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Chapter 1 

 

Introduction 

 
This is the anchor chapter of the thesis. It has the purpose of introducing and explaining not only the 

researches done in my work, but also the way the latter are carried on. 

The first section contains the abstract of the thesis, where is described the main goal of this work, 

with a brief overview on the methodologies used. 

In the second section, after an initial introduction where is explained the increasing importance and 

usage of autonomous vehicles in our society, is explained briefly how these vehicle works and the link 

between all their features. 

In the second section, the attention is focused on the principal autonomous vehicles for this research, 

the UAV (Unmanned Autonomous Vehicle). This paragraph discusses what UAVs are, discussing 

their main uses in society. Then is explained what a quadrotor is with a sight on the Parrot Mambo 

fly drone. 

Finally, in the fourth one an outline of the following chapters is made. 
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1.1 Abstract of the Thesis 
 

A crucial point for the automation of a vehicle is the positioning process. There are two types of 

positioning, the Global positioning (geographic coordination, achieved using a dedicated network of 

satellites in orbit), and Local positioning (estimating the pose of the vehicle with respect to a local 

coordinate frame). In this work, the first steps to achieve an online local positioning using a UAV are 

described. 

In particular, the sUAV considered is the Parrot Mambo fly drone. This economic and small drone 

has limited on board sources, and the choice of sensor to be used cannot be done in a wide range. A 

peculiarity of this sUAV is that is designed with an on-board camera. This camera is the chosen sensor 

used in order to achieve the final goal. There are several techniques that could be used for this purpose; 

the one selected and more suitable is the homography technique. The latter is a technique widely used 

in computer vision, and takes the name from the homonymous matrix that expresses the geometrical 

transformation between two images of the same view, with different points of view. In this work the 

homography technique is presented and developed in different shape, using not only different 

reference images (rectangular and elliptical shapes), but different technique too (static computation 

and state observer implementation). 

Moreover, in order to make this research applicable to our specific case, a mathematical model of the 

drone has been developed, with two main peculiarities. The first is the use of the rotation matrix R 

belonging to the 3D rotation group SO(3) in order to represent the attitude of the quadrotor. The 

choice of R is preferable than using Euler angles (which have singularities in representation) or 

quaternions (which might lead to ambiguous control actions due to the phenomenon of unwinding) 

mainly used in other mathematical quadrotors’ models. The second is the choice of the model’s output, 

which is the transformation of a specific point from a fixed reference frame, to the raster coordinate 

system. 

All my researches are introduced with clearly and purely mathematical theory, accompanied by sets 

of tests and simulations which algorithm has been articulate step by step, and which results are 

commented and refined with personal comments. The simulation have been done using MATLAB 

software, which includes the homonymous language. 
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1.2 Autonomous Vehicle 
 

Autonomous vehicles (or self-driving vehicles) are 

becoming more and more important in these years. 

Such a new and emerging technology has the 

potential of completely reinventing the way we live. 

Self-driving vehicles’ utilization ranges over all the 

life aspects, from automation of production in a 

company, to travelling reason, passing through 

house utility. For this reason, the scenario in which 

an autonomous vehicle works could be very 

different. For example a utility vehicle (e.g. robot 

vacuum cleaner) moves in a confined and safe 

location, while a self-diving car faces a more 

challenging scenario, where interfaces with the 

environment (people, obstacles, other vehicles) and the use of a predefined path is not possible. 

What almost all the autonomous vehicles have in common is their way of “thinking”, which could be 

summarized in the following building blocks: 

- Sensors; 

- V2X (Vehicle-to-X communication); 

- Actuators; 

- Perception; 

- Planning; 

- Control; 

The first three blocks of this make up the 

group of hardware, while the next three 

ones the group of software. 

The sensors (Camera, LiDar, Global 

Positioning System (GPS), etc.) are the 

components that allow the autonomous 

vehicle to take in raw information about the 

environment. The V2X communication 

(Vehicle-to-Vehicle or Vehicle-to-

Infrastructure) enable the autonomous 

vehicle to talk to and receive information 

from other machines or infrastructure 

agents in the environment. The actuators 

are the components of a vehicle responsible for controlling and moving the system. 

The perception system refers to the ability of the autonomous vehicle to understand what the raw 

information coming in through the sensors or V2V components mean. The planning system refers to 

the ability of the autonomous vehicle to make certain decisions to achieve some higher order goals. 

This is how the autonomous vehicle knows what to do in a specific situation. The planning system 

works by combining the processed information about the environment with established policies and 

knowledge about how to navigate in the environment, so that the system can determine what action to 

take. Finally, the control system pertains to the process of converting the intentions and goals derived 

from the planning system into actions. Here the control system sends to the hardware (the actuators) 

the necessary inputs that will lead to the desired motions. 

Figure 1.1 - Autonomous robot technologies for space 
operation designed by the DFKI Robotics Innovation Centre 
develops. 

Figure 1.2 – Main Building Blocks of an Autonomous Vehicle. 
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1.3 Unmanned Aerial Vehicle 

 
An UAV (Unmanned Aerial Vehicle, or 

Uncrewed Aerial Vehicle), commonly 

known as a drone, is an aircraft without 

a human pilot on board and a type of 

unmanned vehicle. UAVs are a 

component of an UAS (unmanned 

aircraft system), which include a UAV, 

a ground-based controller, and a system 

of communication between the two. The 

flight of UAVs may operate with 

various degrees of autonomy: either 

under remote control by a human 

operator or autonomously by on-board 

computers. 

Compared to crewed aircraft, UAVs 

were originally used for missions too 

"dull, dirty or dangerous" for humans. While they originated mostly in military applications, their 

use is rapidly expanding to commercial, scientific, recreational, agricultural, and other applications, 

such as policing and surveillance, product deliveries, aerial photography, infrastructure inspections, 

smuggling, and drone racing. Civilian UAVs now vastly outnumber military UAVs, with estimates of 

over a million sold by 2015. 

Recent advances in sensor, in microcomputer technology, in control and in aerodynamics theory have 

made sUAV (small Unmanned Aerial Vehicle) a reality. The small size, low cost and manoeuvrability 

of these systems have made them potential solutions in a large class of applications. However, the 

small size of these vehicles poses significant challenges. The small sensors used on these systems are 

much noisier than their larger counterparts are. The compact structure of these vehicles also makes 

them more vulnerable to environmental effects. Since the number and complexity of applications for 

such systems grows daily, the control techniques involved must also improve in order to provide better 

performance and increased versatility. 

My research has the final goal of providing 

a good positioning system for the Parrot 

Mambo fly drone. This is a quadcopter 

drone, a drone made up of four engines, 

holds the electronic board in the middle and 

the engines at four extremities. The attitude 

and position of the quadrotor can be 

controlled to desired values by changing the 

speeds of the four motors. The following 

forces and moments can be performed on the 

quadrotor: the thrust caused by rotors rotation, the pitching moment and rolling moment caused by 

the difference of four rotors thrust, the gravity, the gyroscopic effect, and the yawing moment. The 

gyroscopic effect only appears in the lightweight construction quadrotor. The yawing moment is 

caused by the unbalanced of the four rotors rotational speeds. The yawing moment can be cancelled 

out when two rotors rotate in the opposite direction. So, the propellers are divided in two groups. In 

each group there are two diametrically opposite motors that we can easily observe thanks to their 

direction of rotation. 

Figure 1.3 - Northrop Grumman X-47B UAV over the U.S. Navy's Atlantic Test 
Range. 

Figure 1.4 - Mambo Parrot fly mini-drone. 
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1.4 Outline 

 
This thesis consist of two parts, divided in seven chapters. Each chapter contains the description of 

the steps followed during the work period of the thesis, and provides its first page a brief recap of the 

work done in the previous ones with a description of the content.  

 

Part I: Pose Estimation using Homography 

The first part of the thesis consist in finding a way to estimate the pose of a Unmanned Aerial Vehicle 

using the technique of Homography. It is composed by the following chapters. 

Chapter 2. In this chapter a qualitative introduction on homography is discussed. Then its 

 computation using point correspondences is discussed, with the presentation of the main tests’ 

 results. 

Chapter 3. In this chapter an introduction on conic shapes and their way of representation is 

 discussed. Then the computation using conic correspondences is discussed, with the 

 presentation of the main tests’ results. 

Chapter 4. In this chapter a NonLinear Observer on SO(3) for the homography estimation using 

 point correspondence is developed. Then, the presentation of the main tests’ results. 

Chapter 5. In this chapter the Static Homography Estimator presented in Chapter 3 and the Observer 

 presented in Chapter 4 are used in order to process an image rectification of a video. 

 

Part II: Modelling of Parrot-Mambo Drone 

The second part consist in modelling the Parrot-Mambo drone obtaining a mathematical 

description of the transformation of a point from a World reference system to the camera 

picture one. 

Chapter 6. In this chapter a qualitative introduction on the principles of working of a quadrotor is 

 discussed. Then the mathematical model is presented and its observability is studied. 

Chapter 7. Finally, in this chapter, conclusions and possible future developments of the work are 

 presented. 

