POLITECNICO DI TORINO

Master’s Degree in Mechatronic Engineering

Academic year 2019/2020

Collegio di Ingegneria Informatica, del Cinema ¢ Meccatronica (ICM)
Departement of Control and Computer Engineering (DAUIN)

Master’s Degree Thesis

Asynchronous Embedded Model
Control for Robotic Applications

Academic Supervisors Candidate

Prof. Carlo NOVARA Luca NANU - S255351
PhD Carlos Norberto PEREZ MONTENEGRO

July 2020

Abstract

A controlled physical system can be basically divided in two parts: the controller and the physical plant to be
controlled. Controller output is called control input, which enters as input of plant to make it follow a desired
behaviour of its output measurements.

In many controlled physical systems, the time needed to send control inputs/measurements is not fixed, but vari-
able. In Networked Controlled systems (NCS) the control is made in the presence of a communication networks,
where some data are subject to delays or losses. In a vehicle engine, fuel injection can be controlled with variable
timing to increase performances/energy efficiency. In both cases (and others too), variable sampling time can be
considered as plant disturbance, making more difficult controlling the system with desired behaviour.

To deal with this problem, the Embedded Model Control (EMC) well-established technique can be exploited. It
is a model-based control technique, meaning that a simplified version of the plant to be controlled is built (the
Embedded Model EM). With EMC the plant system can be controlled to reach a desired behaviour using a suitable

controller (control law), with the possibility of reducing the plant disturbances.

Main objective of the thesis is to study asynchronous sampling time plants controlled by EMC technique (prosecut-
ing the literature work), focusing in experimental tests with physical systems. In particular a ground differential-
drive vehicle with two DC motors controlling the wheels is selected, equipped with a Raspberry Board.

2 main tests are performed: Model-in-the-Loop (MIL) and experimental tests (Robot Hardware Implementation
Tests RHIT) where EMC is translated into software code (C++) and executed in robot Raspberry board.

With EMC technique are controlled, with asynchronous sampling time: robot DC motors to move the two wheels.
When DC motors EMC are available can be controlled robot orientation only (make it turn in place or follow a
circular trajectory) and robot longitudinal position only (control the robot to make it follow a straight line). Finally
all previous EMC can be combined together to control both robot orientation and longitudinal position (the robot
can move in 2D space till a certain longitudinal position and orientation angle).

A non-conventional hierarchic structure is used to connect control robot orientation/position with EMC. Indeed
usually to control robot position in 2D space, motors and robot dynamics are combined together in a unique
controller with a very complex structure, instead with hierarchic structure motors and orientation/position control

blocks are separated: this lead to lower complexity of models, which are easier to be controlled.

The outputs of EMC are estimation of some plant variables (wheel speeds, robot yaw angle and position). Test
results can be mainly judged first with tracking error, which is the difference between estimated state and a target
reference to be tracked (i.e. reach a desired robot position and orientation in space or certain wheel speeds),
second with model error, which is the difference between EM estimations and real plant measurements. The lower
these errors are, better is the control.

For all tests made, model and tracking errors are sufficiently low, especially for DC motors where the difference
between EMC and real plant is huge for its complex dynamics: it means that estimated disturbances are near to
real ones.

It is also verified that EMC technique is able to reduce noises and disturbances of real robot plant (included
the ones introduced by variable sampling time) not only in simulation MIL tests but also practically with RHIT,
especially for DC motors. This means that with a simplified model (EM) even complex plants affected by many
disturbances can be controlled with quite high precision.

Hierarchical structure is successfully verified, since with this method robot is able to reach almost precisely a desired
position with a certain trajectory in space. This is a huge result because a robot can be controlled using simple

linear models, avoiding complex non-linear terms and conversions.

Acknowledgements for thesis work

I would like to thank: my academic supervisors Prof. Carlo Novara
and PhD Carlos Perez for giving me the opportunity of working
with this thesis project and for their support, LaDiSpe and DAUIN

Polytechnic of Turin laboratories for experimental material and
assist

Contents

List of Figures IX
List of Tables XIv
1 Introduction 1
11 Overview and main thesis objectives
12 Structure of the thesis 4
I Overview 6
2 EMC theory
21 EMC basic CONCEPLS o vt e e 7
2.2 EMC example - Mass-spring-damper system 12
3 Robot GoPiGo3 15
31 Construction properties 15
3.2 Kinematic and dynamic properties 17
3.21 Geometric and mass Parameterso i e e 17
3.2.2 Total robot inertia verification L L 19
3.2.3 TFrom robot wheel speeds to robot torque/force relation 20
3.24 Kinematicmodel 23
4 Control models software testing - General settings 24
41 MIL configuration 25
411 Variable timestamp 25
4.2 RHIT configuration e 26
421 SW Tools and applications e 26
4.2.2 Main SW libraries and functions L 28
4.3 General Structure settings for EMC and robot plant 33
431 EMC . . 33
432 Plant 34
II DC motors EMC 36
5 EMC DC motors theory 37

vV CONTENTS
51 DC Motor Parameters identification and validation 37
511 Main workflow e 38

512 Version 0.0 40

513 Version LO 42

514 Version L1. 43

515 Version12 (only for EMC) 45

51.6 Version 1.2 (only for Finemodels) 49

52 DC Motors EMC e 50
521 Finemodel 50

5.2.2 EMC model - I order disturbance 51

52.3 EMC model - 2™ order disturbance 54

6 DC motors EMC Model-in-the-Loop (MIL) tests 57
6.1 General MIL settings on Simulink L 57
6.2 General settings on Simulink MIL plot results, 59
6.3 Simulink MIL results - Left motor 59
6.3.1 No disturbance rejection, target output speed &, = [6,4] % 60

6.3.2 Disturbance rejection, target output speed @, =[8,3,5.5,7] % 61

6.4 Simulink MIL results - Right motor 62
6.4.1 Disturbance rejection, target output speed @, = [6,4] % 63

6.4.2 Disturbance rejection, target output speed @, = [8,3,5.5,7] % 64

6.4.3 No disturbance rejection, target output speed w,, = [6,4] % 65

6.4.4 No disturbance rejection, target output speed &, = [8,3,5.5,7] % 66

7 Separated Left and Right DC motors EMC - RHIT results 67
7.1 Left motor version 1.0 - RHIT results e 67
711 Main test settings e 67

712 Summaryontheresults 69

713 First order disturbance, No load conditions - Result 1 70

7.1.4 First order disturbance, No load conditions - Result 2 71

7.1.5 First order disturbance, No load conditions - Result 3 72

71.6 First order disturbance, No load conditions - Result 4 73

7.1.7 First order disturbance, No load conditions - Result 5 74

7.1.8 First order disturbance, No load conditions - Result 6 75

7.1.9 First order disturbance, No load conditions - Result 7 76
7.110 First order disturbance, No load conditions - Result 8 77

7111 First order disturbance, Load Conditions - Result 1. 78
7112 First order disturbance, Load Conditions - Result 2 79
7113 Second order disturbance, No load conditions - Result 1 80
7114 Second order disturbance, No load conditions - Result 2 81
7115 Second order disturbance, No load conditions - Result 3 82
7.116 Second order disturbance, No load conditions - Result 4 83

7.117 Second order disturbance, No load conditions - Result 5 84
7118 Second order disturbance, No load conditions - Result 6 85

CONTENTS |24
7119 Second order disturbance, No load conditions - Result 7 86
7120 Second order disturbance, No load conditions - Result 8 87
7121 Second order disturbance, No load conditions - Result 9 88
7.1.22 Second order disturbance, No load conditions - Result 10 89
7123 Second order disturbance, Load conditions - Result 1 90
7124 Second order disturbance, Load conditions - Result 2 91
7125 Second order disturbance, Load conditions - Result 3 92

7.2 Left motor version 1.1 - RHIT results 92
721 Main settings e e 93

722 Summaryontheresults 93

7.2.3 Noload conditions - Result 1 94

724 Noload conditions - Result 2 95

7.2.5 Noload conditions - Result 3 96

7.2.6 Noload conditions - Result 4 97

7.2.7 Load conditions - Result 1 e 98

7.3 Right motor v1.2 - RHIT results e 99
731 Main Settings e 99

732 Summaryontheresults 99

7.3.3 Noload conditions - Result 1 100

7.34 Noload conditions - Result 2 101

7.3.5 Noload conditions - Result 3 102

7.3.6 Noload conditions - Result 4 103

7.3.7 Noload conditions - Result 5 e 104

7.3.8 Load conditions - Result 1 105

7.3.9 Load conditions - Result 2. 106

8 Combined Left and Right DC motors EMC - RHIT results 107
8.1 Main RHIT tests settings e e e e e e e e e e 107
8.2 Summaryontheresults 108
8.3 Linear trajectory 109
8.3.1 Disturbance rejection - Result 1. o L 109

8.3.2 Disturbance rejection - Result 2 L 110

8.3.3 Disturbance rejection - Result 3 L 111

8.3.4 Disturbance rejection - Result 4. L 112

8.3.5 No disturbance rejection - Result 1. L 13

8.3.6 No disturbance rejection - Result 2 L 114

8.4 Circular trajectory oo e 115
8.4.1 Disturbance rejection - Result 1 L 115

8.4.2 Disturbance rejection - Result 2 L o 116

9 Inertial Measurement Unit (IMU) measurements with Two motors EMC 117
9.1 Main measurements settings 117
9LL IMU . . e e 117

9..2 DC Motor EMC e 118

913 Kinematicmodel 119

vil CONTENTS

9.2 Measurement plots 119
9.21 Summaryontheresults 120

9.2.2 No magnetometer data in sensor fusion, Linear trajectory - Result1 121

9.2.3 No magnetometer data in sensor fusion, Circular trajectory - Result1 123

9.24 Magnetometer data in sensor fusion, Linear trajectory - Result 1 125

9.2.5 Magnetometer data in sensor fusion, Circular trajectory - Result 1. 127

III Robot orientation EMC 129
10 EMC Differential drive robot theory - Orientation only 130
101 Finemodel 130
102 EMCmodel 131
10.21 Embedded Model EM 131

1022 Controllawo 132

10.2.3 Reference Dynamics. 133

10.2.4 Noise Estimator e 134

11 Orientation EMC - Model-in-the-Loop (MIL) simulation tests 139
1.1 General MIL settings on Simulink o oo o oo oo 139
1111 Simulated orientation EMC and finemodels 139

1112 Orientation and DC motors Hierarchical structure 139

1.2 General settings on Simulink MIL plot results 141
11.3 Summary on the obtained results L 141
1L.3.1 Target angle 8, = 27 rad (360°), target long. speed T¢ = 0 %, dist. rej. 142

11.3.2 Target angle 0, = 27 rad (360°), target long. speed Vg =0 %, No dist. rej. 144

1.3.3 Target angle 8, = -2 rad (-360°), target long. speed ¥¢ = 0 %, dist. rej. 146

11.3.4 Target angle 0, = 27 rad (360°), target long. speed Ve #0 % (rm = 0.2 m), dist. rej. . 148
1.3.5 Target angle 8, = -2 rad (-360°), target long. speed ¥¢ # 0 % (7m = 0.2 m), dist. rej. 150

12 Motors and orientation EMC - RHIT results 152
121 General RHIT test settings i e e e e e e e e 153
12.2 Short summary on RHIT results 155
12.3 RHIT tests - Dynamic FB noise estimator, 155

1231 Plotresults 156
12.4 RHIT tests - Static feedback measure driven decomposition noise estimator 157
1241 IMU 6. measurement, NO magnetometer in sensor fusion 157
12.4.2 IMU 6, measurement, magnetometer in sensor fusion 161
12.4.3 Encoder 0, measurementt e 166
12.5 RHIT tests - Dynamic feedback measure driven decomposition noise estimator 170

IV Robot longitudinal position EMC 172

13 EMC Differential drive robot theory - Longitudinal position only 173
131 Finemodel 173

13.2 EMC model 174

CONTENTS 2774
13.21 DT EM equationst 174

1322 Controllaw 174

13.2.3 Reference dynamics L 175

13.2.4 Noise estimator 175

14 Longitudinal position EMC - Model-in-the-Loop (MIL) simulation tests 177
141 General MIL settings on Simulink o o o oo oo oo o 177
1411 Simulated long. position EMC and finemodels 177

1412 Long. position and DC motors Hierarchical structure 177

14.2 General settings on Simulink MIL plot results 178
14.3 Summary on the obtained results L 178
14.3.1 Target position £=1m, target ang. speed W, =0 %, dist. rej.o 179

14.3.2 'Target position £=2m, target ang. speed W, =0 %, dist. rej.o 181

14.3.3 Target position £=1m (round trip), target ang. speed W, =0 %, dist. rej. 183

14.3.4 Target position £ = 1 m (round trip), target ang. speed W, =0 %, No dist. rej. 185

15 Motors and longitudinal position EMC - RHIT results 187
151 General RHIT test settings i e e e e e 188
152 Plotresults 189
15.21 Trajectory distance of 11m L 190

