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Chapter I   

Introduction  

Over the last few decades, the Prognostics and Health Management (PHM) technique 

has found more and more space in many engineering and industrial sectors. This 

technique aims to forecast accurately the fault/failure occurrence or the Remaining 

Useful Life of critical components and to quickly detect and isolate the root causes of 

failure. The big stages that compose this technique are the diagnosis and the prognosis. 

The first deals with the detection of faults or anomaly conditions, the isolation of the 

faulty components detected in a system or process and the assessment of their possible 

effects on the system’s health. In this regard, the indices related to particular failures are 

extracted; they determine through the probability density function the performances of 

the failing system. The prognosis, instead, is the ability to forecast accurately and 

precisely the Remaining Useful Life (RUL) of a failing component of the system. As 

shown in many studies [1-2], prognostics is used in other technological fields and could 

be very useful to condition based maintenance, since it reduces both costs and inspection 

time. Modern technological systems relied on sophisticated control systems for 

prognostic purposes have been developed over the years to meet increased performance 

and safety requirements. One of these fault-tolerant and reconfigurable control 

strategies proposed here is the MPC controller, but its practical application is not 

investigated in this work. 

This Thesis aims to verify the reliability of the PHM diagnosis implemented on an 

electromechanical actuator (EMA), which uses a three-phase permanent magnet 

synchronous motor (PMSM). The obtained model of the EMA replicates one of the most 

common electric motors fault, that is, the rotor static eccentricity. In the reality, this 

phenomenon could be due to assembly error or to progressive wear of rotor bearings. 

For diagnostic purposes, the Fourier Fast Transform (FFT) is used as fault identification 
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techniques able to reveal the presence of rotor eccentricity thanks to the current 

frequency spectrum. The pursued study confirmed the reliability of the FFT as diagnosis 

technique, revealing a dependency of the frequency sidebands present in the current 

frequency spectrum on the static eccentricity ratio and on the rotor speed. This has set 

the basis for extracting a fault feature that unequivocally describes the system behavior 

in the presence of this incipient fault.  

The rest of the work is developed as follows. In Chapter II a detailed description of the 

PHM technique is given, sorting through all the phases, which characterize it. In Chapter 

III the innovative fault tolerant control methodology, namely the Model Predictive 

Control technique, is presented, highlighting its functionalities and suggesting a 

possible implementation with systems such as the studied EMA. In Chapter IV the 

electromechanical actuator present in the flight-control test bench and its working 

principle are described. In Chapter V the static eccentricity fault for an electrical motor 

is outlined. Here can be found also a presentation of the Fast Fourier Transform analysis 

as diagnostic approach. In Chapter VI the MATLAB/Simulink model used to 

characterize the behaviour the whole servosystem during the simulation investigations 

is described. 

In Chapter VII the preliminary tests on the system for the fault identification are 

reported, comparing the system response under healthy and faulty condition. In Chapter 

VIII the FFT analysis is exploited, in order to verify the presence of the rotor static 

eccentricity thanks to the sidebands occurred in the current frequency response. A first 

hypothesis of the fault feature is also proposed. Finally, in Chapter IX the conclusions 

are drawn and ideas for further works on diagnostic fulfilment and on the prognostic 

phase are presented. 
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Chapter II  

Prognostic and Health Management 

In this Chapter, the basic concepts of the Prognostic and Health Management are 

presented, in order to provide the reader with an overview of the aforementioned topic. 

This Thesis will be focused mainly on the initial step of the CBM/PHM process, that is, 

the fault identification through the system diagnosis, thanks to the results achieved from 

past thesis works and from several scientific papers. 

 

2.1 Introduction to PHM 

Over the past decades, a wide range of implementation strategies to perform the so-

called health management continued to spread; they deals with the fault diagnosis and 

prognosis on critical systems in industrial, aerospace and automotive sectors, as reported 

in [1]. The aim of developing and implementing effective technologies for diagnosis 

and prognosis is to detect faults in their early stage, in order to be capable of acting 

promptly on the system. Fault isolation and diagnosis use detection events as the starting 

point for the classification of the fault within the system being monitored. Condition 

and failure prognosis predicts the Remaining Useful Life (RUL), i.e. the operating time 

between fault detection and an unacceptable level of degradation. Specific requirements 

in terms of confidence and severity, that is the accuracy of the process, must be declared 

for diagnosis and prognosis of a critical failure mode.  

To specify fault detection and diagnosis accuracy it shall be used: 
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- the probability of anomaly detection, including false-alarm rate and real fault 

probability statistics; 

- the probability of specific fault diagnosis classifications using specific 

confidence bounds and severity predictions. 

For what concerns the prognosis accuracy, it must be first identified: 

- the degradation level beyond which the operation is considered unsatisfactory; 

- a minimum number of warning time to make available to the user required 

information that can be applied before the failure is encountered; 

- a minimum probability level that RUL will be equal to or greater than the 

minimum warning level. 

The design of the Prognostic and Health Management technologies is done by adopting 

the “designed in” approach, implemented within an integrated maintenance system that 

supports the equipment throughout its lifetime and provides a positive impact on safety, 

reliability and overall life-cycle-cost reduction. Moreover, the “designed in” approach 

is performed with the hardware design itself and thus acts as the process needed for 

system validation and managing changes, thanks to a continuous feedback of 

experience, evaluating system design improvements and trade-offs. 

The main goal of the Prognostic and Health Management is to accurately forecast the 

fault/failure occurrence or the RUL of critical components and quickly isolate the root 

causes of failure, once that the latter has been detected. From this prospective, 

maximizing system availability and minimizing downtime through a more efficient 

problem-solving are of first importance. Furthermore, an integrated maturation 

environment is required for assessing and validating overall prognostics and health 

management accuracy. Hence, an approach could be quantifying the associated 

uncertainties at each individual level and build up the accumulated accuracies to be 

passed up to the system architecture. This process will be able to assess the decision-

support reasoner algorithm, on the base of the ability to promptly detect and diagnose 

the fault causes and predict the RUL of the component and considering also the 

achieving of the overall operational goals, economic costs/benefits, etc.  
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The two main areas of interest of this methodology are the Condition-Based 

Maintenance (CBM) and the Prognostics and Health Management (PHM). The CBM 

is the use of the run-data extracted from the analysed system to determine its condition 

and thus its current fault/failure condition, usable to schedule required repair and 

maintenance before the breakdown occurs. The PHM handles the forecasting of future 

behaviours, in terms of current operating states, and the scheduling of required 

maintenance actions for system health. Thus, the CBM/PHM procedures are intended 

to deal also with the physics of the failure mechanism associated with the particular 

system or component, in order to understand which is the optimal choice in monitoring 

strategies, tools and algorithms to detect, isolate and predict the evolution of the fault.  

Failure Modes and Effects Criticality Analysis (FMECA), dealing with Reliability-

Centred Maintenance (RCM), determines the severity of failure modes, their frequency 

of occurrence and their testability. For each of them, FMECA considers fault symptoms 

and thus the required sensor to monitor their behavioural patterns. It may also define the 

optimal diagnostic and prognostic algorithm to address the identified failure modes.  

The main modules of an integrated approach to CBM/PHM system design are shown in 

Figure 1, where the feedback loops are intended to optimize the process and complete 

the data collection, whereas the analysis steps are important inputs to the developments 

of the fault diagnostic and prognosis algorithms. 

 

 

Fig. 1 - An integrated approach to CBM/PHM design. 
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The general CBM/PHM cycle is shown in Figure 2. A preliminary offline phase is 

followed by an online implementation. The former deals with the background studies to 

be done before the online CBM implementation. They include the determination of the 

most important features for the system condition assessment, the FMECA, the collection 

of the machinery legacy data for a useful fault prediction and the specification of the 

particular resourced to perform maintenance actions. The online phase provides 

machinery data extraction from the sensor, signal pre-processing, identification of the 

most useful features for determining current status/fault condition, fault detection and 

classification, prediction of evolution fault and scheduling of required maintenance.  

 

 

Fig. 2 – The CBM/PHM cycle. 

 

The core of a good CBM/PHM system design is the understanding of the physics behind 

the failure mechanism and FMECA aiming to fulfil this goal. Indeed, FMECA study 

tries to relate failure events to their root cases (identifying failure modes) and their 

severity, frequency of occurrence and testability. Fault symptoms are related to the 

behaviour of the system under fault conditions, which are monitored and tracked by 

sensors and monitoring apparatus. The design of an FMECA must identify failure modes 

and classify them according to their severity, frequency of occurrence and testability. In 

particular: 
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 Severity ranks the failure mode according to its ultimate consequence (e.g. 

catastrophic, critical, marginal, minor); 

 Frequency of occurrence distinguish classis of classification on the basis of 

mean time between failure (MTBF) ranges (e.g. likely, probable, occasional, 

unlikely); 

 Testability indicates whether symptoms or indicators of a particular failure mode 

can be tracked via conventional or PHM sensors. Hence, it excludes from the 

candidate failure mode set the ones that cannot be measured. 

After the FMECA, a CBM test is performed, whose objective is to design the required 

instrumentation, data-collection set, testing procedures. This test runs the system under 

controlled conditions on a test cell or under real operational regimes in order to acquire 

a baseline of fault data to be used to train and validate the diagnostic and prognostic 

algorithms. 

For what concern the performance rating, a CBM/PHM system assists the maintainer to 

choose the optimum time to perform maintenance given a set of constraints, which 

determine confidence bounds on the availability of critical processes and tasks to meet 

production requirements. Moreover, the CBM/PHM system may also provide the user 

with operational capabilities, which guarantee a more fault tolerant, robust and reliable 

systems. It should be mentioned that also cost-benefit analysis studies are essential in 

deciding not only the technical pluses of these new technologies, but also their economic 

feasibility. After performing this analysis, technical and economic measures are 

weighted appropriately and put in a matrix form, in order to see clearly the possible 

benefits of the CBM system over its life cycle. 

Performance metrics for fault diagnosis and prognosis functional elements are the main 

assessment of the CBM/PHM system, based on sound machinery, conditions monitory 

and statistical signal-detection techniques. 

The verification and validation techniques for CBM/PHM technologies are implied, 

with the aim of ensure that delivered capabilities meet system design requirements, in 

accordance with system performance metrics. These techniques are intended to achieve 

system accreditation, that is, when the system accomplishes its performance 

requirements within stated system’s constraints that have been determine by the offline 
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validation process. The system’s performance could be checked by collecting actual or 

simulated data and asserting whether the designed or deployed system meets the 

specifications. Hence, the validation process involves extracting the action of the control 

code produced by CMB algorithm, in the form of Boolean expressions, and ensuring 

that those expressions satisfies the specifications. 

 

2.1.1 Fault Diagnosis 

Fault diagnosis, or Fault Detection and Identification (FDI), constitutes the initial step 

for the development of the CBM/PHM process. It deals with the detection of 

fault/anomaly condition, the isolation of the faulty components in a system or process, 

and the choice of the possible effect of a failing/failed component on the system’s health. 

In general, useful information are extracted as feature/condition indicators (CIs) from a 

collection of data coming from various sensors. Then, they will be used as input to 

diagnostic routines, which will assert imminent failure conditions. The phases through 

which the fault diagnosis is performed are the following: 

 fault (or failure) detection, where an anomaly operation condition is noticed and 

stated; 

 fault (or failure) isolation, which determines the component that is failing or has 

already failed; 

 fault (or failure) identification, which the nature and the extent of the fault (or 

failure) is determined.  

A system- and application-dependent set of requirements is defined, since the fault 

diagnosis algorithms are referred to physical property of anomaly conditions, which 

changes through noticeable phenomena. 

With the aim of estimating the RUL or the Time-to-Failure (TTF) of a failing component 

and improving the efficiency through the CBM, faults need to be accurately detected, 

without false alarms. Therefore, the diagnostic routines should be the best possible, 

minimizing the false positives/negatives and reducing the time delay between the 

initiation stage and the detection and isolation of the faulty condition. 
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Fig. 3 – General FDI structure. 

 

A general FDI structure is presented in Figure 3. A residual signal, representing a 

deviation from the standard operating conditions, is generated by the comparison 

between a model output and the actual system output. The methods used for this purpose 

can be based on time signal statistics, system identification, frequency domain 

techniques, etc. Then, due to this residual signal, one takes decisions about the operating 

condition of the system. The typical technologies used in this early stage are the model-

based and the data-driven methods. The former builds on an accurate dynamic model of 

the system and has the advantage of detecting even the unexpected faults, generating 

the residual signal that indicates a potential fault condition. Instead, the data-driven 

technique detects only the anticipated faults of a model constituted by a neural network 

that must be trained first with a data set coming from known prototype fault patterns 

and then launched online to detect and identify the faulty component.  

The main component of the FDI procedure is the fault-feature vector, that is, a data set 

containing information about the system operating condition useful for determine the 

current fault status of the system itself. It is generated by means of model-base 

techniques, determining the parameter of the physical model using Kalman filters or 

recursive least squares, data-driven methods, using for example vibration frequency 

spectrum information, or statistical regression techniques acting on existing historical 

legacy data. Once built, the feature vector is employed as input to fault classification 

block, which contains different types of decision-making algorithms.  

A basic concept for the fault detection is represented by alarm bounds of fault tolerance 

limits. As shown in Figure 4, they consist in predefined boundaries that indicates when 

an anomaly condition may be occurring. When the measured signal goes beyond these 

limits, an alarm state is activated. It must be taken into account that the signal itself has 

confidence bounds that should be considered in decision making of the diagnosis 
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process. There are two way for deriving fault tolerance limits: one consists in setting the 

bounds directly on current measured signal, whereas in some situations alarm bounds 

can be determined basing on available historical data and past observed failing 

situations. 

 

 

Fig. 4 – Alarm bounds on measured sensor signals. 

 

The analysis conducted in this Thesis refers to a physical model-based method, which 

derives a good dynamic model of the system using physical modelling principles or 

parameter estimation and system identification methods. 

