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Abstract
Road geometry estimation is essential for self-driving vehicles and modern advanced
driver-assistance systems (ADAS). State-of-the-art techniques utilize a Kalman filter
to perform road geometry estimation. A common assumption in these Kalman fil-
ters is that the process- and measurement noise covariances are constant over time.
However, both sensor performance and process dynamics may change over time
in real-world applications. Sensor performance may be affected by environmental
factors such as rain and lighting conditions and process dynamics may depend on
the road type. Noise processes like these with a feature dependent covariance are
known as heteroscedastic noise. By estimating the heteroscedastic process- and mea-
surement noise covariances more accurately both the filter performance and state
uncertainty estimation may improve. Road geometry estimation is an especially in-
teresting application in which to apply heteroscedastic noise estimation as there are
several factors which intuitively should affect the process- and measurement noise.

In this thesis a framework for heteroscedastic noise estimation in Kalman filtering
applied to road geometry estimation is presented. The framework consists of two
parts; a feature selection part and a heteroscedastic noise model. This noise model
is constructed offline based on data set of ground truth state vector data. Two dif-
ferent state-of-the-art approaches for heteroscedastic noise modeling, a parametric
approach and an approach based on a deep neural network, are evaluated as to
determine if they are suitable for the application of road geometry estimation. Fur-
thermore, a straightforward approach that models heteroscedastic noise by dividing
the features into discrete cases is studied.

The noise models are quantitatively evaluated using a likelihood measure and root
mean square error of the road geometry estimation. The results show that het-
eroscedastic noise estimation may improve both filter performance and estimation
uncertainty consistency in the application of road geometry estimation.

Keywords: Road geometry estimation, Kalman filter, Heteroscedastic noise estima-
tion, Noise modeling, Self-driving vehicles, Advanced driver assistance systems.
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Heteroscedastic noise estimation in Kalman filtering applied to road geometry
estimation
Serena De Vito1

Rickard Persson2

(1) Department of Electronics and Telecommunications, Politecnico di Torino
(2) Department of Electrical Engineering, Chalmers University of Technology

Road geometry estimation is a vital part of several ADAS features. Road geometry
for ADAS systems is typically done by using lane markers, target vehicles and map
data. ADAS systems are of great interest for Zenuity AB. The focus of this project
is the need to better study and define the uncertainty of the sensor data in order to
adapt the noise correctly to the filters and therefore be able to correctly estimate the
uncertainty of the road geometry filter. This project was carried out in the Göteborg
office of Zenuity in collaboration with Team Kalman and under the guidance of the
company supervisor Sebastian Inderst as part of the Master Thesis Program 2020.

Structure of the thesis
The structure of the thesis report is as follows.
Chapter 1 introduces the road geometry uncertainty estimation problem and pro-
posed solution and thesis objective.
Chapter 2 introduces general theory relevant to understand both the methods used
and the thesis background.
Chapters 3 and 4 present the work carried out by candidate Serena De Vito. Chapter
3 describes a preliminary data analysis and feature selection methods used. Chap-
ter 4 presents the Discrete Covariance Estimation method. Chapter 5 presents two
parametric approaches to the covariance estimation problem developed by Rickard
Persson, the Parametric Covariance Estimation and the Deep Covariance Estima-
tion. In these chapters theory specific to each part or method is initially presented
followed by the concepts of the methods.
Chapters 6 and 7 present the results and corresponding discussion for each of the
methods introduced.
Lastly, conclusions of the thesis work and future work suggestions are presented in
Chapter 8.
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(b) the residuals are plotted against the fitted values Ŷ . . . . . . . . . 23
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1
Introduction

Modern vehicles are today becoming more and more sophisticated with regards to
autonomy and sensing their environment. Vehicles have advanced driver-assistance
systems (ADAS) which aid the driver by making driving both safer and more con-
venient. These systems include functionalities such as adaptive cruise control, auto-
matic braking systems and collision avoidance systems. Furthermore, academia and
industry are working towards making fully self-driving vehicles a reality which may
further improve safety and sustainability within transportation. One of the reasons
that self-driving vehicles may improve traffic safety is that human errors e.g. driving
during fatigue, driving under influence, speeding and careless driving are common
reasons for traffic accidents [1]. These causes could be completely avoided by the
use of self-driving vehicles. With regards to sustainability self-driving vehicles en-
able a number of different strategies which may be used to reduce emissions and
fuel consumption. These strategies include platooning [2], energy efficient control
systems [3] and traffic flow control [4].

Road geometry estimation may be defined as in [5] which describes it as the problem
of estimating the shape of the middle of a host vehicle’s lane. Road geometry infor-
mation is crucial for both ADAS and self-driving vehicles. ADAS require knowledge
of road geometry to recognize if intervention is necessary e.g. if the car is diverging
from the driving lane and road geometry estimation is fundamental for self-driving
vehicles as the vehicle needs a reference path to follow.

Vehicles are equipped with a multitude of different sensors to sense the environment.
These sensors may include radar, lidar, cameras, GPS and inertial measurement
units (IMUs) among others. The sensors provide the host vehicle with noisy obser-
vations of e.g. lane markings and other road vehicles from which the road geometry
may be derived. To fuse these different sensor measurements into a single estimate
of the road geometry a common approach is to use a Gaussian filter which is evi-
dent from the work in [6][7][8][5]. The Kalman filter is one example of a Gaussian
filter used for road geometry estimation. The Kalman filter relies on knowledge of
sensor- and process dynamic uncertainties to produce accurate estimates of the road
geometry and the corresponding estimation uncertainty. If the sensor- and process
dynamic uncertainties are not described accurately it may result in a suboptimal
filter or even cause the filter to diverge [9].

1



1. Introduction

A criticism of the objective of noise estimation in mathematical models may be that
one should aim to reduce the errors instead of trying to capture their variation.
However, as mentioned in [10], mathematical models are only approximations of
reality and as such they will not describe reality perfectly. Furthermore, the cost of
estimating the error covariances may be lower compared to using a more complex
model which would result in a reduction of the errors. Because of these reasons the
objective of covariance estimation is a valuable objective to pursue.

As self-driving vehicles and ADAS are safety critical systems it is very important for
these systems to be aware of their uncertainty. There are several different sources of
uncertainty in road geometry estimation. The sensor measurements have intrinsic
uncertainties and the estimates produced by the Kalman filter have further uncer-
tainties following from modeling errors, assumptions and simplifications. By being
aware of these uncertainties the control system may decide to control the vehicle
more conservatively when the uncertainty is large as to not rely on an uncertain
estimate. The Kalman filter uncertainty estimate is heavily reliant on knowledge of
sensor- and process dynamic uncertainties in the same way as the filter estimate. It
is therefore crucial to describe these uncertainties accurately such that the vehicle
may be aware of the uncertainty and take safe actions.

1.1 Project objective
The objective of this thesis is to construct models that accurately estimate feature
dependent measurement- and process noise covariances in a Kalman filter used for
road geometry estimation. As a result both road geometry estimation performance
and the accuracy of the estimation uncertainty may possibly improve. The models
are to be used online but are constructed offline based on a data set of ground truth
state vector data.

The estimation uncertainty in road geometry estimation may depend on a multitude
of different factors. Sensor performance may be affected by environmental factors
such as rain and light conditions and road geometry dynamics may depend on the
type of road being driven. Measurements describing these factors are called fea-
tures and may be informative for estimating the measurement- and process noise
covariances. These kind of features and possibly other useful features are thus the
inputs of the models constructed in this thesis. Furthermore, as the models predict
measurement- and process noise covariances the model outputs consist of covariance
matrices. An illustration of the model structure is given in Figure 1.1.

2



1. Introduction

Covariance estimation model            Input
(e.g. weather conditions, 
lighting conditions)

         Output
(Covariance matrix)

Figure 1.1: Illustration of the overall model structure with input and output.

A more rigorous mathematical description of the objective may also be formulated.
Denoting the model input feature vector at time instance k as zk ∈ Rnz , where nz is
the number of input features, the overall objective is to model the functions f(zk)
and g(zk) that map input features to the accurate measurement noise covariance Rk

and process noise covariance Qk respectively at each time instance k. The objective
may thus be summarized as modeling f and g such that

Rk = f(zk) ∀k

Qk = g(zk) ∀k.

To evaluate how well the models estimate the true measurement- and process noise
covariances two different performance measures are used. The first measure is based
on the likelihood of the test data given the estimated covariances and it is a direct
performance measure of the noise models. The second measure is related to the
road geometry estimation performance, as more accurate measurement- and process
noise covariances should result in a better filter performance. Exact definitions of
the performance measures are given later in Chapter 6.

1.2 Related work
Filtering improvement methods known as adaptive Kalman filters have been devel-
oped with the aim of helping the filter to accurately estimate model parameters in
the presence of model errors. Adaptive Kalman filters largely use the measurement
noise process vk, also known as measurement innvoation, defined in (2.3), to define
a measure of the optimality of the filter. Mehra developed an adaptive Kalman
filter to estimate the process and measurement noise covariance matrices Q and
R online based on the measurement innovations [11]. The optimality of the filter
is checked carrying out a statistical test based on the innovation properties of an
optimal filter. Mohamed and Schwarz developed an adaptive Kalman filter based
on the maximum-likelihood approach to make decisions on the proper choice of the
filter gain factors, and used successfully in applications such as inertial navigation
system (INS) and global positioning system (GPS) [12]. However, this technique

3



1. Introduction

only works well in the presence of noise properties that vary slowly and smoothly
over time. The drawback of relying on the adaptive Kalman filter is a more complex
algorithm, which is acceptable in cases that require a high accuracy. Moreover, the
adaptive Kalman filter tries to reduce or bound the errors by adapting the model to
real data, which results in a reactive algorithm, rather than a predictive algorithm,
with high reaction time.

A number of covariance estimation methods for specific applications have been devel-
oped. Olson and Censi both address the localization and scan matching problems.
Censi developed a covariance estimation method for the Iterative Closest/Corre-
sponding Point algorithm (ICP), based on the analysis of the error function being
minimized [13]. In his paper [14], Olson examined a family of probabilistically-
motivated algorithms to calculate the alignment cost function at points around
the global minima. Pupilli and Calway described an innovative visual Simulta-
neous Localization And Mapping (SLAM) algorithm based on particle filtering [15].
The coupling between the unscented Kalman filter (UKF) and the particle filter
has proved to give the system resilience to unpredictable, erratic motions. These
domain-specific covariance estimation methods are highly specialized, therefore they
do not generalize well to other applications.

Covariance matrices are required to be positive definite matrices, which makes re-
gression complicated. To overcome this problem, parametric covariance decom-
position methods are used in order to regularize the sample covariance of high-
dimensional data [16]. A popular form of decomposition is the modified Cholesky
decomposition, which was first used by Pourahmadi in [17]. The great advantage
of this decomposition is that it has only positive value constraints, however the
parameter fitting process becomes complicated due to the large number of model
parameters used in a parametric approach. In this thesis we refer to a straightfor-
ward parametric method described by Hu and Kantor, in their paper [16]. A more
detailed discussion can be found in Section 5.2.

Recent works also provide with nonparametric techniques. In [18], Kersting et al.
present a Gaussian process (GP) approach to regression to estimate varying noise
variances, in the presence of input-dependent noise. The technique presented ap-
proximate the posterior noise variance using a most likely noise approach. A very
popular nonparamteric method is the Covariance Estimation and Learning through
Likelihood Optimization (CELLO) method presented by Vega-Brown et al. in [19].
The nearest-neighbor algorithm used provides an extension to the standard Gaussian
measurement model with constant covariance, relying on on-line state estimation.
This nonparametric kernel estimation technique approximates the sensor noise as
the empirical covariance of neighbors of training data in a given feature space. As
a consequence, this technique suffers from increasing computational complexity and
memory requirements with the increasing of the size of the training data set, thus
it is not well suited for large training data sets.

Among recent works, several methods have been dedicated to the direct learning of
neural network models in probabilistic filters. In [20], Coskun et al. propose to learn

4



1. Introduction

dynamic representations of the motion and noise models from data using short-term
memory. This approach finds representations that derive from all previous obser-
vations and states. In [21], Jonschkowski et al. learn prediction and measurement
models using a differentiable particle filter (DPF). This method proves the advan-
tage of combining end-to-end learning with algorithmic priors: the first optimizes
model performance, while the second enables explainability and regularizes learning.
In their paper, Kendall and Gal predict the variance of a deep neural network by
modelling epistemic, i.e., deriving from the model, vs. aleatoric, i.e., inherent in
the observations, uncertainty in Bayesian deep learning models [22]. In this thesis,
we refer to an interesting approach to deep learning methods, given by the Deep
Inference for Covariance Estimation (DICE) method developed by Liu et al. [23].
Further details on this approach are reported in Chapter 5.3.

1.3 Proposed solution and contributions
There exist state-of-the-art methods which aim to estimate covariances in Gaussian
noise models in the general context of Gaussian filters. In this thesis some of these
state-of-the-art methods are either modified to better fit the problem of road geom-
etry estimation or applied directly to evaluate how useful they are for this specific
application. A straightforward approach denoted Discrete Covariance Estimation
(DCE) is also studied and evaluated.

Ultimately the contribution of this thesis is a framework for heteroscedastic noise
estimation in Kalman filtering applied to road geometry estimation. That the noise
is heteroscedastic means that the variance of the noise process is not constant and
may therefore depend on some independent variable. The framework covers the
workflow from selecting useful features to constructing the heteroscedastic noise
models which provide the heteroscedastic covariance estimates. Regarding the het-
eroscedastic noise models our proposed solution is to model the noise processes in
the Kalman filter model equations as zero mean Guassians with feature dependent
covariances. These feature dependent covariances are estimated using models with
learnable parameters where the models map from input features to covariance ma-
trices. The parameters are learned offline based on a data set of ground truth state
vector data. Additionally, interesting features are selected from a set of candidate
features using feature selection methods.

Several parts of this thesis are to the best of our knowledge novel. Previous works
apply the heteroscedastic noise models to measurement models only while in this
thesis we also model the process noise covariance. This thesis aims to find het-
eroscedastic noise estimation models useful specifically for the application of road
geometry estimation. We propose in Section 3.1.4 a feature selection method for
continuous features in the specific case of heteroscedasatic covariance estimation
models when one has access to samples of the random variable instead of the actual
heteroscedastic covariances. In Section 5.1.3 we derive an argument as to why regu-
larization is important in the objective function used in some of the state-of-the-art
methods [10][23].
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1. Introduction

1.4 Reference system
At the start of the thesis a reference system for road geometry estimation was avail-
able. It uses a Kalman filter to produce road geometry estimates. Additionally,
a heuristic method to estimate the measurement- and process noise covariances
was available at the start of the thesis. The heuristic method consists of feature
dependent noise model matrices and covariance matrices tuned based on filter per-
formance. The heuristic method will be referred to as the baseline and is used to
benchmark the proposed solutions within this thesis. The baseline and the covari-
ance estimation methods evaluated in this thesis are applied to the Kalman filter
reference system as to obtain comparable results.

The reference Kalman filter uses one prediction step and three different update steps.
The prediction step may further be divided into two parts; a road prediction and an
object prediction. The update steps are based on measurements of lane markings,
positions of surrounding vehicles and headings of surrounding vehicles. The mea-
surements in these update steps are obtained from camera and radar sensors. The
performance of both camera and radar sensors are potentially heavily dependent on
factors common during driving such as rain, darkness and motion blur from moving
at high speeds. These performance dependencies make road geometry estimation a
suitable candidate for heteroscedastic noise estimation.

To summarize the reference system has two process models and three measurement
models. We therefore need to construct two different covariance estimation models
that estimate process noise and three different covariance estimation models that
estimate measurement noise. The five reference system Kalman filter models will in
the remainder of this thesis be referred to as the road prediction, object prediction,
lane marker update, vehicle update and vehicle heading update.

1.5 Structure of the report
The structure of the thesis report is as follows. Chapter 2 introduces general theory
relevant to understand both the methods used and the thesis background. This
includes a brief introduction to the problem of road geometry, an introduction to the
Kalman filter, how the data set is created and relevant statistical theory. Chapters
3, 4 and 5 describe the different parts of the thesis work and the methods used. In
these chapters, theory specific to each part or method is initially presented followed
by the concepts of the methods. The covariance estimation models are evaluated
and benchmarked against the baseline method based on two different performance
measures on three different test sets in Chapter 6. The results presented in Chapter
6 are then discussed in Chapter 7. Lastly conclusions of the thesis work and future
work suggestions are presented in Chapter 8.
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General theory

2.1 Road geometry estimation
To provide background to the application considered in this thesis a brief introduc-
tion of road geometry estimation is given in this section.

Using the definition of road geometry given in [5] road geometry estimation may
be defined as the problem of estimating the shape of the middle of a host vehicle’s
lane. As mentioned in Chapter 1 it is common to use Gaussian filters to perform
road geometry estimation. The road geometry is thus described using a state vector
xk which summarizes the parameters used to define a mathematical expression of
the road geometry, a mathematical road model. A Kalman filter then utilizes a
process model describing the dynamics of the road geometry and a measurement
model which relates measured quantities to the road geometry to estimate xk at
each time instance k. As seen in [6][7][8][5] the host vehicle commonly uses camera
and radar sensors to measure things such as lane markers, surrounding vehicles and
road-side objects which may be used to perform inference of the road geometry. A
figure meant to illustrate the problem of road geometry estimation is given in Figure
2.1.

