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Abstract

Nowadays the Cloud Computing paradigm changed the IT industry, reshaping the
hardware provisioning and how services and infrastructures are developed. Cloud
Computing is in fact a method to increase capabilities without the need for in-
vestment in infrastructure as well as in software. However, this evolution leads to
integrity and security issues.

Data Integrity is nothing but the guarantee that the data is not accessed or
modified by those that are not authorized. It can be achieved on a system through
the usage of the Trusted Platform Module, through the collection and generation
of integrity measures, it offers tamper resistance. Despite everything, this proce-
dure cannot be supported in a virtual environment since a virtual TPM, vTPM,
although it provides the same functionalities of a physical TPM ,pTPM, has the
same weaknesses of any software.

Since Data Integrity is a crucial point in the Cloud Computing environment
in order to provide reliability to the whole system, this thesis work proposes to
investigate a solution for the Deep Attestation based on virtual TPM and its binding
to a physical TPM, in order to retain the security strength of hardware-based root
of trusts and the capability to correctly evaluate the reliability of a system.



Summary

In the last years, Cloud Computing has been considered as the new enabling
paradigm able to solve computing expensive hardware investments and operational
costs. Cloud Computing changed fundamentally the IT industry dramatically, re-
shaping the hardware provisioning and the infrastructure deployment. Its potential
and efficiency made it become largely adopted in almost all the architectural choice.
This upheaval paradigm , however, is not without a price. If on one hand, Cloud
Computing has led the cloud consumer the possibility of being able to take ad-
vantage of unique properties such as elasticity, resiliency, fast provisioning and
multitenancy. On the other hand, security and privacy were negatively affected
leading them to be a critical aspect in the overall architecture. For this reason
many solutions have been proposed and discussed, especially by NIST, CSA and
in literature. Many critical issues can be addressed with traditional approaches. In
other scenarios, however, it is necessary to adopt a cloud-specific approach.

Nevertheless, what it was mainly proposed were solutions based primarly on
software implementations. Therefore, to rely on a software solution it is essential
first of all be able to trust the system and the environment over which the solution
is running. Trust in the execution environment is the critical element at the basis
of all solutions. For this reason the Trusted Computing Group has developed
a precise and detailed methodology to be able to obtain it. It is in this situation
that the Remote Attestation is also involved. In theory, Remote Attestation is a
method by which a Prover is able to authenticate the hardware and software con-
figuration to a Remote Verifier. Based on measurements taken during the life cycle
of the Prover, the Verifier is able to determine the level of trust in the platform
integrity. It is based on two major components: the remote attestation protocol
and the integrity measurements architecture. The leading actor in the Trusted
Computing Group with its technology called TC (Trusted Computing), based
on is the key enabler Trusted Platform Module.

Trusted Platform Module (TPM) is an international standard for a secure
cryptoprocessor, tamper resistance, designated to secure hardware which imple-
ments primitive cryptographic functions that are starting point of more complex
features that are built on them. Despite the potential of the TPM, it goes in stark
contrast to what is the paradigm of cloud computing. Among the many function-
alities, the TPM has the task of saving within it aggregates of measures, which will
then be used in the remote attestation process. The aggregate measurements are
usually saved in special registers called PCR. Their primary use indeed provides
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a cryptographic record of the software state. The peculiarity of those registers is
their update condition that is based on a one-way hash, which allows them not to
be forged. They can be read to report the state of the machine and also signed for
a more secure report. Here it comes the issue, a TPM implements only a strict and
limited number of PCRs.

Virtual Machines in the cloud environment are of a considerable number, and
this would lead to having to tie each virtual machine to a physical instance of a
TPM. This fact, however, would clearly disagree with the scalability that has been
achieved with the cloud computing paradigm and would also prevent the possibility
of migrating the VMs being cryptographically linked to the physical TPM. For this
reason, several approaches have been brought to the literature to overcome this
problem. From this problem arises the virtual TPM instances. However, they have
at their base what was the main problem to which they tried to solve or that they
are purely software solutions, going to lose all the potential of a hardware solution.

For this reason, the goal work of the TPM 2.0 virtualization extension project is
to design a strong binding between different vTPM instances and a single pTPM so
that cloud users can benefit from an hardware bound vTPM identity, which results
more secure compared to a standard vTPM software instance. Moreover, migration
it can be now feasible, and in the Deep Attestation process, the chain of trust is
finally extended to the hardware. Security and Privacy benefit from this implemen-
tation, in fact, vTPM is rooted in the physical Trusted Platform Module so that
the physical platform itself protects its permanent state. Within this project, the
thesis work focuses on the investigation of PCR binding for Deep Attestation use
case. In other words, how to save the various PCR belonging to different virtual
TPM within a single physical TPM instance.

The proposed solution was considered the best because despite the reproduc-
tion of the PCR inside the NVRAM can provide a classic Quote operation which
is totally transparent to the Verifier or more in general to who uses it. Critical
operations that concern the updating of PCR registers are managed by the physi-
cal TPM, which increases the general security of the implementation. What it has
been obtained is. Therefore, a binding between one and more instances of virtual
TPM and a single physical TPM that is able to allocate inside it registers from
different virtual instances.

In conclusion, the proposed investigation and solution by this thesis enables the
virtualization extension of Platform Configuration Registers protected by the TPM
for a Deep Attestation use case, leveraging physical TPM NVRAM to store register
values for different virtual TPM instances. The solution has been analyzed among
other less suitable designs and chosen based on the environment in which it was
proposed.
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Chapter 1

Introduction

1.1 Problem statement

Nowadays, Cloud Computing is considered a new enabling paradigm able to solve
computing expensive hardware investments and operational costs. Cloud Comput-
ing changed the IT industry dramatically, reshaping the hardware provisioning and
the infrastructure deployment. However, its potential made it become almost a
requirement in the architectural choice, because of its efficiency and lower cost pro-
visioning. If on the one hand, cloud computing has led to the cloud consumer the
possibility of being able to take advantage of unique properties such as elasticity,
resiliency, fast provisioning and multitenancy. On the other hand, security and
privacy were negatively affected by the introduction of this new scenario, leading
them to be a critical aspect in the overall architecture. Of course, many critical
issues can be addressed with traditional approaches. In other scenarios, however, it
is necessary to adopt cloud-specific approaches, precisely due to this paradigm shift.

Nevertheless, what both solutions have in common is that in most situations,
they are software implementations. Therefore, to rely on a software solution it is
essentially, first of all, be able to trust the system and the environment over which
the solution is running, And it is in this situation that the Remote Attestation is
involved. In theory, Remote Attestation is a method by which a Prover is able to
authenticate the hardware and software configuration to a remote Verifier. Based
on measurements taken during the life cycle of the Prover, the Verifier is able to
determine the level of trust in the platform integrity. It is based on two major
components: the Remote Attestation protocol and the integrity measurements ar-
chitecture. The leading actor in the Trusted Computing Group with its technology
called TC (Trusted Computing), based on the key enabler Trusted Platform Mod-
ule.

Trusted Platform Module (TPM) is an international standard for a secure cryp-
toprocessor, tamper resistance, designated to secure hardware which implements
primitive cryptographic functions that are starting point of more complex features
that are built on them. Despite the potential of the TPM, it goes in stark contrast
to what is the paradigm of cloud computing. Among the many functionalities, the
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Introduction

TPM has the task of saving within it aggregates of measures, which will then be
used in the remote attestation process. The aggregate measurements are usually
saved in special registers called PCR. Their primary use indeed provides a cryp-
tographic record of the software state. The peculiarity of those registers is their
update condition that is based on a one-way hash, which allows them not to be
forged. They can be read to report the state of the machine and also signed for
a more secure report. Here it comes the issue, a TPM implements only a strict
number of PCRs, for example 24.

The virtual machines in the cloud environment are of a considerable number,
and this would lead to having to tie each virtual machine to a physical instance of a
TPM. This fact, however, would clearly disagree with the scalability that has been
achieved with the cloud computing paradigm and would also prevent the possibility
of migrating the VMs being cryptographically linked to the physical TPM. For this
reason, several approaches have been brought to the literature to overcome this
problem. From this problem arises the virtual TPM instances. However, they have
at their base what was the main problem to which they tried to solve or that they
are purely software solutions, going to lose all the potential of a hardware solution.

For this reason, the goal work of the TPM 2.0 virtualization extension project
is to design a strong binding between different vTPM instances and a single pTPM
so that cloud users can benefit from an hardware bound vTPM identity, which
results more secure compared to a standard vTPM software instance. Moreover,
migration can be now feasible, and in the Deep Attestation process, the chain of
trust is finally extended to the hardware. Security and Privacy benefit from this
implementation, in fact, vTPM is rooted in the physical Trusted Platform Module
so that the physical platform itself protects its permanent state.

Within this project, the thesis work focuses on the investigation of PCR binding
for Deep Attestation use case. In other words, how to save the various PCR
belonging to different virtual TPM within a single physical TPM instance.

1.2 Objectives

The thesis work fits into the context of cloud computing and in the search for a
hardware bound between a physical TPM and one or more instances of virtual
TPM, focusing on the search for a binding of PCRs in the use of them within the
Deep attestation. The basic idea of the project is based on the use of the memory
space called NVRAM. It is the only memory space that seems to be possible to
use to emulate the correct functioning of normal PCRs. This fact is due to specific
design choices made by the TCG concerning the TPM implementation itself, which
seem to be exploitable for the final intent.

The hardware bound sought within the project must emulate in all its functions
the correct functioning of a real physical PCR, but above all, it must be capable of
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being used within the Deep Attestation process. The solution sought should in no
way add excessive complexity to regular use of the TPM, the user of the solution,
even if aware of interfacing with an instance of the virtual TPM, should be in a
position to have the sensation of using a dedicated physical TPM. This fact includes
bothe both the interface part, that is the responses to certain commands must be
those expected, and from the point of view of security and privacy. In fact, they
are the basis for the choice by a user of a cryptographic coprocessor such as the
TPM.

The solution placing itself also within a cloud context must be scalable, and
its use should not be a limitation, but, on the contrary, its adoption should bring
about an enhancement. Once an optimal design has been found that meets the
starting requirements, the solution obtained will be tested. In particular, it will be
shown that the result obtained from a Quote operation, the critical point of the
remote attestation and above all a part that concerns the use of PCRs purely, is
comparable to a Quote operation carried out on physical PCRs not allocated in the
NVRAM memory.

The search for an optimal design must, therefore, be accompanied by an in-
depth study regarding the primitive functions of the TPM and how they can be
used for the final project. The specifications of the TPM are indeed very restrictive
for reasons due to its primary objective: security. Despite this, they are functions
that we can consider elementary and usable as a whole to achieve the desired result.

The limitations to be kept in condition are not limited only to the primitives of
the TPM and its architecture but also involve protocols defined on it and physical
limitations of its implementation, such as a limited memory space.

1.3 Thesis structure

The thesis work is developed within two macro topics: Cloud Computing and
Trusted Computing. For this reason, the implementation work must not be
limited to a preparation study with respect only to the Trusted Platform Module
that will be used but must also take into consideration the specifications of the
original context in which it is located. For this reason, the state of the art part
has been divided into two as the macro topics covered. The remaining part is
focused on the development of the solution and how it is present in the remote
attestation process. The thesis ends with a Proof of Concept concerning the design
carried out concerning the PCR and how it fits within the Deep Attestation process.

In particular the Thesis is organized as follows:

� Chapter 2: In this chapter it is introduced the first macro topic, the Trusted
Platform Module. In particular it will discussed the overview concept of
Trusted Computing, the internal structure and architecture of the TPM and
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how they are involved in the specific use case of the Remote Attestation. The
chapter, in fact, finishes with a brief introduction of the Remote Attestation
concept.

� Chapter 3: In this chapter it is introduced the second macro topic inside
which the solution is placed, the Cloud Computing. In particular it is ex-
plained the basic concepts of Cloud Computing and Virtualizaion. After this
brief introduction the focus is concentrated in the cloud security, its challenges
and how the trust execution environments are part of this new paradigm. At
the end of the chapter the existing solutions and frameworks are addressed,
analyzing point of strengths and weaknesses. In this way it is possible to have
a more clear view of how the project is inserted in this environment.

� Chapter 4: In this chapter it is explained how the two macro topics are
combined and how the PCR are involved in the Deep Attestation process.
All the involved agents and their interactions are explained. In particular it
is explained the design goal of the Deep Attestation process and its flow and
how the PCRs and the hardware bound are involved in the process

� Chapter 5: In this chapter it is explained in more details the solution imple-
mentation. With a focus at a low level view. In particular it is explained the
modifications that are made at the physical TPM interface, how the PCR life
cycle is addressed and how the processes explained in the previous chapter
are involved. The chapter finishes with the Proof of Concept of the project.
During the PoC it is shown the hardware bound achieved regarding the PCR
and how this is used to achieve the final Quote operation signed by the TPM.

� Chapter 6: In the last chapter it is summarized the obtained results and
the possible future work on the project that could improve the overall design.

9



Chapter 2

Trusted Computing and Remote
Attestation

Cloud Computing can be considered one of the significant trends in the last few
years. Because of its fast development and reduced cost, more and more companies
are adopting this architecture. However, this new solution has a large amount of
security issues that have, for some scenarios, limited its adoption. All the infor-
mation that we are exchanging over the internet can be considered as an essential
digital asset and have an extreme value. For this reason, we are facing an increase
in the spread of malware and enhanced hacker threats.

Therefore, in order to obtain and maintain confidentiality, integrity and authen-
ticity of the information that we continuously share through our devices, multiple
security techniques are adopted by enterprises. Against this scenario, the Trusted
Computing Technology aims to ensure the security of the nodes that compose the
network so that we would be able to establish a trust information transfer between
nodes that have not been tampered. It is an upgrade in the computer architecture
security and in order to achieve this goal, TCG has proposed a widely accepted so-
lution by embedding the Trusted Platform Module (TPM) into a dedicated security
chip [1].

In this chapter, the concepts that are the foundation of this new architecture
will be introduced, in order to understand better the processes that are behind it
and how they can be fully exploited to increase the security in a cloud environment.

2.1 Trusted Computing overview

The Trusted Computing had its roots in the middle of 1990s when the first solution
of a systematical architecture based on a series of mechanism such as Root of Trust,
secure storage and chain of trust was converging into a chip computer hardware.
The main idea of the Trusted Computing is to establish a trust in a single platform
to be sure that the software and in general, the node itself was not altered in any
way. Then the trust can be extended between platforms and through the server
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with the usage of remote attestation, extending the trust finally up to the network.

As a core of TCG technologies, there is Trusted Platform Module (TPM), essen-
tial building blocks in a Trusted Systems. As in the introduction was said, there are
plenty of software security solutions. However, all the security solutions that can
be found in the literature do not take into consideration the not compliant status
of the Operating System itself. Moreover, all the software solutions are subject to
defects that can lead to potential breaches that can be exploited by an attacker.

Looking at this scenario, TCG aims to create an architecture in which it is
possible to establish a chain of trust and through a proper attestation process,
verify the full integrity of the system. All the possible applications and technologies
developed with this aim are based on the TPM. Some of the possible solutions are
the following:

� Enhancement in the digital signature process

� Identity management

� Secure execution of the applications

� Secure bootstrap

� Remote attestation

As it happens in the real-life also in this word, trust is a relative term, which
means that we can trust some systems more than others. Accordingly to Trusted
Computing Group[2]:

”A trusted component is one which is predictable.”

So it is definitely not a synonym of excellent and secure, but it is undoubtedly
a pillar over which we can build on. We have also to add that there are two main
reasons to build trust and they are: a reliable evidence for the Attestation process
and an out of band assumptions that we can make with the Root of Trust. Those
concepts will be expanded later. Trust is usually not transitive, and in order to
extend this concept further than the trust of a single terminal, we have to build a
chain of trust step by step.

The basic idea is to establish at a first level the trust into a single endpoint then
exploiting the remote Attestation establish trust between platforms and finally
extend it to the network. Now that we also introduced the concept of trust we
can understand better the six principles on which a fully Trusted System, that is a
system compliant to TCG specification, is built on[3].

� Secure Input and Output. All the information inserted in the system that
shared through the bus must be ciphered.
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� Endorsement Key. It is 2048-bit RSA public and private key pair created
by the manufacturer randomly at the chip creation time. Those keys will
never leave the TPM chip in our case, and it will be used for Attestation and
encryption of the sensitive data.

� Memory Curtain. The exact implementation are vendor-specific, but the
general idea is based on an extension of the traditional memory protection
techniques that provides the full isolation of sensitive areas that can contain
for example cryptographic keys. In this way, even the OS does not have access
to it.

� Sealed Storage. It is a procedure for the protection of private information
by binding the data with platform configuration, hardware and software. It
means that once that the data is sealed it will be released only with a partic-
ular combination of hardware and software. Primary usage of this technique
is usually the DRM enforcing.

� Remote Attestation: is a method or better a process in which a third party
can request a proof of trust combined with an identification. In this way, all
the changes can be detected.

� Trusted Third Party: it was the main obstacle during the development of
the TCG technology, and it is used to maintain anonymity during the trusting
flow. From the version 1.2 of the TPM a new process called DAA ( Dynamic
Anonymous Attestation) was introduced, that introduced a new method in
the obtaining of a certified AIK (Attestation Identity Key), core module in a
remote certification. The main point in the DAA credential is that they allow
the verifier to determine whether they are valid or not, once received from
the TTP but they do not contain any unique information that can potentially
expose the TPM platform.

2.2 Trusted platform module

The Trusted Platform Module (TPM) is a hardware component similar to a crypto-
graphic co-processor, and it is the core in the development of the proposed solutions
by the Trusted Computing. Before anything else, the Trusted Platform Module
must be secure itself, and this is one of the two main aspects of its design goal.

The security itself means that it should be a Root of Trust for Storage as well
as Reporting. In the first case, it should implement secure and reliable protection,
confidentiality and integrity, for crucial data such as keys. TPM has not the capac-
ity neither to resit to external tampering nor response, but instead, it is based on
a concept that can be summarized as tamper evidence. The second central aspect
is that the TPM must have all the functionalities that can be related to a trusted
computing platform and Remote Attestation. All these functionalities depends on
the key management and data encryption.
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� Platform data protection: this includes data protection, basic crypto-
graphic functions and data sealing.

� Integrity storage and reporting: integrity measurements are really valu-
able, and for this reason, they are stored directly in the TPM itself. Moreover,
those measurements are useless if the TPM would not be able to report it
securely using, for example, a digital signature during an attestation process.

� Identification: the reporting of measurement is a key point, and since we are
applying a digital signature to it, the TPM must be able to manage identity
keys.

Naturally, as we previously said, because of scalability reason and cost reduction,
the trusted environment is not relying only on this chip itself but is the primary
building block in a secure architecture. This concept means that all the high
computational procedure are implemented externally.

2.2.1 Structure

The Trusted Computing Group establishes the exactly TPM architecture and all its
functionalities. There are two different version of the TPM that was standardized
and adopted, version 1.2 and 2.0 released respectively in 2003 and 2014. Naturally,
version 2.0 introduced many updates, but the most important can be considered
the interoperability with more cryptographic algorithms. Since the thesis relies
on the latest and greatest version, we are going to introduce in this section, the
significant specifications of version 2.0.

Components

Before the introduction of the physical architecture overview, it is worth to under-
stand at the beginning the logical functionalities that TCG specified.

Platform Data
Protection

Integrity and
Storage report

Resource
 Protection

Auxiliary
functions

Identification

Cryptographic Co-Processor

Figure 2.1. Logical TPM functionalities

It is worth to start with the two pillars in TPM functionalities. They can be
considered the basic functions on which the more advanced functionalities rely on.
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� Cryptographic engine: this system functionality includes functions such
as encryption, digital signature, hash functions and random generator. The
peculiar thing is that it has no external interfaces.

� Identification: it provides the management of certificate keys, an indispens-
able role in the remote attestation process.

The more advanced functionalities are built on the two previous basic function-
alities.

� Platform Data Protection. It provides the integrity and confidentiality of
all the critical data.

� Integrity storage and report. this is the basic in the construction of the
chain of trust, a component at the centre of the remote attestation process.
The TPM stores inside itself the measurement taken for integrity. Those
measures are essential for the construction of the chain of trust since they
incorporate trust.

� Resource protection. It refers to the access control to internal resources
that are available inside the TPM. Auxiliary functions: The purpose of those
functions is to improve the manageability of the processor, including all the
functions needed to support the central functionality.

Internal Architecture

Now that we introduced the logical functions, we can understand better the internal
architecture proposed by the TCG group. The major components can be viewed
in the Fig.2.2, and they include first of all the I/O component, essential for the
communication.

I/O

RSA crypto
engine

Symmetric
crypto engine RNG Hash Engine

PCRPower
detection

Volatile
memory

Non-volatile
storage

Opt-in
Internal BUS

Figure 2.2. Logical TPM functionalities
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Input/Output. It allows the management of the communication that comes
from external entities to internal components and the opposite. In order to prop-
erly allow and enforce access control on the module itself, TPM is able to encode
and decode the messages that have to travel through the chip bus.

Once that we are able to communicate with the TPM, we have access to many
internal components, and everything developed to perform a specif action.

Opt-in. . This is the component that allows the checking related to the TPM
routine, maintaining the storage and values of the related flags

RSA cryptographic engine. It is a component for the support of all crypto-
graphic algorithms according to standard PKCS#1. The supported security levels
are 2048, 1024 and 512 bits. All the algorithms are supported, such as encryption,
decryption, digital signature and verification.

