 QuadMax sys-
tem on chip, where the Linux distribution runs, and the GOLD-based lane
detector is executed.

• MP4 file videos from file system, to be given as system input and simulating
the camera device. The filesystem is stored into an external SD memory card.

• A display device, connected through HDMI to the system, visualizing the
graphical output of the lane detector.

64

6.2 – Simulation and final setups

Figure 6.3. Graphical scheme of a real-case system setup

65

The hardware setup

Figure 6.4. Graphical scheme of the simulation system setup

66

Part III

Test results and conclusions

67

Chapter 7

Results

The testing phase was performed using the simulation hardware configuration ex-
plained in the previous chapter. As said, a GoPro Hero 7 Black camera was used.
It has been placed inside a car on top of the windshield, at a height of 1.220 meters
above the ground and pointing ahead with a pitch angle equal to 2.5 degrees.

Fifteen videos have been captured in several different scenarios, such as urban
and semi-urban roads and extra-urban highways, mainly in the Turin ring road, in
north Turin urban roads and in semi-urban roads near the city (in the Canavese
area). Moreover, the videos were taken at different hours, with daylight and at
night, and with different environmental scenarios, e. g. with the sun in front of the
camera or in a rainy condition.

As the testing phase was based on previously recorded videos given as file inputs
to the system, a problem regarding the real-time execution condition occurred: in
fact, the time needed by the OpenCV API to grab a BGR FullHD frame (1920x1080
pixels for every of the three channels) from the file system and decode it, passing
from the H264 format used inside the MP4 file to a matrix of pixels, took around 50
milliseconds. Being the nominal working rates of the system either 30 frames per
seconds (one frame computed every 33.33 milliseconds) or 24 frames per seconds
(one frame every 41.66 milliseconds), a simulation with a video file as input cannot
reach the output real-time goal, which can be guaranteed by a video stream from
a USB camera.

To avoid this problem and to perform a relevant simulation, an intermediate solu-
tions has been taken: the application has been modified for the testing purpose in
order to firstly read and store all the frames of a video and then giving as input to
the system every frame with a delay which guarantees the correct input rate. Ob-
viously, this approach can be exploited for short video only, being that every frame
must be load in a list stored in memory and it is likely that a memory overflow

69

Results

occurs if the number of frames is high.

Exploiting this method, the testing phase have been performed simulating both
a real-time video stream at 30 frames per second and 24 frames per second. For
each frame rate, all the fifteen video samples have been given as inputs, repeating
the simulation three times.

All the elaborations have been performed with the following set of elaboration
parameters:

• m = 6

• th = 20

• N = 3, the kernel size of the median filter

• thmin = 20

• mfilter = 20

• post-processing scaling factor = 6

• polynomial degree = 1

7.1 Timing results
The first metric used to evaluate the system results is the capability to reach the
output real-time goal, namely the capability of provide the output frames at the
same rate in which they entered into the system as inputs.

Being the application divided in several threads, for each of them the execution
time for every frame has been measured, without considering the time when the
thread was polling the input list, waiting for the next frame. At the end of the
stream elaboration, every thread computed the mean time spent for a single frame
and the percentage of elaborations which did not exceed the time limit (33.33 mil-
liseconds when the rate is set to 30 frames per second, 41.66 milliseconds when the
rate is 24 frames per second).

Table 7.1. System performance at 30 FPS

Target FPS Input FPS Output FPS
30 29.97 29.895

70

7.1 – Timing results

Moreover, the overall mean execution time for each thread has been computed
by measuring the total amount of time between the moment when the first input
entered the system until the moment when each thread completed its operations.
This amount of time has been divided by the number of elaborated frames in every
stream, obtaining the actual output rate, which also considers the time spent by
threads waiting the new inputs from the input shared list, the time spent waiting
for the lock to access shared objects and the delay between the moment when the
first frame was given as input and the moment when its elaboration was concluded.

Table 7.2. Threads performance at 30 FPS - 1

Pre-processing
mean time (s)

Pre-processing
percentage under
time limit

Processing mean
time (s)

Processing per-
centage under
time limit

0.0299 99.595 0.01406 99.991

Table 7.3. Threads performance at 30 FPS - 2

Post-processing
mean time (s)

Post-processing
percentage under
time limit

Output mean time
(s)

Output percent-
age under time
limit

0.01575 99.991 0.01554 99.91

Giving frames as input with a rate equal to 30 frames per second, the gathered
numeric results showed that:

• The pre-processing thread, responsible of performing the inverse-perspective
mapping, had a mean elaboration time per frame equal to 29.90 milliseconds,
exceeding the time limit of 33.33 milliseconds only with the 0.405% of the
overall number of elaborated frames.

• The processing thread, responsible of the low-level feature extraction and
model fitting, had a mean elaboration time per frame equal to 14.06 millisec-
onds, exceeding the time limit with only the 0.009% of the overall elaborated
frames.

• The post-processing thread, responsible of the reverse transformation to return
in the original image reference space, had a mean elaboration time equal to
15.75 milliseconds, exceeding the time limit with only the 0.009% of the overall
elaborated frames.

