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Summary

In the modern age, the use of video has become fundamental in communication and
this has led to their use through an increasing number of devices. Thanks to the
emerging media, such as social networks, streaming, internet and mobile devices
in addition to the old media, such as television, videos are an omnipresent tool in
everyday life. An important aspect is that the increase in videos distribution has been
accompanied by the demand for higher quality and this has represented a problem
due to the fixed memory and limited bandwidth of the devices. In fact, video is the
most expensive support in terms of memory and bandwidth, due to the evolution
of different formats, starting from High Definition (HD) and Ultra High Definition
(UHD), up to 4K UHD which provide an increasing number of pixels per frame and
therefore, an increasing need for memory and bandwidth for transmission. These
features, in contrast to the limited bandwidth and devices memory, are the main
reason why video coding was born. When we talk about storage and transmission of
video, we always talk about video compression.
The key idea of video coding is to compress this enormous quantity of data into an
encoded bit-stream, thanks to the elimination of redundant elements. Redundancy
is the part of the message that is not fundamental and can be eliminated without
damaging the information. In each frame we can find large amounts of redundancy,
that can be of different types, for example it can be spatial correlation, close pixels
usually have close values or temporal correlation between two successive frames, close
frames usually have the same subject.
In order to remove the redundancy or to rebuild one frame, AV1, a new open video
coding format which is the evolution of the previous VP9 and that competes with
HEVC, employs some different steps, one of these steps consists in the use of several
loop-filters. The goal is to remove ringing artifacts and improve the quality of
reconstructed frame after adding the prediction to the error, so they are applied to a
decoded frame.
This work of thesis focus its attention on in-loop filters, in particular on one of the
loop restoration filter: the Wiener Filter, so a new hardware architecture implemen-
ting the separable symmetric normalized Wiener Filter, is presented. Starting from
an article present in the literature, which analyzes the algorithm from a mathematical
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point of view and then, analyzing the software implementation of the filter in the
codec, we explore different architectural solutions and then we present the overall
architecture. The key idea of the Wiener Filter is that all the pixels of a degraded
frame can be reconstructed through the pixels surrounding them. In particular we
analyze the pixels in a w x w window around the pixel that need to be recontructed,
where w = 2r + 1 with r integer number.
The key elements are:

� H = E[XXT ]: the autocovariance of x which can be rewritten as:

H =


H00 H01 . . . H0,w−1

H10 H11 . . . H1,w−1

. . . . . . . . . . . .
Hw−1,0 Hw−1,1 . . . Hw−1,w−1

 (1)

in which each Hij element is a matrix of size w x w.

� M = E[Y XT ]: the cross correlation of x with the source y which can be
rewritten as:

M =
[
M0 M1 . . . Mw−1

]
(2)

in which each Mi element is a vector of size 1 x w.

� a and b: vertical and horizontal filters of size w x 1.
In addition several constraints of normalization and symmetry are added to a
and b:

– a(i) = a(w − 1− i) and b(i) = b(w − 1− i) for i = 0, 1, ..., r − 1

–
∑

a(i) =
∑

b(i) = 1

The key idea is to start with a first guess of horizontal and vertical filters a and b,
after which the filter a is computed, keeping b fixed. Once the value of filter a is
computed, it is used to compute the new value of filter b.
In this way, the overall algorithm can be divided in two main steps:
1) Update a, fixing b: to find the final values of a vector, starting from a guess b
vector.
2) Update b, fixing a: to find the final values of b vector, using the new a vector.
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A first basic architecture has been built without taking into account any area, resource
and performance constraints. It simply executes correctly the algorithm present in
the codec and obtains the same output values. This basic architecture is not suitable
because it has many critical issues, but it is an excellent starting point to create a
new architecture that executes the same algorithm, but at the same time respects
any design specs.
After synthesizing the basic architecture, tests were performed that identified several
critical issues. Our focus was on performance in terms of speed. Several timing
reports were analyzed, they showed the two main problems of the basic architecture:
the excessive length of some combinational paths and the high complexity of the
division operation. In detail, the timing reports show how, with a clock of 10 ns you
get a negative slack of -221.70 ns, which implies a maximum operating frequency
of 4.3 MHz. Starting from the basic architecture, some changes were made to the
blocks placed inside the critical paths.
First of all, after analyzing the critical paths showed by the timing reports, we tried
to reduce the length of the combinational paths by placing pipeline registers, so that
each combinational path did not include more than one operator within it. After
applying this adjustment, we performed the same tests with the same parameters,
obtaining a negative slack of -56.58 ns which implies a maximum operating frequency
of 15.15 MHz, an improvement of one order of magnitude. Finally, a new restoring
divider has been implemented to replace the previous one.
The final tests performed on the overall architecture, showed how, with a clock of
10 ns, you get a negative slack of -1.38 ns, which implies a maximum operating
frequency of 87.87 MHz, an overall improvement close to two orders of magnitude.
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Chapter 1

Introduction

In the modern age, the use of video has become fundamental in communication and
this has led to their use through an increasing number of devices.
Thanks to the emerging media, such as social networks, streaming, internet and
mobile devices in addition to the old media, such as television, videos are an omni-
present tool in everyday life.
According to the periodical report of Cisco Visual Networking Index (Cisco VNI),
which studies the use of the different networking (Wi-Fi, 3G, 4G, 5G), this trend
will not end in the coming years thanks to different factors.
First of all, there will be an increasing number of internet users,per capita devices
and also the number of global public Wi-Fi hotspots will increase a lot. Thanks to
this huge availability of connections, people will be able to watch videos at all times
and marketing is also taking advantage of this situation by investing money in video
advertising. In this scenario, video bandwidth demand will be more than 82% of
total demand. [1]
Another important aspect is that the increase in videos distribution has been accom-
panied by the demand for higher quality and this has represented a problem due to
the fixed memory and limited bandwidth of the devices.
In fact, video is the most expensive support in terms of memory and bandwidth,
due to the evolution of different formats, starting from High Definition (HD) and
Ultra High Definition (UHD), up to 4K UHD which provide an increasing number of
pixels per frame and therefore, an increasing need for memory and bandwidth for
transmission.
These features, in contrast to the limited bandwidth and devices memory, are the
main reason why video coding was born.
In this thesis work a new hardware architecture implementing one of the loop filtering
algorithm present in the AV1 codec is presented. Starting from the codec, we explore
different architectural solutions and then we present the overall architecture. More
in detail every single block of the starting architecture and the tests performed on it
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1 – Introduction

are presented. After that, the improvements that have been made to the individual
blocks of the base architecture to get the new architecture working at high speed are
presented. Finally, after showing the results of the tests on the new architecture, the
achieved improvements will be highlighted.
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Chapter 2

Background

Nowadays, whenever we talk about storage and transmission of video, we always
talk about video compression.
The key idea of video coding is to compress this enormous quantity of data into an
encoded bit-stream, thanks to the elimination of redundant elements.
Redundancy is the part of the message that is not fundamental and can be eliminated
without damaging the information. In each frame we can find large amounts of
redundancy, that can be of different types, for example it can be spatial correlation,
close pixels usually have close values or temporal correlation between two successive
frames, close frames usually have the same subject. [2]

2.1 Formats and AV1

Starting from 1984, when the International Telecommunication Union (ITU), laun-
ched H.120, the first digital video coding technology standard, different encoding
formats have emerged in this context.(2.1) [3]
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2 – Background

Figure 2.1: Video coding standards development timeline. [7]

The main recent formats are the VP9 video codec, launched by Google in 2013
and the High Efficiency Video Coding (HEVC), the standard not royalty-free, also
developed in 2013 by ISO/IEC Moving Picture Experts Group (MPEG) and ITU-T
Video Coding Experts Group (VCEG).
In 2015, the Alliance for Open Media (AOMedia) was born, it is a consortium of
more than 30 companies co-founded by Google. The idea is to develop a solution
that is open and royalty-free. [4]
The solution is to create a new open video coding format, AOMedia Video 1 (AV1),
which is the evolution of the previous VP9 and that competes with HEVC. In
particular the idea is to improve scalability, flexibility, so as to be compatible with
modern devices and improve performance in terms of compression.

2.1.1 AV1 Structure

In order to remove the redundancy or to rebuild one frame, AV1 employs some
different steps (2.2). Starting from the source, each frame is subjected to the following
operations which are described in detail in the article ”An Overview of Core
Coding Tools in the AV1 Video Codec”:

� TRANSFORM : This block transforms the remaining error after the subtrac-
tion of prediction from the source frame into frequency domain, using Discrete
Cosine Transform (DCT) and Discrete Sine Transform (DST) over a square
block of different dimension, according to the case under evaluation.

– Transform Block Partition: AV1 allows blocks to be partizioned into units
of different sizes, instead of using fixed transform unit sizes.

– Extended Transform Kernels : Both inter and intra blocks can use a largest
set of transform kernels.
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2 – Background

� ENTROPY CODING: Thanks to a specific alphabet, a multi-symbol
encoder code every syntax elements.

– Multi-symbol Entropy Coding : AV1 uses a symbol-to-symbol adaptive
multi-symbol arithmetic coder, this is an high precision coder and this
means that it enables tracking probabilities of less common elements with
high precision.

– Level Map Coefficient Coding : AV1 changes the level map design for
dimensional transformation coefficients modeling and compression to
better capture the distribution of coefficient in the space.

� LOOP-FILTERING: There are several loop-filters, the goal is to remove
ringing artifacts and improve the quality of reconstructed frame after adding
the prediction to the error, so they are applied to a decoded frame. A new
feature is that AV1 separates horizontal and vertical filtering for each plane.
The filtering tool used by AV1 are:

– Constrained Directional Enhancement Filter (CDEF): This filter estimates
the direction of the edge by applying a low pass filter and to avoid
extrasignaling the decoder uses an algorithm that minimizes the quadratic
error with respect to the ideal case.

– Loop Restoration Filters : AV1 has new tools that are applied in loop and
are selected in mutual exclusion from a unit called loop-restoration unit
(LRU)

* Separable symmetric normalized Wiener Filter : A 7x7 Wiener Filter
filters the pixels, the coefficients are included in the bitstream. It
is necessary to send to each horizontal and vertical filter only 3
parameters thanks to the constraints of normalization and symmetry.

* Dual self-guided filter : This filter uses a guide image which is the
same image to be filtered. The outputs of the two filters are combined
with the weight contained in the bitstream to obtain the final restored
LRU.

– Frame Super-resolution: AV1 implements a new super-resolution coding
frame.In this way the frame is coded in a lower spatial resolution and
then super-resolved in-loop at maximum resolution. To do this, AV1 uses
the loop-restoration tools seen above at high resolution.

� FILM GRAIN SYNTHESIS : It is the final step of the reconstruction,
this filter is used to remove the grain component from the signal and transmits
descriptive parameters to the decoder. This step is applied outside the encoding
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2 – Background

and decoding loops. Due to the fact that the film grain is random, it is difficult
to compress them with standard methods. Instead, the grain is removed before
compression and encoded in the bitsream. In AV1 the bitrate needed to rebuild
the grain with acceptable quality is reduced.

� INTRA-PREDICTION : The goal is to predict the pixel of a frame using
the information given from the frame itself.
VP9 implement DC and TM mode, that are 2 non-directional predictor and also
10 intra prediction modes, they include 8 directional modes that correspond to
angles from 45 to 207 degree. AV1 improve the intra coder in various way:

– Enhanced Directional Intra Prediction: There are 56 directional intra
modes in AV1. A more accurate angle set to improve directional intra
modes. The angle is represented by a nominal angle plus a delta which
can assume value from -3 to +3.

– Non-directional Smooth Intra Predictors : 3 new smooth predictors,
Smooth V, Smooth H and Smooth are added. Using quadratic interpo-
lation, these predictors predict the block in many directions. Finally,
PAETH predictor replace the TM mode.

– Recursive-filtering-based Intra Predictor : For luma blocks, FILTER INTRA
are designed, the aim is to evaluate spatial correlation on the edges. In
addition, five filter intra modes are implemented.

– Chroma Predicted from Luma: The inter predictor Chroma from Lu-
ma starting from reconstructed luma pixels, models chroma pixels. It
determines the needed parameters directly from the bitstream.

– Color Palette as a Predictor : For every plane of a block, the color palette
predictor is represented by a color palette and color indices for every pixel
of the block.

– Intra Block Copy : Previously reconstructed block is used as reference to
the actual intra coder. To perform this operation, IntraBC is implemented,
it allows to make a copy of a reconstructed block as a prediction in the
current frame.

� INTER-PREDICTION : It has the same goal of the Intra-Prediction block,
but uses the information over two successive frames. AV1 has better inter
coder with respect to VP9.

– Extended Reference Frames : The number of references for each frame are
extended from 3 to 7. In addition to that, two near past frames and two
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2 – Background

future frames are added. In the AV1 we can find a wide set of references
that allow to encode in an optimal way different types of videos that have
dynamic temporal correlations.

– Dynamic Spatial and Temporal Motion Vector Referencing : A new MV
reference selection is implemented to obtain better MV references. AV1
uses a temporal motion field estimation mechanism to create temporal
candidates.

– Overlapped Block Motion Compensation (OBMC): This block can decrease
prediction errors near edges. In order to make OBMC easily fit, 2-side
casual overlapping algorithm is implemented.

– Warped Motion Compensation: Two affine prediction modes are imple-
mented, global and local warped motion compensation. Global motion
is used for handling camera motions, the local warped motion is used to
describe varying local motion. Affine warping is limited to small degrees
and this is good for hardware implementation.