15.2.2 Trajectory distance of 2 m 191

15.2.3 'Trajectory distance of 1 m and return to initial position - Disturbance rejection 192

15.2.4 'Trajectory distance of 1 m and return to initial position - No disturbance rejection 193

V Robot 2D space position EMC 194
16 Motors, orientation and long. position robot EMC - Theory and RHIT results 195
16.1 Orientation and long. position EMC hierarchical structure scheme 195
16.2 General RHIT settings e e e e e 196
16.3 Plotresults 198
16.3.1 Trajectory targets £ = 2 m, 8, = 0° - Fusion algorithm WITHOUT accelerometer 199

16.3.2 Trajectory distance of 2 m, 6. = 0° - Orientation fusion algorithm WITH accelerometer . 200

16.3.3 Trajectory distance of 2 m, 6. = 50° - Fusion algorithm WITHOUT accelerometer 201

VI Conclusions 202
17 Summary on the results and future work 203
Bibliography 206
Nomenclature 208

List of Figures

11
1.2
1.3
14
L5

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7

41
4.2

51
5.2
5.3
54
5.5
5.6
5.7
5.8
59

General control scheme, blue for CT and black for DT 1
General NCS architecture e 2
Example of fixed and variable sampling times (periodic/aperiodic tasks). 2
GoPiGo3 Differential-drive robot used for the thesis 3
Orientation/position hierarchic structure simplified 5
EMC complete scheme e

Orientation EM Reference Dynamics 9
EM dynamic feedback noise estimator block scheme o 0 11
Mass spring damper finemodel L 14
MSD variable Timestamp e 14
MSD ¥, Yref, ¥y, - Disturbance rejection Lo 14
MSD tracking e, and model e,, errors - Disturbance rejection. 14
MSD vy, ¥Yref, ¥y, - No disturbance rejection L. 14
MSD tracking e;,;, and model e, errors - No disturbance rejection. 14
Front angle view GoPiGo3 DD robot 15
Back angle view GoPiGo3 DD robot 15
GoPiGo3 DC motor measured PWM square wave with 50% duty cycle 16
GoPiGo DC motor PWM duty cycle change - From 4V to 8 V average voltage 16
GoPiGo3 robot CAD model built with Autodesk Inventor 18
GoPiGo3 robot Body (blue) and Inertial (red) reference Frames 18
Forces and Moments acting on a generic wheel with pure torque motion 20
Cross compilation flow 27
DC motor EMC splitted scheme for RHIT implementation 33
DC gear motor Joq and ey = Beg explanation o Lo Lo 39
Left and Right DC motors v0.0 identification datasets 41
Left and Right DC motors v0.0 validation datasets 41
DC motor left v1.0 LS speed estimation, using closed loop dataset 43
DC motor left v1.0 LS voltage, using closed loop dataset 43
DC motor left v1.0 speed validation, filtered, using closed loop dataset. 43
DC motor left v1.0 speed validation, NOT filtered, using closed loop dataset 43
DC motor left v1.1 initial guess output speed dataset L. 44

DC motor left v1.1 initial guess input voltage dataset 44

LIST OF FIGURES X
510 DC motor left v1.1 final estimated VS measured speed - Dataset1 45
511 DC motor left v1.1 final estimated VS measured speed - Dataset 2. 45
512 DC motor left v1.1 final estimated VS measured speed - Dataset 3. 45
513 DC motor left v1.1 final estimated VS measured speed - Dataset 4. 45
514 DC motor v1.2 Dataset n° I, input voltage 46
515 DC motor v1.2 Dataset n° 1, output speed 46
516 DC motor v1.2 Dataset n° 2, input voltage 47
517 DC motor v1.2 Dataset n° 2, output speed o o .. 47
5.18 Estimated and measured output speed - Left motor v1.2, Datasetn®1 48
519 Estimated and measured output speed - Right motor v1.2, Datasetn® 1. 48
5.20 Estimated and measured output speed - Left motor v1.2, Datasetn® 2 48
5.21 Estimated and measured output speed - Right motor v1.2, Datasetn®2 48
5.22 Validation dataset input voltage - Left motor v1.2 48
5.23 Validation dataset input voltage - Right motor v1.2 48
5.24 Estimated and measured output speeds - Validation dataset, Left motor v1.2 (only for EMC) 48
5.25 Estimated and measured output speeds - Validation dataset, Right motor v1.2 (only for EMC) 48
5.26 Coulomb friction torque model 49
5.27 Validation left and right motors v1.2 (only for Finemodels) 50
528 DCmotor SSfinemodel 51
5.29 First order disturbance W 51
5.30 Closed Loop System with Pl controller 53
5.31 Second order disturbance w 54
6.1 DC motor fine model Simulink scheme 58
6.2 Left motor input voltage dead-zone 58
6.3 Right motor input voltage dead-zone 58
6.4 Left motor EMC MIL and RHIT comparison, no dist. rej, @, =[6,4] rad/s 60
6.11 Left motor EMC MIL and RHIT comparison, dist. rej, @, = [8,3,5.5,7] rad/s 61
6.18 Right motor EMC MIL and RHIT comparison, dist. rej, @, = [6,4] rad/s. 63
6.25 Right motor EMC MIL and RHIT comparison, dist. rej, @, = [8,3,5.5, 7] rad/s. 64
6.32 Right motor EMC MIL and RHIT comparison, no dist. rej, @, =[6,4] rad/s. 65
6.39 Right motor EMC MIL and RHIT comparison, no dist. rej, 0, =[8,3,5.5,7] rad/s. 66
71 Measured output speeds ¢,,, and y not filtered - EMC — plant implementation 68
7.2 Measured output speeds ¢, and y not filtered - Plant — EMC implementation 69
7.3 Left motor EMC v1.0, I** order disturbance, No Load - Result plots 1. 70
7.8 Left motor EMC v1.0, I** order disturbance, No Load - Result plots 2 71
713 Left motor EMC v1.0, I** order disturbance, No Load - Result plots 3 72
7.18 Left motor EMC v1.0, I** order disturbance, No Load - Result plots 4 73
7.23 Left motor EMC v1.0, I** order disturbance, No Load - Result plots 5 74
7.28 Left motor EMC v1.0, I** order disturbance, No Load - Result plots 6 75
7.33 Left motor EMC v1.0, I** order disturbance, No Load - Result plots 7 76
7.38 Left motor EMC v1.0, I°* order disturbance, No Load - Result plots 8 77
7.43 Left motor EMC v1.0, I** order disturbance, Load - Result plots 1. 78
7.48 Left motor EMC v1.0, I** order disturbance, Load - Result plots 2. 79

LIST OF FIGURES

7.53 Left motor EMC v1.0, 2" order disturbance, No load - Result plots1 80
7.58 Left motor EMC v1.0, 2" order disturbance, No load - Result plots2 81
7.63 Left motor EMC v1.0, 2" order disturbance, No load - Result plots3 82
7.68 Left motor EMC v1.0, 2" order disturbance, No load - Result plots4 83
7.73 Left motor EMC v1.0, 2" order disturbance, No load - Result plots 5 84
7.78 Left motor EMC v1.0, 2" order disturbance, No load - Result plots6 85
7.83 Left motor EMC v1.0, 2™ order disturbance, No load - Result plots7 86
7.88 Left motor EMC v1.0, 2™ order disturbance, No load - Result plots8 87
7.93 Left motor EMC v1.0, 2" order disturbance, No load - Result plots9 L. 88
7.98 Left motor EMC v1.0, 2" order disturbance, No load - Result plots10. 89
7.103 Left motor EMC v1.0, 2°¢ order disturbance, Load - Result plots 1 90
7.108 Left motor EMC v1.0, 2°¢ order disturbance, Load - Result plots 2 91
7.13 Left motor EMC v1.0, 2" order disturbance, Load - Result plots 3 92
7.118 Left motor EMC vl.1, No Load - Result plots 1 94
7123 Left motor EMC vl1.], No Load - Result plots 2 95
7.128 Left motor EMC vl1.1, No Load - Result plots 3 96
7133 Left motor EMC vl1.1, No Load - Result plots 4 97
7.138 Left motor EMC vl1.], Load - Resultplots 1. 98
7.143 Right motor EMC v1.2, Noload - Resultplots 1 100
7.148 Right motor EMC v1.2, No load - Result plots 2 101
7153 Right motor EMC v1.2, No load - Result plots 3 102
7.158 Right motor EMC v1.2, No load - Result plots 4 103
7.163 Right motor EMC v1.2, No load - Result plots 5 104
7.168 Right motor EMC v1.2, Load - Result plots 1 105
7.173 Right motor EMC v1.2, Load - Result plots 2 106
8.1 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 1 109
8.9 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 2 110
8.17 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 3 111
8.25 Combined left and right EMC DC motors, linear trajectory, dist. rej. - Result plots 4 112
8.33 Combined left and right EMC DC motors, linear trajectory, no dist. rej. - Result plots1 13
8.41 Combined left and right EMC DC motors, linear trajectory, no dist. rej. - Result plots 2 114
8.49 Combined left and right EMC DC motors, circular trajectory, dist. rej. - Result plots 1 115
8.57 Combined left and right EMC DC motors, circular trajectory, dist. rej. - Result plots 2 116
91 Combined EMC DC motors, IMU meas. no mag sensor fusion, linear trajectory 121
9.11 Combined EMC DC motors, IMU meas. no mag sensor fusion, circular trajectory 123
9.21 Combined EMC DC motors, IMU meas. mag sensor fusion, linear trajectory 125
9.31 Combined EMC DC motors, IMU meas. mag sensor fusion, circular trajectory 127
10.1 First order disturbance w entering orientation EM - Solution1 132
10.2 First order disturbance w entering orientation EM - Solution 2 132
10.3 Orientation EMC - Proportional controller (P) Closed Loop scheme 133
10.4 Noise estimator Orientation EMC Solution 3 - Static + dynamic FBparts 136

10.5 Orientation EMC Solution 1 outputs - Dynamic FB noise estimator 137

LIST OF FIGURES X

10.6 Orientation EMC Solution 2 outputs - Static FB noise estimators with measure-driven decomposition 137
10.7 Orientation EMC Solution 3 outputs - Static and dynamic FB noise estimators with measure-driven

decomposition L. 137

111 Hierarchic structure for MIL tests - Orientation and DC motors EMC 140
112 Orientation EMC MIL and comparison with RHIT, dist. rej, targets &, = 2rrad and 0¢ =0m/s . . 142
11.14 Orientation EMC MIL and comparison with RHIT, no dist. rej, targets @, = 2rrad and 9¢ = 0m/s 144
11.26 Orientation EMC MIL and comparison with RHIT, dist. rej, targets w, = —2wrad and 0¢ = Om/s . 146
11.37 Orientation EMC MIL and comparison with RHIT, dist. rej, targets w, = 2rrad and r, =0.2m . . 148
11.48 Orientation EMC MIL and comparison with RHIT, dist. rej, targets w, = —2nrad and 7, =0.2m . 150

12.1 Hierarchic structure for RHIT - Orientation and DC motors EMC 152
12.2 Orientation EMC Timestamp 154
12.3 Left motor EMC Timestamp 154
124 Right motor EMC Timestamp 154
12.5° Orientation EMC RHIT, dyn FB noise est., IMU mag pose est., §, = 27 rad, De=0m/fs........ 156
12.10 Orientation EMC RHIT, 2 static FB noise est, IMU no mag pose est., éz =2nrad, v¢ = Om/s 158
12.16 Orientation EMC RHIT, 2 static B noise est., IMU no mag pose est., 0,=-2m rad, ¢ =0m/s. . . 159
12.22 Orientation EMC RHIT, 2 static FB noise est., IMU no mag pose est., éz =2rrad,r,, =0.2m ... 160
12.29 Orientation EMC RHIT, 2 static B noise est., IMU mag pose est., 0. = 2rrad, Tg=0m/s 161
12.35 Orientation EMC RHIT, 2 static FB noise est., IMU mag pose est., 0, = 2rrad, U¢ = 0m/s, no dist rej 162
12.42 Orientation EMC RHIT, 2 static B noise est., IMU mag pose est., éz = —2nrad, v¢ = Om/s..... 163
12.48 Orientation EMC RHIT, 2 static B noise est., IMU mag pose est., 0, =2r rad,r,, =0.2m 164
12.55 Orientation EMC RHIT, 2 static FB noise est., IMU mag pose est., éz = 2rrad,r;, =02m 165
12.62 Orientation EMC RHIT, 2 static I'B noise est., encoders pose meas., 0, =2r rad, ¢ =0m/s 166
12.68 Orientation EMC RHIT, 2 static FB noise est., encoders pose meas., éz = 2nrad, ¢ =0m/s. ... 167
12.74 Orientation EMC RHIT, 2 static I'B noise est., encoders pose meas., éz =2rrad,r,, =0.2m 168
12.81 Orientation EMC RHIT, 2 static I'B noise est., encoders pose meas., 0, =-2rrad,ry, =0.2m ... 169