Symmetric encryption engine. AES supporting is the alternative key encryp-
tion algorithm. The mandatory mechanism is the one-time pad (OTP), also called
Vernam-cipher, it is generated by the MGF1 key derivation algorithm.

Random number generator (RNG). Pseudo random generator.

Hash engine. Usually used with the PCRs as input and it is set accordingly
to the standard FIPS-180-1, adopting the SHA-1 as the algorithm for the hash
function.

Nonvolatile Storage. Dedicate memory inside the TPM, more flexible than the
registries that are built-in, and that can be configured accordingly to the needs.
However is primary function is the storage of the TPM persistent keys, integrity
information and more critical application data.

Volatile memory. All the temporary data that is needed during the computation
is instead stored inside this space of memory.

Power detection. Primarily used for the power state management, but it also
supports physical presence assertions, critical for a physical signal application like
DRTM.

Platform Configuration Register (PCR). Core part of the TPM for the scope
of the thesis, those are a series of registers that memorize and store measurements.
The PCRs are registered set up at boot time, and that later can not be erased.
Their update is called extend operation. The extend operation is based on the fol-
lowing operation that is not reversible. The PCRs values can be naturally read to
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report their state, both internally and externally, also through a procedure called
quote, which is an attestation. PCRs usage can also be implemented as a restriction
in the authorization policy.

It is worth to expand the concepts regarding the PCR functionalities. At re-
boot time the PCRs are usually initialized to all zeros or all ones accordingly to
specifications. Later on, every time that the TPM will update the PCR values, it
will apply the following procedure:

PCR new value = Hash( PCR old value || data to extend )

As can be understood by this implementation, the extension operation is a single
way operation, so it is not possible to extend the values to a derided one or to go
back to a previous value. The number of PCRs that are contained inside a TPM
is vendor-specific. Usually, PC client has 23/24 PCRs, and the usual allocation is
the following:

PCR Number Allocation

0 BIOS
1 BIOS Configuration
2 Option ROMs
3 Option ROMs configuration
4 MBR (Master Boot Record)
5 MBR Configuration
6 State transitions and wake events
7 Platform manufacturer specific measurements
8-15 Static Operating System
16 Debug
23 Application Support

As can be seen, every PCR usually has a specific allocation, and their number
is fixed, this is why in the specification we find that is also possible to create inside
the Nonvolatile memory ( NVRAM) user-defined extend indexes that emulates the
PCRs behaviour. The use case of PCRs are multiple. The two primary are Autho-
rization and Attestation. The latter one is the one more interesting for our case
study. It is a more advanced use case for PCRs since can not be achieved simply
by applying a digital signature over a digest, but the agent requesting the proof
will have to validate that the digest reported are matching the reported ones.

A TPM attestation is basically a proof of the software state that can be sent
and offered remotely exploiting a cryptographic proof. This process will be fully
explained in details in the next section.

2.2.2 Integrity Measurement Architecture

In order to achieve the final aim to have an endpoint defined as trust, we have to go
through a process that can be divided into three parts: Integrity Measurements,
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Storage and Reporting.

Integrity Measurements have the aim to create a chain of trust that is crucial
to define the real state of a machine. The chain of trust is based on a simple
concept: every component measures the next one. In order to securely store all
those measures, as it was previously introduced, the TPM dedicated an internal
memory for this purpose: the PCRs. TCG also designed the updating procedure
in order to protect this mechanism.

� PCR are located inside the TPM

� At boot time they are reset to their default value

� Updating is done following the extension procedure

At the base of the chain of trust, however, must be defined, the so-called Root of
Trust, which is a component that must be trusted by default since its misbehaviour
is not detectable. The only thing that is possible to check in a Root of Trust is its
implementation. Usually generally speaking the Root of Trust schemes include an
hardened hardware module in which we can find three different Root of Trust.

Root of trust for storage - RTS

The usage of an asymmetric key pair defines the secure storage inside a TPM. Those
keys are called Storage Root Key, SRK, and they are bound to the TPM users,
which means that they can change once a new user wants to take the ownership of
the TPM becoming the new owner. This procedure is called Take Ownership. From
an architectural point of view, the key pairs manage a small amount of volatile mem-
ory where all the keys involved in encryption and decryption operation are stored.

There are two types of keys that can be involved in those operations, and they
are the storage keys and the binding keys. The first type is the one used to protect
the other keys, as it was mentioned before, generating a hierarchy for the keys. The
second type the binding keys instead are used to cypher data and the symmetric
keys that are handled by the TPM.

Root of trust measurement - RTM

As defined by the TCG group, the RTM relies on a piece of code which is outside
the TPM scope, so it not stored or encrypted by the TPM itself. The Core Root of
Trust is the component that contains the RTM code, and it is considered immutable.
CRTM can consist of CPU instructions stored directly in the motherboard inside a
chip or in alternative inside the BIOS itself. For the latter solution, there are two
ways to integrate the CRTM inside it. It is possible to integrate it directly as a boot
block, but in this case, the rest of the BIOS should be later checked and therefore
measured. The second possible solution instead is to make the whole BIOS part
of the so-called Trusted Building Block (TBB) and to achieve this solution the
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position of the CRTM is not rigidly defined The main objective of the RTM is
to initialize the Root of Trust taking the measurements and updating the PCRs,
passing the information to the RTS.

The measurement process at this step is crucial, and there are two ways to
achieve this goal.

Static Root of Trust Measurement (SRTM) As the name is suggesting the
trust process is entirely based on the immutable piece of code that we introduced
before, the CRTM. In this solution, the CRTM measures the integrity of the BIOS
or more, in general, the next piece of code in the boot-sequence, as represented
in the figure. This measures is later stored into a PCR, and the control is now
transferred to the next in the chain of trust. This ensures that the measures can
not be faked since from now on, it is possible to compare the stored values with
the one that is expected.

This approach has two significant drawbacks. The first one is that each com-
ponent in the chain of trust depends on many layers. Hence we are facing with
a scalability issue if we consider a large number of components. Moreover, in the
modern operating systems, the components that compose the chain are not always
executed in the same order, which leads to a problematic integrity measurement
maintenance. The second major drawback is the called Time-of-check-time-of-use,
a vulnerability that can be exploited in the time that passes between the measure-
ment and the code execution. Moreover, using the SRTM, we are only checking the
integrity of the machine at load-time. This means that it is possible to know and
only trust what is loaded but not what is executed.

Dynamic Root of Trust Measurement (DRTM) In the TCG 1.2 specifica-
tion, we find a solution to this issue, and it is indicated as Dynamic Root of Trust
for Measurement. The main advantage of this approach is that the length of the
chain of trust is substantially reduced. The whole flow is represented in the figure.
The whole process starts with the now noted SRTM process. Now the platform is
in a state that is called pre-gap. The platform is soon prepared through the DRTM
Configuration Environment (DCE). Aim of the DCE preamble is to execute the
Dynamic Launch Event, during this period the PCRs from 17 to 22 are set to their
initial reboot state. Once that the PCRs are prepared the DCE makes the needed
measurements, extending the previous PCRs bringing the platform in a state that
is known as Dynamically Launched Measured Environment.

Root of Trust for reporting - RTR

The other crucial part of the process for trust is the reporting. RTR, in this case,
is responsible for this purpose. It has two main functions. The first one consists on
the display of the integrity measurement taken before. The second one, instead, the
platform must be able to provide the measurement based on its identity. The TPM
will sign the measurements, that are stored inside the PCRs with its Attestation
Identity Key (AIK).
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2.2.3 TSS Software stack

In order to provide a more flexible and scalable interaction with the TPM, the
TCG group also defined a software stack. The TSS is a software to support the
interaction between applications and the security hardware during the invocation
of the TPM interface. While the TPM has its core functions, used for example for
the key generation, TSS creates a trusted environment in which is possible to use
those keys, to collect the integrity measurement and to allow the communication
with the applications.

As it is explained in the TSS specification, the primary goal of this software
stack is the following:

� Provide an API set for the communication.

� Ability to manage multiple applications.

� Manage the limited resources of the TPM.

� Provide the right and expected internal commands to the chip in terms of
byte stream and parameter order.

With these assumptions, the TCG built an architecture to support this goal,
creating a standardized interface. Naturally, all the parts that compose the TSS
are OS-dependent, but their interaction remains unchanged.

The overall architecture is shown in Fig.2.3

Application 1

Feature API

Enhanced system API

System API

TCTI

TAB

Resource Mgr

Local TPM driver

Local TPM

TCTI

TAB

Resource Mgr

Local TPM driver

Local TPM

Figure 2.3. TSS

Each layer inside the stack has a different level of abstraction, the higher the
level, the higher the abstraction. Not all the layers have the same capacity to
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interact correctly with the TPM, and for example, the Feature API covers more or
less the 80 % of the possible calling functions. The deeper we go into the level, the
more knowledge about TPM we must grant.

Feature API

As it was previously introduced the FAPI are the easiest way to interact with the
TPM. The number of parameters that must be provided and the number of calls
that must be done is significantly reduced. This goal is achieved using a user-
selected configuration that creates a sort of default selection for what regards the
cyphers to be used or the signing schemes, for example. If the profile is not chosen
there is a pre-defined default profile.

Enhanced API

This is an intermediate level between the FAPI and SAPI, with the goal to reduce
the complexity required for a single call, without however leaving the possibility to
use cryptographic operations.

System API

One step below the ESAPI we find the System API or SAPI. Good knowledge of
the TPM structures and functionalities is required. Both synchronous and asyn-
chronous calls. It is developed with the aim to use all the low-level calls to the
TPM

TCTI

This is a fundamental part in the software stack since until now it was only explained
how to implement, at different levels, calls to the TPM. The TCTI is indeed in
charge of transmitting the byte streams to the TPM.

TPM Access Broker (TAB)

TAB is mainly responsible for two functions. The first one is to control and manage
the access to the TPM that could be shared between multiple processes. The second
feature of the TAB is a security function. It must check that the processes have
access to only those objects or sessions that own.

Resource Manager

The TPM has a limited amount of memory. For this reason, it has the need to swap
from one session to another one, accordingly to the one that has been used at the
moment. The goal of the RM is to provide the right resources at the right moment
to the TPM. The peculiar characteristic of the RM and the TAB is that they are

20



Trusted Computing and Remote Attestation

transparent to the higher layers. This assumption means that it is possible also to
not implement them. However, in this case, it will be the application’s task to set
up the TPM for correct operation.

Device Driver

It is the last link that connects the application to the TPM. Its job is to send the
buffer stream received to the platform and to forward the response back to the
stack.

2.3 Remote Attestation overview

Remote Attestation is not a stand-alone process, but it relies on the basic function-
alities as key management and integrity measurement. For this purpose, it needs
the support of those essential functions that the TPM can quickly provide. In the
previous chapter, we introduced the concept if integrity measurement and how the
TPM is able to achieve this goal. What was not covered is the key management
part. TPM can manage different keys; in total, they are seven. Each key has its
own scope. For the aim of the project, the most critical key type is the platform
identity key (PIK) that is the one used for the Remote Attestation. The PIK can
be used only by the owner of the TPM. From this key, it is possible to create the
Attestation Identity Key (AIK). This is key has a crucial role since it is the one
that can be used to sign the internal PCRs value through the Quote operation.

Before proceeding with the explanation of the protocol adopted for the remote
Attestation, it is useful to introduce the principle on which it is based.

Principle 1 - Fresh information To be focused just on the disk image is not
useful if it is not taken into consideration also the running system.

Principle 2 - Comprehensive information The full internal machine state
should be available to the measurement tools, and the attestation process should
have the means to report target information fully. This principle can be consid-
ered as a vulnerability for the system since it could bring to disclosure of private
information that could be exploited.

Principle 3 - Constrained disclosure Because of the disclosure of critical
information, the attested machine must be able to choose which information should
be sent to the verifier accordingly to a policy set. Moreover, the target machine
should be able to identify the Verifier, attesting in its turn its current status.

Principle 4 - Semantic explicitness The whole attestation process is based on
assertions, and for this reason, the entire semantic content should also have a logic
form. In this way, the Verifier has the opportunity to make the correct conclusion
relying on the received measurements.
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Principle 5 - Trustworthy mechanism The attestation process and the ar-
chitecture on which it is built should be trust by both parties, the Verifier and the
target machine.

2.3.1 Protocol Model

The mean to achieve the Remote Attestation is the adopted protocol. There is not a
single unified procedure to follow, but all the protocols have a reference model. The
main characters are the Trusted Computing Platform that provides the necessary
cryptographic functions, the remote Verifier and the Trusted Third Party.

Trusted Third Party

Trusted Computing
Platform Remote Verifier

SML

Figure 2.4. Basic Remote Attestation schema

The Host and the TPM compose the trusted computing platform. Together
they can complete the Attestation of the platform integrity based on measurement
and reporting.

Figure 2.5. Remote Attestation workflow
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During the integrity measurement, all the measurements are collected inside the
so-called Stored Measurement Log ( SML ) that do not reside inside the TPM, but
they are still part of the TSS. The measures that the Verifier has requested will,
therefore, be inserted into the TPM as a digest inside the PCRs. Once that the
digest of the measurements is securely stored, it is possible to create a report that
will be transferred to the Verifier. The file that is created is called Integrity Report,
and it is a combination of integrity assertions and values. The first one identifies
the measured component and the second one are the corresponding digests.

As previously mentioned, this is only the internal process to create the mea-
surement report that the Verifier had previously requested. Once that the report is
received the Verifier will proceed with the evaluation of it. The verification is based
on the policies that are previously defined. The whole process is supervised by the
Trusted third party whose role is to issue the certificate for the trusted computing
platform and to provide verification of the authenticity of the TPM identity. In
this scenario, the Trusted Third Party has also another role which is to provide
to the Verifier the credentials that are needed to identify the Trusted Computing
Platform.
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Chapter 3

Security of Cloud Computing

Cloud Computing is one of the major trends in ICT in the last years. However,
the concerns of insecurity and privacy violations are the limitation in its massive
adoption. For this reason, it is essential to develop a fine trust model developed for
cloud-specific scenarios to support the new trust metrics, and that can take into
account the different users behavior in this environment. Despite this change of
environment, security challenges not in the cloud are not so different except for the
fact that the number of vulnerabilities has increased. Since the cloud environment
includes several layers of abstraction [4], an attacker could compromise the service
to each of these levels.

3.1 Basic of cloud computing and virtualization

The Cloud Computing paradigm changed the IT industry mutating the hardware
provisioning and how services and infrastructures are developed. The main idea
under cloud computing is to outsource the provisioning and management of hard-
ware and software resources to third-party companies for a better quality of service
and a lower cost in the delivery of resources. The National Institute of Standards
and Technologies (NIST) defines the cloud computing as

”a model for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service
provider interaction[5].”

The definition is broadly accepted and provides a clear understanding of how
enterprises can use those resources to develop, host and control services on-demand
flexibly, anytime that a resource is needed.
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3.1.1 Cloud computing characteristics

The NIST inside his publication made efforts also to identify a unified view of Cloud
Computing definition through its functionalities. Although the cloud environment
is varied and very heterogeneous, making it very flexible in its applications. Five
essential features have been identified to represent a Cloud Computing platform.

� On-demand self-service. Resources are not a permanents part of the in-
frastructure, and for this reason, they can be automatically provisioned when
needed.

� Broad network access. All the resources in the cloud computing environ-
ment can be accessed and provisioned over the network through standards
mechanisms. This characteristic allows the access to the services to hetero-
geneous endpoints and platforms as well as other cloud services.

� Rapid elasticity. Resources allocation is not fixed, and once they are
needed, they can be extended. Moreover, two different extension operations
are defined by NIST: vertical and horizontal. The first one means that more
resources or a different computing capacity are needed. Horizontal resources,
instead, concern the addition of services.

� Resource pooling. In order to reduce costs, resources are pooled for a better
and more efficient use, which means that the physical layer is often shared
between multiple users and services.

� Measured Services. The cloud environment automatically optimizes and
control the resources. Moreover, those resources are monitored and reported
for transparency usage between the provider and the consumer.

The previously presented characteristics are essentials for Cloud Computing
functionalities. However, there are also two important aspects of the cloud com-
puting platform that must be taken into consideration, and they are the multite-
nancy and virtualization characteristic. In a cloud environment, the resources are
presented and provisioned to the consumers as virtual resources. Virtualization,
in fact, enables the creation of those resources. In this way, multiple tenants are
served from the same physical layer infrastructure. Here the second characteristic,
multitenancy. It refers to the ability to serve multiple consumers from the same
infrastructure.

3.1.2 Cloud computing models

Several Cloud Services have been proposed, but in particular, NIST defined three
primary services:

� Software as s Service: SaaS.

� Platform as a Service: PaaS.
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� Infrastructure as a Service: Iaas.

In addition to those primary three services, that will be covered below. It is
possible to find a useful list of new cloud services proposition inside the ITU-T
Y.3500[6]. They include a variety of propositions like Communication as a Ser-
vice(CaaS), Data Storage as a Service (DSaaS) or Network as a Service (NaaS).
However, all those categories are the result of a combination of the three main
Cloud Capabilities types SaaS, PaaS and IaaS.

The three main models are universally accepted as necessary capabilities for
cloud platforms, and they alter the separation of responsibilities in cloud operations
between the consumer and the cloud service provider, as it is depicted in figure.

Infrastructure as a Service (IaaS)

IaaS is the solution that provides more freedom inside a cloud computing envi-
ronment. The consumer has, in fact, the possibility to deploy and run arbitrary
operating systems and softwares. IaaS provides raw access to an abstracted hard-
ware that allows the consumer to build its own system

Platform as a Service (PaaS)

This type of service allows the consumer to outsource a great part of the com-
puting and administration. PaaS provides an environment in which customer can
deploy their own applications with the help of pre-configured tools such as runtime
environments or programming languages tools. In this model, in fact, a complete
virtualized environment is provisioned to the consumer, including operating sys-
tem, web servers and databases. Using this service, however, decrease the level of
governance that the consumer has over the system since now it is the Cloud Service
Provider that must administrate the systems. Security at hardware level and OS
level are now not over the control of the consumer.

Software as a Service (SaaS)

In this scenario, the level of governance over the system by the consumer is very
low. As the name implies, it provides only software functionalities accessible in
the cloud. However, it avoids the complexity of installation and maintenance of
services that exists yet, and they should only support the consumer in his business
applications. Example of those services are Microsoft 365, Google Gmail or Cisco
WebEx.

3.2 Cloud Computing security

Cloud Computing has been promulgated as requisite in the wide choice of archi-
tectures based on virtualization and service-oriented. It was used as enabler for
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services that now can be provisioned at a lower cost and more efficiently. The main
reason for its widespread adoptions is also due to some of its unique properties,
such as elasticity, resiliency, fast provisioning and multitenancy. Despite these ad-
vantageous properties, Cloud Computing is a double-edged sword. Systems that
are now offered at reduced cost became at the same time target and sources of
malicious attacks. For cloud consumers, it is essential to take advantages of the
Cloud Computing scalability, but at the same time, it is crucial to building an
architecture that allows reaching the right level of trust over the service. Secu-
rity and privacy are two factors that have an impact on all layers inside a cloud
computing architecture. Therefore the security management is a critical aspect of
the overall architecture. Different security treats differ for deployment model and
for cloud service implementation. However, a significant quantity of those threats
can be mitigated applying traditional security countermeasures. On the other hand,
some of them require a cloud-specific implementation because of the newly adopted
paradigm.

Cloud Computing security must be composed of a series a complex set of proce-
dure, processes and standards adopted to mitigate information security in a cloud
ecosystem. However, the massive concentration of hardware and calculation power
inside a single ecosystem allows the cloud computing provider to have the potential
of adopting robust and cost-effective defenses. Also, consumers can take advantages
of this new paradigm because they can benefit of security resources that individu-
ally they could not afford. On the other hand, the concentration of resources and
enterprises information inside a single location attracts attackers and gives them
the motivation to spend time and effort to find vulnerabilities in the cloud infras-
tructure. Theoretically, the control of all the information can be gained through a
single attack to the hypervisor. This process is called hyperjacking, for example.

3.2.1 Security challenges in the virtual environment

The new paradigm of Cloud Computing had introduced a division of roles for what
concerns the operational security responsibilities over the different layers inside the
architecture. On one side, there is the consumer that is responsible for the definition
of security and privacy controls required. It is the owner of data and must protect
the information and the system from unauthorized access. On the other side, there
is the Provider that has the responsibility of implementing and providing security
defenses in those layers to which the consumer has no access. The consumer is,
therefore, conferencing an high level of trust onto the cloud infrastructure and
more precisely onto the Provider. The primary security risks of cloud computing
are presented by the Cloud Security Alliance (CSA) [7][8] and NIST[9] and are the
following:
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Data Breaches

A data breach is when sensitive and confidential information are released or stolen.
Primary causes are the results of human error, application vulnerabilities or in-
adequate security practices. The security responsibility, in this case, is of both
Consumer and Cloud Service provider.