Figure 2.1: Illustration of road geometry estimation. The ground truth road is
given by the dashed green lines and the road geometry estimate is described by the
green and red areas.
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2. General theory

2.2 Gaussian filters
The Gaussian distribution, also known as the normal distribution, plays a key role in
Gaussian filters. The Kalman filter is one example of such a Gaussian filter. Given
an initial Gaussian distribution over the state p(x0) the Kalman filter recursively
computes a posterior Gaussian distribution over the state xk at each time instance k.
It does this in two steps by first calculating a predicted distribution using knowledge
of the state transition dynamics and second by calculating a posterior distribution
using information from an observed measurement yk. The state is thus characterized
by a state estimate x̂k and estimate covariance Pk which are the mean and covariance
of the Gaussian posterior distribution, respectively. The state estimate describes the
estimate of the state while the estimate covariance describes the uncertainty in the
state estimate.

The step in which the predicted distribution is calculated is called the prediction step
which utilizes a model describing the process dynamics and the model is therefore
called the process model. In the general context of Gaussian filters the process
model is commonly defined as

xk = Fk(xk−1, uk) + wk (2.1)

where xk and uk are the state vector and control input respectively at time k,
Fk is a possibly nonlinear function describing the deterministic part of the process
model at time k and wk is a Gaussian noise process. In Kalman filters the Gaussian
noise process is assumed to be a white noise process [24] which means that the
samples are uncorrelated in time and zero mean, i.e., wk ∼ N (0, Q). As real-
world dynamical systems often are complex it is not practically feasible to model
the systems exactly. However, the noise process wk captures these model errors by
allowing for a distribution of possible state transitions. The process noise covariance
Q thus quantifies the error of the mathematical model in (2.1) compared to the true
process model. Furthermore, Q also captures the dynamics of the process model
[24].

In the second step, called the update step, the posterior distribution is determined
based on a model called the measurement model. The measurement model describes
the relation between the state vector xk and the measurements at the same time
instance yk. In the general context of Gaussian filters the measurement model is
commonly given by

yk = Hk(xk) + vk (2.2)

where Hk is a possibly nonlinear function describing the deterministic part of the
measurement model at time k and vk ∼ N (0, R) [24]. Similarly as for wk in the
process model, vk may model discrepancies of the mathematical model described
in (2.2) compared to the true relation between the state and the measurement.
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2. General theory

However, perhaps more importantly, real-world sensors have inherent sensor noise
which also should be described by the noise term vk.

As mentioned it is common within the literature to define the process- and mea-
surement equations as in (2.1) and (2.2). A crucial problem with these models is
that the noise process covariances, i.e., Q and R, are assumed to be fixed. In many
real-world applications it is unreasonable to assume that the covariances are time-
invariant. Sensor performance may vary with environmental factors and the process
dynamics may change over time [24].

By allowing the noise processes in the Kalman filter model equations to be het-
eroscedastic, the models may more accurately describe the true dynamics. Given a
vector of informative input features zk that are useful in describing the heteroscedas-
ticity of the noise processes a modified process- and measurement model may be
defined as

xk = Fk(xk−1, uk) + wk(zk)
yk = Hk(xk) + vk(zk)

(2.3)

where wk(zk) ∼ N (0, Q(zk)) and vk(zk) ∼ N (0, R(zk)) are input feature dependent
process- and measurement noise processes, respectively. In this thesis a Kalman
filter is considered and hence the process- and measurement models described in
(2.3) are linear functions of the state. Nonetheless, the process- and measurement
models are presented in the more general context of possibly nonlinear functions in
(2.3) as to indicate that the methods considered in this thesis are not restricted to
the case of linear models.

2.2.1 Toy example
A toy example is presented in this section which demonstrates the importance of
correctly estimating hetereoscedastic noise in Kalman filtering.

Consider a small robot which is driving slowly along a 100m corridor. To estimate
its longitudinal position, i.e., the position along the corridor, it uses a camera from
which it obtains noisy observations of its absolute longitudinal position. The robot
has an input signal which determines its speed and it therefore also has knowledge
of the process dynamics. Once the robot passes 35m along the corridor the lights
in the corridor are turned off which significantly degrades the performance of the
camera sensor and its position measurements. When the robot reaches 65m the
lights are turned back on and the position measurements return to being reliable.
The objective of the robot is to estimate its position while driving along the full
length of the corridor. Figure 2.2 demonstrates the experimental setup of the toy
example.
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Distance along the corridor (m)

(a) (b) (c)

Figure 2.2: Experimental setup of the toy example seen from above. The x-axis
indicates the robot’s distance along the corridor, the robot is represented by the
blue rectangle, the white areas correspond to bright lighting conditions and the
gray area corresponds to dark lighting conditions. Point (a) the robot has started
to drive along the corridor and the lights are currently turned on. Point (b) as the
robot passes 65m the lights are turned off causing the position measurements from
the camera to become unreliable. Point (c) the lights have been turned back on and
the camera measurements may once again be trusted.

Since both knowledge of process dynamics and measurements are available the robot
uses a Kalman filter to estimate its position. The process model in the Kalman filter
is defined as

xk+1 = xk + 0.1 + w (2.4)

where xk is the longitudinal position of the robot at time k and w ∼ N (0, 0.001).
The process model given in (2.4) is also used to generate the true state sequence
and the Kalman filter process model is therefore optimal.

The measurement model of the Kalman filter is defined as

yk = xk + vk (2.5)

where yk is the noisy measurement of the robot’s absolute longitudinal position
at time k and vk ∼ N (0, Rk). The deterministic part of the measurement model
in (2.5) is optimal as it is the same as the deterministic part used to generate
the measurements. However, the true measurement noise covariance is considered
unknown.

Now consider two different versions of the Kalman filter; one version where the
measurement noise covariance is modeled as constant and another version where
the measurement noise covariance is modeled as heteroscedastic. To determine the
measurement covariances for each version, a data set of ground truth measurement
errors is used where the errors were predominately collected in a bright environment.
In the constant version, the measurement covariance is determined by taking the
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2. General theory

sample covariance over the full data set to obtain a constant covariance R. For the
heteroscedastic version the data set is divided into error samples from bright and
dark environments and the sample covariance is calculated for each case separately,
i.e., for the bright and dark environments, respectively. This results in a feature
dependent covariance R(zk), zk ∈ {0, 1} where zk = 0 indicates a dark environment
and zk = 1 indicates a bright environment.

The experiment described in Figure 2.2 is performed for each version of the Kalman
filter and the resulting position estimation error along the corridor and the 95%
confidence intervals are shown in Figure 2.3 for the constant and heteroscedastic
covariances respectively.
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(a) Constant covariance.
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(b) Heteroscedastic covariance.

Figure 2.3: Estimated position error and 95% confidence interval for the measure-
ment model with constant and heteroscedastic measurement covariance respectively.

From the results in Figure 2.3 it is clear that the Kalman filter which uses a het-
eroscedastic covariance performs better compared to the constant covariance. The
heteroscedastic covariance obtains both a more consistent uncertainty with regards
to the errors and also a better filter performance since the errors are smaller com-
pared to the constant covariance. This toy example demonstrates the importance of
accurately estimating heteroscedastic noise processes in Kalman filtering as it may
improve both filter performance and state uncertainty estimation.

2.3 Obtaining noise samples
To determine the covariance matrix of a random vector, samples of the random
vector are required. In the case of the random vectors wk and vk in (2.3) it is
possible to obtain samples of the random vectors if one has access to ground truth
state vectors. By simply solving for wk and vk in (2.3) one obtains

wk(zk) = xk − Fk(xk−1, uk)
vk(zk) = yk − Hk(xk)

(2.6)
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which describes realizations of the random vectors for each time instance k. A useful
way to interpret the terms Fk(xk−1, uk) and Hk(xk) is to view them as predictions of
the true state and a noise-free measurement respectively. Given the current ground
truth state xk−1 and possible knowledge of process input uk the function Fk(xk−1, uk)
strives to predict the true state vector xk at the next time instant k. The term
Fk(xk−1, uk) is, thus, referred to as the predicted true state in this thesis. Similarly
given the ground truth state vector xk at the current time k the function Hk(xk)
predicts a noise-free measurement, i.e., a more accurate measurement compared
to yk, at the same time instance k. Hence, Hk(xk) is referred to as the noise-free
measurement. The random vectors wk and vk may consequently be interpreted as the
predicted state error and predicted measurement error respectively as they describe
the discrepancies between the predictions and the actual values. There are several
possible sources for these prediction errors. As mentioned in Section 2.2 sensors
have inherent measurement noise and processes may be random in nature, e.g., a
human walking around choosing directions to walk in randomly. Furthermore, the
functions Fk(xk−1, uk) and Hk(xk) may not be optimal estimators in the sense that
they fail to capture deterministic relations which in theory are possible to capture
and in turn give rise to prediction errors, i.e., modeling errors. As there is no need to
distinguish between the prediction errors in the process- and measurement models
they will henceforth be referred to as simply errors. To be clear the random vector
realizations wk and vk are henceforth referred to as errors or error samples and
individual samples will be denoted as ei for simplicity. Using ground truth state
vector data and (2.6), one may construct a data set of errors ei, i.e., realizations of
the random vectors wk and vk, and input features zi as D = {ei, zi|i = 1, 2, . . . , N}.

2.4 Covariance matrix definition
As the project objective is to estimate noise coviarance matrices the definition of the
covariance matrix is briefly presented for completion. A covariance matrix describes
the variance of each scalar random variable and joint variability of each pairwise
scalar random variables in a random vector. More mathematically given a random
vector X the covariance matrix Σ of X is defined as

Σ = Cov(X) = E
è
(X − E[X])(X − E[X])T

é
(2.7)

where the operator E() is the expected value and X is a column vector [25].

2.5 Missing data
It should be mentioned that the discussion held in this section is equally valid for
both the process- and measurement models in the reference Kalman filter. Despite
this the discussion is carried out by referring to the measurement model to make
the discussion more concise.
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As mentioned in Section 1.4 the reference Kalman filter makes use of three differ-
ent update steps. In these update steps the number of measurements at each time
sample may vary. This further means that the size of the covariance matrix in the
measurement model may differ at each time instance. The problem of having mul-
tivariate measurements where individual elements of the measurement vector may
be missing for some samples is called missing data [26]. Since the error samples in
the training data sets for the measurement models are constructed using measure-
ment samples in (2.6) the error samples consequently also suffer from missing data.
This is a problem as one may not determine the covariance matrix using the sample
covariance with incomplete samples. There are several possible solutions to this
problem which will be discussed in the remainder of this section. These solutions
are calculating pairwise covariances, discarding incomplete samples and estimating
diagonal covariance matrices.

2.5.1 Pairwise covariance
One way of circumventing this problem is to calculate the pairwise covariance be-
tween each variable using the values which are not missing. This is reasonable since
the definition of the covariance matrix Σ of a random variable X = [X1, X2, . . . , Xn]
may be described by [27]

Σ =


Var(X1) Cov(X1, X2) . . . Cov(X1, Xn)

Cov(X2, X1) Var(X2) . . . Cov(X2, Xn)
... ... . . .

Cov(Xn, X1) Cov(Xn, X2) Var(Xn)

 (2.8)

where Var(Xi) and Cov(Xi, Xj) is the variance and covariance respectively of the
scalar random variables Xi and Xj. However, as a result of calculating the scalar
covariances pairwise for samples containing missing data the resulting covariance
matrix is not guaranteed to be positive definite [28]. This is problematic as the
covariance matrix needs to be positive definite to be a proper and useful covari-
ance matrix in the Kalman filter. Consequently, the approach of calculating the
covariance matrix pairwise is not suitable for the work within this thesis.

2.5.2 Discarding incomplete samples
Another option is to disregard all vector samples which contain any missing data.
By removing these samples the data would no longer contain any missing data and
standard techniques could be used to estimate the covariance matrix. A problem
with this approach is that potentially a lot of useful data will be discarded as the
valid elements in the samples with missing data also are removed. Consider the case
of a measurement sample of size eight with only one missing element. Disregarding
this sample would result in losing the seven valid elements which contain useful
information.

A further concern with this approach is that the samples with missing data may all

13



2. General theory

correspond to or correlate with a specific situation which itself may be the reason
for the missing data. A Kalman filter which tracks other vehicles could for example
have an update which utilizes measurements of multiple vehicles. It would then be
reasonable to assume that situations with light traffic correlate with measurement
samples containing only one element, i.e., a measurement of a single vehicle. Thus
removing all measurement samples which contain any missing data would remove
many of the samples corresponding to the situation of light traffic. This would
in turn cause the model to perform poorly in cases of light traffic as this specific
situation would not be represented in the training data. Hence, the approach of
discarding incomplete vector samples is not used within this thesis.

2.5.3 Diagonal covariance matrix
A third alternative is to estimate a diagonal covariance matrix instead of a dense
covariance matrix. As a diagonal covariance matrix only contains the variances of
the individual elements in the random vector the sample elements may be used inde-
pendently of each other. Consequently, the elements that are missing in each sample
may be discarded without disregarding the other valid elements. After removing all
missing data from the data set the covariance matrix may then simply be calculated
as

Σ =


Var(X1) 0 . . . 0

0 Var(X2) . . . 0
... ... . . .
0 0 Var(Xn)

 . (2.9)

It should be noted that estimating diagonal covariance matrices is not necessarily a
simplification. The reason for this is that individual elements in measurement vec-
tors in some Kalman filter updates are more appropriately modeled as independent
of each other. This may be the case if the individual measurements are known to
be independent in practice or they are the same type of measurement. Same type
of measurement here means that multiple measurements of the same type may be
obtained at each update and the order of these measurements in the measurement
vector has no significant meaning. As such the individual elements are samples of
the same scalar random variable and should be used collectively for estimating the
variance of that random variable. In this thesis this is considered the case for the
surrounding vehicles position and heading updates in the reference system Kalman
filter.

Lastly as mentioned in [10] estimating diagonal covariance matrices in a model
with learnable parameters may act as regularization. The reason for this is that
the number of model parameters is reduced [10] since the L matrix introduced in
Section 5.1.2 will simply be the identity matrix.
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2.6 Regression theory and heteroscedasticity
In statistics, heteroscedasticity is present when the statistical dispersion measure
(e.g. the variance) of a vector of random variables given a vector of independent
variables differs across different values of the independent variable. Regression the-
ory defines the relationship between the data and the model trained using said data.
It introduces model assumptions such as zero mean valued error terms and the pres-
ence of heteroscedastic noise. In this thesis, we use common tools of regression
theory, such as residual plot analysis, to perform a preliminary check on our avail-
able data and check on model assumptions such as heteroscedastic noise. However,
it should be noted that these checks were not performed exhaustively for the data
as there are a lot of different cases considering all five Kalman models and all the
different input features used.

2.6.1 Linear regression analysis
Given a system in which variables quantities can change in random fashion, or not,
it is of interest to examine the effects that some variables might be causing on others.
In this context, two main types of variables can be identified: predictor variables
and response variables. Predictor variables (also denominated as input variables or
X-variables or regressors) are independent variables such that they can be either set
to a desired value or take on an observable, but not controllable value. A change in
the predictor variables has an effect on the dependent variables, i.e., the response
variables (or output variables or Y-variables). In this framework, it is of interest to
examine and outline the dependence that links the change in the predictor variables
to the values of the response variables. In this work we will refer to X as the
independent variable, and Y as the corresponding dependent variable.

A (X,Y) plot of the data that creates an expected value of the Y-variable for a
given value of the X-variable illustratively shows the empirical relationship that
links the two variables. The plot of the data pairs (Xi,Yi) for i = 1, 2, . . . , n results
in a diagram of the type shown in Figure 2.4. This type of representation is called
scatter diagram.
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Figure 2.4: Scatter diagram of X-variable, or predictor variable, values against
Y-variable, or response variable, for two random variables X, Y.

Given a data set of n measurements, a range of values can be identified for both
the X-variable and the Y-variable. These values are influenced by measurement and
model errors as well. A precise relationship between the two variables is not easy to
identify; however, as one variable influences the other, a pattern can be outlined by
considering the average observed output value for a given input value. This locus
of points is known as regression curve of Y on X, i.e., yi = f(xi) for i = 1, 2, . . . , n;
where yi represents the i-th observation of the dependent random variable Y and xi
represents the i-th observation of the independent variable X. Similarly, a regression
curve of X on Y, i.e., xi = g(yi) for i = 1, 2, . . . , n, can be defined. In prediction
problems, this relationship can be used to estimate an average observed yi for a given
xi; and in estimation problems it can be used to fit data to the given model in case
of missing observations. The estimation of a dependent relationship between the
two variables, yi and xi, is referred to as regression equation and can be expressed
in linear form as

yi = α + βxi + ui i = 1, 2, . . . , n (2.10)

Parameters α and β identify a model function that links the variables. In real life
applications, these parameters are unknown and can be estimated from a set of
observed data {(xi, yi) for i = 1, 2, . . . , n} [29].