 

2.1.2 Fault Prognosis 

As defined in [1], prognosis is the ability to forecast accurately and precisely the 

Remaining Useful Life (RUL) of a failing component of the system. A long-term 

prediction of the fault evolution to the point that may result in a failure occurrence is 

related to uncertainty issues. Thus, an uncertainty representation is required, in order to 

model different types of uncertainties due to various sources, along with uncertainty 

management, which deals with methodologies and tools to narrow as more as possible 

the uncertainty bounds as more data are available. Moreover, a good fault prognosis 

requires accurate and precise probabilistic models of fault growth and a statistically 
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wide enough baseline of failure data for training, validating and tuning the prognostic 

algorithms. The main goal of the prognosis is to monitor and track the time evolution, 

that is, the growth, of the fault and predict the RUL after that an impending failure 

condition is detected, isolated and identified. Obviously, predictions about fault severity 

and impending failures are essential. An example of fault propagation is shown in Figure 

5. 

 

 

Fig. 5 – Fault propagation. 

 

The class of prognosis schemes considered in the Thesis is the model-based one, which 

comprehend also the schemes employing a dynamic model of the predicted process. In 

general, this type of methods provide an approach to understand failure mode 

progression of the component. Physics-based models’ implementation are capable to 

compute critical component damage as a function of operating conditions and to express 

the total effects in terms of component life employment. Then, integrating physical and 

stochastic modelling techniques, the presented model can be used for evaluating the 

RUL of the component as function of uncertainties in its particular fault conditions. 

Finally, the results coming from this model can be implemented for real-time failure 

prognostic predictions with specified confidence bounds. The physics-based model uses 

the critical and life-dependent uncertainties in order to examine the current health 

valuation and the future RUL predictions with respect to a risk level, as shown in Figure 

6. 
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Fig. 6 – Physics-based modelling approach. 

 

In order to perform the prognosis with a physics-based model, an operational profile 

prediction must be first developed using steady-steady state and transient online 

measurements. In this way, the probabilistic model of the critical component can be run, 

creating statistical simulations of the future operating profiles from the known statistics 

of the past ones. Then the nonlinear nature of many failure mechanisms depends on both 

intrinsic characteristics of the profiles and the operational mix. 

The methodology used in the following part and presented here for the accurate 

prediction of a failing component is the one based on particle filtering and learning 

strategies. This approach considers two models, a state dynamic and a measurement 

one, to predict the future probability density function of a state for estimating the time 

evolution of a fault damage. Since the prediction, especially a long-term one, involves 

a great amount of uncertainty, one must consider critical state variables as random 

variables with related probability distribution vectors, through which the confidence 

intervals could be determined. One of the most suitable solutions to the prognosis 

problem is the recursive Bayesian estimation technique, that is, a method to combine 

both the information from fault growth models and online sensors data coming from the 

key fault parameters observation. If a timely detection and isolation of the fault is done, 

it is possible to consider the sensor data available for a certain “time window” that 
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allows improvements in model parameter estimations for an enhancement of the 

prediction. At the end of the time window, no additional adjustments are allowed.  

In general, the probability density functions (PDFs) used in probabilistic methods are 

sufficient to forecast the quantities of interest in prognosis, since they can be extracted 

directly from observed statistical data. However, some probabilistic side aspects must 

be taken into account, such as manufacturing variability, mission history variations and 

life degradation as well as false alarm probability. A schematic representation is shown 

in Figure 7. 

 

 

Fig. 7 – Manufacturing variability and mission history effects. 

 

For what concerns the PDF of remaining useful life, a component must be relieved of 

service when a high probability of failure occurs. A comparison between the ideal and 

the real RUL PDF is reported in Figure 8. As depicted in (a), a just-in-time point (JITP) 

is defined in correspondence to a 95% probability that the component has not failed yet. 

Nevertheless, the RUL probability density function is a conditional PDF that changes 

through the time, that is, it must be recomputed at each time t according to the new data, 

which ensure that the component has not failed yet at that time. In (b) one starts with an 

a-priori PDF similar to the hazard function, i.e. a typical probability of failure curve. As 

time goes on, a recalculation of the a-posteriori RUL PDF is required, due to the fact 
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that the failure has not occurred yet, renormalizing the PDF at each time to obtain a 

unitary area.  

 

 

(a) 

 

 

(b) 

Fig. 8 – (a) The RUL pdf and the Just-In-Time removal-from-service point; (b) the RUL pdf as time-

varying conditional pdf. 

 

After a while, as clearly shown in Figure 9, the variance of the RUL PDF decrease and 

the PDF becomes narrower, because approaching to the failure point one becomes more 

confident about the time of failure and the predicted time turn out to be more accurate. 
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Fig. 9 – Time evolution of the RUL pdf. 

 

2.1.3 Performance Metrics 

After having introduced the fault diagnosis and prognosis characteristics, is now 

important to assess the technical and economic feasibility of CBM/PHM systems, which 

should meet certain general requirements. 

Further than this, for an effective fault diagnosis and prognosis process one must recur 

to feature selection and extraction metrics, before to select the optimal feature set. The 

goal is to differentiate, in the most clearly possible way, a certain fault condition from 

the others and from the healthy state of the system, with the maximum prediction 

accuracy. For this purpose, different actions are taken, such as the measurement of 

information, distance, dependence, etc. 

Performance requirements for fault diagnosis algorithms mainly handle the maximum 

allowable percentage of false positives and false negatives of the total present faults 

over the system expected life. A trade-off between the two metrics is clearly needed, 

hanging in favour of a severer false-negative requirement, since the false negatives 

present the major risks to the system health and may even lead to catastrophic failures. 

Another significant metric is the time-delay one, which provides the operator with an 

early alarm of an impending failure and supplies a wide-enough time window to perform 

the prognostic algorithm tasks.  
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In order to understand how well a fault is diagnosed, the Receiver Operating 

Characteristic (ROC) curve is chosen as an effective tool together with other types of 

metrics, such as the ground-truth severity level. This is a measure of the fault severity 

used as scaling factor for the ROC curve mapping, where confidence levels are also 

reported as a threshold metric. 

Of more interest to this work, are the prognosis performance metrics. As already said, 

the results coming from the prognosis algorithms are the predicted time of failure and 

the confidence intervals, both to be considered. Furthermore, these measurements 

evolve with time as more data are available and thus the measures are expected to 

improve over time. Two main performance metrics are considered here: accuracy, that 

measures the closeness of the predicted value to the actual one, and precision, which 

indicates how much the predictions are clustered together, involving the confidence 

level and the prediction distribution. 

 

 Accuracy  

If the actual and predicted failure times for the 𝑖th experiment are 𝑡𝑎𝑓(𝑖) and 𝑡𝑝𝑓(𝑖), 

respectively. Then, the accuracy A(tp) of the prognostic algorithm at a specific 

predicting time tp is: 

𝐴(𝑡𝑝) =
1

𝑁
∑𝑒

𝐷𝑖
𝐷0

𝑁

𝑖=1

 

where 𝐷𝑖 = |𝑡𝑝𝑓(𝑖) − 𝑡𝑎𝑓(𝑖)| is the distance between the actual and the predicted failure 

times, 𝐷0 is a normalizing constant based on the considered actual value and N is the 

number of the experiments.  

The relationship clearly shows that the accuracy is higher when the predicted and the 

actual values are the same, whereas it becomes lower as the predicted values deviates 

from the actual one. Moreover, the measurement sensitivity, that is, the probability of 

detection given a fault, is very low when the predicted and the actual values deviates 

too much. 

 



Prognostic and Health Management 
 

27 
 

 

Fig. 10 – Predicted and actual failure times and the associated accuracy. 

 

 Precision 

The narrowness of the interval in which the RUL lies is defined according to the 

predicted results variance, since the precision increases as the predicted values are 

clustered together around the actual value and decreases as the predicted values are 

dispersed over the output range. Moreover, also the width of the confidence interval is 

an important aspect to be considered, because narrower confidence intervals give higher 

precision. An example of this is presented in Figure 11 and Figure 12. 

Defining the prediction error as 𝐸𝑖 = 𝑡𝑝𝑓(𝑖) − 𝑡𝑎𝑓(𝑖), its mean and variance values will 

be computed, respectively,  from the following relationships: 

�̅� =
1

𝑁
∑𝐸𝑖

𝑁

𝑖=1

 

𝜎2 =
1

𝑁
∑(𝐸𝑖 − �̅�)2

𝑁

𝑖=1

 

and the precision 𝑃(𝑡𝑝) at a specific prediction time 𝑡𝑝is given by: 

𝑃(𝑡𝑝) = (
1

𝑁
∑𝑒

𝑅𝑖
𝑅0

𝑁

𝑖=1

) × 𝑒
−

𝜎2

𝜎0  

where 𝑅0 and 𝜎0 are the normalizing factors, 𝑅𝑖 the prediction confidence interval for 

each experiment. The value of the prediction ranges from 0 to 1 (the highest). 
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Fig. 11 – Prediction distribution related to precision: (a) higher precision output and (b) lower precision 

output. 

 

Fig. 12 – Precision dependency on prediction confidence bounds, R: (a) higher precision output and (b) 

lower precision output. 

 

 

2.2 Prediction confidence metrics 

During the prediction of fault occurrence, the inherent uncertainties must be considered 

and hence, uncertainty bounds are needed to be defined. In this regard, if at current time 

𝑡0 a fault has been detected and isolated, then a prognostic routine will forecast the mean 

time to failure 𝑇𝑓𝑚, the earliest time to failure 𝑇𝑓𝑒, and the least time to failure 𝑇𝑓𝑙. The 

time to failure is the PDF relative position along the 𝑡 axis with respect to the incidence 

of the actual failure. The hazard line specifies the fault dimension at which the stops its 

optimal working condition, i.e. when the failure occurs, as shown in Figure 13. These 

failure data are available to superimpose one or more distributions, which could be 

either possibilistic functions or probability density functions. 



Prognostic and Health Management 
 

29 
 

 

Fig. 13 – Possibility density function for confidence bounds. 

 

Furthermore, in Figure 14 is represented the distribution at 𝑇𝑓𝑚 that crosses the hazard 

line. Here the mission entails the availability of the set at hand for time 𝑇’. The integral 

under this distribution from 𝑇’ to infinity represents an estimation of the asset probability 

to not fail before the mission is completed. Then, specifying a certain confidence level 

a new time limit for fault occurrence 𝑇’’ is defined and so on, thus arriving at the length 

of time the asset will be available within the required confidence limit. This can be seen 

as a dynamic evolution of the estimation, that is, as more data become available in the 

passing of time, uploaded confidence level are derived and the uncertainty bounds will 

shrink as much as possible. 

 

 

(a) 
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(b) 

Fig. 14 – Time evolution of the distribution at the hazard line. 

 

 

2.3 Advantages of using PHM 

As already said in the Section 2.1, the PHM is a particular technique, which allows to 

identify the presence of a defect before a failure occurs (based on signals available 

within the system at hand), to classify the detected defect, and to forecast its future 

evolution estimating the Remaining Useful Life and the Time-to-Fault of the device. 

Therefore, in order to overcome the reliability problems of the modern EMAs, building 

a solid PHM system could be a possible solution to cope with these issues. An example 

of the PHM strategies is depicted in the Figure 15. Once an incipient failure or fault is 

detected with specified confidence, the prognostic algorithm is initiated to predict the 

fault’s time evolution. Thus, the final state of the system acts as the initial condition for 

prognosis [2].  

The advantages of a predictive maintenance rather than a close-to-breakdown one, are 

the growth of the system reliability and the reduction of serious damages, that could 

lead to failures spread in different parts of the system. Moreover, the PHM strategy 

optimizes the trade-off between costs and system efficiency, fully exploiting the useful 

life of the system and, consequently, scheduling the maintenance activities in order to 

guarantee the maximum system capacity. 
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In this Thesis, only the Fault Detection Identification for the diagnosis phase is explored. 

 

 

Fig. 15 – The Prognostic Framework1 

 

 

  

                                                 
1 A. De Martin, G. Jacazio, and G. Vachtsevanos, “Anomaly Detection and Prognosis for Primary Flight 

Control EMAs”, European Conference of The Prognostic and Health Management Society, 2016, p.7. 
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Chapter III  

Fault Tolerant Control  

In this Chapter, the Fault Tolerant Control (FTC) technique is seen in detail. This type 

of reconfigurable control methodology consists of a three-level architecture. The low-

level is investigated in this Work, in which the Model Predictive Control (MPC) routine 

is used for the reconfiguration in the case of fault detection. It is able to trade-off 

between the Remaining Useful Life (RUL) of the component and its performance. The 

intent of this study is to introduce the control methodology of Model Predictive Control, 

takings advantage of the fault diagnosis and prognosis routines developed at the 

component level. In particular, prognostics information is included in the MPC cost 

function to be minimized, in order to mitigate the faulty conditions of the system. This 

control design compared with existing production controllers could lower its impact on 

the system and, mostly, it is a very adaptable approach. 

 

 

3.1 Introduction to Reconfigurable Control 

As seen in Chapter II, the health diagnosis and prognosis of a machine consist of 

detection and localization of the fault and estimation of the remaining life of the faulty 

component. However, the health prognostics used so far usually provides short-term life 

prediction, as it is triggered by the detection of anomalous behaviours that indicate there 

is already noticeable damage in the component. The aim of the recent studies has been 

to integrate prognostics with control. In fact, one of the possible purposes to extend the 

component lifetime is to change control strategies. This idea focuses on long-term life 
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prediction and control, since the innovative controller embeds the remaining useful life 

information coming from prognostic routines as a controlled parameter and the 

controller applies novel adaptive control algorithms for guaranteeing the desired long-

term life [13]. 

Fault-Tolerant Control (FTC) is one of the new control technologies that is intended to 

manage incipient failure and preserve a stable system operation for all the emergency 

duration. These PHM-based control methods present an active reconfiguration of the 

control law considering the failure prognostic information. In general, FTC technologies 

have two main goals: Fault Detection and Isolation and Control Reconfiguration. The 

latter deals with the lowest of the three tasks levels of the FTC. The main elements of 

the Control Reconfiguration architecture are described in [2] and are presented in Figure 

16. 