Spofing Identity X
Tampering with Data Ö

Repudiation Ö

Information Disclosure X
Denial of Service Ö

Elevation of Privilege Ö

Misconfiguration and Inadequate Change Control

It occurs, then the misconfiguration of assets enables vulnerabilities. It can affects
all the cloud service models and is purely the responsibility of the consumer. For
example, In 2018, Level One Robotics exposed highly sensitive proprietary informa-
tion belonging to manufacturing companies, including Volkswagen, Chrysler, Ford,
Toyota, General Motors, Tesla and ThyssenKrupp. In this case, the misconfigured
asset was a rsync (backup) server that allowed unauthenticated connections to any
client.

Spofing Identity Ö

Tampering with Data X
Repudiation X
Information Disclosure X
Denial of Service X
Elevation of Privilege Ö

Lack of Cloud Security Architecture and Strategy

The moment of transition between a private architecture, in which the consumer
has full control of the processes, to a cloud implementation is the one of the riskiest
procedure. A lack of understanding of security responsibilities can lead to vul-
nerabilities. One useful takeaway in this procedure is to use cloud-native security
solution to minimise the cost and risk.

Spofing Identity Ö

Tampering with Data X
Repudiation X
Information Disclosure X
Denial of Service X
Elevation of Privilege Ö
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Insufficient Identity, Credential, Access and Key Management.

Cloud Computing fully revolutionized the standard Identity and access manage-
ment, IAD and IDM. Therefore traditional IDM is not anymore sufficient, and
a new paradigm has to be also introduced in this field[10] to take care of various
aspects and challenges that also in the traditional identity management are a hot
challenge[11][12]. As pointed out in the Cloud Computing Identity Management,
cloud IDM has to manage dynamic environments with services that are on-demand
provisioned. It is crucial in this phase to track and revoke accesses once it is nec-
essary. Moreover, also, the key management issues are now critical requirements
in order to deal with high-security risks[13]. It is needed, in fact, an efficient and
robust key management. Also, the cryptographic algorithms and mechanism must
be adapted to a cloud environment. Algorithms like MD5, AES or DES are consis-
tently prone to security threats, for example.

Spofing Identity Ö

Tampering with Data X
Repudiation X
Information Disclosure X
Denial of Service X
Elevation of Privilege Ö

Insider Threats

In this case, the threats are outside the trusted customer domain. The Computer
Emergency Response Team (CERT) is defining the insider attacks ”as the potential
for an individual who has or had authorised access to an organisation’s assets to
use their access, either maliciously or unintentionally, to act in a the way that
could negatively affect the organisation”. The potential of this kind of threats is
that insider attacker is operating under the trusted domain. For this reason it is
essential to manage granularly the granted services. There is multiple solutions
for that, using VLAN, access-list or security group tag. However, it is also vital
to educate employee to prevent phishing attacks or to handle properly personal
devices that can lead to breaches inside the system.

Spofing Identity Ö

Tampering with Data X
Repudiation X
Information Disclosure X
Denial of Service X
Elevation of Privilege Ö

Insecure Interfaces and APIs

Usually, in a cloud computing environment, services are exposed to consumer
through a set of user interfaces and APIs. This implementation is mainly adopted
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to create a scalable interface to facilitate every consumer to deploy its own infras-
tructure. Therefore, if from one point of view, they are usually straightforward to
use, they can be an open book to the internal design implementation. It is crucial
the design of UI and API to granularly choose what should be exposed and what
instead is not necessary to the user. All of this can be done through during the
development phase for what regards encryption, encapsulation and abstraction.

Spofing Identity Ö

Tampering with Data X
Repudiation X
Information Disclosure X
Denial of Service X
Elevation of Privilege Ö

Weak control plane

The security and integrity of the data plane are the a crucial point in the system
design. A robust control plane can prevent the system from leakage or data cor-
ruption, which can lead to a blind spot in the infrastructure design. The control
plane in this scenario must support the complementary data plane, providing the
expected stability. It is significant indeed an adequate policy enforcement, segmen-
tation and a proper intrusion detection system, for example.

Spofing Identity Ö

Tampering with Data X
Repudiation X
Information Disclosure X
Denial of Service X
Elevation of Privilege Ö

Abuse and Nefarious Use of Cloud Services

This is one of the most significant challenges because it lead to our main problem:
the trust of the infrastructure in which the service is running. Malicious threats
can be hosted in cloud services. This attack design enables an extensive malware
spread through a legitimate cloud service, used as a vector. Example of this is
the recent Locky ransomware with all its variant which was using Drive services as
vectors to infect endpoints.

Spofing Identity Ö

Tampering with Data X
Repudiation X
Information Disclosure X
Denial of Service X
Elevation of Privilege Ö
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As can be seen, Cloud Computing is a very scalable solution that facilitates
system design and architecture. However, at the same time, in this scenario, many
security challenges are appearing. Cloud Service provider and the customer must
work together, understanding their roles inside the architecture, and apply the right
procedure and processes to prevent vulnerabilities and breaches in the system.

3.3 Trust Execution Environments in the Cloud

Computing

Solutions, processes and procedure have been developed as a countermeasure to all
these threats. However, there is something that is common to all those proposed
solutions, and it is the fact that they rely mostly on software solutions. Therefore
in order to be able to rely on software solutions, we must, first of all, be able to
ensure that in the first place the software is correctly executed and that it gives
the expected results as a result. Secondly, it must be taken into consideration that
the system above which the software is loaded and executed has not been altered
in any way. This fact would modify the result of security implementations, which
means that at the root of the security of cloud computing there are no complicated
procedures and countermeasures to deal with different vulnerabilities but rater the
capability to correctly evaluate the reliability of a system, in order to guarantee the
correct application of the solutions subsequently. All this would increase the level
of security obtained that would not rely only on the software and the procedure
implemented but would be based on the same reliability of the system. Of course
this approach directly benefits all purely software implementations that now have
a secure and controlled system in which to run. However, this does not bring im-
provements to the hardware attacks to whom a different approach is needed.

During the years, a lot of solutions have been proposed, all of them had in com-
mon the concept of Remote Attestation. The principle that has been previously
introduced, in which a third party can define the hardware and software integrity
of a platform. However, Remote Attestation is only a concept and not a standard,
for this reason, it is possible to find different solutions with different approaches.
Sometimes with procedures that do not require referer to TCG has a principal
component. Since the proposed implementation has as enabler the TPM, it is
worth to introduce the specifics of existing applications to understand the draw-
backs and how those disadvantages can be overcome.

Before going to explain the different cloud attestation framework, it is useful to
analyze the enablers of these designs. There are indeed alternatives to the TPM
already introduced in the previous chapter and their aim is to create a TPM like
trusted environment. They are IntelSGX, AMD TZ and naturally TPM.
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IntelSGX

IntelSGX like TPM or ARM TrustZone is developed to match the requirements of
the Trusted Computing Group. As the other enablers, InterSGX can create regions
that are accessible only to high privileges levels. It was firstly developed in 2015
with the new Skylake architecture. Unfortunately, they are not widely used since
they are supported only by a small amount of BIOS.

Privileged System Code 

Untrusted application part

Create enclave

Call Trusted Function

Execute

Return

Trusted application part

Figure 3.1. Application splitting

Its functionality is naturally similar to the TPM. Inside the memory, there are
regions called enclave that cannot be accessed by applications. Every application
is divided into two parts: one is the trust part, and it is contained inside the
enclave, the other one, on the other hand, is untrusted and considered as un-
secure. The enclave is the part that contains the private data and the code that
runs over this private data. The SGX processor indeed protects the integrity and the
confidentiality of the private data inside the enclave encrypting it. In this way, OS
or hypervisors are excluded by this environment and can not access this particular
region. Enclave region is fiscally separated in a part that is called Processor
Reserved Memory (PRM). Every application has assigned an Enclave Page
Cache (EPC) which is a 4Kbyte to store code and data. Every enclave has its
own EPC which is assigned by the OS. Now that it is known each component is
possible to describe the workflow for an application:

� Loading Stage: CPU copy data inside the EPC pages and assign the pages
to an enclave.

� Initialized Stage: CPU marks the enclave as initialized once all the needed
pages are loaded inside the EPCs. Once the enclave is loaded is also cryp-
tographically hashed by the CPU, in this way the system has a referment
measurement. In this way, a remote party can understand if the enclave that
is running the code has not tampered.

As can be noticed SGX enclaves leverages mostly in this strong encryption
mechanism that is the combination of three factors: SGX Security Version Number
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(patch level) , device ID (unique 128 bit number assigned to the processor) and
Owner Epoch (user entropy in the key generation). The combination of those three
factors allows the remote party to attest an enclave and see if it has been generated
by an SGX. The remote attestation feature is fully described in the Intel White
Paper[14]. The intent pursued by Intel is, therefore, to use a new set of instructions
to ensure that programs can execute their own code, or at least a part of it, in a
secure environment that can also be attested remotely. Although this approach is
still a double-edged sword as it allows the same malware to be able to run its own
code in environments that are not accessible to the operating system and antimal-
ware.

DRAM

PRM

PRM

EPC

EPC

4Kb page
4Kb page
4Kb page

Figure 3.2. Enclave data structure

Moreover, if it is analyzed the SGX implementation can be seen that architec-
ture is based on the Aegis Secure Processor, the first secure processor to not be
vulnerable to physical reply attack, because of its Merkel tree construction[15]. To
this architecture, SGX adds the possibility to change the Merkel tree generation
dynamically. However, because of this design, it is sharing the vulnerabilities to
access pattern leaks, which means that a malicious OS can perform cache timing
attack against it.

ARM Trusted Zone

As we have already seen in the previous chapter and the last section, there are
several Trusted execution environment platforms available for creating a context
to rely upon to execute sensitive code. The last one is ARM TrustZone which is
for its architecture design a better implementation not for cloud computing but for
mobile devices and IoT.

ARM followed a totally different approach from TPM. While the latter one is
designed with a set of predefined features set, TrustZone tries to overcome the little
flexibility with a freely programmable trusted platform module. To do that, ARM
introduces a security extension in the processors which provides hardware-based
isolation between two context domains called normal word and secure word. The
peculiarity of this distinction is that it is entirely orthogonal to the usual difference
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between kernel and user level. Moreover, the operating system is not wholly aware
of it. The secure word indeed has higher privileges which leads it to access the
normal world. However, the opposite is not possible. This concept is very similar
to what was already addressed by IntelSGX even though it was then implemented
in a different way. This role separation is under the check and control of the CPU,
with the help of a memory partitioning. This partition is not concentrated only in
the CPU, but it is propagated to the system. In such a way, once a software it is
executed in the secure word as a completely different view of the system. The whole
implementation is software-based, contrary to the hardware-based implementation
of the TPM. Moreover, in TrustZone feature, there is a secure boot mechanism
which ensures the integrity and authenticity of the system which is relying upon
the secure word, that must be considered as a trusted environment.

Normal World Secure World

Secure Monitor

Secure OS

Secure Application

Non-Secure OS

Non-Secure
Application

Figure 3.3. ARM TZ architecture

As previously stated, ARM TrustZone introduces the concept of a split word,
in which CPU states can access the normal world, but the normal do not have
privileges in the secure world. However, on top of this split world, there is a higher
privileged mode called TrustZone monitor mode. It is responsible for the switch-
ing context, that is the software interrupts to change between the different contexts.

With this brief view of the general concept of ARM TrustZone, it can be obvious
to think for this technology as implementation or even a virtualization replacement.
ARM TrustZone can be viewed in fact as an alternative to the TPM functionalities
or even as a virtualization solution. However, as per design implementation, the
limit of the virtual machine would be only two. Moreover, the asynchronous exe-
cution of switching context is preventing a correct emulation of devices. Operating
systems device drivers should be modified to support emulation, but unfortunately,
this is not always possible. Proprietary versions of OS are not available if not in
binaries. However, it can be considered as a potential candidate to replace the
TPM. ARM TrustZone is much more versatile since a fixed configuration does not
limit it, and it has potentially unlimited resources. Nevertheless, some applications
need a secure storage mechanism which is not provided by TrustZone, and this lack
is preventing the usage of it from being used as TPM directly mostly if applications
need secure key storage. ARM TrustZone does not provide a canonical solution for
remote attestation intrinsically, but can be however used to protect measurements
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for attestation reports.

All this, therefore, leads to a compromise: ARM TrustZone can, consequently,
be used when dedicated hardware resources are not possible, and then the architec-
ture of the solution must be based on a complete software implementation, which
provides a mechanism to create a secure environment.

The Trusted Execution Environment is a context in which code and software
can be executed at a higher level of trust because the untrusted system physically
or logically separates it. As technologies enabler, there are multiple solutions. In-
telSGX, ARM TrustZone and TPM are the more popular and primarily adopted
solutions. Each of them has a different approach if designed to be used in a cloud
environment in order to be able to support a remote attestation protocol in order
to attest to a third party the trust of the system on which applications or services
are running. For example, the first big difference is the approach relies upon the
root of trust creation. Regarding the TPM, it resides directly in the ROM, and for
this reason, the root of trust of measurements and authentication is the TPM itself.
ARM TrustZone, on the other hand, does not provide a canonical mechanism, but
the software implemented in its secure world can be applied in such a way to sup-
port its remote attestation protocol. In contrast, Intel SGX approach is focused on
enclaves remote attestation provisioning, securely storing remote attestation keys
in the processor. However, in a cloud, TPM provides the best functionalities. Even
if its fixed set of features can be seen as a drawback compared to the flexibility that
ARM proposes, it can provide significant security in the architectural implementa-
tion because of its purely hardware implementation. Moreover, it is not true that
its fixed functionalities are limiting applications the TPM offers for the use of APIs
that allow full access to the features of the same, without perturbing or having to
implement applications differently as it happens when using ARM and IntelSGX.
It is a crucial issue in a cloud environment which, by its nature, is a versatile and
completely customizable environment. For a cloud environment, it is, therefore,
necessary and better to use a security element totally separate from the system,
more versatile from the implementation point of view even if it is only a tool and
does not have a decision-making part in the trust decision.

3.3.1 Cloud attestation frameworks

As we could see from the alternatives to the TPM, the TC manages to guarantee
security that is totally based on the hardware and is, therefore, a solution that
can be considered stronger than the approaches that are based only on the hard-
ware. Naturally, the solutions based on the latter are not risk-free. As also Trusted
Computing presents critical issues and controversies[16]. Most important of all is
the fact that the TCG does not have well-defined procedures for performing trust
checks, but it is a set of specifications that offer a means to those who use them to
implement their own solutions. However, this is also its strong point as it allows it
to be versatile in an environment like the cloud. For this reason, it supports and
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Figure 3.4. Intel OpenCIT architecture

is at the base of different attestation frameworks, which will be shown later here,
in this section. The thesis project is aimed at improving the basic functionalities
of the TPM in order to guarantee its better use in the cloud environment so that
it is not, as in some cases, a limitation in the implementation, but a factor that
can extend the functionality and potential of existing systems. The changes made,
which will be explained later, are in fact aimed at being entirely transparent for
already existing attestation frameworks. For this reason, in this section, we will
illustrate the two main frameworks based on the TPM to understand their limi-
tations and strengths compared in the cloud environment. Those two frameworks
are OpenCIT and Open Attestation Toolkit (OAT). Both frameworks relies
upon the TPM and both of them can take advantage of the implementation that
the work of thesis is based on.

Intel Open CIT

Intel Open Cloud Integrity Technology (OpenCIT)[17] is the Intel implementation
for remote attestation of a cloud system, based on the architecture called Intel
Trusted Execution Technology (Intel TXT). It allows to measure system compo-
nents and attest that they have not been manipulated. The so-called Trust Agent,
the unique application used for the remote attestation, is located inside the dis-
tributed machines.

The starting point for the remote attestation process is the Intel TXT. It is con-
sidered the Root of Trust for the remote attestation process. During machine boot,
indeed, it will be the unchanging hardware measurements agent that will start the
chain of trust measuring the first step of the boot process. Each software than in-
volved in the boot process will measures the next one. Later through the now well
know quote operation is able to pass through the TPM all the required information
to the Attestation Server. The remote attestation begins with the server regis-
tration in the Attestation Server. The AS is the component in charge for the
remote attestation process. It will compare the infrastructures measurements with
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the previous imported ones, also known as whitelist. At the registration, all the
Know-good measurements from each machine are imported inside the AS. This
process also includes the generation of the Attestation Identity Key (AIK).
The key pair generated by the host’s TPM is for a secure attestation quotes trans-
mission. The known-good measurements for each of the future attested machines
are the basis for the later integrity checks. The results produced by the Attesta-
tion Server will be reported though the Attestation Reporting Hub to a service
known as Open Stack.

The trust agent is another critical component of the architecture. It is part of
every physical server, and its aim is to enable the remote attestation with the AS
and to extend the chain of trust. The Trust Agent is responsible of the communi-
cation with the TPM for the secure quote operations, but it takes part also in the
VM or Docker container images creation. It intercepts the requests indeed before
they are sent to the hypervisor. Regarding the VM generation, they are under the
control of the Trust Director, as well as the Trust Policies, docker images and en-
cryption of VM images. The Trust Policies selection is a peculiarity of Open CIT
which allows defining the folders and components to be explicitly measured and
later attested, though precisely a Trust Policy. Those policies are digitally signed
by both the Trust Director and the Attestation Service. Regarding the encryption
of VM images instead, two other major components now are involved: Key Borker
Server or also known as Key Management Server (KMS). It handles the keys
used to encrypt and decrypt VM images, which only happens if the Attestation
Server involved in the remote attestation is considering as Trust the outcome of the
attestation based on the previously established Trust Policies.

Host Trust Attestation is the process of verification based on known-good val-
ues previously imported. Those values are precious since, through them, the AS
is capable of detecting deviations from the expected host behaviour. The policies,
as earlier explained, are files and directories that are measured by the Trust Agent
component during the boot time. Each measurement taken will be later saved
inside the TPM registers. Once the server is completely booted the results of the
booting process is sent and compared with the known-good measurement by the AS.
The set of values called known-good is incorporated inside a structure: whitelist or
Measured Launch Environment (MLE). Each MLE contains first of all the
platform-specific known-good, BIOS MLE. Also, it includes the so-called VMM
MLE. Those are measurements that are not related to the host but concern the
OS, kernel and other components like the hypervisor. Every PCR inside the TPM
will have its own definition inside the flow. They are used to store the aggregate
results of the machine measurements, and their values will be compared with the
known-good conditions. Different PCRs have different measurements parameters;
for example, PCR 0 is designated to BIOS ROM and Flash Image. Every PCR is
indeed involved in one or another MLE accordingly to the setup.

However, as it can be deducted by the whitelist management, Open CIT has
some limitations regarding the servers that are frequently updated. The update
procedure introduces an overhead that is represented by the reimport of updated
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whitelists. If this does not happen, it will bring to a system integrity break. More-
over, it requires a compatible processor for the support of the Intel TXT technology,
which represents the Core Root Of Trust in the attestation process.

Open Attestation Toolkit - OAT

Open Attestation Toolkit (OAT)[18] is another common framework developed by
Intel in 2010 that can be used to implement Attestation Service in the infras-
tructure. It is able to measure and reports the host status of platforms that are
supporting TPM as key technology enabler for the architecture. Intel OAT is fully
compliant to the TCG specifications only up to version 1.7. Its key features are
the supports of major linux OS, and it has a PCR-based report schema and policy
rules. Moreover, OAT has a major number of RESTful based API to interact di-
rectly with the host agent and the Appraiser and with other tools that can be easily
integrated. For example, the final user can use API queries to request attestation
of a trusted platform or to interact through the whitelist API directly with the
component.

A simple schema of the basic components of OAT can be viewed in figure 3.5. It
accurately reflects the specifications set by the TCG. The host agents are running
inside every trusted platform. Their role is similar to the OpenCIT trust agent. In
this case, there is also a privacy CA which its aim is to provision and certificates
each Host Agent AIK. The database responsible for the collection of the trusted
known PCR values is called Whitelist Database, and it is naturally under the con-
trol of the Attestation Server that will use those values for the trust check validity
over the reported measurements during the attestation process.

Attestation Server

Host Agent APIRESTful API

Whitelist DB

Appraiser

Privacy CA

Host Agent

Host Agent

...

Figure 3.5. Open Attestation Toolkit architecture

When the Attestation server stars the attestation process, the Host Agent is in
charge of creating the called Integrity Report. Two different sections compose the
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IR. In the first one, all the PCRs values related to a trusted platform are reported.
In the second section instead, all the measures performed by the Host Agent are
included. Both sections are useful for the validation of the host status. The validity
of each measure is done comparing the report with the white list database. Until
version 1.6, the validation approach was slightly different, causing an inefficient
interoperability with systems that are cable of supporting IMA. From version 1.7,
it is, in fact, possible to skip the whole PCR validation and use only PCR number
10, that is responsible for maintaining the aggregate results of IMA measurements
over the system. With the interoperability introduction of IMA is now also possible
to attest not only statically a VM or a trusted platform but a run time attestation
process can be guaranteed. Major drawback of OAT is that is supporting only
TPM 1.2 despite the presence of a more recent release (TPM 2.0).

Keylime

Even if OAT and OpenCIT can be considered as two milestones in the field of
Remote Attestation, recently a brand new framework is becoming more popular:
Keylime, born in a research team in MIT’s Lincon Laboratory. Like its predeces-
sors, Keylime could be a TPM based remote boot attestation and runtime integrity
solution. Its strong points are the following:

� Full compatibility with the Linux TPM2 Software Stack, on which it is
built on

� Open source project. Like all the open-source projects community con-
tributors are encouraged to make changes and improve its functionalities.