12.88 Orientation EMC RHIT, static and dyn FB noise est., IMU mag pose est., 0. = 2mrad, Ug=0m/s . 170

13.1 First order disturbance w entering position EM L o o 175
14.1 Hierarchic structure for MIL tests - Longitudinal position and DC motors EMC 178
14.2 Long. position EMC MIL and RHIT comparison, E=1m, @, = Orad/s, dist. rej 179
14.13 Long. position EMC MIL and RHIT comparison, 5 =2m, W, =0rad/s, dist. rej 181
14.24 Long. position EMC MIL and RHIT comparison, & = [1,-1] m, @, = Orad/s, dist. rej 183
14.36 Long. position EMC MIL and RHIT comparison, £ = [1,-1] m, @, = Orad/s, no dist. rej 185
151 Hierarchic structure for RHIT - Longitudinal position and DC motors EMC 188
152 Position EMC Timestamp 188
15.3 Left motor EMC Timestamp 189
154 Right motor EMC Timestamp 189
155 Long. position EMC RHIT, £ = 110 oottt it e e 190
1512 Long. position EMC RHIT, £ = 210ot v it oot e e e e e e e 191
1519 Long. position EMC RHIT, £ = [1,=1] Io\t i it e e e e 192

15.27 Long. position EMC RHIT, £ = [1,-1] m, no dist. rejection 193

Xr LIST OF FIGURES

16.1 Hierarchic structure for RHIT - Longitudinal position, orientation and DC motors EMC 196
16.2 Orientation and Long. position EMC Timestamp 196
16.3 Left motor EMC Timestamp 197
16.4 Right motor EMC Timestamp 197
16.5 Orientation and long. position EMC RHIT, E =2m, éz =0, IMU sensor fusion no accel. 199
16.14 Orientation and long. position EMC RHIT, % =2m, éz =0, IMU sensor fusion yes accel. 200
16.24 Orientation and long. position EMC RHIT, £ = 2m, 6, = 50, IMU sensor fusion no accel. 201

171 Combined DC motors EMC RHIT, linear trajectory, no dist. rej. - Result plots 1, Right motor outputs204
17.2 Combined DC motors EMC RHIT, linear trajectory, dist. rej. - Result plots 3, Right motor outputs 204
17.3 Orientation and long. position EMC RHIT, E =2m, éz =50, IMU sensor fusion no accel.

List of Tables

2.1
2.2

31
3.2

51
52
5.3
5.4
5.5
5.6

5.7
5.8
5.9

6.1

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.2
713
7.14
7.15
7.16
7.17

MSD fine model vs EMC parameters 13
Continuous eigenvalues MSD EMC 13
GoPiGo Differential Drive Robot parameters 18
GoPiGo properties using iProperties Inventor tool 0000 19
DC motor regressive form parameters and initial guess parameters - Left and Right motors v0.0. . 41
Final Estimated parameters Left motor v1.0, with comparison with v0.0 42
Parameters DC motor model in regressive form using LS method - Left motor v11 44
Initial guess parameters Left motor vI.1. L 44
Final estimated parameters Left motor v1.1. o 0 0L 44

Parameters DC motor model in regressive form using LS method - Left and Right DC motors v1.2

(for EMC only) e 46
Initial guess parameters - Left and Right motor v1.2 (for EMConly) 46
Final estimated parameters Left and Right motor v1.2 - For EMC modelsonly 47
Final estimated parameters Left and Right motor v1.2 - For fine modelsonly 49
Continous eigenvalues DC motor EMC - MIL tests, 57

CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, No load conditions, Result 1 70
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, No load conditions, Result 2 71
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, No load conditions, Result 3 72
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, No load conditions, Result 4 73
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, No load conditions, Result 5 74
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, No load conditions, Result 6 75
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, No load conditions, Result 7 76
CT eigenvalues DC motor EMC Left motor v1.0 - 1* order disturbance, No load conditions, Result 8 77
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, Load conditions, Result 1 . 78
CT eigenvalues DC motor EMC Left motor v1.0 - I** order disturbance, Load conditions, Result 2. 79
CT eigenvalues DC motor EMC Left motor v1.0 - 27 order disturbance, No load conditions, Result 1 80
CT eigenvalues DC motor EMC Left motor v1.0 - 27 order disturbance, No load conditions, Result 2 81
CT eigenvalues DC motor EMC Left motor v1.0 - 27 order disturbance, No load conditions, Result 3 82
CT eigenvalues DC motor EMC Left motor v1.0 - 9" grder disturbance, No load conditions, Result 4 83
CT eigenvalues DC motor EMC Left motor v1.0 - 27 order disturbance, No load conditions, Result 5 84
CT eigenvalues DC motor EMC Left motor v1.0 - 97 order disturbance, No load conditions, Result 6 85
CT eigenvalues DC motor EMC Left motor v1.0 - 9" grder disturbance, No load conditions, Result 7 86

XV

LIST OF TABLES

7.18
7.19
7.20

7.21
7.22
7.23
7.24
7.25

8.1

91
9.2

10.1

121

15.1

16.1

CT eigenvalues DC motor EMC Left motor v1.0 - 97 order disturbance, No load conditions, Result 8 87
CT eigenvalues DC motor EMC Left motor v1.0 - 27 order disturbance, No load conditions, Result 9 88
CT eigenvalues DC motor EMC Left motor v1.0 - 27 order disturbance, No load conditions, Result

10 . o e 89
CT eigenvalues DC motor EMC Left motor v1.0 - 97 order disturbance, Load conditions, Result 1 90
CT eigenvalues DC motor EMC Left motor v1.0 - 97 order disturbance, Load conditions, Result 2 91
CT eigenvalues DC motor EMC Left motor v1.0 - 9" order disturbance, Load conditions, Result 3 92

CT DC motor EMC left motor vI1. 93
CT eigenvalues DC motor EMC e 99
CT eigenvalues DC motor EMC e 107
IMU sensors settings 118
CT eigenvalues DC motor EMC - 2 motors load conditions 19

Provisional Eigenvalue settings Orientation EMC - Solution comparisons between Noise estimators 137
CT eigenvalues Orientation EMC 155
CT eigenvalues Longitudinal position EMC 189

CT eigenvalues Orientation and position EMC 198

Chapter 1

Introduction

1.1 Overview and main thesis objectives

In control theory, the actual behaviour of a physical dynamic system in continuous-time (CT) domain (plant) can
be modified and corrected to follow a desired behaviour using a control model in discrete-time (DT) domain
(controller). Looking at Figure 1.1, the plant outputs to be controlled are the measurements y(k) and they enters the
controller. A control input u(k) is obtained as output and it enters the plant to modify properly its behaviour. To
convert from DT to CT a digital-to-analogue converter (D/A) is needed, and for viceversa an analogue-to-digital
converter (A/D). A system like that is also referred as Closed loop control system. The desired behaviour wanted for
the plant is referred as reference signal r(t): for example a robot following a trajectory to reach a certain position

in space, eventually with obstacles on the way.

- D/A u(?) Plant —>{ap |

Control Measured

input u(k) Reference signal 7 (k) output (k)

Y

Controller

Figure 11: General control scheme, blue for CT and black for DT

Often control inputs/measurements are not exchanged between plant/controller with a fixed timing, but variable:
looking at top figure in Figure 1.3 fixed timing is when the time needed to receive the next data is always the same,
i.e. there is a fixed inter-arrival time (in this case 25ms). Instead in bottom figure the inter-arrival time is not fixed
at 25ms, but can be variable in a certain range: we can only define, if possible, a minimum inter-arrival time.

There are many physical systems working with variable sampling time:

* In Networked Control system (NCS) one or more controllers and plants are connected together through a
shared communication network. This is what is shown in Figure 1.2, where the network closes the loop be-
tween all the parts. Network is often wireless, i.e. it doesn’t require physical connections between senders and

receivers (remote control): an example can be robot drones moved by using another device like a computer.

11 OVERVIEW AND MAIN THESIS OBJECTIVES 2

= Periodic task

Inter-arrival time

Plant ‘ l l IE > l l
Sensors i Actuators Sensors Actuators 0 25 50 75 100 125 150 175 Ts (ms)
Enc = Aperiodic and sporadic tasks
i T Sporadic task
Network Minimum inter-arrival time
"""" 0o 12 20 3 42 50 60 75 T, (ms)

Figure 1.2: General NCS architecture Figure 1.3: Example of fixed and variable sampling
times (periodic/aperiodic tasks)
Source: [15]
Source: [13]

Control inputs/measurements and other data are divided in units called packets, sampled and encoded/de-
coded in DT/CT to be transmitted. However in practice there are delays increasing the time needed for
packets exchange. In this case the asynchronous timing is not intentional but comes from external factors.
Main delays in NCS are due to, [15]: network access delays (time needed to accept data), transmission delays
(time occurred in network between sending and receiving packets), package dropouts (data can be lost in

transit through network).

¢ In other controlled systems the asynchronous timing is a desired condition (intentional): a common example
can be a vehicle engine, where a variable to be controlled is the fuel injection inside the motor pistons.
To increase performances and/or make the engine more energy efficient, injection can be performed with

variable timing.

In these kind of systems, variable sampling time can be considered as disturbances affecting the plant, which make
more difficult the system to be controlled with desired behaviour. In this regard, Embedded Model Control (EMC)
is a well established control method. It belongs to model-based design methods class, i.e. requiring a simplified
model (neglecting plant complex dynamics) of the plant to be controlled, usually in the form of DT State-space
equations (SS), the state variables are estimations of plant physical variables. In EMC case, the simplified model
is called Embedded Model (EM). This model is then connected with the Control Law unit part which finally is able
to control physical quantities of a plant. In EMC field the plant is also called fine model. EMC fundamentals are
summarized in [l], and example applications are treated in [3, 5, 6].

One handful property of EMC is to guarantee stability and desired behaviour of system even with presence of
asynchronous sampling times of both command inputs and measurements. Indeed the model carries informations
about disturbances of the system, and the control can be built to satisfy active disturbance rejection, i.e. trying to
reduce and possibly remove disturbances at every time step. This feature is discussed in [4, 5], mainly tested in
simulation.

This differentiate EMC from other model-based control methods, like internal model control (IMC) and model
predictive control (MPC) where control models don’t treat disturbance dynamics and consequently disturbance

rejection [1].

Main objective of the thesis is prosecute the study of asynchronous sampling time plants controlled by EMC
technique, [4, 5], focusing in experimental tests with physical systems. In particular a ground robot is selected,

consisting in a differential drive vehicle, composed by 2 direct-current (DC) independent motors controlling the

3 CHAPTER 1. INTRODUCTION

Figure 1.4: GoPiGo3 Differential-drive robot used for the thesis

wheels equipped with position encoders, and based on Raspbian operating system running inside a Raspberry Pi
board. The robot is called GoPiGo3 and is produced by Dexter Industries company, [17]. Asynchronous EMC can

be tested in 2 conditions:

» With Model-in-the-Loop (MIL) tests, making first EMC models to control the motors, and then to con-
trol robot orientation and position. This test requires both control models and robot plant to be run in

simulation, in this case using MathWorks Simulink software (SW) application.

* Much more important, translate simulated EMC into SW code model (using C++ language) to be executed
in Raspberry embedded system of the robot. Making physical tests allows better understand effectiveness
of EMC control technique, because often the real plants present different behaviours with respect the ones
tested in simulations. Since no specific name is given to experimental implementations of a control model,
we will refer from now on as Robot Hardware Implementation Test (RHIT). Hardware (HW) Timers present
in robot Raspberry board will be used to schedule sent and received data from control model and robot

plant.

This thesis work tests is focused in studying and verifying EMC technique with asynchronous timing conditions,
without considering for example network remote connections: indeed it was more important verify the control
EMC technique.

Since no network connection is considered, to mimic asynchronous timing conditions will be used hardware timers
already present in Raspberry board, which expiration time is defined by random numbers in a predefined range.
This method can be considered more critical because with network control systems the timestamp variation is not
so heavy (if network connection is reliable).

Trajectory reference followed by controlled robot is very simple: it needs to reach a certain target without obstacles
on the way (wheel angular speed or robot position/orientation) only respecting the dynamic constraints of the
system (geometrical constraints etc.). This allows the overall EMC to be run directly in Raspberry board, for
RHIT tests. However, in many practical applications, reference trajectories are very complex, requiring obstacle
avoidance and optimal path (for example to reduce supply/fuel consumption etc.). In these cases other techniques
are required, exploiting machine learning and optimal problems to be solved, which are impossible to be loaded
in a board like Raspberry. Hence network control come in help, allowing EMC part to be run in a powerful

computer. This can be implemented in the future, which is not difficult if EMC control is already built.