 

 

Fig. 16 – State transition diagram for low-level reconfigurable control.2 

 

The control architecture is comprised of two controllers: the original production 

controller (§1030) and the reconfigured controller (§1040). Initially, the production 

                                                 
2 D. Brown, G. Georgoulas, B. Bole, H. Pei, M. Orchard, L. Tang, B. Saha, A. Saxena, K. Goebel, and 
G. Vachtsevanos. "Prognostics enhanced reconfigurable control of electro-mechanical actuators." In 
Annual conference of the prognostics and health management society, pp. 1-17. Rochester, NY: PHM 
Society, 2009. 
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controller is utilized while diagnostic routines continuously monitor the system for one, 

or more, fault modes (§1100). Once a fault is detected, the RUL requirements are 

checked to assess if the requirements can be accomplished without control 

reconfiguration (§1300); if not, the MPC routine is reiterated (§1400). It should be 

pointed out that, in the presence of an incipient failure, the system dynamics remain 

essentially the same. This assumption is valid when the incipient failure or fault is 

detected at an early stage of its beginning and evolution and thus, has not deeply affected 

the actuator dynamics. Under these conditions, the restructure of the system dynamics 

is not necessary in the control formulation. However, if the fault significantly influences 

the system dynamics, then a restructuring step (§1200) can precede the reconfigurable 

control routine so the current state of the system is reflected in the control formulation. 

 

 

3.2 Model Predictive Control 

The Model Predictive Control (MPC) designates a wide range of control methods, 

which use process models to obtain a control signal through the minimization of critical 

parameters. The main idea behind these methods is to use a model to predict the process 

output at future time instants, which constitute the so-called prediction horizon, and to 

compute a control sequence, which minimizes an objective function. Then, it 

implements the receding strategy at each instant in order to shift the horizon towards 

the future, applying the first sequence control signal calculated at each step. 

The good performance of the MPC technique highlights its capacity to achieve highly 

efficient control systems able to operate during long periods. The MPC shows to be a 

valid strategy for industrial control, although the initial lack of theoretical information 

at some critical points such as stability and robustness.  

Some of the advantages of the MPC with respect to other methods are, for example, its 

relatively easy tuning, even with only a limited knowledge of control, its 

implementation in a great variety of processes, the introduction of feed-forward control 

to compensate the measurable disturbances, etc. 
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However, the MPC strategy has also its drawbacks, such as the complexity of the control 

law, although it is easy to implement, the need for an appropriate model of the process 

to be available, the discrepancies existing between the real process and the model used  

that could affect the algorithm designed on a prior knowledge of the model itself, etc. 

 

 

3.3 MPC Strategy 

The basic concept behind all the MPC controllers is described accurately in [3] and is 

characterized by the following steps: 

i. The future outputs for a given horizon N, called the prediction horizon, are 

predicted at each instant t using the process model. These predicted outputs 

𝑦(𝑡 + 𝑘 | 𝑡) for 𝑘 = 1. . . 𝑁, i.e. the values of the variable y at the instant t+k 

calculated at the instant t, depend on the known values up to instant t (past inputs 

and outputs) and on the future control signals 𝑢(𝑡 + 𝑘 | 𝑡) for 𝑘 = 0. . . 𝑁 − 1, 

which are the one to be sent to the system and to be calculated. 

 

ii. The set of the future control signals is calculated by optimizing a determined 

criterion in order to keep the process as close as possible to the reference trajectory 

𝑤(𝑡 + 𝑘), which can be the set point itself or a close approximation of it. In 

general, this criterion takes the form of a quadratic function of the error between 

the predicted output signal and the predicted reference trajectory. The control 

effort is usually included in the objective function. If the criterion is quadratic, the 

model is linear and there are no constraints, an explicit solution can be achieved; 

otherwise, an iterative optimization method is adopted. 

 

iii. The control signal 𝑢(𝑡 | 𝑡) is sent to the process whereas the next control signals 

calculated are rejected, since at the next sampling instant 𝑦(𝑡 + 1) is already 

known and step 1 is repeated with this new value and all the sequences are brought 

up to date. Therefore, the 𝑢(𝑡 + 1 | 𝑡 + 1) signal, which could be different from 



Fault Tolerant Control 
 
 

36 
 

𝑢(𝑡 + 1| 𝑡) due to the new information available, is calculated following the 

receding horizon technique. 

 

Therefore, the MPC controller is actually a discrete-time controller, which acts at 

regularly spaced, discrete time instants. The sampling instants are the times at which the 

controller acts, whereas the interval separating successive sampling instants is the 

sampling period Δt, also called the control interval. 

As shown in Figure 17, the state of a certain SISO MPC system that has been running 

for many sampling instants, where integer k represents the current instant. The latest 

measured output 𝑦𝑘 and previous measurements 𝑦𝑘−1, 𝑦𝑘−2, … , 𝑦𝑘−𝑁 are known and are 

represented by the filled circles in (a), while the controller previous moves 

𝑢𝑘−1, 𝑢𝑘−2, … , 𝑢𝑘−𝑁 are represented in the same way in (b). Notice that, if there is a 

measured disturbance, its current and past values would be known. A zero-order hold 

receives each control move from the controller and holds it until the next sampling 

instant, causing the stepwise variations.  

Then, the optimal moves are portrayed as the four open circles in (b), and the controller 

predicted output values are the open circles in (a). Notice that both are within their 

constraints, that are, 𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘+𝑗 ≤ 𝑢𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 ≤ 𝑦𝑘+𝑖 ≤ 𝑦𝑚𝑎𝑥. 
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Fig. 17 - MPC controller state at the k-th sampling instant. 

 

Now, in order to implement the current strategy, the basic structure is shown in the 

Figure 18, where is represented the model used to predict the future plant outputs, on 

the basis of past and current values and of the proposed optimal future control actions. 

The latter are calculated by the optimizer bearing in mind the cost function (where the 

future tracking error is considered) and the constraints. Thus, the choice of the process 

model is very important, since it must be able of taking out the process dynamic as well 

as precisely predicting the future outputs, in order to be easily implemented or 

understood.  
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Fig. 18 – Model Predictive Controller structure 

 

Amongst the many types of models used for different formulations, the Transfer 

Function model is maybe the most used one in the control design method, since its 

representation requires only a few parameters and is valid for all kind of processes, 

whereas the State-Space model is mainly used to describe multivariate processes. 

The control actions are provided by the optimizer, which constitutes another important 

part of the MPC strategy. If the cost function is quadratic, its minimum will be in the 

form of an explicit linear function of past inputs and outputs and the future reference 

trajectory. Otherwise, in the presence of inequality constraints the solution can be 

obtained through more computationally complex algorithms. The size of the 

optimization problem is due to the number of variables and to the prediction horizons 

used and, in general, it is relatively modest to be solved. However, the amount of time 

needed for solving the constrained and robust cases can be much higher than that needed 

for the unconstrained cases. Thus, the process bandwidth to which constrained MPC can 

be applied is significantly reduced. 
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3.3.1 MPC Controller Model 

The model that could be adopted for the electromechanical actuator under consideration 

and shown in detail in the next chapter, is a high-fidelity 5th order state-space model 

[2], which can be expressed by the linear state-space system (𝑨𝑚, 𝑩𝑚, 𝑪𝑚). It is 

employed to relate the control inputs and measured outputs of the actuator to the internal 

system states of the brushless AC (BLAC) motor, 

{
�̇̃�𝑚 = 𝑨𝑚�̃�𝑚 + 𝑩𝑚𝒖𝑚

𝑦𝑚 = 𝑪𝑚�̃�𝑚
 

where �̃�𝑚0 = �̃�𝑚(0). The internal state of the system is defined by �̃�𝑚 =

[𝑖̃𝑚 �̃�𝑚 �̃�𝑚 �̃�𝑙  �̃�𝑙]
𝑇 ∈ ℝ5, that is constituted, respectively, by motor current, motor 

position, motor speed, load position and load speed. The control input is defined by 

𝒖𝑚 = [𝜃𝑟𝑒𝑓 𝑇𝑚 𝑇𝑙𝑜𝑎𝑑]𝑇 ∈ ℝ2, i.e. by the reference position, the mechanical friction 

torque and the external load disturbance; finally, the control output is defined by 𝒚𝑚 =

[𝜃𝑙  𝑖𝑚]𝑇 ∈ ℝ2, i.e. by the load position and the motor current. 

The transition matrix 𝑨𝑚 ∈ ℝ5×5 is defined accordingly the following representation 

 

𝑨 =

[
 
 
 
 
 
 
 
 
−𝑅

𝐿

−𝑘𝑝1𝑘𝑝2

𝐿

−𝑘𝑒−𝑘𝑝1
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  0
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2

𝐽𝑙

−𝑏𝑙

𝐽𝑙 ]
 
 
 
 
 
 
 
 

 

where 𝑘𝑐𝑠 is the coupling stiffness, 𝑘𝑙 is the load stiffness, 𝑘𝑒 and 𝑘𝑡 are respectively the 

back-emf and the torque coefficients, 𝑘𝑝1 and 𝑘𝑝2 are the controller gains, 𝐽𝑙and 𝐽𝑚are 

the load and motor inertias, 𝐿 is the motor inductance, 𝑅 is the motor resistance, 𝑁𝑐𝑙 and 

𝑁𝑐𝑚 are respectively the load and the motor coupling coefficient. 

It must be noticed that, in this case, in order to consider the type of error investigated in 

this study (i.e. static rotor eccentricity), the back-emf coefficient 𝑘𝑒 must be modified. 

In fact, it must consider also the airgap variation and, therefore, 𝑘𝑒 will be taken as an 

airgap variable and not as a constant, as shown later. 
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The control and observation matrices 𝐵𝑚 ∈ ℝ5×3 and 𝐶𝑚 ∈ ℝ2×5 are defined, 

respectively as: 

𝑩𝑚 =

[
 
 
 
 
𝑘𝑝1𝑘𝑝2𝑁𝑐𝑚

𝐿𝑁𝑐𝑙
0 0 0 0

0 0 0 0
−1

𝐽𝑙 ]
 
 
 
 
𝑇

 

𝑪𝑚 = [
0 0 0 1 0

1 0 0 0 0
] 

 

Considering the described model for the EMA, the RUL can be increased by lowering 

the applied motor current 𝑖𝑚. However, since the motor current cannot be directly suited, 

it can be indirectly controlled by acting on the reference input 𝜃𝑟𝑒𝑓, that is, the reference 

position of the electric motor. Therefore, the aim of the MPC is to compute the optimal 

�̃�𝑟𝑒𝑓 for a given RUL and performance requirements. 

 

3.3.2 MPC Implementation 

The purpose of the control reconfiguration is to change the operating conditions (mainly 

through manipulated variables (MVs) to avoid the static eccentricity fault dimension 

reaching the given hazard zone before the time of mission completion t = tmission. The 

reconfiguration of the control mechanism will guarantee the mission completion within 

the given time, though may cause some performance degradation.  

In order to implement the new control algorithm in the simulation ambient, one can use 

the MPC control Toolbox of The MathWorks, Inc. [4]. 

The MPC method makes use of a target system, namely the plant, by combining 

prediction and control strategy. An approximate linear plant model provides the 

prediction. The control strategy compares predicted plant states to a set of objectives, 

and then adjusts available actuators to achieve the objectives fulfilling the plant 

constraints, such as actuator physical limits, boundaries of safe operation and lower 
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limits for product quality. In particular, in this study the plant is represented by the 

physical EMA system, that will be presented in the next chapter. 

Primarily, a SISO (Single Input-Single Output) plant shown in Figure 19 is considered.  

 

 

Fig. 19 – Block diagram of the MPC with plant and signals 

 

The main goal is to hold a single output, that is, the controlled variable �̅�, at a reference 

value (or set point) r, by adjusting a single manipulated variable (or actuator) u.  The 

block labelled MPC represents an MPC Toolbox feedback controller designed to 

achieve the control objective.  

The SISO plant may have multiple inputs beyond the manipulated variable u, since there 

may also be the measured disturbance v and the unmeasured disturbance d. The 

unmeasured disturbances signal is always present:  it is an independent input, not 

affected by the controller or the plant and represents all the unknown, unpredictable 

events that upset plant operation or the unmodeled dynamics. The only indication of the 

occurrence of these events is their effect on the measured output y, which is fed back to 

the controller, in order to compensate these disturbances. On the contrary, the measured 

disturbance v is another independent input that is directly received by the controller, 

allowing an immediate compensation for v’s impact rather than waiting until the effect 

appears in the y measurement thanks to a feedforward control. The 

feedforward/feedback actions include the controller regulator mode, whereas a servo 

mode can be also provided, adjusting u in order to track a time varying set point. The 

tracking accuracy depends on the plant characteristics, its constraints, the accuracy of 
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the model and whether future set point variations can be anticipated or not, precisely 

using the feedforward compensation. 

Now, focusing on the case studied, the functionality of the MPC routine for RUL 

adaptation includes prognosis-based constraints on the internal states 𝑥𝑚𝑖𝑛
𝑅𝑈𝐿and 𝑥𝑚𝑎𝑥

𝑅𝑈𝐿  as 

“soft” constraints. When the latter are initialized, the RUL (i.e. the results coming from 

the PHM routines) of the failing motor is evaluated and the RUL requirements are 

checked to assess if they are compliant to the reference values or not. If not, the soft 

constraints are updated to ease system performance requirements in the MPC. Then, the 

MPC computes the next control sequence. After control sequence application, the 

updated performances are evaluated and compared to the required ones. If the 

performance requirements are satisfied, the control sequence is reiterated. Otherwise, if 

the requirements are not satisfied or the soft boundaries can no longer be adapted, a 

control redistribution algorithm is activated [2]. 
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Chapter IV  

Test Bench Components 

The novel methodology of the fault-tolerant control previously presented is applied for 

the design of critical subsystems, such as the Electromechanical Actuators (EMAs), 

taking advantage of online, real-time estimates of the RUL or static eccentricity fault of 

the failing component. It reconfigures the control action by trading-off system 

performance with the new control activity. 