� Accessibility. Differently from other projects and implementations, the un-
derstanding of low-level TPM’s operations is not necessary, and this is appli-
cable to both developers and users.

The keyword in Keylime project is building trust in cloud computing. It is an
end-to-end solution based on the period attestation of nodes, extending the TPM
capabilities to the cloud environment, with always the same goal: allow the tenants
to be able to check that the applications and the whole infrastructure over which
they are running has not been tampered with.

The two technologies that are the foundations of this framework are the Trusted
Platform Module hardware and the Linux kernel subsystem with the Integrity
Measurement Architecture (IMA). The point of strength of Keylime is its scalabil-
ity because of the performance of its architecture. The hardware TPM calls are
reduced to improve performance, to do this it implements the vTPM quote opera-
tion. In this way, the number of Virtual Machines that can be managed increases
considerably.

As it was previously introduced Keylime secure the cloud environment in two
different phases, the Trusted Boot and the operational trustability of the infras-
tructure. Keylime is based mainly on three components: Agent, Registrar and
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the Verifier. All of them are implemented with the goal to achieve a high level
of security but with particular attention to the performance as well. In addition
to those components in the tool kit of Keylimme, it is possible to find also the
Keylime Tenant which through a RESTful interface for the communication of all
the components. However, another critical component is the included Keylime
Certificate Authority. As it was already discussed in the thesis, it is a fun-
damental part of the trust established between the nodes and all the components
involved in the remote attestation process. The Certificate Authority plays the
critical role of provisioning all the keys on which the system relies on. It is also
responsible for the revocation of certificates in case of security breaches in the trust
relationship between the components. A more general overview of the role of the
certificate authority is, however given in a dedicated section of the thesis, and the
Keylime CA is built on the same concept.

However, to support the trusted workflows, the main characters and their roles
are the following:

� Keylime Agent. The agent is installed in every node in the infrastructure.
Its primary function is the interaction with the Trusted Platform Module.
Those interactions take part in two different phases of the Remote Attestation.
During the collection of the Integrity measurements, it is responsible for their
communication to the other components to start building the chain of trust.
In the same way, it is responsible also for the request of the quote over the
collected measurements, once those are requested to verify the trustworthiness
of the node.

� Verifier. Its role is the continuous check of the different nodes through the
quotes provided by the Keylime Agent. Through the measurements received
in the quote operation, it is able to determine any manipulation in the infras-
tructure system.

� Registrar. During the attestation, process keys are naturally involved in
attesting the ownership of the data exchanged. Registrar is responsible for
maintaining an updated known secure public keys list. Moreover, it has an
important role in the process since it is also the phase for the storage of the
hardware TPM key. As already mentioned in the first section of the thesis,
the hardware TPM key verifies the validity of the TPM itself, crucial in the
process because of its role of the root of trust. To keep an updated list of
all the keys, the Agents, once deployed are asked to register itself along with
their initial state

Now that all the components have been introduced is possible to understand
better how effectively Keylime is supporting the Trusted Workflow. In addition, it
is needed the introduction of also concepts that are related to the keys used during
the process. The attestation Keylime workflow is based on the following keys:

� Endorsement Key (EK). It is a hardware root of trust key which is burned
by the manufacturer inside the TPM at the moment of the production. It
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can be considered as a unique identifier of the TPM. Because of its nature,
the private key can not be changed or erased. The manufacturer instead
publishes the public portion of the key.

� Storage Root Key (SRK). Differently from the EK, this key is instead
re-generated every time that the TPM is reset. Its primary function is to
protect the AIKs.

� Attestation Identity Key (AIK). The AIK is used instead to sign the
attestation quotes generated by the TPM.

In order to support the Keylime workflow, some prerequisites are needed, espe-
cially regarding the BIOS and the operating system. For what regards the BIOS,
it must support TPM’s compatibility for the measurement of firmware and boot-
loaders. In addition, the OS should support the runtime measurements of the
application, which can be translated in a compatibility with Linux IMA or Policy
reduced IMA.

Once all the prerequisites have been respected, it is necessary to initialize the
various components of Keylime. These components must be initialized in a precise
order for the workflow to be carried out correctly. First of all, the components is
the Registrar. It is deployed by the tenant, which also attest its integrity state as
the root of trust. Naturally, the Registrar can be located in two different places:
tenant infrastructure and Cloud infrastructure. Both scenarios are supported ef-
ficiently. At this point, once the Registrar has been fully initialized can start to
accept Agent registration. This phase includes the TPM AIKs storage.

In parallel, another component is deployed, even before any other nodes. This
component is the CA. It is responsible for the signing of keys sent to the nodes.

The final step is instead to deploy the nodes and provision the nodes in order
to boot and verify them. Once the node is up and running and verified can be
successfully registered with the Registrar.

An interesting fact regarding the Keylime is that it is supporting two different
approaches regarding the attestation process. One can be considered more classic
since it is supporting the standard Trusted Boot workflow. On the other hand,
Keylime is also supporting a novel approach for the trusted workflow, called Three
Part Key Derivation (TPKD), that can be summarized at a higher level as
follow:

� The node is registering the public AIK with the Registrar.

� The Tenant generates a key and cryptographically split it in two halves. One
of the two halves is given to the target node to start the provision with this
particular node and to check with the Registrar that the AIK is also valid..
The other half is instead kept by the tenant or given to the CV in case of
delegation for the integrity check of the node.
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� In this way Tenant and Verifier can send separate attestation requests to
the Agent, using the Registrar instead to validate the quote. The node, in
fact, provides a quote to the CV which can check the integrity of the node
and provide later its half of the provisioning secret to the node in order to
complete the process.

� At this point, the node should have both halves of the secret if the integrity
verification from the CV was successful. In this way, the node can obtain its
provisioning key.

� Once the bootstrapping is completed, the Verifier can requests quotes to the
Agent. If the quotes results to be not valid, the CA is notified for a renovation
and invalidation of the keys.

3.3.2 Drawbacks of existing applications

In the previous section it was shown that there are multiple way to build an in-
frastructure for the attestation of trusted platforms. However, for VMs that are
running on top of the hypervisor is difficult to provide them with the proper re-
quirements for the remote attestation process. This is due to the fact that all the
framework expect the usage of a dedicated TPM. Scientific literature has widely
discussed how to extend the Root of Trust of Storage and Reporting, which is usu-
ally covered by the TPM.

One of the most popular solution is to deploy a virtual TPM instance simulated
via software. In this way every virtual machine has its own private TPM. A shared
hardware TPM would not be feasible since the number of PCR is limited. The
hardware TPM in this new solution has now a different role and should be involved
as Root Of Trust of Measurement. Some of the PCRs can be devolved to the
management of vTPM. However, all the registers inside the vTPM have a major
drawbacks which is that they are completely software developed. To fully exploit
the potential of the TPM as a hardware resource it is necessary to have the same
intrinsic security in the PCR of a TPM hardware but also to be able to use the fact
of being able to use and have a private TPM for each VM. For this reason in the
thesis project a way was found to be able to map each so-called virtual PCR within
a hardware TPM. Thus, the binding created between a virtual TPM instance and
the physical TPM would allow us to continue using TPM-based remote attestation
systems compliant with the TCG and at the same time be able to tp extend the
chain of trust up to the hardware level. It would also resolve the TPM reset at-
tack which suffers software implementations purely. The solution is also introducing
little overhead in the entire process since it is transparent to the Application Server.

Other existing solutions, on the other hand, proposed to integrate inside the
hypervisor a component for the virtual machine remote attestation. The component
is called Integrity Verification Proxy (IVP). In this way, the classical RA process can
be used since the VMs integrity relies upon the system that is monitored. However,
the solution is expecting the VM to run in debug mode creating an overhead and
bottleneck in the VM performance[19].
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Chapter 4

Deep Attestation process

The whole Deep Attestation flow is depicted in Fig.4.1. Every element and phase
will be discussed in deep in the following chapter. More precisely in this section the
Deep Attestation protocol will be described at an higher level, while in the next
section it will be explained in more details the actual pTPM implementation and
what changes are made to the interface to support the following protocol.

AGENT PTS

Platform Integrity 
Measurement

SML

Integrity Report
VM attested Structure
VM Digital Signature
VMM Attested Structure
VMM Digital SIgnature

VM Logs VMM Logs

ACA

VERIFIER

Integrity Request

Nonce
PCR list 

VM Logs

Figure 4.1. Deep Attestation flow
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4.1 Architecture design goal

In this chapter, we are going to explain in more in-depth details the architecture
for the realization of the TCG-based Deep Attestation. The proposed technique
aims to verify the status of a Virtual Machine, that is the trustworthiness of the
software and storage. Considered the infrastructure in Fig.4.2, the integrity of a
VM relies on two components: Virtual Machine (VM) and Virtual Machine
Manager (VMM).

Hardware

Virtual Machine Manager

Virtual MachineVirtual Machine

TPM

vTPMvTPM

Figure 4.2. Logical Architecture dependencies

To provide reliable proof of integrity during the lifecycle of the virtual machine,
the attestation of those two components should be made separately.

� Attestation of VM. This attestation can be subdivided into two phases,
accordingly to the state of the machine. At booting time ensures that only
expected programs and configuration files are loaded inside the VM. However,
at run time, the attestation process extends the trusted boot, providing a
controlled and attested execution environment.

� Attestation of the VMM. Virtual machines rely on this node, and for this
reason, a proof of the integrity of the stack that is manipulating the machines
must be provided, this also includes the aspect of a genuine virtual storage.

The last aspect, the virtual storage, depends on the cloud infrastructure, and it
could be deployed as a separate node. In this scenario, the iterative attestation to
reach the full Deep Attestation process is composed by three-layer. Additionally,
the Secure Manager will be attested but with the same iterations of the VMM. For
this reason for the thesis, it has been chosen to integrate the virtual storage as a
part of the VM; and the storage controller as a part of the VMM.

As it is said, the Deep Attestation process is composed by two or three attesta-
tion layers. In order to reach a scalable attestation process, an iterative attestation
schema has been adopted. It means that the Verifier initiate a single attestation
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session for the VM, but the Integrity Reporting incorporates the two different at-
testations, respectively the integrity of the VM and VMM.

Now that the aim of the protocol is defined, the various components in Fig.
4.1 and their purpose within the protocol will be introduced. More precisely the
following components are part of the Deep Attestation process:

� Verifier. The Verifier is the remote party that triggers the start of the Deep
Attestation process. Its purpose is to decide whether a particular system
(Prover) can be considered Trust or Untrust based on the information received
from the client.

� Prover. It is the system considered in an Unknown state at the beginning
of the process. It responsible to collect Attestation Data during his life-cycle
and provide them later to the Verifier.

� ACA. The Certificate Authority is the third party trusted entity responsible
for issuing the certificates. The CA is trusted by both parties: Verifier and
Prover.

Each entity described above will take part of the process in different phases.
The whole process can be summarized in the following phases:

� Resources allocation

� Identity credential enrollment

� Platform Integrity Measurements

� Integrity Request

� Integrity Report

� Report Evaluation

4.1.1 ACA - Attestation Certification Authority

Certificate Authority is the entity responsible for issuing digital certificates to the
Prover. Through these certificates, a relying party, in our scenario, the Verifier,
can rely upon the digital signature made by the Prover over the Attestation Data
with its private key. Key that is bound to the issued certificates, which follow the
format specified in the X.509 standard.

It is essential to remind the indispensable role of the CA during the attestation
process for the particular reason that the issued certificates provide some degree
of trust over the Prover. The ACA is involved because it has to prove that a spe-
cific Prover inside its implementation ( in particular in its TPM ) is presenting the
private key associated to the certificate. The Certificate Authority moreover must
provide several services that are directly related to the certificate life-cycle.
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� Certificate Request. The CA is expected to have a robust validation pro-
cess for what regards the private key used by the Prover during the digital
signature.

� Certificate Renewal. There are scenarios in which certificates usually has
very long life, others in which instead a short-life cycle is more appropriate.
In the last scenarios the renewal process is essential.

� Certificate Revocation. There are a lot of reasons for which a certificate
should be revoked and they are strictly connected to the renewal process.

4.1.2 Verifier

The Verifier is an appraiser. It aims to decide on the Prover. The decision-making
process is the evaluation of the Prover against the Verifier standards, represented
by its whitelist(database collection of the intersted measures over the Prover). The
Attestation Data supports the trust decision made by this agent requested on
behalf of the Provider. They are used by the Verifier to judge and complete the
full decision-making process over the hardware and software integrity.

The Integrity Request supports the collection of information, that is made
at the beginning of the Attestation Process. Later, based on the Attestation Data
received in the Integrity Report by the Provider, the Verifier can compare its
expected behaviour with the one reported. The latter process is called Report
Evaluation. The functions of the Verifier can therefore be summarized as follows:

� Integrity Request. During this phase the Verifier sends a request to collect
the necessary Attestation Data.

� Report Evaluation. During this process the Verifier compare the Attesta-
tion Data with the expected behaviour represented by known fingerprints or
whitelists.

� Signature Verification. In order to trust the received Attestation Data,
the Verifier must procure the certificate corresponding to the Prover to verify
the integrity of the data received.

4.1.3 Prover

The Prover is the core entity of the entire Attestation process. Prover is responsi-
ble for different aspects of the attestation protocol, depending on the phases. The
Prover is, in fact, the target of the attestation protocol. In order to provide the
right information, the Prover must therefore first be provided with a certificate
related to the key that it will use during the attestation. Applying a digital signa-
ture to the Attestation Data will provide different services to the Verifier: Data
Integrity, Non Repudiation and Sender Authentication.

46



Deep Attestation process

The Attestation Data, on the other hand, can be collected only if a proper
Platform Integrity Measurement process is implemented. During this phase,
the Prover must collect the measurements that will be sent inside the Integrity
Report.

The functions of the Verifier can therefore be summarized as follows:

� Identity Credential Enrollment. During this phase the Prover has to
prove to an ACA the possession of a key that will be used to sign the Attes-
tation Data.

� Platform Integrity Measurements. The Prover has to collect the Attes-
tation Data measurements.

� Integrity Reporting. Once that the Verifier sends its Integrity Request,
the Prover must collect the Attestation Data and send all the information
signed to the Verifier for the Report Evaluation.

4.2 Deep Attestation flow

Now that the general architecture structure has been introduced with all its enti-
ties. It is possible to describe more in details how those entities interacts to support
the Deep Attestation process.

The remote attestation protocol alone is a valuable solution for attesting the
integrity and establish unauthorized hardware/software modification in the Prover.
However, in a cloud environment, the Prover is represented by different layers and
entities. For this reason the VM that is the final target of the Verifier usually does
not have privileged access to the Physical Platform (hardware layer). It is, therefore,
impossible to verify the complete integrity of the VM if also the other entities inside
the Prover are not attested. In this scenario, the Deep Attestation protocol extends
the capability of a classical Remote Attestation process employing the virtualized
allocation of TPM (vTPM) and their binding with the hardware TPM. The overall
structure is a three-layer architecture:

Physical Platform(PP)

VMM

VM

Figure 4.3. Three-layer structure

As can be seen from the Fig.4.3 the Prover, that from a point of view of the
Verifier is a single entity, is however structured in three layers. At the bottom of
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the layered structure there is the Physical Platform, which includes one or more
hardware TPM. It represents the RTM in the Deep Attestation protocol since all
the measurements will be stored inside registers(PCR) allocated in a memory space
accessible to only the pTPM. At a higher level, there is the Virtual Machine Man-
ager. It includes a VMM attestation agent, which is responsible for the extension
of the remote attestation process. The VMM is also responsible for the correct
communication between the pTPM and the virtual instance of it. At the top layer
instead, we have the VM instance.

VMM

pTPM

VM

vTPM

VMM

pTPM

vTPM
MANAGER

vT
PM

VMvT
PM

vT
PM

Attestation Agent

Deep Attestation

Remote Attestation

Figure 4.4. Logical attestation agent provision

Accordingly, to the various cloud infrastructure, the Prover structure can have
different implementations. The vTPM entity can be an instance inside the VM, or a
separate VM can manage it. The first case has a high provisioning cost since every
single VM deployed will require a single attestation agent and the communication
with the physical TPM is critical, because of the lack of privileges to access the
Platform Layer. The second option instead has a reduced provisioning cost, running
a single attestation agent, capable of communicating to the Physical Platform. The
remote Verifier, indeed, will be able to attest through a standard remote attestation
protocol the integrity of the upper layer that has a strong binding with the physical
hardware thanks to VM manager instance. However, during the Integrity Reporting
phase, not only the integrity of the VM will be attested, but instead, a report on
the VMM will be integrated, so that to extend and complete the DA.

vTPM PCR binding to pTPM

As depicted in state of the art, methods that can be found in literature use only
virtual instances of the TPM. Even if those methods achieve their goals, they have
to change the fundamental principle of trust. Those solutions present two major
drawbacks: a software implementation can be affected by defects, and the Verifier
should be aware of the communication with a virtual TPM instance.

An excellent example of this application implementation can be found in the
article ”vTPM: Virtualizing the Trusted Platform Module”[20]. In both architec-
ture, the authors introduced provide full TPM functionalities to virtual machines.
However, the attestation process is completed by the vTPM, and this latter one
applies the final signature. With our implementation instead, the Deep Attestation
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process is under the full control of an hardware TPM. A binding with a physi-
cal TPM guarantee the whole operation process. Not because it relies on other
integrity processes but because TPM is considered the most robust root of trust.

4.2.1 Resource allocation

The first phase that is external to the Deep Attestation process is the Resource
allocation. During this phase, the VM is allocated, and for this reason, also the
necessary resources to support the attestation process later must be provisioned.
In the following chapter it will be shown the exact implementation, however for the
purpose of the structure it is sufficient to know that the following resources will be
provisioned inside the Prover.

Previously, it was introduced the concept of Attestation Data. The measure-
ments collected by the Prover must be aggregated and stored somewhere inside the
Physical Platform layer. For this reason the first resources allocated to support
this phase in the Deep Attestation process are the registers. Those registers, called
PCRs, are allocated inside a memory space accessible to only the physical TPM.
This strong binding between the VM and the Physical Platform layer makes the
Prover to be considered as a single entity for the Verifier. The Prover, on the other
hand, needs a pair of keys to be able to subsequently make its digital signature
on the attestation data that will be saved on the PCR, to guarantee integrity and
non-repudiation to the Verifier. Inside the Prover indeed the VM entity will be
bound to a keys pair, later assigned to a certificate.

At manufacture time each TPM is provided with a significant random value, the
so-called primary seed. All the key generation processes rely on this primary seed,
directly or indirectly. Directly when through the TPM is created the primary key.
Inderectly when ordinary keys are generated using the Random Number Generator.
The hardware component is so able to generate two key pairs: Endorsement Key
(EK) and Attestation Identity Key (AIK). The EK in this architecture plays
the role of storage key and is used as a primary parent key to generate new keys
pair assigned to different VM instances. AIKs instead are the keys devoted to the
signing operations. The latter one has to be bound to every single VM. The aim
of using AIK instead of directly using the EK is that this allows the TPM not to
expose the EK itself. The hierarchy is presented in the following figure Fig.4.5.

In order to let the Verifier use the public portion of the key and to not overload
the usage of the hardware, certificate creations can also rely on Attestation Certifi-
cate Authority (ACA). An AIK is indeed a x.509 v3 certificate which contains the
public key. This credential is essential in the process because it validates the origin
of the AIK used. The only difference between this certificate and the conventional
public-key certificates is that the certificate on the AIK also ensures to not reveal
the identity of the physical TPM. The whole process will be later expanded in the
following chapter, but it is based on the so-called Privacy Certificate Authority
schema[21].
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EK

AIK AIK AIK

SEED

Figure 4.5. Keys Hierarchy

4.2.2 Identity Credential Enrollment

Now that all the necessary resources are allocated, there is one more preliminary
phase in the Deep Attestation protocol: the Identity Credential Enrollment.

The Prover needs not only a keys pair, the digital signature in order to be vali-
dated requires the enrollment of a certificate to be shared with the Verifier. With
this procedure the public key is available to the Verifier so that it can correctly
evaluate the report integrity and its origin.

The Prover indeed needs to create the certificate through a standardized proto-
col defined by the ACA. More precisely two different certificates will be issued to
the Prover. The first certificate regards the EK that will attest the ownership of
the key used for the creation of the AIK by the physical TPM which resides in the
Physical Platform of the Prover, this certificate can be used in multiple attestation
process for different VM instances. The second certificate is instead issued for the
single AIK pairs bound to the VM instance. It is indeed used only the attestation
processes that involve the particular VM.

In the following section it will be illustrated the two standard protocols used by
remote attestation implementations based on the use of TPM as an attester agent.

Identity credential enrollement - EK

The EK is an asymmetric key pair composed by a private and a public part. The
public can be exposed outside, and it is part of the certificate associated to it. The
private key, on the other hand, can not be in any way leave the TPM. For the
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certificate to be issued following the specification for the TPM 2.0 version the EK
should be of one those two types: RSA 2048 bit key or ECC NISTP-256 bit key.
Below in figure Fig.4.6 the two templates that can be used for the definition of the
public portion of the two keys.