12. STRUCTURE OF THE THESIS 4

1.2 Structure of the thesis

The thesis is structured in 6 main parts.

o Part I: Basic concepts of EMC are explained briefly following the existing literature.
A differential drive robot ground vehicle called GoPiGo3 is used to make EMC practical RHIT tests. Basic
robot construction properties are given, focusing on the main geometric and mass parameters needed to
build EMC models.
Finally are presented settings used to make simulation MIL using Simulink, and RHIT using Raspberry Pi

board available in the robot.

Next parts are structured observing the time workflow of the thesis: at the beginning DC motors control is
considered, then robot orientation and longitudinal position separately, finally the last 2 models are combined
together to control 2D space robot position.

For every step, first the EMC model is theorized, then tested in MIL simulations using Simulink, at the end
generated code is recovered from simulated model to be implemented in robot Raspberry board and make RHIT
tests in real world.

Results of relevant tests are then saved, organized and discussed.

o Part II: Since very few datasheet informations are available for DC motors, first phase is system identification
of the main parameters. After obtaining reliable parameters, EMC can be built and tested in MIL simulation.
Every model must be connected with a simulated system (fine model) miming as close as possible physical
motors, to establish similar real conditions.

When results obtained in simulations become acceptable, physical RHIT tests can be done: the models are
connected with the real plants (the 2 motors). No load conditions are considered first (i.e. the wheels not
attached to the ground), for the left and right motors separately. Afterwards robot is placed to the ground,

with load conditions, and the left/right motor models are tested separately and together.

Similar procedure used for motors is used for next control models too, treated in the following parts: theoretical
analysis, MIL Simulink tests using a fine model of robot orientation/position, practical RHIT tests using robot,
analysis of the results.

Specifically, a hierarchic structure is used to connect motors and robot orientation/position control models: esti-
mated longitudinal and angular speeds are the outputs of orientation/position EMC, and they’re converted into
motor angular speeds with robot kinematic equations and used as reference for motors EMC. Then control inputs
of DC motors EMC are used as input of robot plant, to control it physically. A simplified scheme (used in RHIT)
of this hierarchic structure is shown in Figure 1.5: the non-conventional part is highlighted in red. The difference
relies in the simplicity of the structure, because in commonly used structures motors and orientation/position
controls are combined together in a unique model, requiring the presence of non-linear terms inside which usually
lead to high complexity. In the way analysed in the thesis very simple and linear control models are exploited,

and every non-linear term is let outside (the ones related to conversions for example).

o Part IIL: Robot orientation is then considered, allowing only control of robot yaw angle 6, (i.e. angle around
vertical axis) and z-axis angular speed w,. No position control is considered in this field. Angle and angular
speed measurements are taken with an Inertial Measurements Unit (IMU) attached to robot. IMU is first

calibrated and tested with already-built motors EMC.

 Part IV: Robot position EMC is studied in this part, allowing to control only robot longitudinal position

5 CHAPTER 1. INTRODUCTION

Control inputs Orient/position
(motors voltage) ROBOT measurements
PLANT
DC motor
measurements
Estimated <
motor speeds DC MOTORS L.)
P B S—— EMC Target Estimated long/ang
motor speeds robot speeds
< P “ONVERSION [« P ORIEN'TE/I\P;I%SITION

Target robot
position/orient

Figure 1.5: Orientation/position hierarchic structure simplified

¢ and longitudinal speed v¢. In reverse, now no orientation control is present, in other words the robot is
allowed to go back and forth only. The position and longitudinal speed can be measured starting from DC

motor encoders.

o Part V: Finally the previous 2 models are combined together to control both longitudinal and lateral position
of robot. This allows the robot to move in planar space, but using polar-like coordinates 6, ¢ instead of

Cartesian coordinates &, v, exploiting hierarchical structure.

o Part VI: Main objectives reached and final conclusions are the subject of this part, with references to possible

improvements to be done in the future.

Notes: For many MIL and RHIT tests several plots are present: in these cases only the test settings are referenced
in the List of Figures to avoid adding a long list (the number indicates the first figure of the test).

Unless specified, all figures are made by the author.

In the final pages after bibliography, a Nomenclature to help the reader is added summarizing the acronyms and

main symbols used inside the thesis.

Part I

Overview

Chapter 2

EMC theory

2.1 EMC basic concepts

The basic concepts of the Embedded Model Control approach are first analysed, a short summary is presented

taken from [1]. The main parts composing an EMC are shown in Figure 2.1.

. wlt p 2
u(k) D/A u(t) Extended y(t) A/D y(k)
plant
EM + Noise Estimator
o
Controllable Ym\K +
dynamics Ce =C>
d(’f)[em(k)
Disturbance w T(k) Noise
“d(k) Disturbance | -id'(k) dynamics Ceihrr

e <
rejection

Reference dynamics (controlled)

?(k.) Controllable
dynamics

Utrk ('l'") Controller
(e.g. P, PI)

Control Law

EMC

Figure 2.1: EMC complete scheme

The blocks in CT domain are coloured in blue, the ones in DT are in black. With respect [1], some parts of the
scheme are modified according to what is needed as thesis objectives (e.g. reference dynamics part). Going in

detail of each block, referencing to the figure:

* Embedded Model (EM) + Noise estimator: Since the physical plant often have unknown parameters and
dynamics, one can build a model omitting them. This results in a simplified model called Embedded model.

It can be decomposed in 3 main parts:

- Controllable dynamics: Part containing the DT equations in which states are controllable z.(k), i.e. an

external control input can change internal states initial conditions to different final conditions. Hence

2.1. EMC BASIC CONCEPTS 8

with a well suited control algorithm the behaviour of these states can be arbitrary decided.

- Disturbance dynamics: The physical plant can be affected by non-causal noises (i.e. they do not depend
on their own past history) or causal disturbances (i.e. they are DT states).
The last ones can be inserted in EM model disturbance dynamics part as non-controllable states Z4(k),

i.e. they cannot be controlled by an arbitrary external control input. Then they also affect controllable

dynamics, d(k).

- Noise estimator: It’s an output-to-state feedback estimator, which takes as input the difference of plant

measurement y(k) and estimated output ¢,, (k) (called Model error), to estimate as outputs plant noises

w(k).

* Reference dynamics: Inside there is only EM controllable dynamics part without disturbances. If a target
output is imposed, the outputs are the reference states (without disturbances) to be tracked by EM control-
lable states (with disturbances). For thesis work, to obtain a desired reference trajectory a static-state feedback
control can be added (matrices K, and N,)) [14], and a saturation block limits the reference input %(%). The
reference state is Z(k). u(k) and Z(k) are the used in Control law.

More complex techniques can be considered, for example exploiting machine learning and optimization

methods, but they are not needed for the objectives of the thesis.

¢ Control Law: Main aim of control part is to give as output a control input u(k) to make physical plant
behave as desired. Specifically we want estimated states in EM to follow a desired tracking reference input,
hence reduce what is called Zracking error: it’s the difference between reference T(k) and estimated states
Zc(k). For thesis work, to control tracking error is sufficient using either a proportional (P) or proportional-
integral (PI) controller.
Following suitable assumptions, the control is also able to reduce causal disturbances present in the physical

plant (active rejection). This is one of the main differences with respect to other control methods.

The states of EMC model in DT domain are 27 (k) = [Z., 4] (k), with Z.(k) as controllable states and i4(k)
as non controllable states (disturbances). The equations in discrete time and matrix form are (state and output

equations) (index is k£ > 0):

z(k+1) = Az(k) + Bu(k) + Gw(k), z(0) = zo

2.)
im (k) = Ca(k), zm(k) = Fa(k)

In our case the performance channel and the EM output coincide, z,,(k) = ¢,,(k), C = F. The corresponding

matrices are:

. c=[c. ¢, F=|E o]-C (2.9)

A. H,
0 Ayl

Assumptions 2.1 Pairs (A., B.) are assumed to be controllable (indeed a controller like proportional (P) or proportional-
integral (PI) can be exploited to track a reference), while (C., A.) and (C, A) are assumed to be observable at least for

one controllable state (hence at least one output from plant can be measured with a sensor), [7].

9 CHAPTER 2. EMC THEORY

The discrete time model can be decomposed into controllable and disturbance equations:

«%c(k + 1) = Ac@c(k) + Bcu(k) + d(k)a ‘%C(O) =Tc0
Ta(k+1) = Agza(k) + Gqw(k), 24(0) = 40 (2.3)
d(k) = Hezg(k) + Goaw(k)

The term d(k) contains disturbance states Z4(k) and noises w(k) entering the controllable dynamics.
Reference dynamics: It is composed by controllable dynamics without disturbances, i.e. it has the same equation
form of Z.(k + 1) in Equation (2.3) but without d(k) (the reference states and outputs are from now on referred

with a "bar" above the symbol):

T(k +1) = AZ(k) + Boa(k), 7(0) = T

(2.4)
y(k) = Cz(k)

Static-state FB can be implemented to Equation (2.4) if the input is considered as u(k) = -K,z(k) + N,7(k),

where 7(k) is the desired target reference:

T(k+1)=(A. - B.K,)T(k)+ B.N,7(k)

~— ~—
A B
" f (2.5)
y(k) = Cez(k)
Cn

Figure 2.2 shows the closed loop system formed by reference dynamics and static-state FB control with K, N,

matrices.

Reference dynamics

7(k) f u(k) = T(k+1) 1

8|
&
9!
<
=
=
&

v

A

Saturation

L

4

Figure 2.2: Orientation EM Reference Dynamics

Reference control input u(k) is saturated avoiding too high/low values which are impossible to be obtained
physically.
K

considering the input/output transfer function (in frequency domain) between 7(z) and 7(z), which is:

y(z) Gy
= B.N
7(2) 2-A, "

R

» can be found with pole placement technique to control the CL matrix A,. Instead N, can be found by

W(z) =

N

» is needed to control the DC-gain K, of the overall reference dynamics system, and make it equal to 1 to

2.1. EMC BASIC CONCEPTS 10

avoid an increase/decrease of output amplitude wrt input:

C

K, = ,IZIE%W(Z) =1 _ZRBRNR =1
Solving the limit, [V, is equal to:
-1 -1
Ny = [CR (I-A,) BR] (2.6)

Noise estimator: Used to estimate disturbance terms, starting from difference between real and simulated outputs,
em(k) =y(k) = 9,,(k). 2 main estimators can be build [l, 2J:

+ Static feedback noise estimator: Can be exploited if dimension of total states n, is exactly equal to the
one of disturbance inputs 72,,. In this case the estimation of noises w(k) can be obtained using a simple
static gain L:

w(k) = Lep (k)

L components can be found making equal the coefficients a; . of the characteristic polynomial of the closed
loop matrix A, = A - GLC, computed with det[A,, — AI], and the ones a; 4c; of a characteristic polyno-
mial with discrete time eigenvalues p; decided by us with Re()) < 1, to guarantee asymptotic internal/BIBO

stability. For example, if A, is a 3 x 3 matrix, the 2 characteristic polynomials are:

L
A+ 02701)\2 +agqA +az Closed loop char. polynomial 27)
P a27des)\2 + a3 desA + @ des = (A= p1) (A =p2) (A = p3) Desidered char. polynomial '

e Dynamic feedback noise estimator: This is the condition where 1, > 12,,. This means that closed loop
matrix A, = A—GLC is not stabilizable using a simple static gain, every choice of matrix L is considered.
Internal stability can only be recovered by adding a dynamic feedback of order n — n,, (usually the order is

1). A new state 7. (k) is added in the CL system, and ﬁcg(k) = [Z¢, 24] (k). The new SS equations become:

zp(k+1) = Azp(k) + Bu(k) + Gw(k)
e(k+1) = Acire(k) + Lem (k) (2.8)
w(k) = Nie(k) + Lem(k) , em(k) = y(k) = 7, (k)

In particular, the unknown matrices and variables are:

Ny, |z L
N:[Nd] , L—[Ld] . A.=1-7 (2.9)

A usually has the form of a filter. L. can be considered equal to 1.

Making some arrangements:

7 A-GLC GN ||z B GL
a(k+1) =[] (k+1) = | (k) = “la
Te -L.C Ae Ze 0 Lelly (2.10)
N——
ACL BCL

From CL matrix A
Nw7Nd7L'LU7Ld76'

op We can use again eigenvalue placement technique to find the unknown parameters

7 CHAPTER 2. EMC THEORY

Using this method the estimated disturbance w in frequency domain will be:

w(z) = L(z)em(2)
1
z—-A,

L(z)=L+M

In which it can be noticed the filter z — A, at denominator. Furthermore M = NL. (if L =1 = M = N).

In Figure 2.3 a general scheme of the dynamic feedback estimator is shown.