In the regression equation, ui represents the i-th random error term. The random
errors distribution is assumed to be a normal distribution with zero mean value
and the errors are assumed to be independent. This linear equation represents the

16



2. General theory

best-fitting straight line that better expresses the relationship between the (xi, yi)
points for i = 1, 2, . . . , n.
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Least squares best-fitting line

Figure 2.5: Regression curve of variables X,Y. The best-fitting straight line to
model the relationship between random variables X,Y is calculated by means of
least squares estimation.

The linear regression equation can be obtained by the method of least squares esti-
mation. The result of the estimation can be seen in Figure 2.5. The residual term
is defined as

êi = yi − α̂ − β̂xi i = 1, 2, . . . , n (2.11)
The residual term êi measures the deviation of the i-th data point (xi,yi) from the
fitted linear regression line in the (X,Y) plane. The least squares estimation method
evaluates the best-fitting model parameters by minimizing the sum of the residual
square functions S , i.e., solving

min S = min
nØ
i=1

ê2
i = min

nØ
i=1

(yi − α̂ − β̂xi)2. (2.12)

Solving the least squares problem for α and β gives

α̂ = y − β̂x and β̂ =
qn
i=1 xiyiqn
i=1 x2

i

(2.13)

where y = qn
i=1

yi

n
, x = qn

i=1
xi

n
; yi = Yi − y, xi = Xi − x.

The parameters α̂ and β̂ found represent the ordinary least squares estimators (OLS)
of the parameters α and β, respectively. The function Y = α̂ + β̂X represents the
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fitted model or fitted regression line. The OLS residuals ei = yi - α̂ - β̂xi minimize the
sum of residual square functions and satisfies two important numerical properties.
The first property states that (i) qn

i=1 ei = 0, i.e., the residual sum is null; this
statement implies that the (x,y) point belongs to the estimated regression line. The
second numerical statement is (ii)qn

i=1 ei xi= 0, i.e., the residuals and the regressors
are not correlated.

The least squares problem formulation relies on four assumptions [30].

Assumption 1: The first assumption is E[ui] = 0 for i = 1, 2, . . . , n, i.e., the
random error terms have zero mean values. This assumption ensures that the average
points belong to the true line.

Assumption 2: The second assumption is homoscedasticity. The variance of the
disturbances is assumed to be constant, i.e., Var(ui) = σ2, for i = 1, 2, . . . , n, which
implies that each observation is equally reliable.

Assumption 3: The third assumption is that the disturbances are not correlated,
i.e., E[uiuj] = 0 for i Ó= j, i,j = 1, 2, . . . , n. This implies that one disturbance does
not carry any information about the other disturbance terms.

Assumption 4: The fourth assumption is that the independent variable X is non-
stochastic, and therefore not correlated with the disturbances.

2.6.2 Multiple regression analysis
Models typically include more than one regressor X, i.e., input variable influencing
the output variable Y. In this case, the regression equation in linear form can be
expressed as

yi = α + β1x1i + β2x2i + · · · + βKxKi + ui i = 1, 2, . . . , n (2.14)

where yi is the i-th observation of the dependent random variable Y and xki is the
i-th observation of the deterministic variable xk for k = 1, 2, . . . , K.
Parameters α and β1, β2, . . . , βK identify a model function that links the variables.

In case of multiple regression, the residual term is defined as

êi = yi − α̂ −
KØ
k=1

β̂kxki i = 1, 2, . . . , n. (2.15)

The least squares method to estimate the linear regression equation minimizes the
following residual sum of squares S

min S = min
nØ
i=1

ê2
i = min

nØ
i=1

(yi − α̂ −
KØ
k=1

β̂kxki)2. (2.16)

This results in a system of K equations in K unknowns that can be solved to find
the ordinary least squares estimators (OLS), parameters α̂ and β̂.

18



2. General theory

The multiple linear regression model can be written in matrix form by defining the
following matrix and vectors:

X =


1 x11 · · · xK1
... ... ...
1 x1N · · · xKN

 , Y =


y1
...

yN

 ,β =


α
β1
...

βK

 , u =


u1
...

uN

 .

The regression model in (2.14) can be written as

Y = Xβ + u. (2.17)

The system of equations that minimizes the residual sum of squares S in (2.16) is
proved [31] to be

(XÍX)β̂ = XÍY, (2.18)

which leads to the least square estimators

β̂ = (XÍX)−1XÍY. (2.19)

The fitted values of the output dependent variable are

Ŷ = Xβ̂ = X(XÍX)−1XÍY ≡ HY, (2.20)

where H = X(XÍX)−1XÍ is known as hat matrix. Moreover, the residual term must
satisfy

ê = Y − Ŷ = Y − X(XÍX)−1XÍY = (I − X(XÍX)−1XÍ)Y = (I − H)Y. (2.21)

Assumptions 1–4 discussed in Section 2.6.1 are still valid in case of multiple re-
gression analysis. Moreover, the least squares problem formulation relies on some
additional assumptions.

Assumption 5: The fifth assumption is the normality assumption. The OLS es-
timator is also assumed to be a maximum likelihood estimator. This estimator is
normally distributed and unbiased, with lower variance than any other unbiased
estimator for all possible values of the parameter (minimum-variance unbiased esti-
mator).

Assumption 6: The sixth assumption is the non-perfect multicollinearity assump-
tion. According to this assumption, the explanatory variables are not perfectly
correlated with each other, i.e., no xk for k = 1, 2, . . . , K is a perfect linear com-
bination of the other xk variables. The non-perfect multicollinearity assumption is
necessary to prove that there is a unique solution for the OLS estimators of the K
coefficients.
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2.6.3 Nonlinear regression analysis
Nonlinear regression is a particular form of regression analysis. In nonlinear re-
gression, the response variable is modeled by a nonlinear function of the model
parameters and depends on one or more independent variables, such that

Yi = f(xi,β) + ui (2.22)

where f is an arbitrary nonlinear function in the components of the parameters
vector β and xi is the i-th observation on each of the independent variables. The
observational data can be fitted to the model by a method of successive approxima-
tions. The random error terms ui are assumed to be normally distributed with zero
mean value and independent from one another, just as in linear regression.

The linear model (2.10) can be seen as a special case of the more general model
(2.22).

Nonlinear regression is a more flexible approach than linear regression, as the func-
tion f does not need to be linear or linearizable. Nonlinear regression is a good
method for cases in which linearity does not fit and the linear transformation al-
ters model assumptions, e.g. variance homoscedasticity. The nonlinear approach
provides a good tool for fitting a general and nonlinear relationship between the
response variable and the predictors to the data. However, function f is required to
be differentiable with respect to the elements of β, which guarantees the existence of
the least squares estimates [31]. Moreover, nonlinear regression analysis requires a
precise knowledge of the relationship between the response variable and the predic-
tors, which may be difficult or impossible to identify. The choice of an inadequate
function f can result in a poor fit of the regression.

In statistics, there are several procedures for fitting nonlinear models. The nonlinear
models may be: transformable nonlinear models, i.e., involving a single predictor
variable X, polynomial models, i.e., involving one or more predictor variables with
terms of order higher than one, and models which are nonlinear in the parameters.
The first two types of models can be fit using the linear least square method by
transforming at least one of the variables (either X, Y or both). The third type
requires a numerical search method. In this case, a linear regression is not adequate
because in these models the partial derivatives of the response variable Y with
respect to the predictor variables involve the unknown parameters β.

In general, there is no standard expression for the best-fitting parameters estimated,
as there is in the linear case. For nonlinear models, numerical optimization algo-
rithms can be used to determine the best-fitting parameters. A logarithmic example
of nonlinear least square estimation of the best-fitting line can be found in Figure
2.6.
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Figure 2.6: Nonlinear regression curve of variables X,Y. The logarithmic relation-
ship between the random variables X,Y is described by Y = a + b log10 X. The
best-fitting line is calculated by means of nonlinear least squares estimation.

Under this approach, there is the assumption that the model can be approximated
by a linear function, i.e., a first-order Taylor series, according to

f(xi,β) ≈ f(xi, 0) +
Ø
j

Jijβj, (2.23)

where Jij = ∂f(xi,β)
∂βj

. Using the ordinary least square (OLS) method on the approx-
imated model, the estimated parameters are given by

β̂ ≈ (JÍJ)−1JÍY. (2.24)

The result obtained is similar to the one obtained in the linear case and described
by (2.19), but using the partial derivative J instead of the regressor variable X. The
linear approximation used introduces a bias.

In cases where the variance of the dependent variable Y is not constant over the
observations, the weighted least squares approach can be used. This method, es-
timates the model parameters by minimizing a sum of weighted squared residuals.
The weights can be iteratively estimated by the estimating algorithm, or they are
usually fixed to be equal to the reciprocal of the variance of the variable Y at each
iteration.
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2.6.4 Heteroscedasticity
Heteroscedasticity, or heteroskedasticity, occurs when the variance of the error terms
differs across observations. In regression theory, heteroscedasticity is the violation
of the homoscedasticity assumption, according to which the variance of the distur-
bances is assumed to be constant. This assumption has been introduced in Section
2.6.1 as Assumption 2.

For this definition, the linear regression analysis is considered. As discussed in
Section 2.6.1, the regression equation that links xi, the i-th observation of the de-
terministic variable X and yi , the i-th observation of the dependent variable Y is
expressed in linear form as

yi = α + βxi + ui i = 1, 2, . . . , n (2.25)

where α and β are the model parameters and ui represents the i-th random error
term.

Violation of the homoscedasticity assumption means that the random error terms
have a varying variance, i.e., E [u2

i ] = σ2
i , for i=1, 2, . . . , n. This implies that each

observation is not equally reliable.

Since the variance σ2
i depends on i, the statistical dispersion measure, i.e., the

variability, of the error terms ui are uncorrelated and the variance will vary over
different groups of observations. Residual plot analysis is a useful method to detect
this behaviour and the presence of heteroscedastic data.

There are several reasons why the error term in a model may have a non constant
variance [32] [33]. In this thesis, we concentrate on heteroscedasticity due to the
dependence of the variable we are trying to model, to the predictor variable. As the
variable is random, it will have a larger variance depending on the predictor variable
behaviour.

Heteroscedasticity is often the result of a non-optimal set of data. The presence of
outliers, i.e., data points that diverge from an overall pattern, leads to heteroscedas-
ticity. Including or excluding outlier samples maybe alter the results of regression
analysis, especially for small data sets, where each sample has a significant weight
on the overall data pattern.

2.7 Residual plot analysis
Given the fitted regression line describing the relationship between an independent
variable X and a dependent variable Y, defined as

Y = α̂ + β̂X (2.26)
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where α̂ and β̂ are the least square estimators of the model parameters; for any
given value of X, xi, the predicted, or fitted, value of Y, yi is calculated as

ŷi = α̂ + β̂xi i = 1, 2, . . . , n. (2.27)

The deviation of the observed data point (xi,yi) from the corresponding predicted
point on the fitted regression line (xi,ŷi) can be measured as the difference between
yi and ŷi. This difference is called residual and can be calculated as

êi = yi − ŷi = yi − (α̂ + β̂xi) i = 1, 2, . . . , n. (2.28)

The residual terms êi can be considered as consistent estimators of the unknown
error terms ui, as they measure the same difference between the estimated and the
true values of the output variable Y terms [34]. Moreover, the residual terms êi are
not independent.

A good tool for regression data set validation is given by the residual plot. The
residual plot in the (x,y) space is a plot that has the residual terms êi on the vertical
axis versus the fitted value of the dependent variable Ŷ, or the independent variable
X on the horizontal axis, as shown in Figure 2.7.
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(a) Linear regression curve.
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Figure 2.7: Residual terms representation in a scatter diagram and in a residual
plot. In the scatter diagram (a) the residual terms represent the difference between
the observed values of the Y-variable and the their corresponding fitted values on
the best-fit line, Ŷ . In the residual plot (b) the residuals are plotted against the
fitted values Ŷ .

In particular, the residual plot is used to outline problems in the chosen data sets
such as the presence of heteroscedasticity, non-linearity in the data association and
presence of outliers in the data sets. In ideal conditions, a good set of data, i.e., a
data set that is a good fit for regression, is so that the residual values are randomly
and equally vertically spaced along the horizontal axis. The data points in the
residual plot need to be randomly distributed and should not be arranged to form
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specific functions since the residual plot does not have a predictive value, therefore
it does not enable the prediction of future data points. The opposite situation can
be an indication of an unsuitable regression model.

2.7.1 Standardalized residuals
The standardized residual is a ratio used to normalize data in regression analysis.

As discussed for the general case in Section 2.6.2, the fitted values of the response
variable Y to the regression model may be written as

Ŷ = HY, (2.29)

where the fitted values have variance-covariance matrix var(Ŷ) = Hσ2 [35]. Matrix
H is known as hat matrix as it maps the observed values Y into Ŷ (Y-hat).

From the results obtained in (2.21), the residual terms can be written as

ê = (I − H)Y. (2.30)

Under the assumptions presented in Section 2.6, the residual terms have expected
value 0 and variance-covariance matrix var(ê) = (I − H)σ2. In details, the variance
of the i-th residual term is

var(êi) = (1 − hii)σ2, (2.31)

where hii is the i-th element of the diagonal of matrix H.

For models with a constant it can be demonstrated that

hii = 1
n

+ (xi − x)2q
j(xj − x)2 , (2.32)

and therefore it results that the value of hii is between 1/n and 1/r, where n is the
number of observations and r is the number of replicates of the i-th observation.

As it can be seen in (2.32), the i-th element of the hat matrix, hii, has a minimum
of 1/n at the mean of X. This implies that the variance of the fitted values Ŷ
becomes smaller as the observations near the mean value. Moreover, an opposite
result is observed for the residuals ê, as the variance of the residuals is greatest near
the mean value [35].

The residual plot is a valuable tool for data set validation. When analysing residual
plots, it is convenient to take into account that the error variance may differ across
observations. For this purpose, it is possible to refer to the standardized residuals
ŝ. Residuals can be standardized according to different statistical distributions; the
most common standardization is the internally studentized residual, which is a form
of Student’s t-statistic, with the estimate of the error varying among points. In this
case, the i-th elements of the standardized residual is

ŝi = r̂i√
1 − hiiσ̂

. (2.33)
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The standard deviation σ̂ is estimated based on the residual sum of squares S
described in (2.12).

In particular, standardized residual plots are used to detect the presence of outliers
in the data sets. An absolute value of the standardized residual greater than two for
any observation may be indication of anomalies in the data set, however this does
not represent a sufficient condition to identify said observation as outlier point in
the data.

2.7.2 Residual plots for nonlinear regression
Residual plot analysis is a valid tool to identify problems in the data and it is
performed for nonlinear regression models in the same manner as linear regression,
as the residual term represents the estimated errors in both cases.

Residual plots with parabolic shape, as all residual plots that show a specific pattern
in the alignment of the data points, are a common sign of an inadequate model.
Furthermore, as the model is unable to represent the relationship between the data
well, the predictions will not perform well. The parabolic shape of the residual plot
can be either mirrored by the regression plot, or the regression plot can identify
a suitable linear regression, yet still identify an inadequate model. An example is
given in Figure 2.8, where a logarithmic relationship is fitted with a linear regression
line calculated by means of linear least squares. The inadequacy of the model built
is mirrored in the regression plot, which takes on the typical parabolic shape for
nonlinear systems fitted with linear models.
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(a) Linear regression curve.
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(b) Residual plot.

Figure 2.8: The scatter diagram (a) shows the linear regression curve for the
nonlinear system (X,Y). In the residual plot (b) the residuals are plotted against
the fitted values Ŷ and they identify a typical parabolic shape.

This particular type of residual plot leads to three possible conclusions. First, plots
that show such patterns may indicate that a variable needs to be transformed. Sec-
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ond, the pattern may be caused by a missing variable. Third, if the pattern has
a clear parabolic shape, nonlinear regression is the best choice for model regres-
sion. Therefore, residual plots can be used to identify when the linear regression
is not sufficient to produce a good model and nonlinear regression would be more
appropriate.

In particular, a good strategy of nonlinear regression is to add a squared term of the
regressor X2 in the model, for a better chance to fit the parabolic curve. This type
of approach can be extended to other shapes, e.g. the S-shaped curve, by adding a
cubic term of the regressor X3, although it is a less common approach.

2.7.3 Residual plots for categorical data
Categorical variables are all variables which take a finite number of values, or cate-
gories. More details on this type of variables are given in Chapter 3.

We consider now input variables X with k > 2 where k is the number of cate-
gories. Categorical terms cannot be used directly in regression. This type of vari-
able can be included in a regression model by creating k − 1 dummy variables Xi,
i = 1, 2, . . . , k − 1. These new variables are numerical variables and can therefore be
used in regression, and they take value 1 for all units that belong to the category of
interest, and 0 otherwise, such that

Xi =

1 for category i,
0 otherwise.

(2.34)

The last category, for which a dummy variable is not created, is the reference cat-
egory and the parameters of all dummy variables are interpreted with respect to
this category. This transformation from categorical to numerical data is known as
one-hot encoding and will be described more in Chapter 3. Input variables X with
k = 2, can be considered as already hot-encoded, as they already present only two
possible categories, therefore values.

The relationship that links the dependent variable Y and the dummy variables Xi

can be shown in a plot on the (X,Y) axis as per all regression relationships discussed
in the prior sections. To have a better understanding of the data, the data points
may be divided in subgroups according to the values taken by the reference category.
A fitted model can be defined for each subgroup of data.