This Chapter examines the main components mounted on the test bench for flight 

control, whose model will be consider during the operational part. The basic 

characteristics of the EMA are presented thereafter, together with the description of the 

Simulink model used for simulation activities.  

 

 

4.1 Electromechanical Actuators 

The development of reliable electrical actuators for space and aeronautical applications 

has been recently implemented to eliminate hydraulic systems from aircraft and 

spacecraft, to improve safety, efficiency, reliability, and maintainability. Moreover, the 

increase in fuel costs, the aim to minimize the carbon footprint due to a greener 

consciousness and the emergence of new competitors have recently driven the aerospace 

industry to take steps towards creating environmental-friendly, safer and cheaper 

solutions. Another reason that has contributed to the progress of conventional 

aeronautical and space applications is the necessity to reduce the energy consumption 
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of hydraulic, mechanical, pneumatic and electrical counterparts of the actuators, referred 

as secondary power sources, which is approximately 5% of the total fuel burnt during 

the flight [5]. Therefore, in the past few decades, more-electric technologies take hold, 

especially in terms of secondary power sources, where the presence of traditional 

hydraulic, pneumatic and mechanical systems is being progressively reduced and 

replaced by electrical counterparts.  

One of the most promising solutions for flight control actuation consists in the 

substitution of the heavy and not very versatile hydraulic systems with electrically 

powered actuators, namely the electromechanical actuators (EMAs). For examples, 

commercial aircraft such as Boeing 787 and Airbus A380 adopt EMAs for, respectively, 

landing gear brakes, spoiler surfaces and for actuating the slats. In these type of 

actuators, the electric power feeds an electric drive, which is mechanically coupled to a 

reduction drivetrain (e.g. gearbox and/or ball screw), placed between the electric drive 

and the flight control surface. Thus, mechanical power is locally generated for driving 

the flight control surface. Among all the electrical machines introduced in aerospace 

applications, permanent magnet synchronous machines (PMSMs) are a common choice 

for EMAs since they are characterized by high-power density and excellent efficiency. 

However, even if EMAs represent a key technology, which is gaining interest due to its 

higher efficiency and further weight reduction, they are not yet sufficiently mature to 

fully replace conventional hydraulic servo-actuators’ safety-critical functions, such as 

the aforementioned flight control. As reported in [6], several studies still need to 

overcome weight and size constraints for integration, voltage spikes and current 

transients affecting the stability of electrical networks, heat rejection for actuator 

thermal balance, reduced reflected inertia for dynamic performance, increased service 

life and fault tolerance or resistance for servo-actuators safety. 

In the next paragraphs, a description of the EMA used in this study is provided, together 

with a usual fault affecting it, which is the bearing fault due to the presence of static 

eccentricity. 
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4.2 Components description 

The test bench considered from now on is located in the DIMEAS laboratory of 

Politecnico of Turin and it has been studied started from [7]. Although it has been 

thought for flight control, here it is used for more general purposes applicable to a wide 

range of industrial aims.  In Figure 20 is illustrated the typical architecture of the 

considered electromechanical actuator.  

 

 

Fig. 20 – Typical architecture of an electromechanical actuator for flight controls.3 

 

The actuator is a linear electromechanical cylinder (LEMC), whose electric part consists 

of a Lenze Permanent Magnets Synchronous Motor (PMSM). As one can see from the 

figure, the EMA architecture involves an Actuator Control Electronics (ACE) module, 

which compares the position command to the actual position measured by sensors, to 

compute a current command for the Power Electronics module. Then, this module 

converts the DC or AC electrical power supply into the required three-phase power for 

the PMSM, with the required frequency and amplitude depending on the command and 

                                                 
3 P.C. Berri, M. D.L. Dalla Vedova, P. Maggiore, F. Viglione, “A simplified monitoring model for PMSM 

Servo-actuator prognostics”, MATEC Web of Conferences 304, 04013, EASN, 2019. 
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rotor angular position. A mechanical transmission connects the motor to the controlled 

component on which an external load is applied. The transmission here consists in a 

planetary reduction gearbox and a device for converting rotary motion into linear 

motion. For this purpose, SKF rollers-screw are the main choice for their higher 

efficiency, lower backlash and higher specific load. A resolver on the motor shaft is 

needed for actuating the commutation sequence, while Rotary Variable Differential 

Transducers (RVDTs) or Linear Variable Differential Transducers (LVDTs) on the 

transmission output provide absolute position information for the control loop. Current 

sensors are used for closing the inner current loop and provide torque control, while the 

motor speed can be measured by a dedicated sensor or computed as the derivative of 

motor position. 

The main data for the LEMC are taken from [7] and reported in Tab.1.  

 
Tab.1 –LEMC 2105 general parameters. 

Data Value UoM 

Type of screw Roller screw / 

Crew diameter 21 mm 

Screw pitch 5 mm 

Max axial force 40x103 N 

Max input torque 41.7 Nm 

Max linear speed 500 mm/s 

Max angular speed 6000 rpm 

Max acceleration 6 m/s2 

Actuator stroke 100 mm 

Screw friction 1.45x10-4 Kgm2 
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4.2.1 EMA Configuration and Working Principle 

The servomotor evaluated in this Thesis is an AC sinusoidal brushless (BLAC) electric 

motor, using a resolver for motor commutation and supplied through its own EPU. It is 

interconnected with a mechanical transmission composed by a satellite gearbox and a 

roller screw. The motor nominal data are shown in Tab.2. 

 
Tab. 2 – Electric Motor rated data. 

Data Value UoM 

Rated speed 𝑛𝑁 1950 rpm 

Rated torque 𝑀𝑁 5.5 Nm 

Max torque 𝑀𝑚𝑎𝑥 18 Nm 

Rated power 𝑃𝑁 1.1 kW 

Rated current 𝐼𝑁 2.6 A 

Max current 𝐼𝑚𝑎𝑥 10 A 

Rated voltage V𝑁 𝐴𝐶 345 V 

Rated frequency 𝑓𝑁 130 Hz 

Motor efficiency 𝜂% 79 % 

Motor inertia 𝐼𝑀 4 Kgcm2 

Voltage constant 𝑘𝑒 1.31 V/(rad/s) 

Stator resistance 𝑅𝑠 5.8725 Ω 

Rated inductance 𝐿𝑁 52.2 mH 

Torque constant 𝑘t 2.34 Nm/A 

Max speed 𝑛𝑚𝑎𝑥 6000 rpm 

 

The working principle of an electrical motor is based on the attraction between the 

magnetic fields obtained by a three-phase current alimentation of the three windings of 

the stator, symmetrically distributed at 120°. The rotor is composed by permanent 

magnets (PM) generating a flux Br that will be dragged synchronously by the stator flux 

Bs obtaining a magnetic torque represented by the Eq. (1): 

𝑇𝑚 = 𝐵𝑟 𝐵𝑠 sin (𝜃)   (1) 
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where 𝜃 is the load angle between the stator and rotor fields. The maximum value of 

𝑇𝑚 is obtained for 𝜃 = 90°.  

The brushless motor presents a commutation, that is, the changing in the current inside 

the motor phases, made by an electric driver, instead of a brush and collector system as 

in the classical electrical motor. The synchronous AC motor is operationally similar to 

the brushless DC one, but they present some differences due to the back electromotive 

force (EMF) waveform and due to the torque ripple. The DC motor presents a 

trapezoidal back EMF, owed to a linear distribution of the conductors; instead, the AC 

motor waveform is sinusoidal, due to a sinusoidal distribution with more layers and a 

smaller coils span. Moreover, the AC motor conductors distribution guarantees a more 

fluid and noiseless commutation with a consequent reduction of the torque ripples.  

Another difference between the two motors relies in the electronic control: in the DC 

brushless motor, a Hall sensor and a tachometric dynamo are used for rotor position and 

speed control, respectively, while the sinusoidal AC motor adopts a resolver for both 

rotor position and speed control. 

A more specific description of the current commutation is described in the Figure 21. 
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Fig. 21 – Ac motor. Three-phase power supply for a two-pole synchronous motor at 0°, 30°, 60°, 90°.4 

                                                 
4 EM Weg Group, “The ABC’s of Synchronous Motors”, 09 December 2019, 

https://static.weg.net/medias/downloadcenter/hfe/hf4/WEG-the-abcs-of-synchronous-motors-

usaem200syn42-brochure-english.pdf . 

https://static.weg.net/medias/downloadcenter/hfe/hf4/WEG-the-abcs-of-synchronous-motors-usaem200syn42-brochure-english.pdf
https://static.weg.net/medias/downloadcenter/hfe/hf4/WEG-the-abcs-of-synchronous-motors-usaem200syn42-brochure-english.pdf
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The AC motor mechanical torque 𝑇𝑚 is expressed by the equation: 

𝑇𝑚 =
𝐸 ∙ 𝐼𝑚

𝜔
 

where E is the back EMF and 𝐼𝑚 the armature current. In order to obtain a constant 𝑇𝑚 

and to avoid torque ripples, both E and 𝐼𝑚 must be sinusoidal. Besides, the dependence 

of the torque on the currents 𝐼𝑚 constitutes a limit for 𝑇𝑚 initial control. A solution to 

this problem could be returning to the DC motor case, and so decomposing the current 

into its components, which generate the flux and the torque, respectively. Therefore, the 

Field Oriented Control (FOC) is used for this purpose. It relies on an algorithm that 

allows controlling the current in the three phases of the motor and, consequently, the 

vector components of the stator magnetic field.  

 

 

Fig. 22 –Field Oriented Control coordinates transformation.5 

 

The transformation of the system currents with respect to three different reference 

systems is shown in Figure 22. Here a) is the three-phase AC system a,b,c fixed on the 

stator, b) represents the equivalent two-phase AC system 𝛼, 𝛽 fixed on the rotor, 

whereas c) is the equivalent two-phase DC system d-q rotating at the same speed of the. 

                                                 
5 M. Sundaram, “Implementing field oriented control of a brushless DC motor”, 01 April 2012, 
www.eetimes.com/document.asp?doc_id=1279321. 

http://www.eetimes.com/document.asp?doc_id=1279321
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The FOC aims to transform the a,b,c coordinates into d-q coordinates, passing through 

the 𝛼, 𝛽 coordinates, and viceversa, in order to express the magnetomotive force and the 

magnetic field of the rotor with respect to two orthogonal components, that are 𝑑 and 𝑞, 

where 𝑑 is the direct axis aligned with the flux and 𝑞 is the quadrature axis. The 𝑑 

component gives information about the rotor position 𝜃, whereas 𝑞 indicates the 

reference torque for the motor. These components are computed on-line by means of 

two transducers, one for the absorbed phase currents and the other for the computation 

of the exacted position of the rotor. 

Referring the machine model to the rotating axes system d-q allows the equivalence 

with the DC motor with separate excitation. Therefore, the excitation flux is produced 

by the permanent magnets and the armature current is equivalent to the stator current on 

𝑞 axis. 

The block model of the motor in d-q axes is similar to the DC motor one. It is composed 

by two 𝑅, 𝐿 coupled circuits, which correspond to two current control loops where the 

two current references will be 𝐼𝑑𝑠
∗ = 0 and  𝐼𝑞𝑠

∗  given by an external speed control loop. 

Since the quantities referred to the d-q axes are direct currents, two PI regulators are 

uses for current regulation purpose, as shown in Figure 23. The current regulators give 

as outputs the direct and “in quadrature” voltages through the direct and inverse Clark’s 

transformation, whereas the FOC of the motor is handled through the direct and inverse 

Park’s transformation. 

Under nominal condition, the three motor phase voltages can be computed from the 

following equations: 

[

𝑣𝑎

𝑣𝑏

𝑣𝑐

] −
𝑑

𝑑𝑡
[

𝜆𝑎

𝜆𝑏

𝜆𝑐

] = [

𝑅𝑎 0 0
0 𝑅𝑏 0
0 0 𝑅𝑐

] [
𝑖𝑎
𝑖𝑏
𝑖𝑐

] +
𝑑

𝑑𝑡
([

𝐿𝑎𝑎 𝐿𝑎𝑏 𝐿𝑎𝑐

𝐿𝑏𝑎 𝐿𝑏𝑏 𝐿𝑏𝑐

𝐿𝑐𝑎 𝐿𝑐𝑏 𝐿𝑐𝑐

] [
𝑖𝑎
𝑖𝑏
𝑖𝑐

]) 

where the three phase voltages 𝑣𝑎,𝑏,𝑐 are function of the vector of the digital control 

signal for each of the three commutation poles, i.e. 𝐪 = [𝑞1 𝑞2 𝑞3]𝑇, 𝑅𝑖 and 𝐿𝑖 are 

the electric resistance and inductance for the i-th phase and 𝜆𝑖 the concatenated flux. 

Once obtained the sinusoidal voltages for the three phases, three currents at 120° are 

generated on the three sinusoidal phases, as shown in the following equations: 
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{

𝑖𝑎 = 𝑖 𝑠𝑖𝑛 (𝛼 + 90°)
𝑖𝑏 = 𝑖 𝑠𝑖𝑛 (𝛼 + 90° + 120°)
𝑖𝑐 = 𝑖 𝑠𝑖𝑛 (𝛼 + 90° + 240°)

 

These currents will be able to create a magnetic field at 90° with respect to the rotor, 

which intensity is proportional to the torque to be generated. Therefore, one can say that 

rotor position gave by the resolver determines the rotation of the rotating magnetic field, 

modulating the current in order to obtain a rotation of the magnetic field at a frequency 

that corresponds to the desired speed of the motor. 

 

 

Fig. 23 – Field Oriented Control block diagram. 

 

The motor electric circuit is connected to the inverter, which feeds the motor with the 

desired speed through a modulating signal for each of the six transistors (Tr) connected 

by two H-bridges, using the Pulse-Width Modulation (PWM) technique. This technique 

allows to generate an ON/OFF digital signal through the comparison of two signals, 

namely the carrier and the modulate signals, generated by the opening/closing of the 

transistors. Thus, the PWM technique permits to obtain an AC varying signal through a 

DC control logic. 