– Advanced compound prediction: In order to make inter coder more versatile,
new compound prediction tools are implemented. So different compound
prediction modes are implemented, in detail: Compound wedge prediction,
Difference-modulated masked prediction, Frame distance based compound
prediction and Compound inter-intra prediction.

7



2 – Background

Figure 2.2: Processing stages of an AV1 encoder with relevant technologies associated
with each stage. [6]

All these improvements allows AV1 to perform better than VP9. [5]
In order to test the performance and compare it with VP9 and HEVC, several videos
of different types and size are used.
The results are collected in the following tables(2.3):
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Figure 2.3: Performance comparison of AV1, VP9 and HEVC. [5]

Several studies analyze the performance of AV1 in relation to other codecs.
The results show that AV1 improve VP9 by 30% in all planes and it is even better
of HEVC [5], moreover, AV1 encoded videos have a better PSNR even if they have a
higher encoding time than the others.(2.4) [8]
Moreover, although HEVC is better with lower quality video, AV1 is better with
higher quality video. [7]

Figure 2.4: Video coding formats average PSNR and encoding time for default
parameters. [8]
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Chapter 3

Wiener Filter

AV1 is an open source format and thanks to this we were able to do some analysis
on the codec. The GPROF tool, allowed us to perform several tests on the codec
with different input files and after a careful analysis of the AV1 codec profiling, we
decided to focus our attention on in-loop filters, in particular on one of the loop
restoration filter: the Wiener Filter.
Several In-Loop filters are applied to a decoded frame. At the beginning, their goal
was the improvement of a frame after that it was reconstructed and after that it
suffered degradation due to the coding and the transmission.
But this means that the same filter can be used to preserve the information that
have to be reconstructed after the trasmission. So the Information given by the filter
is sent inside the codified bit-stream and help the decoder to rebuilt the received
frame.
In the AV1 codec, after the usual deblocking loop filter, three different switchable
loop restoration filters are applied, these filters are separable symmetric Wiener
Filters, dual self-guided filters and domain transform recursive filters. [9]

3.1 Separable Symmetric Wiener Filter

After having searched in literature articles about loop filters and after having seen
the absence of articles about an hardware architecture for Wiener Filter, it was
decided to deepen the analysis for this kind of structure, in order to have all the
necessary elements to realize a device able to perform the filter algorithm. In detail,
our project is based on the work presented in an article describing the filter algorithm
from a mathematical point of view, and then on the code of the AV1 codec that
implements the same algorithm in software.
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3 – Wiener Filter

3.1.1 Article

In this section the algorithm that is implemented by the Wiener Filter and which is
described in the article ”A switchable loop-restoration with side-information
framework for the emerging AV1 video codec” is analyzed.
The key idea of the Wiener Filter is that all the pixels of a degraded frame can be
reconstructed through the pixels surrounding them. In particular we analyze the
pixels in a w x w window around the pixel that need to be recontructed, where
w = 2r + 1 with r integer number.
The key elements are:

� H = E[XXT ]: the autocovariance of x which can be rewritten as:

H =


H00 H01 . . . H0,w−1

H10 H11 . . . H1,w−1

. . . . . . . . . . . .
Hw−1,0 Hw−1,1 . . . Hw−1,w−1

 (3.1)

in which each Hij element is a matrix of size w x w.

� M = E[Y XT ]: the cross correlation of x with the source y which can be
rewritten as:

M =
[
M0 M1 . . . Mw−1

]
(3.2)

in which each Mi element is a vector of size 1 x w.

� F = H−1M : a 2D filter taps in column-vectorized form of size w2x1 which
can be rewritten as:
F = column vectorize[abT ], where a and b are vertical and horizontal
filters of size w x 1.

11



3 – Wiener Filter

� A P mixing matrix of size w x r.

P =



1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
. . . . . . . . . 1
−2 −2 . . . −2
. . . . . . . . . 1
. . . . . . . . . . . .
0 1 . . . 0
1 0 . . . 0


(3.3)

In addition several constraints are added to F, in particular F has to be separable,
so that horizontal and vertical filtering can be applied separately. In this way:
a(i) = a(w − 1− i) and b(i) = b(w − 1− i) for i = 0, 1, ..., r − 1∑

a(i) =
∑

b(i) = 1
The key idea is to start from a first guess of horizontal and vertical filters, keeping
one of these fixed, we calculate the other one following different steps. Once the
filter value has been calculated, it is kept fixed to calculate the other one.
In this way, the overall algorithm can be divided in two main steps that are subdivi-
ded into 4 more steps each:
1) Update a, fixing b:

� U =
w−1∑
i=0

w−1∑
j=0

b(i)b(j)HijP of size w x r ;

� z =
w−1∑
i=0

b(i)MiP − Ur of size 1 x r ;

� âT = z.(P TU)−1 where âT = [a(0)a(1) . . . a(r − 1)]

� a = P â + Zr with Zr=[0 . . . 1 . . . 0] of size 1 x w.

2) Update b, fixed a:

� U=VP where V matrix of size w x w, such that Vij = aTHija;

� z = tP − Ur of size 1 x r, where ti = Mia of size 1 x w.
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3 – Wiener Filter

� b̂T = z.(P TU)−1 where b̂T = [b(0)b(1) . . . b(r − 1)]

� b = P b̂ + Zr with Zr=[0 . . . 1 . . . 0] of size 1 x w. [9]

3.1.2 Code

In the file pickrst.c of the AV1 codec, in function search wiener, the algorithm
described in the previous section is implemented.
The code that implements the Wiener Filter will be analyzed, but of the whole code
we have analyzed only the main functions that will be useful for the realization of
the hardware architecture. Several design choices have been adopted to try to realize
as faithfully as possible the algorithm described in the article, in detail:

� Instead of using matrices, vectors of different sizes are implemented and used
as matrices by means of loops with appropriate indexes.

� The type of the different vectors are int32 t and int64 t, this means that
these dimension are selected to avoid overflow and also that the code works
only with integer numbers.

� In order to work with integer numbers, we use a scale factor equal to 216

� The approximations are executed by means of division to power of two, that
are equal to shift and so truncation of the final bits. This implies that we
have a loss of informations, but thanks to the scale factor, the losses are not
relevant.

In order to better understand the code, the constant values defined at the beginning
of the code, used to parameterize the code itself, are shown.

� WIENER HALFWIN = 3

� WIENER WIN = 2 * WIENER HALFWIN + 1

� WIENER WIN2 = (WIENER WIN) * (WIENER WIN)

� WIENER HALFWIN1 = WIENER HALFWIN + 1

� WIENER FILT PREC BITS = 7

� WIENER FILT STEP = 1 << WIENER FILT PREC BITS

� WIENER FILT TAP0 MIDV = 3

13
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� WIENER FILT TAP1 MIDV = -7

� WIENER FILT TAP2 MIDV = 15

� WIENER FILT TAP3 MIDV = WIENER FILT STEP - 2 *
(WIENER FILT TAP0 MIDV + WIENER FILT TAP1 MIDV +
WIENER FILT TAP2 MIDV)

� WIENER TAP SCALE FACTOR = (int64 t)1 << 16

� NUM WIENER ITERS = 5

After the computation of the matrices H and M, the main function starts with
several functions to compute the final vectors a and b.
The main sub-functions of search wiener are analyzed below:

wiener decompose sep sym

This is the starting function in which the two vectors a and b are initialized with
a starting values. In addition it is also created the reference of the wanted values
of H and M. After this initializing part, the algorithm start with a loop in which
vectors a and b are calculated in an iterative way through the two main function
update a sep sym and update b sep sym.

1 stat ic int wiener decompose sep sym ( int wiener win , i n t 6 4 t *M, i n t 6 4 t
*H, i n t 3 2 t *a , i n t 3 2 t *b) {

2 stat ic const i n t 3 2 t i n i t f i l t [WIENER WIN] = {
3 WIENER FILT TAP0 MIDV, WIENER FILT TAP1 MIDV, WIENER FILT TAP2 MIDV

,WIENER FILT TAP3 MIDV, WIENER FILT TAP2 MIDV,
WIENER FILT TAP1 MIDV,WIENER FILT TAP0 MIDV} ;

4 . . .
5 for ( i = 0 ; i < wiener win ; i++) {
6 a [ i ] = b [ i ] =
7 WIENER TAP SCALE FACTOR / WIENER FILT STEP * i n i t f i l t [ i +

p l a n e o f f ] ;
8 }
9 for ( i = 0 ; i < wiener win ; i++) {

10 Mc[ i ] = M + i * wiener win ;
11 for ( j = 0 ; j < wiener win ; j++) {
12 Hc [ i * wiener win + j ] =
13 H + i * wiener win * wiener win2 + j * wiener win ;
14 }
15 }
16 i t e r = 1 ;
17 while ( i t e r < NUM WIENER ITERS) {
18 update a sep sym ( wiener win , Mc, Hc , a , b) ;

14
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19 update b sep sym ( wiener win , Mc, Hc , a , b) ;
20 i t e r ++;
21 }
22 return 1 ;
23 }

update a sep sym

This is one of the two main functions of the code. We can divide this function in
four different parts:

� Vectors A and B are computated
In detail, A is a vector of 4 positions, the value of each position is calculated
iteratively by adding the previous value of the same position to the new one.
The different values are calculated as the product, properly scaled, of a certain
value of M and the corresponding value of the initial vector b.
The vector B, of size 16, is also calculated in the same way, but now, the
product is between a value of matrix H and two values of the initial vector b.

� Normalization enforcement
Vectors A and B, previously computed, are normalized using a sequence of
operations involving the values of the vectors themselves. The goal of these
operations is to compress the two vectors in order to adapt them to the linear
system of equations. So, in the end, the final sizes of the vectors A and B are
1x3 and 3x3 respectively1.

� Linsolve function
The linsolve function is called, in this function vector S is computated and
returned at the main function. Vector S is the first half of the final vector a.

� Final a computation Starting from vector S, vector a is calculated respecting
the symmetry constraints and the scale factor.

1 stat ic AOM INLINE void update a sep sym ( int wiener win , i n t 6 4 t **Mc,
i n t 6 4 t **Hc , i n t 3 2 t *a , i n t 3 2 t *b) {

2 int i , j ;
3 i n t 3 2 t S [WIENER WIN ] ;
4 i n t 6 4 t A[WIENER HALFWIN1] , B[WIENER HALFWIN1 * WIENER HALFWIN1 ] ;
5 const int wiener win2 = wiener win * wiener win ;
6 const int wiene r ha l fw in1 = ( wiener win >> 1) + 1 ;
7 memset (A, 0 , s izeof (A) ) ;
8 memset (B, 0 , s izeof (B) ) ;

1Even if A and B are defined as vectors, they are used as if they were matrices using indices in
an appropriate way.
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9 for ( i = 0 ; i < wiener win ; i++) {
10 for ( j = 0 ; j < wiener win ; ++j ) {
11 const int j j = wrap index ( j , wiener win ) ;
12 A[ j j ] += Mc[ i ] [ j ] * b [ i ] / WIENER TAP SCALE FACTOR;
13 }
14 }
15 for ( i = 0 ; i < wiener win ; i++) {
16 for ( j = 0 ; j < wiener win ; j++) {
17 int k , l ;
18 for ( k = 0 ; k < wiener win ; ++k ) {
19 for ( l = 0 ; l < wiener win ; ++l ) {
20 const int kk = wrap index (k , wiener win ) ;
21 const int l l = wrap index ( l , wiener win ) ;
22 B[ l l * wiene r ha l fw in1 + kk ] +=
23 Hc [ j * wiener win + i ] [ k * wiener win2 + l ] * b [ i ] /
24 WIENER TAP SCALE FACTOR * b [ j ] / WIENER TAP SCALE FACTOR;
25 }
26 }
27 }
28 }
29 // Normal izat ion enforcement in the system o f equat ions i t s e l f
30 for ( i = 0 ; i < wiene r ha l fw in1 − 1 ; ++i ) {
31 A[ i ] −=
32 A[ wiene r ha l fw in1 − 1 ] * 2 +
33 B[ i * wiene r ha l fw in1 + wiene r ha l fw in1 − 1 ] −
34 2 * B[ ( w i ene r ha l fw in1 − 1) * wiene r ha l fw in1 + (

wiene r ha l fw in1 − 1) ] ;
35 }
36 for ( i = 0 ; i < wiene r ha l fw in1 − 1 ; ++i ) {
37 for ( j = 0 ; j < wiene r ha l fw in1 − 1 ; ++j ) {
38 B[ i * wiene r ha l fw in1 + j ] −=
39 2 * (B[ i * wiene r ha l fw in1 + ( wiene r ha l fw in1 − 1) ] +
40 B[ ( w i ene r ha l fw in1 − 1) * wiene r ha l fw in1 + j ] −
41 2 * B[ ( w i ene r ha l fw in1 − 1) * wiene r ha l fw in1 +
42 ( w i ene r ha l fw in1 − 1) ] ) ;
43 }
44 }
45 i f ( l i n s o l v e w i e n e r ( w i ene r ha l fw in1 − 1 , B, wiener ha l fw in1 , A, S) ) {
46 S [ w i ene r ha l fw in1 − 1 ] = WIENER TAP SCALE FACTOR;
47 for ( i = wiene r ha l fw in1 ; i < wiener win ; ++i ) {
48 S [ i ] = S [ wiener win − 1 − i ] ;
49 S [ w i ene r ha l fw in1 − 1 ] −= 2 * S [ i ] ;
50 }
51 memcpy( a , S , wiener win * s izeof (* a ) ) ;
52 }
53 }
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update b sep sym

This is the second main function. It is very similar to the update a function, but, in
input, it has the vector a previously calculated. The subdivision into four parts is the
same, each part performs the same operations, also the linsolve function is the sa-
me. The only change is that in products, instead of multiplying by different values of
b, it multiplies by different values of a. So at the end the final vector b is computated.