Finally, the Appendix A contains the proof of some theorem and the explanation of some method used 

in this thesis and Appendix B contains a Glossary of the main used variables. 
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Chapter 2 

 

Homography Estimation Using Point 

Correspondences 

 
In the previous charter was introduced the world of UAV and how its impact on the society is 

exponentially increasing. Moreover is explained the final goal of this thesis project including a brief 

explanation of the steps followed. The first part of my research work is focused on the estimation of 

the homography matrix that links two views of the same scene using point correspondences. This is 

the easiest way of computing the homography matrix. This estimation makes the transformation 

possible of an image in order to make it overlap with a reference one. 

The first section is an introduction to the theory behind the estimation, making clear the analytical 

process used in the experimental tests.  

The second section is describes systematically the algorithm designed by me and used for the 

estimation of the homography matrix between two views of the same scene making possible the 

warping of the moved image. 

Finally the third section shows and comment on the results from the tests done. 
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2.1 Theoretical Homography Matrix Computation 
 

The homography could be a projection between 3D-to-2D or between 2D-to-2D. The second case is the 

one in which we are interested, in particular when it is referred to a projection from one camera to 

another. 

 

 

 

 

 

 

 

 

 

 

 

The position of a point in the Camera Coordinate System is obtained by the product: 

(

𝑥1

𝑦1

𝑤1

) = [𝑀1,𝑖𝑛][𝑀1,𝑒𝑥](

𝑋
𝑌
𝑍
𝑊

) = 𝑀1 (

𝑋
𝑌
𝑍
𝑊

), 

where Mex is the extrinsic parameters matrix that expresses the pose of the WCS into the CCS, Min is 

the intrinsic parameter matrix that transforms the coordinates from the image plane of the camera 

into the raster plane, (𝑥1, 𝑦1, 𝑤1)
𝑇 are the homogeneous coordinate of the point expressed in the CCS, 

(𝑋, 𝑌, 𝑍,𝑊)𝑇 are the coordinate of the point expressed in the WCS and M is the transformation 

matrix. 

The matrix M1 belongs to ℝ3×4, but considering a planar scene (Z = 0) we can delete the third column 

making M1 part of ℝ3×3. Moreover, M1 is invertible, so it is possible to write: 

(
𝑋
𝑌
𝑊

) = [𝑀1]
−1 (

𝑥1

𝑦1

𝑤1

). 

Following the same process considering the second camera plane, we obtain: 

(

𝑥2

𝑦2

𝑤2

) = [𝑀2,𝑖𝑛][𝑀2,𝑒𝑥] (

𝑋
𝑌
0
𝑊

) = 𝑀2 (

𝑋
𝑌
𝑊

) = 𝑀2[𝑀1]
−1 (

𝑥1

𝑦1

𝑤1

) = 𝐻 (

𝑥1

𝑦1

𝑤1

). 

 

 

Figure 2.1 - The same point present on a planar surface appear different in two camera plane when 
they have different position and orientation. The homography matrix H is the link between these two 
views. 
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H is called the homography matrix, and it expresses the relationship between the points in the two 

image planes of the cameras 1 and 2. As well as M, H is invertible too: 

(

𝑥1

𝑦1

𝑤1

) = [𝐻]−1 (

𝑥2

𝑦2

𝑤2

) 

𝐻 = [
𝐻11 𝐻12 𝐻13

𝐻21 𝐻22 𝐻23

𝐻31 𝐻32 𝐻33

] 

Now a way to compute H is needed. Let consider 𝑤1 = 1 and 𝑥2
′ =

𝑥2

𝑤2
 ∧  𝑦2

′ =
𝑦2

𝑤2
  it is possible to 

write: 

(

𝑥2

𝑦2

𝑤2

) = 𝐻 (
𝑥1

𝑦1

1
) 

𝑥2
′ =

𝑥1 ∗ 𝐻11 + 𝑦1 ∗ 𝐻12 + 𝐻13

𝑥1 ∗ 𝐻31 + 𝑦2 ∗ 𝐻32 + 𝐻33
  

𝑦2
′ =

𝑥1 ∗ 𝐻21 + 𝑦1 ∗ 𝐻22 + 𝐻13

𝑥1 ∗ 𝐻31 + 𝑦1 ∗ 𝐻32 + 𝐻33
 

𝑥1 ∗ 𝑥2
′ ∗ 𝐻31 + 𝑦1 ∗ 𝑥2

′ ∗ 𝐻32 + 𝑥2
′ ∗ 𝐻33 − 𝑥1 ∗ 𝐻11 − 𝑦1 ∗ 𝐻12 − 𝐻13 = 0 

𝑥1 ∗ 𝑦2
′ ∗ 𝐻31 + 𝑦2 ∗ 𝑦2

′ ∗ 𝐻32 + 𝑦2
′ ∗ 𝐻33 − 𝑥1 ∗ 𝐻21 − 𝑦1 ∗ 𝐻22 − 𝐻23 = 0 

The homography has nine degrees of freedom. In order to avoid the solution 𝐻 = 03×3  it is possible 

to add the constraint 𝐻33 = 1. Now the unknown are eight, and for each pair of points we have two 

linear independent equations. If it is possible to find four corresponding points, it is possible to 

compute all the eight homography parameters. The problem written in matrix form is:  

[
 
 
 
 
 
 
 
−𝑥1,1 −𝑦1,1 −1 0 0 0 𝑥1,1 ∗ 𝑥2,1

′ 𝑦1,1 ∗ 𝑥2,1
′ 𝑥2,1

′

0 0 0 −𝑥1,1 −𝑦1,1 −1 𝑥1,1 ∗ 𝑦2,1
′ 𝑦1,1 ∗ 𝑦2,1

′ 𝑦2,1
′

−𝑥1,2 −𝑦1,2 −1 0 0 0 𝑥1,2 ∗ 𝑥2,2
′ 𝑦1,2 ∗ 𝑥2,2

′ 𝑥2,2
′

0 0 0 −𝑥1,2 −𝑦1,2 −1 𝑥1,2 ∗ 𝑦2,2
′ 𝑦1,2 ∗ 𝑦2,2

′ 𝑦2,2
′

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
−𝑥1,𝑛 −𝑦1,𝑛 −1 0 0 0 𝑥1,𝑛 ∗ 𝑥2,𝑛

′ 𝑦1,𝑛 ∗ 𝑥2,𝑛
′ 𝑥2,𝑛

′

0 0 0 −𝑥1,𝑛 −𝑦1,𝑛 −1 𝑥1,𝑛 ∗ 𝑦2,𝑛
′ 𝑦1,𝑛 ∗ 𝑦2,𝑛

′ 𝑦2,𝑛
′]
 
 
 
 
 
 
 

∗

[
 
 
 
 
 
 
 
 
𝐻11

𝐻12

𝐻13

𝐻21

𝐻22

𝐻23

𝐻31

𝐻32

1 ]
 
 
 
 
 
 
 
 

= 0, (∗) 

The solution to this problem can be easily found using a Singular-Value Decomposition (SVD) 

approach [Appendix A.1]. 
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2.2 Experimental Homography Matrix Estimation Using Points’ 

Correspondences   

  
In order to have practical implementation of the theoretical research, the previous way of 
homography estimation has been developed on “Matlab” software. 

Two views of the same scene are chosen, a first one constant called “Reference Image” and another 
one that has been changed during the different tests, called “Moved Image”. 

The reference image chosen consists of two rectangles, with different areas but the same orientation 
showed in the picture below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The algorithm used can be summarized in the following passages: 

- Image Processing of the Reference Image; 

- Detection of the Rectangles’ Perimeters from the Reference Image; 

- Identification of the Rectangles’ Corners from the Reference Image; 

- Image Processing of the Moved Image; 

- Detection of the Rectangles’ Perimeters from the Moved Image; 

- Identification of the Rectangles’ Corners; 

- Building of the Equations System in Matrix Form (∗); 

- System Resolution and Homography Estimation using SVD; 

- Moved Image Warping; 

To find the coordinates of the point in the raster space is fundamental to have a good image 

processing. First of all the image is uploaded on the software, then it is converted from RGB (true-

colour format) to grayscale in order to make it lighter and easier to treat. Now the grayscale is 

filtered again in order to highlight the different shapes.  

After the image has been processed, the corners present are detected using the “Harris Corner 

Detection” algorithm [Appendix A.2]. From this a further investigation that numerates the corners 

has been done, based on the geometry of the figure, in order to have the right correspondences. 