Then, the resolver is a rotary transformer consisting of a stator and a rotor attached to 

the AC motor shaft. The primary winding of the stator is connected to a high frequency 
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sinusoidal signal, which is transmitted to rotor winding (called Reference winding). The 

pulsating magnetic field of the reference winding induces an alternating voltage in the 

measuring windings of the stator, namely sine and cosine windings. The relative 

amplitudes of the signal on the stator windings, which are orthogonal, completely 

describes the angular position of the rotor with respect to the stator (Fig. 24).  

 

 

Fig. 24 – Resolver working principle. 6 

 

                                                 
6 Encoders and Resolvers: www.automationprimer.com/2012/07/15/encoders-and-resolvers. 

http://www.automationprimer.com/2012/07/15/encoders-and-resolvers
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4.2.2 Mechanical Transmission 

The electric motor is connected to a first pulley, which transmits the motion to a toothed 

belt transmission with a unitary transmission rate. Then, a second pulley is coupled to 

the nut of the linear actuator, in order to provide the torque to the screw-nut drive system. 

The satellite roller-screw SKF actuator transforms the rotary motion coming from the 

belt transmission into linear motion. This transmission is composed by four parts:  the 

nut internally threated in a complementary way with respect to the screw, which is the 

first part of the transmission coupled with the belt transmission; the satellite rollers with 

a rounded thread; the cage, which allows keeping the relative position between the 

satellite rollers. An anti-rotation device is coupled with the rod end in order to guarantee 

the proper transmission of the load between the mechanism and the rod. Thus, it allows 

the actual screw pitch at each nut rotation and, consequently, the correct linear position. 

The target data of the satellite roller-screw SKF actuator are shown in Tab. 3. 

 

Tab. 3 – Rated data of the satellite roller screw SKF actuator. 

Data Value UoM 

Number of threads 4 - 

Screw diameter 21 mm 

Screw pitch 5 mm 

Helix angle 4.33 ° 

Rollers number 9 - 

Dynamic load 50.55 kN 

Static load 81.97 kN 

Axial gap 0.02 mm 

Nut mass 0.4 kg 

Screw mass/meter 2.7 kg/m 

Nut inertia 141.2 Kgmm2 

Rollers inertia 6.5 Kgmm2 
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Chapter V  

Vibration Signals as Function of 

Static Airgap Eccentricity in EM 

In general, diagnosis and monitoring of the system conditions require the collection and 

the analysis of specific data, containing precise information about incipient faults, 

malfunctions, etc. 

Considering the case of electric motors, two of the main aspects that can be considered 

to detect the possible fault root cause are electrical causes (e.g. currents and voltages 

asymmetry) and mechanical causes (e.g. vibrations). 

Vibrations detection is widely used to index faults in rotating machines. The vibration 

phenomenon occurs when the equilibrium conditions of the system are perturbed by 

imposing, for example, unbalanced initial conditions. 

Supposing that the motor shaft is rigid, that is, a shaft whose first critical speed is higher 

than the motor operating speed, the deformability of the rotor can be neglected and 

vibrations can be measured near bearings supports. Here, the main dynamic loads and 

forces are applied, thus the vibrations can indicate the presence of forces generated by 

rotor unbalanced motion due to non-uniform airgap length (static or dynamic 

eccentricity). However, this also involves electrical anomalies related to an asymmetric 

magnetic flux distribution in the airgap. It must be said that, a simple analysis of the 

global vibration of the system is not enough for diagnostic purposes. Therefore, the 

frequency analysis techniques, such as the Fast Fourier Transform FFT analysis, are 

used to precisely highlight the parts of the signal spectrum, which are indicative of a 

specific malfunction [8]. 
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5.1 Eccentricity in electric motors 

As already mentioned in the previous chapter, several mechanical stresses bear upon 

key components of the electric motor. For example, an airgap eccentricity caused by the 

shaft misalignment or the bearings wear, causes an increase of these stresses during the 

motor operating cycle and can lead to stator vibrations. 

First, the symmetric conditions between rotor and stator, that is, when their rotation axes 

rotate with precise concentricity, are analysed here. 

The radial component of the Maxwell tensor, which represents the force per surface unit 

that enclose the airgap between two electromagnetic blocks, can be expressed in terms 

of magnetic induction 𝐵(𝑇): 

𝜎𝑛 =
𝐹𝑛

𝑆
=

𝐵2

2𝜇0
 

where 𝜇0 is the vacuum magnetic permeability [𝐻/𝑚].  

In electric motors, these forces are orthogonal and symmetric with respect to rotor and 

stator surfaces. Therefore, when the rotor and the stator are concentric, the resultant of 

these forces is equal to zero. 

Moreover, the magnetic flux in the airgap 𝛷 depends on the interaction between rotor 

and stator magnetomotive forces ℳ and it is proportional to the magnetomotive force 

itself: 

𝛷 =
ℳ

ℛ
 

where ℛ is the reluctance of the magnetic circuit crossed by the flux. 

Since the airgap reluctance is higher than the iron core one, it is possible in first 

approximation to neglect the latter for the magnetomotive force computation: 

ℛ ≅ ℛ𝑎𝑖𝑟𝑔𝑎𝑝 =
2𝛿

𝜇0𝑆
 

Therefore: 
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ℳ = 𝛷 ∙ ℛ = 𝐵 ∙ 𝑆 ∙
2𝛿

𝜇0𝑆
=

𝐵 ∙ 2𝛿

𝜇0
 

where S is a normal surface crossed by the flux [m2] and 𝛿 is the airgap length [m].  

The first harmonic component of the magnetomotive force has a sinusoidal distribution 

along the airgap: its period depends on the number of pole pair 𝑝𝑝 and its amplitude is 

a sinusoidal which depends on the power frequency 𝑓: 

ℳ1(𝛽, 𝑡) = ℳ̅1cos (𝜔𝑡 − 𝑝𝑝𝛽) 

where 𝛽 =
𝑧

𝑅
 and 𝜔 = 2𝜋𝑓. 

Consequently, also the amplitude of the magnetic field first harmonic component is a 

sinusoidal: 

𝐵(𝛽, 𝑡) =
𝜇0ℳ̅1

2𝛿
cos(𝜔𝑡 − 𝑝𝑝𝛽) = �̅� cos(𝜔𝑡 − 𝑝𝑝𝛽) 

and, knowing that the radial component of the Maxwell tensor depends on the square of 

B, the following expression is obtained for the magnetic field: 

𝐵2(𝛽, 𝑡) =
1

2
�̅�2 cos(2𝜔𝑡 − 2𝑝𝑝𝛽) +

1

2
�̅�2 

Hence, the radial force due to the Maxwell tensor has a sinusoidal component varying 

in time with a frequency that is twice the power frequency f. 

Then, integrating the Maxwell strain along the airgap when the rotor and the stator are 

concentric, the resultant is equal to zero in all directions: 

𝐹𝑥 = ∫ (
𝐵2(𝛽, 𝑡)

2𝜇0
𝑐𝑜𝑠𝛽)

2𝜋

0

𝑑𝛽 = 0 

𝐹𝑦 = ∫ (
𝐵2(𝛽, 𝑡)

2𝜇0
𝑠𝑖𝑛𝛽)

2𝜋

0

𝑑𝛽 = 0 

A different thing happens when the rotor and the stator are not concentric: the airgap 

length is no longer equal, i.e. varies with the rotor angle, and thus the Maxwell strain 

returns non-zero resultants.  
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This phenomenon is called eccentricity and it is a common fault that can occur even 

before the electric machine installation, like during the manufacturing process or 

shipping. Moreover, inappropriate assembling, bent rotor shafts, coupling misalignment 

and unbalanced load can cause rotor eccentricity. In fact, the latter may lead to problems 

such as unbalanced magnetic pull, vibration, noise and torque pulsations.  

Airgap eccentricity can appear in the form of static or dynamic eccentricity. In the case 

of static eccentricity, a rotor rotates over its own axis; hence, the minimum air-gap 

position is fixed in space and time. Besides, integrating the radial component of 

Maxwell tensor along the airgap length, a non-zero resultant is obtained in the minimum 

airgap length direction. The static eccentricity also produces an additional radial 

component, which is a sinusoid with twice the power frequency. 

𝛿(𝛽) = 𝛿̅ + 𝐸 ∙ cos (𝛽) 

where 𝛿̅ is the airgap between stator and rotor without misalignment. The second term 

represents the variation of the air gap with 𝛽 (i.e. a generic position taken with respect 

to stator reference system) related to the misalignment 𝐸, as shown in the Figure 25. 

Dynamic eccentricity occurs when the rotor centre does not coincide with the centre of 

rotation, and so the minimum airgap revolves with the rotor. This means that dynamic 

eccentricity is a function of space and time. Furthermore, it produces a mechanical 

unbalance in the form of a centrifugal force rotating at rotor speed, which leads to 

vibration at the same frequency [9]. The dynamic eccentricity also produces an 

additional magnetic force, rotating with rotor speed Ω, to the one produced by the 

mechanical unbalance.  

𝛿(𝛽, 𝑡) = 𝛿̅ + 𝐸 ∙ cos (𝛽 − Ω𝑡)) 

where 𝛿̅ is the airgap between stator and rotor (without misalignment). In this case, the 

second term represents the variation of the air gap with 𝛽 and 𝑡 related to the 

misalignment 𝐸. Therefore, stator or rotor magnetic field unbalances can cause non-

sinusoidal induction distribution B and effects on vibrations. 
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Fig. 25 – Rotor eccentricity representation 

 

It must be noted that static eccentricity variations result in the introduction of vibration 

and dynamic eccentricity components in the motor current. This indicates that dynamic 

eccentricity is a by-product of static eccentricity, as it will be shown later. Therefore, in 

most cases, static and dynamic eccentricities simultaneously occur and therefore mixed 

eccentricity must be considered. In that case, the stator centre, the rotor one and the 

rotation axis are displaced with respect to each other. In Figure 26 the three types of 

eccentricity are represented. 

 

 

Fig. 26 - Representation of static (a), dynamic (b) and mixed (c) eccentricities, for revolving rotor 

(black arrow).7 

                                                 
7 E.Elbouchikhia, V.Choqueuseb, M.Benbouzid,."Induction machine bearing faults detection based on a 
multi-dimensional MUSIC algorithm and maximum likelihood estimation, ISA Transaction, Volume 63, 
July 2016, Pages 413-424. 
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5.2 Detection of rotor eccentricity in EM 

Rotor movements in electric induction motors are the result of electromagnetic 

interaction between the airgap fluxes produced by the three-phase stator windings and 

induced rotor currents. In fact, in the case of static eccentricity fault, for example, the 

motor that has more than one polar couple generates a periodically variable magnetic 

flux, since the air gap varies during its 360° degrees turn. Radial magnetic forces are 

generated in the airgap between the rotor and stator surfaces and are proportional to the 

flux density squared. These forces lead to winding and stator core vibration. As faults 

associated with rotor and stator windings and airgap variations alter the normal airgap 

flux waveform, quantities that are functions of the airgap flux will also change. This 

means that stator core vibration, line current and stray flux signals can be used to 

monitor the condition of the BLAC motor. 

Another consequence of this phenomenon is the non-uniform distribution of magnetic 

field and flux in the air gap, which affects the phase back electromotive force waveforms 

and, consequently, increases electromagnetic torque ripples caused by eccentricity. 

In addition, eccentricity causes a pulling force on the rotor that tries to drive it even 

further from the stator bore centre. In the case of static eccentricity, this is a steady pull 

in one direction, generating an unbalanced magnetic pull (UMP). Instead, dynamic 

eccentricity produces an UMP, which acts on the rotor and rotates at rotor rotational 

velocity. Both types of eccentricity cause excessive stressing of the machine and greatly 

increase bearing wear. This is also feasible for a rotor-to-stator rub to occur with 

consequential damage to the core and windings and the rotor cage. As shown in [9], the 

static and dynamic eccentricities significantly modify the back-EMF and torque 

waveforms of rotational asymmetric machines. The static eccentricity does not affect 

the harmonic contents of back-EMF, but results in unbalanced three phase back-EMFs. 

It is well known that there will be an inherent level of static airgap eccentricity in three-

phase induction motors due to manufacturing and assembly methods. In practice, this 

means that when dynamic eccentricity occurs, then both types of eccentricity exist 

together. 
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As already explained, when eccentricity occurs, the airgap field consisting of the 

fundamental component of rotor and stator magnetomotive force harmonics and slot 

permeances will have additional harmonic components due to the fault. Meanwhile, the 

degree of the fundamental harmonic and ripples vary with the type and eccentricity 

degree. In [10] it is showed that there is a particular frequency component within the 

airgap flux density waveform, which depends on the position and number of rotor slots 

as follows 

𝑓𝑒𝑐𝑐(𝑛𝑑) = [(𝑘𝑅 ± 𝑛𝑑) (
1 − 𝑠

𝑝
) + 𝜂] 𝑓𝑠       (2) 

where 𝑓𝑒𝑐𝑐(𝑛𝑑) is the frequency component due to the principle slot harmonic (PSH). 

The eccentricity order is 𝑛𝑑 = 0 in case of static eccentricity and 𝑛𝑑 = 1,2,3, … in case 

of dynamic eccentricity, 𝑓𝑠 is the fundamental supply frequency, 𝑅 is the number of 

rotor slots, is the slip, 𝑝 is the number of pole pairs, 𝑘 is any integer, and 𝜂 =

±1,±3, ±5,… is the order of the stator time harmonics that are present in the power 

supply driving the motor. If these harmonics are a multiple of three, they may not 

theoretically be present in the line current of a balanced three-phase motor.  