1 stat ic AOM INLINE void update b sep sym ( int wiener win , i n t 6 4 t **Mc,
i n t 6 4 t **Hc , i n t 3 2 t *a , i n t 3 2 t *b) {

2 int i , j ;
3 i n t 3 2 t S [WIENER WIN ] ;
4 i n t 6 4 t A[WIENER HALFWIN1] , B[WIENER HALFWIN1 * WIENER HALFWIN1 ] ;
5 const int wiener win2 = wiener win * wiener win ;
6 const int wiene r ha l fw in1 = ( wiener win >> 1) + 1 ;
7 memset (A, 0 , s izeof (A) ) ;
8 memset (B, 0 , s izeof (B) ) ;
9 for ( i = 0 ; i < wiener win ; i++) {

10 const int i i = wrap index ( i , wiener win ) ;
11 for ( j = 0 ; j < wiener win ; j++) {
12 A[ i i ] += Mc[ i ] [ j ] * a [ j ] / WIENER TAP SCALE FACTOR;
13 }
14 }
15 for ( i = 0 ; i < wiener win ; i++) {
16 for ( j = 0 ; j < wiener win ; j++) {
17 const int i i = wrap index ( i , wiener win ) ;
18 const int j j = wrap index ( j , wiener win ) ;
19 int k , l ;
20 for ( k = 0 ; k < wiener win ; ++k ) {
21 for ( l = 0 ; l < wiener win ; ++l ) {
22 B[ j j * wiene r ha l fw in1 + i i ] +=
23 Hc [ i * wiener win + j ] [ k * wiener win2 + l ] * a [ k ] /
24 WIENER TAP SCALE FACTOR * a [ l ] / WIENER TAP SCALE FACTOR;
25 }
26 }
27 }
28 }
29 // Normal izat ion enforcement in the system o f equat ions i t s e l f
30 for ( i = 0 ; i < wiene r ha l fw in1 − 1 ; ++i ) {
31 A[ i ] −=
32 A[ wiene r ha l fw in1 − 1 ] * 2 +
33 B[ i * wiene r ha l fw in1 + wiene r ha l fw in1 − 1 ] −
34 2 * B[ ( w i ene r ha l fw in1 − 1) * wiene r ha l fw in1 + (

wiene r ha l fw in1 − 1) ] ;
35 }
36 for ( i = 0 ; i < wiene r ha l fw in1 − 1 ; ++i ) {
37 for ( j = 0 ; j < wiene r ha l fw in1 − 1 ; ++j ) {
38 B[ i * wiene r ha l fw in1 + j ] −=
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39 2 * (B[ i * wiene r ha l fw in1 + ( wiene r ha l fw in1 − 1) ] +
40 B[ ( w i ene r ha l fw in1 − 1) * wiene r ha l fw in1 + j ] −
41 2 * B[ ( w i ene r ha l fw in1 − 1) * wiene r ha l fw in1 +
42 ( w i ene r ha l fw in1 − 1) ] ) ;
43 }
44 }
45 i f ( l i n s o l v e w i e n e r ( w i ene r ha l fw in1 − 1 , B, wiener ha l fw in1 , A, S) ) {
46 S [ w i ene r ha l fw in1 − 1 ] = WIENER TAP SCALE FACTOR;
47 for ( i = wiene r ha l fw in1 ; i < wiener win ; ++i ) {
48 S [ i ] = S [ wiener win − 1 − i ] ;
49 S [ w i ene r ha l fw in1 − 1 ] −= 2 * S [ i ] ;
50 }
51 memcpy(b , S , wiener win * s izeof (*b) ) ;
52 }
53 }

linsolve wiener

At this point we have this linear system of equations2:

A0 A1 A2

A4 A5 A6

A8 A9 A10

x0

x1

x2

 =

b0
b1
b2

 (3.4)

In order to solve it and to find vector of solutions x, Gauss elimination method was
chosen. We can divide the algorithm into three parts:

� Partial pivoting: The goal is to bring the row with the largest pivot to the
top of the matrix, so it compare the pivot of the rows and if one pivot is bigger
than the other, it swap the corresponding rows.

� Forward elimination: Here we convert A and b to row-echelon form.
These two steps are performed alternately twice.

� Back substitution and store x: This is the last step, here we calculate the
x solution properly scaled through back substitution, typical of linear equation
system solutions.

1 stat ic int l i n s o l v e w i e n e r ( int n , i n t 6 4 t *A, int s t r i d e , i n t 6 4 t *b ,
i n t 3 2 t *x ) {

2 for ( int k = 0 ; k < n − 1 ; k++) {
3 // P a r t i a l p i vo t ing : br ing the row with the l a r g e s t p ivot to the

top

2Note that the real A and b are 4x4 and 1x4 size respectively, but we only use the 3x3 size A
submatrix and the 1x3 size b subvector.
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4 for ( int i = n − 1 ; i > k ; i−−) {
5 // I f row i has a b e t t e r ( b i gge r ) p ivot than row ( i −1) , swap them
6 i f ( l l a b s (A[ ( i − 1) * s t r i d e + k ] ) < l l a b s (A[ i * s t r i d e + k ] ) ) {
7 for ( int j = 0 ; j < n ; j++) {
8 const i n t 6 4 t c = A[ i * s t r i d e + j ] ;
9 A[ i * s t r i d e + j ] = A[ ( i − 1) * s t r i d e + j ] ;

10 A[ ( i − 1) * s t r i d e + j ] = c ;
11 }
12 const i n t 6 4 t c = b [ i ] ;
13 b [ i ] = b [ i − 1 ] ;
14 b [ i − 1 ] = c ;
15 }
16 }
17 // Forward e l i m i n a t i o n ( convert A to row−eche lon form )
18 for ( int i = k ; i < n − 1 ; i++) {
19 i f (A[ k * s t r i d e + k ] == 0) return 0 ;
20 const i n t 6 4 t c = A[ ( i + 1) * s t r i d e + k ] ;
21 const i n t 6 4 t cd = A[ k * s t r i d e + k ] ;
22 for ( int j = 0 ; j < n ; j++) {
23 A[ ( i + 1) * s t r i d e + j ] −= c / 256 * A[ k * s t r i d e + j ] / cd *

256 ;
24 }
25 b [ i + 1 ] −= c * b [ k ] / cd ;
26 }
27 }
28 // Back−s u b s t i t u t i o n
29 for ( int i = n − 1 ; i >= 0 ; i−−) {
30 i f (A[ i * s t r i d e + i ] == 0) return 0 ;
31 i n t 6 4 t c = 0 ;
32 for ( int j = i + 1 ; j <= n − 1 ; j++) {
33 c += A[ i * s t r i d e + j ] * x [ j ] / WIENER TAP SCALE FACTOR;
34 }
35 // Store f i l t e r taps x in s c a l e d form .
36 x [ i ] = ( i n t 3 2 t ) (WIENER TAP SCALE FACTOR * (b [ i ] − c ) / A[ i *

s t r i d e + i ] ) ;
37 }
38 return 1 ;
39 }
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Chapter 4

Basic Wiener Filter

Starting from the concepts seen in the previous chapter, it was decided to create
a basic hardware architecture of the Wiener Filter. A basic architecture means a
structure that simply executes the basic algorithm of the Wiener Filter. This implies
you will work without taking into account the limitations of available hardware and
without evaluating the critical paths and combinatorial paths. This structure will be
used as a starting point to later realize a hardware architecture for a Wiener Filter
that works at high frequency. In this chapter the various blocks that compose the
architecture will be analyzed and the design choices will be discussed in detail.

4.1 Initial Design Choices

Looking carefully at the code, it was observed that it is structured to be more easily
adaptable to a hardware algorithm. So it was decided to faithfully follow the choices
made in the codec. In detail, the parallelism of the inputs has been maintained, the
maximum parallelism of the internal operations of the algorithm has been fixed at 64
bit, as in the code. In addition, to avoid working with decimal digits and therefore
with fixed or floating point numbers, the scale factor of 216 has been maintained.
Finally, as concerns rounding, several solutions have been adopted to obtain the
same results as in the codec and therefore have negligible information losses. Finally,
as mentioned above, the algorithm calculates the vectors a and b iteratively, so it
was decided to create a architecture that would implement only one iteration, in
order to execute the core of the algorithm.

4.2 Top Level

For dimensioning problems, we decided to have as inputs to the architecture the M
matrix and the appropriate Hij matrices, all of size 7x7 and 64 bit for each element,
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all computed by the software, and the initial vector b of 7 elements, each of 32
bits. The outputs instead are the two new vectors a and b both of 7 elements of 32
bits and a done signal that indicate the availability of the output data for the next
iteration. The whole architecture(4.1) is divided into two main blocks:

� Update a: it calculates the new vector a and provides it to both the output
buffer and the next block.

� Update b: it receives the new vector a and provides the new vector b to the
output buffer.

Once completed, the done signal enables the two tri-state buffers that provide the two
vectors to the output. The main FSM(4.2) is very simple, it will start the Update
a block, once it will provide the ”done” signal, the FSM will start the Update b
block. At the end of the operation it will provide its done signal and then the FSM
will provide the main done in output.
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Figure 4.1: Top Level Execution Unit of Wiener Filter architecture.

22



4 – Basic Wiener Filter

Figure 4.2: Top Level FSM of Wiener Filter architecture.

4.3 Update a

This block(4.3) is one of the two main blocks that compose the device and is divided
into several sub-blocks that interact among each other. The inputs are:

� The starting vector b composed of 7 elements of 32 bits each.

� The Hij square matrix, a proper sub-matrix of the H matrix, of 49 elements,
each of 64 bits.

� The whole square matrix M, of 49 elements, each of 64 bits.

The output is the new vector a of 7 elements, each of 32 bits. First of all, to select
the correct values of the vector b, of the matrix M and for the correct working of
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the FSM cycles, two counters of 3 bits each are instantiated. The block algorithm
can be divided into two parts that work in parallel. In the first part, the partial
square matrices B of 16 elements of 64 bits are calculated as the product between
the elements of the matrix Hij and two elements of the vector b, which we can
summarize in Hijbibj . At the end of the computation, each partial matrix B is
accumulated to the sum of the previous ones by means of the MATRIX SUM block,
to obtain a single matrix B. In the second part, the partial vectors A composed
of 4 elements of 64 bits each are calculated as the product between the elements
of the vector Mi, selected by the M SELECTION block, and an element of the
vector b, which we can summarize in Mibj . At the end of each calculation, the
partial vector A is accumulated at the sum of the previous ones, by means of the
SUM VECTOR block to obtain a single vector A. Once the calculation of the
matrix B and the vector A is finished, they are processed in the Enforcement
block to obtain a square matrix B of 9 elements each of 64 bits and a vector A of
3 elements each of 64 bits. At this point we make a change in the nomenclature,
as happens in the code, to have the same of a linear system Ax = B. So now
we have a 3x3 matrix A and a 1x3 vector B. In the following steps, which will be
analyzed in detail later, the linear system is solved to obtain the vector of solutions
x. The blocks of PIVOTING and FORWARD ELIMINATION are used twice,
on different rows of the matrix and on different elements of the vector, thanks to
the use of two multiplexers placed at the entrance of the two blocks. At the end
of the two cycles, through the BACK-SUBSTITUTION STORING block, the
vector of the solutions x of 3 elements, each of 32 bits, is calculated. Finally, to
obtain the final vector a of 7 elements, each of 32 bits, the symmetry constraints are
applied to the vector x to obtain the last three values and the equality condition
and scale factor to obtain the central element. The FSM (4.4) is managed by the
two counter signals. After the block enable signal, we find a loop, the execution
unit performs the operations of the SUM J state until counter J reaches 6. Once
the first cycle is finished, we find two nested loops. The FSM goes into the SUM
I state and a further SUM J state, at this point the FSM remains in the SUM
J state until the Counter-J reaches the value of 6, at that point, if the Counter-I
has not yet reached the value of 6, the second cycle of SUM J starts again. Once
the two nested loops are completed, the remaining states are executed in succession,
without further conditions. In detail, the ENABLE ENFORCEMENT state
enables enforcement block operations, the K0 SEL0 and K1 SEL1 states direct
multiplexers for correct operation and input, and after the execution of pivoting
and forward elimination blocks, the DONE A state signals that the output data is
correct and the ENABLE B state enables the next block.

24



4 – Basic Wiener Filter

Figure 4.3: Update a Execution Unit.
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Figure 4.4: Update a FSM.
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4.4 Hijbibj

The product between the elements of the Hij matrix and the two elements of vector b
is computed in this block.(4.5) The inputs are the Hij matrix, and the two elements
of the b vector already selected. Before proceeding with the operations, since later
right shifts will be made and that involve truncation with the loss of LSB, the
absolute values of the two input b values are computed. In this way, at the end of
the operations, we will obtain the same approximate values of the codec, then to
the final result will be applied the correct sign evaluating the signs of the two values
of b, applying the two’s complement in case of negative sign. In the matrix of the
partial products each product between the element Hij(j, i) (matrix elements are
selected by scanning the matrix column by column) and the two absolute values of
the elements of the input vector b is saved. After each multiplication of the element
of b, a right shift of 16 positions (division by 216) is made to respect the coherence
with the scale factor and to avoid overflow.