Figure 4.6. Certificate templates

The EK can also be provided directly with the TPM by the manufacturer, but
in both cases, once the key pairs is generated, there is the need for the Endorsement
Key Credential. The EK credential is an X.509 v3 certificate that inside contains
the public portion of the key pairs created. Inside the certificate, there is also some
information regarding the security quality of the physical TPM. In general, the EK
credential are an asset to ensure the private EK hold by the TPM is conform to the
Trusted Computing Specification. To meet the requirements, the credential issued
for the TPM should contain the Public EK, the TPM version, manufacturer, part
number and firmware version.

51



Deep Attestation process

The type of certificate and version is chosen for cross-compatibility with other
PKI services. However, some of the fields present in the certificate are specific for a
TCG interpretation. There are in particular several proprietary attributes inserted
in the subject alternative name or directory attribute extension, that are princi-
pally used for those TCG values. Nevertheless, the specification of the certificate
follows the profile of the RFC 5280[22] that derives directly by the ITU-T X.509
specifics[23].

Identity credential enrollment - AIK

The EK certificate enrollment is easier since it is bound to the manufacturer that
have to attest the compliance status of the TPM to the TCG specifications. The
AIK credential instead is issued by and Attestation Certificate Authority. The
ACA must be a trusted third party entity capable of validate the EK credential.

The purpose of the AIK certificate is the same as the EK. They have to attest
that the public AIK is associated with a valid and compliance TPM. As it was
previously described for the EK Credential, the AIK certificate must contain TPM
properties, specification conformance and attestation process review. However,
for and AIK credential enrollment is crucial the EK certificate. Without it, the
Certificate Request can not be completed. In fact, the ACA has the burden of
providing validation of the AIK chain, described below:

� Validation of the EK CA certificate

� Validation of the EK certificate

� Proof of Possession (PoP) verification for the EK

� Validation of the platform certificate CA

� Validation of the Platform certificate

� Proof of Possession (PoP) verification for the AIK

� Proof of TPM residence for the AIK

The full enrollment requirements are described in the TCG Certificate Enroll-
ment document[24]. Here below there is a high-level overview of the protocol:

1. The AIK key pairs are created inside the TPM

2. the TSS creates the IDENTITY PROOF structure that contains the following
attributes, used for the certificate creation:

(a) identityBinding: signature over the IDENTITY CONTENTS structure
(structure defined during the key pair creation)
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TPM ACA

{IDENTITY_PROOF}_K1 , {K1}_PCA.PubKey

{TPM_EK__BLOB_RN}_EK.PubKey

RN

{AIK.Cert}_K2 , {TPM_EK_BLOB}_EK.PubKey

IDENTITY_REQUEST

Figure 4.7. AIK certificate enrollment

(b) TPM version

(c) AIK public key

(d) EK certificate

(e) Platform Certificate

The IDENTITY PROOF structure is now encrypted with a symmetric key
K1. This symmetric key will be sent encrypted with the public key of the
ACA, together with the previous structure.

The two elements created will be included in a single element called IDEN-
TITY REQUEST

3. The IDENTITY REQUEST is sent to the ACA

4. ACA verifies the certificate request received. In particular, it will proceed
with the following tasks:

(a) It will decrypt with its private key the symmetric key K1

(b) Now that it has access to K1, it can decrypt the IDENTITY PROOF
structure.

(c) Through all the other elements the ACA is able to recreate the IDEN-
TITY CONTENTS and verify the signature inside the identityBinding
attribute

(d) the ACA will also validate the EK and Platform certificate

Even if now the ACA has the whole elements to issue the certificate it has no
proof that the AIK private key is inside the TPM and that it has a crypto-
graphic link with the parents key EK.

5. ACA sends a challenge: ACA create the TPM EK BLOB R structure:

(a) hash of the AIK public key
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(b) random number RN

The structure is then encrypted with the EK public key present in the cer-
tificate received.

6. The structure is sent to the TPM

7. The structure is received and decrypted using the private EK and extrapolate
the challenge RN sent by the ACA

8. TPM return the challenge RN to the ACA

9. At this point, the ACA is sure that the TPM has the ownership of AIK key
pairs. For this reason, issues a new AIK certificate.

10. ACA encrypts the certificate in a way that is recognizable by the TPM. The
structure and the procedure is identical to the challenge phase. A structure
called TPM EK BLOB is created it contains:

(a) hash of the AIK public key

(b) symmetric key K2 used for the encryption of the AIK certificate

This structure is then encrypted with the EK public key.

11. The certificate is sent to the TPM together with the encryption key K2.

12. Platform is able with all the received information to decrypt the received
certificate using the TPM. In particular, the structure received is decrypted
using the private EK. From the decrypted structure, the symmetric key K2
is extracted. The key K2 can be now used to decrypt the certificate received.

4.2.3 Platform Integrity Measurement

The process internal to the VM or VMM that is responsible for the integrity mea-
surements is called Platform Integrity Measurements. Furthermore, it is the
service that interacts with the pTPM. During this phase of the Deep Attestation
process the Prover must collect measurements regarding its internal state. The
Trusted Platform module is, in fact, in the current scenario the root of trust of
measurements, allowing only the root of trust of measurements to write the plat-
form configuration registers.

The Prover must provide evidence of both its boot process both its run-time
behavior, and in order to achieve a collection of comprehensive information about
the system it uses two tools: Static and Dynamic Measurements.
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Static Integrity Measurement

Static measurements take place during the VM system boot and reload. It is based
on an immutable piece of code called Core Root of Trust for Measurement. On the
common platform, the CRTM is usually represented by the firmware, which is the
fundamental Trusted Building Block (TBB) that remains unchanged during
the lifecycle of the VM. Following a bottom-up approach and using a process called
Transitive Trust [25] the whole system is measured. TT is a process that measures
trust at each of the different levels in the system. Fig. 4.8 shows the process.

pTPM

CRTM
Firmware

Boot Loader

OS

Load BL
Measure BL

PCR 1

Pass execution

Load OS
Measure OS

PCR 2

Load Applications

ExtendExtend

PCR 0

LOGS

Figure 4.8. Static Integrity Measurement process

When the system is turned on the firmware value, that is acting as CRTM, is
stored inside the hardware TPM. At this point of the execution, it is responsible
for loading the Boot Loader, measure it and save the measures inside the physical
TPM. Once the measures are generated and the related logs stored, the BL take
the execution control. The Boot Loader now is responsible for loading the OS and
follow the same process of the firmware.

The three phases of loading, measure and pass the execution are repeated until
the VM is operational and ready to load the application. From this point now the
measurements of the system will be taken at run-time.

Dynamic Integrity Measurement

Dynamic Integrity Measurement is again the responsibility of the Platform Integrity
Measurements process. Those measurements will be part of the reporting to pro-
duce a reliable proof of trust. In fact as reported in the following article [26], the
integrity platform definition do not only include essential measures of the machine
at boot-time. It has also to include vital measures for all the processes inside a
machine at running time.

It is not relevant if the application or the process, in general, is loaded by the
OS itself, that was previously attested, or by another application. For each of those
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processes in which is possible to define a well defined semantic integrity, a similar
approach to the one adopted in the static measurements can be adopted. Never-
theless, there are processes in which the integrity state depends on the integrity
of other methods. Data collected during the process is later aggregated and saved
inside the TPM with the same approach that will be later expanded.

4.2.4 Integrity Request

The Verifier wants to initiate the process of Deep Attestation and for this reason,
requests the Attestation Data in which he is interested. The Attestation Data
requested corresponds to a set of logs and its aggregate representation inside the
registers implemented in the hardware TPM. Those elements will reflect the internal
state of the VM. However, in this integrity request, it is indirectly requested the
VMM attestation to complete the Deep Attestation process. If the two attestation
processes are disjointed could be that in the time between one report and the other
one the state of one of the two could have changed. For the Verifier is indeed
important to receive the entire Prover state once the Integrity Request is sent.
Inside the Integrity Request we find the below attributes:

� Nonce. For the freshness of the information

� Attestation Data request

Integrity Request

Nonce
PCR list 

Figure 4.9. Integrity Request

4.2.5 Integrity Report

The Prover that received the Integrity Request by the Verifier now is responsible
to collect the measurements and create a compatible structure for the report. The
Integrity Report will be composed by the following elements, to which we previously
referred as Attestation Data.

� VM Attested Structure. The main target of the Attestation process ini-
tialized by the Verifier against the Prover is the VM. For this reason The
aggregate results of the integrity measurements, stored inside the registers, is
collected in this structure.
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� VM Digital Signature. To prove the integrity and the non-repudation
against the previous Attested Structure the Prover must sign with the Attes-
tation Identity Key the structure.

� VMM Attested Structure. As it was previously mentioned, the Deep At-
testation process must include in its implementation the an integrity proof of
all the Prover layers. The structure is in the form the same as the VM At-
tested Structure and it contains the aggregation of the VMM measurements.

� VMM Digital Signature. In the same way as the Verifier needs to test the
integrity and the non-repudiation of the VM Attested structure, also in this
case its presented to the Verifier a method to attest the truthfulness of the
collected measurements.

� VM Logs. The previous structures are the method to support the integrity
of the collected measurements that are stored inside the measuremts logs.
Logs represent the state of the machine in all its life-cycle and with those
elements the Verifier has the possibility to support its decision-making process
regarding the integrity of the endpoint.

� VMM Logs. To have a Deep Attestation the full Prover integrity must be
provided to the Verifier.

Once that the attestation process is completed the full Integrity Report can be
assembled and sent back to the Verifier together with the Stored Measurement Log
(SML) for both the VM and VMM. The SML is naturally stored outside the TPM,
but they reflect all the operations that changed the registers values. Those mea-
surements are essential to the Verifier to complete the Report Evaluation process.

4.2.6 Integrity Evaluation

The Verifier now that have received the Integrity Report can proceed with the eval-
uation of it. For this reason, it will proceed to verify first of all the integrity of the
Attested Structure checking the Digital Signature attached in the Integrity Report.

Once that the integrity of the Attested Structure is verified the Verifier can pro-
ceed to a double evaluation process. It has the task of comparing the measurements
made on the Prover with the know fingerprints that represent the expected state of
the system. During this phase, however, it must also check the integrity of the logs
that have been collected by comparing them with their aggregate representation
within the Attested Structure to check that they have not been tampered.

Once the evaluation is completed, at the VM will be assigned a state of TRUST
or UNTRUST. The same process is than repeated for the VMM, whose Integrity
Report is inside the report received for the VM.
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Figure 4.10. Report evaluation flow
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Chapter 5

Implementation

As it was introduced in the previous chapter, the core part of the thesis was fo-
cused on the introduction of commands to support the Deep Attestation process.
More precisely, those commands are crucial to integrate the VM life-cycle and the
Integrity Request received by a Verifier. For this reason, the first section will ana-
lyze more precisely which commands are introduced, how they support the remote
attestation process and more importantly, how they achieve the same security of
already existing commands. In the second section, instead, are introduced some
structure and classes created in the project to support the demonstration and op-
eration of the added commands. The crucial operations of the attestation process
have been recreated. A CA has therefore been introduced with the task of providing
the Verifier with the right public key for verifying the digital signature. A Verifier
was also created for the creation of Integrity Request and to verify the latter later.

5.1 Changes to pTPM interface

Majority of changes were made to support the life-cycle of a VM and a transparent
attestation process from a Verifier point of view. During the creation of a VM,
in fact, the TPM is in charge of allocating the right resources for future measure-
ments. Those measurements will be both static and dynamic, depending on needs
and implementation. The allocation of resources includes, in particular, the defini-
tion in the NV RAM of the registers. Subsequently, these registers will have to be
accessible, and a data structure has been introduced, external to the TPM, able to
memorize the association between VMs and memory indexes.

Following the allocation of the necessary resources, the environment is ready to
receive the necessary measures for a future certification process. The measurements
will be saved in the form of logs externally, so then to be sent to the Verifier. How-
ever, the digests that represent the state of the machine are saved in the relative
indexes allocated before. In this way, it is possible to recognize if the measurements
should be modified.
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Now that the VM has been allocated along with all its resources and its status
is monitored, the Verifier can advance the machine integrity request. After the
evaluation of this, it will generate a verdict and place the machine in one of the
following states: trusted, untrusted or unknown. The request for integrity takes
place in a completely transparent manner. The Verifier must be aware of inter-
facing with a virtual environment because this involves also having to check the
layer below the VM. However, it will be able to start the integrity process without
further changes to its interface. The binding created, in fact, between the vTPM
and the pTPM and the command introduced, keep the creation of an attestation
based on the operation of Quote identical to the one that would be obtained if the
VM had dedicated hardware. Naturally with the same security as all operations are
performed within the pTPM. This procedure, of course, introduces the bottleneck
of the implementation and will be discussed in later chapters. However, we need
to find a trade-off between wanting a low-cost, faster but software implementation,
with all the vulnerabilities involved, and an implementation supported by the hard-
ware that since it has to manage more than a single instance of virtual TPM, it
will have some lower reaction times.

At this point it is important to introduce the memory space in which all the
VM registers will be allocated, along with a summary of their life-cycle that will
be explained in details in the following subsections.

NV-RAM

TPM has a limited amount of PCRs, and a one-to-one mapping with the virtual
PCRs is not feasible. For this reason, the storage of the virtual-PCR should be
done in a different memory location.

The non-volatile RAM storage is a memory location in which is implemented
a restricted access control. In general, it has multiple implementations. Inside
it, it is possible to store keys and provide a mechanism for faster access to data.
The possibility of control read and write capabilities represents the most crucial
peculiarity. In particular, having access to an NVRAM provides you with the
following capabilities:[1]

� Storage of root keys used in the certificate chain

� Storage of endorsement key

� Storage of representative machine states

� Storage for decryption keys

Because of all its functionalities and the restricted-access control is the perfect
place to emulate and define inside this memory location the virtual PCR instances.
Saving those PCR inside the NVRAM that can be modified and accessed by only
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the TPM, ensures the perfect environment for a proper replication of the physical
PCR behaviour. PCRs that are responsible for the storage of measurements taken
during the Platform Integrity Measurements are now mapped inside the NVRAM.

Every time that a VM is allocated, after the creation of the key for the attes-
tation, its set of PCRs are allocated inside the NVRAM. Each non-volatile PCR
has a reference index that is consequently bound to the VM through a mapping for
faster research.

PCR life-cycle management

Before the first booting of the virtual machine, the PCRs set inside the NVRAM
should be created. Once the necessary registers and bank are deployed, it is possible
to involve them in essential operations. PCRs are primarily engaged during the
Integrity Measurement to store the appropriate data inside the registers. Secondly,
they are involved during the Integrity Reporting phase because they have to take
part in the core operation of the Deep Attestation protocol: Quote operation. The
overall lifecycle is represented in the following Fig.5.1:

Definition Extension Quote

Figure 5.1. PCR lifecycle management

5.1.1 Resource allocation - nvPCR definition

The first phase, as previously introduced, is the allocation of resources. In particu-
lar, the VM will need a set of registers that will simulate the physical PCRs usually
present in a TPM hardware.

The memory allocation process is mainly supported by the following main func-
tions:

� Allocate VM Resoruces

� A new ESAPI

� Define nvPCR

� UpdateMap, a support function
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Allocate VM Resources

Allocate VM Resources is the primary function that has the task of managing
the entire memory allocation process. The inputs of this function is the unique
identifier of the virtual machine and a variable representing the first memory index
that can be allocated: vID, freeIndex. A logical implementation of the function
is depicted in the algorithm 1.

Algorithm 1 Algorithm for resource allocation

1: function Allocate VM Resources(vID,lastIndexDefined)
2: freeIndex
3: nvHandle
4: i← 0
5: hashBank1← TPM2 ALG SHA1
6: hashBank256← TPM2 ALG SHA256
7: for i < 23 do
8: freeIndex← FirstFreeIndex()

9: nvHandle← Define nvPCR(hashBank1,freeIndex)
10: UpdateMap(vID,hashBank1,i,nvHandle)
11: end for
12: i← 0
13: for i < 23 do
14: freeIndex← FirstFreeIndex()

15: nvHandle← Define PCR(hashBank256,freeIndex)
16: UpdateMap(vID,hashBank1,i,nvHandle)
17: end for
18: end function

When a virtual machine is added to the deployment, two banks of registers are
allocated for it. The register banks are characterized by the type of digest that
can contain the registers inside them. In this circumstance, sha1 and sha256. The
resource allocation process must take into account and update every time a new
memory space is allocated, the following variables:

� freeIndex: to keep the pointer up to the first available memory index

� iterator: it also logically represents the PCR number.

Furthermore, the structure that contains the mapping between the virtual ma-
chine identifier, the bank (represented by the hash algorithm), the PCR number and
the index identification handle must be updated. The latter will then be necessary
in order to access the right register later.

It is essential to develop a function for the research of the first available index.
In fact, even if logically the registers are contiguous, in the memory space NV they
may not be. This happens when, for example, the resources of a particular virtual
machine are released because it has been removed or moved.
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Define nvPCR

The Define nvPCR function is instead the first change to the pTPM interface. It
is the definition of a new Enhanced System API. It is useful for automating the
creation of memory spaces with particular attributes to simulate a PCR register
within the NV memory correctly.

This API, in fact, has as its central point the definition of a memory space that
simulates the PCR but in the NV memory. In the Fig.5.2, it is possible to have
a view of the parameters that can be set according to the TCG specifications[27][28].

Figure 5.2. Definition of TPMS NV PUBLIC Structure

Of particular interest are the values that can be set as attributes. This struc-
ture allows to keep track of data and set restrictions on who can manipulate mem-
ory space. In particular, the bit corresponding to the attribute TPM2 NT must
be set, which defines the type of index in our case, it must be of type Extend
(TPM2 NT EXTEND). The other parameters instead depend on when the function is
called. As in the case of the nvIndex, which will correspond to the first index
available in our memory space. Alternatively, to nameAlg, which instead depends
on which memory bank we are allocating. A logical implementation of the API is
depicted in the algorithm 2.

63



Implementation

Algorithm 2 Logical implementation of Define nvPCR API

1: function Define nvPCR(hashAlg,freeIndex)
2: sizeOfHashx
3: nvPublic
4: freeIndex← freeIndex
5: authV alue← TPM2B AUTH
6: Setting the nvPublic structure
7: Definition of the space
8: if Error then
9: return EXIT FAILURE

10: else
11: return nvHandle
12: end if
13: end function

UpdateMap

For the virtual PCR management is necessary to store the binding between the
index, that is the reference of the NV location, and the corresponding Virtual Ma-
chine that is the owner of this particular index. However, PCRs are also subdivided
into banks. In fact, the size of the value that can be stored inside a TPM is de-
termined by the size of the digest generated by the chosen hash algorithm. The
minimum requirement from the TCG Specification is to include at least one PCR
with 23 registers[29]. The information that has to be stored are the following.

� VM identifier: unique number that identifies the VM

� PCR number: the register number

� Bank: that is identified by the hash algorithm used.

� NV-Index: the corresponding index associated with the location memory.

VM-ID PCR-Number Bank # NV - Index

INPUT OUTPUT

Figure 5.3. Multimap structure

As can be seen from the Fig.5.3 representing the multimap structure, the first
three values are input to retrieve the corresponding NV-index. An NV-index is a
space that will be defined during the deployment of the virtual machine. A unique
handle value identifies it. More specifically, the NV index structure is the following:
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� Unique handle. It is used to retrieve the reference Index

� nameAlg. The hash algorithm used in the computation of the Name of the
index.

� Authorization policy. It is an optional parameter that represents the digest
of the applied policy.

� Index attributes. They determines the nature of the index.

� Authorization value.

� Size of the index data. It represents the number of octets used to hold the
NV data

� NV index data

The Name of the index is produced using the public portion of the NV index.
All the previous arguments compose it except for the Index Data and the autho-
rization value. The Index Name is then produced hashing this public portion.
That information are usually stored outside the NVRAM to save space for more
PCR definition. Nevertheless, the data stored inside this multi-map structure can
be considered sensitive. The structure can be saved in the standard storage or the
TPM allow the definition of a secure memory location, whose access is controlled by
the TPM. Both solution are eligible and depends on the level of security you want
to achieve. The use of external NV is allowed by the TCG specification[2]. The
only requirement is the application of algorithms with an higher security strength
of any other algorithm executed in the TPM for the encryption, integrity check and
rollback protection. Other specifications regard the encryption key that should be
protected with a level of security as strong as the keys minimum. Moreover, those
keys can not be stored outside the TPM even if encrypted, and they must be de-
rived from a seed that does not move from the TPM.

In the implementation the updateMap, for a more straightforward and efficient
implementation, was chosen a Hash Table.

5.1.2 Measurements aggregation - Extend operation

The measures, as described above, are of two types: static and dynamic. Static
measurements are collected during the boot process. The Dynamic ones, on the
other hand, are taken at run time. In both examples, all the measurements will
be taken and inserted inside their respective log files. However, the system will
maintain an aggregate of integrity measurements over one of the PCR.
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MEASUREMENTS LOG FILE

Measurement

Measurement

Measurement

Measurement

Measurement

HASH

TPM

nvPCR - 1

Extend

nvPCR - 2

nvPCR - 3

Figure 5.4. Extend process

Since we have defined PCRs as extend types, the process to update them is the
TPM2 NV extend command. Also, in this case, a new function has been introduced
that can automate the process, and that takes into consideration the data structure
from which it is possible to extract the information necessary to update the right
PCR. The function takes four values as input:

� vID: it will identify the respective VM.

� PCR number: accordingly to the measurement taken, the aggregate of integrity
will be stored in different registers.