71

Results

• The output thread, responsible of the output frame composition and of its
sending to the graphical user interface, had a mean elaboration time per frame
equal to 15.54 milliseconds, exceeding the time limit with only the 0.09% of
the overall elaborated frames.

In an ideal condition, with the input stream coming from a real-time source, the
input thread mean time per frame should directly depend on the rate of the in-
coming inputs. In this simulation, the stream was coming from a video in the file
system, therefore the input thread was forced to send a frame almost every 33,33
milliseconds. The actual input rate was 33.37 milliseconds, with an actual frame
rate equal to 29.97 frames per second.

The overall output frame rate computed was 29.895 frames per second, with a
mean overall throughput of one frame every 33.45 milliseconds. The delay with
respect to the mean input frame rate, equal to 0.075 milliseconds, is in minimal
part due to the inter-thread communication mechanism and partially due to the
initial delay of the first frame, which is provided as output with a mean overall
elaboration time of 71.05 milliseconds. More the elaborated frames of the input
stream are numerous, more this initial delay can be approximated to 0, ensuring
the reach of the real-time elaboration goal.

Table 7.4. System performance at 24 FPS

Target FPS Input FPS Output FPS
24 23.981 23.935

Table 7.5. Threads performance at 24 FPS - 1

Pre-processing
mean time (s)

Pre-processing
percentage under
time limit

Processing mean
time (s)

Processing per-
centage under
time limit

0.02797 99.925 0.01305 100

The same simulation has been repeated adapting the sample videos, filmed at a
rate of 30 frames per second, to a 24 frames per second stream, exploiting the
GStreamer tool. The results showed that:

• The pre-processing thread had a mean elaboration time per frame equal to
27.97 milliseconds, exceeding the time limit of 41,66 milliseconds only with
0.075% of the overall number of elaborated frames.

72

7.1 – Timing results

Table 7.6. Threads performance at 24 FPS - 2

Post-processing
mean time (s)

Post-processing
percentage under
time limit

Output mean time
(s)

Output percent-
age under time
limit

0.01501 99.988 0.01345 99.996

• The processing thread had a mean elaboration time per frame equal to 13.05
milliseconds, never exceeding the time limit.

• The post-processing thread had a mean elaboration time equal to 15.01 mil-
liseconds, exceeding the time limit with only the 0.012% of the overall elabo-
rated frames.

• The output thread had a mean elaboration time per frame equal to 13.45
milliseconds, exceeding the time limit with only the 0.004% of the overall
elaborated frames.

The actual input frame rate was equal to 23.981 frames per second; therefore, a
frame was given as input once every 41.70 milliseconds. The output stream reaches
the throughput value of one frame every 41.78 milliseconds, with an output frame
rate equal to 23.935 frames per second. The results are in line with the elaboration
with the frame rate set to 30 frames per second. In this case also, the real-time
elaboration goal has been reached considering the offset between the input and the
output frame rates approximated to 0 with larger number of frames.

It is important to underline that these results have been obtained without sav-
ing the output stream to a file. In fact, with this feature activated, the output
thread mean elaboration time for one frame becomes equal to 62.03 milliseconds
due to the time needed to interface with the file system, exceeding the time lim-
its for both the 30 and 24 frames per second rates. Therefore, the output saving
should be considered a diagnostic and testing feature only, without using it during
a real-time session.

However, it must be highlighted that the geometrical parameters describing the
center of the lane are computed inside the processing thread. Therefore, the mean
total amount of accumulated delay from the time when the frame is given as input
to the moment when the output parameters are written into the shared memory is
the sum of the pre-processing and the processing threads mean time only, namely
about 43.96 milliseconds at 30 frames per second and 41.02 milliseconds at 24
frames per second.

73

Results

7.2 Elaboration results
As explained, the tests have been performed starting from fifteen videos registered
in various scenarios and with different environmental conditions, including weather
conditions, different illumination and hour of the day. In the presented output
images, the lane markers are highlighted in green. These colored pixels are the
result of the processing phase of the algorithm. Moreover, in order to verify the
correctness of the geometric parametrization of the center of the lane, the real-world
points described by the computed linear equation are translated back to the image
coordinates, generating a visual representation in green as well.

Figure 7.1. Good result obtained in a highway scenario, Turin ring road

Figure 7.2. Good result obtained in a semi-urban scenario, Rivara (TO)

74

7.2 – Elaboration results

Good results have been achieved in the main scenario where lane detection algo-
rithms are currently used and where they perform better, which is the highway
scenario. In fact, the lane markers are often clearly visible and brighter than the
asphalt, although some exceptions may occur, as road works. Moreover, the road
is well maintained due to the high speed of cars traveling on it and the lanes can
be successfully approximated as straight.

Figure 7.3. Good result obtained in a highway scenario at night, Turin ring road

Figure 7.1 describes the result obtained in the Turin ring road, at daylight and
without traffic. In Figure 7.2, it is possible to notice that, wherever the road con-
ditions are comparable with the highway scenario, the results are similar.