Controllable + disturbance dynamics

(k) ,(k+ 1 (1)
L B @ Tp() o Ly C [
Delay

(D A y(k) 9

w(k) Z
— G |— ++_/n
N Le
i (k) i Ze(k+1) 4
+
Delay
A,
Dynamic FB noise estimator

Figure 2.3: EM dynamic feedback noise estimator block scheme

Control law: It needs to respect the following requirements:

» Make the discrete control EM model follow a reference input.

* Cancel the disturbances of the real plant.

By assumption Z4(k) are not controllable by control input u(k), in other words the matrices pair (A, B) is not
controllable. Hence overall closed loop system results to be not stabilizable (internally). The only way to make the
system internally stable is to cancel z4(k) terms and reduce (bound) effects of noises w(k), [1].

To this aim, the control law is made by considering the following LIT equation:

u(k) =u(k) + Ke(k) - Miq(k)
—_——— N———
were (k) ua(k) (2.11)

E(k) =T - (i'c + Q@d)

e(k) = eyr (k) is the tracking error taking into account the difference between reference and EM dynamics (but
in many practical cases Q) = 0;;), the term w1 (k) = Ke(k) is needed to make our model follow the reference,
ugq(k) = Mz4(k) is the term needed to cancel the disturbance and to make the system stable, % (k) is the reference

input.

2.2. EMC EXAMPLE - MASS-SPRING-DAMPER SYSTEM 2

Matrices K, () and M need to be designed the following necessary and sufficient conditions:

1. A.- B.K asymptotically stable
) ch+QAd A, B. Q] (212)

Cq F. 0||M

The 2" condition is also known as Davison-Francis relationship: if holds, the tracking error is bounded and the
mean value tends to zero with control law equation, [1, 6].

Note: Reference, control law and noise estimator require eigenvalue tuning using pole placement technique. Since
almost all of the tests will be performed with variable DT sampling time, the eigenvalues must be chosen properly.
It is known that even if DT eigenvalues \; changes with sampling time 7', CT ones yu; does not: hence first CT

eigenvalues are chosen, then a conversion to DT one is done using the relation \; = /T at every time step.

2.2 EMC example - Mass-spring-damper system

A simple plant can be considered to learn about EMC technique, for example a Mass-spring-damper (MSD) system,
where a mass m is connected with a spring of stiffness coefficient k£ and an ideal viscous damper with coefficient
¢, a force F'(t) is responsible of motion. Since it is required as one of the main objectives, EMC block is directly
affected by variable step time: in this example the range is 7" = T = 0.02-0.04 s (cfr. Figure 2.5).

The governing CT differential equations for MSD are:

il(t) = .’I?g(t)
o (t) = —%xl(t) - %962(15) + %U(t) +Zq(t) +wi(t), yi(®) =21(t), va(t) = 22(¢) (2.13)

2q(t) = wa(t)

u(t) = F(t) is the controlled input (force) coming from EMC (analogue converted), w’ (t) = [w1,w2] (t) are the
noise error terms entering the system. State vector 27 (t) = [x1, 22, 24] (t) is composed by position x1(t) = £(t),
velocity x2(t) = ve(t) of the mass, and disturbance state Z4(t). The last equation is added to simulate a non-
controllable disturbance term, i.e a term that cannot be changed by modifying the input u(t). 34(¢) enters the
system as acceleration disturbance.

In matrix form (continuous time CT):

[0 1 0 0 0 0
Acr = _% -m 1 Ber= % v Gerp =1 0],
[0 0 o0 0 0 1
(1 0 0
CCT: 01 ol CT:CCT

The Mass-spring-damper fine model is in Figure 2.4. Starting from Forward Euler discretization method, DT

matrices can be recovered from CT ones (I is the identity matrix and 7" the sample time):

Ay =AT+1
BDT :BCTT (2 14)
CDT = CCT

GDT = GCT T

13 CHAPTER 2. EMC THEORY

For our system:

(A, H !)0 B 0 G 00

Apr =" Ac]= S ST Bu=| || B Gor o7 L0
] ‘ 0 0 |1 0 dlor (2.15)
: 1 0[]0

CDT:»CC Cd]: 0o 1lo0 | FDT:[FC O]:CDT

Since measured outputs are both position £(k) and speed vg (k) there are 2 model errors, ep,1(k) = {(k) - (k)
and ep2(k) = ve(k) — 0¢(k). Considering matrix related to disturbances G, in Equation (2.15), noise estimator
is composed by a static gain matrix L € R?*2, It can be used pole placement technique procedure starting from

arbitrary decided poles 1, Pn2, Pn3, like in Equation (2.7):
>\3 + an2)\2 + an3)\ + ang = ()‘ _pnl)()‘ - pn2)(>\ - an)

Noise estimation gain matrix will be, in function of characteristic polynomial terms a2, an3, an4 and main param-

eters m, k, c:

m (3 + 2ang + ang) — kT

- m(3+ap)—cT

L-|m e b = mT? » h mT
lo1 oo l21:an2+an3+an4+l log =0
T3 ’

For control law it can be considered a Proportional controller (P), and Equation (2.11), where matrices M, Q, K
must be designed. From 2" condition of Equation (2.12) M = m and Q = [0,0]”.
Instead for design of matrix K € R**! it can be applied again pole placement technique (Equation (2.7)) where

Dk1,Dk2 are arbitrary decided poles:
A+ Ak + ags = (A= pra) (A - pr2)
and matrix K components are:
—kT? +m (1 + ap + ags)
k1=
T2

:m(2+ak2)—cT
T

K = [k1 kg]
ko

For initial conditions position £ = 0m and velocity v¢ o = 0m/s for fine model plant are used. Target position to
be reached is é = 2m. The parameters in fine model are slightly different from EMC ones, to simulate parametric

uncertainty (Table 2.1).

Parameter (meas. unit) Fine model EMC CT Eigenvalue type Values
m (kg) 1 1.5 Reference 1, -1.5230 x 2
k (N/m) 1 0.7 Noise estimator p1,, —2.5648,-2.5646 x 2
¢ (Ns/m) 1 1.4 Control /i, —2.5647 x 2
Table 2.1: MSD fine model vs EMC parameters Table 2.2: Continuous eigenvalues MSD EMC

In addition noise disturbances are added to acceleration in fine model, with 2 uniform random numbers wy (%)

2.2. EMC EXAMPLE - MASS-SPRING-DAMPER SYSTEM “

and wy(t), the last integrated once (check Equation (2.13)). In particular their ranges are €,1 = €,2 = 0-1m/s.
After some tests, CT eigenvalues considered for reference, control law and noise estimator blocks are shown in
Table 2.2. Reference dynamics is quite slow, hence 11, are near to zero, instead ji,, and i, are sufficiently fast to
guarantee low tracking and model errors. At every time step CT eigenvalue must be converted in DT equivalent
(\i), depending on variable sampling time 7', using the relation \ = e+

In the next set of figures, measured output y(k) is compared with estimated §(k) and reference y,.; ones, and
tracking and model errors e,k (k), e, (k) are shown. First 2 plots are with disturbance rejection and the others
without (u4(k) = ON). The presence of parametric and disturbance uncertainties does not lead to high tracking
and model errors, but in absence of disturbance rejection position 3 (k) estimation cannot reach the steady state
tracking conditions (2 or —2m), and there is constantly an error of some centimetres. Instead with disturbance

rejection ey, ¥ 0m for position at steady-state conditions.

0.04

2 4 6 8 10 12 14 16 18

Time (s)

Figure 2.5: MSD variable Timestamp

— (k) — (k)

.f out. (m)

4
—y(k) — (k)
2

m
S

Y

ve out. (

—y(k) — (k)

- : 0 5 10 15 0 5 10 15
0 2 4 6 5. 12 1 16 1 Time t (s) Time ¢ (s)
Time ¢ (s)

Figure 2.7: MSD tracking e and model e,, errors -

Figure 2.6: MSD ¥, y,cf,¥,, - Disturbance rejection Disturbance rejection

—
Py &l 02
E E

E o

1) S
wr 0.4

0.4 -

— —~ —y(k) — y(k)
2l £[= 02
~— St

. g 0

= L

=]

. 0.2

(=} — ur

" —y(k) —y(k) S

ISH % e -0.4

0 5 10 15 0 5 10 15
0 2 4 6 8 10 12 “ 16 8 Time t (s) Time ¢ (s)
Time ¢ (s)

Figure 2.9: MSD tracking et ;, and model e, errors -

Figure 2.8: MSD v, Yyct, ¥, - No disturbance rejection No disturbance rejection

Chapter 3

Robot GoPiGo3

For the thesis a differential drive (DD) robot car was considered. Among the possible choices it was selected one
with quite precise encoders to measure wheel angular positions and, by differentiation, the wheel motor speeds.

Dexter Industries company produces many kind of robots, mainly for educational purposes, and it offers an already
build DD robot with 2 Magnetic Hall encoders called GoPiGo3, which is suitable for the purpose. Informations

about it can be found in company website, [17].

Figure 3.1: Front angle view GoPiGo3 DD Figure 3.2: Back angle view GoPiGo3 DD
robot robot

3.1 Construction properties

GoPiGo3 has two driving wheels and a caster wheel for equilibrium. It’s a differential drive robot, it means that

the wheels are driven independently from each other. It’s mainly composed by:

¢ 2 direct current (DC) motors: They move the wheels. The rotational output speed is reduced by a gearbox
(protected by a plastic box) with has a ratio of N = 120, hence the motor speed is reduced by 120 times at
load side.
By construction they can range until a maximum voltage of 12V. In practice this voltage is lower because

it depends on the supply (battery pack available voltage or a direct current power supply).

3.1. CONSTRUCTION PROPERTIES 16

Motors are connected with main board using JST-XH 6 pin connectors.
Since no datasheet is given for the motors and gearbox inside, parameters were estimated using parameter

identification (cfr. Section 5.1).

* Magnetic encoders: The motors are both equipped with 2 Hall Magnetic encoders with 6 pulse counts per
rotation, to measure angular position (and speed by differentiation) of the wheels connected: with 120:1 motor

gear reduction we obtain a total of 720 pulses per wheel rotation, which means an angular resolution of 0.5°.

+ Main HW board: It contains all HW elements to control the motors and other connection ports (I*C, SPI,
GPIO) for additional I/O devices. This board can be connected with a Raspberry Pi board directly using
their I/O pins.

Specifically for the motors the following components are available:

- H-bridge drivers: They allow run the motors in both directions (clockwise and anticlockwise) and

making them accelerating or decelerating.

- PWM square wave generator: To generate the desired DC voltage for the motors a PWM modulation
is used. It basically consists in generating a square wave with variable period (duty-cycle), so that we
can control the average output voltage.

PWM square wave in this case has 0 — V};,4, voltage amplitude, where V},,,, depends on the maximum
voltage supply.

The generated square wave was measured with an oscilloscope, with the probes across the 2 motor
terminals (in parallel connection) imposing a known average voltage. PWM with 50% duty cycle (around

6V) is shown in Figure 3.3.

Tek e ® Stop I Pos: 7.600ms
i LB R RSB A n bR ¢ i

Figure 3.3: GoPiGo3 DC motor measured Figure 3.4: GoPiGo DC motor PWM duty cy-
PWM square wave with 50% duty cycle cle change - From 4V to 8V average voltage

Instead in Figure 3.4 a duty cycle change is imposed in one of the motors. The above signal shows a
command in one of GPIO pins in the board, passing from LOW (0 V) to HIGH (3.3 V) logical condition
when a change in duty cycle is caught: this pin is controlled by SW code, changing its logical condition
when change in duty cycle of PWM is performed (again in SW code).

The signal below instead shows the PWM measured across motor terminals: after some time (half the

horizontal scale) PWM duty cycle changes (HW change). It can be seen that a SW command to change

177 CHAPTER 3. ROBOT GOPIGO3

PWM (signal above) is converted almost immediately in HW command (change of PWM duty cycle),
so it can be assumed that no delay exists in this operation.

In both figures it can be clearly seen that PWM signal is always generated at fixed time period,
T =0.02s.

PWM

» Raspberry Pi Model 3B: This board and its Raspbian OS are used to control all robot functionalities, at
SW level.
It is based on ARM Cortex-A53 Microprocessor 64-bit quad-core chipset with 1.2 GHz clock speed, 1 GB
RAM, and allows Wi-fi and Ethernet connections. Raspbian OS is installed inside a microSD which acts as
non-volatile memory (like Hard-disk). It has 40 I/O GPIO pins with different functionalities (for example
there’re I2C reserved pins, with SDA and SCL connections), Ethernet and 4xUSB ports, [18].
Main robot board described before is directly connected with the Raspberry using some of 1/O pins present.