� hashAlg: this value identify the correct register bank.

� data: it corresponds to the measurement taken.

Through those input the correct registers will be uploaded.

Algorithm 3 Logical implementation of Extend nvPCR

1: function Extend nvPCR(vID, pcr, hashAlg, data)
2: nvHandle← SearchInMap(vID, pcr, hashAlg)
3: dataToExtend← Marshal TPM2B MAX NV BUFFER (data)
4: Esys NV Extend(dataToExtend, nvHandle)
5: if Error then
6: return EXIT FAILURE

7: else
8: return nvHandle
9: end if

10: end function

As can be deduced from the logical implementation represented by the algorithm
3, first of all, we need to extract from the Hash Table the handle that represents the
memory space in which the PCR resides. Once the handle has been extrapolated
from the HashTable, it is possible to update the register value. The nvPCR will be
updated naturally with the result of the hash function on the concatenation of the
value already present in the register and the new value.

nvPCR→ newV alue = HashhashAlg(nvPCR→ oldV alue||data) (5.1)

66



Implementation

A particular point in the implementation is the PCR number 0. The PCR 0
is usually chosen as CRTM. The computer reset puts the system in a known state
because, at this point, the processor begins executing the booting process. The
initial code is the core of CRTM. The trust of code relies on the manufacturer.
Usually, the action of the CRTM is to extend a PCR with a value representative
of the CRTM. Some system naturally implement a different method for starting
the chain of trust. In those cases, usually, the CPU is considered the CRTM.
The peculiarity of TPM is that it supports the hardware-based core root of trust
for measurement: H-CRTM. Particular interface indications allow the TPM to
understand if it is receiving data from the H-CRTM.

5.1.3 Attestation function - Quote

Once that the environment is ready and functional, the host or client is now ready
to authenticate its hardware and software to a remote server or Verifier. Remote
Attestation aim is indeed to enable the remote Verifier to verify the level of trust
of the platform. The level of trust is based on the integrity of the platform. In the
scenario proposed, the action of attestation consists in having the TPM sign the
internal PCR values. In a standard scenario, this is achieved using usual attestation
protocols that are based on the TPM2 QUOTE command. The command produces a
regular attestation structure. The block is then hashed and signed by the proper
signing key using a chosen signing scheme. The choice of the signing scheme is
mainly based on the signing key used for the attestation process.

Naturally, the process has its drawbacks[30]. The Verifier or challenger, in fact,
is in charge of make a judgment regarding the software that is running in the ma-
chine. The trust decision is usually based on whitelists. However, maintaining a
database of trust measurement is not a simple task. According to the application
and the white list used for the measurement during the previous phase, TPM should
attest only the requested data. Each virtual machine will, in fact, use different
paradigms as regards the boot process, and therefore static measures, and different
measurement architectures, as far as run-time measurements are concerned (an ex-
ample of the latter is IMA). Each paradigm or architecture will use different PCRs
in different banks for different purposes. At a TPM level, this is not very relevant
as the TPM itself is not able to judge the state of the machine but only to securely
aggregate the measurement logs. Despite this, it is important that as an input to
the attestation process the TPM receives the list of PCRs of interest to the Verifier.

Taking as a reference Fig.4.1 in Section 4, we are in the phase in which the
Verifier sends its Integrity Request composed of:

� Nonce

� PCR List

At this point, the agent will be responsible for retrieving the necessary infor-
mation and supplying it to the Verifier. The creation of the integrity report can,
in fact, be divided into two phases.

67



Implementation

� Reading PCR

� Attesting PCR

An API was therefore created for the management of resources and TPM and
to automate the entire process. The whole process is depicted in the logical repre-
sentation of it: Alg.4. After that, all the steps will be explained in detailed.

Reading PCR

As previously mentioned, the PCR certification can be divided into two: read the
PCR and certify the PCR. The function has as input the registers to be attested. In
order to read the correct registers, it is first necessary to retrieve the corresponding
handles. The latter are saved within the HashTable data structure (Point 1 in the
algorithm).

Once retrieved the handler, it is possible to access the right memory spaces
inside the memory and read the value of the registers. At this point, two different
operations will be performed:

� PCRs will be saved in a structure that will be included in the Integrity Re-
port. From TPM2.0 version, in fact, the actual PCR values must be provided
separately and are not included inside the attested structure [2].

� PCRs are chained in a single buffer to be hashed later. This value is the one
that will be included in the attested structure.

Attesting PCR

Once the access to the registers is provided, the registers reading phase is complete,
and it is possible to proceed with the creation of the attestation structure.

Figure 5.5. Attestation structure

Following the specification of the TCG, the attested structure must reflect the
Fig.5.5. This structure will be part of the Integrity Report sent to the Verifier
and to be fully transparent to it, each field must be able to be recognized by the
Verifier. The attestationData is the only signed part of the structure. Indeed the
size parameter is not part of the signature. For this reason, it is essential to create
first of all the attestation data structure of type TPMS ATTEST Fig. 5.6.

� magic. The first field is the called magic, this value is used to prevent the
TPM to compute digest, and later sign them, received from outside that starts
with this particular value. A TPM-generated message always starts with this
particular digest. This particular internal protocol ensures that an attacker
does not forge the message.
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Algorithm 4 Logical implementation of Virtual quote operation

1: function TPM2 VIRT QUOTE(vID, pcrSelection, Nonce, signScheme,
pubEK, pubAIK, sigScheme)

2: attestedStructure initialization
3: signature
4: pcrV alues
5: Load Key(pubEK, pubAIK ) . Loading the signing AIK key in the TPM
6: . Extracting nvHandles (1)
7: for i < pcrSelection.cout do
8: hashAlg ← pcrSelection[i].hash
9: sizeOfConcatenation+ =SizeOfDigest(hashAlg)

10: pcrNumber ← BitMapExtrapolation(pcrSelection[i])
11: nvHandle←SearchInMap(vID, pcrNumber, hashAlg)
12: arrayNvHandle[i]← nvHandle
13: end for
14: . Reading the selected nvPCR and chaining the results
15: pcrConcatenation = {.size← sizeOfConcatenation, .buffer = {}}
16: for i < pcrSelection.cout do
17: pcrConcatenation.buffer ← NV Read(arrayNvHandle[i])
18: end for
19: . Creation of the attestedStructure
20: magic← TPM GENERATED

21: attestedStructure←Marshal AttestesStructure(magic)
22: type← TPMI ST ATTEST QUOTE

23: attestedStructure←Marshal AttestesStructure(type)
24: qualifiedSigner ← ReadPublic(pubEK)

25: attestedStructure←Marshal AttestesStructure(qualifiedSigner)
26: extraData← Nonce
27: attestedStructure←Marshal AttestesStructure(extraData)
28: clockInfo← Read Clock()

29: attestedStructure←Marshal AttestesStructure(clockInfo)
30: firmwareV ersion← firmware
31: attestedStructure←Marshal AttestesStructure(firmwareV ersion)
32: outHash← Hash(pcrConcatenation)
33: attested.pcrSelect← pcrSelection
34: attested.pcrDigest← outHash
35: attestedStructure←Marshal AttestesStructure(attested)
36: . Now the structure can be signed
37: quoteHash← Hash(attestedStructure)
38: quoteHashT icket . produced by the previous Hash
39: signature← Sign AIK(quoteHash, quoteHashT icket)
40: return signature, attestedStrucuture, pcrV alues
41: end function

69



Implementation

Figure 5.6. Signed structure

� type. Since we are performing an attestation based on a quote operation,
the next constant field type must be set to TPM ST ATTEST QUOTE. This field
instead define from which operation the attested structure was created. The
attested structure is in fact also created for Certify operation or Audit session,
for example.

� qualifiedSigner. It is the Qualified Name of the key used to sign the
attestation data. This QN is useful to the Verifier to determine where the
signature is produced.

� extraData. It is the field in which the TPM should put the Nonce received
by the Verifier. In this way, the TPM is preventing the replay attacks.

� clockInfo.It is not a single parameter, but it is composed of 4 of them. The
values included in this structure are useful to have more information about
the status of the TPM. In particular, a reference when the TPM was last
switched on, number of occurrences of TPM reset, number of shutdown or
start.

� firmwareVersion. It is a vendor-specific value and identifies the version
number of the firmware.

� attested. Here instead we have the type-specific attested information that
in the scenario are the Quote information: TPMS QUOTE INFO. This structure
contains the two primary information. This information regards algorithms
and PCR selected and the actual digest of the selected PCR using the hash
of the signing key. As can be seen from the algorithm; once the PCR values
have been read, they are concatenated in a single buffer. From this buffer,
a digest is produced and subsequently inserted into the structure. The hash
operation is performed using one of the symmetric primitives included in the
TPM.
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The attested structure is now completed. Using the primitive Hash function
again, included inside the TPM is possible to create the digest used later for the
sign operation. Also, in this case, the Hash function will produce two outputs:

• Digest

• Validation(Ticket)

The ticket is significant during this operation. The hash will be used in a signing
operation, and the ticket represents that the digest operation happened inside the
TPM, and it is safe to sign the digest. This particular operation prevent the TPM
to perform involuntary a digital signature.

To perform the signature over the attested data structure is used again directly
the TPM. The private AIK is loaded through its public key and used for the signa-
ture. Finished the signature phase, the TPM will return the following parameters
that will compose later the final Integrity Report.

• signature

• attestedStructure

• pcrValues

Now only half of the deep attestation process is completed. To create the
Integrity Report the Agent will perform a standard attestation process over
the VMM to retrieve the integrity status of the layer under the VM. Once the
Integrity Measurements of the VMM have been retrieved, the Integrity Report
can be composed. The Verifier, at this point, has to perform a double verification.
First, the content of the structure that contains the PCRs must be confirmed and
with the fact that it was signed by TPM. For this reason, it will recalculate the
PCR digest obtained and compare it with the one signed by the TPM. If the two
values match, it can turn to verifying the integrity of the VM and the VMM. It
can trace the status of the registers by following the operations that were saved
in the received logs. Once finished, it compares its results with the ones collected
in the PCRs. Based on the outcome of this comparison, the Verifier can verify
whether the attested machine can be considered trust or untrust. The value of the
measurements in the log files, in fact, can be altered but their aggregate value in
the form of digest is not modifiable.

5.2 Proof of Concept

In this section, it will be possible to see the actual implementation of the remote
attestation process. For the simulation, different c++ classes will represent the
various entities in the Deep Attestation Process. Two separate attestation will be
performed. In the first attestation, the Logs inside the Prover will not have been
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tampered, and the final evaluation of the VM will mark the machine as TRUST. In
another remote attestation process instead, the VM will be marked as UNTRUST
since the results of the Report Evaluation will show that the integrity of the ma-
chine can not be confirmed due to a discrepancy between known fingerprints and
reported logs.

For a better understanding of the workflow and for an adequate understanding
of how the various components involved in the remote authentication process have
been implemented, in the following chapter will explain in detail the developed
classes and the data structures involved.

5.2.1 Classes and data structures

In order to simulate the remote attestation process but with particular attention
to those processes at a lower level that involves the TPM directly some higher
level and more cosmetic functions have only been partially implemented. In this
way, it was possible to emphasize the internal interaction of the various components.

The remote attestation process, as previously described in section x, involves
the interaction between the following components: the Verifier, the Prover and the
Attestation certificate authority. During the process, the components exchange the
following structures: Integrity Report, Integrity Request and the related public
keys linked to the private keys used for the digital signatures made on the reports.

Prover

The Prover is the focal point of the remote attestation and includes several com-
ponents within it. They are in particular responsible for the Platform Integrity
Measurement and the Integrity Reporting.

Within the thesis project, particular attention was given to the figure of the
Prover as changes were made to the internal design of some components to achieve
the final objective. For this reason, it was preferred not to represent it as a single
class but to divide it into its two main components: the pTPM and the vTPM.
For this reason, two classes have been created. The reason for this choice is mainly
due to the demonstration that it is possible to use within a prover a single physical
component capable of managing more than one instance of vTPM.

The methods and variables that make up the pTPM class, functional to the
deep attestation flow, can be divided into two: public and private. Public func-
tions are implemented to ensure correct communication with the other components.

class pTPM

{

public:
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// Constructor

pTPM(int number);

// Destructor

~pTPM();

// Function for Resource Allocation

void Allocate_VM_Resources(UINT32 vID);

// Function for Resource release

void Release_VM_Resources(UINT32 vID);

// Function for the creation of the primary key associated with

th pTPM

void CreatePK();

// Function for the creation of a derived key associated with a

vTPM

void Create_Key(Key* derivedKey, Key* primaryKey);

// Function for the creation of a derived key associated with a

vTPM

void CreateAIK(UINT32 vID);

// Function for the extension of the space

void Extend_nvPCR(UINT32 vID, int pcrNumber, TPMI_ALG_HASH

hashBank, TPM2B_MAX_NV_BUFFER* dataToExtend);

// Function for Handling the Integrity Request received from

the vTPM

IntegrityReport IntegrityRequestFrom_vTPM(UINT32 vID,

IntegrityRequest integrityRequest);

//Function to find the memory allocation of a PCR

ESYS_TR GetIndexFromMap(UINT32 identifier, TPMI_ALG_HASH hash,

UINT32 pcrNumber);

//Export public Key

Key GetRootKey();

Key GetAIK();

//Export public Key

Key* GetRootKeyP();

Key* GetAIKP();

}

In addition to the public methods, also some private functions have been de-
veloped, with the task of directly managing internal resources, that needs to be
addressed with precise sequences of internal resource calls.

class pTPM

{

private:

// Method to initialize the TCTI context

void Init_Tcti_Tabrmd_Context();

// Method to finalize the TCTI context

void Finalize_Tcti_Tabrmd_Context();

// Methods to initialize the ESYS context

void Init_Esys_Context();

// Method to finalize the ESYS context
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void Finalize_Esys_Context();

// Error handling function

int ErrorHandling(TSS2_RC rc);

// Function to extract hash size

UINT16 GetHashSize(TPMI_ALG_HASH hash);

// Function for nv-index definition

ESYS_TR Define_nvPCR (TPMI_ALG_HASH hashBank, TPMI_RH_NV_INDEX

freeIndex);

// Function for undefining an NV space

void Undefine_NV_Space(ESYS_TR* handle);

// Function for Updating the MAP

void UpdateMap(unordered_map<MapKey,ESYS_TR>* mapNVarea, UINT32

identifier, TPMI_ALG_HASH hash, UINT32 pcrNumber, ESYS_TR

nvIndex);

// New command for deep attestation

/*

vID [in]

pcrSelection [in]

nonce [in]

inScheme [in]

signingKey [in]

primaryKey [in]

attestStructure [out]

signatureStructure [out]

pcrValues [out]

*/

void TPM2_VIRT_QUOTE(UINT32 vID, TPML_PCR_SELECTION

pcrSelection, TPM2B_DATA nonce, TPMT_SIG_SCHEME inScheme,

Key* signingKey, Key* primaryKey, TPM2B_ATTEST*

attestStructure, TPMT_SIGNATURE* signatureStructure,

TPML_DIGEST* pcrValues);

}

Among the functions and methods implemented, we find the fundamental steps
of the remote attestation process. In particular, The resource allocation explained
in detail in Section 4.2.1 is implemented through the Allocate VM Resource func-
tion with which the PCR banks are reserved inside the NVRAM memory. In
particular, two banks are reserved, one with indices with Has SHA1 algorithm and
one with SHA256. This phase is in fact addressed in the first steps in the main.cpp,
which has been developed to simulate the workflow of the Remote Attestation pro-
cess. Within the code, following the classic calls to Constructors, we find precisely
the memory allocation of resources useful to prepare the development environment
for the proof of concept. For simulation purposes at this point, also the resources
devoted to storing the VMM measurements are allocated.

// Definition of the NV space of type extend

cout<<"\n*** Definition of the NV space  ***"<<endl;

74



Implementation

pTPM.Allocate_VM_Resources(vTPM_1.getIdentifier());

//VMM banks allocation

pTPM.Allocate_VM_Resources(0);

As can be seen from the functions developed, the pTPM is identifying each
vTPM with a unique number previously assigned. The function internally allo-
cates for each bank type, SHA1 and SHA256, four PCRs. For simulation purposes,
this is the number that has been chosen. For the definition of each memory space
inside the NVRAM the pTPM class exploits two private functions,Define_nvPCR
and UpdateMap. The first method is clearly used for the definition of the type of
PCR, which must be of the Extend type, to follow the rules for defining the func-
tioning of a PCR. The other function is instead use to keep track internally for the
binding between the NVRAM and the vTPMs. The actual implementation and
choice for the structure is already explained in the previous sections, in particular
in the subsection 5.1.1.

In addition to the previous methods, following the natural simulation workflow,
we find the functions that are related to the keys management and creation. They
are invoked immediately after the resource allocation since they are functional for
the correct completion of the process. Those functions, in particular, are:

• CreatePK. For the creation of the primary key.

• Create Key. For the creation of the attestation identity key.

• CreateAIK. This function is used to invoke the previous function, but it
takes as input only the vID that identifies the vTPM associated with the key.
In this way, the private key is kept as a private parameter and to invoke the
creation of a key it is needed only to pass a parameter that identifies the
vTPM.

In fact, for each virtual-TPM, it is necessary to create a key pair in order to
sign the Integrity Report generated for a specific VM. The previous functions are
in fact invoked exactly adter the resourse allocation, as already mentioned. Below
the actual implementation in the main program.

cout<<"\n*** Creation of a primary Key for the pTPM ***"<<endl;

//pTPM.Create_PK(&primaryKey);

pTPM.CreatePK();

cout<<"\n*** Creation of the AIK from the primary key ***"<<endl;

//pTPM.Create_Key(&keyVM1, &primaryKey);

pTPM.CreateAIK(vTPM_1.getIdentifier());

In order to properly store the information regarding the keys created, as they
include more than one parameters, a structure is developed.
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struct IntegrityReport

{

TPM2B_ATTEST attestStructure_VM;

TPMT_SIGNATURE signatureStructure_VM;

TPML_DIGEST pcrValues_VM;

TPM2B_ATTEST attestStructure_VMM;

TPMT_SIGNATURE signatureStructure_VMM;

TPML_DIGEST pcrValues_VMM;

};

Following the workflow, we find the two main functions implemented to achieve
the purpose of remote attestation: Extend nvPCR and IntegrityRequestFrom vTPM.
The first function aims to emulate the classic Extend operation that is normally
performed on PCRs. In the solution created, the physical TPM manages more
than virtual TPM, and for this reason, it keeps the various PCRs relating to the
different virtual TPMs in the NVRAM memory. For this reason, through the use
of the multimap structure and a unique number assigned to each virtual TPM,
the pTPM can trace the memory location of the vPCR in question, more precisely
through another support function: GetIndexFromMap. Once the vPCR memory
location is retrieved, a regular Extend operation is performed on it. The second
function in question, IntegrityRequestFrom vTPM, has the purpose of managing
the Integrity Report requests coming from the Verifier. The Integrity Request that
the pTPM receives has been mapped with the following structure:

struct IntegrityRequest

{

TPM2B_DATA nonce;

TPML_PCR_SELECTION pcrSelection;

};

Once the parameters necessary to perform the Quote operation, nonce and the
list of PCR involved are extracted, a private function is invoked which has the
purpose of emulating the Quote operation which is normally carried out with the
TPM2 QUOTE command. This function is TPM2 VIRT QUOTE, it has the purpose of
providing as output the parameters necessary for the construction of the Integrity
Report. They include the structure containing the reading of the affected PCR:

• attestStrucuture.

• signatureStructure.

• pcrValues.

The structure created to store the Integrity Report is the following, and it includes
naturally not only the Attestation Measurements related to the vTPM but also
the integrity information regarding the VMM, which are necessary to complete the
Deep Attestation process.
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struct IntegrityReport

{

TPM2B_ATTEST attestStructure_VM;

TPMT_SIGNATURE signatureStructure_VM;

TPML_DIGEST pcrValues_VM;

TPM2B_ATTEST attestStructure_VMM;

TPMT_SIGNATURE signatureStructure_VMM;

TPML_DIGEST pcrValues_VMM;

};

The logic of this function, being the focal point of the thesis project, is explained
in the previous section, in particular in the Section 5.1.3, while more information
regarding the parameters involved in the composition of the integrity report is ex-
plained in Section 4.2.5.

The remaining functions have a more marginal purpose than the remote attes-
tation process and are more involved in the management of the simulation environ-
ment. Init Tcti Tabrmd Context, Finalize Tcti Tabrmd Context,
Init Esys Context, Finalize Esys Context are used to handle the different sim-
ulations contexts. More information regarding those functions are explained in the
next section during the workflow explanation. ErrorHandling is a function used
to handle the different possible error codes received from the TPM commands calls.