Moreover, if a good illumination is guaranteed by car headlights or by infrastruc-
ture lamps, good results are obtained also at night. Figure 7.3 describes the result
obtained in the Turin ring road at night, without traffic.

The presented performances are maintained in traffic condition also, if the road is
good condition and the illumination is good as well. An example is presented in
Figure 7.4, where the Turin ring road presents traffic conditions.

As said, the results obtained are valid as long some conditions are encountered,
and the good state of the road is one of these. In fact, if the road has potholes
or lane markers cannot be easily distinguished by the system, the results can be
extremely far from an acceptable level. This situation can be partially avoided
through a well-designed filtering phase, which can be able to remove wrong mark-
ers detection if the road is not too much ruined. Figure 7.5 is an example of a good
performance even in presence of a road in bad condition.

75

Results

Figure 7.4. Good result obtained in a highway scenario with traffic, Turin ring road

Figure 7.5. Good result obtained in a road in bad conditions, Salassa (TO)

Another possible factor able to reduce the system performances is the illumination,
in particular the sun illumination that importantly varies during the day.

In Figure 7.6, it is possible to notice a loss of detection performance due to the sun
light illumination on the right part of the road, reducing the brightness difference
between the asphalt and the lane marker.

In Figure 7.7 and Figure 7.8 is presented a comparison between two images taken

76

7.2 – Elaboration results

Figure 7.6. Example of problems caused by sun light - 1, Rivara (TO)

Figure 7.7. Example of problems caused by sun light - 2, Rivara (TO)

in different hours of the same road segment. In the first case, the sun position pro-
jected the shadows of the trees on the lane, although the filtering phase correctly
removed possible outliers. In the second, the particular illumination caused the
system fail to correctly detect all the right lane marker.

Another issue related to the sun light is the presence of the sun directly in front of
the camera. In this case, the captured frame could present brightness noise which
can reduce the system performance. Some examples of this effect can be found in
Figure 7.9 and Figure 7.10, captured in a highway scenario with good road condi-
tions and in a semi-urban scenario with bad road conditions. In both cases, the
lane in direction of the sun light present a loss of performances due to the minor

77

Results

Figure 7.8. Example of problems caused by sun light - 3, Rivara (TO)

Figure 7.9. Example of problems caused by sun light in front of the
camera - 1, Turin ring road

brightness difference between the asphalt and the white lane marker. This problem
can be partially solved adequately adjusting the camera parameters to reduce the
light noise.

Moreover, paintings and road works can affect the final system results. In Figure
7.11, a painted arrow in a highway scenario caused a bad lane detection. In this
cases, more advanced filtering techniques are needed to proper recognize the arrow
as not part of a lane marker and discard the related pixels.

78

7.2 – Elaboration results

Figure 7.10. Example of problems caused by sun light in front of
the camera - 2, Busano (TO)

Figure 7.11. Example of problems caused by road paintings, Turin ring road

In Figure 7.12 and Figure 7.13, some road works were present. In this case the sys-
tem performed well, thanks to the histogram-based filter proposed, avoiding bad
detections.

Another possible issue is the weather. In Figure 7.14 and Figure 7.15 the problems
caused by the reflective effect of the water on the ground are clearly shown. The
cars’ headlights produce an important noise onto the frame.

However, the system performed well even in case of rain in the Turin ring road, as
described by Figure 7.16, thanks to the better asphalt quality and to the absence

79

Results

Figure 7.12. Example of detections with road works - 1, Turin ring road

Figure 7.13. Example of detections with road works - 2, Turin ring road

of cars incoming from the front able to produce light reflection on the road.

The last scenario in which tests have been taken is the urban one. As it is pos-
sible to see in Figures 7.17, 7.18, 7.19 and 7.20, traditional lane detection system
have difficulty to properly work in such scenario: in fact, even if in some cases the
specific conditions met in highways are present, as the approximation to a straight
road and the clear visibility of the markers in any situation, the high variance of
the environment scene, the presence of road paintings and road crossings without
markers do not allow an acceptable system reliability.

80

7.2 – Elaboration results

Figure 7.14. Example of problems caused by rain - good detection in absence of
incoming cars, Orbassano (TO)

Figure 7.15. Example of problems caused by rain - bad detection due to light
reflection on the road, Orbassano (TO)

Finally, due to the simple structure of the model fitting module implemented in the
presented system, the result are not acceptable in presence of a road which cannot
be approximated as straight. An example can be found in Figure 7.21.

However, being that the markers are correctly detected, the problem can be avoided
by implementing a semi-parametric model fitting module, based on Bezier curves
or splines.

81

Results

Figure 7.16. Good result obtained in a highway scenario in presence
of rain, Turin ring road

Figure 7.17. Example of elaboration in an urban environment - 1, Rivara (TO)

82

7.2 – Elaboration results

Figure 7.18. Example of elaboration in an urban environment - 2, Rivara (TO)

Figure 7.19. Example of elaboration in an urban environment - 3, Turin

83

Results

Figure 7.20. Example of elaboration in an urban environment - 4, Turin

Figure 7.21. Example of erroneous road model fitting, Rivara (TO)

84

Chapter 8

Conclusions

In this thesis, an implementation of lane detection algorithm based on the GOLD
system has been presented. The goals of this work were mainly related to two
important aspects: the system should be able to perform a real-time elaboration of
an incoming frame stream; it should be also able to correctly recognize the current
lane markers in different environmental situations at least in one restricted scenario.