When both static and dynamic eccentricity are present, that is, mixed eccentricity, 

additional frequency components given by 

𝑓𝑚𝑖𝑥𝑒𝑐𝑐 = 𝑓𝑠 ± 𝑘𝑓𝑟 ,          𝑘 = 1,2,3, … 

will be present in the stator current spectrum of any three-phase induction machine 

irrespective of 𝑝 and 𝑅, where 𝑓𝑟 is the rotational frequency of the machine obtained by 

the following equation, with two poles pair 𝑝 and considering an ideal condition with 

zero slip coefficient 𝑠: 

𝑓𝑟 = (
1 − 𝑠

𝑝
)𝑓𝑠 

However, these additional frequency components will lead to other additional current 

spectra peaks at the same frequencies described by (2) for static or dynamic eccentricity 

related components. 
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For rotational asymmetric machines, both types of eccentricities my affect the 

electromagnetic performance, but in different ways as reported in [11] and following 

explained.  

 Static Eccentricity 

The static eccentricity does not affect the harmonic contents of the back-EMF, but only 

changes the harmonic magnitude. Whether the harmonic magnitude is increased or 

reduced, it depends on the winding location, i.e. the phase facing the smaller airgap has 

larger back-EMF. The unbalanced three phase back-EMFs can be decomposed into two 

sets of balanced back-EMFs, one being forward rotating and the other backward 

rotating. The main torque ripple component due to the static eccentricity is (2𝑝)𝑡ℎ, 

which is mainly from the interaction between the (𝑝)𝑡ℎ order current and (−𝑝)𝑡ℎ order 

back-EMF. 

 Dynamic Eccentricity 

The dynamic eccentricity enriches the harmonic contents of the flux linkage and back-

EMF. The flux linkage and phase back-EMF components due to the rotating eccentricity 

are the (𝑛𝑝 ± 1)𝑡ℎ temporal order harmonics. The line back-EMF components due to 

the rotating eccentricity can rotate forward and backward. These harmonics components 

of phase back-EMF are the triple harmonics, which cannot be seen from the line back-

EMF. 

In this Thesis, the distortions in harmonics of the phase currents due to the static 

eccentricity in rotational asymmetric machines will be investigated. Since motor torque 

is the result of the interaction between motor back-EMFs and phase currents, back-

EMFs distortion can affect motor electromagnetic torque ripples, as well as phase 

currents distortion. 
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Chapter VI  

Linear Model of the EMA 

In order to characterize the behaviour of the whole servosystem, the development of a 

mathematical model is fundamental. In this Chapter, a linear model for the 

Electromechanical Actuator (EMA) is considered, carried out through the characteristic 

equations of each components. The model considered is schematically illustrated in the 

block diagram in Figure 27. Starting from the well-known physical equations of 

dynamics and electromagnetism, the servosystem has been modelled analytically, 

employing a lumped parameter representation of the components. Although the linear 

model shown here represents a good approximation of the real system even in the 

presence of nonlinearities, it will not be used for the simulation activities. It is outlined 

mainly to describe in a clear way how the model works, especially with the aim of an 

its possible integration with the MPC controller in a second stage.  However, a high-

fidelity non-linear representation of the considered EMA will be employed for these 

purposes, since it accounts for several aspects of the actuator operations from a physical 

point of view, included non-linearities due to saturations and filters. 
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Fig. 27 – High fidelity block diagram of EMA model 

 

 

6.1 EMA model 

6.1.1 Electric model 

The electric motor is a sinusoidal AC brushless with permanent magnets, but from a 

practical point of view, it can be seen as a DC motor for an easier modelling without 

great loss of accuracy. Under these hypotheses, Kirchhoff's law and torque equation can 

be considered for modelling the motor: 

𝑉𝐴 = 𝑅𝑖 + 𝐿
𝑑𝑖

𝑑𝑡
+ 𝑘𝑒𝜔 ⇒ 𝑖̅ =

1

(𝐿𝑠 + 𝑅)
(𝑉𝐴 − 𝑘𝑒�̅�) 

𝑇𝑚 = 𝑘𝑡 ∙ 𝑖 

where 𝑉𝐴 is the armature voltage, 𝑖 is the armature current, 𝑅 is the electric resistance,  

𝐿 is the inductance, 𝜔 is the rotor’s angular speed, 𝑇𝑚 is the torque generated by the 

motor current and 𝑘𝑒 and 𝑘𝑡 are respectively the voltage and the torque constants. 
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6.1.2 Mechanical transmission 

A belt transmission and two pulleys with equal radius, which thus transmits the rotary 

motion with unitary transmission rate to a screw-nut drive system, compose the 

mechanical transmission of the system. The screw-nut system will convert the rotary 

motion into the linear one thanks to a SKF roller screw. 

The efficiency of the belt reducer is: 

𝜂𝑡 =
𝑇𝑚�̇�𝑚

𝑇𝑙�̇�𝑙

 

where 𝑇𝑚 and 𝑇𝑙 are the electromechanical torque and the load torque, respectively, 

while 

𝜏𝑡 =
�̇�𝑚

�̇�𝑙

 

is the transmission rate, which in this formulation is assumed as unitary. 

Then, the motion is transmitted to the power screw where the external force Fext is 

applied and produces the load toque acting as a disturbance. The direct efficiency is the 

efficiency of the planetary rollers in the SKF actuator when the rotating motor produces 

a translation: 

𝜂𝑣 =
𝐹𝑒𝑥𝑡𝑝

𝑇𝑙2𝜋
 

from which the load torque can be computed as: 

𝑇𝑙 = 𝐹𝑒𝑥𝑡

𝑝

2𝜋

1

𝜂𝑣
 

where 𝑝

2𝜋
 is the transmission ratio from rotating motion to linear motion. Therefore, once 

integrated the output speed from the roller screw and obtained the angular position, the 

linear position of the screw can be derived.  
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6.1.3 Equilibrium rotation equation of motor shaft 

Since the servosystem has a parallel interface, the equilibrium equation for each axis 

can be written using the total inertia computed with respect to the motor shaft. 

For the first shaft, the equation is: 

𝑇𝑚 − 𝑇1 = 𝐽1
𝑑𝜔1

𝑑𝑡
 

and for the second one: 

𝑇2 − 𝑇3 = 𝐽2
𝑑𝜔2

𝑑𝑡
 

where 𝐽1, 𝐽2 and 𝜔1, 𝜔2 are the inertias and the angular speeds of the two shafts, 𝑇𝑚 is 

the motor torque, 𝑇1, 𝑇2, 𝑇3 are the torque applied on the first shaft, on the second shaft 

and on the SKF roller-screw respectively. 

For the sake of completeness, see the Appendix A for the full computation of the total 

inertia used in the rotation equilibrium equation. 

 

 

6.2 Control Modelling 

The control system of the EMA consists in three nested loops with the respective 

regulators, corresponding to current, speed and position control. They present the 

regulation dynamics, which grows from the outer to the inner loop, taking into account 

also the time constants of the system. 

All the three loops regulators are of PI (Proportional-Integrative) types and consequently 

the transfer functions of all control loops are equal to each other, as shown below. 
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 Position Control 

Here the linear position reference 𝑥𝑟𝑖𝑓 is compared with the position of the power screw 

measured through the resolver, which produces an error 𝑒𝑥 that will be mitigated by the 

PI regulator. It generates a new reference for the linear speed �̇�𝑟𝑖𝑓. 

 

 

Fig. 28 – Position Control Loop block 

 

𝐺𝑎 = (
𝑘𝑝𝑥

𝑘𝑖𝑥

𝑠 + 1)
𝑘𝑖𝑥

𝑠
 

 

where  𝑘𝑝𝑥
: [

𝑟𝑎𝑑

𝑠

𝑚
] , 𝑘𝑖𝑖

: [
𝑟𝑎𝑑

𝑠
 𝑠

𝑚
] 

 

 Speed Control 

The rotational speed reference �̇�𝑟𝑖𝑓 is compared with the speed of the load computed 

through the resolver producing an error that will be passed to the PI regulator. It 

generates a new torque reference 𝐶𝑟𝑖𝑓 that summed to the torque feedforward makes 

easier to predict the toque reference and speed up the system response. 

 

 

Fig. 29 – Speed Control Loop block 
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𝐺𝑐�̇� = (
𝑘𝑝�̇�

𝑘𝑖�̇�

𝑠 + 1)
𝑘𝑖�̇�

𝑠
 

 

where  𝑘𝑝�̇�
: [

𝑁𝑚
𝑟𝑎𝑑

𝑠

],  𝑘𝑖�̇�
: [

𝑁𝑚 𝑠
𝑟𝑎𝑑

𝑠

] 

 

 Current Control 

Since the motor is controlled through Field Oriented Control (FOC) in d-q axes, the 

speed reference coming from the outer loop and the feedback load speed are compared, 

producing the reference current 𝑖𝑞∗ that is proportional to the torque. Instead, the 

reference for the current 𝑖𝑑∗ is keep to zero, since it does not contribute to the motor 

torque because the motor has permanent magnets. 

Therefore, the two current references enter in the PI regulators, generating as outputs 

the voltage references 𝑢𝑑′
∗ and 𝑢𝑞′

∗ that will be passed to the PWM in order to switch 

the inverter. 

 

 

Fig. 30 – Current Control Loop using FOC 
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The two control loops are not independent, but they influence each other because of the 

coupling between d-q axes and due to the presence of the term 𝑝𝜔𝐿𝑠𝑖𝑞 and the magnetic 

flux 𝑝𝜔𝑚Λ𝑚𝑔. If the inverter constant time 𝜏𝑐 is sufficiently small with respect to the 

other system constants, it is possible to neglect the coupling between the axes inserting 

another coupling, similar to the intrinsic one of the motor (decupling). 

The decoupling between the two loops is obtained subtracting from 𝑢𝑑′
∗ the magnetic 

flux and adding the same term to 𝑢𝑞′
∗. The quantities added to the references 

compensate the ones that are yet in the motor, obtaining a greater simplification of the 

block schemes.  

Thus, the two decoupled and simplified current loops will be the ones shown in Figure 

31: 

 

 

Fig. 31 – Current Decoupled Control Loop block 

 

and the transfer function is: 

𝐺𝑎 = (
𝑘𝑝𝑖

𝑘𝑖𝑖

𝑠 + 1)
𝑘𝑖𝑖

𝑠
 

 

where  𝑘𝑝𝑖
: [

𝑉

𝐴
], 𝑘𝑖𝑖

: [
𝑉𝑠

𝐴
]. 
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In every control loops, inputs and outputs are coupled by the proportional coefficient 

𝑘𝑝, which influences the output values. If increased, this parameter speeds up the 

transient reducing the error between the set signal and the feedback one, but there still 

exists an offset between the two signals. In fact, in order to have a null steady state error, 

the proportional gain contribution should have an infinite value since, while the error is 

reducing, 𝑘𝑝 action is less intense. Therefore, an integral action is needed to eliminate, 

or at least reduce, the steady state error for constant references as fast as 𝑘𝑖 is high. 

The disadvantage deriving from an exclusive P control is the destabilization of the 

system, due to the increase of 𝑘𝑝 parameter, and for what concern an exclusive I control 

the destabilization is due to the decrease of the integration time value 𝜏𝑖. 

The frequency response of the Proportional-Integrative contribution is represented in 

Figure 32. 

 

 

Fig. 32 - The frequency response of a Proportional-Integrative contribution 

 

 

6.3 Simulink model of the servosystem 

The primary goal of this work is the proposal of a technique able to identify symptoms 

related to the presence of a certain degree of eccentricity alerting that an EMA is 
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degrading. Therefore, a suitable simulation test environment is created and implemented 

in MATLAB/Simulink. 

The physical model of the servosystem is described by the interconnection of two 

blocks, the one for the BLAC motor drive and the one representing the mechanical 

transmission, as shown in Figure 33. The latter is then connected to a block modelling 

the resolver, which provides the reading of the motor position and speed. 

The BLAC drive block, together with the mechanical transmission and the resolver 

blocks, are comprehended in the speed loop control. The inputs constituted by the 

reference current and the DC voltage are then used by PWM and inverter, whereas the 

output are the phase currents, the motor position and the electromechanics torque. The 

torque enters in the mechanical transmission block in the form of external friction, 

together with the load torque produced by the external force 𝐹𝑒𝑥𝑡. The mechanical 

transmission considers also the inertia and the friction values of the electric motor shaft, 

the pulleys and the power screw, and they all constitute a load for the EMA. 
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Fig. 33 – Simulink physical model 
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The dynamic model of the electric driver is composed by several interconnected 

functional subsystems: the electric power unit (EPU), the motor windings and the torque 

evaluation module. The EPU subsystem is used to simulate the control currents in d-q 

axis, the PWM modulation of the voltage signal and a functional model of the digital 

inverter. The other subsystems describe the electric motor dynamics for each phase, 

compute the electromagnetic torque and approximate the windings thermal behaviour. 

The d-q axis control features two PI regulators receiving as input the current command 

and the filtered current feedback from the motor subjected to Park transformation. The 

output of the second current controller is then transformed back to the three-phase 

system and used in a PWM modulator based on a triangular bipolar wave carrier that 

generates the vector of the digital control signal for each of the three commutation poles, 

namely 𝐪 = [𝑞1 𝑞2 𝑞3]𝑇. 

Finally, the outer control loop is the position one, which receives as input a reference 

position signal, which must be correctly tracked by the feedback position coming from 

the load (i.e. conducted pulley + power screw). The full model for the system is shown 

in Figure 34. 
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Fig. 34 – Physical block model with the control loops 
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6.4 Airgap-length variation block model 

The static eccentricity equations seen in the Chapter 5.1 can be both expressed, for 

simplicity, through the following equation: 

𝛿(𝜃) = 𝛿̅ [1 + 𝐸 𝑐𝑜𝑠(𝜃 − 𝑘𝜔𝑡)] 

where 𝜃 is the angular rotor position, 𝜔 is the rotational speed, 𝐸 = 𝑒/𝛿̅ is the relative 

eccentricity, given by the ratio of the rotor displacement e and the nominal airgap length 

𝛿̅. The coefficient k indicates the type of eccentricity present in the motor; it is equal to 

0 for the static eccentricity and 1 for the dynamic one. As already mentioned, the 

difference between healthy, static eccentricity and dynamic eccentricity cases is in the 

calculation of the airgap length. 