The residual terms that derive from the regression analysis can be plotted against
the finite values of the categorical independent variable. This results in subgroup of
points in vertical lines for each category. Ideally, all lines are centered in zero and
follow a bell-shaped distribution with similar standard deviations.
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As mentioned in Section 1.1, features relevant for estimating process- and measure-
ment noise, such as features describing the road type being driven or environmental
conditions e.g. rain, may be interesting to use in the models. At the start of this
thesis a large set of candidate input features were available. However, not all fea-
tures are useful for estimating the process and measurement noise and the number
of input features used can not be too large since the models are used in a real-time
application.

Feature selection, or variable subset selection, is the technique of selecting a subset
of relevant features out of a larger features set, to use in model construction. The
purpose of feature selection is to remove from the original set of data irrelevant
features that do not contribute to the prediction variable, in order to build a more
accurate model. The optimal subset of features is characterized by the least number
of dimensions that contribute the most to prediction accuracy [36]. Feature selection
plays a key role in machine learning as well as in several prediction methodologies,
as training a model on irrelevant data can negatively impact model performance
in a significant way. In this work, feature selection is introduced in order to select
a subset of relevant features that prove to be useful to build a good covariance
estimator.

There are many benefits to feature selection techniques: simplify the data for better
visualization and interpretation, reduce the training utilization times, reduce the
requirements in terms of needed measurements and storage, avoid the curse of di-
mensionality [37]. Feature selection also aims at reducing the problem of overfitting.
An overfitted model is a model that contains a higher number of parameters than
it is expected by the given data. Overfitting implies that noise has been interpreted
as underlying part of the model structure; this often happens in the presence of
redundant features. However, subset of useful features may also include redundant
features, i.e., features that add no relevant information to other features [37]. In
spite of the fact that feature selection is prone to eliminating redundant features
to guarantee dimensionality reduction, some redundant features may be kept since
they carry important information when combined with a correlated relevant feature.
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3.1 Theory

3.1.1 Filter methods for feature selection
Feature selection methods are classified in three main categories based on the way
the method combines the feature selection algorithm and the model building: filter,
wrapper and embedded methods. In this work, the filter approach was used to
perform feature selection.

Filter methods for feature selection select the variables regardless of the model built
[38]. The variables are selected based on general characteristics of the training data
such as statistical dependence or distance between classes [39]. The algorithm dis-
cards the least interesting variables from the original set of candidate input features.
The advantages of filter methods are that they are not expensive in terms of required
computation time and they are robust to overfitting [40]. Moreover, they reach a
better generalization as the results are independent from any predictor [38]. Filter
methods can be limited in cases for which the method does not take in consideration
the relationship between variables [40].

Filter methods tend to select a high number of features, and therefore a threshold
is required in order to pick the right subset [40]. Different approaches to evaluate
the best relevant features lead to several indices for ranking and feature selection.
Filter methods perform feature selection based on statistical tests of four types:
consistency metrics, distance metrics, mutual information, and correlation. In this
thesis, correlation coefficients are used as a measure of the dependency of the fea-
tures to the error variances. The most common techniques for correlation measure
are based on correlation coefficients such as Pearson’s correlation coefficient and
Spearman’s rank coefficient. Both these methods are discussed in Sections 3.1.2 and
3.1.3 respectively.

3.1.2 Pearson correlation coefficient
The Pearson correlation coefficient is a measure of linear correlation between two
random variables. Denoting the random variables X and Y it may be defined as

ρX,Y = cov(X, Y)
σXσY

= E [(X − µX)(Y − µY)]
σXσY

(3.1)

where µX and µY are the means and σX and σY are the standard deviations of X
and Y respectively.

3.1.3 Spearman’s rank correlation coefficient
Spearman’s rank correlation coefficient is a measure of monotonic correlation be-
tween two random variables. Denoting the random variables X and Y, it can be
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defined as the Pearson correlation coefficient between the corresponding rank vari-
ables rgX and rgY

rs = ρrgX,rgY = cov(rgX, rgY)
σrgXσrgY

(3.2)

where ρ is the Pearson correlation coefficient applied to the rank variables, cov(rgX, rgY)
is the covariance of the rank variables and σrgX and σrgY are the standard deviations
of the rank variables rgX and rgY respectively.

The Spearman’s coefficient is a nonparametric measure of the statistical dependence,
i.e., the correlation, between the rankings of two variables.

3.1.4 Moving variance correlation
Ideally one would like to compute the correlation between the individual continuous
input features z and the corresponding error variances σ2 to perform feature selec-
tion. This would require a data set of pairs of input features and error variances
Dσ = {σ2

i , zi|i = 1, 2, . . . , N} which in reality one does not have access to. Instead
what is available in this thesis is a data set of pairs of input features and error sam-
ples, i.e., D = {ei, zi|i = 1, 2, . . . , N} which will be discussed further in Section 3.2.
One may think of this data set as a space of features, a feature space, where each
feature value zi has a location within the space and a corresponding error value ei.

To perform feature selection using the data set D we propose to use the sample
variance to calculate local variances σ̂2 for each zi in the feature space. This is
done by computing the sample variance for errors corresponding to features in a
neighbourhood of each zi. One may then obtain a data set of local variances and
features Dσ̂ = {σ̂2

i , zi|i = 1, 2, . . . , N}. The data set Dσ̂ can then be used to calculate
correlation measures to perform feature selection.

Furthermore, we propose to calculate multiple data sets Dσ̂,j of varying neighbour-
hood sizes. The reason for this is that there is no obvious choice of any single
neighbourhood size since we do not know how quickly the true variance σ2 changes
with the feature value. A correlation measure may now be calculated for each data
set Dσ̂,j e.g. the correlation measures presented in Sections 3.1.2 and 3.1.3. If any
of these correlation measures are larger than a threshold τ then the feature may be
interesting to include in the covariance estimation model. The value of the threshold
τ is problem dependent as one may expect varying correlation strengths depending
on the problem. What is important is to find the features which correlate the most
with the variance among the features one considers.

There is a straightforward way to implement the feature selection method described
in this section. Since both the error and the feature are scalars one may order the
error samples in order of increasing value of their corresponding feature. A moving
variance may then be applied to the ordered sequence to obtain the local variances.
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A moving variance is an algorithm which calculates variances over a sliding window.
Calculating local variances for different neighbourhood sizes is then simply done by
applying moving variances of different window sizes. The algorithm is summarized
as pseudo-code in Algorithm 1.

Algorithm 1: Moving variance correlation
Result: isUsefulFeature
isUsefulFeature = false;
set τ ;
set window sizes;
order errors and features based on increasing feature values;
for window sizes do

σ̂2
j = apply moving variance to error sequence;

ρj = calculate correlation between σ̂2
j and features;

if ρj ≥ τ then
isUsefulFeature = true;

end
end

It should be noted that the neighbourhood size may not be chosen arbitrarily large
since if all other feature samples are contained in the neighbourhood around each zi
then all the estimated variances σ̂2

i will be the same.

3.1.5 One-hot encoding for categorical data
Many machine learning algorithms, as well as regression theory, require all input
and output variables to be numerical. This limitation does not effect the algorithm
itself, but it is a constraint to its implementation. As a consequence, all categorical
variables must be converted to a numerical form. The concept of categorical data is
further discussed in Section 3.3.1.

One-hot encoding is a technique of data representation which ensures all entries of
a vector or bits of a string take the value of 0, except for a single one, that takes
value 1. In statistic, this technique is used for representing categorical data.

The categorical variable can be replaced by a numerical variable which takes value 1
to indicate whether a certain category of the original variable is present for that ob-
servation, and 0 otherwise. Given i possible categories, these replacement variables
are known as dummy variables, and they can be expressed as

Xi =

1 for category i,
0 otherwise.

(3.3)

as presented in (2.34). An advantage of the one-hot encoding technique is that it
does not mirror any type of ordinal relationship between categories, as opposite to
encoding techniques such as integer encoding, which assign an integer value to each

30



3. Feature Selection

category. Integer values have a natural ordered relationship between each other
which is learned by any algorithm and leads to inaccurate results.

Let’s consider a simple example. A categorical variable indicating weather the
weather is sunny or not, can assume two values, labels "yes, the weather is sunny"
and "no, the weather is not sunny". This categorical variable generates two binary
variables, called dummy variables, corresponding to each of the two categories. Con-
sidering the first dummy variables, for each observation, this numerical variable will
take value 1 if the weather is sunny, and 0 otherwise. The same can be done for the
second dummy variable. In particular, each observation takes value 1 for only one
of the two dummy variables at a time, as the two conditions are mutually exclusive,
i.e., the weather is either sunny, or not. Therefore, to encode a categorical variable
with two labels, only one of the binary variables is needed. The choice of which
of the two replacement variables to use is not important, as they both contain the
same information and are sufficient to represent the original categorical variable.

This concept can be extended for categorical variables with k labels. Let us reprise
the previous example, and consider a new, more complex categorical variable repre-
senting the current weather conditions. This variable contains k labels, e.g. "Sunny",
"Rainy", "Clouded". According to the previous discussion, only k − 1 dummy vari-
ables are needed to represent the information of the original categorical variable.
Furthermore, each observation takes value 1 for only one of the dummy variables
and 0 for all others, according to the one-hot encoding, i.e., if the weather is sunny,
it cannot be rainy, or clouded at the same time. The one-hot encoding technique
with k−1 dummy variables allows to represent the original information with one less
dimension. In practice, if an observation takes value 0 for all the dummy variables,
then it will take value 1 for the k-th omitted category.

In linear regression and for all machine learning algorithms, including neural net-
works, categorical variables are transformed in numerical variables by means of
the one-hot encoding technique. This is possible as linear regression and machine
learning methods have access to all features during training, and it allows to keep
the correct number of degrees of freedom, k − 1, yet represent the whole original
categorical information.

3.2 Data set
As described in Section 2.3 it is possible to construct a data set of errors and input
features D = {ei, zi|i = 1, 2, . . . , N} using ground truth state vector data. As the
reference system considered in this thesis has five different Kalman filter models
we construct five different data sets, one for each Kalman filter model. There is,
however, no reason to distinguish between these five data sets as the methods used
in this thesis are applied equivalently to all five data sets and independently of the
other data sets. For conciseness we therefore refer to a single data set during many
parts of the report. But the ideas and methods discussed are equally applicable to
all five data sets.
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The ground truth state vector data used in this thesis is derived from data sampled
from multiple driving sessions for a total amount of ground truth data corresponding
to approximately 14.75 hours of driving. A large majority of the driving sessions
are from highway scenarios and highways are consequently the focus of this thesis.
The data set was divided into three parts; a training set, a development set and a
test set. Approximately 2.25 hours of the data was assigned for the test set. The
driving sessions in the test set are presented more in detail later in Section 6.2. The
remaining 12.5 hours of data was divided into the training and development sets.
The training set was used for training the models and consisted of approximately
95% of the remaining data. The development set consisted of approximately 5% of
the remaining data and was used for evaluating different model choices and tuning
of the models. It is crucial to have a development set as it enables the model
designer to assess how well the model generalizes to unseen training data during
model construction.

3.3 Model assumptions check
This section is dedicated to testing for data anomalies in the data set provided
and the fulfillment of our modelling assumptions. The analysis is not carried out
extensively over all Kalman filter models, but represents instead a first check on
the quality of our data and noise model assumptions such as heteroscedasticity.
Moreover, some conclusions are drawn on using residual plot analysis as a feature
selection tool. A general regression model describes the relationship between the
output variable Y and the independent input variables X. In this thesis, the error
terms, i.e., the difference between the real output variable and its observed value for
each time instant, is assumed to be normally distributed, with zero mean and varying
variance. The error terms u for our system are unknown, nevertheless the errors
can be estimated by means of the residuals ê = Y − β̂X, i.e., the difference between
the observed value of Y and its estimated value. The two terms are interchanged
in this Section to describe the same concept of distance of the observed output
from its true or estimated value. Further details on the definition of residual are
discussed in Section 2.7. In this thesis we discuss the benefits of modelling non-
constant noise covariances in the Kalman filter model equations to describe the
dynamics of the system under study more accurately. This approach comes from
the observation that the error terms are indeed heteroscedastic, as it is proven in
the analysis carried out in the following sections. Furthermore, input features which
lead to a strong heteroscedastic behaviour in the error terms, are considered to
produce a better estimation performance when included as inputs to the covariance
estimation models.

3.3.1 Input features overview
The uncertainty estimation in road geometry at the basis of this thesis depends on
a multitude of different factors. Measurement signals describing these factors are
called features. The sensor performance, and therefore the filter performance, may
be effected by external factors such as bad weather conditions and light conditions
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and the road geometry dynamics may depend on the type of road. These features
are inputs of the models built in this thesis. The data set used in this work consists
of data sampled from multiple driving sessions.

The information contained in the input features to our models can assume different
forms, as the data is sampled and stored in different types of variables. The most
crucial distinction to be made is between numerical variables and categorical vari-
ables. Numerical variables have either a meaning as a measurement, or they keep
count of a quantity, thus they are also known as quantitative variables. Numeri-
cal data can be further distinguished into two types: discrete data and continuous
data. Discrete data is used to represent a finite number of items that can be counted.
Therefore, the possible values that these variables can assume can be either finite
or countably infinite, i.e., go from 0, 1, 2 up to infinity. Continuous data is used
to represent measurements. The possible values that these variables can assume
cannot be counted. A convenient way to describe these variables is by means of
intervals of value on the real numbers IR line.

Curvature

(a) Continuous feature.

Illumination level

(b) Discrete feature.

Figure 3.1: Examples of a continuous variable (a) and a discrete variable (b).

In statistics, categorical variables are variables that can take on a limited, usually
fixed, number of possible values, and assign each observation to a specific group,
or nominal, category on the basis of a qualitative property. Categorical variables
can take two or more values. Categorical variables that take on exactly two values
are called binary or dichotomous variables. Categorical variables that can take
more than two values are called polytomous variables. Polytomous variables can be
further categorized in ordinal and nominal variables, based on whether the categories
can or cannot be ordered or ranked. Categorical variables can take on numerical
values, each corresponding to a different category, or non-numerical values, usually
terms which are significant to the meaning of each category. The numerical values
of categorical data do not have any mathematical meaning, thus categorical data is
also known as qualitative data.
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Road Type

Figure 3.2: Example of categorical variable.

Histogram, scatter plots and most graphical ways to plot statistical data require that
the data is numerical for the plot to make sense. One way to overcome this problem
is to assign an identificative characteristic to the data sample that belong to the
same category, e.g. color, representation style. However, this solution is restrictive
and works well only for simple data representation. To be able to use statistical
tools, categorical data needs to be transformed into numerical data. An example of
transformation is the one-hot encoding described in Section 3.1.5.

3.3.2 Data quality check
Residual plot analysis is a useful tool to detect anomalies among the data, such as
the presence of outliers. An outlier is a data point that diverges from the overall
data pattern in a specific sample. The outlier points can influence the relationship
between the dependent and independent variables and therefore, the presence of
outliers in the training data, may generate a faulty model. There are several reasons
behind the presence of outliers in the data, and most of them are case-specific, i.e.,
due to some unexpected event that happened while collecting the data. Outliers
in the X-direction are considered influential observations. Influential observations
derive from observations that are unusually large or diverge extremely from the
center of the reference data distribution. Outliers can be easily recognized in a
scatter plot of the independent variable against the dependent variable or in a plot
of the residuals against the fitted values of the dependent variable, as the behaviour
is often mirrored from the data to the residuals. An example can be seen in Figure
3.3b. Moreover, outlier observations are characterized by a standardized residual
value larger than 3. The definition of standardized residual is introduced in Section
2.7.1.
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(b) Outliers.

Figure 3.3: Residual plots to show the absence and presence of outliers respectively.
The residual plot against the estimated Lateral Offset for Road Type 3 shows no
outliers outside the confidence interval. The residual plot against the estimates Lane
Width for Road Type 3 shows several outlier residual terms.

3.3.3 Normality assumption
The model error is assumed to follow a normal distribution. This assumption can
be verified by means of residual plot analysis [34], where the residual term is the
estimated value of the error term. In order to compare the estimated residuals to the
scale of a standard normal distribution, we refer to the standardized residuals. The
error distribution can be outlined from the plot of the histogram of the standardized
residuals. To check the normality assumption, a QQ-plot can be used, i.e., a scatter
plot which displays two sets of quantities against one another. In the QQ-plot, a
theoretical standard normal distribution is plotted against the standardized residu-
als. If the residuals are normally distributed, the points in the QQ-plot lie along a
straight diagonal line, the bisecting line.
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(b) QQ-plot of standardized residu-
als.

Figure 3.4: Normality check for standardized residual of the Lane Width when
Road Type is 3. The normality condition worsens for higher values of the standard-
ized residual.

For the example shown in Figure 3.4, the normality assumption is fulfilled, yet the
condition is not strictly followed and the quality worsens for higher values of the
standardized residuals. Statistical measures such as confidence intervals and tests of
hypothesis rely on the normality assumption. However, small deviations from this
assumption do not represent an issue in terms of estimation.