For what concern the first goal, the timing results showed that the real-time elabo-
ration has been reached for incoming frame streams having rates equal to 30 frames
per second and 24 frame per seconds, as long as a small delay has been registered due
to threads communication mechanism, to the initial delay, intrinsic of the pipeline,
and to eventual drops of performances, caused by the operating system scheduling
policy.

In fact, the operating system and the scheduler architectures do not guarantee that
the operations always take the same amount of time. The processors may not exe-
cute the application threads only, but it is possible that other system applications
or kernel routines occupy a given core for a considerable amount of time, causing
a delay on the thread operation on the current frame. Therefore, the application
can be considered as real-time taking into account the mean elaboration times only.

However, the timing results have been evaluated simulating a real-time stream
providing a new frame every 33.33 and every 41.66 milliseconds; this was imple-
mented by previously reading all frames and then forcing to give them as system
input, imposing the desired inter-frame time interval. This configuration was nec-
essary due to the delay introduced by the frame reading operation directly from
the file system, which introduced a delay of 50 milliseconds per frame.

In the final system, with the frame stream directly coming from a USB camera, the
encountered delay due to the video file reading and decoding should not be present

85

Conclusions

and the input frames should be provided to the system with the correct frame rate.

The second goal to reach was the correct lane markers detection. The provided
visual outputs showed the good results obtained by the algorithm when the road
was not in bad conditions (with a good markers visibility), when the lane was
approximately straight and the light illuminating the scene did not encountered
obstacles, projecting shadows on the road.

In particular, the system performed well in the highway scenario, where the markers
have a particularly good visibility against the asphalt. In this case, the algorithm
correctly recognized lane markers also in presence of rainy conditions and at night.
In other scenarios, although in some cases the results were valid, small environment
changes caused performances drops.

In this implementation, a model fitting mechanism was introduced alongside the
markers’ recognition. This operation, however, is based on a quite simple linear
model, leading to precise results only in specific conditions, i. e. when the road is
approximately straight.

Given the reliability obtained by the markers detection in the highway scenario,
the road model fitting operation could be improved in the future by implement-
ing more accurate algorithms to obtain a curve road description, starting from the
found lane markers pixels. Moreover, the markers detection itself can be further
improved. In fact, in some situations outliers can be present, such as shadows on
the road, light reflections due to the rain or disturbances due to the sun light in
front of the camera, reducing the quality of the final results. To better handle
this problems, more accurate filtering methods can be introduced and, to better
integrate results in time, a Kalman filter can be implemented.

The final system is a real-time lane markers and lane center detector, able to work
with input stream up to 30 frames per second and able to obtain reliable per-
formances in restricted highway scenarios with good road conditions, visible bright
markers and approximate straight shape. Other scenarios, as semi-urban and urban
roads, cannot guarantee the minimal conditions in terms of environmental noise to
permit a good system performance in term of detection results.

Finally, this kind of system could be introduced in vehicles belonging to level 1
or level 2 of the SAE classification only, due to the absence of a reliable automatic
fallback procedure in case of wrong detections.

86

Part IV

Appendices and
Bibliography

87

Appendix A

Embedded Linux and the
YOCTO project

Nowadays, in the market of embedded system operating systems, it is possible to
find two main system families:

• Real-time operating systems, like FreeRTOS or MicroC OS, mainly used in
dedicated control systems.

• General purpose operating systems, like Android and the Embedded Linux
distributions.

In the last years, technological improvements in the ambit of computing power and
memory storage have allowed many embedded system architectures to run com-
plex operating systems, not only able to access low-level interfaces, but also able
to handle file systems, complex memory and scheduling management and user-
level system interfaces. Many examples of applications using this kind of operating
systems come from the automotive infotainment topic, complex internet of things
(IoT) applications and complex industrial human-machine interfaces.

Due to their lightness, efficiency and robustness, embedded distributions of Linux
have become more and more popular solutions. A Linux-based embedded system is
composed by four main parts that allow it to work properly on different hardware
architectures:

• The Bootloader, that is the basic software component, written for a particular
hardware architecture, that is responsible to initialize every system peripheral
and to start the Linux kernel process.

• The Device Tree, that is a data structure describing the list of the physical
devices of the system and providing to the Linux kernel all the information

89

Embedded Linux and the YOCTO project

to properly activate and initialize the needed device drivers. In this way, the
same Linux kernel, if the proper drivers are linked in it, can be able to run
in different hardware architectures. Moreover, if a hardware change is needed
in the system architecture, only this component must be modified, while the
kernel should not be recompiled.

• The Linux kernel, that is the core component of the operating system. It
provides the device drivers abstracting the hardware, the system call interface
between the kernel itself and user applications and consists in four management
modules: process management, memory management, network management
and virtual file system management.

• The Root File System, that is the container of every user application and
every system program. This is the last component initialized by the bootstrap
process before the root user process starts to run.