Figure 2.2 - Reference Image used as the first sight in order to estimate the homography matrix. 
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This process is done both for the Reference and Moved Image, obtaining the position of the sixteen 
corners expressed in the raster reference frame, all paired with the correct corresponding one.  
Now it is possible to compute the homography matrix. This is done through the Singular-Value 
Decomposition method [Appendix 1], applied to the matrix A: 

𝐴 =

[
 
 
 
 
 
 
 
−𝑥1,1 −𝑦1,1 −1 0 0 0 𝑥1,1 ∗ 𝑥2,1

′ 𝑦1,1 ∗ 𝑥2,1
′ 𝑥2,1

′

0 0 0 −𝑥1,1 −𝑦1,1 −1 𝑥1,1 ∗ 𝑦2,1
′ 𝑦1,1 ∗ 𝑦2,1

′ 𝑦2,1
′

−𝑥1,2 −𝑦1,2 −1 0 0 0 𝑥1,2 ∗ 𝑥2,2
′ 𝑦1,2 ∗ 𝑥2,2

′ 𝑥2,2
′

0 0 0 −𝑥1,2 −𝑦1,2 −1 𝑥1,2 ∗ 𝑦2,2
′ 𝑦1,2 ∗ 𝑦2,2

′ 𝑦2,2
′

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
−𝑥1,𝑛 −𝑦1,𝑛 −1 0 0 0 𝑥1,𝑛 ∗ 𝑥2,𝑛

′ 𝑦1,𝑛 ∗ 𝑥2,𝑛
′ 𝑥2,𝑛

′

0 0 0 −𝑥1,𝑛 −𝑦1,𝑛 −1 𝑥1,𝑛 ∗ 𝑦2,𝑛
′ 𝑦1,𝑛 ∗ 𝑦2,𝑛

′ 𝑦2,𝑛
′]
 
 
 
 
 
 
 

, (∗) 

Now that the matrix has been computed it is possible to warp the moved image using H as 

transformation matrix. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 - Reference image after being processed. The blue spots are the detected 
corners of the first rectangle, the red ones are the detected corners of the second 
rectangle. 
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2.3 Tests’ Results 

 
The estimator has been tested with different Moved Images and the results are globally good. Below 

is shown in the picture the results of one test. 

In particular are shown the “Moved Image”, the “Reference Image” and the “Warped Moved Image” 

corresponding to the Moved Imaged after the warping process. Next to the figure we can see the 

numerical result of the Homography matrix estimation H. 

The several tests taken with different views show that this homography estimation works well. 

Nevertheless, this approach is simple but difficult to apply in real situation. Indeed in the real world 

the presence of rectangular shapes is not negligible at all, and it would be difficult to detect exactly 

the Reference Image without uncertainty.  

A possible solution could be the change of the selected shape, making the detection of the Reference 

Image easier and more reliable. This solution is discussed in the following chapter. 

 

 

 

 

 

 

 

 

Test 2.1: As can be seen from the picture, 
the warping process has produced very 
good results, with a perfect matching of 
the two images. The black areas in the 
“Warped Moved Image” are due to their 
not visiblility in the “Moved Image”. 
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Chapter 3 

 

Homography Estimation Using Conic 

Correspondences 

 
The main goal of this research is to implement the homography estimation online on a quadrotor. In 

the previous chapters, after an introduction to the automation problem for vehicles, the possibility of 

estimating the homography matrix between two view of the same scene using a set of points’ 

correspondences (at least four) has been discussed. This estimator has been implemented using the 

corners of two rectangles but, in the real world, the presence of rectangular shape is not negligible, 

and it could bring some trouble on the shape identification of the reference image. The solution could 

be finding new shapes in order to avoid uncertainties in the correspondences’ identification. This 

solution has been implemented using conics. 

In this chapter it is explained how the homography matrix can be estimated using conics’ 

correspondences, and in particular it is implemented using two ellipsis. 

The first section is an introduction to the conics and their numerical representation is developed, 

followed by a more specific description of the conic of interest, the ellipse.  

In the second section, the theoretical way for computing the homography matrix is presented.  

In the third section the experimental algorithm, designed by me, used in the experimental tests is 

explained.  

Finally, in the fourth section, the tests’ results are discussed. 
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3.1 Conics: Basic Concepts 

 

 3.1.1 Conics 

 
A conic section (or simply a conic) is a 

curve obtained as an intersection of the 

surface of a double cone (a cone with two 

nappes) with a plane. There exists three 

types of conic: 

- the hyperbola;  

- the parabola  

- the ellipse (circle is a special case 

of the ellipse); 

 

In analytic geometry, a conic is defined as a planar algebraic curve of degree two, and so a set of points 

that satisfy a quadratic equation in two variables. If the plane that generate the conic passes through 

the vertex of the double cone, the intersection generate a point, a line or a pair of intersecting lines; 

these geometrical figure are called degenerate conics. 

A conic section could also be defined as the locus of all points P whose distance from a fixed point F, 

called focus, is a constant multiple e (called eccentricity)  of the distance from P to a fixed line L 

(called directrix). Studying the eccentricity, we can distinguish the different conics’ types: 

- 0 < e < 1: the conic is an ellipse; 

- e = 1: the conic is a parabola; 

- e > 1: the conic is an hyperbola; 

In the general Cartesian coordinate system, the graph of a quadratic equation in two variables is 

always a conic section. The most general equation is expressed in the following form: 

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 + 𝐹 = 0. 

This form could also be represented in matrix notation using homogeneous coordinate as: 

[𝑥 𝑦 1] [

𝐴 𝐵/2 𝐷/2
𝐵/2 𝐶 𝐸/2
𝐷/2 𝐸/2 𝐹

] [
𝑥
𝑦
1
] = 0. 

Calling CQ the 3x3 symmetric matrix, it is a very useful way to represent the conics, and is called the 

matrix of the quadratic. Defining 𝒙 = [𝑥 𝑦 1] the homogeneous coordinate, the previous equation 

could be written as: 

𝑥𝑇𝐶𝑄𝑥 = 0. 

If det(CQ) = 0 the conic is degenerate. If det (CQ) ≠ 0, computing the minor of the matrix det (CQ) = 

AC-B2/4, it is possible to say: 

 if B2-4AC < 0 (det (CQ) > 0), the equation represent an ellipse; 

 if B2-4AC = 0 (det (CQ) = 0), the equation represent a parabola; 

 if B2-4AC > 0 (det (CQ) < 0), the equation represent a hyperbola; 

 

Figure 3.1 - The different types of conic as an intersection of a plane with a 
double cone. 
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3.1.2 Ellipsis 

 

An ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum 

of the two distances to the focal points is a constant.  

Analytically the equation of a standard ellipse centred around the origin, with width along the x-axis 

2a, and height along the y-axis 2b is: 

𝑥2

𝑎2
+

𝑦2

𝑏2
= 1. 

When the centre of the ellipse is shifted to (x0,y0), the equation become: 

(𝑥 − 𝑥0)
2

𝑎2
+

(𝑦 − 𝑦0)
2

𝑏2
= 1. 

Another way to represent the ellipse is the standard parametric equation: 

(𝑥, 𝑦) = (a ∗ cos(𝑡) , 𝑏 ∗ 𝑠𝑖𝑛(𝑡)), 𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 2𝜋 

As stated in the previous paragraph, the conic could be represented by a symmetric 3 x 3 matrix: 

 

𝐶 = [

𝐴 𝐵/2 𝐷/2
𝐵/2 𝐶 𝐸/2
𝐷/2 𝐸/2 𝐹

] 

The coefficients of the this matrix for an ellipse can be computed knowing the semi-major axis a, the 

semi-minor axis b, the centre coordinates (x0,y0), and the inclination angle θ (angle between the 

positive horizontal axis and the ellipse’s major axis) in the following way: 

𝐴 = 𝑎2(𝑠𝑖𝑛 θ)2 + 𝑏2(𝑐𝑜𝑠 θ)2; 

𝐵 = 2(𝑏2 − 𝑎2)sin θ𝑐𝑜𝑠 θ; 

𝐶 = 𝑎2(cos θ)2 + 𝑏2(sin θ)2; 

𝐷 = −2𝐴𝑥0 − 𝐵𝑦0; 

𝐸 = −𝐵𝑥0 − 2𝐶𝑦0; 

𝐹 = 𝐴𝑥0
2 + 𝐵𝑥0𝑦0 + 𝐶𝑦0

2 − 𝑎2𝑏2; 

This representation of the ellipse is crucial in all my work. 
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3.2 Theoretical Homography Matrix Estimation Using Ellipsis’ 

Correspondences 

 
In order to design an homography matrix estimator I’ve taken inspiration from the work of Dr. Chum, 

that finds H defined by first-order Taylor expansion at two (or more) points. 

A conic CQ is transformed by a homography transformation H as: 

𝜆𝑖𝐶′𝑄 = 𝐻−𝑇𝐶𝑖𝐻
−1. 

To estimate the homography, the constraints imposed by ellipse-to-ellipse correspondences are studied 

on the homography through the first order Taylor approximations at two or more different points. 

Let x = (x, y, 1)T be an image point in the first image, x’ = (x, y, 1)T be a point in the second image,  

𝐻 = [

ℎ1 ℎ2 ℎ3

ℎ4 ℎ5 ℎ6

ℎ7 ℎ8 ℎ9

] 

be a regular matrix representing a planar homography. We have that λx’ = Hx, where 𝜆 = ℎ7𝑥 +

ℎ8𝑦 + ℎ9. A first order Taylor expansion A(H, x) of a homography H at a point x is an affine 

transformation defined as: 

𝐴 = [

ℎ1 − 𝑥′ℎ7 ℎ2 − 𝑥′ℎ8 ℎ3 + 𝑥′(𝑥ℎ7 − 𝑦ℎ8)

ℎ4 − 𝑦′ℎ7 ℎ5 − 𝑦′ℎ8 ℎ6 + 𝑦′(𝑥ℎ7 − 𝑦ℎ8)
0 0 ℎ9 + 𝑥ℎ7 − 𝑦ℎ8

]. 

All homographies that are approximated (first order Taylor approximation) by an affine 

transformation A at a point x could be expressed as: 

𝐻 = ℎ7𝐻7 + ℎ8𝐻8 + 𝜆𝐴, 

where 

𝐻7 = [
𝑥′ 0 −𝑥𝑥′
𝑦′ 0 −𝑥𝑦′
1 0 −𝑥

] , 𝐻8 = [

0 𝑥′ −𝑦𝑥′

0 𝑦′ −𝑦𝑦′
0 1 −𝑦

]. 