In this context, the consequences of faults in servomechanism performances are studied, 

simulating their effects on the magnetic coupling between stator and rotor through 

angular modulations of the back-emf coefficients and their values. The purpose is to act 

on the three back-emf constants 𝑘𝑒𝑖 (one for each branch) modulating their sinusoidal 

reference values as a function of rotor eccentricity and, thus, of angular position and 

speed (in the case of dynamic eccentricity) [4], obtaining: 

𝐾𝑒𝑖 = 𝑘𝑒𝑖 ∙  𝛿(𝜃) = 𝑘𝑒𝑖 𝛿̅ [1 + 𝐸 𝑐𝑜𝑠(𝜃 − 𝑘𝜔𝑡)],     𝑖 = 𝑎, 𝑏, 𝑐 

The so obtained three constants are then used to calculate the back-emf induced on the 

corresponding stator windings and, therefore, to evaluate the mechanical torque 

contributions generated by the three motor phases.  

In this Thesis, only the static eccentricity case is considered. Therefore, the equation for 

the voltage constant will be: 

𝐾𝑒𝑖 = 𝑘𝑒𝑖 ∙  𝛿(𝜃) = 𝑘𝑒𝑖 𝛿̅ [1 + 𝐸 𝑐𝑜𝑠(𝜃)],     𝑖 = 𝑎, 𝑏, 𝑐 

The Figure 35 shows the Simulink model inserted in the back-emf computation block 

in order to realize the 𝛿 variation. 
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Fig. 35 – Airgap variation block 

 

It will be analysed in the next chapter that it is possible correlate the progressive static 

eccentricity with the instantaneous value of each current phase (used as failure 

precursors) by means of an algorithm called Fast Fourier Transform (FFT), based on the 

Fourier spectral analysis of motor phase currents.  
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Chapter VII  

Simulation Activities Setting 

The aim of this Chapter is to recreate the presence of the static eccentricity fault into the 

servo actuator and to observe the system behaviour under different conditions. This type 

of fault is linearly introduced until the system reaches a failure condition and fault data 

are recorded.  In order to verify whether the system response is the one expected or not, 

several tests are conducted for healthy motor and faulty motor. They are performed 

under different percentage of the nominal load and rotor speed rate.  

 

 

7.1 Preliminary system analysis  

In this section, in order to explain the performance of the proposed numerical model, 

the motor response to a reference position is presented, in no-load and load conditions. 

The reference position command is a percentage of the actual input equal to 𝑥𝑖𝑛 =

0.1 𝑚, starting at 𝑡 = 0.1 𝑠, whereas the external load 𝐹 =  1000 𝑁 is applied at 𝑡 =

0.25 𝑠. The value of eccentricity ratio introduced in the system to simulate the fault 

presence goes from 0 (no-eccentricity) to 0.3. Theoretically, for eccentricity values 

bigger than 0.3, the bearings wear becomes so severe that any attempt of maintenance 

will be useless. Moreover, beyond this value the system shows a saturated response that 

is not useful for the analysis purpose. 

The working condition scenarios are summed in Tab.4: 

 



Simulation Activities Setting 
 

78 
 

Tab. 4 – System working conditions 

Reference position 𝜽[%] External load 𝑭𝒆𝒙𝒕[N] 

30 0 

50 200 

100 500 

 

The length of the simulation is  𝑡 = 1 𝑠. Here for simplicity only the results obtained 

with nominal reference position in no-load condition and in the “worst-case” condition, 

with the 50% of the external load and with the 30% of the nominal reference position. 

However, the system analysis in the remaining working condition shows similar results.  

As one can see from Figure 36, the back-emf 𝑒𝑎 magnitude increases with growing 

eccentricity ratio as expected and shows a slight deformation on the lower and upper 

peaks. The same increase can be noticed in phase currents 𝑖𝑎 and torque signals 𝑇, where 

also appears an asymmetry due to the eccentricity phenomenon (Fig. 37, 38). Moreover, 

the latter causes an instability of the system as well, consisting of an oscillating 

behaviour of the analysed signals around the steady-state condition. It should be 

mentioned that, since a realistic model of the EMA is involved in the study, the steady-

state condition is not perfectly reached neither with SE equal to zero, due to intrinsic 

non-linearities of the considered model. 

 

 

Fig. 36 – Back-emf 𝑒𝑎 signals plot in no-load condition at nominal speed 𝜔𝑟. 
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Fig. 37 – Current 𝑖𝑎 signals plot in no-load condition at nominal speed 𝜔𝑟. 

 

 

Fig. 38 – Torque signals plot in no-load condition at nominal speed 𝜔𝑟. 

 

A similar behaviour is registered with 0.5𝐹𝑒𝑥𝑡 and 0.3𝜔𝑟, for all the three considered 

parameters (Fig. 39, 40, 41). However, in this case the load 𝐹𝑒𝑥𝑡 introduction does not 

have a big impact on back-emf, such as on the current and, consequently, on the torque. 

In fact, the presence of an external load causes a distortion of the current signals that 

generates a sort of settling ramp in the torque signals, which is proportional to the load 
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value. For what concerns the rotor speed, a decrease in this parameter is reflected in an 

attenuation of the signals magnitude that is found in every considered parameter. 

 

 

Fig. 39 – Back-emf 𝑒𝑎 signals plot with 0.5𝐹𝑒𝑥𝑡 and 0.3𝜔𝑟. 

 

 

 

Fig. 40 – Current 𝑖𝑎 signals plot with 0.5𝐹𝑒𝑥𝑡 and 0.3𝜔𝑟. 
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Fig. 41 – Torque signals plot with 0.5𝐹𝑒𝑥𝑡 and 0.3𝜔𝑟. 

 

The aim of the next paragraphs is to prove the correlation between the progressive static 

eccentricities with the phase currents used as failure precursors by means of an 

algorithm, based on the Fourier spectral analysis. 

 

 

7.2 Motor Current Signature Analysis (MCSA) for 

fault detection 

Currently, different non-invasive techniques are adopted for fault diagnosis of electrical 

machines, such as vibration analysis and Motor Current Signature Analysis (MCSA). 

This Thesis considers MCSA applied to the study of the rotor phase currents, and 

therefore, of back- electromotive forces on frequency domain. Each fault in the 

induction motors has associated certain additional frequencies used for diagnosis [12]. 

Fast Fourier Transform (FFT) technique localizes those frequencies in the spectra. 

Currents are considered periodic time functions; hence, Fourier series can represent 

them. By evaluating the associated sidebands of eccentricity, FFT is able to reveal the 

condition of the airgap.              
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The Fast Fourier Transform relates phase currents sampled in time to the same currents 

sampled in frequency. In signal processing, the FFT can reveal important characteristics 

of a signal, namely, its frequency components. The magnitude of the signal gives 

information about the strength of the frequency components relative to other 

components. The FFT is based on Fourier series and represents complicated but periodic 

functions as infinite sum of sine and cosine functions with different amplitude and 

phase. Here the Discrete Fourier Transform (DFT) is considered, since the analysed 

signals, defined by a vector 𝑋 representing the phase current signal 𝑖𝑎, are known only 

at 𝑁 uniform samples time during a finite time acquisition, thus obtaining a finite 

sequence data considering the signal periodic as: 

𝑌𝑘+1 = ∑ 𝑒−𝑖
2𝜋
𝑁

𝑘𝑋𝑗+1

𝑁−1

𝑗=0

 

where the exponential function represents one of 𝑁 complex roots of unity where 𝑖 is 

the imaginary unit. For 𝑋 and 𝑌, the indices 𝑗 and 𝑘 range from 0 to 𝑁 − 1. 
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Chapter VIII  

SE Fault Simulation and Diagnosis 
through Sidebands in FFT Analysis 

 

An accurate fault diagnosis and static eccentricity (SE) detection can be realized when 

the healthy and faulty motors are compared under different loads and command inputs. 

Therefore, the use of the amplitude of the sideband components coming from the FFT 

analysis at frequencies 𝑓𝑠 ± 𝑘𝑓𝑟, seen in Chapter 5.2, is the most reliable fault index, 

without taking the operating point into consideration. In fact, when eccentricity occurs, 

the airgap field consisting of the fundamental component, stator and rotor 

magnetomotive force harmonics and slot permeances will have additional harmonic 

components due to the fault. Furthermore, the degree of the fundamental harmonic and 

the ripples occurring at low-frequency range, vary with the eccentricity type and degree. 

 

 

8.1 Diagnosis at no-load 

Fig. 42 shows the frequency spectrum of phase current 𝑖𝑎 for growing eccentricity ratio 

around the principal harmonic in no-load condition. The static eccentricity (SE) is 

applied to the model from 0% to 30%, with an increment of 10%. The principal 

harmonic ripple 𝑓𝑃𝐻 occurs at a frequency equal to the power frequency of the motor 𝑓𝑠, 

which depends on the position command given as input to the system model, and 

consequently, on the rotor nominal speed 𝜔𝑟. Therefore, the main ripple shifts according 

to the different speed rates considered. With the 100% of the nominal speed, the 
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principal harmonic appears at 𝑓𝑃𝐻 = 40 𝐻𝑧, whereas considering the 30% and the 50% 

it occurs respectively at 𝑓𝑃𝐻 = 12 𝐻𝑧 and 𝑓𝑃𝐻 = 20 𝐻𝑧 (fig. 43 and 44). 

It can be observed that the amplitude of current peaks increase as the rotational speed 

of rotor increases. This can be explained considering the fact that the current is 

proportional to the back-emf, and, consequently, to the derivative of the rotor position 

given by 𝑑𝜃

𝑑𝑡
= 𝜔𝑟 = 2𝜋𝑓𝑠, as seen in the airgap equation in Chapter 5.1 that is reported 

here for simplicity: 

𝛿(𝜃) = 𝛿̅ [1 + 𝐸 𝑐𝑜𝑠(𝜃)] 

 

 

 

Fig. 42 – FFT response of the current signal at 0.3𝜔𝑟 in no-load condition. 
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Fig. 43 – FFT response of the current signal at 0.5𝜔𝑟 in no-load condition. 

 

 

 Fig. 44 – FFT response of the current signal at 𝜔𝑟 in no-load condition. 

 

The figures show that, in all the three speed conditions, the static eccentricity causes the 

appearance of the of sidebands at frequency 𝑓𝑠 ± 𝑘𝑓𝑟, as expected. Due to the presence 

of the static eccentricity, the amplitude of the peaks increases with the eccentricity ratio. 

The presence of very high peaks at 𝑓 = 0 𝐻𝑧 is due to the fact that at 𝑡 = 0𝑠 the current 

signal is not a perfect sinusoidal signal, but it is comparable to a DC signal, which gives 

this frequency response. In addition to this component, the sideband magnitude of 𝑓𝑠 −

2𝑓𝑟 is added to the peak amplitude. 
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It must be also highlighted the presence of some noisy peaks around a frequency equal 

to 2𝑓𝑠 ≈ 80 𝐻𝑧 that are most probably due to rotor speed. In fact, at that frequency value 

the system is settling to the reference value imposed by the outer control loops. 

Generally, one can observe that the frequency response becomes weaker with the 

reduction of the rotor speed, with the sidebands due to the static eccentricity hided by 

other components due to a certain degree of noise of the system. This is because the 

model is a high-fidelity representation of a real servosystem, and thus it contains all the 

non-idealities that characterize a system of this type. On the other hand, with a rotor 

speed nearer to the nominal one, the sideband components are clearly distinguishable.  

The tables reported in Annex B summarize the magnitude of frequency peaks from 

healthy to faulty motor with static eccentricity (SE) in no-load and loaded conditions 

shown in the next paragraph. 

 

 

8.2 Diagnosis at different loads  

8.2.1 Diagnosis at 𝑭 =  𝟐𝟎𝟎 𝑵 

Figures 45, 46, 47 show the phase current frequency spectra for motor with increasing 

static eccentricity ratio with an external load equal to 𝐹 =  200 𝑁. The corresponding 

simulation results show that the amplitudes of the harmonic components 𝑓𝑠 ± 𝑘𝑓𝑟 

increase due to the increase in the load. The same consideration about the peaks 

behaviour done in the previous chapter still apply in this case. 

One can observe that, for low 𝜔𝑟 speed rate, the lower sidebands have a high ripple 

already for low eccentricity values. Thus, this marks the lower sidebands dependency 

on the load. 
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Fig. 45 – FFT response of the current signal at 0.3𝜔𝑟 with F = 200 N. 

 

 

Fig. 46 – FFT response of the current signal at 0.5𝜔𝑟 with F = 200 N. 
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Fig. 47 – FFT response of the current signal at 𝜔𝑟 with F = 200 N. 

 

8.2.2 Diagnosis with 𝑭 =  𝟓𝟎𝟎 𝑵 

Figures 48, 49, 50 show the phase current frequency spectrum for motor with increasing 

static eccentricity ratio with an external load equal to 𝐹 =  500 𝑁. The corresponding 

experimental results show that, also in this case, the amplitudes of the harmonic 

components 𝑓𝑠 ± 𝑘𝑓𝑟 increase due to the increase in the load. In this condition, it was 

found that the maximum peaks magnitude for all the speed rates considered. 

Here, as already done in the previous chapter, one can make the same considerations on 

the lower sidebands ripples. 

 

 

Fig. 48 – FFT response of the current signal at 0.3𝜔𝑟 with F = 500 N. 
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Fig. 49 – FFT response of the current signal at 0.5𝜔𝑟 with 𝐹 =  500 𝑁. 

 

 

Fig. 50 – FFT response of the current signal at 𝜔𝑟 with 𝐹 =  500 𝑁. 