Thanks to this architecture, in order to use a Linux distribution as the operating
system of a proper hardware device, the only components that have to be changed
are: the device drivers module of the kernel, by adding new drivers to interact with
the new hardware; the device tree data structure, by adding the description of the
new hardware devices to use; eventually, adapt the bootloader component to the
new architecture. The other components of the kernel and the user applications
inside the root file system may not be changed with respect to other Linux-based
systems.

This approach makes possible to easily create custom Linux distributions, i. e.
systems based on the Linux kernel designed to work only with specific hardware
components and only with the user-space applications needed to work in a restricted
application domain.

Another reason of the popularity of Embedded Linux as operating system is the
possibility to load the device tree, the kernel and the root file system components
from different memory sources. In fact, the bootloader can load those components
from a flash memory embedded in the system on chip, from an external mass mem-
ory or even from a network-connected external device, making possible to design
several system configurations depending on the system needs. The root file sys-
tem component can be loaded on RAM, depending on the willingness to make its
contents volatile or not: in fact, if changes happen while the file system is placed
into the RAM, at power off they will be lost; if the root file system is loaded on a
persistent memory, all the changes will be maintained.

In order to create an Embedded Linux custom distribution that fits the needs
of a specific application scenario, the bootloader, the device tree, the kernel and

90

Embedded Linux and the YOCTO project

Figure A.1. The architecture of an Embedded Linux system

the root file system must be compiled starting from the existing source code and in
a dependent way with respect to the hardware-specific configurations of the system
where the operating system will be deployed to and with respect to the application-
specific configurations, for what concerns the user level. This kind of operations is
complex to manage and to execute manually, therefore an automated build system
is fundamental to perform a custom distribution build.

One of the most used and standardized build systems is an open-source project
called Yocto. Practically, a Yocto distribution is composed by collections of con-
figuration files describing how every module of the operating system must be built
and deployed and how the final system image must be composed.

The configuration files are usually in the form of “recipes”, special files that define
where to achieve the source code, how to build and where to deploy a given software
component. Other configuration files can be related to user-specific configuration
(for example, which libraries to include in the user level) or to hardware-specific
configuration (for example, the list of the peripherals and their characteristics).

Several configuration files are collected into layers, that are containers which permit
to customize set of software builds, to override determined compiling or deploying
behaviors and to define for which architecture their software components may be

91

Embedded Linux and the YOCTO project

Figure A.2. The OpenEmbedded work flow, from
https://www.yoctoproject.org/wp-content/uploads/2017/07/
yp-how-it-works-new-diagram.png [Accessed 25 March, 2020]

added to.

The tool that permits to start from recipes and other configuration files and to
finally obtain a built custom Linux distribution is called OpenEmbedded. This
tool, through the usage of a task executor tool called Bitbake, is able to parse
all the recipes linked to a given distribution and to execute the actions described,
which normally are:

• The source code fetching, from a local or remote source.

• The patch application in case of patch updates.

• The compilation process.

The results of these operations are called packages, that are compiled software com-
ponents of standard formats (for example, deb or rpm package formats). Once the
different packages are generated, the build tool collects them together obtaining
the system image, composed by the bootloader, the kernel image, the device tree
and the root file system. Eventually, a software development kit can be generated,
which is namely a set of tools and libraries to allow the developing of applications

92

https://www.yoctoproject.org/wp-content/uploads/2017/07/yp-how-it-works-new-diagram.png
https://www.yoctoproject.org/wp-content/uploads/2017/07/yp-how-it-works-new-diagram.png

Embedded Linux and the YOCTO project

based on the specific Linux distribution.

For example, in the work done in this thesis, the Embedded Linux distribution has
been generated from an existing repository called "iwg27-release-bsp", developed by
the board producer company starting from the default distribution template called
"poky". This template is a base Embedded Linux distribution, maintained by the
Yocto project foundation, that is possible to improve and modify, in order to obtain
more specific or complex results. To the "poky" distribution, several new layers were
added by the board producer, of which the most important is the Freescale BSP
layer, containing the drivers and the hardware description of the board peripherals
devices.

In order to adapt this base distribution to the needs of the thesis work, some
configuration files have been modified. In particular, the file named "local.conf" in
the folder build_imx8qm/conf of the distribution defines which software modules
must be added to the already defined image configuration (see A.3). The modules
added in this files are added for every configuration defined inside the distribution.
In this thesis, there were added:

• The QT base library module, necessary to the application run and used in the
Graphical User Interface (GUI).

• The OpenCV library, used in the low-level management of the images.

• The QT Creator debug server alongside with the OpenSSH server, necessary
to remotely debug the overall application.

• The Eclipse debug server, used to debug the C++ application generated to
test the low-level part of the application only.

• The OpenSSH SSH File Transfer Protocol (SFTP) server, necessary to upload
the application from a remote host (namely, the development computer).

Another important file that needed to be modified to adapt the base distribu-
tion to the application requirements is the file named "bblayers.conf" in the folder
build_imx8qm/conf. Inside this file the list of configuration layers added to the
final distribution is defined. In order to make the QT5 library work on the gener-
ated Linux image, the entire "meta-qt5" layer has been downloaded, added to the
distribution folder and defined to be used inside the "bblayers.conf" file (see A.4).