3.3.4 Zero mean assumption
The zero mean assumption states that the random error terms have zero mean
values. This result means that the average deviation of each error term from the
true model is zero. Checking on the fulfillment of the zero mean assumption can
be easily achieved by means of a residual plot of the residuals ê against the fitted
output variable Ŷ or the regressors X. If the assumption is true, the data plot is
approximately symmetric around zero, as shown in Figure 3.5. This assumption
implicitly assumes that the error terms are uncorrelated and that the average points
of the output variable belong to the fitted line, i.e., E(Y) = βX. If the assumption
is not fulfilled, the residual plot will show a systematic, asymmetrical pattern that
deviates from the zero line.
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Figure 3.5: Scatter plot of Lane Width for Road Type = 5. The plots is symmetric
with respect to the 0 value of the residuals.

The zero mean assumption, along with the assumption that the regressors X are
independent from the error terms, implies zero conditional mean. In statistics, it
can be proven that given the independence between X and u, the mean value of
u given X is equal to the mean value of u, i.e., E[u|X] = E[u]. Given that the
zero mean assumption is respected, i.e., E[u] = 0, the presence of both assumptions
implies zero conditional mean, E[u|X] = 0. While respecting the two assumptions
presented above is a sufficient condition for zero conditional mean, the opposite
is not true. The correlation between the independent variable and the error, also
known as endogeneity, implies that the independent variable can be used to predict
the error term. In real-time applications, this is often the case. As discussed for
what concerns the models introduced in this thesis, this type of information can
be included in the estimation model and the error can be modeled as heteroscedas-
tic, which is more conforming to real data observations and makes the noise and
regressors uncorrelation unnecessary. There are different reasons why the strict in-
dependence of the regressors from the errors may fail, and consequently the zero
conditional mean is not achieved. In regression theory, this may happen because
some variables have been omitted during the model building, which correlate with
one of the regressors. In this case, an omitted-variable bias (OVB) is present, as an
important casual factor has been left out. As a consequence, errors may occur in the
estimation and the effect of the included variables may be over- or underestimated.
Checking on the zero conditional mean condition is not as straightforward as for
other regression assumptions. The nonzero mean of the errors may be absorbed by
the model, resulting in zero mean residuals. As a consequence, a check can not be
carried out on the common mean of the residuals. A check can be performed on the
plot of the residuals against the predictors. Even if the residuals may have a zero
mean on average, conditionally they may have means some distance from zero. The
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single residual means do not form a smooth curve, yet the curve still tends to sit
above the zero line.

3.3.5 Heteroscedasticity check
The heteroscedasticity check is carried out to prove that the homoscedasticity as-
sumption is not fulfilled, i.e., the variance of the error terms is not constant. If the
variance σ2 depends on i, the error term ui will assume different values for different
groups of observations. In this check, as for the check on the normality assump-
tions, the standardized residuals are employed to assess properties of the errors.
To detect the phenomenon of heteroscedasticity, the fitted values of the dependent
output variable Ŷ are plotted against the standardized residuals. If the scatter plot
is random, i.e., reproduces scattered data randomly distributed along the 0 axis,
the homoscedasticity assumption is fulfilled. Otherwise, if there is a pattern in the
plot, the errors are heteroscedastic, as a systematic trend indicates heteroscedastic-
ity. A systematic trend in the plot displays higher or lower variability for higher
or lower values of Ŷ. This funnel-shaped pattern in the residuals plot is typical of
heteroscedasticity, as shown in Figure 3.6b.
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(a) Homoscedasticity.

Estimated Lateral Offset

R
es

id
ua

ls
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(b) Heteroscedasticity.

Figure 3.6: Heteroscedastic noise is detected by the presence of a funnel-shaped
trend of residuals distribution symmetric to the 0 horizontal axis.

The statistical consequences of the presence of heteroscedastic noise are, as for the
other assumptions aforementioned, the possibility of incorrect results in confidence
intervals and tests. From an estimation point of view, and in the Kalman filter ap-
plication in particular, the presence of heteroscedastic noise is not a major problem,
if the error is modelled accurately. For this purpose, modelling the noise covariance
as heteroscedastic is proved to lead to a more consistent uncertainty with regards to
the error as well as a better filter performance. This concept finds major relevance
in the work carried out in this thesis.

Several statistical tests can be carried out to detect heteroscedasticity, e.g. the

38



3. Feature Selection

White Test. Most of these tests evaluate criteria based on the knowledge that the
ordinary least squares (OLS) estimator of the model parameters β is consistent
even in the presence of heteroscedastic errors. Therefore, the OLS residuals will
mirror the heteroscedasticity of the true disturbances. The tests can be applied to
these residuals and still detect the phenomenon. Residual-based tests are robust
as they are able to detect a variety of forms of heteroscedasticity. However, these
tests may be less effective depending on the estimation model adopted. As the task
of describing the system through a perfect model is highly difficult to achieve to
perfection, using model-based tests can lead to incorrect conclusions on the shape
of the errors. In this context, a graphical residual-based approach for checking on
the homoscedasticity assumption tends to be more convenient and effective.

3.3.6 Residual analysis for feature selection
Data analysis is one of the preliminary phases of any type of model building for
estimation. Data analysis interprets and presents the data into useful information
that provide context for the data itself. In this thesis work we were faced with the
challenge of selecting input features for noise modelling out of a much larger set. In
this context, residual plot analysis, as well as (X,Y) plots, represent a simple and
efficient tool for data screening and to visualize statistical properties for linear and
nonlinear estimation models. The input features selected come from the idea that
uncertainty estimation in road geometry depends on a multitude of external factors,
such as weather conditions and road type. These features, which enter our model as
inputs, have an effect on the uncertainty as they affect the sensors performance and
road dynamics. The features selected from this intuition can be easily tested through
residual plot analysis and regression analysis to have an indicative measure on how
these observations weight on the uncertainty estimation. Furthermore, plotting the
data enables to recognize unexpected trends that may be present.

Residual plot analysis is useful to identify problems in the data, such as the presence
of outliers that might impact the training data set and lead to wrong estimators.
Furthermore, this type of plots are used to identify data sets that are not good
candidates for regression. In this thesis work, we exploit the idea of modelling
the measurement- and process covariances as heteroscedastic, on the basis that the
filter noise terms are heteroscedastic as well in real life applications. Regression-
and residual plot analysis are a straightforward way to prove this idea. Moreover,
input features which exhibit a strong heteroscedastic behaviour may be exploited as
inputs to the covariance estimation models.

3.4 Input features selected
At the start of this thesis, a large number of possible input features was available.
As introduced in Section 2.1, the host vehicle uses camera and radar sensors to
take measurements regarding factors such as lane markers, surrounding vehicles,
road-side objects, which are used by the Kalman filter to obtain the road geometry
estimate. The estimation uncertainty that we propose to model as heteroscedastic
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noise in this thesis, is therefore influenced by the sensors performance. Moreover,
sensor performance may be affected by environmental factors and the road geometry
dynamics may depend on the characteristics of the road being driven. Features
describing these factors may be informative for estimating the noise covariances in
the filter. The feature selection techniques introduced in this chapter were used to
select a suitable number of relevant input features for noise model estimation. Some
examples of input features selected are the distance to lane markers, the host car
velocity and the source of the measurement, i.e., if the measurement was obtained
from a camera, radar or if it is a fused measurement derived from both a camera and
radar measurement. It is important to note that the number of input features used
in the noise estimation methods described in the following chapters can be increased
by introducing new relevant features, according to the estimation requirements and
limitations of the methods.
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The principal idea of the discrete covariance estimation method is to divide the
training data into different cases generated from all the possible combinations of
the corresponding input feature values. The covariance for each case may then
be calculated using the sample covariance. This results in a discrete model which
maps from cases in a discrete space to covariance matrices. The domain of the
model function may thus be described as a finite set of integers z ∈ Zn where n
is the number of input features. The set is finite in the sense that each element of
z may only have a finite set of values depending on the number of cases for that
specific input feature. In this thesis this model is referred to as Discrete Covariance
Estimation (DCE).

4.1 Theory

4.1.1 Sample covariance
The sample covariance is the estimator of the population covariance. The population
is the data set from which a sample of data on one or more random variables is taken.
The sample covariance matrix is a square matrix: its i, j-th element is the sample
covariance between the sets of observed values of two of the variables; the i, i-th
element is the sample variance of the observed values of one of the variables. For
a single observed variable, the sample covariance is a 1 × 1 matrix, i.e., a single
number, containing the sample variance of the observed values of said variable.

The sample covariance matrix S is a K × K square matrix, where K is the number
of observations for each observations data vector. Given the observations vector xi,
the entries of the matrix are defined as

sjk = 1
N − 1

NØ
i=1

(xij − xj)(xik − xk), (4.1)

where the entry sjk is the estimate of the covariance between the j-th and k-th
variables of the data population. The matrix can be expressed in vector form as

S = 1
N − 1

NØ
i=1

(xi − x)(xi − x)T . (4.2)
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Column vector x is the sample mean vector whose j-th element xj represents the
average value of the N observations of the j-th variable xij

xj = 1
N

NØ
i=1

xij i = 1, 2, . . . , N. (4.3)

The sample covariance definition was defined in [41] in matrix form as

S = 1
N − 1

NØ
i=1

(X − x1TN)(X − x1TN)T , (4.4)

where X is the matrix of the N observations vectors, X = [x1 x2 . . . xN ]. Vector
1N is by definition the N × 1 vector of all ones.

The sample covariance matrix is a positive semi-definite matrix. Note that for any
matrix A, the ATA matrix is positive semi-definite. Therefore this property can
be easily checked by rearranging the sample covariance matrix accordingly: if the
observation vectors are arranged as rows instead of columns,

S = 1
N − 1

NØ
i=1

(M − 1NxT )T (M − 1NxT ), (4.5)

where M is the N × K matrix whose column j is the vector of N observations on
variable j. Moreover, if the rank of the (xi − x) vectors is K, the matrix is positive
definite.

4.1.2 Bessel’s correction for unbiasedness
Given a random row vector xi = [xi1 xi2 . . . xiK ] where the j-th element xij
for j = 1, 2, . . . , K is one of the random variables, the sample covariance is an
unbiased estimate of the covariance matrix of said vector xi [41]. The condition
of unbiasedness is given by Bessel’s correction. This statistical correction consists
of using N − 1 instead of N in the sample variance and covariance formulas, with
N being the number of observations. As described in (4.4), the sample covariance
is calculated from the difference between each observation and the sample mean,
i.e., the estimator of the population mean. However, the sample mean is defined
based on all observations and therefore it is correlated to each of them to some
extent. Given the actual population mean E(X), the unbiased entry of the sample
covariance matrix is

sjk = 1
N

NØ
i=1

(xij − E(Xj))(xik − E(Xk)), (4.6)

where the coefficient in the denominator is N , the number of observations. It is
important to state that, both 1

N
and 1

N−1 tend to 1
N

for large values of N , thus the
standard sample covariance is approximately equal to the unbiased sample covari-
ance estimate when the population sample is large.
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4.2 Model
The discrete covariance model introduced in this Chapter may be described as an
n-dimensional discrete space, where n is the number of features. The set is a finite
space of integers, as each element z ∈ Zn may only take a finite number of values.
All the possible combinations of fixed values taken on the input features at the same
time, define a finite set of possible cases. The DCE model then maps each case to a
specific measurement- or process noise covariance. The intuition behind this space
definition is that, the covariance matrices can take on different values according to
a multitude of different external, measured factors which, combined, identify our
input features cases.

As discussed in Section 2.1, the host vehicle uses camera and radar sensors measure-
ments to perform inference of the road geometry. Such measurements commonly
include lane markers, target vehicles or road-side objects. Moreover, several sen-
sors in the host vehicle are used to measure external factors they may affect the
estimation uncertainty in the road geometry estimation. These measurements are
the input features to our covariance estimation model, as introduced in Section 1.1.
From intuition, input features measuring factors such as the weather conditions, the
lighting conditions affect the sensors performance, as the sensors performance wors-
ens in hostile driving conditions such as bad weather. Moreover information such as
the type of road the vehicle is driving on may help understand the correspondance
between the characteristics of the road and a certain road geometry dynamic.

The input features considered in this model may describe information in different
forms and they may enter the DCE model as either numerical or categorical vari-
ables.

4.2.1 Continuous and discrete features
As mentioned in Section 2.7 the input features may be of varying types. As the
model constructs the noise covariances matrices from a discrete number of cases,
where each case depends on the values of the input features in the input set, said
features are required to take on a finite number of possible values. Discrete features
are easily handled as the values are distinctly separated. The discrete inputs may
therefore be divided into cases by simply considering each value of the discrete
variable as a unique case. To comply with the discrete domain of the model function
continuous features also need to be divided into cases, i.e., the continuous inputs
need to be discretized. For continuous inputs, however, the division of the features
into different cases is not as clear. The reason for this is that continuous features
are real valued and form a continuum in which values are not distinctly separated.
A sensible way to account for a continuous feature is to map the values from the
original large continuous set to a smaller set with a finite number of elements.
For this purpose, a simple equal-width discretization approach can been applied to
separate all possible continuous values into n number of intervals of the same width.
The difference between the values included in this new small set and the original
input feature values represents a loss of information. However, the input feature is
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still sufficiently described for the purposes of this study. It is interesting to mention
that categorical variables can be introduced in the DCE model as input features as
discrete numerical variables by means of transformation rules such as the one-hot
encoding discussed in 3.1.5.

4.2.2 Discrete cases definition
The model maps a finite number of discrete values into a space set of possible cases,
defined by the values taken by the variables in the input features set. To cover each
location in this space, the data is divided into a number of cases Nc to be covered
equal to

Nc =
nÙ
i=1

ci, (4.7)

where ci is the number of unique values that the i-th input feature can take and n
is the number of input features. The model thus estimates a covariance matrix for
each possible scenario. Each input feature may describe different scenarios for each
of its values, e.g. the covariance matrix assumes different values for the road type
being a country road or a highway. Let’s now consider the example of two discrete
input features that take ci and cj possible discrete values in the considered system.
As each of them defines ci and cj scenarios respectively, the total number of possible
scenarios, therefore covariance model cases, is given by cicj. Hence, for n different
features, the total number of scenarios is given by the product in (4.7).

A limitation of this method therefore is that it becomes intractable for a large
number of input features since each case will be covered by very little data in the
data set which makes the sample covariance inaccurate. Moreover we can observe
how the number of cases scales up as either the number of features values or the
number of features increases.

In the first case, the number of cases Nc increases as a product with the number of
possible values for each input feature. This outcome may not be critical for simple
implementations. However, dividing the features into a larger number of cases may
be an interesting approach to describe the cases space more accurately, but results
in even more divisions of the data, thus less sample observations for each unique
discrete value and an unbalanced training data set. This limitation has to be taken
in consideration especially in the case of continuous features, where the number of
discrete values in which to divide each continuous feature is chosen arbitrarily.

In the second case, Nc scales up quickly as the number of features increases, as it does
so exponentially. Let us consider a set of n input features with two possible cases
each. The number of total combinations is given by Nc = 2n. This result can be
critical as it means the model requires a lot of data to be able to cover each different
possible case since each case becomes very specific, i.e., a combination of specific
values for each input feature describes a very specific scenario, which may happen
rarely in real life. Let us consider a simple set of three input features describing
the weather conditions, the type of the road and the level of illumination. The case
described may be very specific even with this limited number of input as it may
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be difficult to find enough data in the training data set for the specific situation,
e.g. raining, nighttime and driving on an urban road, all at the same time. This
limitation doesn’t subsist if the training data available is exhaustive. However, for
the training data set used in this thesis, this is not the case.

As a result of this discussion, it can be acknowledged that the discrete covariance
estimation method does not generalize to unseen data in view of the fact that the
absence of data from a specific case implies that a covariance estimate for said
case cannot be calculated. DCE has low computational complexity and memory
requirements with respect to the parametric methods discussed later in this thesis,
PCE and DeepCE. However, the parametric methods that will be introduces in
Chapter 5 are able to generalize to cases not seen in the training data, which the
discrete method can not.

4.2.3 Model implementation
The covariance estimate for each input case is the unbiased sample covariance de-
scribed in (4.2) and repeated here for convenience

S = 1
N − 1

NØ
n=1

(ei − e)(ei − e)T (4.8)

where the vector ei is an error sample from the data set described in Section 3.2.

As introduced in Section 1.4 the Kalman filter reference system used in this thesis
implements one prediction step for road and object prediction, and three update
steps. Therefore we need to construct two covariance estimation models to estimate
the process noise covariances and three covariance estimation models to estimate
the measurement noise covariances.

In some cases it might be interesting to estimate dense covariance matrices as there
may exist correlations between different measurements or between different state
vector elements. An example of this is in the lane marker update where the position
of lane markers at different distances are measured. It may then be reasonable to
assume that the measurement noise of measurements corresponding to lane markers
close to each other are correlated. However, in the different update steps the number
of measurements at each time sample may vary. Moreover, in the object prediction
step, the state vector may vary in size at each time step. As a consequence, sample
covariance cannot be calculated to obtain a dense covariance matrix. To overcome
this problem, three main solutions are proposed in Section 2.5. In the DCE method,
a diagonal covariance matrix is estimated instead of a dense covariance matrix. The
advantage is that the diagonal of the covariance matrix contains the variances of
the individual elements of the random vector, thus missing data elements may be
discarded without disregarding other valid elements, as they are independent from
one another.