 Battery pack/power network supply: The boards can be supplied using either a battery pack composed
by 8x1.2/1.5 V AA batteries, or power supply converter to transform house network alternate 230 V voltage
into direct voltage until a maximum of 12V. The second possibility is useful during writing of SW code

phases when motors are still, in order to avoid consuming unnecessary battery power.

o IMU: An inertial measurement unit (IMU) is used to obtain robot orientation and position informations.
It is produced by Adafruit company, model name "Adafruit 10-DOF IMU Breakout" [19], and consists in
an embedded device composed by 3-axis accelerometer, 3-axis magnetometer (LSM303DLHC, measuring
acceleration, linear acceleration and Earth magnetic field) and a 3-axis gyroscope (L3GD20, measuring
angular speed). Also barometric and temperature sensors (BMP180) are present, but they’re not important

for thesis purposes.

3.2 Kinematic and dynamic properties

3.21 Geometric and mass parameters

For some control models built in the thesis, some geometric and mass informations are recovered.

To find some parameters (like total robot inertia I’.), GoPiGo3 robot was reproduced using Autodesk Inventor
CAD SW application (Figure 3.5). To define robot position in 3D space, Cartesian coordinates are considered
using the symbol names £, v, z (not = for longitudinal position because it is already reserved to EMC states): in
Figure 3.6 are shown the Body RF (with origin in robot wheel axles, with the same distance from both wheels),

subscript BF, and Inertial RF (origin fixed in one point in space), subscript I F.

3.2. KINEMATIC AND DYNAMIC PROPERTIES 18

v 193

gﬁ‘F‘

1A R

Zu«‘\!/() &ir

Figure 3.6: GoPiGo3 robot Body
(blue) and Inertial (red) reference
Frames

Figure 3.5: GoPiGo3 robot CAD model built with Au-
todesk Inventor

Main robot parameters (all approximated parameters are designated with "hat"):

Symbol (meas. unit) Value Description
Geometric properties W (m) 0.0585 Half robot width
[(m) 0.2200 Robot length
p (m) 0.0325 Wheel radius
t (m) 0.0280 Wheel width
d (m) 0.0200 CoM distance from wheels axle
Mass properties My (kg) 0.0320 Wheel mass
Mparr (Kg) 0.2480 Battery pack mass
my (kg) 0.6160 Main body + battery pack masses

Table 3.1: GoPiGo Differential Drive Robot parameters

Starting from these properties, total mass and inertia can be recovered. Total mass M7 is simply mass of the body
plus battery pack and wheels:
M, =mp+2m,, = 0.68kg (3.1)

The main body without wheels can be approximated as a parallelepiped with length [and width 2W, for which
the moment of inertia around z axis can be computed as [11]:

; 2W)? + 12

7 W)+

2 = mp=——o—— =0.0032 kg m?

where mp is the main body mass. The other axes inertias are not needed.

Inertia tensor for the wheels is the diagunal matrix below:

- 3p%+t2
oo o] [t 0 0

jw =10 jlyul, 0= 0 m“’(Rzzg+Rgut) 0
T S I o ml)

Since the wheel can be considered roughly as hollow cylinder it has external radius Ryt = p = 0.0325m and

19 CHAPTER 3. ROBOT GOPIGO3

internal radius (approximately) 12;,, = p — 0.01 = 0.0225 m. Numeric values for each wheel inertia are:

Iee =1, =1.054le-5kgm®
I, = 2.5000e—5 kg m>

Knowing body and wheels inertia around 2 axis, the following formula for total inertia can be used:
I =10+ mpd® + 217 + 2meW? = 0.0037 kg m? (3.2)

It can be seen immediately that I and M7 mainly depends from main body platform and battery pack, and the
wheels have very little impact because of the their low mass.
the terms 2m,,W? and myd? in Equation (3.2) derives from Huygens-Steiner theorem (taken from [11]), which is

resumed below:

Theorem 3.1 (Huygens-Steiner) Inertia moment of a mass body m with respect to an axis placed at a distance from
the same body center of mass (CoM) is:
I=1,+mad* (3.3)

where 1. is inertia moment of body with respect to an axis parallel to body and passing through CoM.

In this case, the total inertia is computed using the rotational axis passing through the total robot CoM, which
is slightly moved towards the caster wheel (it’s not exactly on the wheel axles, condition verified by position of
battery pack). Indeed it has a distance of W in lateral direction and d in longitudinal direction wrt origin of
Reference BF in Figure 3.6. For this reason there are the terms m,,W? and myd?. Caster wheel is considered as

part of the main body.

3.2.2 Total robot inertia verification

Since GoPiGo3 robot has not exactly a parallelepiped shape, the inertia value in Equation (3.2) must be verified.

This is done by building a model using Autodesk Inventor. Every part was created alone, then assembled. The
interesting feature of this program is to compute total mass and geometric properties of the assembly (included
the inertia and CoM), using a tool in the program (iProperties). There is some error inside these computations,

but can be considered very small. Computed values are:

Symbol (meas. unit) Value Description
Inertia properties I, (kgm?) 0.002235 Total robot inertia, z axis
1% (kgm?) 22.9e-5 Wheel robot inertia, v-axis
CoM properties d (m) 0.0472 CoM distance from wheel axles

Table 3.2: GoPiGo properties using iProperties Inventor tool

The CoM distance d really depends on battery pack position, since they have important weight: it was estimated
d ~ 0.02m but in reality is near 0.05m. This is not a significant problem since the estimated total inertia T iz
doesn’t differ so much from the real one ', computed with Inventor.

The real total inertia can be used to build fine model when robot orientation will be controlled by EMC, and to

compute robot torque starting from wheel speeds (see Chapter 10 and next subsection).

3.2. KINEMATIC AND DYNAMIC PROPERTIES 20

3.2.3 From robot wheel speeds to robot torque/force relation

As we will see in Chapter 11 and Chapter 14, at least for MIL simulations is important to recover a relation between
wheel angular speeds and robot total torque/force.

Starting from DC motor (and wheels) angular speeds w, = q'bL and w, = q'bR, the angular accelerations w, = q'éL
and w, = ¢ can be obtained with a simple derivative. Instead to obtain robot torques/forces from wheel angular
accelerations some considerations need to be done.

First, we can assume that wheels have pure rolling motion, which means that contact point with ground is time by
time equal to zero. In other words, in this conditions the wheels never slip.

Second, there are 3 contact points with the ground: 2 wheels and caster wheel. This last one does not exert
horizontal forces to the ground (since it has negligible rolling inertia), so all the mass is driven by the 2 moving

wheels.

* Each wheel moves half of total mass M.

¢ Pure rolling condition, in presence of torque moving the wheel, means that friction force developed at ground

it’s approximately equal to force moving the entire wheel, applied to wheel CoM.

By making forces and moments balance equations, for only 1 wheel (reference is [11]):
Z A

{ R +mg=mag,, Vectorial Forces me r

A
v

T+rxf=1I], Vectorial Moments &
v

Figure 3.7: Forces and Moments acting on a generic wheel
with pure torque motion

Source: [17] modified

I'Y, in this case is the wheel inertia around v-axis in Table 3.2.

Balance equations can be decomposed in vertical and horizontal directions:

a
N=mg , f=ma., T—rf:I;;"V% (3.4)

From the last equations, friction force (and total force moving the wheel) is:

Ground contact point C' velocity can be expressed as v¢ = v,, + W, X I, but since the motion is pure rolling
ve = 0m/s, the first equation reduces to v, = —w, x r. In modulus, v,,,, = w,r. Derivating we obtain a,,, = ar,

where « is the wheel angular acceleration.

21 CHAPTER 3. ROBOT GOPIGO3

Combining with f in Equation (3.4), we obtain:
f=mra (3.5)

To pass form wheel torque speeds 7; to angular accelerations ¢; the following relation can be used, recovered from

the last 2 expressions:

I'LU
i = mp? (1 + =)ai (3.6)

Each wheel generates a robot torque which changes its vertical angle 6, and angular velocity 92 = w,. In general

the vectorial sum of torque gives the total torque exerted on robot 7.
2 .o
Tr =ZT7:=I:IZUZOZ=TR+TL =Fx W+ F xW, =(F,-F)W (3.7)
i=1

where Wg =[0,0,W], WI =[0,0,-W] are the vector distances of wheels from body CoM axis, which coincides
with half robot width.
Combining Equation (3.5) and Equation (3.7) we obtain:
. mriW
GZZT(QR—OZL) (38)
zZz

——
T

al

For robot specific case m = M, /2 and r = p.

The last equation can be split in 2 linear ODE, with states 6, 922

{ 0.=0,
§ (3:9)

0, = bgl (aR - aL)

Instead to obtain total robot force F, from wheel angular speeds w,,w, relation is very simple. The general

Newton equation for total robot force F. is:

2
F,=YF,=M§£=F,+F, (3.10)
i=1
Using Equation (3.5) friction force can be related with left /', and right F',, longitudinal robot forces acting on
wheels, considering m = M, /2 and 7 = p. Hence the relation between total robot force and wheels angular speeds
is:

i 14 .
é = 5 (aR - aL) (3'11)
bl

And split in 2 linear ODE the equations are:

£=¢

To understand if the last Equation (3.8) and Equation (3.11) are coherent or not, a comparison with expression

obtained using Differential Drive Lagrangian equations is considered (to pass form wheel torque/forces to longitu-

3.2. KINEMATIC AND DYNAMIC PROPERTIES 22

dinal/angular accelerations, Equation (3.6) is used):

p 1) Ay L
Z:2W w t p 2(TR_TL):bT(TR_TL) = ezszTpQ(l‘l' M;VQ o
Il/l/+2[zz(ﬁ) Tp
; :

M () -

p ;o Mr o Ly
== s(Tp+71,)=bp (T +7,) = &§=by—0p (1+M)ai
20 +2015) 1 (5) 27\
by blo

The expressions are taken from [8], eqs (45) and (48). To make the direction of 2 wheel torque speeds equal, the
equations are slightly modified (since in paper torques are in opposite direction). The procedure to find them is

well explained in paper and it was verified its correctness. Main passages can be resumed as:

* Pure rolling motion condition (no velocity between ground and wheel contact point) results in non-holonomic
constraints, basically they are the kinematic equations rewritten in a different way. Considering as general-

ized coordinates q = [£,1,0,,¢,, ¢,]:

cosf, sinf, 0 { q,bR * qb,L
—sinf, cosf, Of|v|= g (.bR " qb.L
0 0 1 Hz ¢R - ¢L

They can be rewritten using the generalized coordinates derivative q:

cosf, sinf, O
CT(@A=|-sinb, cosh, 0
0 0 1

no

g|7c o e
N o i
=R

The last term can be added to Lagrangian equations:

dloL(qa)] 0L(a,q) Ty -+
dt[94] 9qC@A (3.14)

M(q)gq+B(q,q)-CT(q)A=T

A terms are called Lagrangian multipliers.

 Lagrangian multipliers must be found. Since computation can be difficult using the complete Lagrangian
equations, some assumptions are made: d = 0m (CoM is considered passing through the wheel axles) and
6. = 0° (which means observing coordinate system to be parallel to the body-fixed coordinate system).
Using these simplifications, starting from C7(q)A = 0 and Equation (3.14), the expression for A (simplified)
will be:

A=-[C(@)M(a) ' (@)] " [C(a)M(a) T+ ()]

*) can be substituted in Lagrangian equations to find 0, and £ expressions in Equation (3.13).

b),; and b], in Equation (3.8) and Equation (3.13) can be found knowing the inertia and mass parameters computed

23 CHAPTER 3. ROBOT GOPIGO3

before, leading to the following results:
o1 =0.2892 | b, =0.2885

The 2 values are very near, hence they can be considered quite reliable.

From a deeper insight, Equation (3.8) is exactly equal to Equation (3.13) if we consider I, = 0.

The same can be done for longitudinal acceleration equation, comparing b£1 and b£2 in Equation (3.11) and

Equation (3.13). After substitutions their values are the same:
b/ =0.0163m , b/, =0.0163m

Again Equation (3.11) and Equation (3.13) are exactly the same if we consider I}, = 0.
3.2.4 Kinematic model

In some control model MIL and RHIT tests is important to understand the position and orientation of the robot
in space. To this aim Kinematic equations model for DD robots can be exploited: they are equations which relates
robot 2D position and vertical yaw angle [£, v, 0,] with the left and right wheel angular positions ¢, and ¢,,, using
geometric properties only (p and W):

¢ Lcosf, Lcosb.|r-
¢
v|=|5sinf, £sinb, l .R] (3.15)
0 L - o,
z W 2w

This is a standard model for DD robots, which can be easily found in literature (like in [7]). Making an integration

of the equations robot position in 2D planar plane and orientation can be easily found, with good approximation.