 

If two affine transformations locally approximating the 

homography at different points are known, equation this 

equation provides enough linear constraints to estimate 

the homography H. 

A correspondence of two elliptical regions defines an 

affine transformation up to an unknown rotation  

𝐴 = 𝐷𝑅𝑁, 

where N is an affine transformation normalizing the 

ellipse in the first image to a unit circle, R is a rotation 

by an angle α, and D is an affine transformation 

denormalizing the unit circle into the ellipse in the second image.  

Figure 3.2 - Ellispe-to-ellipse correspondence defines a 
local affine transformation A up to an unknown 
rotation R. 
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Using the notation of c = cos α and s = sin α. Let n1
T, n2

T, n3
T = (0, 0, 1) be rows of N. A can be rewritten 

as 

𝐴 = 𝑐𝐷 (
 −𝑛2

𝑇

𝑛1
𝑇

0𝑇

) + 𝑠𝐷 (
 𝑛1

𝑇

𝑛2
𝑇

0𝑇

) + 𝐷 (
 0𝑇

0𝑇

𝑛3
𝑇
). 

Substituting this expression in the equation of the homography we get seven linearly independent 

equations, linear in 12 unknowns (9 elements of H, λ, λc, and λs). Adding another pair of matching 

ellipses, seven equations and three new unknowns (λi, λi ci, and λi si) are introduced. Therefore, with 

two pairs of matching ellipses, there are 14 linear equations and 15 unknowns, leading to a one-

dimensional space of solutions. Due to the homogeneous nature of the problem, the one dimensional 

space of solutions for H uniquely determines the homography transformation. For more than two 

pairs of ellipses, the method leads to a least squares problem.  
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3.3 Experimental Homography Matrix Estimation Using Ellipsis’ 

Correspondences   
 

The presented method for homography estimation has been implemented on “Matlab” software with 
the purpose of studying its way of working and its reliability. 

The reference image chosen consist of two ellipsis bidimensional, one contained in the other, with 
perpendicular major axis and different centre, as shown in the figure below. 

 
In order to implement the homography estimation the following algorithm has been implemented: 

- Image Processing of the Reference Image; 

- Extraction of the Main Ellipsis’ Parameters from the Reference Image; 

- Image Processing of the Moved Image; 

- Extraction of the Main Ellipsis’ Parameters from the Moved Image; 

- Find Homography Matrix using Correspondences of Elliptical Features; 

- Warping the Moved Image using the Founded Homography Transformation;  

- Resize of the Transformed Image; 

In order to estimate the homography, it is fundamental to extract the ellipsis’ parameters and order 

build the quadratic matrix. This is possible analysing all the perimeters present in the scene and 

choosing the correct ones. 

First of all, the image is uploaded and it is converted from RGB (true-colour) to grayscale making 

the image lighter and easier to treat. Now the grayscale is filtered again, highlighting the different 

shapes present in the scene. Now all the perimeters present in the image are detected, obtaining as 

output a binary map (black and white image). A pixel is a part of a perimeter if it is nonzero and is 

connected to at least one zero-valued pixel. 

Now the images are scaled making their measures smaller, in order to have a better estimation that is 

influenced by the size factor. 

 

 

 

Figure 3.3 - Reference Image used for the homography estimation. 
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The outputs of this initial operation are shown below, both for the Reference and for the Moved 

Images: 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to choose the ellipsis’ shapes between all the perimeters detected, I’ve designed the following 

algorithm. From the perimeters’ map the outer objects (parents)  are detected and the ones completely 

enclosed in them (children). All these boundaries are examined, and the parents that contain only 

one children, where the latter is empty, is selected as the first ellipse, and the children is the second 

one.  

Now two sets of points are available, corresponding to the ellipsis’ perimeters’ points. Using these, the 

best fit to an ellipse is done and the six parameters of the quadratic matrix are computed. In this 

passage a Least Squares approach is used. 

The general equation of an ellipse is: 

𝐴𝑥2 + 𝐵𝑥𝑦 + 𝐶𝑦2 + 𝐷𝑥 + 𝐸𝑦 = 𝐹 

where F ≠ 0 and B2-4AC < 0. This equation is normalized by dividing both side by F: 

𝐴′𝑥2 + 𝐵′𝑥𝑦 + 𝐶′𝑦2 + 𝐷′𝑥 + 𝐸′𝑦 = 1, 

assuming n measurements we define x = (x1,x2,x3,…,xn) and y = (y1,y2,y3,…,yn). Then the following cost 

function needs to be minimized: 

𝐶(𝛽) = (𝑿𝛽 − 𝟏)𝑇(𝑿𝛽 − 𝟏), 

where X = [x2,xy,y2,x,y] is a n x 5 matrix and β = (A’,B’,C’,D’,E’)T  is the parameter’s vector to be 

determined. This problem could be resolved using the least square approach [Appendix A.3] and the 

solution would be: 

𝛽 = (𝑿𝑇𝑿)−1𝑿𝑇𝟏 

 

 

Figure 3.4 - Reference and Moved Image after the Image Processing step. 
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The next step is to extract the geometric parameters of the best fitting ellipse from the algebraic 

equation. If B ≠ 0 there exist a tilt in the ellipse, so we need to eliminate it. Denoting the tilt angle as 

θ the following coordinate rotation transformation is employed: 

{
𝑥 = 𝑐𝑜𝑠𝜃𝑥′ − 𝑠𝑖𝑛𝜃𝑦′

𝑦 = 𝑠𝑖𝑛𝜃𝑥′ + 𝑐𝑜𝑠𝜃𝑦′
 

after the substitution and some mathematical computation, we obtain the value of θ and a new 

equation of the non-tilted ellipse in the form: 

 

𝐴′′𝑥′2 + 𝐶′′𝑦′2 + 𝐷′′𝑥′ + 𝐸′′𝑦′ = 1 

that could be rewritten in the canonical form: 

(𝑥′ − 𝑥′0)
2

𝑎2
+

(𝑦′ − 𝑦′0)
2

𝑏2
= 1 

From this new equation it is possible to obtain the non-tilted ellipse’s axis length and centre 

coordinates a, b, x’0 and y’0. From them it is straightforward to obtain the ones of the originals ellipse 

x0 and y0. 

One last passage is done to correct the parameters and to  be sure that a is the length of the semi-major 

axis, b the one of the semi-minor, and that the orientation angle θ is the angle between the semi-

major axis and the horizontal one, positive in clockwise direction. Using this parameters (a, b, x0 and 

y0) it is easy to build the matrix representation of the ellipse as described in the previous paragraph. 

The parameters of the ellipsis can be used in order to plot them in a Cartesian graph. 

 

 

 

Now that we have the quadratic matrices it is possible to use the estimation presented in the previous 

chapter. With the estimated homography matrix the Moved Image is warped and transformed. 
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3.4 Tests’ Results 

 
The estimator has been tested with different Moved Images and the results are satisfactory for simple 

situation, but for extreme ones (Test 3) the transformation is not as good as possible.  

Below some results from the test are presented. In particular are shown the “Actual Image” 

corresponding to the Moved Image, the “Reference Image” and the “Transformed Image” 

corresponding to the Moved Imaged after the warping process. The rectangle present in the “Actual 

Image” is the boundary of the Reference Image transformed using the inverse of the homography 

matrix. Next to them it is possible to see the numerical results of the Homography matrix estimation 

H and a comment. 

 

 

 

Test 3.1: the Moved Image is rotated and 
translate with respect to the Reference 
Image. The optical distortion due to the 
new point of view are slightly 
accentuated.  

The results of the warping process is very 
good. 

Test 3.2: the Moved Image is rotated and 
translate as in Test 1, but now  the optical 
distortion is more visible. 

 The results of the warping process are still  
very good. 
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These tests show that the homography estimator works well in simple situations, especially when the 

distortion of the shapes due to the perspective is not high. In extreme situations it should be improved.  

A possible solution could be the implementation of an observer estimator. This solution is discussed 

in the next chapter. 

 

 

 

 

 

Test 3.3: the Moved Image is rotated and 
translate with respect to the Reference 
Image. The optical distortion now are 
clearly visible.  

The results of the warping process is quite 
good, it should get better. 

Test 3.4: the Moved Image is rotated and 
translate with respect to the Reference 
Image. Some objects are present in the 
scene (some with elliptical shape). This 
test was done to  test the searching 
algorithm. 

 The results of the warping process is quite 
perfect. 
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Chapter 4 

 

Observer Design for Homography Matrix 

Estimation 

 
In the previous chapters it has been defined what a homography matrix is and what is the way to 

estimate it, using correspondences between two views of the same planar scene. In particular, first an 

estimator has been developed that uses as correspondences simple points, and then one that uses as 

correspondences conic shapes (in our case elliptical shapes). These two methods are a static way of 

estimation and sometimes they could produce some errors in the results that cannot be avoided. 

In this chapter a way of estimating the homography matrix that links two different views that relies 

on an observer is analysed. The use of an observer is a much reliable method of estimation because, 

in observability conditions, for 𝑡 → ∞, it would produce an error equal to 0. Moreover, the observer 

would make the computation’s time and effort lower, making its implementation on the limited 

drone’s operating system easier.  