Because of the problem discussed in Section 4.2.2, of quickly increasing number
of discrete cases with increasing number of possible values of features and num-
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ber of features, the continuous input features that were used were not discretized.
Instead, the discrete covariance estimation model described in this chapter mod-
els heteroscedasticity from the continuous input features by means of noise model
matrices. These noise model matrices contain the values of the continuous input
features and are multiplied with the covariance matrix to produce a final covariance
matrix estimate. The model equations are thus given by

xk = Fk(xk−1, uk) + Nw,kwk(zk)
yk = Hk(xk) + Nv,kvk(zk)

(4.9)

where Nw and Nv are the noise model matrices and wk(zk) ∼ N (0, Q(zk)) and
vk(zk) ∼ N (0, R(zk)). The DCE model thus estimates the initial covariances Q(zk)
and R(zk) and the final covariance estimates are constructed using the noise model
matrices. From the property Cov(AX) = ACov(X)AT it follows that the final co-
variance estimates, corresponding to the process- and measurement models described
in (2.3), are given by Nw,kQ(zk)NT

w,k and Nv,kR(zk)NT
v,k, respectively. Consequently,

the continuous features also have an effect on the covariance matrix.

In other words, in the Kalman filter, the process- and measurement noise terms wk

and vk are multiplied with noise model matrices. This changes the process- and
measurement models slightly as shown in (4.9) which also means that the random
variable realization calculations described in (2.6) need to be modified by multiplying
with the inverse of the noise model matrix. The initial covariance matrix estimates
may then be determined using the sample covariance as described before. This
solution has relevant effects on the final estimation results and it allows to handle
continuous features more efficiently. In Section 4.2.2 the consequences of dividing the
input features into several different cases has been discussed. This consideration has
particular relevance for continuous features. One of the limitations of the discrete
method proposed is that it does not allow to have a large number of input features,
as that would mean generating cases which are too specific, thus leading to some
cases where we have little to no data at all. In this proposed solution, the continuous
features are accounted for by the noise model matrices while the discrete features are
accounted for in the discrete covariance estimation model proposed in this chapter.
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There seem to be varying definitions of what constitutes a parametric model in the
literature. In this thesis a parametric model is defined as a model which can be
described by a fixed number of parameters. Parametric approaches are of interest
in this work as they provide an efficient way of estimating covariances since the
information contained in the training data may be summarized by the parameters.
Additionally, the number of parameters is constant once the model has been con-
structed which means that the evaluation time of the model is constant. This is an
important property within road geometry estimation as the covariance estimation
is performed online with real-time requirements.

Based on the definition given in the previous paragraph two different parametric
models are presented in this section as they share similarities and important under-
lying concepts. In this thesis these models are referred to as Parametric Covariance
Estimation (PCE) and Deep Covariance Estimation (DeepCE). In the following sec-
tions theory relevant for both methods is initially presented followed by a description
of each of the models. It should also be noted that the estimated covariance is fre-
quently referred to as R in this section to simplify notation. The concepts are,
however, equally applicable to the estimated process noise Q in the process models.

5.1 Approach

5.1.1 Objective function
One of the fundamental problems of modeling a feature dependent covariance of a
random variable X from samples of X is that one does not have access to the true
covariances. This differs the problem of learning a covariance model compared to
the common problem in supervised learning where one has access to ground truth
labels of the variable of interest. The model may then be optimized using some
distance measure between the estimated value and ground truth. Given the true
distribution of the random variable X it would, for example, be possible to minimize
the Kullback-Leibler divergence between the true and the estimated distribution as
mentioned in [23].

An alternative approach is instead to maximize the likelihood of observing the errors,
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i.e., the errors in the data set D described in Section 3.2, from the estimated distri-
butions [10]. Assuming that the errors are Gaussian distributed the distribution of
the errors is given by the multivariate normal distribution

N (µ, Σ) = 1
(2π)m

2 |Σ| 1
2
e− 1

2 (e−µ)T Σ−1(e−µ) (5.1)

which describes the probability of observing the sample e given a mean and covari-
ance, i.e., p(e|µ, Σ). Assigning each individual error sample ei a specific covariance
matrix Ri and assuming that the errors are zero mean the likelihood objective may
be defined as

arg max
φ

L(Ri|ei) = arg max
φ

L(f(zi)|ei), i = 1, 2, . . . , N (5.2)

where f is the function mapping from features zi to covariance matrices Ri, i.e.,
Ri = f(zi), and φ is the set of learnable parameters of the function f . The function
f will also be used to impose the constraint that the estimated covariance matrices
are positive definite which will be discussed in detail in the next section, Section
5.1.2. Furthermore, f will act as a regularizer for the estimation of the covariance
matrix which will be discussed later in Section 5.1.3. The learnable parameters
φ are later defined specifically for PCE and DeepCE, in Sections 5.2.2 and 5.3.2,
respectively. As the natural logarithm is a monotonically increasing function the
objective in (5.2) may be reformulated as

arg max
φ

log (L(f(zi)|ei)) = arg max
φ

ü(f(zi)|ei), i = 1, 2, . . . , N (5.3)

where ü denotes the log-likelihood. By further adding a minus sign the objective
may be described as a minimization problem

arg min
φ

−ü(f(zi)|ei), i = 1, 2, . . . , N (5.4)

where −ü is the negative log-likelihood. Assuming that the errors are independent
the likelihood of observing a collection of errors {e1, e2, . . . , eN} is given by the
product of their individual probabilities

L({R1, R2, . . . RN}|{e1, e2, . . . eN}) =
NÙ
i=1

p(ei|Ri). (5.5)

Substituting (5.1) and (5.5) into (5.4) and utilizing the assumption that the means
are zero one obtains
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arg min
φ

− log
A
NÙ
i=1

1
(2π)m

2 |Ri|
1
2
e− 1

2 eT
i R

−1
i ei

B

= arg min
φ

NØ
i=1

3
m

2 log(2π) + 1
2 log|Ri| + 1

2eTi R−1
i ei

4 (5.6)

where the objective may be simplified by disregarding the constant term and the
scaling resulting in

arg min
φ

NØ
i=1

1
log|Ri| + eTi R−1

i ei
2

= arg min
φ

NØ
i=1

1
log|f(zi)| + eTi f(zi)−1ei

2
.

(5.7)

Lastly the optimization is subject to the constraint that the estimated covariances
matrices Ri are positive definite as to produce proper and useful covariances. The
constrained optimization problem is thus described by

arg min
φ

NØ
i=1

1
log|f(zi)| + eTi f(zi)−1ei

2
s.t. f(zi) ¼ 0.

(5.8)

5.1.2 LDL decomposition
The constraint of positive definiteness in (5.8) may be difficult to handle as it is
not obvious how one may enforce this constraint in the optimization. However,
as proposed by the authors in [10] the constraint may be relaxed using the LDL
decomposition resulting in constraints which are more easily handled.

The LDL decomposition decomposes a square positive definite matrix R into a lower
unit triangular matrix L and a diagonal matrix D as

R = LDLT =


1 0 0
... . . . 0

Lij . . . 1



. . . 0 0
0 Dii 0
0 0 . . .




1 . . . Lji

0 . . . ...
0 0 1

 . (5.9)

If the scalar elements in D are constrained to be positive then the LDL decompo-
sition exists and is unique for all positive definite matrices [23]. In this thesis the
nonzero elements in L and D are denoted as l and d respectively. To relax the
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constraint in (5.8) the function f is redefined to map features z to a vector of the
elements l and d instead of a covariance matrix. Consequently, the only constraint
on the function f is that the scalar elements d should be positive. This constraint
may be imposed as in [10] by applying an element-wise exponential function to the
elements d meaning that the diagonal elements of D is now similarly as in [23] given
by exp(d) instead of d where exp() is an element-wise exponential function. The
covariance matrix may then be constructed from the elements l and d using (5.9).

Using the LDL decomposition as in [10], the constrained optimization problem in
(5.8) may then be relaxed resulting in the unconstrained problem

arg min
φ

NØ
i=1

1
log|LiDiL

T
i | + eTi (LiDiL

T
i )−1ei

2
(5.10)

where the parameters φ are the parameters of the function f which maps features
z to l and d.

As explained in [23] one does not necessarily have to use the LDL decomposition
specifically as other matrix decompositions which solve the problem of positive def-
inite matrices are also applicable. However, as argued by the authors in [23] the
LDL decomposition further has the benefit of numeric stability in calculating the
log-determinant in (5.10). This can be seen by considering [23]

log|LDLT | = log|L| + log|D| + log|LT | = log|D| (5.11)

where the log|L| terms are zero as the determinant of a unit triangular matrix is
one. Remember that the elements of the diagonal matrix D is given by exp(d) which
means that (5.11) may be further simplified as [23]

log|D| = log
A
NÙ
i=1

exp(di)
B

=
NØ
i=1

log (exp(di)) =
NØ
i=1
di (5.12)

where the sum is taken over all elements of d. The sum in (5.12) thus provides a
numerically stable way of calculating the log-determinant.

5.1.3 Regularization
Regularization is essential when using the optimization objective described in (5.10).
This follows from the fact that (5.10) is derived from the likelihood given by (5.5) and
that the errors are assumed to be zero mean. Namely, it can be shown that if each
error corresponds to a unique point in the feature space then the optimal covariance
matrices will be underconfident. This statement will be proved by a derivation in
this section and lastly a regularization technique will be suggested which mitigates
the problem of the optimization objective.
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The derivation may be started by considering that if each error ei corresponds to
a unique point in the feature space zi then each error sample may have a specific
covariance matrix Ri = LiDiL

T
i . The optimization problem in (5.10) may then be

written as

arg min
φ

NØ
i=1

1
log|Ri| + eTi R−1

i ei
2

. (5.13)

As the covariance matrices Ri may be chosen independently for each error sample ei
the sum in (5.13) is minimized by minimizing each term in the summation separately.
These independent terms are given by

log|Ri| + eTi R−1
i ei. (5.14)

To find the minimum of (5.14) with respect to the covariance Ri one needs to find
the stationary point of the expression. To find this stationary point one may set
the derivative with respect to R−1

i equal to zero and solve for Ri [42]. The variable
substitution Mi = R−1

i is thus made for clearer notation. The expression in (5.14)
may now be rewritten as

log|M−1
i | + tr

1
eTi Miei

2
(5.15)

where tr() is the matrix trace and the equality tr
1
eTi R−1

i ei
2

= eTi R−1
i ei holds since

eTi R−1
i ei is a scalar [42]. Furthermore, because of the cyclic property of the matrix

trace [42] the expression may be reformulated as

log|M−1
i | + tr

1
eieTi Mi

2
. (5.16)

The derivative of (5.16) with respect to Mi may then be derived by utilizing the
following properties

∂

∂A
tr (BA) = BT

∂

∂A
log|A| = A−T

log|A−1| = − log|A|

(5.17)

where the first two properties are derived in [42] and the last expression follows from
properties of the determinant and logarithm.
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The derivative of (5.16) is then given by

∂

∂Mi

1
log|M−1

i | + tr
1
eieTi Mi

22
= ∂

∂Mi

(− log|Mi|) + ∂

∂Mi

tr
1
eieTi Mi

2
= −M−T

i + (eieTi )T

= −M−1
i + eieTi

(5.18)

where M−T
i = M−1

i since Mi is symmetric. Setting the derivative in (5.18) equal to
zero and remembering that Mi = R−1

i results in

− Ri + eieTi = 0. (5.19)

Solving for Ri in (5.19) gives the covariance which minimizes (5.14), i.e., the maxi-
mum likelihood covariance for the unique error sample ei,

Ri = eieTi . (5.20)

The optimal covariance matrix for each unique error sample ei is thus given by
Ri = eieTi which is the outer product of the error with itself. It is easy to see that
this results in an underconfident covariance in the scalar case. Consider a scalar
error ei. The optimal covariance Ri of ei is given by

Ri = e2
i (5.21)

which has the standard deviation ri =
√

Ri = ei. Since the errors are assumed to be
zero mean Gaussian distributed approximately 68% of the errors should be within
one standard deviation of zero. However, as shown in this section if each error
corresponds to a unique point in the feature space then the optimal covariances will
be given by Ri = e2

i in the scalar case. These covariances are underconfident as all
errors ei in the training set are precisely within one standard deviation ri = ei of the
mean instead of only approximately 68%. It has hence been shown that if each error
corresponds to a unique point in the feature space then the optimal covariances will
be underconfident.

It should be noted that the above derivation is based on the presumption that each
error sample corresponds to a unique point in the feature space. However, for real
data, i.e., data obtained from the real world, this is a reasonable assumption as real
measurements always contain noise. Depending on the precision of the measure-
ments some of the measurements may have the same value but a majority of the
measurements will most likely have unique values.
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One way to view the fact that the optimal covariances in the Gaussian likelihood
objective are underconfident is that the training data is noisy. In other words the
training labels in the data set are not perfect since they in combination with the
objective do not describe the true covariances exactly. As to not overfit the model
to the noisy data it is important to use regularization. One option is to use L2
regularization which penalizes larger parameter values in the model. Using L2 regu-
larization and by denoting Ri as Ri = Ri(φ), to make it clearer that Ri is a function
of φ, the optimization objective in (5.13) may be reformulated as

arg min
φ

NØ
i=1

1
log|Ri(φ)| + eTi Ri(φ)−1ei

2
+ λëφë2

2. (5.22)

5.2 Parametric Covariance Estimation
A parametric covariance estimation method was presented in [10] which maps from
features to covariance matrices by a parametric model. There are both strengths and
weaknesses in using parametric models. If the number of parameters in the model
is constant then evaluating the model for covariance prediction is also constant in
time. This is crucial in real-time systems such as the reference Kalman filter in this
thesis as predictions can not be too slow. However, as described in [23] a weakness
of the parametric model in [10] is that it assumes a specific parametric form of the
function mapping features to covariances.

5.2.1 Positive definiteness constraint
As explained in [10] and discussed in Section 5.1.1 and 5.1.2 the parametric model
has to predict positive definite matrices as to produce useful and proper covariances.
The auhtors of [10] propose to use the LDL decomposition in combination with the
exponential function as discussed in Section 5.1.2 to handle this positive definiteness
constraint. As such the estimated covariance R is given as in (5.9) here repeated for
convenience

R = LDLT . (5.23)

Furthermore, the exponential function may cause problems during optimization as
large optimization steps may cause the exponential elements to overflow. We solve
this in the same way as in [10] by normalizing the features to an interval of −1 to 1.

5.2.2 Model form
A crucial part of a parametric model is the parametric form used to express the
model. The parametric form used in [10] to produce the elements of the D and L
matrices is an exponentiated weighted sum and weighted sum of the input features
respectively described as
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Dii(z; φ) = exp(wT
i z)

Lij(z; φ) = vTijz
(5.24)

where Dii corresponds to the ith diagonal elment of the D matrix, Lij corresponds
to the element on the ith row and jth column in the L matrix, wi and vij are the
corresponding weight vectors constructed from the model parameters φ and z is the
vector of input features. Relating (5.24) to the notation used in Section 5.1.2 the
elements of d and l are given by the weighted sums wT

i z and vTijz respectively.

A possible criticism of the parametric model in (5.24) is that the weighted sum does
not explicitly make use of a constant bias term. However, the authors of [10] make
use of a constant feature in the feature vector which allows the weighted sum to
apply a bias. Consequently, the criticism is not valid.

It is also worth mentioning that by using a parametric model the model inputs
are not restricted to have discrete values as in the Discrete covariance estimation
method. The domain of the model function is instead given by the set of real
numbers z ∈ Rn where n is the number of input features.

5.2.3 Objective function
The authors of [10] model the heteroscedastic noise process as a zero mean Gaus-
sian with an input dependent covariance. Using a data set of errors the model is
then optimized based on the Gaussian log-likelihood of the error samples given the
estimated covariances. In this work the negative log-likelihood is used instead of
the log-likelihood as we prefer to minimize a loss function. However, these objective
functions have the same aim, i.e., to maximize the likelihood of the error samples
given the estimated covariances.

5.2.4 Objective regularization
As discussed in Section 5.1.3 regularization is important when using the log-likelihood
objective for covariance estimation. In [10] L2 regularization is used in combination
with a proposed damping matrix. The authors of [10] argue that if an error sample
is close to zero then the log-likelihood of that sample approaches infinity as the
determinant of the covariance matrix approaches zero. This can be seen in (5.14)
since if ei is a zero vector then the negative log-likelihood for that error sample is
given by

log|Ri| (5.25)

which goes towards negative infinity as |R| goes towards zero. To solve this problem
[10] propose to add a damping matrix E to R which limits the minimum value of
the determinant. The estimated covariances is then instead given by
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R̂i = Ri + E (5.26)

where E is a positive semi-definite matrix.

Similarly as in [10] applying the damping matrix E and L2 regularization to the
negative log-likelihood objective one obtains the optimization problem

arg min
φ

g(e; φ) = arg min
φ

NØ
i=1

31
2 log|R̂i| + 1

2eTi R̂−1
i ei

4
+ λ

2 ëφë2
2

= arg min
φ

NØ
i=1

1
−ü(R̂i|ei)

2
+ λ

2 ëφë2
2

(5.27)

optimized over a data set of error samples and input features D = {ei, zi|i =
1, 2, . . . , N}.