 

 

8.3  Result analysis 

Sidebands frequencies of current signal 𝑖𝑎 at 𝑓𝑠 ± 𝑘𝑓𝑟 were observed with zero levels of 

static eccentricity and increasing external load and rotor speed. 
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Figures 51, 52, 53 show that there is an increase in each sidebands peaks magnitude 

with the static eccentricity ratio, at the three different speeds for an increasing external 

load. It can be seen that the peaks increase from no-load to different load conditions, at 

different static eccentricity ratios. This raise involves all the sideband frequencies; 

however, this phenomenon is less regular for the upper and lower sidebands, except for 

the fundamental one 𝑓𝑠. In fact, the growth of 𝑓𝑠 (shown in red) follows an upward 

increase that is almost linear, depending on the eccentricity ratio, as one can clearly see 

especially in Figure 48. Moreover, it is interesting that the lower sideband 𝑓𝑠 − 𝑓𝑟 

(shown in blue) at reduced speed (Fig. 52 and 53) shows a rather flat trend, but it shifts 

towards higher values in function of increasing external loads. This indicates that, at 

lower speeds, since the external load affects the lower sidebands only, they can be used 

to detect and to monitor the presence of this type of disturb. 

In view of these considerations, the FFT analysis is essentially an effective strategy to 

identify the amount of eccentricity affecting the system also in the presence of different 

types of disturbs, such as external load and rotor speed reduction. 

 

 

 

(a) 
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(b) 

 

 

(c) 

Fig. 51- Sidebands variation of current 𝑖𝑎 with SE at 𝜔𝑟: (a) with no-load; (b) with 𝐹 =

200𝑁; (c) with 𝐹 = 500𝑁. 
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(a) 

 

 

(b) 
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(c) 

Fig. 52 - Sidebands variation of current 𝑖𝑎 with SE at 0.5𝜔𝑟: (a) with no-load; (b) with 𝐹 =

200𝑁; (c) with 𝐹 = 500𝑁. 

 

 

 

(a) 
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(b) 

 

 

(c) 

Fig. 53 - Sidebands variation of current 𝑖𝑎 with SE at 0.3𝜔𝑟: (a) with no-load; (b) with 𝐹 =

200𝑁; (c) with 𝐹 = 500𝑁. 
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8.4 Feature Extraction 
The previous simulation investigations confirmed the linear dependency between the 

current frequency spectrum and the static eccentricity ratio. In fact, it can be seen that 

there is a presence of sideband frequencies inside the current frequency spectrum, as 

well as an increase of their peak magnitudes almost linear with the fault. Among all the 

peaks, the fundamental frequency peak is the one that shows an almost perfect linear 

dependency on the static eccentricity ratio. Thus, it can be used as Condition Indicator 

(CI), i.e. as a system feature, which characterize the static eccentricity fault mode. In 

other words, since the main effect of this fault is the progressive worsening of the current 

unbalance, and thus the appearance of the sideband frequencies, the values of the feature 

will be related to the maximum peak of the current spectrum obtained from the FFT 

analysis. Then, because the obtained results depend also on the command input given to 

the model, that is depends on the derivative of the rotor position, this CI will be 

normalized by the absolute value of the rotor speed 𝜔𝑟: 

𝐶𝐼𝑆𝐸 =
max(𝑎𝑏𝑠(𝑓𝑓𝑡(𝑖)))

|𝜔𝑟|
 

It must be considered that, the obtained feature should be normalized also by the external 

load value, which corresponds to normalize by the line current of the motor, even if in 

the reality there is an absence of reliable information on the aerodynamic load. 

A significant step in the development of robust and accurate PHM algorithms, following 

the extraction and selection of the appropriate features or condition indicators CIs from 

raw data, is to verify their reliability and to delineate a fault grown model, but this is not 

addressed to this work. 
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Chapter IX  

Conclusions and Further Studies 

This Thesis aimed to verify the efficiency of the PHM methodology applied to a linear 

electromechanical actuator with a PMSM motor in the presence of one of the recurrent 

faults of this type of system, which is the rotor static eccentricity.  

A deep study of the model was done in order to understand the best way to recreate the 

fault inside the considered system. An initial comparison between the healthy system 

and the eccentric one was taken to ensure that the system response would actually show 

a faulty behaviour. 

After highlighting the most critical parameters of the system, the current response was 

chosen as the main indicator of the fault occurrence. In fact, thanks to the FFT analysis, 

it was possible to show that the current frequency spectrum, which is a function of rotor 

static eccentricity, presented some characteristic sidebands around the fundamental 

frequency demonstrating the presence of the fault, as predicted by most of scientific 

papers. This confirmed that FFT analysis is a powerful method for systems diagnosis; 

therefore, it can be used as a reliable starting point for the PHM analysis. 

According to these investigations, it is possible to extract an index based on the current 

FFT analysis, which could show the presence of the rotor static eccentricity fault, in 

order to predict the fault occurrence and to proceed promptly with the maintenance of 

the system. 

This Thesis only analyses the first step of the PHM framework, i.e. it performs the fault 

detection and, thus, its isolation and identification from a diagnostic point of view. The 

outcome agrees with what is found in literature and therefore merits further research. In 

this regard, a wider simulation set should be applied to the proposed model, in order to 

ensure the possibility to generalize the statements made, as well as the efficiency of the 
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extracted feature for identification/diagnostic purposes. In fact, this work focuses on a 

restricted range of degradation phenomena, namely the static eccentricity, compared to 

all possible fault combinations due to several causes.  

The obtained results encourage the extension of the proposed technique also to 

prognostic purposes, to probe the reliability of the fault index based on the current 

frequency spectrum.  

A further step could be to verify if the reconfiguration control technique based on the 

MPC controller proposed in Chapter III improves the RUL of the system. For this 

purpose, after extracting the fault index, one must estimate a fault growth model, which 

represents the remaining life of the system. Since the MPC controller takes advantage 

of the relationship between the fault index and the RUL, it places more emphasis on 

reducing the magnitude of the index based on the RUL requirement. Hence, the MPC 

controller could be an interesting baseline for further study in the prognostics 

framework. 
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Appendix  

A - Total Inertial Model on the Motor Shaft 

The considered electromechanical actuator has a parallel interface between motor shaft 

and the screw-nut system. This means that, in order to realistically model the system, 

the inertia of all the different elements must be considered with respect to the same 

reference, that is, the motor shaft. The total inertia so obtained allows to compute the 

rotation equilibrium equation of the whole system [7]. 

In order to obtain the total inertia, the following expressions are considered: 

- 1st axis inertia: 𝐽1 = 𝐽𝑝 + 𝐽𝑚 

- 2nd axis inertia: 𝐽2 = 𝐽𝑝 + 𝐽𝑟𝑠 

 - Transmission ratio of the SKF rollers-screw: 𝜏𝑟𝑠 =
𝑧

2𝜋
=

𝑥

𝜃2
=

�̇�

𝜃2̇
=

�̈�

𝜃2̈

 

- Transmission ratio of the planetary reduction gearbox: 𝜏𝑔 =
𝜃2

𝜃1
 

 - Efficiency coefficient of the gearbox: 𝜂𝑔 =
𝑇2𝜃2

𝑇1𝜃1
 

where 𝐽𝑝[𝑘𝑔𝑚2] is the pulley inertia,  𝐽𝑚[𝑘𝑔𝑚2] is the motor inertia, 𝐽𝑟𝑠[𝑘𝑔𝑚2] is the 

SKF rollers-screw inertia, 𝑧 is the number of the pole pairs, 𝑇1 and 𝑇2 [𝑁𝑚] are 

respectively the resistant torques applied by the first and by the second pulley. 

Considering the equilibrium equations of the two axes and substituting the previous 

relationships, the following equations are obtained: 

𝑇𝑚 − 𝑇1 = 𝐽1𝜃1̈ 

𝑇2 − 𝑇3 = 𝐽2𝜃2̈ 

where 𝑇3 [𝑁𝑚] is the torque acting on the rollers-screw coming from: 
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𝑇3 =
𝑥

𝜃2

1

𝜂𝑟𝑠
𝐹 =

𝜏𝑟𝑠

𝜂𝑟𝑠
𝐹 

with 𝐹 = 𝐹𝑒𝑥𝑡 + 𝑚�̈� and 𝜂𝑟𝑠 is the rollers-screw efficiency. 

Therefore: 

𝑇2 = 𝐽2𝜃2̈ +
𝜏𝑟𝑠

𝜂𝑟𝑠
𝐹 = 𝐽2𝜃2̈ +

𝜏𝑟𝑠

𝜂𝑟𝑠

(𝐹𝑒𝑥𝑡 + 𝑚�̈� ) =
𝜏𝑟𝑠

𝜂𝑟𝑠
𝐹𝑒𝑥𝑡 + 𝜃2̈ (𝐽2 +

�̈�

𝜃2̈

𝜏𝑟𝑠

𝜂𝑟𝑠
𝑚)

=
𝜏𝑟𝑠

𝜂𝑟𝑠
𝐹𝑒𝑥𝑡 + 𝜃2̈ (𝐽2 +

𝜏𝑟𝑠
2

𝜂𝑟𝑠
𝑚) 

 

𝑇𝑚 = 𝑇1 + 𝐽1𝜃1̈ =
𝜏𝑟𝑠

𝜂𝑟𝑠

𝜏𝑔

𝜂𝑔
𝐹𝑒𝑥𝑡 + 𝜃2̈ (𝐽2

𝜏𝑔

𝜂𝑔
+

𝜏𝑟𝑠
2

𝜂𝑟𝑠

𝜏𝑔

𝜂𝑔
𝑚) + 𝐽1𝜃1̈

=
𝜏𝑟𝑠

𝜂𝑟𝑠

𝜏𝑔

𝜂𝑔
𝐹𝑒𝑥𝑡 + 𝜃1̈ (𝐽1 + 𝐽2

𝜏𝑔
2

𝜂𝑔
+

𝜏𝑟𝑠
2

𝜂𝑟𝑠

𝜏𝑔
2

𝜂𝑔
𝑚) 

where the total inertia of the system is: 

𝐽 = (𝐽1 + 𝐽2
𝜏𝑔

2

𝜂𝑔
+

𝜏𝑟𝑠
2

𝜂𝑟𝑠

𝜏𝑔
2

𝜂𝑔
𝑚) 
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B - Sideband Frequencies Peaks Magnitude 

 

Tab. 5 – Magnitude [A] of sideband components at 0.3𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 0 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.01482 0.01458 0.01697 0.01813 0.01094 - 

10 0.01377 0.04514 0.01756 0.02191 0.01318 - 

20 0.01465 0.09227 0.0186 0.02552 0.0151 - 

30 0.01711 0.1405 0.02288 0.02776 0.01789 - 

 

 

Tab. 6 - Magnitude [A] of sideband components at 0.5𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 0 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.02688 0.0314 0.02738 0.01247 0.00916 - 

10 0.01843 0.1628 0.03179 0.01869 0.00704 - 

20 0.01594 0.3095 0.04485 0.02365 0.00857 - 

30 0.04046 0.4573 0.06862 0.3041 0.01325 - 

 

 

Tab. 7 – Magnitude [A] of sideband components at nominal speed 𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 0 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.08581 0.04155 0.01758 0.04031 0.01036 0.00167 

10 0.07022 0.4897 0.02059 0.0367 0.00988 0.00459 
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20 0.1161 0.9571 0.1835 0.2541 0.06434 0.02894 

30 0.4085 1.609 0.6867 1.049 0.2441 0.07586 

 

 

Tab. 8 – Magnitude [A] of sideband components at 0.3𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 200 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟐𝟎𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.06352 0.01572 0.01557 0.01813 0.01094 - 

10 0.06494 0.09864 0.01725 0.02191 0.01318 - 

20 0.06849 0.04591 0.01835 0.02552 0.01514 - 

30 0.07408 0.1527 0.02252 0.02776 0.01789 - 

 

 

Tab. 9 – Magnitude [A] of sideband components at 0.5𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 200 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟐𝟎𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.06277 0.03135 0.02685 0.02868 0.00849 - 

10 0.05869 0.17 0.02949 0.02193 0.00676 - 

20 0.0725 0.3227 0.04394 0.0164 0.01023 - 

30 0.1035 0.4768 0.07152 0.01195 0.01317 - 

 

 

Tab. 11 – Magnitude [A] of sideband components at nominal speed 𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 200 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟐𝟎𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.09071 0.04146 0.01737 0.03271 0.00893 0.00206 
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10 0.05485 0.4957 0.02304 0.03841 0.0102 0.00516 

20 0.06314 0.9729 0.1933 0.2767 0.07489 0.03399 

30 0.3651 1.64 0.6979 1.052 0.2469 0.07941 

 

 

Tab. 12 – Magnitude [A] of sideband components at 0.3𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 500 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟓𝟎𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.1109 0.01753 0.02448 0.01804 0.0113 - 

10 0.1124 0.04567 0.01839 0.02106 0.01265 - 

20 0.1174 0.1026 0.01545 0.02386 0.01585 - 

30 0.1273 0.1593 0.02448 0.02717 0.2095 - 

 

 

Tab. 13 – Magnitude [A] of sideband components at 0.5𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 500 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟓𝟎𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.1079 0.03124 0.0262 0.01178 0.00826 - 

10 0.1058 0.1761 0.02915 0.01304 0.00723 - 

20 0.1247 0.3358 0.04395 0.01946 0.1056 - 

30 0.1627 0.4946 0.07461 0.02809 0.01372 - 

 

 

Tab. 14 – Magnitude [A] of sideband components at nominal speed 𝜔𝑟 with 𝐹𝑒𝑥𝑡 = 500 𝑁. 

𝑭𝒆𝒙𝒕  =  𝟓𝟎𝟎 𝑵 

SE (%) 𝒇𝒔 − 𝒇𝒓 𝒇𝒔 𝒇𝒔 + 𝒇𝒓 𝒇𝒔 + 𝟐𝒇𝒓 𝒇𝒔 + 𝟑𝒇𝒓 𝒇𝒔 + 𝟒𝒇𝒓 

0 0.1175 0.04086 0.01758 0.0377 0.00902 0.00237 
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10 0.0794 0.5008 0.02427 0.03076 0.00900 0.00540 

20 0.02258 0.9868 0.2028 0.3003 0.08467 0.03839 

30 0.3249 1.666 0.7034 1.041 0.2476 0.08211 
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