If robot follows a circular trajectory of known mean radius 7, and total linear speed v, left and right motor

angular speeds w, = (iSL and w, = éﬁR can be easily found:

v, = (rm —W)éz
v = (T + W),

v =70,

From the desired total velocity v, . can be recovered, and from that the motor angular speeds (¢ , = v, /p for left

wheel and éR = v, /p for right wheel):

S (- w)i
o 5 - p)
6= = ' (3.16)
Tm . (rm +w)6,
by = I
1)

Chapter 4

Control models software testing - General

settings

To verify control models using EMC technique, 2 main kind of tests are performed:

* Model-in-the-Loop (MIL) tests: These kind of tests are used for EMC before making practical implemen-
tation in GoPiGo3 robot. Both robot plant and control scheme run in simulation using MathWorks Simulink
application.

It’s obtained a preliminary analysis of the control model behaviour, which is then modified continuously

comparing with SW implementation in the real robot (RHIT).

* Robot Hardware Implementation Tests (RHIT): The control model is generated in C++ language SW

code and directly implemented in Raspberry robot board, connecting with real plant devices.
Usually SW tests requires intermediate passages, which are not considered in this field:

* Software-in-the-Loop (SIL): Is commonly performed after MIL, which consists in running again both plant

and control model using simulation language (like Simulink), but control model is in form of generated code.

* Processor-in-the-Loop (PIL): Executed after SIL, this test consists in running the plant in simulation

(Simulink) and the control model in the target system (Raspberry).

* Hardware-in-the-Loop (HIL): Precedes real implementation of both the 2 parts: controller SW code run

in target system and plant is co-simulated usually in a rapid prototyping HW, which simulates it in real-time.

SIL and PIL are used to verify generated SW code for control models, first in simulation and then in target system:
since EMC block is mainly composed by linear DT SS equations and requires simple computations, the overall
generated SW code is very simple and short, thus these verification tests can be skipped.

HIL is not needed because the plant, the GoPiGo3 robot, is directly usable in almost every place for its little size.
It’s not a vehicle suspension which requires the entire vehicle to be drive for controller tests.

In the next sections the main passages to perform the 2 tests are explained, making reference to tools and SW/HW

applications needed.

25 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

41 MIL configuration

Main SW applications used to perform MIL tests are MathWorks MATLAB and Simulink. They’re composed
of many toolboxes for different purposes, some needed for thesis work. For example MATLAB Symbolic Math
toolbox is used to find control loop eigenvalues computing symbolically pole-placement expressions, to be used
next in EMC.

In Simulink to build DT systems, state-space equations are preferred instead of Transfer functions, thus Matlab-
functions blocks are better than LTI systems blocks and others. They also are useful when variable DT control
systems are considered, where timestamp value always changes in DT system matrices at every time step: Matlab-

functions allows to do that, which is impossible using elementary blocks.

411 Variable timestamp

The most important thesis objective is to verify EMC in presence of asynchronous sampling time, hence a way to
implement variable Timestamps in simulation is needed. Since no already built Simulink block is available to this
aim, a solution is find by the author.

In Simulink are available Stair generator blocks, which allow to generate staircase functions (i.e.piecewise constant
functions): they are used to produce a simulated PWM signal like the ones of robot DC motors.

First a signal (data + time) vector of random values in a predefined range is built, in MATLAB is sufficient to use

a while conditional loop implementing the following recursive equations:

Ts(k) = remin + € Timestamp data

T(k)=T(k-1)+Ts(k) T(0)=0s Timestamp time

r is a uniform random number ranging 0-1, €, = minimum range value, € = Timestamp range, k£ > 0.

In an alternative way, when a RHIT is already performed, the variable Timestamp implemented by SW code can
be directly loaded in MATLAB to be used in simulations: this is useful to make comparison between RHIT and
MIL.

Next for every sampled Timestamp data, another signal vector is built. Data values are 0 or 1: first Timestamp
Ts(k) value corresponds to 0, the second to 1, the third to 0, and so on. The time values are the same of T'(k).

Resulting signal is like a Timestamp PWM, which can be directly loaded in staircase generator in Simulink.

In order to control the EMC in DT, in Simulink exist 7riggered sub-systems: in these sub-systems every block
inside run only when an external trigger function edge is rising, falling or either, hence determining a DT timing.
Trigger function in this case is exactly the timestamp PWM signal built before, where rising edges are passages
from 0 to 1, and falling edges vice-versa. Putting triggered sub-system running for either edges, we obtain almost
the same variable Timestamp desired.

Obviously stair generator edges in Simulink are really dependent on simulation time solver, because it’s not
possible to obtain an immediate sharp rising or falling of a signal function: for this reason it’s better to use a

Fixed/Variable Solver with low simulation time (for example 2e—4s is sufficient and simulations are not so long)

4.2. RHIT CONFIGURATION 26

4.2 RHIT configuration

4.21 SW Tools and applications

Raspberry remote control applications

To make RHIT tests it’s needed to work with Raspbian OS of Raspberry Pi board. Access and control it remotely
using another OS is a more comfortable solution, for example using Windows in another Laptop.

There exists different SW applications to manage remotely other computer systems:

1. PuTTY client: This application client emulates the prompt terminal used by Raspbian OS remotely, using
different connection protocols like SSH (Secure SHell, which uses an encrypted connection) or Telnet (no
encrypted connection). Website is [20].

This is not the best solution to develop the SW code for RHIT tests, because using a terminal many OS
functionalities come out to be very uncomfortable, like administrate folders and files or write the code (an

IDE application to write code is not available working in a terminal shell).

2. VNC (Virtual Network Computing) Viewer and Server: These 2 applications allow to control remotely
a computer system OS with another one, but wrt PuTTY we can have access not only to commands prompt
terminal but also to GUI Desktop. This is a huge convenience, especially when developing the code. Again
security is guaranteed by using end-to-end connections encrypted using 128-bit AES, 2048-bit RSA keys
(website is [21]). Basically VNC Viewer is the application to be installed in the device we want to control from

(Windows for example), and VNC Server the one to be used in the device we want to control (Raspberry).

The only drawback controlling Raspberry remotely with a Desktop GUI may be running an RHIT test SW code:
the presence of graphical interface may require other applications active at the same time of code program, and
since the control models need to be stepped with a precise Timestamp this condition can lead to lags and timing
errors.

If this is true PuTTY application may be better for running the code, since it does not require a Desktop GUI to
be controlled. In reality it was experimented that GUI has very little influence on code timing requirements, and

VNC remains the best solution.
Cross-platform IDE

Code development phases can be speeded up by using an Integrated development environment (IDE), which is an
application program to write SW code and make cross-compilation flow of source/header files automatically.
Cross compilation represents all operations needed by SW compiler and linker to create executable files from
source/header files. A schematic is in Figure 4.1: from source .c/.cpp and header .h/ hpp files a compiler converts
them into object .o files: inside them there’re all SW code present in .c/.cpp. Then the linker must connect all
object files and other required static .a and dynamic .so libraries, to obtain a unique executable file. Executables
can have different extensions (.out in older UNIX versions, now subtituted by .elf).

CodeBlocks SW application is finally selected as IDE for the purpose.
Simulink Embedded Coder

To pass from MIL to RHIT using Raspberry board, a tool for generating a SW code is needed. Simulink Embedded

Coder is used to convert the Simulink EMC model into SW code. Basic settings are:

* Simulink Embedded Coder allows only 2 programming languages for generated code: C and C++. Since

27

CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

= 5 B

¥ ¥

Cross Compiler

le_A. file_C.o ‘f Obiject files

Figure 4.1: Cross compilation flow

Source: [13]

GoPiGo3 main library is already written in C++, the same choice is preferred for control model code. Another

reason is that Object-oriented programming classes makes the code shorter and more understandable.

Generated code is optimized, in the sense that part of the code is reduced in length combining variables,
avoiding if possible conditional statements like for loops etc. This helps improve the speed performances
when running the code, important in control field.

In Simulink many options can be selected for optimization, for example one of them is the "Loop unrolling
threshold"” setting, which allows to decide the minimum width for a "for" loop: if the number of loops is lower
than this width value, generated code tries to combine definitions of variables and avoid the presence of for

loop.

In Simulink settings among possible specific system target files it is chosen the one called "ert.tlc": it means
Embedded real-time target (with .tlc referring to the compiler extension used by coder tool), which optimizes

for smaller memory model and execution speed. It’s a good choice for Raspberry board.

Raspberry board HW is based on ARM Cortex Microprocessor, hence also the generated code must be

specific for this HW. In Simulink there’s a setting to change device microprocessor vendor as desired.

Generated SW code results files are subdivided as:

o ert_main.cpp This is the main source file, it contains a main function with other sub-functions to run the
PP

code.

* <model name>.cpp (model name refers to the name given arbitrary to the model) This is the source file

containing all informations about the generated Simulink model. It is subdivided in 3 class member functions

(we can name the class as "Model"):

- Model:initialize() Here the model parameters can be declared and initialized. Because the generated
models are for control purposes, usually eigenvalue placement is used to control the system dynamic

behaviour and stability. This member function is useful to initialize these ones, but also model states

4.2. RHIT CONFIGURATION 28

and sampling time to zero.

Is not mandatory to use it, but is preferable since allows the code to be more clean and understandable.

- Model:step() This is the member function containing the Simulink control model translated in SW
code: control inputs and sampling times enter as input variables and estimated states from EMC exit
as output variables.

It’s called at every discrete sampling time step by calling it from ert_main.cpp source file.

- Model:terminate() After the last execution of model, variables memory can be clean-up using this

member function. Again its use is not mandatory, but preferable.

C++ classes usually have constructor and destructors to initialize the parameters (especially when one wants

private parameters), but in this case they are substituted by member functions initialize() and terminate().

» <model_name>h This header file (.h or .hpp file extension is indifferent, C++ works with both) contains
the main libraries used by the model class and the declaration of the class member functions, constructors,
destructors, states and variables and model-specific data types, to be used in .cpp source file. Usually the
public states and variables used by the model are saved into structures, to avoid being declared as global
variables (global variables need to be avoided if possible, since they can be accessed by every functions and

sometimes modified without noticing).

» rtwtypes.h It translates Simulink specific data-types into HW-specific data-types, with different names in
order to be distinguished: for example "double” in Simulink is translated into "real_T" data-type. This header

is called by model_name.h file.

* <model_name_data>.cpp Sometimes the main model parameter names passed in Simulink from MATLAB

workspace are saved in a different source file (designed by the _data suffix) as a structure.

4.2.2 Main SW libraries and functions

HW Timers

In order to step the model with a certain sampling time it is needed a quite precise HW timer: among the
possibilities, considering that is not possible to use external HW timers, signals are used: a signal in UNIX OS
platforms like Raspbian can be described as an asynchronous notification that an event occurred, and in this case
it can call a signal handler to run a specific routine of functions, [22]. In particular the library header file used for
the signal timers is called signal.h.

In this case the event is the expiration of a timer after an arbitrary elapsed time (our Timestamp), and the signal
handler the functions needed to compute outputs of the control model and plant. After the expiration and function

handler call, the timer is reset for a new step. Basic structure to run this kind of timers requires:

* Functions containing signal library functions to initialize and set the timer, for example taking as parameters
its expire time decided by user and the number of signal (indeed there’re a different number of signals to be

used with different purposes, a part of them can be used freely by the user).

o Signal handler function, containing the functions we want to call. Every time a signal timer expires an

29 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

interrupt is generated and the functions inside signal handler are executed.

A line of code function starting the signal timer, with parameters the signal number, expiration time and

signal handler function.

In theory the signal handler function can be outside the main function, with the following simplified code flow:

#include <signal.h>
#include <sys/time.h>

void sig_handler (int signo) {

// step functions to be called

void timer (long int useconds) {

// initialize expiration time and start timers

int main() {
signal (<SIGNAL NAME>, sig_handler);

timer (useconds); // set the timer expiration in microseconds
while (true) {2}

return O0;

Listing 4.1: Signal timers SW code flow, interrupt mode

Signal library are old UNIX functions and one problem can be race-conditions if the signals are more than one:
for example if the signal handlers share the same variables, one them can change the variable when the others
don’t want to, causing unexpected results.

For this reasons a better solution is to put in the signal handler only a flag (volatile sig_atomic_t global_flag),
which can be only 1 or 0. Inside the main while function we put an if statement to verify value of the flag: if it is 1
enters the statement and run the code inside (containing the needed step functions), otherwise skip. At the end of
if statement is needed to set global_flag = (to enter inside only once per timer expiration.

In practice the code is changed as:

#include <signal.h>
#include <sys/time.h>

volatile sig_atomic_t global_flag;

void sig_handler (int signo)

{
global_flag = 1;
}
void timer (long int exp_time)
{

// initialize and start timers

4.2. RHIT CONFIGURATION 30

int main() A{
signal (<SIGNAL NAME>, sig_handler);
timer (exp_time); // set the timer expiration in microseconds
while (true){
if (global_flag == 1) {
// step functions to be called
global_flag = 0;

}

return O0;

Listing 4.2: Signal timers SW code flow, polling mode

This code can be considered running in polling condition, since it is needed to verify periodically the if statement,
but the signals handlers are called in interrupt mode.