In the first section a brief introduction to the state observer is done. 

In the second section the theory behind the observer design is explained, describing the algorithm 

used for its implementation. 

Finally, in the third section the tests’ results is shown and commented. 
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4.1 Introduction to State Observer 

 
In control theory, a state observer is a system that provides an estimate of the internal state of a 

given real system, from measurements of the input and output of the real system. It is typically 

computer-implemented, and provides the basis of many practical applications. 

The problem of homography estimation has been extensively studied in the previous chapters. 

However, that works consider the homography as an incidental variable and are not focused on 

improving the estimation over time. The quality of the homography estimates depends heavily on 

the nature of the image features exploited as well as the algorithm used. 

One of the objectives of this new approach to develop a feature-based homography estimation 

algorithm that increase the quality of the estimation over time rather than computing algebraically 

individual raw homography for each image. This approach is useful also in the next chapters 

because it would exploits the temporal correlation of data across a video sequence.  

The methodology taken exploits the underlying structure of the Special Linear group SL(3), a Lie 

group isomorphic to the group of homographies. This property has, however, seldom been considered 

in observer design for smoothing the homography estimates. 

The observer has the capacity of encompassing static and non-static cases. In this chapter is 

presented in the tests’ results only the static cases. 

If applied to a video, the observer would achieve the temporal smoothing of noisy data, and 

providing good homography estimates even in situations where the number and quality of conic-

feature correspondences on a frame-by-frame basis are insufficient to directly compute raw 

homographies, during a short time period.  
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4.2 Nonlinear Observer Design on the Special Linear group SL(3)   
 
In order to design the observer, I have taken inspiration from the work of Dr. Hua “Explicit 
Complementary Observer Design on Special Linear Group SL(3) for Homography Estimation using 
Conic Correspondences”. 
 

- Observer Design 
 
The Special Linear group SL(3) is defined as: 

𝑆𝐿(3) = {𝐻 ∈ ℝ3×3|𝑑𝑒𝑡𝐻 = 1}, 

and its Lie algebra is: 

𝑠𝑙(3) = {𝑈 ∈ ℝ3×3|𝑡𝑟(𝑈) = 0}. 

A conic is expressed in homogeneous with a matrix 𝐶 ∈ ℝ3×3, and if is non-degenerate its 

determinant is not null. Since the relation 𝑥𝑇𝐶𝑄𝑥 = 0 implies 𝑥𝑇(𝜆𝐶𝑄)𝑥 = 0 for λ≠0, all λCQ 

represent the same conic. Therefore, without loss of generality, it can be assumed that the conic 

matrix belongs to the set defined as: 

ℂ = {𝐶𝑄 ∈ ℝ3×3|𝐶𝑄
𝑇 = 𝐶𝑄 , 𝑑𝑒𝑡(𝐶𝑄) = 1}. 

The homography matrix belongs to SL(3), and its kinematics is expressed as: 

Ḣ = F(H, U) = 𝐻𝑈, 

where 𝑈 ∈ 𝑠𝑙(3) is the group velocity of the camera.  

We consider C′k ∈ ℂ the set of conic measurements and Ck ∈ ℂ the reference conic matrices, 

constant and known. Measurements are expressed in the camera current frame: 

C′k = ℎ(𝐻, Ck) = 𝐻𝑇Ck𝐻, 𝑘 = {1,2}. 

Let 𝐻̂ denote the estimate of H, we could define the group error 𝐸:= 𝐻̂𝐻−1 ∈ 𝑆𝐿(3), so that 𝐻̂ 

converge to H if and only if E converges to identity. Moreover, we define the output errors as: 

𝑒𝑘 = 𝜌(𝐻̂−1, C′k) = 𝐻̂−𝑇C′k𝐻̂
−1 = 𝐸−𝑇Ck𝐸

−1, 

where ρ is a right group action. The proposed observer in Hua et al. paper takes the form: 

𝐻̇̂ = 𝐻̂𝑈 − 𝛥(𝐻̂, 𝐶𝑄
′)𝐻̂, 

where  𝛥(𝐻̂, 𝐶) ∈ 𝑠𝑙(3) is the innovation term to be designed. If we find 𝛥 right invariant, the 

dynamics of the group error E are autonomous and given by: 

𝐸̇ = −𝛥(𝐸, 𝐶𝑄)𝐸, 

In order to determine (𝐻̂, 𝐶), a non-degenerate right-invariant cost function is needed. We first 

define individual degenerate right-invariant cost at Ck as: 

𝐶𝑐𝑘
(𝐻̂, C′

k) =
1

2
‖𝐻̂−𝑇C′

k𝐻̂
−1 − Ck ∥𝐾𝑘

2 , 
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with 𝐾𝑘 ∈ ℝ3×3 symmetric positive definite matrix. Once verified that 𝐶𝑐𝑘
(𝐻̂, C′

k) are right 

invariant, the aggregate cost function defined as the sum of all individual costs is also right 
invariant. 

Using a right invariant Riemannian metric on SL(3), the cost function is treated such that the 
innovation term results: 

 𝛥(𝐻̂, 𝐶𝑄) = −ℙ(∑ 𝑒𝑘(𝑒𝑘 − 𝐶𝑘)𝐾𝑘 + 𝑒𝑘𝐾𝑘(𝑒𝑘 − 𝐶𝑘)
𝑁

𝑘=1
), 

 

 

Where ℙ is the projection operator: 

ℙ(𝐴) = 𝐴 −
1

3
𝑡𝑟(𝐴)𝐼. 

 Using this formulation is possible to demonstrate that 𝛥(𝐸, 𝐶) = 𝛥(𝐻̂, 𝐶), and subsequently:  

 

𝐸̇ = −ℙ(∑ 𝑒𝑘(𝑒𝑘 − 𝐶𝑘)𝐾𝑘 + 𝑒𝑘𝐾𝑘(𝑒𝑘 − 𝐶𝑘)
𝑁

𝑘=1
)𝐸, 

if  

⋂ker (𝑑𝜌𝐶𝑘
(𝐼))

𝑁

𝑘=1

= {0}. 

Is satisfied the equilibrium E = I of System 𝐸̇ is locally exponentially stable. 

 

- Observability Analysis 
 

In order to satisfy the algebraic constraint and thus the local observability, the following lemma is 

used: 

Lemma (Local Observability) Assume there exist two non-degenerate conics C1, C2 belonging to the 

set of all observed conic such that M=C1C2
-1 has three distinct non-null eigenvalues. Then the 

algebraic constraint: 

⋂ker (𝑑𝜌𝐶𝑘
(𝐼))

𝑁

𝑘=1

= {0}. 

Is satisfied and the equilibrium E = I is locally stable. 

This is true when the matrix M = C1C2
-1 has three distinct and real eigenvalues.  
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- Discrete Version 
 
A discrete version could be implemented using the accelerated line search (ALS) algorithm. This  
method is based on update formula: 

𝑥𝑘+1 = 𝑅𝑥𝑘(𝑡𝑘𝜂𝑘), 

where R is a retraction. The simplest approach to optimize a differentiable function is to translate 
x(t) in the direction of the steepest descendent (-grad(f)) until the gradient vanishes (stationary 
point). tk is the length obtained from the Armiko back-tracking procedure. 
For the proposed observer, considering U<<0 (U≈0), the update formula at each iteration step is given 
by: 

𝐻̂𝑘+1 = 𝑒−𝛥𝑘𝑡𝑘𝐻̂𝑘, 

and tk relies on the following Armijo-like condition: 

𝐶𝑄(𝐻̂𝑘, C′) − 𝐶𝑄(𝐻̂𝑘+1, 𝐶
′) ≥ 𝑡𝑘

𝐴𝜎‖𝛥𝑘‖𝐹
2  , 𝑡𝑘

𝐴 = 𝛽𝑚𝛼̅, 

where m is the smallest nonnegative integer that satisfy the former condition. The chosen 

parameters are 𝛼̅ = 0.05, 𝛽 = 0.75, and Kk=diag([1,1,2]). 

- System Description  

The system can be seen as a non-linear system and can be described by a state-space representation. 
Considering the following parameters: 

- H: homography matrix from the reference image to the moved one; 

- C1, C2: conic matrices in the reference image (constant and known); 

- C’1, C’2: conic matrices in the moved image;  

- U: group velocity of the homogeneous matrix; 

The system is represented with the following formulation: 

- State (x) = H; 

- Input (u) = U; 

- Output (y) = C’1, C’2; 

The state-space representation would be: 

 

Ḣ = F(H,U) = 𝐻𝑈 

C′
k = ℎ(𝐻, Ck) = 𝐻𝑇Ck𝐻, 𝑘 = {1,2} 

The observer using the input (U) and the output of the system (C’k) should be able to compute the 
state (H). Its formulation is: 

𝐻̇̂ = 𝐹(𝑈, 𝐶′) = 𝐻̂𝑈 − 𝛥(𝐻̂, 𝐶′)𝐻̂. 

Designing 𝛥(𝐻̂, 𝐶′) the stability and the observability of this system could be controlled as described 

in this paragraph. 
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A continuous time implementation has been done using Simulink. Below could be seen the block 
diagram used.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 - Block Diagram of the Simulink implementation of the observer’s continuous version. 
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- Algorithm Used for Discrete Time Implementation 

 

The algorithm used is similar to the one proposed for the estimation using the Taylor 

approximation of the homography matrix, described in Chapter 2. 