When the configuration files were properly set and the "meta-qt5" layer was added
to the distribution, the Bitbake tool was used to compile the entire operating sys-
tem image for the specified machine, namely "imx8qm_iwg27m". The result was
composed by:

93

Embedded Linux and the YOCTO project

Figure A.3. The content of the "local.conf" file of the custom distribution

• A binary file renamed to flash.bin, containing the U-Boot bootloader code.

• A binary file renamed to Image, containing the Linux kernel image.

• The device tree file, containing the hardware description of the system.

• A tar formatted archive containing the root filesystem.

These files were deployed to the SD card from which the board boots. The SD card
was previously dived in three partitions:

• A raw unformatted partition of 7 MB, containing the bootloader binaries and
the boot environment variables space.

• A FAT16 formatted area of 504.7 MB, containing both the device tree file and
the kernel image.

94

Embedded Linux and the YOCTO project

Figure A.4. The content of the "layers.conf" file defining the layers included
into the custom distribution

• An ext4 formatted area of 14 GB, containing the uncompressed root filesystem.

Finally, the boot settings arguments were defined in order to instruct the bootloader
about the name and the location of the kernel image, the device tree and the root
filesystem to load. Other environment settings may be defined, e. g. for the
evaluation board, the primary display output device could be selected among the
board screen and HDMI interface.

95

96

Appendix B

The pinhole camera model
and 3D to 2D
transformations

Every object can be described in the real world by assigning to every discrete point
belonging to it three numerical values corresponding to the three coordinates in
a 3D system. When taking a picture of that object, we are projecting the light
produced by these points onto a film (in analog cameras) or onto a digital sensor.

The simplest model that can be used to describe the structure of a camera is the
pinhole camera model. A pinhole camera is a system in which the camera aper-
ture can be described as a single point, without using particular lenses to focus all
the light coming from the environment in determined points of the sensor. This
model is a simplified version of the structure of a camera, being that we can ignore
the non-linear geometric distortion and the blurring effect introduced by the usage
of lenses with finite sized apertures, obtaining a first order approximation of the
overall model. These effects, however, should be subsequently handled in the com-
putation of computer vision transformation, in order to obtain more precise results.

In this model, every light ray passes through the single-point camera aperture
and reaches the sensor, posed at a distance f to the aperture point called focal
length. The resulting image is rotated of 180 degrees.

Starting from this model, when can geometrically describe the obtained image also
as a projection of the real-world object on a 2D plane, called image plane, posed
to a distance f (equal to the focal length of the camera) from the aperture point.
From now on, the aperture point will be described as the origin O and the axis
perpendicular to the image plane passing by O will be named as optical axis.

97

The pinhole camera model and 3D to 2D transformations

Figure B.1. A graphical representation of a pinhole camera

Now, we can define four coordinate systems:

• The 3D world coordinates system World = {(X, Y, Z)}, which is the descrip-
tion of the position of the real object in a predetermined 3D system.

• The 3D camera coordinates system Camera = {(Xc, Yc, Zc)}, which has the
origin O in the camera aperture point and the Zc axis corresponding to the
optical axis.

• The 2D film coordinates system Film = {(x, y)}, which is the 2D projection
of the real object points into the image plane, physically corresponding to the
plane of the camera sensor in the pinhole model; the origin of this system is
the center of the image plane.

• The 2D pixel coordinates system Image = {(u, v)}, which is the 2D affine
transformation to pose the origin of the system to the first pixel of the pixel
array, used to describe the image into a digital computation system.

Firstly, the points described in the world reference system must be transported into
the 3D camera reference system. This can be done by applying rigid transformation

98

The pinhole camera model and 3D to 2D transformations

Figure B.2. The pinhole camera model, from https://docs.opencv.org/
2.4/_images/pinhole_camera_model.png, [Accessed 27 March, 2020]

composed by a rotation and a translation. The rotation matrix R is derived by
knowing the pitch (α), roll (β) and yaw (γ) angles between the world reference axis
and the camera reference axis. The translation vector is derived by knowing the
distances between the world reference origin and the camera reference origin O.

R = Rz(α)Ry(β)Rx(γ) =⎡⎢⎣cos α − sin α 0
sin α cos α 0

0 0 1

⎤⎥⎦
⎡⎢⎣ cos β 0 sin β

0 1 0
− sin β 0 cos β

⎤⎥⎦
⎡⎢⎣1 0 0
0 cos γ − sin γ
0 sin γ cos γ

⎤⎥⎦ =

⎡⎢⎣r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤⎥⎦ (B.1)

T =

⎡⎢⎣−tx

−ty

−tz

⎤⎥⎦ (B.2)

⎡⎢⎣Xc

Yc

Zc

⎤⎥⎦ =
[
R | T

] ⎡⎢⎣X
Y
Z

⎤⎥⎦ (B.3)

When the rigid transformation has been applied, the 3D coordinates must be re-
ported to the 2D image plane film coordinates. This operation can be done by

99

https://docs.opencv.org/2.4/_images/pinhole_camera_model.png
https://docs.opencv.org/2.4/_images/pinhole_camera_model.png

The pinhole camera model and 3D to 2D transformations

applying a projection onto the image plane. Geometrically, the perspective projec-
tion equation can be derived considering the triangles obtained between the optical
axis and the X and Y axis. The obtained equations are:

• x = f · Xc/Zc

• y = f · Yc/Zc

where f is the focal length (distance between the origin O and the image plane), Zc

is the optical axis distance of the given point in the camera reference coordinates
and Xc and Yc are the other two 3D coordinates in camera reference.