1 FOR I IN 0 TO 6 LOOP

2 FOR J IN 0 TO 6 LOOP

3 PP_ABS(I,J) <=( shift_right ((( shift_right ((H_IN(J,I)*ABS_BIN1) ,16)(63

DOWNTO 0))*ABS_BIN2) ,16));

Each element of the square output matrix consisting of 16 elements of 64 bits is
calculated by the sum of specific elements of the partial product matrix.

1 B0 <=PP(0,0)(63 DOWNTO 0)+PP(0,6)(63 DOWNTO 0)+PP(6,0)(63 DOWNTO 0)+

PP(6,6)(63 DOWNTO 0);

2 B4 <=PP(0,1)(63 DOWNTO 0)+PP(0,5)(63 DOWNTO 0)+PP(6,1)(63 DOWNTO 0)+

PP(6,5)(63 DOWNTO 0);

3 B8 <=PP(0,2)(63 DOWNTO 0)+PP(0,4)(63 DOWNTO 0)+PP(6,2)(63 DOWNTO 0)+

PP(6,4)(63 DOWNTO 0);

4 B12 <=PP(0,3)(63 DOWNTO 0) + PP(6,3)(63 DOWNTO 0);

5
6 B1 <=PP(1,0)(63 DOWNTO 0)+PP(1,6)(63 DOWNTO 0)+PP(5,0)(63 DOWNTO 0)+

PP(5,6)(63 DOWNTO 0);

7 B5 <=PP(1,1)(63 DOWNTO 0)+PP(1,5)(63 DOWNTO 0)+PP(5,1)(63 DOWNTO 0)+

PP(5,5)(63 DOWNTO 0);

8 B9 <=PP(1,2)(63 DOWNTO 0)+PP(1,4)(63 DOWNTO 0)+PP(5,2)(63 DOWNTO 0)+

PP(5,4)(63 DOWNTO 0);

9 B13 <=PP(1,3)(63 DOWNTO 0) + PP(5,3)(63 DOWNTO 0);

10
11 B2 <=PP(2,0)(63 DOWNTO 0)+PP(2,6)(63 DOWNTO 0)+PP(4,0)(63 DOWNTO 0)+

PP(4,6)(63 DOWNTO 0);

12 B6 <=PP(2,1)(63 DOWNTO 0)+PP(2,5)(63 DOWNTO 0)+PP(4,1)(63 DOWNTO 0)+

PP(4,5)(63 DOWNTO 0);

13 B10 <=PP(2,2)(63 DOWNTO 0)+PP(2,4)(63 DOWNTO 0)+PP(4,2)(63 DOWNTO 0)

+ PP(4,4)(63 DOWNTO 0);

14 B14 <=PP(2,3)(63 DOWNTO 0) + PP(4,3)(63 DOWNTO 0);
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16 B3 <=PP(3,0)(63 DOWNTO 0) + PP(3,6)(63 DOWNTO 0);

17 B7 <=PP(3,1)(63 DOWNTO 0) + PP(3,5)(63 DOWNTO 0);

18 B11 <=PP(3,2)(63 DOWNTO 0) + PP(3,4)(63 DOWNTO 0);

19 B15 <=PP(3,3)(63 DOWNTO 0);

20 . . .

21 H_IJ_BIJ_OUT <=((B0 ,B1 ,B2 ,B3),(B4 ,B5 ,B6 ,B7),(B8 ,B9 ,B10 ,B11), (B12 ,

B13 , B14 , B15));
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Figure 4.5: Hijbibj Execution Unit.
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4.5 Mibi

This block (4.6) follows the same procedure as the previous block. The inputs are the
Mi vector and an element of the b vector, previously selected. Again, the absolute
value of the bi value is computed for the same approximation as in the previous
block. Each product between a value of the vector Mi and bi, properly shifted, are
saved in a matrix of partial products. After applying the correct signs to the partial
products, the 4 elements of the output vector, of 64 bits, are calculated by summing
the elements of the matrix of partial products.

1 FOR I IN 0 TO 2 LOOP

2 PP_ABS(I)<=shift_right ((M_IN(I)*ABS_B) ,16);

3 PP_ABS(6-I)<=shift_right ((M_IN(6-I)*ABS_B) ,16);

4 . . .

5 MIJ_BI_OUT(I) <=PP(I)(63 DOWNTO 0) + PP(6-I)(63 DOWNTO 0);

6 END LOOP

7 PP_ABS (3) <=shift_right ((M_IN (3)*ABS_B) ,16);

8 . . .

9 MIJ_BI_OUT (3) <=PP(3)(63 DOWNTO 0);

Figure 4.6: Mibi Execution Unit.
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4.6 Enforcement

The block Enforcement(4.7), has in input the vector A and the square matrix B
previously calculated. Through simple operations of addition, subtraction and shift
between the same elements of the two inputs, we obtain the same amount of elements
as output, but with different dimensions, in detail we have the vector A ENF of 3
elements of 64 bit and the 3x3 matrix B ENF of which each element has a size of
64 bit.

1 FOR I IN 0 TO 2 LOOP

2 A_ENF(I) <=A_IN(I)-shift_left(A_IN (3) ,1) - B_IN(I,3) + shift_left(

B_IN (3,3) ,1);

3 END LOOP;

4
5 FOR I IN 0 TO 2 LOOP

6 FOR J IN 0 TO 2 LOOP

7 ARGUMENT(I,J) <=B_IN(I,3) + B_IN(3,J) - shift_left(B_IN (3,3) ,1);

8 B_ENF(I,J) <=B_IN(I,J) - (shift_left(ARGUMENT(I,J) ,1));

9 END LOOP;

10 END LOOP;
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Figure 4.7: Enforcement Execution Unit.

4.7 Solution of Linear System

At this point, through a variable change, we will call the vector A ENF, B and the
matrix B ENF, A. In this way we have to solve the following linear system:A0 A1 A2

A4 A5 A6

A8 A9 A10

x0

x1

x2

 =

B0

B1

B2

 (4.1)

that can be simple rewritten as:

Ax = B (4.2)
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We can follow two approaches to find the vector of solutions x. The first one consists
in solving the equation:

x = BA−1 (4.3)

Moving in this direction, we have to calculate the inverse of matrix A. Assuming you
want to implement a block that performs matrix A inversion, you would have matrix
A at the input. The calculation of the inverse matrix implies the computation of the
Cij coefficients. Since each element of matrix A is 64 bits, each Cij coefficient will
be 128 bits size. After that we proceed to calculate the determinant of the matrix
A, through the Rule of Sarrus, obtaining a value of 192 bits. At this point, once the
matrix of coefficients has been transposed, an Adj matrix is obtained. Finally, the
division between the Adj matrix and the determinant should be performed. This
results in an A−1 3x3 matrix of 192 bits.

1 C00 <=( IN_MATRIX (1,1)* IN_MATRIX (2,2)) - (IN_MATRIX (2,1)*IN_MATRIX

(1,2));

2 C01 <=-(( IN_MATRIX (1,0)* IN_MATRIX (2,2)) - (IN_MATRIX (2,0)*IN_MATRIX

(1,2)));

3 C02 <=( IN_MATRIX (1,0)* IN_MATRIX (2,1)) - (IN_MATRIX (2,0)*IN_MATRIX

(1,1));

4 C10 <=-(( IN_MATRIX (0,1)* IN_MATRIX (2,2)) - (IN_MATRIX (2,1)*IN_MATRIX

(0,2)));

5 C11 <=( IN_MATRIX (0,0)* IN_MATRIX (2,2)) - (IN_MATRIX (2,0)*IN_MATRIX

(0,2));

6 C12 <=-(( IN_MATRIX (0,0)* IN_MATRIX (2,1)) - (IN_MATRIX (2,0)*IN_MATRIX

(0,1)));

7 C20 <=( IN_MATRIX (0,1)* IN_MATRIX (1,2)) - (IN_MATRIX (1,1)*IN_MATRIX

(0,2));

8 C21 <=-(( IN_MATRIX (0,0)* IN_MATRIX (1,2)) - (IN_MATRIX (1,0)*IN_MATRIX

(0,2)));

9 C22 <=( IN_MATRIX (0,0)* IN_MATRIX (1,1)) - (IN_MATRIX (1,0)*IN_MATRIX

(0,1));

10
11 C<=((C00 ,C01 ,C02),(C10 , C11 ,C12),(C20 ,C21 ,C22));

12
13 DETERMINANT <= (IN_MATRIX (0,0)*C00)+( IN_MATRIX (0,1)*C01)+( IN_MATRIX

(0,2)*C02);

14
15 TRANSPOSITION : TRANSPOSITION_3X3 PORT MAP(IN_MATRIX=>C, OUT_MATRIX

=>ADJ);

16 RES : DIVISION PORT MAP (DIVIDEND => ADJ , DIVISOR => DETERMINANT ,

QUOTIENT => OUT_MATRIX);

As can be observed, this choice implies the execution of operations with elements
of excessive size and in particular when performing the division, this also implies
the implementation of a divider of incompatible dimensions with the entire system.
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Moreover, since this choice is not made by the codec, we are not able to guarantee
that every data can be correctly represented on 64 bits, so we are forced to extend
the number of bits every time we perform a multiplication operation. To overcome
the problem of the size of the divider, an alternative solution could be to avoid the
division and use of fixed or floating point representations, using approximate results
by applying the following approach. Taking advantage that dividing by powers of
two simply means applying a shift to the right of n positions on the data, we make
the following considerations:

Adj
det

= 1⇒ det = Adj
1
2
< Adj

det
≤ 1⇒ Adj ≤ det < 2Adj

1
22

< Adj
det
≤ 1

2
⇒ 2Adj ≤ det < 22Adj

1
23

< Adj
det
≤ 1

22
⇒ 22Adj ≤ det < 23Adj

and so on, more in general:
1
2n

< Adj
det
≤ 1

2n−1 ⇒ 2n−1Adj ≤ det < 2nAdj

Once the range of values to which the Adj
det

ratio belongs has been established, it is
approximated to the largest reciprocal of the power of two, then the power exponent
is saved in an output matrix. Finally, the product BA−1 can be performed simply
by shifting the values of the vector B, since the A−1 matrix is composed only by
reciprocal of powers of two.

1 FOR i IN 0 TO 2 LOOP

2 FOR j IN 0 TO 2 LOOP

3
4 ADJ_SHIFT(i,j,0) <=(ADJ(i,j));

5 ADJ_SHIFT(i,j,1) <=( shift_left(ADJ(i,j) ,1));

6 ADJ_SHIFT(i,j,2) <=( shift_left(ADJ(i,j) ,2));

7 ADJ_SHIFT(i,j,3) <=( shift_left(ADJ(i,j) ,3));

8 ADJ_SHIFT(i,j,4) <=( shift_left(ADJ(i,j) ,4));

9 ADJ_SHIFT(i,j,5) <=( shift_left(ADJ(i,j) ,5));

10 . . .

11 IF(DET = ADJ_SHIFT(i,j,0)) THEN

12 OUT_MATRIX(i,j) <="00000000";

13 ELSIF (DET >=( ADJ_SHIFT(i,j,1)) AND DET <( ADJ_SHIFT(i,j,2))) THEN

14 OUT_MATRIX(i,j) <="00000001";

15 ELSIF (DET >=( ADJ_SHIFT(i,j,2)) AND DET <( ADJ_SHIFT(i,j,3))) THEN

16 OUT_MATRIX(i,j) <="00000010";

17 ELSIF (DET >=( ADJ_SHIFT(i,j,3)) AND DET <( ADJ_SHIFT(i,j,4))) THEN

18 OUT_MATRIX(i,j) <="00000011";

19 ELSIF (DET >=( ADJ_SHIFT(i,j,4)) AND DET <( ADJ_SHIFT(i,j,5))) THEN

20 OUT_MATRIX(i,j) <="00000100";

21 ELSIF (DET >=( ADJ_SHIFT(i,j,5)) AND DET <( ADJ_SHIFT(i,j,6))) THEN

22 OUT_MATRIX(i,j) <="00000101";

23 . . .
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It can be seen that this approach has two main problems. The first is the need to use
a memory large enough to contain all the cases under examination and, secondly, we
can see that as n increases, the range of values in which the determinant is included
grows, since n can reach a value of 192 because the determinant is on 192 bit, the
approximation is not acceptable. In order to avoid these problems, it was decided to
follow the second direction, which is the same as the codec: solve the linear system
by applying the Gaussian Elimination method. This allows us to guarantee that each
data is correctly represented on 64 bits, and this allows us to avoid the extention of
the number of bits needed to represent the information and also allows us to obtain
the same results provided by the codec.

4.8 Gaussian Elimination method

To perform Gaussian Elimination method, we have to work on matrix A and vector
B iteratively. The goal is to obtain a matrix in reduced row echelon form. Since it is
a matrix with 3 rows, we will need two iterations. So both the partial pivoting block
and the forward elimination block will be used twice with different inputs selected
by two multiplexers.