 In order to implement the homography estimation the following passages has been implemented: 

- Image Processing of the Reference Image; 

- Extraction of the Main Ellipsis’ Parameters from the Reference Image; 

- Image Processing of the Moved Image; 

- Extraction of the Main Ellipsis’ Parameters from the Moved Image; 

- Find Homography Matrix using Discrete Version of the Observer Estimator; 

- Warping the Moved Image using the Last Homography Matrix Estimation;  

- Resize of the Transformed Images; 

The observer works better when the homography matrix’s coefficients to be estimated are smaller, 

for this reason the pictures taken from the camera are treated in order to decrease the value of the 

conic matrices’ coefficient. In particular, before computing the conic matrix, I first make of the 

centre making it coinciding with the origin of the pixel map, and a scaling of 1:300 is applied. After 

the warping process the inverse transformation are applied. 

In order to implement the discrete version of the observer, he chosen parameters are 𝛼̅ = 0.05, 𝛽 =

0.75, and Kk = diag([1,1,2]).  

Moreover, for the choice of the first value of the estimation H_hat(:,:,1), different approaches have 

been used. Initially a random matrix that satisfy the constraint 𝐻 ∈ 𝑆𝐿(3) have been used. After 

these attempts, the observer has been feed with an initial estimation equal to the H static 
estimation, computed through the method explained in Chapter 2. 

In the following paragraph are presented the results with k = 1000. 
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4.3 Tests’ Results 

 
The estimator has been tested with different moved Images and with different initial estimate value 

of the homography matrix. The results are satisfying; they are good with initial random H and 

increase the estimation quality with initial static estimation H. 

In the following pages are presented the main tests. The moved Images are the same used in the 

previous chapter. The first four cases are done using as initial value of 𝑯̂ a random diagonal matrix 

belonging to SO(3). The second ones are done using the static estimation. The observer has worked 
for k = 1000 discrete time steps. 

In the presentation of the results are inserted also the graph of 𝐶𝑄(𝐻̂𝑘, C′) and 𝑯̂ variation. In 

particular the continues line are the estimated matrices’ parameters while the dashed lines are the 

value of the same parameters computed using the static method. In order to appreciate in a more 

clear way the step variation of these parameters, they are presented only for the first k = 100 discrete 

time step. 

The observability of the different cases has been checked before each test. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 
 

- Tests using random matrix as initial value of 𝑯̂ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 4.1: using random matrix as initial value of 𝑯̂ 
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Test 4.2: using random matrix as initial value of 𝑯̂ 
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Test 4.3: using random matrix as initial value of 𝑯̂ 
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Test 4.4: using random matrix as initial value of 𝑯̂ 
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- Tests using static estimation of H as initial value of 𝑯̂ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 4.5: using static estimation of H as initial value of 𝑯̂ 
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Test 4.6: using static estimation of H as initial value of 𝑯̂ 
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Test 4.7: using static estimation of H as initial value of 𝑯̂ 
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Test 4.8: using static estimation of H as initial value of 𝑯̂ 
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These tests show that the observer for homography estimation works well. If we have any information 

about the homography matrix (first four cases) the estimation converges bringing the conic’s quadratic 

matrix estimated to converge toward the original ones. If we have some information (last four cases) 

the homography estimation is improved making the final results better. 

In the following chapter the different way of estimation designed is implemented on a video in order 

to study their way of working for a sequence of frame linked to each other. 
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Chapter 5 

 

Video Rectification using Homography 

Estimation 

 
In the previous chapters different ways of estimating the homography matrix have been designed and 

simulated using the software “Matlab”. These estimators have been tested on a static case, where the 

Moved Images are still. Remembering that the final goal of this research is to implement the 

homography estimation on the drone’s operating system, this estimator should be tested in a non-static 

situation, where the Moved Image changes in time.  

In this chapter it is explained how the Static Estimator (designed in Chapter 3) and the Observer 

Estimator (designed in Chapter 4) have been used in order to estimate the homography matrix between 

a Reference Image and a Video. After this process, an image rectification is done. 

In the first section, the algorithm for video rectification using the Static Estimator is explained, 

showing the results for the main representative frames. 

In the second section, the same procedure is done using the Observer Estimator, showing the main 

results for this case. 

The last section reports the comparison of the two methods’ results.  
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5.1 Video Implementation of Static Estimation 

 
The estimation of the homography matrix using conic correspondence is described in depth in the 

Chapter 3. In this paragraph, an application of this algorithm to video image stabilization is 

presented. The experimentations have been performed with a classical webcam that provides 30 images 

per second with a resolution of 3840x2160 pixels.  

The algorithm used could be summarized in the following passages: 

- Image Processing of the Reference Image; 

- Extraction of the Main Ellipsis’ Parameters from the Reference Image; 

- Video Processing; 

- Static Estimator Application to Every Frames;  

A video is nothing more than a sequence of images, called frames. The uploaded video is so segmented 

in a sequence of frames. For every single frames, the Algorithm designed in Chapter 3 has been used.  

Here follow the results for some frames of interest. The Moved Images is the instantaneous frames. 

The Reference Image is the same used in the previous chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 - Frame 1 rectification done after using the Static Estimator.  
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Image 5.2 - Frame 161 rectification done after using the Static Estimator.  

Figure 5.3 - rame 244 rectification done after using the Static Estimator.  
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Figure 5.4 - Frame 380 rectification done after using the Static Estimator.  

Figure 5.5 - Frame 628 rectification done after using the Static Estimator.  
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5.2 Video Implementation of Observer Estimation 

 
The estimation of the homography matrix using a state observer is described in depth in the Chapter 

4. In this paragraph, an application of this algorithm to video image stabilization is presented. The 

experimentations have been performed with a classical webcam that provides 30 images per second 

with a resolution of 3840x2160 pixels.  

In order to have better performance for the image rectification process, the homography matrix using 

the first frame is estimated with the Static Estimator, then the Observer is used from the second frame. 

The first value of the estimated homography matrix is set to the final  value of the previous frame’s 

estimation. The number of discrete steps used in each frames is k = 1000. 

The algorithm used could be summarized in the following passages: 

- Image Processing of the Reference Image; 

- Extraction of the Main Ellipsis’ Parameters from the Reference Image; 

- Video Processing; 

- Static Estimator Application to the First Frame;  

- Observer Estimator Application to all the other Frames;  

Here follow the results for some frames of interest. The Moved Images is the instantaneous frames. 

The Reference Image is the same used in the previous chapters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 - Frame 1 rectification done after using the Static Estimator. This estimator is used only for the 
first frame. 
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Figure 5.7 - Frame 161 rectification done after using the Observer Estimator.  

Figure 5.8 - Frame 244 rectification done after using the Observer Estimator 
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Figure 5.9 - Frame 380 rectification done after using the Observer Estimator. 

Figure 5.10 - Frame 628 rectification done after using the Observer Estimator. 
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5.3 Comparison of the two Methods 

 
As can be seen from the images, the implementation of the video rectification is better if done using 

the observer. Indeed, the presence of an observer improves the estimation of the homography matrix 

over time. This performances boost is due to the feedback of the previous frame’s estimation, that 

makes computational time and effort lower, compared to the ones obtained by computing algebraically 

individual raw homography for each image.   

However, the Static Estimator produce good results in the same way.  

The rectification is possible also in case the two ellipsis are not completely observable situations, like 

in frame 380. 

The full videos of the two implementations could be seen through the following link: 

https://vimeo.com/432409698 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://vimeo.com/432409698
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Part II 
Modelling of Parrot-Mambo Drone 
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Chapter 6 

 

Quadrotor Modelling 

 
In the previous chapters different ways of estimating the homography matrix have been designed and simulated 

using the software “Matlab”. Then, in chapter 5, has been shown how these methods can be implemented in a 

video. All these steps are preliminary for the final goal of this research, which is the implementation of the 

homography matrix’s estimation online, using the drone’s operating system. The next step to be done in order 

to reach this goal is to build a mathematical model that describes the drone’s behaviour using mathematical 

equations.  

In this chapter, the mathematical model of a quadrotor’s dynamics is derived, using Newton’s and Euler’s laws. 

The output of the model is the position of a point in the raster’s coordinate plane. After the building of the 

system, the observability is checked in order to start the design of a proper observer for the system of interest. 

In the first paragraph, the model and its equations are derived, explaining the theory that is behind them. 

In the second paragraph, the observability of the model’s state is studied.  
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6.1 Quadrotor Mathematical Model 

 
The drone is described by a mathematical model in a state space representation.  

The state of the system is the pose of the drone, composed by the position 𝜌 𝜖 ℝ3 expressed in the 

inertial frame and the orientation 𝑅 𝜖 𝑆𝑂(3) described by the rotation matrix from the body frame 

to the inertial one. The inputs of the model are the linear and the angular velocities, respectively 

𝑣 𝜖 ℝ3 and 𝜔 𝜖 ℝ3, of the quadrotor expressed in the drone body frame.  

Finally, the outputs of the system are the coordinate of a point expressed in the pixel map of the 

camera. 