5.2.5 Optimization
The gradient of the objective function g(e; φ) with respect to the model parameters
has a closed form expression [10]. Before presenting the expression of the gradient a
few intermediate definitions are made to make the gradient expression more compact
and readable. The same definitions as in [10] are made

∂R(z; φ)
∂wi,r

= L1iiLTDiizr

∂R(z; φ)
∂vij,r

=
1
1ijDLT + LD1ji

2
zr

(5.28)

where wi,r denotes the rth element of the weight vector corresponding to the ith diag-
onal element of D, vij,r denotes he rth element of the weight vector corresponding to
the ith row and jth column of L, zr is the rth element of the input feature vector and
lastly 1ij is a matrix which is zero everywhere except at row i and column j where it
is 1. Similarly as derived in [10] the partial derivative of the negative log-likelihood
for a single error sample ei with respect to the kth parameter ∂

∂φk

1
−ü(R̂i|ei)

2
is

then given by

∂

∂φk

1
−ü(R̂i|ei)

2
= 1

2tr
C
R̂−1
i

∂Ri

∂φk

1
I − R̂−1

i eieTi
2D

(5.29)

where tr() is the matrix trace and ∂Ri

∂φk
is one of the partial derivatives in (5.28)

depending on if φk is a parameter corresponding to an element in D or L. Con-
sidering φ as a column vector of the parameters and applying (5.29) to calculate
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each partial derivative in the gradient, i.e., for each parameter, one may obtain the
gradient. The closed form expression of the gradient of g(e; φ) with respect to the
model parameters ∂

∂φ
g(e; φ) derived in [10] may thus be described as

∂

∂φ
g(e; φ) =

NØ
i=1

C
∂

∂φ

1
−ü(R̂i|ei)

2D
+ λφ. (5.30)

The interested reader is referred to [10] for a derivation of the gradient.

As one has access to an expression of the objective function gradient with respect to
the model parameters the model may be optimized using gradient based optimization
methods. In this thesis mini-batch gradient descent is used to optimize the model.

5.2.6 Computational complexity
It is of crucial importance that the covariance estimation may be performed in real-
time since it is used in the Kalman filter. If the estimated covariance matrix is p×p
and the number of input features is n then as pointed out in [10] the model has a
complexity of O(p2n). The complexity of the model thus increases with the size of
the error vector samples e and the number of input features. As the size of the error
vectors are relatively small in this thesis and the number of input features may be
selected by the model designer this method is appropriate for the project objective.

5.2.7 Model implementation
As mentioned in Section 2.5 the number of measurements may vary in the reference
system Kalman filter updates. Additionally, the number of state elements in the
state vector for the object prediction step may also differ for different time steps.
This problem of missing data is also a problem for PCE since it is not possible
to use incomplete error samples in the objective function described in (5.8). We
solve this by estimating diagonal covariance matrices as discussed in Section 2.5.3.
The elements in the error samples may consequently be used independently of each
other and missing data can be discarded without losing useful information. The PCE
models consequently estimate scalar variances used to construct diagonal covariance
matrices in the object prediction, lane marker update, vehicle update and vehicle
heading update.

In the object prediction, vehicle update and vehicle heading update the individual
state vector elements and measurement elements from a single time instance are
considered to be samples of the same scalar random variable. As such one PCE
model which estimates the variance of this scalar random variable is trained for each
of these Kalman filter steps. The diagonal covariance matrix is then constructed
from the estimated variances and the number of estimated variances depends on the
size of the measurement vector or state vector at that time instance.

In the lane marker update, however, the measurement elements are not considered
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to be samples of the same scalar random variable. The reason for this is that
the position of the elements in the measurement vector has a significant meaning.
Consequently, multiple PCE models that estimate variances, one for each element
in the measurement vector, are trained using the corresponding scalar error sample.

The road prediction step does not suffer from the missing data problem and the error
vector samples ei may thus be used directly. Nonetheless, a diagonal covariance
matrix is used in this Kalman filter step as well since the reference system does not
easily allow for dense covariance matrices. Estimating a diagonal covariance matrix
is easily imposed by setting the L matrix in the LDL decomposition to the identity
matrix.

Lastly, it should be mentioned that categorical input features used in the models
were encoded using one-hot encoding discussed in Section 3.1.5. This was done in
order to represent these features in a more reasonable way which may improve the
learning process of the models.

5.3 Deep Covariance Estimation
Deep Inference for Covariance Estimation (DICE) was proposed in [23] and proposes
to use a deep neural network for approximating a function mapping raw measure-
ments to error covariances. As mentioned in [23] a weakness of the parametric
method described in Section 5.2 is that it assumes a specific parametric form of the
function mapping features to covariances. By using a deep neural network instead
the model allows for a more complex nonlinear mapping which does not assume a
specific parametric form.

As described by the authors of DICE [23] the method does not require hand-coded
input features as covariances are estimated directly from raw measurements. How-
ever, in this thesis we have access to hand-coded input features and therefore use
these features as model inputs instead of raw measurements. By utilizing features
which are already available in the filter the network size may be reduced since the
network does not need to learn feature representations from raw measurements. Us-
ing a smaller network in turn results in a lower computational complexity which
is beneficial as the covariance estimation is used in real-time in the Kalman filter.
Another difference of the deep neural network method used in this thesis compared
to DICE is that we use a different class of neural networks which will be discussed
more in Section 5.3.2.

Because there are several differences between the model used in this thesis and DICE
e.g. hand-coded features and network architecture the model used in this thesis is
referred to as Deep Covariance Estimation (DeepCE) instead of DICE.
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5.3.1 Positive definiteness constraint
The authors of DICE [23] solve the constraint of estimating positive definite matrices
in the same way as in [10], by using the LDL decomposition discussed in Section
5.1.2. In this thesis the features were also normalized similarly as in [10] to obtain
a more stable optimization.

5.3.2 Model form
Different classes of deep neural networks may be appropriate for a specific task
depending on the type of measurements or features used. In [23] a convolutional
neural network (CNN) is used which is beneficial if the model inputs have local
correlations [43] such as in images which have spatial local correlations. In this thesis
a multilayer perceptron (MLP) is used as there are no obvious useful correlations
in the input features. A multilayer perceptron is a fully connected neural network.
It consists of an input layer, an output layer and a number of hidden layers. An
illustration of an MLP is given in Figure 5.1. Furthermore, the type of activation
function used in the network in this thesis is the rectified linear unit (ReLU). For
more information about ReLU, see [44].

Input Layer First Hidden Layer

...

Input Layer ∈ ℝ⁵ N:th Hidden Layer Output Layer

Figure 5.1: Illustration of a multilayer perceptron (MLP). The number of hidden
layers and number of neurons in each hidden layer are hyperparameters that need
to be chosen.

As mentioned previously, DICE [23] approximates a function mapping from raw mea-
surements to error covariances. However, in this thesis the neural network instead
approximates a function mapping from input features to error covariances. Using
the notation introduced in Section 5.1.2 the neural network thus approximates the
true function g(z) = [d, l]T , i.e., from input features z to LDL decomposition ele-
ments d and l. The actual function described by the neural network is denoted f(z)
and approximates the true function g(z). The aim is thus to achieve f(z) ≈ g(z).

58



5. Parametric models

The output layer of the MLP is a linear layer and the output of the neural network
may thus be described similarly as in [23]

f(z) = Aγ + b (5.31)

where γ ∈ Rn is the output from the hidden layers in the neural network, A is a
m × n matrix containing the weight parameters of the linear output layer and b is a
column vector of size m containing the bias weights of the linear output layer. The
output of the neural network is thus a column vector of size m where m consequently
depends on the size of the covariance matrix being estimated since [d, l]T ∈ Rm.

In the same way as for the parametric method the model inputs for DeepCE are not
restricted to being discrete and may take any real value. The model inputs are thus
given by z ∈ Rn where n is the number of input features.

5.3.3 Objective function
Similarly as in [10] the authors of [23] assume that the error distribution is a zero
mean Gaussian with an input dependent covariance. DICE [23] then uses the nega-
tive log-likelihood objective discussed in Section 5.1.1 to maximize the likelihood of
the errors given the estimated covariances.

5.3.4 Objective regularization
As shown in Section 5.1.3 it is important to use regularization in combination with
this objective for estimating covariances. In [23] dropout regularization was used to
regularize the network. However, in this work L2 regularization is used instead as
it has been shown [45] that smaller networks benefit more from L2 regularization
compared to dropout. Applying L2 regularization to the negative log-likelihood
objective results in the loss function given in (5.22).

5.3.5 Optimization
As the model function is given by a neural network backpropagation is used to
obtain the gradient of the objective with respect to the parameters. The model is
then optimized using mini-batch gradient descent with momentum.

5.3.6 Computational complexity
The operations performed to evaluate the neural network consist of multiplications,
additions and the max operator in the ReLU [44]. The number of these operations
increase with increasing number of inputs, number of hidden layers, number of neu-
rons in each hidden layer and the number of outputs. The number of inputs and
outputs is problem dependent while the number of hidden layers and number of
neurons may be selected based on a trade-off between performance and computa-
tional complexity. By then selecting an appropriately moderate number of hidden
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layers and neurons the computational complexity may be limited. The computa-
tional complexity is furthermore constant in time since the number of parameters
in the model is fixed. Hence, DeepCE is a viable approach in real-time systems and
therefore also appropriate for the work in this thesis.

5.3.7 Model implementation
Because of the problem discussed in Section 5.2.7 of missing data in the error sam-
ples DeepCE also estimates diagonal covariance matrices. The DeepCE models
consequently estimate scalar variances similarly to PCE which are used to construct
diagonal covariance matrices in the object prediction, lane marker update, vehicle
update and vehicle heading update. However, a difference between the implemen-
tation of PCE and DeepCE is that even though the measurement elements in the
lane marker update are not considered samples of the same scalar random variable
only a single DeepCE model is trained. The information contained in the position
of the elements in the measurement vector is instead conveyed by adding an input
feature to the neural network which describes this position. For the road prediction
step the DeepCE model estimates a diagonal covariance matrix directly in the same
way and for the same reason described in Section 5.2.7.

Also for the same reason discussed in Section 5.2.7 categorical input features were
encoded using one-hot encoding for the DeepCE models.
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As described in Section 1.4 a heuristic method was available at the start of the thesis
which is used to benchmark the proposed solutions. The heuristic method is referred
to as Baseline. The methods are evaluated based on two different performance mea-
sures on three different test cases with varying road types and environments. The
road types considered are highways and country road with varying environmental
factors such as clear sky, darkness and rain. These different scenarios are interest-
ing as they potentially have significant impact on the process- and measurement
covariances.

6.1 Implementation details
The input features used in PCE and DeepCE for all the Kalman filter models are
essentially the same. Some of these selected input features are discussed in Sec-
tion 3.4. For DCE fewer input features were used because of the scaling problems
discussed in Section 4.2.2.

Implementation details specific for each of the modeling methods will now be de-
scribed in the following subsections.

6.1.1 Discrete covariance estimation
The discrete covariance estimation method was implemented in Matlab and con-
verted to C code using the C code generation utility in Matlab.

6.1.2 Parametric Covariance estimation
The PCE method was implemented in Matlab but converted to C code using the C
code generation utility in Matlab. The training parameters were determined by try-
ing different values and choosing the values which resulted in the best performance
on the training and development data. The damping matrix E was set to the zero
matrix and the L2 regularization parameter was set to λ = 10−3 during training of
all models. The models were trained until convergence using mini-batch gradient
descent with a mini-batch size of 1024 for a total of 10 epochs. The first five epochs
the learning rate was set to η = 10−5 and for the last five epochs the learning rate
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was set to η = 10−6.

6.1.3 Deep Covariance Estimation
The DeepCE method was implemented in Python using PyTorch but is called from
Matlab through an API during runtime.

The neural network architecture was determined by trying different values of the hy-
perparameters and choosing the values which gave good performance on the training
and development sets. The network size was increased until the network started to
overfit to the training data. Once the network was able to overfit the L2 regulariza-
tion parameter was tuned such that the network could be trained until convergence
without overfitting. An illustration of the resulting neural network architecture used
in this thesis is given in Figure 6.1.

Input Layer Hidden Layer 1
     32 units
      (ReLU)

Hidden Layer 2
    64 units
     (ReLU)

Output LayerHidden Layer 3
    64 units
     (ReLU)

Hidden Layer 4
     32 units
      (ReLU)

Figure 6.1: Neural network architecture used in the DeepCE model.

The networks were trained using mini-batch gradient descent with momentum where
the mini-batch size was set to 1024 and the momentum was set to 0.9 for all models.
The L2 regularization was implemented using weight decay and the weight decay
parameter was set to λ = 1 for all models. The networks were trained until the
training loss converged. For all Kalman filter models in the reference system except
for the lane marker update the covariance estimation models were trained for 160
epochs. For the first 80 epochs the learning rate was set to η = 10−6 and the last
80 epochs the learning rate was set to η = 10−7. For the lane marker update the
model was trained for 320 epochs where the learning rate was η = 10−6 for the first
80 epochs and η = 10−7 for the remaining epochs.
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6.2 Test sets
Three different test sets of real-world data are used for evaluation. Below follows
a description of each of the sets which describes the scenarios and sizes of the test
sets.

1. HighwayDark: Highway driving where it gets progressively darker outside as
the sun is setting. The data was sampled during a driving session of 61 minutes
and data for road geometry estimation evaluation is available for 59 minutes.
A picture taken towards the end of the driving session when the sun had set
completely is shown in Figure 6.2.

2. HighwayClearSky: Highway driving during clear sky. The driving session is 53
minutes long and data for road geometry estimation evaluation is available for
52 minutes. A picture from the driving session is shown in Figure 6.3.

3. CountryRoadRain: Driving on a large country road while it is raining heavily.
The driving session is in total 50 minutes long and data for road geometry
estimation evaluation is available for 24 minutes. It should be noted that the
training data set used in this thesis is predominantly from highway scenarios.
This test case is still included as it may indicate if models trained on mainly
highway data is able to generalize to country roads as well or not. A picture
from the driving session is shown in Figure 6.4.

The reason that data for road geometry estimation evaluation is not available for
the entirety of the driving sessions is that ground truth data of sufficient quality is
not always available.

Figure 6.2: Example picture from the test set HighwayDark. The picture is taken
towards the end of the driving session when the sun had set completely.
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Figure 6.3: Example picture from the test set HighwayClearSky.

Figure 6.4: Example picture from the test set CountryRoadRain.

6.3 Noise negative log-likelihood
Similarly as in [10], a likelihood measure is used to measure the performance of
the noise models. The noise negative log-likelihood (NNLL) is the negative log-
likelihood of the true error samples given the estimated covariances in the system
models, i.e., the process- and measurement covariances. This likelihood is a measure
of how well the estimated covariances describe the true error samples and thereby
a direct performance measure of the noise model, i.e., the covariance estimation
model. Mathematically the NNLL üNNLL is given by

üNNLL =
NØ
k=1

3
m

2 log(2π) + 1
2 log|Rk| + 1

2eTkR−1
k ek

4
(6.1)

where N is the number of samples in the test data, m is the size of the error vectors,
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Rk is the estimated covariance at time k and ek is the error vector at time k given
by either of the random variable realizations described in (2.6) depending on if the
NNLL is calculated for a process- or measurement model.

As explained in Section 2.5 the number of state elements and measurement elements
may vary in all Kalman filter models in the reference system except for the road pre-
diction. For the NNLL calculated for these models we solve this by considering the
individual error elements and the corresponding variances in the estimated diagonal
covariance matrix. In other words, the individual error elements and corresponding
variances are stacked into a single sequence of which the sum in (6.1) is taken over.
The error ek is, thus, a scalar in (6.1) for the object prediction, lane marker update,
vehicle update and vehicle heading update. For the road prediction the error vec-
tor samples are used directly and therefore not scalars. The results for the three
different test sets are shown in Tables 6.1, 6.2 and 6.3 as the normalized average
NNLL. As the NNLL is normalized over the different covariance models the best
performing covariance estimation model for each Kalman model has a normalized
average NNLL of 0.

Normalized average NNLL for test set HighwayDark
Kalman model DCE PCE DeepCE Baseline
Road prediction 1 0.0008 0 0.4069
Object prediction 1 0.0026 0 0.1937
Lane marker update 1 0 0.1603 0.0819
Vehicle update 0.0808 0 0.3357 1
Vehicle heading update 1 0.0888 0.0254 0

Table 6.1: Comparison of normalized average NNLL for the different methods in
the different Kalman models for test set HighwayDark.

Normalized average NNLL for test set HighwayClearSky
Kalman model DCE PCE DeepCE Baseline
Road prediction 1 0.0011 0 0.3589
Object prediction 1 0 0.0020 0.0131
Lane marker update 0.2013 0 0.1613 1
Vehicle update 0 0.0369 0.0213 1
Vehicle heading update 1 0.4415 0.4597 0

Table 6.2: Comparison of normalized average NNLL for the different methods in
the different Kalman models for test set HighwayClearSky.
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Normalized average NNLL for test set CountryRoadRain
Kalman model DCE PCE DeepCE Baseline
Road prediction 1 0.0011 0 0.3661
Object prediction 1 0.0197 0.0210 0
Lane marker update 1 0 0.8669 0.3109
Vehicle update 0 0.0564 0.2176 1
Vehicle heading update 1 0.0784 0.0722 0

Table 6.3: Comparison of normalized average NNLL for the different methods in
the different Kalman models for test set CountryRoadRain.