4.8.1 Pivoting 1

In the first pivoting step(4.8), the absolute values of the pivots (first non-zero element
of the row) of the three rows of the matrix A are compared, the same rows and also
the values of vector B are sorted according to the increasing order of the pivots. In
this case the pivots are A0, A4 and A8, the first elements of each line.

1 IF(SELECTION =’0’) THEN --K=0

2 IF(ABS_A4 <ABS_A8) THEN

3 IF(ABS_A0 <ABS_A8) THEN

4 OUT_MATRIX <=(( IN_MATRIX (2,0),IN_MATRIX (2,1),IN_MATRIX

(2,2)),(IN_MATRIX (0,0),IN_MATRIX (0,1), IN_MATRIX (0,2)), (

IN_MATRIX (1,0),IN_MATRIX (1,1),IN_MATRIX (1,2)));

5 OUT_VECTOR <=( IN_VECTOR (2), IN_VECTOR (0), IN_VECTOR (1)

);

6 ELSE

7 OUT_MATRIX <=(( IN_MATRIX (0,0), IN_MATRIX (0,1),

IN_MATRIX (0,2)) ,(IN_MATRIX (2,0),IN_MATRIX (2,1),IN_MATRIX (2,2)),

(IN_MATRIX (1,0),IN_MATRIX (1,1),IN_MATRIX (1,2)));

8 OUT_VECTOR <=( IN_VECTOR (0), IN_VECTOR (2), IN_VECTOR (1)

);

9 END IF;

10 ELSIF (ABS_A0 <ABS_A4) THEN
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11 OUT_MATRIX <=(( IN_MATRIX (1,0),IN_MATRIX (1,1),IN_MATRIX

(1,2)),(IN_MATRIX (0,0),IN_MATRIX (0,1), IN_MATRIX (0,2)), (

IN_MATRIX (2,0),IN_MATRIX (2,1),IN_MATRIX (2,2)));

12 OUT_VECTOR <=( IN_VECTOR (1), IN_VECTOR (0), IN_VECTOR (2));

13 ELSE

14 OUT_MATRIX <= IN_MATRIX;

15 OUT_VECTOR <= IN_VECTOR;

16 END IF;
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Figure 4.8: Execution Unit of first part of Partial Pivoting block.

4.8.2 Forward Elimination 1

After sorting the rows, the first step of forward elimination(4.9) is taken. The goal is
to annul the pivots of the second and third line. To do this, we subtract from each
element of the second and third rows of the matrix A and from the element of vector
B, an appropriate value obtained by multiplying the pivot value of the relative row
with the corresponding value of the first row and dividing the result by the pivot of
the first row. For example, for the second row, we have:

A4 = A4 − A4A0

A0

A5 = A5 − A4A1

A0

A6 = A6 − A4A2

A0
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b1 = b1 − A4b0
A0

1 DIVIDEND4 <= shift_right(IN_MATRIX (1,0) ,8)*IN_MATRIX (0,0);

2 DIV4 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0), DIVIDEND=>

DIVIDEND4 (63 DOWNTO 0), QUOTIENT=>QUOTIENT4);

3 A4 <= IN_MATRIX (1,0)- shift_left(QUOTIENT4 ,8);

4 DIVIDEND5 <= shift_right(IN_MATRIX (1,0) ,8)*IN_MATRIX (0,1);

5 DIV5 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

DIVIDEND5 (63 DOWNTO 0),QUOTIENT=>QUOTIENT5);

6 A5 <= IN_MATRIX (1,1)- shift_left(QUOTIENT5 ,8);

7 DIVIDEND6 <= shift_right(IN_MATRIX (1,0) ,8)*IN_MATRIX (0,2);

8 DIV6 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

DIVIDEND6 (63 DOWNTO 0),QUOTIENT=>QUOTIENT6);

9 A6 <= IN_MATRIX (1,2)- shift_left(QUOTIENT6 ,8);

10 DIVIDEND8_K0 <= shift_right(IN_MATRIX (2,0) ,8)*IN_MATRIX (0,0);

11 DIV8_K0 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

DIVIDEND8_K0 (63 DOWNTO 0),QUOTIENT=>QUOTIENT8_K0);

12 A8_K0 <= IN_MATRIX (2,0)- shift_left(QUOTIENT8_K0 ,8);

13 DIVIDEND9_K0 <= shift_right(IN_MATRIX (2,0) ,8)*IN_MATRIX (0,1);

14 DIV9_K0 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

DIVIDEND9_K0 (63 DOWNTO 0),QUOTIENT=>QUOTIENT9_K0);

15 A9_K0 <= IN_MATRIX (2,1)- shift_left(QUOTIENT9_K0 ,8);

16 DIVIDEND10_K0 <= shift_right(IN_MATRIX (2,0) ,8)*IN_MATRIX (0,2);

17 DIV10_K0 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

DIVIDEND10_K0 (63 DOWNTO 0),QUOTIENT=>QUOTIENT10_K0);

18 A10_K0 <= IN_MATRIX (2,2)- shift_left(QUOTIENT10_K0 ,8);

19 B_DIVIDEND1 <= IN_MATRIX (1,0)*IN_VECTOR (0);

20 B_DIV1 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

B_DIVIDEND1 (63 DOWNTO 0),QUOTIENT=>QUOTIENTB1);

21 B1 <= IN_VECTOR (1) - QUOTIENTB1;

22 B_DIVIDEND2_K0 <= IN_MATRIX (2,0)*IN_VECTOR (0);

23 B_DIV2_K0 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

B_DIVIDEND2_K0 (63 DOWNTO 0),QUOTIENT=>QUOTIENTB2_K0);

24 B2_K0 <= IN_VECTOR (2) - QUOTIENTB2_K0;

25 IF (SELECTION =’0’) THEN

26 OUT_MATRIX <=(( IN_MATRIX (0,0),IN_MATRIX (0,1), IN_MATRIX (0,2)), (

A4 ,A5 ,A6), (A8_K0 ,A9_K0 ,A10_K0));

27 OUT_VECTOR <=( IN_VECTOR (0), B1, B2_K0);

To maintain the correct value and avoid overflow, we apply a right shift of 8 positions
to the first term of multiplication (A4 in the example) and then a left shift of 8
positions on the term to be subtracted, following the same method applied in the
codec.
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Figure 4.9: Execution Unit of first part of Forward Elimination block.

4.8.3 Pivoting 2

In the second pivoting step(4.10), since the initial values of the first two lines are
already null, we consider as pivot the A5 and A9 values and, as before, we swap the
two rows and the vector values if, evaluating the absolute values, A9 is bigger than
A5.

1 ELSE --K=1
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2 IF(ABS_A5 <ABS_A9) THEN

3 OUT_MATRIX <=(( IN_MATRIX (0,0), IN_MATRIX (0,1), IN_MATRIX (0,2)) ,(

IN_MATRIX (2,0),IN_MATRIX (2,1),IN_MATRIX (2,2)), (IN_MATRIX (1,0),

IN_MATRIX (1,1),IN_MATRIX (1,2)));

4 OUT_VECTOR <=( IN_VECTOR (0), IN_VECTOR (2), IN_VECTOR (1));

5 ELSE

6 OUT_MATRIX <= IN_MATRIX;

7 OUT_VECTOR <= IN_VECTOR;

8 END IF;

9 END IF;

Figure 4.10: Execution Unit of second part of Partial Pivoting block.

4.8.4 Forward Elimination 2

Finally, in the second step of forward elimination(4.11), to get the final matrix in
reduced row echelon form, we perform the same operations seen in the first step,
but now, considering only the last two rows and performing the operations only on
the elements of the last row. Also in this case, we perform shift operations to avoid
overflow.

A8 = A8 − A9A4

A5
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A9 = A9 − A9A5

A5

A10 = A10 − A9A6

A5

b1 = b1 − A9b1
A5

1 DIVIDEND8_K1 <= shift_right(IN_MATRIX (2,1) ,8)*IN_MATRIX (1,0);

2 DIV8_K1 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (1,1),

3 DIVIDEND=>DIVIDEND8_K1 (63 DOWNTO 0),

4 QUOTIENT=>QUOTIENT8_K1);

5 A8_K1 <= IN_MATRIX (2,0)- shift_left(QUOTIENT8_K1 ,8);

6
7 DIVIDEND9_K1 <= shift_right(IN_MATRIX (2,1) ,8)*IN_MATRIX (1,1);

8 DIV9_K1 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (1,1),

9 DIVIDEND=>DIVIDEND9_K1 (63 DOWNTO 0),

10 QUOTIENT=>QUOTIENT9_K1);

11 A9_K1 <= IN_MATRIX (2,1)- shift_left(QUOTIENT9_K1 ,8);

12
13 DIVIDEND10_K1 <= shift_right(IN_MATRIX (2,1) ,8)*IN_MATRIX (1,2);

14 DIV10_K1 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (1,1),

15 DIVIDEND=>DIVIDEND10_K1 (63 DOWNTO 0),

16 QUOTIENT=>QUOTIENT10_K1);

17 A10_K1 <= IN_MATRIX (2,2)- shift_left(QUOTIENT10_K1 ,8);

18
19 B_DIVIDEND2_K1 <= IN_MATRIX (2,1)*IN_VECTOR (1);

20 B_DIV2_K1 : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (1,1),

21 DIVIDEND=>B_DIVIDEND2_K1 (63 DOWNTO 0),

22 QUOTIENT=>QUOTIENTB2_K1);

23 B2_K1 <= IN_VECTOR (2) - QUOTIENTB2_K1;
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Figure 4.11: Execution Unit of second part of Forward Elimination block.

4.8.5 Back Substitution

This is the last step to get the linear system solution. Starting from the matrix in
reduced row echelon form:A0 A1 A2

0 A5 A6

0 0 A10

x0

x1

x2

 =

B0

B1

B2

 (4.4)

we proceed with the backwards substitution(4.12). In detail, the following operations
are performed:

x2 = B2

A10

x1 = B1−x2A6

A5

x0 = B0−(x1A1+x2A2)
A0

To obtain the correct value, we divide the value to be subtracted by the scaling
factor and finally multiply the result again by the scaling factor 216. In addition, to
get the same rounding of the codec, every time you have to perform a right shift
that involves a loss of bits, it is done on the absolute value, to have the same result
of the codec.
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1 DIVIDEND_1 <= shift_left(IN_VECTOR (2) ,16);

2 B2_A10_DIV : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (2,2),DIVIDEND=>

DIVIDEND_1 ,QUOTIENT=>X2);

3 PRODUCT_1 <=X2*IN_MATRIX (1,2);

4 PROCESS(PRODUCT_1 ,ABS_PROD_1 , C_1_SHIFT)

5 BEGIN

6 IF (PRODUCT_1 (127)=’1’) THEN

7 ABS_PROD_1 <=NOT(PRODUCT_1)+1;

8 ELSE

9 ABS_PROD_1 <= PRODUCT_1;

10 END IF;

11 C_1_SHIFT <= shift_right(ABS_PROD_1 ,16);

12 IF (PRODUCT_1 (127)=’1’) THEN

13 C_1 <=NOT(C_1_SHIFT)+1;

14 ELSE

15 C_1 <= C_1_SHIFT;

16 END IF;

17 END PROCESS;

18 B1_MENO_C <= IN_VECTOR (1)-C_1 (63 DOWNTO 0);

19 DIVIDEND_2 <= shift_left(B1_MENO_C ,16);

20 B1_A5_DIV : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (1,1),DIVIDEND=>

DIVIDEND_2 ,QUOTIENT=>X1);

21 PRODUCT_2 <=X1*IN_MATRIX (0,1);

22 PROCESS(PRODUCT_2 ,ABS_PROD_2 , C_2_SHIFT)

23 BEGIN

24 IF (PRODUCT_2 (127)=’1’) THEN

25 ABS_PROD_2 <=NOT(PRODUCT_2)+1;

26 ELSE

27 ABS_PROD_2 <= PRODUCT_2;

28 END IF;

29 C_2_SHIFT <= shift_right(ABS_PROD_2 ,16);

30 IF (PRODUCT_2 (127)=’1’) THEN

31 C_2 <=NOT(C_2_SHIFT)+1;

32 ELSE

33 C_2 <= C_2_SHIFT;

34 END IF;

35 END PROCESS;

36 PRODUCT_3 <=X2*IN_MATRIX (0,2);

37 PROCESS(PRODUCT_3 ,ABS_PROD_3 , C_3_SHIFT)

38 BEGIN

39 IF (PRODUCT_3 (127)=’1’) THEN

40 ABS_PROD_3 <=NOT(PRODUCT_3)+1;

41 ELSE

42 ABS_PROD_3 <= PRODUCT_3;

43 END IF;

44 C_3_SHIFT <= shift_right(ABS_PROD_3 ,16);

45 IF (PRODUCT_3 (127)=’1’) THEN

46 C_3_TEMP <=NOT(C_3_SHIFT)+1;

47 ELSE
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48 C_3_TEMP <= C_3_SHIFT;

49 END IF;

50 END PROCESS;

51 C_3 <=C_2+C_3_TEMP;

52 DIVIDEND_3 <= shift_left (( IN_VECTOR (0)-C_3(63 DOWNTO 0)) ,16);

53 B0_A0_DIV : DIVISION PORT MAP (DIVISOR=>IN_MATRIX (0,0),DIVIDEND=>

DIVIDEND_3 ,QUOTIENT=>X0);

54 OUT_VECTOR <=(X0(31 DOWNTO 0), X1(31 DOWNTO 0), X2(31 DOWNTO 0));

Figure 4.12: Execution Unit of Back Substitution block.