In order to write the mathematical model if is necessary to introduce the reference coordinates. In 

particular, it is possible to use two reference frames, one fixed (called inertial FI relative to the North-

East-Down (NED) frame) and one mobile fixed to the centre of mass of the drone and with (called 

ABC, Aircraft Body Centre, FABC). It is needed to find the relationship between the two because the 

input of the system are given in the body reference frame FABC and the states are expressed in the 

inertial reference one FI. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 – Inertial and mobile reference frames. 
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 6.1.1 Nomenclature 

 

In the following pages this nomenclature is used:  

- 𝜌 = [𝑥, 𝑦, 𝑧]𝑇 : position of the drone’s centre of mas with respect to the inertial frame; 

- 𝜌𝐶 = [𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶]𝑇 : position of the camera’s eye with respect to the body fixed frame; 

- 𝑅 : rotation matrix from the body fixed frame to the inertial one; 

- 𝑅𝐶 : rotation matrix from the body fixed frame to the camera one; 

- 𝑃 = [𝑥𝑃, 𝑦𝑃, 𝑧𝑃]𝑇: position of a generic point with respect to the inertial frame; 

- 𝑃𝑐𝑎𝑚𝑒𝑟𝑎 = [𝑥𝑃,𝑐𝑎𝑚𝑒𝑟𝑎, 𝑦𝑃,𝑐𝑎𝑚𝑒𝑟𝑎, 𝑧𝑃,𝑐𝑎𝑚𝑒𝑟𝑎]𝑇 : position of a generic point with respect to the 

camera frame; 

- 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = [𝑥𝑃,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑, 𝑦𝑃,𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑] : position of a generic point with respect to the NDC 

frame; 

- 𝑃𝑟𝑎𝑠𝑡𝑒𝑟 = [𝑋, 𝑌]𝑇 : position of a generic point with respect to the raster frame; 

- 𝑓 : focal length of the camera; 

 

 6.1.2 State Equations 

 

In order to represent the attitude of the quadrotor we use rotation matrix R belonging to the 3D 

rotation group SO(3). In mechanics and geometry, SO(3) is the group of all rotations about the origin 

of three-dimensional Euclidean space: 

𝑆𝑂(3) = {𝑅𝜖ℝ3×3|𝑅𝑇𝑅 = 𝐼, det (𝑅) = 1} 

This choice is preferable than using Euler angles (which have singularities in representation) or 

quaternions (which might lead to ambiguous control actions due to the phenomenon of unwinding). 

The kinematic model of the drone can be described as: 

𝜌̇ = 𝑅𝑣 

𝑅̇ = 𝑅𝑆(𝑤), 

Where S(a) is the skew-symmetric map defined as: 

𝑆(𝑎) = −𝑆(𝑎)𝑇 = [

0 −𝑎3 𝑎2

𝑎3 0 −𝑎1

−𝑎2 𝑎1 0
]. 
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 6.1.3 Output Equations 

  

 

 

 

 

 

 

 

 

 

 

The output of the system is the resulting image seen. When a point or vertex is defined in the scene 

and is visible to the eye or to the camera, it appears as a dot or more precisely as a pixel in the digital 

image.  

Cameras can be studied as any other 3D object, so we have to define a new reference system. The 

camera coordinate system (also called eye coordinate system) has its origin in the eye of the camera. 

The z-axis of this frame points to the inside of the camera. Because of this, a point defined in camera 

space can only be visible, if its z-coordinate is negative. 

The camera frame is translated and rotated with respect to the drone’s fixes frame. Its pose is expressed 

by its position 𝜌𝐶 = [𝑥𝐶 , 𝑦𝐶 , 𝑧𝐶]𝑇  and its rotation matrix 𝑅𝐶 from the drone’s fixed frame to the 

camera’s one.  

We want to transform a point’s coordinates from 

world space to camera space. What we want to 

achieve, is to compute P', the coordinates of a 

point P on the surface of a canvas. The canvas 

(also called the virtual projection plane or the 

image plane) is the 2D surface on which the 

image of the scene is drawn. It has a focal 

distance from the eye of the camera that is 

considered equal to 1. 

If you trace a line from P to the eye, P' is the 

line's point of intersection with the canvas.  

Figure 6.3 – Inertial, mobile and camera reference frames. 

Figure 6.4 – Model of camera image reconstruction. 
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When the point P coordinates are defined with 

respect to the camera coordinate system, 

computing the position of P' is trivial using 

simple geometrical consideration. The triangles 

ABC and AB’C’ are similar, so: 

𝑃′(𝑦) = 𝑃(𝑦)/𝑃(𝑧) 

𝑃′(𝑥) = 𝑃(𝑥)/𝑃(𝑧) 

 

 

This is one of the most fundamental relation in computer graphics, known as the perspective divide. 

If the focal length was different from one and equal to f we would have:  

𝑃′(𝑦) = (𝑃(𝑦) ∗ 𝑓)/𝑃(𝑧) 

𝑃′(𝑥) = (𝑃(𝑥) ∗ 𝑓)/𝑃(𝑧) 

We can now compute the camera-to-world matrix simply by the product of the translation matrices 

and the rotation ones. This matrix can be found using the states and the known camera’s parameter: 

- 𝑇𝑅 = [

𝑟11 𝑟21 𝑟31 0
𝑟12
𝑟13

0

𝑟22
𝑟23

0

𝑟32
𝑟33

0

0
0
1

]: rotation from the inertial frame to the drone fixed frame; 

- 𝑇𝜌 = [

1 0 0 −𝑥
0
0
0

1
0
0

0
1
0

−𝑦
−𝑧
1

]: translation from the inertial frame to the drone fixed frame; 

- 𝑇𝑅𝐶
= [

𝑟𝐶,11 𝑟𝐶,12 𝑟𝐶,13 0

𝑟𝐶.21
𝑟𝐶.31

0

𝑟𝐶.22
𝑟𝐶.32

0

𝑟𝐶,23

𝑟𝐶,33

0

0
0
1

]: rotation from the drone fixed frame to the camera frame; 

- 𝑇𝜌𝐶 = [

1 0 0 −𝑥𝐶

0
0
0

1
0
0

0
1
0

−𝑦𝐶
−𝑧𝐶

1

]: translation from drone fixed frame to the camera frame; 

- 𝑇𝑡𝑜𝑡 = 𝑇𝑅𝐶𝑇𝜌𝐶𝑇𝑅𝑇𝜌: transformation matrix from inertial 

frame to camera frame; 

We can now transform any point of which the coordinates are 

defined in world space to camera space, by multiplying this point 

by the world-to-camera matrix: 

𝑃𝑐𝑎𝑚𝑒𝑟𝑎 = 𝑃 ∗ 𝑇𝑡𝑜𝑡 

And so: 

𝑃′(𝑦) = 𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑦)/𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑧) 

𝑃′(𝑥) = 𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑥)/𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑧) 

Now we have coordinates expressed in the screen coordinate system. 

Figure 6.5 – Bird view of world space and camera space. 
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Since P' is a 2D point, it is defined with respect to a 2D coordinate system called the image or screen 

coordinate system. Images are not infinite in size; they have a width and a height. Thus, a rectangular 

shape is cut off centred around the image coordinate system defined as the "bounded region" over 

which the image of the 3D scene is drawn. Any projected point whose absolute x and y coordinate is 

greater than half of the canvas' width or half of the canvas' height respectively is not visible in the 

image. 

If P' is visible it should appear as a dot in the image. A dot in a digital image is a pixel. Pixels are 

2D points, and their coordinates are integers. This coordinate system is called raster coordinate system 

and is located in the upper-left corner of the image. Its x-axis points to the right, and its y-axis points 

downwards. A pixel in this coordinate system, is one unit long in x and y. What we need to do, is 

convert P' coordinates which are defined with respect to the image or screen coordinate system into 

pixel coordinates. 

The first thing we are going to do is to remap P' coordinates in the range [0,1], normalizing the 

coordinate: 

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥) = (𝑃′(𝑥) + 𝑤𝑖𝑑𝑡ℎ/2)/𝑤𝑖𝑑𝑡ℎ 

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑦) = (𝑃′(𝑦) + ℎ𝑒𝑖𝑔ℎ𝑡/2)/ℎ𝑒𝑖𝑔ℎ𝑡 

The coordinate system in which the points are defined after 

normalization is the NDC (Normalized Device Coordinate) 

coordinate system or NDC space. The NDC coordinate system's 

origin is situated in the lower-left corner of the canvas. 

The last step is multiply the projected point x- and y-coordinates 

in NDC space, by the actual image pixel width and pixel height 

respectively. This is a simple remapping of the range [0,1] to the 

range [0,Pixel_Width] for the x-coordinate, and [0,Pixel_Height] for the y-coordinate respectively. 