The only drawback of the last solution is that CPU is always used by the program, because every time the if
statement needs to be verified. But apart from the main function to control the robot, no other processes are
needed and this drawback sorts no effect.

This solution works with only 1 timer and it’s based on the function setitimer() inside timer() above. To
run more than 1 simultaneously, another function from standard C and signal libraries is needed to be called,

timer_settime().
Timestamp value

HW timers discussed before are based on expiration time which is the timestamp of DT models, hence is also

needed a function to measure and verify it. In the next piece of code there is its implementation:

#include <sys/time.h>
struct timeval ts;

double timestamp () {
gettimeofday (&ts, NULL);
return (double)ts.tv_sec + (double)ts.tv_usec/1000000;

gettimeofday (&ts, NULL) is a subfunction that gets the seconds and p-seconds since Epoch (which is the starting
default date 1970-01-01 00:00:00 (UTC)) and save them into a structure called ts. Then they are returned in
timestamp () function.

Note: ts can be casted to double only if there’s a quite recent C++ compiler (for example in UNIX platforms if

compiler is GCC, its version must be more recent than 7.1).
Variable Timestamp

One of the main thesis objective is to verify EMC using variable sampling time, because when control inputs are
sent remotely the timestamp can be received with a certain delay.

Before making tests remotely (with a Networked Control system NCS), a simplification can be done to make
variable sampling time tests: define in the code uniform random numbers in a predefined range, and add them

to HW timers expiration time. If EMC is working with this simplification, it’s almost sure that it can work with

317 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

a NCS too, because SW generated random timestamps present higher variations than remotely sended command
input timestamps.

To generate random numbers the following piece of code can be implemented:

#include <stdlib.h> // Library for srand, rand functions

srand (time (NULL)) ; // Random seed with current time number

double r;

double HI = 20; // Highest value random number r (in milliseconds)
double LO = 0; // Lowest value random number r (in milliseconds)

r = L0 + static_cast <double> (rand()) / static_cast <double> (RAND_MAX/(HI-LO));

Indeed since uniform random number u, using rand() function is limited from 0 to RAND (the last is the

MAX
maximum value returned by rand() function), to change the range from LO to HI one must do:

uy (HI - LO)

I
r=LO0+IND

MAX

GoPiGo3 libraries

Dexter industries GoPiGo3 robot vendor provided a GitHub repository containing component datasheets, SW
libraries and example codes in different languages, [23]. Among them GoPiGo3.cpp and GoPiGo3.h C++ source
and header files are available, containing main classes to control GoPiGo3 robot functionalities. Source and header
files are linked in a dynamic library called 1ibgopigo3.so, which is then selected when running the code (by using
CodeBlocks IDE settings).

The class member functions to be used for the thesis test are only the ones related to the DC motors, in particular to
reset the encoder positions at the beginning of every test, to set PWM of the motors starting from batteries/supply
voltage, to get motor status informations (encoder positions, PWM duty cycle, supply voltage) and to reset them

all at the end of the test.
IMU libraries

Adafruit vendor for 10-DOF IMU provides SW code implementation for Arduino platforms only, using its own
programming language. Since it is decided to write the overall code in C++, another solution must be found.
There exists a C++ library to get raw IMU data and to make sensor fusion of IMU sensors to recover angle pose
using Euler angles or quaterniorns. The library is called RTIMUIib2 and it’s compatible with many commercial
IMUs, included Adafruit 10-DOF one, [24].

The library has quite complex structure with many source/header files, but all functionalities can be provided by
calling RTIMULib.h library and a dynamic library named 1ibRTIMULib.so (which can be easily implemented by
using whatever IDE, like CodeBlocks).

Again there’s a main class containing the member functions needed to get raw sensors data and pose from sensor
fusion. More informations in Section 4.3.2 and Section 9.1, where IMU settings are explained in detail to obtain

measurements during practical implementations.
Save variables functions

To check RHIT results, at every DT step all variables needed are plugged into arrays and matrices and then saved

into a text (.txt) file, organized in columns (the variables), and rows (value associated to each variable at every

4.2. RHIT CONFIGURATION 32

sampling time step). Then, using MATLAB, the variables are converted into tables and plotted in figures.

For every test it cannot be known a priori the number of values associated to the variables, since they depend
on sampling time (which may be variable) and test stop time. A solution can be define a very large array at the
beginning and fill it with zeros. This is not a good solution because depending on the test we can waste a large
amount of memory.

Nevertheless some C++ SW functions come in handy, they’re based on array.h and vector.h C++ libraries:

#include <array>

#include <vector>

using namespace std; // refers to the namespace where all C++ standard classes

and functions are collected (from now on std is implicit)

// To create vectors of variables
array<data_type ,array_dim> array_name}

vector<data_type> vector_name}

Difference between C++ arrays and vectors is that in arrays there’s a single row of variables with predefined
dimension, instead using vectors we don’t need to define the dimension at the beginning, only the data-type
(dynamic arrays). In addition can be created dynamic Vectors of vectors or Vectors of arrays, hence matrices without
the need of specify row dimensions.

This is very helpful, and it’s used finally to save the variables:

1. At every DT step, the variables are saved into an array with predefined dimensions, since their number is

known a priori.

2. Then the array is plugged into a vector of arrays. like:

#include <array>

#include <vector>
using namespace std;

// To create matrices of variables

vector<array<data_type ,array_dim>> matrix_name;

3. At the next time step array can be filled with different values, and it can be pushed back into the vector of

arrays: it means that the new array is placed exactly below the last saved, creating a new row (dynamically).

4. At the end of the test the vector of arrays has exactly the same row dimensions of the number of DT steps.
Other SW improvements

During work SW code is gradually improved for readability and optimization and to reduce dimensions (number
of lines of code). For example almost all the functions are grouped using C++ class called Main_functions in a
unique source/header file. In ert_main.cpp an instance of this class is added to call easily the member functions

needed.

33 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

4.3 General Structure settings for EMC and robot plant

431 EMC

Code generation is used to convert the EMC Simulink files into SW code as explained in Section 4.2.1: 4 EMC
models are build respectively for Left motor, Right motor, Orientation and Longitudinal Position, each of them
have their own source and header pack files obtained by code generation.

In main source function (ert_main.cpp) different HW timers are associated to each EMC model. Then all opera-
tions needed to step the model and connecting it to the plant measurements are done, as already discussed in the

if statement related to corresponding HW timer.
DC motors EMC

Two possible structures are selected for each DC motor EMC:

1. A unique class function is generated for both EM and Control model parts of DC motor EMC. In this case

a unique HW timer is sufficient to step the model.

2. EM and Control parts of overall EMC are splitted in 2 generated codes, leading to 2 separated classes. This
is done because, as already seen in Section 3.1 for GoPiGo3 main board specifications, PWM is sent to the
motors with a fixed sampling time, T, ,,

. = Tpns = 0.025), and EM part with fixed/variable one. This solution leads

= (0.02s: using this separation we can run the Control part at the
same PWM sampling time (T,
unavoidably to at least 2 HW timers, one for control part (7;;) and the other for EM part (7,,,).

With this implementation for simplicity EM part contains not only to Embedded Model and Noise estimator,

but also to Reference dynamics controlled with static-state control.

If the second structure is used, we need to be careful with the connections between the parts, which need to be
done manually in the code: regarding EM part, controllable/disturbance states . and 4, reference state 7/ = y,..f
and reference input u at every step must be passed to Control part; instead the overall control input v must be

passed from Control to EM part at every DT step. A scheme is shown in Figure 4.2.

TE M
ve(k
EM + Zo()
Noise Estimator Tq(k)
Reference U(k)
dynamics (ctrl)
u(k)
y(k)
Control «
Law |

Figure 4.2: DC motor EMC splitted scheme for RHIT implementation

4.3. GENERAL STRUCTURE SETTINGS FOR EMC AND ROBOT PLANT 34

Orientation and position EMC

Both orientation and position EMC need the information about the IMU measurements, which are obtained in a
fixed sampling time (around 7',,, = 0.021s). For this reason, one may think to use a separated timer with fixed
sampling time for EMC Control part. However we’ll see that performing the tests without splitting the 2 parts and

using a unique HW timer is sufficient to get good results in terms of tracking and model errors.

4.3.2 Plant

In RHIT the control models mimic in a simplified way a certain plant, which is composed in this case by DC motors
(to control wheel angular speeds) and IMU (to control robot orientation and position). SW code implementation

of wheels angular speeds and IMU data are needed.
Motors

Motor encoder positions are the main measurements to be taken. Then with a simple discrete derivation (Forward-
Euler is used) the wheel angular speeds are recovered.

Control input u coming from EMC is converted to PWM duty cycle, which is then applied physically to the
motors, which changes corresponding position encoders status. GoPiGo3.cpp and GoPiGo3.h contains all member

functions to do all these operations, the corresponding SW code is:

#include <GoPiGo3.h>
GoPiGo3 GPG; // Main GoPiGo3 class instance

void GPG_measurements () {

// Motor status parameters

uint8_t state; // Motor status flag, not used

int8_t power; // PWM duty cycle (%)

int32_t pulses; // Encoder position (degrees)

int16_t dps; // Wheel speed position (degrees per second), not
used

motor_voltage = GPG.get_voltage_battery(); // Recover battery/supply voltage
pwm = u/ motor_voltage * 100; // Proportion between voltage and
PWM

GPG.set_motor_power (MOTOR_LEFT, pwm); // Apply PWM physically to motor
(e.g. LEFT)

GPG.get_motor_status (MOTOR_LEFT,state,power ,pulses,dps); // Get encoder
pulses

pos_m_d = (double) pulses / MOTOR_TICKS_PER_DEGREE; /* Divide encoder

pulses by MOTOR_TICKS_PER_DEGREE = 2 to obtain encoder position */

The motor power ranges from 0 to 100, and it’s directly proportional to supply voltage, which ranges from 0 to
Vi ax: knowing control input v and V,,,, = motor_voltage we can recover easily PWM value.

Because the encoder has a resolution of 720 pulses/revolution = 0.5° (means that with 720 pulses 2 revolutions of
360° are performed), n° pulses need to be divided by MOTOR_TICKS_PER_DEGREE = 2. Finally since the position is

in degrees, it’s needed to multiply by 7/180 to obtain radians measure unit.

35 CHAPTER 4. CONTROL MODELS SOFTWARE TESTING - GENERAL SETTINGS

IMU

IMU is able to provide angular speeds in Cartesian &, v, z directions and also sensor fusion pose (in Euler angles
or quaternions). To measure them IMU library RTIMULib.h comes in handy.

First IMU classes are instantiated, then settings file RTIMULib.txt) is loaded (containing IMU model type, sensor
settings like full scale range, calibration offsets, sample rate etc.), finally devices (among gyroscope, accelerometer
and magnetometer) to be used for pose sensor fusion are decided. After this initialization, IMU measurements can

be taken every DT step. For example to take IMU yaw angle 6, and angular speed w, basic SW code is:

#include <RTIMULib> // IMU library
#include <stdlib.h> // Standard library
#include <stddef.h> // NULL macro

RTIMU *imu;
RTIMUSettings *settings;
RTIMU_DATA imuData; // IMU instances of classes

double theta_z = 0;
double w_z = 0;

void IMU_initialize() {
settings = new RTIMUSettings("IMU_info/","RTIMULib"); // Load settings file
RTIMULib. txt

imu = RTIMU::createIMU(settings); // Load settings in imu class

// Check if IMU is connected or not

if ((imu == NULL) || (imu->IMUType() == RTIMU_TYPE_NULL)) {
printf ("No IMU found\n");
exit (1) ;

}

imu->IMUInit () ; // set up IMU

// Establish if pose sensor fusion uses or not gyro, accelerometer and
magnetometer

imu->setGyroEnable (true);

imu->setAccelEnable (true);

imu->setCompassEnable (true) ;
void IMU_measurements () {
imuData = imu->getIMUData () ;

// Get orientation yaw angle

theta_z = imuData.fusionPose.z();

// Get angular speed around z-axis

w_z = imuData.gyro.z();

Part 11

DC motors EMC

Chapter 5

EMC DC motors theory

In this part the Embedded Models of the 2 DC motors of the robot GoPiGo3 are build. The following steps are

considered:

1 Since the main parameters (Armature resistance R,, armature inductance L,, inertia and friction) of the
robot motors are unavailable, a parameter identification based on input (armature voltage) and output

(angular speed) measurements was performed.

2 The estimated parameters are used to build the Fine Model of the DC motor for simulation purposes (MIL)
and its Embedded Model Control (considering a simplified version of fine model, in order to be implemented
in the robot board).

5.1 DC Motor Parameters identification and validation

Datasheets of the robot motors are not available, the only reliable informations are the Arm