If the focal length of the x axis and the focal length of the y axis are not equal, we
can rewrite the equations as:

• x = fx · Xc/Zc

• y = fy · Yc/Zc

The obtained matrix representation of the projection is:⎡⎢⎣x
y
1

⎤⎥⎦ =

⎡⎢⎣fx 0 0
0 fy 0
0 0 1

⎤⎥⎦
⎡⎢⎣Xc

Yc

Zc

⎤⎥⎦ (B.4)

Finally, an affine transformation is needed to transform the 2D film coordinates
into 2D pixel coordinates to represent the image in an array-based representation.
The origin must be rigidly transpose to the top-left corner of the pixel image by
a distance equal to the image height divided by two in the y axis and equal to
the image width divided by two in the x axis. Moreover, the it is possible to
introduce scaling factors to resize the pixel dimensions. The overall projection
matrix becomes: ⎡⎢⎣x

y
1

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
fx

sx

0 ox

0 fy

sy

oy

0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎣Xc

Yc

Zc

⎤⎥⎦ (B.5)

This matrix is called intrinsic matrix, because the transformation described only
depends on internal camera parameters, such as the focal lengths, the image size
and the pixel scaling factors. In the opposite way, the matrix describing the rigid
transformation between the world and camera reference mapping is called extrinsic
matrix, because its parameters only depends on external factors, i. e. the relative
position between the camera and the world reference. The overall transformation

100

The pinhole camera model and 3D to 2D transformations

is thus defined as:

⎡⎢⎣u
v
1

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
fx

sx

0 ox

0 fy

sy

oy

0 0 1

⎤⎥⎥⎥⎥⎥⎦
[
R | T

] ⎡⎢⎣X
Y
Z

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
fx

sx

0 ox

0 fy

sy

oy

0 0 1

⎤⎥⎥⎥⎥⎥⎦
⎛⎝R

⎡⎢⎣X
Y
Z

⎤⎥⎦ + t

⎞⎠ (B.6)

In a computer vision application, as the implementation of the algorithm described
in this thesis, the inverse of the described 3D to 2D transformation may be ex-
tremely useful. In fact, knowing the characteristics of the camera (its intrinsic
matrix) and the position in the space of the camera with respect to the world refer-
ence system and to the object (the extrinsic matrix) it is possible to map real-wolrd
points to an image 2D plane.

In particular, given the pixel coordinate [u, v], if we pose Z = 0, it is possible
the mapping of the points belonging to the plane Z = 0 in real world coordinates
into a 2D image. Applying this concept to the lane detection scope, we can com-
pute the inverse-perspective mapping of a captured road image, i. e. compute the
mapping of the lane points in a space where the perspective effect is removed.

It is important to underline that this procedure to obtain the planar projection
of the filmed scene into the W = 0 3D plane is possible only when the input image
is directed to a planar object. For example, in the case of this thesis the road must
have a slope near to zero, or the transformation will not be effective. In case of a
road slope, the extrinsic matrix parameters should be properly modified.

101

102

Bibliography

[1] S. Singh, “Critical reasons for crashes investigated in the national motor vehicle
crash causation survey,” Tech. Rep., 2015.

[2] Istituto Nazionale di Statistica (ISTAT), “Incidenti stradali in Italia“, july
2019, (https://www.istat.it/it/files//2019/07/Incidenti_stradali_2018.pdf).

[3] P. Suresh, P. V. Manivannan, “Reduction of vehicular pollution through fuel
economy improvement with the use of autonomous self-driving passenger cars“,
Journal of Environmental Research And Development, Vol. 8 No. 3A, January-
March 2014.

[4] M. Maurer, J. C. Gerdes, B. Lenz, H. Winner, "Autonomous Driving, Techni-
cal, Legal and Social Aspects", Springer, Chap. 16.

[5] T. Litman, “Autonomous Vehicle Implementation Predictions: Implications
for Transport Planning“, Victoria Transport Policy Institute, January 2020.

[6] T. B. Lee. “Autopilot was active when a tesla crashed into
a truck, killing driver“, (https://arstechnica.com/cars/2019/05/
feds-autopilot-was-active-during-deadly-march-tesla-crash/).

[7] Wikipedia, https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg.
[8] SAE, “Taxonomy and definitions for terms related to driving automation sys-

tems for on-road motor vehicles,” SAE J3016, 2018, Tech. Rep.
[9] E. Yurtsever, J. Lambert, A. Carballo, K. Takeda, “A Survey of Autonomous

Driving: Common Practices and Emerging Technologies“, arXiv preprint
arXiv: 1906.05113v2, 2020.