4.9 Update b

This block(4.13) is the second main block that compose the architecture and is very
similar to the previous one. It is also divided into several sub-blocks that interact
among each other. The inputs are:

44



4 – Basic Wiener Filter

� The vector a given by Update a block, composed of 7 elements of 32 bits
each.

� The Hij square matrix, a proper sub-matrix of the H matrix, of 49 elements,
each of 64 bits.

� The whole square matrix M, of 49 elements, each of 64 bits.

The output is the new vector b of 7 elements, each of 32 bits. Also in this case, to
select the correct values of the vector b, of the matrix M and for the correct working
of the FSM cycles, two counters of 3 bits each are instantiated. The block algorithm
can be divided again into two parts that work in parallel. In the first part, the partial
vectors B of 64 bits are calculated as the product between the elements of the matrix
Hij and two elements of the vector a, which we can summarize in Hijaiaj . At the
end of the computation, each partial vector PARTIAL B is stored into a partial
matrix. In order to obtain the matrix B each value of the partial matrix is added
with other values of the matrix itself properly selected and the result is stored in the
correct position of the final B matrix.

1 B_MATRIX_PARTIAL(INDEX_I_INT ,INDEX_J_INT)<=PARTIAL_B;

2 B_FINAL (0,0) <=B_MATRIX_PARTIAL (0,0)+B_MATRIX_PARTIAL (0,6)+

B_MATRIX_PARTIAL (6,0)+B_MATRIX_PARTIAL (6,6);

3 B_FINAL (0,1) <=B_MATRIX_PARTIAL (0,1)+B_MATRIX_PARTIAL (0,5)+

B_MATRIX_PARTIAL (6,1)+B_MATRIX_PARTIAL (6,5);

4 B_FINAL (0,2) <=B_MATRIX_PARTIAL (0,2)+B_MATRIX_PARTIAL (0,4)+

B_MATRIX_PARTIAL (6,2)+B_MATRIX_PARTIAL (6,4);

5 B_FINAL (0,3) <=B_MATRIX_PARTIAL (0,3)+B_MATRIX_PARTIAL (6,3);

6 B_FINAL (1,0) <=B_MATRIX_PARTIAL (1,0)+B_MATRIX_PARTIAL (1,6)+

B_MATRIX_PARTIAL (5,0)+B_MATRIX_PARTIAL (5,6);

7 B_FINAL (1,1) <=B_MATRIX_PARTIAL (1,1)+B_MATRIX_PARTIAL (1,5)+

B_MATRIX_PARTIAL (5,1)+B_MATRIX_PARTIAL (5,5);

8 B_FINAL (1,2) <=B_MATRIX_PARTIAL (1,2)+B_MATRIX_PARTIAL (1,4)+

B_MATRIX_PARTIAL (5,2)+B_MATRIX_PARTIAL (5,4);

9 B_FINAL (1,3) <=B_MATRIX_PARTIAL (1,3)+B_MATRIX_PARTIAL (5,3);

10 B_FINAL (2,0) <=B_MATRIX_PARTIAL (2,0)+B_MATRIX_PARTIAL (2,6)+

B_MATRIX_PARTIAL (4,0)+B_MATRIX_PARTIAL (4,6);

11 B_FINAL (2,1) <=B_MATRIX_PARTIAL (2,1)+B_MATRIX_PARTIAL (2,5)+

B_MATRIX_PARTIAL (4,1)+B_MATRIX_PARTIAL (4,5);

12 B_FINAL (2,2) <=B_MATRIX_PARTIAL (2,2)+B_MATRIX_PARTIAL (2,4)+

B_MATRIX_PARTIAL (4,2)+B_MATRIX_PARTIAL (4,4);

13 B_FINAL (2,3) <=B_MATRIX_PARTIAL (2,3)+B_MATRIX_PARTIAL (4,3);

14 B_FINAL (3,0) <=B_MATRIX_PARTIAL (3,0)+B_MATRIX_PARTIAL (3,6);

15 B_FINAL (3,1) <=B_MATRIX_PARTIAL (3,1)+B_MATRIX_PARTIAL (3,5);

16 B_FINAL (3,2) <=B_MATRIX_PARTIAL (3,2)+B_MATRIX_PARTIAL (3,4);

17 B_FINAL (3,3) <=B_MATRIX_PARTIAL (3,3);

In the second part, the partial vectors A of 64 bits each are calculated as the product
between the elements of the vector Mi, selected by the M SELECTION block,
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and an element of the vector a, which we can summarize in Miai. At the end of each
calculation, the partial vector A is stored into a partial array. In order to obtain the
array A each value of the partial array is added with other values of the array itself
properly selected and the result is stored in the correct position of the final A array.

1 A_ARRAY_PARTIAL(INDEX_J_INT) <=PARTIAL_A;

2 A_FINAL (0) <=A_ARRAY_PARTIAL (0)+A_ARRAY_PARTIAL (6);

3 A_FINAL (1) <=A_ARRAY_PARTIAL (1)+A_ARRAY_PARTIAL (5);

4 A_FINAL (2) <=A_ARRAY_PARTIAL (2)+A_ARRAY_PARTIAL (4);

5 A_FINAL (3) <=A_ARRAY_PARTIAL (3);

Once the calculation of the matrix B and the vector A is finished, they are processed
in the Enforcement block, that is exactly the same sub-block of Update a block,
to obtain a square matrix B of 9 elements each of 64 bits and a vector A of 3
elements each of 64 bits. At this point we make a change in the nomenclature, as
happens in the code, to have the same of a linear system Ax = B. So now we
have a 3x3 matrix A and a 1x3 vector B. The next steps are exactly the same as
the Update a block and so also all the following blocks are the same. The linear
system is solved to obtain the vector of solutions x. Also in this case, the blocks
of PIVOTING and FORWARD ELIMINATION are used twice, thanks to the
use of two multiplexers placed at the input of the two blocks. At the end of the two
cycles, through the BACK-SUBSTITUTION STORING block, the vector of
the solutions x of 3 elements, each of 32 bits, is computed. Finally, to obtain the final
vector b of 7 elements, each of 32 bits, the symmetry constraints are applied to the
vector x to obtain the last three values and the equality condition and scale factor to
obtain the central element. Also the FSM (4.14) is very similar and it is managed by
the two counter signals. After the block enable signal, we find a loop, the execution
unit performs the operations of the SUM J state until counter J reaches 5. Once
the first cycle is finished, we find two nested loops. The FSM goes into the SUM
I state and a further SUM J state, at this point the FSM remains in the SUM
J state until the Counter-J reaches the value of 5, at that point, if the Counter-I
has not yet reached the value of 6, the second cycle of SUM J starts again. Once
the two nested loops are completed, the remaining states are executed in succession,
without further conditions. In detail, the ENABLE ENFORCEMENT state
enables enforcement block operations, the K0 SEL0 and K1 SEL1 states direct
multiplexers for correct operation and input, and after the execution of pivoting and
forward elimination blocks, the DONE state signals that the output data is correct.
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Figure 4.13: Update b Execution Unit.
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Figure 4.14: Update b FSM.
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4.10 Hijaiaj

As in the Hijbibj block, the product between the elements of the Hij matrix and
the two elements of vector a is computed.(4.15) The inputs are the Hij matrix, and
the a vector. Before proceeding with the operations, since later right shifts will be
made and that involve truncation with the loss of LSB, the absolute value of the a
vector is computed. In this way, at the end of the operations, we will obtain the same
approximate values of the codec, then to the final result will be applied the correct
sign evaluating the signs of the two values of a, applying the two’s complement in
case of negative sign. At the end of computation, each partial products between the
element Hij(j, i) (matrix elements are selected by scanning the matrix column by
column) and the two absolute values of the elements of the input vector a is added
to the sum of the previous ones. After each multiplication of the element of b, a
right shift of 16 positions (division by 216) is made to respect the coherence with
the scale factor and to avoid overflow.

1 FOR I IN 0 TO 6 LOOP

2 FOR J IN 0 TO 6 LOOP

3 B_ABS :=( shift_right ((( shift_right ((H_IN(J,I)*A_ABS(I)) ,16)(63

DOWNTO 0))*A_ABS(J)) ,16));

4 IF(A_IN(I)(31)=A_IN(J)(31)) THEN

5 B_TEMP :=B_ABS;

6 ELSE

7 B_TEMP :=NOT(B_ABS)+1;

8 END IF;

9 SUM_B :=SUM_B+B_TEMP (63 DOWNTO 0);

10 END LOOP;

11 END LOOP;

12 B_OUT <=SUM_B;
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Figure 4.15: Hijaiaj Execution Unit.

4.11 Miai

This is a very simple block(4.16) that follows the same procedure of the previous
block. The inputs are the Mi vector and the a vector. Also in this case, the absolute
value of a vector is computed for the same approximation as in the previous block.
Each product between a value of the vector Mi and ai, properly shifted, are added
to the sum of the previous partial products,after applying the correct signs to the
current partial products.

1 FOR I IN 0 TO 6 LOOP

2 A_ABSV := shift_right(M_IN(I)*A_ABS(I) ,16);

3 IF(A_IN(I)(31)=’0’) THEN
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4 A_TEMP := A_ABSV;

5 ELSE

6 A_TEMP :=NOT(A_ABSV)+1;

7 END IF;

8 SUM_A :=SUM_A+A_TEMP (63 DOWNTO 0);

9 END LOOP;

10 A_OUT <=SUM_A;

Figure 4.16: Miai Execution Unit.

4.12 Simulation and Performance

Once the construction of the whole architecture was completed, simulations were
performed to verify its correct functionality. By running the codec on the test file
Flowervase 416x240 30.yuv it was possible to extract different inputs thanks to
which we could test the architecture under different conditions. Also the intermediate
values and output values have been extracted in order to check step by step the

51



4 – Basic Wiener Filter

correct working of each block and, at the end, the final values of vectors a and b.
Different simulations have been performed, we report one of them as an example.
The extracted inputs and outputs are as follows:

� The starting vector b composed of 7 elements of 32 bits each.

b = (1536,−3584, 7680, 54272, 7680,−3584, 1536)

� The whole square matrix H of 2401 elements (49 x 49), each of 64 bits.

� The whole square matrix M, of 49 elements, each of 64 bits.

M =



4999060 5025613 5050784 5073739 5094182 5111263 5126710
5084193 5110307 5134816 5156655 5175379 5190825 5204412
5183739 5209022 5234019 5255837 5272390 5284822 5296317
5277779 5302305 5330294 5354683 5367976 5374936 5384627
5333327 5356248 5384184 5408160 5420160 5424455 5433045
5371176 5392191 5417990 5440158 5451263 5454868 5462529
5425034 5444236 5468202 5488891 5499249 5501899 5508557


(4.5)

� The final vector a composed of 7 elements of 32 bits each.

a = (982,−4862, 9525, 54246, 9525,−4862, 982)

� The final vector b composed of 7 elements of 32 bits each.

b = (566,−1995, 3719, 60956, 3719,−1995, 566)

In the following picture(4.17) we can observe the main relevant steps of our algorithm.
Highlighted in red we see the evolution of the block Update a ending when vector
a is updated, in blue we see the evolution of the block Update b ending when
vector b is updated. Once the the block Update b is finished, the tri-state buffers,
highlighted in yellow, are enabled and provide the new updated vectors as output.
You can also see the main control signals that handle the evolution of the states.
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Figure 4.17: Behavioural simulation of the circuit.

Once the correct working of the architecture was verified, it was synthesized using
the Synopsys tool and it was possible to obtain reports that gave details about the
characteristic of the architecture and its performance. In detail, this thesis work
explores in depth the analysis of architectural performance. Studying the report
timing you can see that, giving a clock of 10 ns, you get a negative SLACK of
-221.70 ns. From this we can derive that the architecture can work at a maximum
frequency of 4.3 MHz (Tclk = 232ns). Moreover, from the report timing extract, it
is highlighted which is the critical path. From these indications we can understand
where to operate to improve performance in terms of speed.

****************************************

Report : timing

-path full

-delay max

-max_paths 1

Design : BASIC_WIENER_FILTER

Version: M-2016.12

****************************************

# A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: typical Library: NangateOpenCellLibrary

Wire Load Model Mode: top

Startpoint: UPDATE_B_TOPLEVEL_PORTING/DP/REG_A_OUT/PORTING12/REG_OUT_reg[0]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Endpoint: B[3][27] (output port clocked by MY_CLOCK)

Path Group: MY_CLOCK

Path Type: max

Des/Clust/Port Wire Load Model Library

------------------------------------------------
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WIENER_FILTER 5K_hvratio_1_1 NangateOpenCellLibrary

Point Incr Path

--------------------------------------------------------------------------

clock MY_CLOCK (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

UPDATE_B_TOPLEVEL_PORTING/DP/REG_A_OUT/PORTING12/REG_OUT_reg[0]/CK (DFFR_X1)

0.00 # 0.00 r

UPDATE_B_TOPLEVEL_PORTING/DP/REG_A_OUT/PORTING12/REG_OUT_reg[0]/QN (DFFR_X1)

0.07 0.07 r

UPDATE_B_TOPLEVEL_PORTING/DP/REG_A_OUT/PORTING12/U2/ZN (INV_X1)

0.03 0.10 f

UPDATE_B_TOPLEVEL_PORTING/DP/REG_A_OUT/PORTING12/DATA_OUT[0] (REG_64BIT_4)

0.00 0.10 f

UPDATE_B_TOPLEVEL_PORTING/DP/REG_A_OUT/OUT_MATRIX[2][2][0] (REG_3X3_64BIT_1)

0.00 0.10 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/IN_MATRIX[2][2][0]

(BACK_SUB_STORING_1)

0.00 0.10 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/DIVISOR[0] (DIVISION_3)

0.00 0.10 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/B[0]

(DIVISION_3_DW01_sub_65)

0.00 0.10 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U187/ZN

(NOR2_X1)

0.06 0.15 r

. . .