6.4 Root mean square error
The other performance measure used is the root mean square error (RMSE) of the
road geometry estimation. The RMSE is interesting as a more consistent process-
and measurement noise should result in a better filter performance. Mathematically
the RMSE, here denoted as eRMSE, is defined as

eRMSE =

öõõô 1
N

NØ
k=1

e2
k (6.2)

where N is the number of samples and ek is the error of the estimated position of
the road at a certain distance which is given by the Euclidean distance between the
estimated point of the road at a certain distance and the closest point of the true
road. The estimated position error is thus calculated for several different distances
along the road.

The number of samples at different distances can vary because the reference system
only produces estimates if it is sufficiently confident at that distance. As a result
there are fewer estimates for larger distances. To not present unreliable results the
estimates from a certain distance are only considered if there exist at least one minute
of produced estimates at that distance. The normalized RMSE of the estimated
position of the road at different distances is shown in Figures 6.5, 6.6 and 6.7 for
test cases HighwayDark, HighwayClearSky and CountryRoadRain respectively.
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Figure 6.5: Normalized RMSE at different distances along the road for test set
HighwayDark.
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Figure 6.6: Normalized RMSE at different distances along the road for test set
HighwayClearSky.

67



6. Results

0 20 40 60 80 100
Distance along the road (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

N
or

m
al

iz
ed

 R
M

SE
DCE
PCE
DeepCE
Baseline

Figure 6.7: Normalized RMSE at different distances along the road for test set
CountryRoadRain.
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7
Discussion

In this chapter the results obtained with regards to NNLL and road geometry esti-
mation RMSE are initially discussed. This is followed by a discussion of potential
improvements to different aspects of the thesis work.

7.1 Noise negative log-likelihood
The NNLL results for the three different test cases considered in this thesis can be
seen in Tables 6.1, 6.2 and 6.3. For the first test case HighwayDark, shown in Table
6.1 PCE performed the best overall but DeepCE also performed well compared
to Baseline. PCE performed the best on the vehicle update and vehicle heading
update. DeepCE performed the best on the prediction steps, the road and object
prediction. However, for the vehicle heading update Baseline performed the best.
DCE performed the worst for all Kalman models except for the vehicle update were
it was the second best.

In the second test case HighwayClearSky, shown in Table 6.2, PCE performed the
best overall but the performance of DeepCE was close to PCE. PCE obtained the
best results for the object prediction and lane marker update. DeepCE performed
the best for the road prediction. DCE performed the best for the vehicle update.
Baseline obtained the best result for the vehicle heading update. Lastly it should
be mentioned that DCE performed the worst in three of the Kalman filter models.

For the third test case CountryRoadRain, shown in Table 6.3, PCE performed the
best overall. DeepCE performed slightly better compared to Baseline overall but
obtained quite bad results on the lane marker update compared to the other Kalman
models for DeepCE. PCE performed the best for the lane marker update. DeepCE
obtained the best results for the road prediction. DCE performed the best for the
vehicle update. Baseline performed the best for the object prediction and vehicle
heading update. Furthermore, DCE obtained the worst performance in four out of
five Kalman filter models.

To summarize, over the three different test cases PCE had the best NNLL perfor-
mance overall but DeepCE also performed better than Baseline in general. The
reason that PCE performed the best could be that the simpler parametric form of
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PCE compared to DeepCE acted as regularization. In other words it could be that
DeepCE overfitted to the training data and in turn did not generalize to the test
cases while the simpler parametric form of PCE prevented overfitting. Consequently,
by applying more regularization during the training of DeepCE one might expect
DeepCE to perform better with regards to NNLL.

Based on the NNLL results it is clear that the covariance estimation models may
estimate more consistent covariance matrices, i.e., process- and measurement co-
variances, compared to Baseline. As these covariances have a significant impact on
the Kalman filter estimation covariance one can also reasonably conclude that this
results in a more consistent estimation uncertainty compared to Baseline. However,
it is important to note that the NNLL is not a direct measure of the Kalman filter
estimation uncertainty consistency but instead a measure of the consistency of the
estimated covariances in the different Kalman filter steps.

An interesting result to note is that Baseline has the best NNLL performance in
the vehicle heading update for all three test cases. A possible reason for this is
that it was difficult to find interesting input features for this specific Kalman model.
Consequently, the covariance estimation model in the vehicle heading update does
not have too many useful input features which could be the reason why Baseline
outperforms the covariance estimation methods. By examining the error samples for
the vehicle heading update it could also be seen that the error data for this specific
Kalman model contained significantly more outliers compared to the other Kalman
models. These outliers may in turn be caused by that the measurement model for
the vehicle heading update could be more sensitive to noisy ground truth data. In
other words when constructing the error data set described in Section 3.2 the vehicle
heading update may be more sensitive to noise in the ground truth data resulting
in outliers. Obvious outlier samples were removed before training the noise models
in the vehicle heading update but the existence of outliers could be an indication
that other samples are of lower quality. Hence, the quality of the training data for
the noise models in the vehicle heading update may be a reason as to why Baseline
consistently performs better for this specific update.

DCE performed the worst overall on all three test cases which could be the result
of having to little data in some discrete cases causing the sample covariance to
be inaccurate as discussed in Section 4.2.2. One could remedy this by using more
training data and more data specifically for the discrete cases where data is lacking.
It should also be mentioned that DCE uses fewer input features compared to PCE
and DeepCE as we strived to limit the number of discrete cases to solve the problem
discussed in Section 4.2.2. However, not having some input features could also be a
reason as to why DCE performed the worst regarding NNLL since the missing input
features could be useful in estimating accurate covariance matrices. Examining the
NNLL results for DCE there is however an exception which is that DCE actually
performs quite well specifically for the vehicle update. A plausible reason that DCE
performs well on this Kalman model specifically could be that the input features
used are exceptionally informative compared to the other Kalman models for DCE.
It is also the case that the discrete input features used for the vehicle update for DCE
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had only a few possible discrete values. This means that the total number of discrete
cases for the vehicle update were also few such that each discrete case contained a
significant amount of training data. Since this results in more accurate covariance
estimates for each discrete case, as more data is used in the sample covariance, this
is also a possible reason as to why DCE performs quite well for the vehicle update
specifically.

Lastly, it is clear from the NNLL results that different covariance estimation meth-
ods performed better or worse for different Kalman models and different test sets.
The reason for this is most likely that the different input features found for each
Kalman model through feature selection are more or less informative with regards
to covariance estimation depending on the test set. It is also the case that the train-
ing parameters of the parametric models, PCE and DeepCE, were tuned based on
the performance on the development set for the lane marker update specifically. As
these parameter values resulted in good performance on the development set also for
the other Kalman models we decided not to further fine-tune the training param-
eters for each Kalman model specifically. Nonetheless, by fine-tuning the training
parameters for the noise model in each Kalman model it is possible that one could
achieve a more consistent performance over the different Kalman models.

7.2 Root mean square error
The results for road geometry estimation RMSE are shown in Figures 6.5, 6.6 and
6.7 for the three different test cases respectively. In the first test case Highway-
Dark, shown in Figure 6.5, DCE and DeepCE performed significantly worse for
short distances compared to Baseline while PCE only performed slightly worse at
short distances compared to Baseline. For larger distances PCE and DeepCE both
performed better compared to Baseline while DCE performed worse also for larger
distances. Overall PCE performed the best out of the methods considered in this
thesis and PCE performed similarly to Baseline considering the performance over
all distances.

In the first test case the lighting conditions are poor which should have an impact on
the camera sensor performance. A crucial reason as to why the covariance estimation
models did not consistently perform better than Baseline in the first test case could
therefore be that the models did not have an input feature directly related to the
lighting conditions. By using an input feature which measures e.g. luminosity one
may expect the covariance estimation models to perform even better.

For the second test case HighwayClearSky, shown in Figure 6.6, the RMSE perfor-
mance was similar for all methods including Baseline at short distances. At larger
distances all the covariance estimation models performed significantly better com-
pared to Baseline. The parametric methods, PCE and DeepCE, performed similarly
overall and also consistently better than DCE. As a whole the best performing mod-
els for this test case were the parametric models, PCE and DeepCE.
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It is interesting to note that the covariance estimation models performed better
compared to Baseline in the second test case where the weather conditions are quite
permissive, i.e., the environmental factors should not have too much of an effect on
the sensor performance. This shows that when the covariance estimation models do
not lack input features which may have a significant impact on e.g. the measurement
noise covariance the models may be able to consistently improve the overall road
geometry estimation performance.

In the third test case CountryRoadRain, shown in Figure 6.7, DCE and DeepCE
achieved a slightly lower RMSE at shorter distances compared to Baseline but all
models performed worse compared to Baseline at larger distances. Out of the co-
variance estimation models considered in this thesis DCE performed the best overall
and PCE performed the worst overall. However, considering all distances along the
road Baseline performed the best overall for this specific test case.

A plausible reason as to why the covariance estimation models performed worse
with regards to overall RMSE compared to Baseline for the third test case, Coun-
tryRoadRain, could be that the road type was a country road while the models were
trained predominantly on data from highways. This is plausible since country roads
most likely have different road dynamics and conditions related to measurements
compared to highways. Examples of this could be that country roads may have a
more rapidly changing curvature or that the position of surrounding vehicles may
differ compared to highways. By including more data from country roads in the
training set one would expect the RMSE performance for this test case to conse-
quently improve. Additionally, in a similar way as for the first test case, in the third
test case there is an environmental factor that potentially has a significant impact
on the sensor performance, i.e., rain. Since the covariance estimation models do
not have an input feature that may indicate if it is raining or not one would expect
performance improvements if such an input feature was to be included.

It is interesting to note that even though some covariance estimation models seem
to perform better with regards to NNLL for some test sets they do not always
consistently perform better regarding the RMSE performance. This can be seen for
the third test case, CountryRoadRain, by comparing the NNLL results in Table 6.3
with the RMSE results in Figure 6.7. Examining Table 6.3 PCE seems to overall
have a better NNLL performance compared to Baseline while in Figure 6.7 PCE
performs worse with regards to RMSE compared to Baseline. An explanation for
this could be that even though PCE has a better NNLL performance overall it
does not achieve a better NNLL compared to Baseline for strictly all five Kalman
models. It might then be the case that the Kalman models in which Baseline has
a better NNLL performance compared to PCE has a more significant impact with
regards to RMSE performance for that specific test scenario. Consequently, Baseline
may achieve a better RMSE performance even though e.g. in the third test case
PCE performs better overall with regards to NNLL. Another possible reason for the
disparity between the NNLL and RMSE results could be that the ground truth state
vector data for some state vector elements used to calculate the NNLL performance
was of inadequate quality. This is supported by the fact that it could be seen,
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through examination of the data in plots, that the ground truth state vector data
for a few state vector elements was indeed noisy. It might then be the case that the
noisy ground truth data caused inaccuracies in the NNLL performance measure such
that even though the noise models may perform better compared to Baseline with
regards to NNLL, it does not reflect as a consistent RMSE performance increase.

7.3 Improvements discussion
Some interesting features related to environmental factors were not implemented
because of time constraints. However, since the methods construct the noise models
as heteroscedastic, i.e., feature-dependent, the performance of the models are thus
heavily dependent on if the input features are informative. As a result, expand-
ing the features set provides the models with additional information regarding the
correlation between the estimation uncertainty and the factors influencing the esti-
mation, measured by the features. One would expect improvements with regards to
both estimation performance and the likelihood of the estimated covariances on test
cases HighwayDark and CountryRoadRain if features describing lighting conditions
and rain were added.

It is important to mention that improvements of the training data set used in this
thesis would most likely lead to a better performance of the models. One possible
improvement which was identified was that the ground truth data for a few state
vector elements was of lower quality compared to the other state vector elements, i.e.,
the ground truth data for a few state vector elements was quite noisy. This affects the
training data set for the covariance estimation models as the predictions Fk(xk−1, uk)
and Hk(xk) in (2.6) are impacted negatively. By acquiring more accurate ground
truth data one would expect to obtain even better results as the training data used
to train the models would be of better quality.

Another potential improvement is related to the generation of the training data set.
In generating the training data one needs the functions Fk and Hk as described in
Section 2.3. In this work we obtained these functions using a tool which ran the
reference system with the heuristic covariance method on driving sessions data by
storing the function parameters from the run. The predicted true state Fk(xk−1, uk)
and the noise-free measurement Hk(xk) were then calculated by substituting ground
truth state vector data into the functions. Consequently, if the function parameters
are state-dependent then the stored functions we obtained from running the tool
uses state estimates instead of ground truth data to construct Fk and Hk. This
approach is not optimal for the vehicle update in the reference system as some
of the parameters of the function Hk in the vehicle update are state-dependent.
However, as the estimates aim to approximate the ground truth, it should not be a
significant problem.

As discussed in Section 7.2 the training data set consisted of data from predomi-
nantly highway scenarios. It was also mentioned that this could be the reason why
the covariance estimation models overall obtained higher RMSE for the country road
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test case compared to Baseline. A possible improvement to the work in this thesis is
therefore to use more training data from other types of roads but also more training
data in general.

An interesting result with regards to NNLL is that a single covariance estimation
model did not consistently perform the best for all Kalman models. This can be
seen in Tables 6.1, 6.2 and 6.3 since a normalized average NNLL of zero, i.e., the
best performing method, is not present in the same column for all Kalman models
in any of the tables. Consequently, it could be reasonable to use different covariance
estimation models depending on the Kalman model and the input features used
in that Kalman model. In some Kalman filter models the relation between the
heteroscedstic noise and the input features may be simpler e.g. linear and one may
then use simpler models such as DCE and PCE. On the other hand in some Kalman
filter models the relation between the heteroscedstic noise and the input features
may be more complex e.g. highly non-linear and then it might be more appropriate
to use a neural network model such as DeepCE.
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Conclusion and future work

8.1 Conclusion
In this thesis we presented a framework for heteroscedastic noise estimation in
Kalman filtering applied to road geometry estimation. The proposed framework
is articulated into two parts: a feature selection part for filtering features based on
correlation criteria, and a heteroscedastic noise model. The first model proposed is a
straightforward approach that divides the features into discrete cases and maps each
case to a specific covariance matrix. Furthermore, two different state-of-the-art ap-
proaches are evaluated and modified to fit the work in this thesis, these approaches
are a parametric approach and an approach based on deep neural networks.

The methods are evaluated on real-world data corresponding to three different sce-
narios. The methods are evaluated using a likelihood measure and root mean square
error of the road geometry estimation. As shown in Chapter 6, heteroscedastic noise
estimation may lead to improvements in both the filter estimation performance, as
well as estimation uncertainty consistency for the road geometry estimation appli-
cation.

The noise models discussed in this thesis provide a way of determining statistically
verifiable process- and measurement covariances in the sense that they are deter-
mined from actual samples of the noise processes. This is different compared to
the common method of viewing the covariances as design parameters tuned based
on filter performance which does not necessarily provide statistically verifiable and
interpretive covariances.

From the overall results obtained in the three test cases, the best method considered
in this thesis for constructing heteroscedastic noise models is PCE. The second best
alternative is DeepCE, although it has higher memory and complexity requirements
compared to PCE. It is important to highlight how the three methods introduced in
this thesis have highly varying requirements. The discrete method DCE has lower
computational complexity and lower memory requirements with respect to DeepCE.
However, DCE fails to generalize to cases not seen in the training data, which is
accomplished by PCE and DeepCE. Since DeepCE is able to describe more complex
relations between the input features and the covariance matrices, the choice between
PCE and DeepCE can be made based on computational complexity requirements
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and the input features used in the model.

8.2 Future work
As discussed in this thesis, uncertainty estimation for road geometry depends on a
multitude of factors as both the sensors and road geometry dynamics are effected
by external factors related to the environment surrounding the vehicle and road
conditions. From the test cases considered in this thesis it could be seen that a
lack of input features for environmental factors such as lighting conditions and rain
may have resulted in lower performance. It is therefore interesting in future work
to include these kind of input features and evaluate if they may further improve the
noise model performance. An interesting follow-up work could also be to research
for relevant additional features which are direct measures of external factors deemed
to add useful information to the noise models in the application of road geometry
estimation. Furthermore, one could explore different techniques for feature selection
in the case where one has a large set of possibly interesting candidate features.

Through examination of the ground truth state vector data in plots it could be seen
that the ground truth data for a few state vector elements was noisy. This conse-
quently affects the training data which was used to train the covariance estimation
models. In future work one could therefore obtain more accurate ground truth data
for these state vector elements as to obtain a training data set of higher quality.
Training the covariance estimation models using this data set could then possibly
lead to further performance improvements.

Lastly, as the data set used in this thesis was predominantly based on data from
highway scenarios, it would be interesting to use more training data from other road
types and scenarios. One could then evaluate if the covariance estimation models
discussed in this thesis are useful for other road types than highways. It would even
be interesting to include more data from highways as more data in general could
lead to a performance increase for the covariance estimation models.
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