The second component that is part of the Prover is the vTPM. Within the
simulation, it has a slightly secondary role since all the focus has been placed on
the critical part of the project, namely the pTPM. However, the vTPM has the
task of interacting directly with the Verifier and using the pTPM to ensure the
correct performance of all operations aimed at the remote attestation process.

class vTPM

{

[...]

private:

// Method to initialize the TCTI context

void Init_Tcti_Tabrmd_Context();

// Method to finalize the TCTI context

void Finalize_Tcti_Tabrmd_Context();

// Methods to initialize the ESYS context

void Init_Esys_Context();

// Method to finalize the ESYS context

void Finalize_Esys_Context();

// Function to extract hash size

UINT16 GetHashSize(TPMI_ALG_HASH hash);

public:

// Constructor

vTPM(UINT32 id);
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// Destructor

~vTPM();

// Setter for nvHandle

void setNvHandle(ESYS_TR handle);

// Getter for nvHandle Pointer

ESYS_TR* getNvHandle();

// Getter for the identifier

UINT32 getIdentifier();

// Function to load an external key

ESYS_TR Load_Public_Key(TPM2B_PUBLIC publicData);

// Function for the creation of the primary key associated with

th vTPM - used for session authentication

void Create_PK(Key* key);

};

As previously mentioned, having a secondary role the functions implemented
within the vTPM class have, for the most part, a management function. This
fact is due to the fact that the pTPM performs all critical operations, the vTPM
has an almost interface function for the Verifier. For this reason, in order not
to add too much complexity that would have resulted only for a cosmetic factor,
it was preferred to implement the essential functions for the Proof of Concept.
The fundamental part of the vTPM class are the variables it has inside. In par-
ticular, the nonceCaller which is the nonce bound to the Integrity Request and
the identifier, the unique number that is assigned during the deployment of
the vTPM instance. It identifies the vTPM and as a consequence, all its virtual
PCR. This is one of the research-key for the Multimap structure which contains
the memory location of all the vPCR deployed inside the NVRAM.

Remote Verifier

The Verifier is the remote party that starts the Remote Attestation process. It
aims to decide if the Prover can be considered Trusted or Untrusted. It bases the
decision on the Integrity Measurements taken during the life-time of the Prover
with the so-called Report Evaluation. For this reason in the thesis project, the
functions that have been developed aiming to support the new implementation,
proving the ability also with the new design of being able to complete the Deep
Attestation process successfully.

The actual implementation of this component inside the simulation design is
straightforward. As previously mentioned in its functionalities, only two main
functions have been implemented: CreateIntegrityRequest and
VerifyIntegrityReport.

class Verifier

{

public:

[...]

//Function for the creation of the Integrity Request
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IntegrityRequest CreateIntegrityRequest();

// Function for Integrity Report Evaluation

void VerifyIntegrityReport(IntegrityReport integrityReport, Key

rootKey, Key aik);

[...]

}

The first implemented function, CreateIntegrityRequest, is the actual func-
tion that supports the collection of information. It is the first step to trigger the
Prover, composed by the pTPM and vTPM, to collect the information that was
previously taken. As can be seen in the main program, first of all, the Integrity
Request is created through the function:

[...]

cout<<"\n*** Creating the Integrity Request ***"<<endl;

IntegrityRequest integrityRequest;

integrityRequest = verifier.CreateIntegrityRequest();

cout<<"\n*** Sending the Integrity Request to the Agent 

***"<<endl;

[...]

The structure of the IntegrityRequest has been previously reported, and as can
be seen inside that it is created a nonce to prevent the request to be reused in re-
play attacks. Apart from the nonce, the other parameters to be sent to the Prover
is the list of PCR that the Verifier is interested in. Once the Integrity Request is
prepared, it is sent to the Verifier that needs to process it. The pTPM and vTPM
work together to collect all the Integrity Measurements taken during the life-cycle
of the VM and the VMM until the request is received.

At this point, the Verifier is receiving the IntegrityReport which has to analyze:

[...]

cout<<"\n*** Processing the Integrity Response received from the 

Agent ***"<<endl;

#ifdef DEBUG

getchar();

#endif

verifier.VerifyIntegrityReport(integrityReport,

pTPM.GetRootKey(), pTPM.GetAIK());

[...]

The developed function for the previously mentioned process is the VerifyIn-
tegrityReport. It has three parameters as input. The Integrity Report. It, in
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particular, contains the structure containing the aggregation of the PCRs values
and a signature realized over it. For the validation of the digital signature the
Verifier needs the public attestation identity key, which identifies the vTPM and
naturally the root public key to validate the key chains, this key instead identify
the pTPM involved in the process. For the simulation process, the Verifier can
retrieve that information through two methods implemented in the Prover classes.

Apart from those two fundamental classes, the remaining implemented functions
are for the management of the class and the context environment.

[...]

private:

// Method to initialize the TCTI context

void Init_Tcti_Tabrmd_Context();

// Method to finalize the TCTI context

void Finalize_Tcti_Tabrmd_Context();

// Methods to initialize the ESYS context

void Init_Esys_Context();

// Method to finalize the ESYS context

void Finalize_Esys_Context();

int ErrorHandling(TSS2_RC rc);

[...]

5.2.2 Workflow

The pTPM class has inside all the critical operations that have been introduced to
support the binding between the physical and virtual TPM. First of all the three
main characters are defined: vTPM, pTPM and the Verifier. The ACA is in-
volved in general only for the exchange of the certificates and since the thesis is
incentrated at a lower level of view the the Prover represented by the virtual and
physical TPM will provide the public key directly to the Verifier during the in-
tegrity evaluation.

*** vTPM - pTPM binding PoC ***

Initialization of the TCTI context successfull

Initialization of the ESYS context successfull

pTPM instantiation successfull

Initialization of the TCTI context successfull

Initialization of the ESYS context successfull

vTPM instantiation successfull

*** Definition of the verifier ***

Initialization of the TCTI context successfull

Initialization of the ESYS context successfull
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TPM Command Transmission Interface (TCTI) is described in the TPM speci-
fications, and it provides a standard interface for the interaction with TPM through
standard commands. Together wIth the TCTI initialization also ESYS context has
been initialized since the whole project is based on the utilization of ESAPI.Regarding
the initialization, in addition to the definition of the two contexts, only few param-
eters are defined. In particular for the vTPM the unique identifier is assigned.
On the other hand in the pTPM is defined the first free memory index inside the
NVRAM that will store all the PCRs for the vTPM.

pTPM::pTPM(int id)

{

...

// Initialization of the memory index

freeIndex = TPM2_NV_INDEX_FIRST;

...

}

Now that all the initializations are completed it is possible to proceed with
the Remote Attestation lifecycle following the Deep Attestation process previously
described. The first step is the Resource Allocation.

Resource Allocation

During the resource allocation phase, the resources that are represented by the
register banks, are defined following the previously described algorithm. For the
simulation purpose during this phase, also the registers that will store the VMM
measurements are allocated.

*** Definition of the NV space ***

Extend NV Index defined: 4293479

Extend NV Index defined: 4293480

Extend NV Index defined: 4293481

...

Extend NV Index defined: 4293488

Extend NV Index defined: 4293489

Extend NV Index defined: 4293490

During the resource allocation for each new nv-index defined, the results is in-
serted inside the multimap structure used for this purpose [5.1.1].

The Resource Allocation is not limited to the nvPCRs definition, but in order
to complete the Remote Attestation process, the structure that will contain all the
useful information needs to be signed by an AIK. For this reason, it is created first
of all the primary key from which it will be derived the AIK that will be used
during the signature phase.

*** Creation of a primary Key for the pTPM ***

Creation of the Key successfull
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*** Creation of the AIK from the primary key ***

Creation of the derived key successfull

For the simulation the AIK types has been chose as RSA key with a size of 2048
bits. During the public definition of the key it is chosen also the signature shema,
which in this case is RSA-PSS[31] with SHA256 as hash function. At this point all
the resources are ready to be utilized during the other phases.

Integrity Measurements

In order to simulate the booting process of the VM, a file has been filled with sam-
ple logs of the major phases. Reading the file and extending the correct registers,
the process described above has been recreated [Subsection 4.2.3].

*** Booting the VM ***

0000 0000 0800 0000 298d f125 b260 ef64

0000 0000 0800 0000 298d f125 b260 ef64

Extension of the space 4293485 successfull

201b df08 15c0 0387 3eed d50e 2700 0000

201b df08 15c0 0387 3eed d50e 2700 0000

Extension of the space 4293485 successfull

...

3135 632d 4145 3835 2d33 3832 3930 4142

3135 632d 4145 3835 2d33 3832 3930 4142

Extension of the space 4293485 successfull

Naturally, once the Integrity Response is also created, the VMM measurements will
be needed. For this reason in the same way, also some measurements regarding the
VMM have been taken. For simulation choice, in particular, the first three PCRs
of the SHA1 bank have been designated to store the measurements regarding the
binaries, firmware and bootloader.

PCR Number Allocation

0 Binaries
1 Firmware
2 Bootloader

Integrity Request

The VM is now allocated, and it is running, the Verifier can now start the Remote
Attestation process requesting the Integrity Report to the Prover. The Integrity
Request in the simulation is containing a nonce to prevent the reply attack and
the pcr-selection attribute, which contains the bank and register number in which
the Verifier is interested in.
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*** Creating the Integrity Request ***

Nonce = 0123456789

PCR selected:

PCR number #0

PCR number #1

PCR number #2

The Integrity Request is sent to the Prover that will process it for the creation
of the Integrity Report.

Integrity Report

This is the core part of the whole process. Once the Prover receives the Integrity
Request, it extracts the useful parameters, in particular, the nonce and the PCR
selection attributes. Both of them will be used in the creation of the Integrity
Report. As it was previously described in order to perform a full Deep Attestation,
both the VM and VMM will be attested during this phase. For this reason, the
quote function will be invoked twice, one to perform the quote operation over the
PCR selected by the Verifier for the VM and a second time to perform the quote
operation over the PCR that are storing VMM measurements.

*** Sending the Integrity Request to the Agent ***

Extracting Integrity Request parameters

Permorming quote operation

Extrapolation of the vPCR

pcrConcatenation

93 38 CC 8 40 65 69 B E2 FC 3A 6A 62 E5 85 FD B1 63 5B 62 F5 68

D4 B0 8D 9F FF 29 80 4F C3 3B F2 C3 89 75 43 D7 65 CD 45 2 EF

8 24 A3 92 A0 AF 66 A1 EC 71 93 2B 34 FA FD 9B E9

Digest creation

42 83 B3 89 47 22 E5 1C 15 A8 95 E4 2E 78 93 45 63 F5 81 AA 0D

5A 1E F4 E7 48 8B 9C 8E 42 C1 5

More precisely in the first part as can be seen the PCRs after the extrapolation
of their number inside the structure received are read and concatenated. After
the PCR concatenation it is calculated the digest of this value. The results will
be included inside the structure that will be signed by the TPM. Following the
algorithm in the previous section [Sec.5.1.3], the Attested Structure is created.

Magic Number

FF544347

Adding Type

FF5443478018

Adding QN signing key

0B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699AD386BD41DFE98B
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Adding Extra Data

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789

Adding Clock Info

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789000002A8530000000001

Adding Firmware Version

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789000002A8530000000001001B001C

Adding TPMU_ATTEST

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789000002A8530000000001001B001C00030431000

432000434000204283B3894722E51C15A895E42E78934563F581AA0D5A1EF4E74

88B9C8E42C15

The TPMU ATTEST inside the structure includes also the previously created
PCR digest. Now it is possible to calculate the hash of the Attest Structure to
make the digital signature to be sent to the Verifier. All the Hash created are pro-
tected by validation tickets that prevent the TPM to accept and sign digest created
outside the TPM. For the signature creation is first of all loaded the corresponding
AIK.

Signature Created

1 D2 47 83 5F E0 7B D4 24 4B 33 BC 73 15 F2 21 35 F0 46 98 BF 0

BC 37 DA 8E AD 1C 74 E9 7A D7 D4 D3 E2 92 17 DF 89 C1 2F 63

3E 10 67 DD 3D 8B 84 5E 4A 2A 82 30 CD 12 61 78 ED CD 34 0 9B

44 EF 20 4C F0 BF B D4 AA E5 4B 1A 9D 27 C8 FC 4E 15 C6 26 6D

71 2C 2F 61 A 37 C0 C1 A7 27 8F C9 3D 11 17 96 FF 8 94 D9 D 1

BC C2 5D FF 80 C2 16 78 E4 39 76 4B 13 CB CC 1C 61 36 40 A0

59 B4 B8 3E 49 94 66 92 28 29 7A 65 53 B4 58 8E 62 8F A8 C6

3F 98 1E 81 3F DD BE B6 5E D7 9E 4D 56 57 99 7A 26 95 3D 0 B0

14 51 90 F4 6F B1 BC FE 5D 61 DD FD 4A 22 BF AA 8C 28 B8 EC 0

24 3B FD BF 20 3D 7 55 5E 18 2F 3B E1 13 D4 97 0 69 6A A7 5D

81 B 6F 1C 3F C8 23 A2 2C E0 30 39 9D 59 35 79 77 E9 7B 58 9F

7F 94 F C 28 C6 42 DA F9 BC C1 61 F8 D3 69 66 46 FD 17 6B 38

E7 C4 DC 3F 4

The same procedure (PCR extrapolation, reading the PCRs, creating the Attest
Structure and Signature) is repeated for the VMM which will be attested together
with the VM.

Extrapolation of the vPCR

Size of the index to be defined: 60

pcrConcatenation

4F 80 13 41 E5 70 7C 4A 8A 66 A5 90 15 CA D 58 28 65 5F 37 21 DE

E5 3E 97 4F 81 C9 58 EE 72 D4 C5 CC C4 50 ED 43 AE FD 4C 8F

55 70 9A 93 10 8 BE F 51 83 7D 3D CD A 4D DC A9 8A

84



Implementation

Digest creation

DF8FAFCAF12747A4CC97DB17B91837F16293C734E686FBCA4D795197963DB3

Magic Number

FF544347

Adding Type

FF5443478018

Adding QN signing key

0B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699AD386BD41DFE98B

Adding Extra Data

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789

Adding Clock Info

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789000002A8FD8000000001

Adding Firmware Version

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789000002A8FD8000000001001B001C

Adding TPMU_ATTEST

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789000002A8FD8000000001001B001C00030431000

43200043400020DF8FAFCAF12747A4CC97DB17B91837F16293C734E686FBCA4D7

95197963DB3

Hashed structure

1CFCD412CE36661887F03C4E8BE10FC1F8D68A2437CE7321DB6490C119E6BA

Signature Created

49 22 DC EC 10 9A 10 3A BE F7 9F BC D1 CB 2 EA F3 B7 F BD ED 4D

CA 42 B9 24 FD 46 44 99 D5 53 AA 69 F9 2D 65 F 39 BE 97 BF 50

47 4C 27 D6 6D 2E BF 6A E1 4D CA CF 4 4F 0 12 86 58 D3 74 48

C6 F2 9C B6 A6 BA 47 B0 8F 3F 84 BD D9 EC 57 CF B9 3 9 A8 4C

E B0 8D F1 E8 C1 24 5F F0 9E D0 0 F5 7D 92 D8 E2 5 39 41 49

D4 9C 71 DF D0 57 C3 8 C0 7C DB B 54 2F 45 25 6 6D D5 B0 12

C1 CA 8B 4E 42 97 DF 65 C9 A1 F4 2 64 A2 AB 74 80 37 E3 8C DE

36 2D C7 1A 6C 8A 40 81 F1 C1 BB B3 6E 31 73 3 D5 40 EB 30 83

77 CC C6 27 8 1B DA 15 6B BC 32 DF 48 BE 49 CB AC 1F 25 30 9E

1F DC B1 9D 0 96 92 67 99 D2 4B AF B0 1 FD 23 98 D1 C0 2A B5

FA 5 2F 74 68 24 D1 B9 E6 84 6F 2A 90 38 84 F0 F 7B 5F FA 8A

3D BA BF 18 97 33 9A AB B7 EC C 86 FB F5 87 EA AD E9 91 19 33

8A 3C B7

All those information are now included inside the Integrity Report which is
sent to the Verifier for the Report Evaluation
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IntegrityReport pTPM::IntegrityRequestFrom_vTPM(UINT32 vID,

IntegrityRequest integrityRequest)

{

...

integrityReport.attestStructure_VM = attestStructure;

integrityReport.signatureStructure_VM =

signatureStructure;

integrityReport.pcrValues_VM = pcrValues;

...

integrityReport.attestStructure_VMM = attestStructure_VMM;

integrityReport.signatureStructure_VMM =

signatureStructure_VMM;

integrityReport.pcrValues_VMM = pcrValues_VMM;

}

Integrity Evaluation

The Verifier receives the Integrity Report containing all the information it has
requested with the Integrity Request. With all those information the Prover
needs to provide also all the logs collected during Platform Integrity Measure-
ments. In this way the Verifier can evaluate if the provided logs are reflecting the
PCR values received and if they are an expected value. If all these hyphothesis are
respected the VM can be marked as TRUSTED.

*** Processing the Integrity Response received from the Agent ***

Verifer loaded public key

*** Veryifing VM Remote Atterstation ***

Received Attest structure

FF54434780180220B1886111C30D8538864F21CDC45436B9DC5787C3F8C2C699A

D386BD41DFE98B0A0123456789000002A8530000000001001B001C00030431000

432000434000204283B3894722E51C15A895E42E78934563F581AA0D5A1EF4E74

88B9C8E42C15

Signature received

1 D2 47 83 5F E0 7B D4 24 4B 33 BC 73 15 F2 21 35 F0 46 98 BF 0

BC 37 DA 8E AD 1C 74 E9 7A D7 D4 D3 E2 92 17 DF 89 C1 2F 63

3E 10 67 DD 3D 8B 84 5E 4A 2A 82 30 CD 12 61 78 ED CD 34 0 9B

44 EF 20 4C F0 BF B D4 AA E5 4B 1A 9D 27 C8 FC 4E 15 C6 26 6D

71 2C 2F 61 A 37 C0 C1 A7 27 8F C9 3D 11 17 96 FF 8 94 D9 D 1

BC C2 5D FF 80 C2 16 78 E4 39 76 4B 13 CB CC 1C 61 36 40 A0

59 B4 B8 3E 49 94 66 92 28 29 7A 65 53 B4 58 8E 62 8F A8 C6

3F 98 1E 81 3F DD BE B6 5E D7 9E 4D 56 57 99 7A 26 95 3D 0 B0

14 51 90 F4 6F B1 BC FE 5D 61 DD FD 4A 22 BF AA 8C 28 B8 EC 0

24 3B FD BF 20 3D 7 55 5E 18 2F 3B E1 13 D4 97 0 69 6A A7 5D

81 B 6F 1C 3F C8 23 A2 2C E0 30 39 9D 59 35 79 77 E9 7B 58 9F

7F 94 F C 28 C6 42 DA F9 BC C1 61 F8 D3 69 66 46 FD 17 6B 38

E7 C4 DC 3F 4

Signature Verified

86



Implementation

PCR values:

PCR#0: 93 38 CC 8 40 65 69 B E2 FC 3A 6A 62 E5 85 FD B1 63 5B 62

PCR#1: F5 68 D4 B0 8D 9F FF 29 80 4F C3 3B F2 C3 89 75 43 D7 65

CD

PCR#2: 45 2 EF 8 24 A3 92 A0 AF 66 A1 EC 71 93 2B 34 FA FD 9B E9

Before proceeding with the evaluation of the logs the Verifier verify the signature
received using the Public Key of the AIK utilized for the signature. If the result is
positive it can proceed to the log evaluation. The Verifier can also extrapolate useful
information from the Attest Structure: nonce, to verify that is matching the one
used inside the Integrity Request and the digest of the PCR concatenation, since
the PCR values are provided outside the Attest Structure. Once it has evaluated
also the logs received it can compare it with the results that is stored inside the
PCRs.

Checking the logs

PCR #0 93 38 CC 8 40 65 69 B E2 FC 3A 6A 62 E5 85 FD B1 63 5B 62

PCR #1 F5 68 D4 B0 8D 9F FF 29 80 4F C3 3B F2 C3 89 75 43 D7 65

CD

PCR #2 2 EF 8 24 A3 92 A0 AF 66 A1 EC 71 93 2B 34 FA FD 9B E9

PCR #0 4F 80 13 41 E5 70 7C 4A 8A 66 A5 90 15 CA D 58 28 65 5F

37

PCR #1 21 DE E5 3E 97 4F 81 C9 58 EE 72 D4 C5 CC C4 50 ED 43 AE

FD

PCR #2 8F 55 70 9A 93 10 8 BE F 51 83 7D 3D CD A 4D DC A9 8A

The Verifier is evaluating, naturally, also the measurements received for the
VMM. As can be seen from the output the hash calculated by the Verifier ana-
lyzing the logs received from the Prover are matching the one inside the Attest
Structure and they are matching the known fingerprints. At this point the Verifier
can mark the VM as TRUSTED.
On the other hand if the VM has been tampered and some malicious code is run-
ning inside the VM the reported measurements will not match the expected mea-
surements. Even if the attacker is able to provide the logs that would produce the
expected value, the PCR will have a different value meaning that the measurements
received in the logs are not matching the one taken by TPM.

...