UPDATE_B_TOPLEVEL_PORTING/DP/B_OUT[3][27] (UPDATE_B)

0.00 231.35 r

UPDATE_B_TOPLEVEL_PORTING/B[3][27] (UPDATE_B_TOPLEVEL)

0.00 231.35 r

B_TRI/IN_VECTOR[3][27] (BUFFER_TRI_STATE_1) 0.00 231.35 r

B_TRI/OUT_VECTOR_tri[3][27]/Z (TBUF_X1) 0.05 231.40 r

B_TRI/OUT_VECTOR[3][27] (BUFFER_TRI_STATE_1) 0.00 231.40 r

B[3][27] (out) 0.02 231.42 r

data arrival time 231.42

clock MY_CLOCK (rise edge) 232.00 232.00

clock network delay (ideal) 0.00 232.00

clock uncertainty -0.07 231.93

output external delay -0.50 231.43

data required time 231.43

--------------------------------------------------------------------------

data required time 231.43

data arrival time -231.42

--------------------------------------------------------------------------

slack (MET) 0.01
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Chapter 5

High Speed Wiener Filter

In this chapter we analyze the improvements that have been made to the basic
architecture to increase speed. In detail, from the timing reports you can see several
critical issues. The main one is related to the division operation, the others depend
on the combinational paths of the various sub-blocks. To improve these critical
issues, a new block that performs the division operation has been designed and
pipeline registers have been added within the sub-blocks to reduce the length of the
combinational paths. Starting from the basic architecture, only the blocks to which
changes have been made will be analyzed.

5.1 Division

In the main architecture timing report, it is highlighted that the critical paths are
those that include division operations. This led us to analyze this operation, studying
its report timing.

****************************************

Report : timing

-path full

-delay max

-max_paths 1

Design : BASIC_DIVISION

Version: M-2016.12

****************************************

Operating Conditions: typical Library: NangateOpenCellLibrary

Wire Load Model Mode: top

Startpoint: REG1/REG_OUT_reg[2]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Endpoint: REG3/REG_OUT_reg[11]

(rising edge-triggered flip-flop clocked by MY_CLOCK)
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Path Group: MY_CLOCK

Path Type: max

Des/Clust/Port Wire Load Model Library

------------------------------------------------

DIVISION 5K_hvratio_1_1 NangateOpenCellLibrary

Point Incr Path

--------------------------------------------------------------------------

clock MY_CLOCK (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

REG1/REG_OUT_reg[2]/CK (DFFR_X1) 0.00 0.00 r

REG1/REG_OUT_reg[2]/QN (DFFR_X1) 0.07 0.07 r

REG1/U14/ZN (INV_X1) 0.02 0.09 f

REG1/DATA_OUT[2] (REG_64BIT_0) 0.00 0.09 f

sub_add_65_b0/B[2] (DIVISION_DW01_sub_65) 0.00 0.09 f

sub_add_65_b0/U107/ZN (OR2_X1) 0.06 0.15 f

sub_add_65_b0/U110/ZN (NOR2_X1) 0.04 0.19 r

sub_add_65_b0/U114/ZN (AND2_X1) 0.05 0.24 r

sub_add_65_b0/U116/ZN (AND2_X1) 0.04 0.28 r

. . .

sub_add_89_b0/U328/ZN (XNOR2_X1) 0.03 66.35 f

sub_add_89_b0/DIFF[11] (DIVISION_DW01_sub_67) 0.00 66.35 f

U1495/ZN (AOI22_X1) 0.04 66.39 r

U1496/ZN (INV_X1) 0.02 66.41 f

REG3/DATA_IN[11] (REG_64BIT_1) 0.00 66.41 f

REG3/U23/Z (MUX2_X1) 0.06 66.48 f

REG3/REG_OUT_reg[11]/D (DFFR_X1) 0.01 66.49 f

data arrival time 66.49

clock MY_CLOCK (rise edge) 66.60 66.60

clock network delay (ideal) 0.00 66.60

clock uncertainty -0.07 66.53

REG3/REG_OUT_reg[11]/CK (DFFR_X1) 0.00 66.53 r

library setup time -0.04 66.49

data required time 66.49

--------------------------------------------------------------------------

data required time 66.49

data arrival time -66.49

--------------------------------------------------------------------------

slack (MET) 0.00

The divider used in the basic architecture is realized only using combinational
paths, since the divisions are realized on a high number of bits, this means having
a negative SLACK of -56.58 ns having used a clock of 10 ns, so the divider can
operate at a maximum frequency of 15.15 MHz (Tclk = 66.6ns). So we decided to
use a Restoring Divider (5.1), a totally different architecture that minimizes the
combinational paths, using several registers. In particular, two shift registers, two
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registers, a counter and a subtractor are used to run the algorithm. In the lower part
of a shift register of double size compared to the register of operators, i.e. 128 bit,
the value of the dividend is loaded, after which at each clock, it is subtracted from
the value of the upper half of the shift register, the divisor, if the result is positive, a
’1’ is saved in the quotient shift register and the partial reminder is loaded in the
upper half of the 128 bit shift register, otherwise, if the result is negative, a ’0’ is
saved in the quotient shift register and the partial reminder is not loaded. At each
clock, the shift registers shift data to the left of one position.

1 BEGIN

2 IF(DIVISOR (63)=’1’) THEN

3 ABS_DIVISOR <=( NOT(DIVISOR))+1;

4 ELSE

5 ABS_DIVISOR <= DIVISOR;

6 END IF;

7 IF(DIVIDEND (63)=’1’) THEN

8 ABS_DIVIDEND <=( NOT(DIVIDEND))+1;

9 ELSE

10 ABS_DIVIDEND <= DIVIDEND;

11 END IF;

12 END PROCESS;

13 INVERSION <= DIVISOR (63) XOR DIVIDEND (63);

14 COUNTER_64BIT : COUNTER_64 GENERIC MAP (N=>6)

15 PORT MAP (EN=>EN_CNT ,

16 CLOCK=>CLOCK ,

17 RST=>RESET ,

18 CNT=>COUNT);

19 COUNT_OUT <= COUNT;

20 EXT_DIVIDEND (127 DOWNTO 64) <=(OTHERS => ’0’);

21 EXT_DIVIDEND (63 DOWNTO 0) <= ABS_DIVIDEND;

22
23 PART_REM: SHIFT_REG_128BIT PORT MAP (CLOCK=>CLOCK ,

24 RESET=>RESET ,

25 EN_SHIFT=>EN_SHIFT_REM ,

26 LOAD_REM=>LOAD_REM ,

27 LOAD_Z=>LOAD_Z ,

28 DATA_IN_Z=>EXT_DIVIDEND ,

29 DATA_IN_REM=>PAR_SUM ,

30 DATA_OUT=> DATA_OUT_REM_REG);

31 QUOT: SHIFTER PORT MAP ( CLOCK=>CLOCK ,

32 RESET=>RESET ,

33 SHIFT=> EN_SHIFT_QUO ,

34 DATA_IN=>SIGN_BIT_REG ,

35 DATA_OUT=>PARTIAL_QUOTIENT);

36 DIV : REG_64BIT PORT MAP (CLOCK=>CLOCK ,

37 RESET=>RESET ,

38 EN=>LOAD_DIV ,

39 DATA_IN=>ABS_DIVISOR ,
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40 DATA_OUT=>DIVISOR_REG);

41 PAR_SUM <= DATA_OUT_REM_REG - DIVISOR_REG;

42 SIGN_BIT_REG <= NOT(PAR_SUM (63));

43 SIGN_BIT <= SIGN_BIT_REG;

44 PROCESS(INVERSION ,PARTIAL_QUOTIENT)

45 BEGIN

46 IF(INVERSION =’0’) THEN

47 QUOTIENT <= PARTIAL_QUOTIENT;

48 ELSE

49 QUOTIENT <=( NOT(PARTIAL_QUOTIENT)+1);

50 END IF;

Figure 5.1: Restoring Divider Execution Unit.

Looking at the timing report of this new architecture, we can see a significant
improvement, starting from a clock of 10 ns, we obtain a positive SLACK of 3.49 ns,
this means that the maximum operating frequency obtained for the Divider is 153.6
MHz (Tclk = 6.51ns).

****************************************

Report : timing
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-path full

-delay max

-max_paths 1

Design : RESTORING_DIVIDER

Version: M-2016.12

****************************************

Operating Conditions: typical Library: NangateOpenCellLibrary

Wire Load Model Mode: top

Startpoint: DP/PART_REM/TEMP_reg[64]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Endpoint: DP/PART_REM/TEMP_reg[64]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Path Group: MY_CLOCK

Path Type: max

Des/Clust/Port Wire Load Model Library

------------------------------------------------

DIVISION 5K_hvratio_1_1 NangateOpenCellLibrary

Point Incr Path

--------------------------------------------------------------------------

clock MY_CLOCK (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

DP/PART_REM/TEMP_reg[64]/CK (DFFR_X1) 0.00 0.00 r

DP/PART_REM/TEMP_reg[64]/Q (DFFR_X1) 0.09 0.09 f

DP/PART_REM/DATA_OUT[0] (SHIFT_REG_128BIT) 0.00 0.09 f

DP/sub_80/A[0] (DIVISION_DP_DW01_sub_0) 0.00 0.09 f

DP/sub_80/U5/ZN (INV_X1) 0.03 0.12 r

DP/sub_80/U4/ZN (NAND2_X1) 0.03 0.15 f

DP/sub_80/U2_1/CO (FA_X1) 0.09 0.24 f

DP/sub_80/U2_2/CO (FA_X1) 0.09 0.33 f

. . .

DP/PART_REM/U240/ZN (OAI221_X1) 0.06 6.39 f

DP/PART_REM/TEMP_reg[64]/D (DFFR_X1) 0.01 6.40 f

data arrival time 6.40

clock MY_CLOCK (rise edge) 10.00 10.00

clock network delay (ideal) 0.00 10.00

clock uncertainty -0.07 9.93

DP/PART_REM/TEMP_reg[64]/CK (DFFR_X1) 0.00 9.93 r

library setup time -0.05 9.88

data required time 9.88

--------------------------------------------------------------------------

data required time 9.88

data arrival time -6.40

--------------------------------------------------------------------------

slack (MET) 3.49
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5.2 Forward Elimination

The Forward Elimination block has been divided into two independent blocks
(5.2)(5.3) and pipeline registers have been added to each of these two blocks to make
the combinational paths shorter. In this way, starting from a critical path that
included both a multiplier and a divisor, the new critical path includes only one
multiplier.
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Figure 5.2: Forward Elimination 1 High Speed Execution Unit.
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Figure 5.3: Forward Elimination 2 High Speed Execution Unit.

5.3 Back Substitution

Pipeline registers are also inserted in the Back Substitution block (5.4) to reduce
the combinational paths. Starting from a critical path that included 3 divisors, 2
multipliers, 2 subtractors and a adder we were able to obtain a critical path that
included only one multiplier.
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Figure 5.4: Back Substitution High Speed Execution Unit.

63



5 – High Speed Wiener Filter

5.4 Update a and Update b

Finally, after also dividing the partial pivoting block into two independent blocks,
both in Update a (5.5) and Update b (5.6), pipeline registers are inserted between
the different sub-blocks in order to further reduce the length of the combinational
paths.
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Figure 5.5: Update a High Speed Execution Unit.
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Figure 5.6: Update b High Speed Execution Unit.
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Of course, the FSMs (5.7)(5.8) of the two main blocks have been modified, adding
wait states to synchronize operations, taking into account the addition of pipeline
registers and the new divider, which needs 64 clocks to complete its operation. In
this way, even if the FSMs are more complex, we get the same results as the main
architecture.
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Figure 5.7: Update a High Speed Finite State Machine.
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Figure 5.8: Update b High Speed Finite State Machine.
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5.5 Simulation and Performance

Once the improvements have been implemented, simulations (5.9) with the same
input patterns as the basic architecture have been performed to ensure that the new
architecture works properly. As we can see from the simulation, we obtain the same
results as the basic architecture, even if we have a different evolution of the states
and, since we have added many pipeline registers and inserted the new divider, which
requires several clocks to complete the division operation, the new architecture will
require much more clocks than the basic architecture.

Figure 5.9: Behavioural simulation of the new circuit.

Once the behavioral simulations were completed, the new architecture was synthe-
sized and we obtained the timing report so that we could compare the performance
of the new architecture and evaluate its improvements compared to the basic ar-
chitecture. We have synthesized two versions of the high-speed architecture, one
with the pipeline registers, but with the old divider and one complete, both with
the pipeline registers and the restoring divider. This is to understand what kind of
impact had the two kinds of changes applied.