[10] C. Bila, F. Sivrikaya, M. A. Khan, S. Albayrak, “Vehicles of the Future: A
Survey of Research on Safety Issues“, IEEE Trans. Intelligent Transportation
Systems, vol. 18, no. 5, pp. 1046-1065, may 2017.

[11] J. C. McCall, M. M. Trivedi, “Video-based lane estimation and tracking for
driver assistance: survey, system, and evaluation.“, IEEE Trans. Intelligent
Transportation Systems, vol. 7, no. 1, pp. 20-37, March 2006.

[12] A. Bar-Hillel, R. Lerner, D. Levi, G. Raz, “Recent progress in road and lane
detection: a survey.“, Mach. Vis. Appl., vol 25, no. 3, pp.727-745, 2014.

[13] M. Bertozzi, A. Broggi, “GOLD: A parallel real-time stereo vision system for
generic obstacle and lane detection.“, IEEE Trans. Image Process, vol. 7, no.
1, pp. 62-81, Jan 1998.

103

https://www.istat.it/it/files//2019/07/Incidenti_stradali_2018.pdf
https://arstechnica.com/cars/2019/05/feds-autopilot-was-active-during-deadly-march-tesla-crash/
https://arstechnica.com/cars/2019/05/feds-autopilot-was-active-during-deadly-march-tesla-crash/
https://en.wikipedia.org/wiki/Death_of_Elaine_Herzberg

Bibliography

[14] M. Aly, “Real time detection of lane markers in urban streets.“, IEEE Intelli-
gent Vehicles Symposium, pp. 7-12, June 2008.

[15] A. Borkar, M. Hayes, M. T. Smith, “A novel lane detection system with efficient
ground truth generation.“, IEEE Trans. Intelligent Transportation Systems,
vol. 13, no. 1, pp. 365-374, March 2012.

[16] Z. Nan, P. Wei, L. Xu, N. Zheng, “Efficient Lane Boundary Detection with
Spatial-Temporal Knowledge Filtering.“, Sensors, 2016, 16, 1276.

[17] E. D. Dickmanns, B. D. Mysliwetz, “Recursive 3-D road and relative ego-state
recognition“, IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp.199-
213, Feb. 1992.

[18] Y. Wang, E. Teoh. D. Shen, “Lane detection and tracking using B-Snake“,
Image Vis. Comput., vol. 22, no. 4, pp. 269-280, April 2004.

[19] J. Kim, M. Lee, “Robust Lane Detection Based On Convolutional Neural Net-
work and Random Sample Consensus“, ICONIP, pp. 454-461, 2014.

[20] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil, M.
Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, F. Mujica, A. Coates,
A. Y. Ng, “An empirical evaluation of deep-learning on highway driving“, arXiv
preprint arXiv: 1504.01716v3, 2015.

[21] B. He, R. Ai, Y. Yan, X. Lang, “Accurate and robust lane detection based on
Dual-View Convolutional Neutral Network“, Intelligent Vehicles Symposium,
pp. 1041-1046, 2016.

[22] J. Koushik, “Understanding convolutional neural networks“, arXiv preprint
arXiv: 1605.09081, 2016.

[23] X. Pan, J. Shi, P. Luo, X. Wang, “Spatial as deep: Spatial CNN for traffic
scene understanding“, arXiv preprint arXiv: 1712.06080, 2017.

[24] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, L. Van Gool, “To-
wards end-to-end lane detection: an instance segmentation approach.“, arXiv
preprint arXiv: 1802.05591, 2018.

[25] Y. Hou, “Agnostic lane detection“, arXiv preprint arXiv: 1905.03704, 2019.
[26] Y. Hou, Z. Ma, C. Liu, C. Loy, “Learning lightweight lane detection CNNs by

self attention distillation“, arXiv preprint arXiv: 1908.00821, 2019.
[27] S.Tuohy, D.O’Cualain, E. Jones, M.Glavin, “Distance Determination for an

Automobile Environment using Inverse Perspective Mapping in OpenCV“,
ISSC 2010, UCC, June 23-24.

104

	List of Tables
	List of Figures
	Introduction
	I General introduction to addressed topics
	Autonomous driving
	Introduction to autonomous driving
	Definition of autonomous driving according to SAE
	General structure of an automated driving system

	The lane detection problem
	Introduction to lane detection
	Traditional algorithms
	Neural network-based algorithms

	The GOLD system
	Bertozzi and Broggi's algorithm
	Image transformation
	Processing algorithm

	Results and conclusions on GOLD algorithm

	II The GOLD-based lane detector implementation
	The software implementation
	Introduction to the system
	The application
	Graphical user interface module
	Lane detection processing module

	The hardware setup
	Hardware description
	Simulation and final setups

	III Test results and conclusions
	Results
	Timing results
	Elaboration results

	Conclusions

	IV Appendices and Bibliography
	Embedded Linux and the YOCTO project
	The pinhole camera model and 3D to 2D transformations
	Bibliography