Signature Verified

PCR values Received:

PCR#0: 93 38 CC 8 40 65 69 B E2 FC 3A 6A 62 E5 85 FD B1 63 5B 62

PCR#1: 63 05 9A 94 EA 03 FC DE CE C3 DF 61 1E 10 E2 76 A1 12 0B

CB

PCR#2: 45 2 EF 8 24 A3 92 A0 AF 66 A1 EC 71 93 2B 34 FA FD 9B E9

Checking the logs:
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Expected

PCR #0 93 38 CC 8 40 65 69 B E2 FC 3A 6A 62 E5 85 FD B1 63 5B 62

PCR #1 F5 68 D4 B0 8D 9F FF 29 80 4F C3 3B F2 C3 89 75 43 D7 65

CD

PCR #2 2 EF 8 24 A3 92 A0 AF 66 A1 EC 71 93 2B 34 FA FD 9B E9

PCR #0 4F 80 13 41 E5 70 7C 4A 8A 66 A5 90 15 CA D 58 28 65 5F

37

PCR #1 21 DE E5 3E 97 4F 81 C9 58 EE 72 D4 C5 CC C4 50 ED 43 AE

FD

PCR #2 8F 55 70 9A 93 10 8 BE F 51 83 7D 3D CD A 4D DC A9 8A

In the above example firmware measures have been changed and as can be seen
they are not matching the expected values or the ones calculated by the Verifier
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Chapter 6

Conclusions and Future Work

In this chapter are presented the results and conclusions obtained, pointing out
the point of strength and weaknesses of the implemented solution and how it can
be improved in future implementations. In particular, in section 6.1 it will be
presented the conclusion and some comments regarding the obtained results, while
in section 6.2 it will be given some possible future developments.

6.1 Conclusions

The thesis project was introduced to be part of a significant area of research: Cloud
Computing. Cloud Computing has fundamentally changed the way how resources
are provided and can be accessed. It is a compelling paradigm, offering many re-
sources at low cost including processing, storage and data management. However,
it has changed the attack surface to which it is exposed, bringing to light new
security and privacy issues to be addressed. For this reason, many solutions have
been proposed and discussed by different realities such as NIST and CSA. What it
was mainly proposed were solutions based primarily on software implementations.
Software implementations that are going to provide a means to trust the execution
environment over which all the applications are based on.

Trust is the critical element to have correct and expected behaviour from the
cloud environment. Trust that is not only important in a virtual environment, but
that is relevant in any machine on which we are making software solutions work.
For this reason, the TCG has developed a precise and detailed methodology to be
able to obtain it. All this led to the development of the TPM, the means to obtain
the desired result. However, the change of scenario has led most of the services to
be hosted in virtual machines or more generally in cloud environments. Since it is
not possible to have an equal relationship between physical and virtual resources,
which is in fact clearly in contrast with what is the paradigm of cloud computing,
the TCG had to change its specifications in order to be also adopted in these envi-
ronments.
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The solutions that were proposed, however, were, as already mentioned, mainly
software, and were slightly unrelated to what was the true potential of the TPM
and its physical implementation. For this reason, we began to think of a solution
to extend the protection provided by a trusted device to a virtualize environment.
The final goal is to create a strong binding between one or more instances of vTPM
and a single pTPM. In this way, end-users can benefit from hardware bound vTPM
identity, and the cloud platform can exploit the Deep Attestation process. The the-
sis project is part of a more significant project, for this reason, the aim of this work
was the investigation of PCR bindings for Deep Attestation use. PCRs are one of
the essential elements in the attestation process since they store the aggregate mea-
surements taken during the life cycle of the virtual object and their value reflect the
actual state of the machine. During the investigation, more than a single solution
was implemented. Different internal controls and operations have been considered
and developed. At the end of the development of the different solutions, several
factors were taken into consideration, including overhead created, scalability and
security of the implementation.

The proposed solution was considered the best as it provides a classic Quote op-
eration which is totally transparent to those who invoke it. Although it is necessary
to interact with a virtual instance of the TPM, the critical operations that con-
cern the updating of the PCR registers are managed by the physical TPM, which
substantially increases the general security of the implementation, which is the pri-
mary objective of the thesis. What it has been obtained is, therefore, a binding
between vTPM and pTPM that allows the virtual instances of the TPM to be able
to instantiate and save the measurements made for the remote attestation directly
on a physical resource. Furthermore, this binding also provides to be able to access
these resources securely and to share the results obtained with the external Verifier
without them being able to be modified in any way. The same result is therefore
obtained as if the virtual machine had its own physical TPM and could directly
use its physical PCRs.

In addition to the solution obtained, two other implementations were mainly
considered. The TPM specifications are very specific and in fact, do not leave
much space for free implementations for obvious reasons. However, these two im-
plementations had two significant drawbacks. The first introduced an unnecessary
overhead and a meaningful complexity which made its use complicated and expen-
sive in terms of resources. The second solution even if with a minor overhead, did
not provide for a classic interaction with vTPM and needed secondary functions
to be totally transparent to the Verifier. All this, therefore, introduced complexity
and interrupted the chain of trust that had been created between the pTPM and
the vTPM. However, the proposed solution is not without drawbacks. This is due
to the fact that at the base of the implementation, there are two strong hypotheses
in firm contrast to each other. On the one hand, we have the cloud computing
paradigm, which involves the sharing of physical resources. On the other hand, we
have the remote certification which is based among the many factors involved on
a digital signature placed above the value of the PCR to declare that it belongs to
a specific TPM. The implementation bottleneck resides in the sharing a physical

90



Conclusions and Future Work

resource for critical operations which leads to delays when the primary resource
needs to be involved in the operations. The second drawback of the solution con-
cerns physical limitations instead. The physical TPM has a limited NVRAM which
drives to a limited number of vTPMs that it can manage.

6.2 Future Work

During the implementation study, various options were considered and strengths
and weaknesses considered. By analyzing the solution’s weaknesses, some improve-
ments can certainly be made to strengthen and make the solution found scalable.
The major drawback of the solution is the limited space of the NVRAM memory.
It mainly depends on the TPM chosen and can be the real bottleneck by signif-
icantly limiting the number of vTPMs that can be managed by a single physical
TPM. However, the specifications of the TCG allow under precise specifications to
also be able to use external memory to replace the NVRAM. This choice naturally
introduces some security issues. The data that is saved on the PCRs that are now
implemented on the NVRAM memory inside the TPM could be accessible exter-
nally if the necessary precautions were not taken.

Use of an external memory would probably involve the use of an encryption
based on a symmetric key in order to be able to save the measurements outside the
TPM itself safely. The choice would fall on a symmetric key being faster in terms of
data encryption and decryption rather than an asymmetric key. Within the Deep
Attestation routine, however, it should be taken into consideration that the data
was once directly accessible to the TPM, now instead it must be loaded from an
outside resource, decrypted and only at that point it is accessible in order to carry
out the required operations. All these additional steps would add slight routine
delays which could make vTPM simultaneous access to the TPM problematic. It
would therefore be necessary to analyze different types of memory types, their ac-
cess speed and decide on a symmetric key length that can guarantee a certain level
of security and at the same time not create delays that can make the simultaneous
access of the physical resource unusable from multiple virtual instances.

Another critical aspect of using a physical TPM in a cloud environment is the
fact that virtual machines within data centres or in general are often subject to
migration. This fact is a critical point since in general, this would not be possible
due to the nature of PCRs that cannot be programmed but can only be updated
through the Extend operation. This time, however, the choice to implement PCRs
in NVRAM memory is in support of the solution. If in fact by nature the PCRs
are not programmable, the PCRs inside the NVRAM, even if they reproduce the
functioning of the PCR in its entirety, can be initialized. This fact, therefore, makes
the migration possible without adding complexity to the operation or completely
invalidating the aggregation of measures within it. It would, therefore, be interest-
ing to add in the routine that manages the migration of the instance of a virtual
TPM, which includes key migrations and much more, also a function that manages
the loading of PCR coming from another physical TPM. A routine complementary
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to the one already implemented which allocates for the first time the resources nec-
essary for a virtual machine.

The last change that could be made to the project is to integrate the new
commands developed in a parallel project for key management to the Quote function
that was implemented instead in this thesis. However, this modification relates to
the final PoC of the overall project rather than to the more specific thesis project
concerning the binding between virtual PCRs and their instances in the physical
TPM. Nevertheless, it must be considered because the Remote Attestation is also
based on the use of an asymmetric key used for the digital signature of the Integrity
Report provided by the TPM.
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Installation Guide

The thesis project is based on the Linux TPM2 & TSS2 Software github project,
which gives you all the repository and simulators for the implementation of a virtual
TPM and all the necessary tools and libraries.

In order to replicate a fully virtual implementation of the environment that
TPM needs, it is necessary the following infrastructure:

• tpm2-tools. The source repository for the TPM (Trusted Platform Module)
2 tools.

• tpm2-tss. OSS implementation of the TCG TPM2 Software Stack (TSS2).

• tpm2-abrmd. TPM2 Access Broker & Resource Management Daemon im-
plementing the TCG spec.

• tpm2-tcti-uefi. TCTI module for use with TSS2 libraries in UEFI environ-
ment.

• tpm2-tss-engine. OpenSSL Engine for TPM2 device

Since it is a project in continuos evolution, some of the sub-projects depend
on each other. To keep track of the dependencies is useful to check the depen-
dency matrix in continues update on the following link: https://github.com/

tpm2-software/tpm2-tools/wiki/Dependency-Matrix.

A.1 tpm2-tss

This is the most important repository since it implements TPM2 Software Stack
(TSS) described previously implemented by the Trusted Computing Group (TCG).
Also for this installation some packages are required, some of them should be yet
installed once other repositories have been installed.

• GNU Autoconf
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• GNU Autoconf Archive, version ¿= 2017.03.21

• GNU Automake

• GNU Libtool

• C compiler

• C library development libraries and header files

• pkg-config

• doxygen

• OpenSSL development libraries and header files, or optionally libgcrypt

• libcurl development libraries

For the testing purpose of the project we will enable only ESAPI and for this
reason the solution can work with either openSSL or libgcrypt (please include also
libgcrypt-dev for some dependencies, for any error related to AM PATH LIBGCRYPT
macro use the following link as a reference: https://github.com/tpm2-software/
tpm2-tss/issues/1365)

To build the solution, once installed all the dependencies, the following code
can be used:

$ git clone https://github.com/tpm2-software/tpm2-tools

$ cd tpm2-tools

$ ./bootstrap

$ ./configure

$ make -j$(nproc)

$ sudo make install

A.2 tpm2-abrmd

This repository implements the daemon for the TPM2 Access Broker & Resource
Manager from the TCG. The daemon should be started with the OS boot process.
The communication between the daemon and the clients supporting the TPM is
done by the combinational usage of the DBus and Unix Pipes. However in the
project there is a built-in library to simplify the configuration: libtcti-tabrmd.
The initialization function is hard-coded to connect the tabrmd on the system bus.
This is the most simple configuration and most common configuration. For any
specific clarification can be consulted the manual page inside the repository at the
following points: TSS2-TCTI-TABRMD(7) and TSS2 TCTI TABRMD INIT(3).

Below the dependencies needed:

• GNU Autoconf

• GNU Autoconf archive
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• GNU Automake

• GNU Libtool

• C compiler

• C Library Development Libraries

• pkg-config

• glib and gio 2.0 libraries

The daemon tpm2-abrmd can run as tss user or root. As common security
practice the daemon can be run as unpriviliged user, which requires creating a
user account and group. The account and associated group must be created before
running the daemon as follow:

$ sudo useradd --system --user-group tss

In order to build the solution from the repository run the following code for the
configuration and bootstrap:

$ gitclone https://github.com/tpm2-software/tpm2-abrmd.git

$ ./bootstrap

$ ./configure --with-dbuspolicydir=/etc/dbus-1/system.d

--enable-integration

$ make

$ sudo make install

In order to run the daemon use the following command:

$ sudo -u tss /usr/local/sbin/tpm2-abrmd --tcti=mssim

Once installed and running we can test the correctness of the dbus daemon.
The purpose of the following command is to list all names on the system bus. In
order to keep the output manageable we can filter it by the expected value:

dbus-send --system --dest=org.freedesktop.DBus

--type=method_call --print-reply /org/freedesktop/DBus

org.freedesktop.DBus.ListNames

From the above command the expected output is similar to the following:

method return time=1592409144.945722 sender=org.freedesktop.DBus

-> destination=:1.73 serial=3 reply_serial=2

array [

...

string "com.intel.tss2.Tabrmd"

...

]

This means that the daemon claimed correctly the system bus. However we
can perform one more sanity check in case the bus seems unresposive or in a hung
state:
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dbus-send --system --dest=com.intel.tss2.Tabrmd

--type=method_call --print-reply /com/intel/tss2/Tabrmd/Tcti

org.freedesktop.DBus.Introspectable.Introspect

The output of the code should be similar to the following:

method return time=1592409332.425811 sender=:1.69 ->

destination=:1.74 serial=7 reply_serial=2

string "<!DOCTYPE node PUBLIC "-//freedesktop//DTD D-BUS Object

Introspection 1.0//EN"

"http://www.freedesktop.org/standards/dbus/1.0/introspect.dtd">

<!-- GDBus 2.56.4 -->

<node>

<interface name="org.freedesktop.DBus.Properties">

<method name="Get">

<arg type="s" name="interface_name" direction="in"/>

<arg type="s" name="property_name" direction="in"/>

<arg type="v" name="value" direction="out"/>

</method>

<method name="GetAll">

<arg type="s" name="interface_name" direction="in"/>

<arg type="a{sv}" name="properties" direction="out"/>

</method>

<method name="Set">

<arg type="s" name="interface_name" direction="in"/>

<arg type="s" name="property_name" direction="in"/>

<arg type="v" name="value" direction="in"/>

</method>

<signal name="PropertiesChanged">

<arg type="s" name="interface_name"/>

<arg type="a{sv}" name="changed_properties"/>

<arg type="as" name="invalidated_properties"/>

</signal>

</interface>

<interface name="org.freedesktop.DBus.Introspectable">

<method name="Introspect">

<arg type="s" name="xml_data" direction="out"/>

</method>

</interface>

<interface name="org.freedesktop.DBus.Peer">

<method name="Ping"/>

<method name="GetMachineId">

<arg type="s" name="machine_uuid" direction="out"/>

</method>

</interface>

<interface name="com.intel.tss2.TctiTabrmd">

<method name="CreateConnection">

<arg type="ah" name="fds" direction="out"/>

<arg type="t" name="id" direction="out"/>
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</method>

<method name="Cancel">

<arg type="t" name="id" direction="in"/>

<arg type="u" name="return_code" direction="out"/>

</method>

<method name="SetLocality">

<arg type="t" name="id" direction="in"/>

<arg type="y" name="locality" direction="in"/>

<arg type="u" name="return_code" direction="out"/>

</method>

</interface>

</node>

"

A.3 tpm2-tools

The tpm2-tools project aims to provide both low-level and aggregate command to
have access to the functionalities that the TPM 2.0 device is giving. As previously
mentioned tpm2-tools as a strong dependencies on the other project so before
installing the tool is worth to check the dependencies to satisfy. This distribution
relies on the following dependencies that needs to be installed before its installation.

• GNU Autoconf

• GNU Automake

• GNU Libtool

• pkg-config

• C compiler

• C Library Development Libraries

• ESAPI - TPM2.0 TSS ESAPI library

• OpenSSL libcrypto library

• Curl library

In order to install the components that are not present in the test machine
follow your linux distribution system syntax. In addition to the OS dependencies
for the installation, the tool require also the following dependencies:

• tss

• pandoc (optional since for manual page generation)

• abrmd (optional in general but not for the purpose of the thesis since)
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Installation of the dependencies from the same project, tss and abrmd, are
already covered in this guide. Dependenxies based on linux distribution must be
checked manually following the linux dependant sintax. To obtain instead the
tpm2-tools sources first of all we need to clone the repository inside a folder.

$ git clone https://github.com/tpm2-software/tpm2-tools

To compile and build the tool execute the following commands:

$ cd tpm2-tss

$ ./bootstrap

$ ./configure --prefix=/usr

$ make -j$(nproc)

$ sudo make install

At this point we would be able to test the functionalities of our hardware tpm
directly, however it is not recommended the testing and implementation of against
a real TPM because of the impossibility or highly difficult procedure to clear some-
thing lock inadventertly inside the NVRAM.

A.4 tpm2-tcti-uefi

In a UEFI environment the TCTI module is used by TSS. Below the necessary
dependencies for the installation:

• GNU Autoconf

• GNU Automake

• C compiler

• linker

• gnu-efi (>= 3.0.8)

• tpm2-tss

Installation of the solution is the following one:

$ gitclone https://github.com/tpm2-software/tpm2-tcti-uefi.git

$ cd tpm2-tcti-uefi

$ ./bootstrap

$ ./configure

$ make

$ make install
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A.5 tpm2-tss-engine

This project is not strictly necessary for the thesis project build but it offers a
cryptographic engine for OpenSSL for TPM2.0 using the TSS software stack. The
peculiarity is the support for RSA and ECDSA signature. It is useful for analyzing
the signature generated during the thesis project or as an additional tool for testing
the TPM capabilities.

Dependencies for the build:

• GNU Autoconf

• GNU Autoconf Archive

• GNU Automake

• GNU Libtool

• C compiler

• C library development libraries and header files

• pkg-config

• OpenSSL >= 1.0.2

• tpm2-tss >= 2.2.2

• pandoc

In order to build the solution instead, it is possible to use the following com-
mands:

$ gitclone https://github.com/tpm2-software/tpm2-tss-engine.git

$ cd tpm2-tss-engine

$ ./bootstrap

$ ./configure --enable-debug

$ make check

$ make

$ make install

$ sudo ldconfig

A.6 Simulator: MS TPM 2.0

For the thesis project has been used the official TCG reference implementation of
the TPM 2.0 implementation. The project has also a Visual Studio solution, for
the thesis project it will be followed the Linux build solution since the project was
developed under a Linux environment. The dependencies for a correct build are
the following:
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• autoconf-archive

• pkg-config

• libssl-dev

For a linux:

$ gitclone https://github.com/microsoft/ms-tpm-20-ref.git

$ cd ms-tpm-20-ref

$ ./bootstrap

$ ./configure --enable-debug

$ make check

$ make

$ make install

$ sudo ldconfig
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User Manual

Prerequisites

All the PoC is based on the usage of TPM 2.0. In this case it will be used a
simulator. The tpm simulator is based on 5 general components:

• TPM, which can be a firmware TPM, a discrete TPM or in in this case a
TPM simulator.

• Resource Manager. It is used for object life-cycles in the TPM. They are
generally called abrmd and in linux kernel abrmd in the tpm driver.

• System APIs. They can be the lowlevel SAPI or ESAPI.

• TCTI, a trasmission interface library

• Client, which is responsible of the ESAPI usage, like the tpm2-tools project.

For this reason in order to access the TPM the following is needed:

• Create a TCTI context. It will allow to send and receive data to and from
the Resource Manager or the TPM itself.

• Provide a TCTI context once the ESYS context is initialized.

• Use the ESAPI calls to interact with the TPM and send commands to the
TPM.

Testing

First, launch the TPM 2.0 simulator through the script run simulator.sh present
in the main folder:

$ sudo ./run_simulator.sh

The expected output from the previous command is the following:
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Terminate with CTRL + C ...

TPM command server listening on port 2321

Platform server listening on port 2322

Client accepted

Client accepted

To compile the example:

$ make

To run the example, move to /build/ folder and run:

$ ./build/run_test

Depending if you want to run the solution in interactive mode or not the output
will be different. However the expected starting is the following:

*** vTPM - pTPM binding PoC ***

If the output seems in an hung state and the carriage-return button is not
starting the simulation please check if the run simulator script is still running in
the other CLI

Interactive mode

Remove the DEBUG variable from the build step in the Makefile to launch the test
in non-interactive mode. On the other hand, it is possible to follow step by step
all the procedure pressing the carriage-return button everytime that the command
line interface is waiting for the input to proceed. Below the interested part of the
code of Makefile to be edited:

...

#VARS=-DDEBUG # interactive mode

VARS=

...

Classes and scripts

There are two main scripts: Makefile and run simulator.sh. The first can be used
to compile the solution created, the second one is used to initialize the simulator,
the TCTI context and the TPM2 Access Broker & Resource Manager.

The other classes are used to represent the different agents involved in the PoC
that are explained in the previous sections.

All the other installations and agents involved are explained in the different in
the previous Appendix. However manual pages of the tpm2-software project used
to implement the TPM simulator and all the other dependecies can be found also
at the following links:
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• TPM2 Access Broker & Resource Management Daemon implementation: tpm2-
abrmd

• The source repository for the TPM (Trusted Platform Module) 2 tools: tpm2-
tools

• OSS implementation of the TCG TPM2 Software Stack (TSS2): tpm2-tss

• OpenSSL Engine for TPM2 devices: tpm2-tss-engine

• TCTI module for use with TSS2 libraries in UEFI environment: tpm2-tcti-
uefi
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Acronyms

AIK Attestation Identity Key.

AS Attestation Server.

CERT Computer Emergency Response Team.

CRTM Core Root of Trust Measurement.

CSA Cloud Security Alliance.

DA Deep Attestation.

EK Endorsement Key.

EPC Enclave Page Cache.

IaaS Infrastructure as a Service.

IAD Integrated Access Device.

IDM Identity Device Manager.

KMS Key Management Server.

MLE Measured Launch Environment.

NIST National Institute of Standards and Technologies.

OAT Open Attestation Toolkit.

OS Operatying System.

PaaS Platform as a Service.

PCR Platform Control Register.

PRM Processor Reserved Memory.

SaaS Software as a Service.

SRK Storage Root Key.
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TBB Trusted Building Block.

TCG Trusted Computing Group.

TPM Trusted Platfomr Module.

TT Trunsitive Trust.

UI User Interface.

VM Virtual Machine.

VMM Virtual Machine Manager.
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