****************************************

Report : timing

-path full

-delay max

-max_paths 1

Design : WIENER_FILTER

Version: M-2016.12

****************************************

# A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: typical Library: NangateOpenCellLibrary

Wire Load Model Mode: top
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Startpoint: UPDATE_B_TOPLEVEL_PORTING/DP/REG_FORW_1_A/PORTING12/REG_OUT_reg[0]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Endpoint: UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/REG_DIV3/REG_OUT_reg[63]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Path Group: MY_CLOCK

Path Type: max

Des/Clust/Port Wire Load Model Library

------------------------------------------------

WIENER_FILTER 5K_hvratio_1_1 NangateOpenCellLibrary

Point Incr Path

--------------------------------------------------------------------------

clock MY_CLOCK (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

UPDATE_B_TOPLEVEL_PORTING/DP/REG_FORW_1_A/PORTING12/REG_OUT_reg[0]/CK

(DFFR_X1)

0.00 # 0.00 r

UPDATE_B_TOPLEVEL_PORTING/DP/REG_FORW_1_A/PORTING12/REG_OUT_reg[0]/Q

(DFFR_X1)

0.09 0.09 f

UPDATE_B_TOPLEVEL_PORTING/DP/REG_FORW_1_A/PORTING12/DATA_OUT[0]

(REG_64BIT_11)

0.00 0.09 f

UPDATE_B_TOPLEVEL_PORTING/DP/REG_FORW_1_A/OUT_MATRIX[2][2][0]

(REG_3X3_64BIT_1)

0.00 0.09 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/IN_MATRIX[2][2][0]

(BACK_SUB_STORING_1)

0.00 0.09 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/DIVISOR[0]

(DIVISION_3)

0.00 0.09 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/B[0]

(DIVISION_3_DW01_sub_65)

0.00 0.09 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U16/ZN

(NOR2_X1)

0.06 0.15 r

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U69/ZN

(AND2_X1)

0.05 0.20 r

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U17/ZN

(AND2_X1)

0.05 0.25 r

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U10/ZN

(AND2_X1)

0.05 0.30 r

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U11/ZN
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(AND2_X1)

0.05 0.35 r

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U9/ZN

(AND2_X1)

0.05 0.40 r

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/B2_A10_DIV/sub_add_45_b0/U14/ZN

(AND2_X1)

0.05 0.45 r

. . .

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/sub_156/U1/ZN (INV_X1)

0.03 82.46 r

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/sub_156/U101/ZN (OAI21_X1)

0.03 82.49 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/sub_156/U99/ZN (XNOR2_X1)

0.05 82.55 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/sub_156/DIFF[47]

(BACK_SUB_STORING_1_DW01_sub_0)

0.00 82.55 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/REG_DIV3/DATA_IN[63]

(REG_64BIT_1)

0.00 82.55 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/REG_DIV3/U71/Z (MUX2_X1)

0.07 82.61 f

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/REG_DIV3/REG_OUT_reg[63]/D

(DFFR_X1)

0.01 82.62 f

data arrival time 82.62

clock MY_CLOCK (rise edge) 83.00 83.00

clock network delay (ideal) 0.00 83.00

clock uncertainty -0.07 82.93

UPDATE_B_TOPLEVEL_PORTING/DP/X_COMPUTATION/REG_DIV3/REG_OUT_reg[63]/CK

(DFFR_X1)

0.00 82.93 r

library setup time -0.04 82.89

data required time 82.89

--------------------------------------------------------------------------

data required time 82.89

data arrival time -82.62

--------------------------------------------------------------------------

slack (MET) 0.27

Analyzing the report timing of the architecture with the pipeline registers, but
with the old combinatorial divider, we notice that the critical path is still the
one that includes the divider, but, with a clock of 10 ns we can have a negative
SLACK of -72.73 ns, which implies a maximum operating frequency of 12.08 MHz
(Tclk = 82.73ns), that is an improvement of an order of magnitude compared to the
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original architecture.

****************************************

Report : timing

-path full

-delay max

-max_paths 1

Design : WIENER_FILTER_HS

Version: M-2016.12

****************************************

# A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: typical Library: NangateOpenCellLibrary

Wire Load Model Mode: top

Startpoint: UPDATE_A_TOPLEVEL_PORTING/DP/COUNTER_I/Q_reg[0]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Endpoint: UPDATE_A_TOPLEVEL_PORTING/DP/SUM_REG_B/PORTING2/REG_OUT_reg[63]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Path Group: MY_CLOCK

Path Type: max

Des/Clust/Port Wire Load Model Library

------------------------------------------------

WIENER_FILTER 5K_hvratio_1_1 NangateOpenCellLibrary

Point Incr Path

--------------------------------------------------------------------------

clock MY_CLOCK (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

UPDATE_A_TOPLEVEL_PORTING/DP/COUNTER_I/Q_reg[0]/CK (DFFR_X1)

0.00 # 0.00 r

UPDATE_A_TOPLEVEL_PORTING/DP/COUNTER_I/Q_reg[0]/Q (DFFR_X1)

0.11 0.11 r

UPDATE_A_TOPLEVEL_PORTING/DP/COUNTER_I/CNT[0] (COUNTER_N3_0)

0.00 0.11 r

UPDATE_A_TOPLEVEL_PORTING/DP/U65/ZN (INV_X1) 0.03 0.15 f

UPDATE_A_TOPLEVEL_PORTING/DP/U49/ZN (NAND3_X1) 0.03 0.18 r

UPDATE_A_TOPLEVEL_PORTING/DP/U431/ZN (OAI22_X1) 0.03 0.21 f

UPDATE_A_TOPLEVEL_PORTING/DP/U456/ZN (AOI221_X1) 0.09 0.30 r

UPDATE_A_TOPLEVEL_PORTING/DP/U457/ZN (OAI211_X1) 0.05 0.35 f

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/B_IN1[1] (HIJ_BI_BJ)

0.00 0.35 f

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/sub_add_24_b0/B[1]

(HIJ_BI_BJ_DW01_sub_1)

0.00 0.35 f

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/sub_add_24_b0/U141/ZN (INV_X1)

0.04 0.38 r

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/sub_add_24_b0/U104/ZN (AND2_X1)
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0.04 0.43 r

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/sub_add_24_b0/U59/ZN (AND2_X1)

0.04 0.47 r

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/sub_add_24_b0/U56/ZN (AND2_X1)

0.05 0.52 r

. . .

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/add_2_root_add_0_root_add_52_3/SUM[63]

(HIJ_BI_BJ_DW01_add_29)

0.00 10.93 r

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/add_0_root_add_0_root_add_52_3/A[63]

(HIJ_BI_BJ_DW01_add_27)

0.00 10.93 r

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/add_0_root_add_0_root_add_52_3/U1_63/S

(FA_X1)

0.11 11.04 f

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/add_0_root_add_0_root_add_52_3/SUM[63]

(HIJ_BI_BJ_DW01_add_27)

0.00 11.04 f

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/U8960/ZN (AND2_X1)

0.04 11.09 f

UPDATE_A_TOPLEVEL_PORTING/DP/HIJ_B_I_B_J/H_IJ_BIJ_OUT[0][1][63] (HIJ_BI_BJ)

0.00 11.09 f

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_B/IN_MATRIX1[0][1][63] (MATRIX_SUM)

0.00 11.09 f

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_B/add_22_I2_I1/A[63]

(MATRIX_SUM_DW01_add_14)

0.00 11.09 f

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_B/add_22_I2_I1/U1_63/S (FA_X1)

0.14 11.22 r

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_B/add_22_I2_I1/SUM[63]

(MATRIX_SUM_DW01_add_14)

0.00 11.22 r

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_B/OUT_MATRIX[0][1][63] (MATRIX_SUM)

0.00 11.22 r

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_REG_B/IN_MATRIX[0][1][63] (REG_4X4_64BIT_0)

0.00 11.22 r

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_REG_B/PORTING2/DATA_IN[63] (REG_64BIT_251)

0.00 11.22 r

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_REG_B/PORTING2/U4/ZN (NAND2_X1)

0.03 11.25 f

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_REG_B/PORTING2/U3/ZN (NAND2_X1)

0.02 11.27 r

UPDATE_A_TOPLEVEL_PORTING/DP/SUM_REG_B/PORTING2/REG_OUT_reg[63]/D (DFFR_X1)

0.01 11.28 r

data arrival time 11.28

clock MY_CLOCK (rise edge) 11.40 11.40

clock network delay (ideal) 0.00 11.40

clock uncertainty -0.07 11.33
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UPDATE_A_TOPLEVEL_PORTING/DP/SUM_REG_B/PORTING2/REG_OUT_reg[63]/CK (DFFR_X1)

0.00 11.33 r

library setup time -0.03 11.30

data required time 11.30

--------------------------------------------------------------------------

data required time 11.30

data arrival time -11.28

--------------------------------------------------------------------------

slack (MET) 0.02

Analyzing the report timing of the complete architecture, i.e. with the pipeline
registers and the new restoring divider, we can see that the critical path is no more
the one that includes the divider, moreover with a clock of 10 ns we can have a
negative SLACK of -1.38 ns, which implies a maximum operating frequency of 87.87
MHz (Tclk = 11.38ns), that is an improvement of a further order of magnitude
compared to the original architecture. Analyzing the critical path highlighted by this
last report timing we can see how it involves the Hijbibj block, so, as it was done
for the divider, we decided to synthesize the block individually in order to perform
detailed analysis.

****************************************

Report : timing

-path full

-delay max

-max_paths 1

Design : HIJ_BI_BJ

Version: M-2016.12

****************************************

# A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: typical Library: NangateOpenCellLibrary

Wire Load Model Mode: top

Startpoint: REG_B1/REG_OUT_reg[1]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Endpoint: REG_OUT/PORTING7/REG_OUT_reg[63]

(rising edge-triggered flip-flop clocked by MY_CLOCK)

Path Group: MY_CLOCK

Path Type: max

Des/Clust/Port Wire Load Model Library

------------------------------------------------

HIJ_BI_BJ 5K_hvratio_1_1 NangateOpenCellLibrary

Point Incr Path

--------------------------------------------------------------------------

clock MY_CLOCK (rise edge) 0.00 0.00
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clock network delay (ideal) 0.00 0.00

REG_B1/REG_OUT_reg[1]/CK (DFFR_X1) 0.00 # 0.00 r

REG_B1/REG_OUT_reg[1]/Q (DFFR_X1) 0.11 0.11 r

REG_B1/DATA_OUT[1] (REG_32BIT_0) 0.00 0.11 r

sub_add_65_b0/B[1] (HIJ_BI_BJ_DW01_sub_1) 0.00 0.11 r

sub_add_65_b0/U44/ZN (NOR2_X1) 0.03 0.14 f

sub_add_65_b0/U49/ZN (AND2_X2) 0.04 0.19 f

sub_add_65_b0/U37/ZN (AND2_X1) 0.04 0.23 f

. . .

add_1_root_add_0_root_add_99_3/SUM[63] (HIJ_BI_BJ_DW01_add_16)

0.00 10.56 f

add_0_root_add_0_root_add_99_3/B[63] (HIJ_BI_BJ_DW01_add_15)

0.00 10.56 f

add_0_root_add_0_root_add_99_3/U1_63/S (FA_X1) 0.14 10.70 r

add_0_root_add_0_root_add_99_3/SUM[63] (HIJ_BI_BJ_DW01_add_15)

0.00 10.70 r

U15773/ZN (AND2_X1) 0.04 10.74 r

REG_OUT/IN_MATRIX[1][2][63] (REG_4X4_64BIT) 0.00 10.74 r

REG_OUT/PORTING7/DATA_IN[63] (REG_64BIT_10) 0.00 10.74 r

REG_OUT/PORTING7/U130/ZN (NAND2_X1) 0.02 10.76 f

REG_OUT/PORTING7/U129/ZN (NAND2_X1) 0.02 10.79 r

REG_OUT/PORTING7/REG_OUT_reg[63]/D (DFFR_X1) 0.01 10.80 r

data arrival time 10.80

clock MY_CLOCK (rise edge) 10.90 10.90

clock network delay (ideal) 0.00 10.90

clock uncertainty -0.07 10.83

REG_OUT/PORTING7/REG_OUT_reg[63]/CK (DFFR_X1) 0.00 10.83 r

library setup time -0.03 10.80

data required time 10.80

--------------------------------------------------------------------------

data required time 10.80

data arrival time -10.80

--------------------------------------------------------------------------

slack (MET) 0.00

Observing then, the report timing of the Hijbibj block we can see that the new
critical path includes 2 multipliers and 1 adder. By trying to reduce the length of
this path by inserting pipeline registers between the operators, we could reduce the
combinatorial path to a single multiplier, allowing us to reach a maximum frequency
of 117 MHz for the block. But inserting the pipeline registers means an excessive
increase in latency. This is due to the fact that the block Hijbibj is used 49 times
and each time it makes 49 multiplications. Since the increase in latency compared
to the frequency gain is excessive, we have decided not to make any changes to the
Hijbibj block, maintaining the maximum operating frequency at 87.87 MHz.

76



Chapter 6

Conclusions

Video coding is a fast-growing sector and will continue to be in the future due to the
increasing diffusion of video applications and the demand for higher quality. This
means that encoding and decoding processes need to be further improved. To do
this, an excellent solution is to create dedicated hardware that executes the various
algorithms that compose the entire codec.
In this thesis work, we have presented a hardware architecture that allows us to
run one of these algorithms and a version of it that works at high speed. Being a
completely new architecture, we are sure that further improvements can be made
later by those who will have the opportunity to continue the work we started. In
particular, the basic architecture is an excellent starting point to be able to create
a new architecture that satisfies specific design needs, as it has been done for the
high-speed architecture.
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