Pixel coordinates are integers, so rounding off the resulting numbers to the smallest following integer 

value is necessary. This is done using the floor function ⌊−⌋: 

𝑃𝑟𝑎𝑠𝑡𝑒𝑟(𝑥) = ⌊𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥) ∗ 𝑃𝑖𝑥𝑒𝑙_𝑊𝑖𝑑𝑡ℎ⌋ 

𝑃𝑟𝑎𝑠𝑡𝑒𝑟(𝑦) = ⌊𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑦) ∗ 𝑃𝑖𝑥𝑒𝑙_𝐻𝑒𝑖𝑔ℎ𝑡⌋ 

There is a final small detail though we need to take care of. The 

y-axis in the NDC coordinate system points up while in the 

raster coordinate system points down. Thus, to go from one 

coordinate system to the other, P' y-coordinate also needs to be 

inverted. We can easily account for this by doing a small 

modification to the above equations: 

𝑃𝑟𝑎𝑠𝑡𝑒𝑟(𝑥) = 𝑋 = ⌊𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥) ∗ 𝑃𝑖𝑥𝑒𝑙_𝑊𝑖𝑑𝑡ℎ⌋ 

𝑃𝑟𝑎𝑠𝑡𝑒𝑟(𝑦) = 𝑌 = ⌊(1 − 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑦)) ∗ 𝑃𝑖𝑥𝑒𝑙_𝐻𝑒𝑖𝑔ℎ𝑡⌋ 

After this final step, coordinates are defined in the raster space. 
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 6.1.4 Total System 

 

Variables: 

𝜌 = [𝑥 𝑦 𝑧]′;        (In the inertial reference frame) 

𝑅 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]; 

𝑅−1 = 𝑅𝑇 = [

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

];       (From the definition of SO(3)) 

𝑇𝑡𝑜𝑡 = 𝑇𝑅𝐶𝑇𝜌𝐶𝑇𝑅𝑇𝜌 = [

𝑡11 𝑡12 𝑡13 𝑡14

𝑡21
𝑡31
𝑡41

𝑡22
𝑡32
𝑡42

𝑡23
𝑡33
𝑡43

𝑡24
𝑡34
𝑡44

] = 

[
 
 
 
(𝑟11𝑟𝐶,11 + 𝑟12𝑟𝐶,12 + 𝑟13𝑟𝐶,13) (𝑟21𝑟𝐶,11 + 𝑟22𝑟𝐶,12 + 𝑟23𝑟𝐶,13) (𝑟31𝑟𝐶,11 + 𝑟32𝑟𝐶,12 + 𝑟33𝑟𝐶,13) 𝑥𝐶 − 𝑡11𝑥 − 𝑡12𝑦 − 𝑡13𝑧

(𝑟11𝑟𝐶,21 + 𝑟12𝑟𝐶,22 + 𝑟13𝑟𝐶,23)

(𝑟11𝑟𝐶,31 + 𝑟12𝑟𝐶,32 + 𝑟13𝑟𝐶,33)

0

(𝑟21𝑟𝐶,21 + 𝑟22𝑟𝐶,22 + 𝑟23𝑟𝐶,23)

(𝑟21𝑟𝐶,31 + 𝑟22𝑟𝐶,32 + 𝑟23𝑟𝐶,33)

0

(𝑟31𝑟𝐶,21 + 𝑟32𝑟𝐶,22 + 𝑟33𝑟𝐶,23)

(𝑟31𝑟𝐶,31 + 𝑟32𝑟𝐶,32 + 𝑟33𝑟𝐶,33)

0

𝑦𝐶 − 𝑡21𝑥 − 𝑡22𝑦 − 𝑡23𝑧
𝑧𝐶 − 𝑡31𝑥 − 𝑡32𝑦 − 𝑡33𝑧

1 ]
 
 
 
 

 

 

States & Output: 

𝑥1 = 𝑥; 𝑥2 = 𝑦; 𝑥3 = 𝑧;          (==𝜌) 

𝑥4 = 𝑟11;    𝑥5 = 𝑟12;    𝑥6 = 𝑟13; 

𝑥7 = 𝑟21;    𝑥8 = 𝑟22;    𝑥9 = 𝑟23;        (==𝑅) 

𝑥10 = 𝑟31; 𝑥11 = 𝑟32;  𝑥12 = 𝑟33; 

𝑢1 = 𝑣𝑥;  𝑢2 = 𝑣𝑦;  𝑢3 = 𝑣𝑧;         (==𝑣) 

𝑢4 = 𝜔𝑥;  𝑢5 = 𝜔𝑦;  𝑢6 = 𝜔𝑧         (==𝜔) 

𝑦1 = 𝑋; 𝑦2 = 𝑌; 
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State equations: 

𝑥̇1 = 𝑥4𝑢1 + 𝑥5𝑢2 + 𝑥6𝑢3; 

𝑥̇2 = 𝑥7𝑢1 + 𝑥8𝑢2 + 𝑥9𝑢3;         (==𝜌̇) 

𝑥̇3 = 𝑥10𝑢1 + 𝑥11𝑢2 + 𝑥12𝑢3; 

𝑥̇4 = 𝑥5𝑢6 − 𝑥6𝑢5;          𝑥̇5 = −𝑥4𝑢6 + 𝑥6𝑢4;         𝑥̇6 = 𝑥4𝑢5 − 𝑥5𝑢4; 

𝑥̇7 = 𝑥8𝑢6 − 𝑥9𝑢5;          𝑥̇8 = −𝑥7𝑢6 + 𝑥9𝑢4;         𝑥̇9 = 𝑥7𝑢5 − 𝑥8𝑢4;    (==𝑅̇) 

𝑥̇4 = 𝑥11𝑢6 − 𝑥12𝑢5;      𝑥̇5 = −𝑥10𝑢6 + 𝑥12𝑢4;      𝑥̇6 = 𝑥10𝑢5 − 𝑥11𝑢4; 

Output Equation: 

𝑦1 = 𝑋 = ⌊𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑥) ∗ 𝑃𝑖𝑥𝑒𝑙𝑊𝑖𝑑𝑡ℎ⌋ = ⌊
(𝑃′(𝑥) + 𝑤𝑖𝑑𝑡ℎ/2)

𝑤𝑖𝑑𝑡ℎ
∗ 𝑃𝑖𝑥𝑒𝑙𝑊𝑖𝑑𝑡ℎ⌋ = 

 = ⌊
(

𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑥)

−𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑧)
+𝑤𝑖𝑑𝑡ℎ/2)

𝑤𝑖𝑑𝑡ℎ
∗ 𝑃𝑖𝑥𝑒𝑙𝑊𝑖𝑑𝑡ℎ⌋ = 

 = ⌊

𝑡11∗𝑥𝑃+𝑡12∗𝑦𝑃+𝑡13∗𝑧𝑃+𝑡14
−(𝑡31∗𝑥𝑃+𝑡32∗𝑦𝑃+𝑡33∗𝑧𝑃+𝑡34)

+
𝑤𝑖𝑑𝑡ℎ

2

𝑤𝑖𝑑𝑡ℎ
∗ 𝑃𝑖𝑥𝑒𝑙𝑊𝑖𝑑𝑡ℎ⌋ 

𝑦2 = 𝑌 = ⌊(1 − 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑦)) ∗ 𝑃𝑖𝑥𝑒𝑙𝐻𝑒𝑖𝑔ℎ𝑡⌋ = ⌊(1 −
(𝑃′(𝑦) + 𝐻𝑒𝑖𝑔ℎ𝑡/2)

𝐻𝑒𝑖𝑔ℎ𝑡
) ∗ 𝑃𝑖𝑥𝑒𝑙𝐻𝑒𝑖𝑔ℎ𝑡⌋ = 

 = ⌊(1 −
(

𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑦)

−𝑃𝑐𝑎𝑚𝑒𝑟𝑎(𝑧)
+𝐻𝑒𝑖𝑔ℎ𝑡/2)

𝐻𝑒𝑖𝑔ℎ𝑡
) ∗ 𝑃𝑖𝑥𝑒𝑙𝐻𝑒𝑖𝑔ℎ𝑡⌋ = 

 = ⌊(1 −

𝑡21∗𝑥𝑃+𝑡22∗𝑦𝑃+𝑡23∗𝑧𝑃+𝑡24
−(𝑡31∗𝑥𝑃+𝑡32∗𝑦𝑃+𝑡33∗𝑧𝑃+𝑡34)

+𝐻𝑒𝑖𝑔ℎ𝑡/2

𝐻𝑒𝑖𝑔ℎ𝑡
) ∗ 𝑃𝑖𝑥𝑒𝑙𝐻𝑒𝑖𝑔ℎ𝑡⌋ ; 

 

After some simplifications, the system could be reduced in the form: 

 

𝑦1 =
𝑥4 ∗ 𝑘1 + 𝑥7 ∗ 𝑘2 + 𝑥10 ∗ 𝑘3 − 𝑥1

𝑥6 ∗ 𝑘1 + 𝑥9 ∗ 𝑘2 + 𝑥12 ∗ 𝑘3 − 𝑥3

∗ 𝐶1 + 𝐶2 ; 

 

𝑦2 =
𝑥5 ∗ 𝑘1 + 𝑥8 ∗ 𝑘2 + 𝑥11 ∗ 𝑘3 − 𝑥2

𝑥6 ∗ 𝑘1 + 𝑥9 ∗ 𝑘2 + 𝑥12 ∗ 𝑘3 − 𝑥3

∗ 𝐶3 + 𝐶4 ; 

 

where 𝑘1,2,3 and 𝐶1,2,3,4 are known constants. (𝑦1,2 should be rounded to the closer next integer to 

represent the pixel coordinate) 
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6.2 Observability Analysis 

 
The system studied has 12 states, 3 coordinates of the body frame origin expressed in the inertial 

reference frame and 9 elements of the rotation matrix. However the rotation matrix R belongs to the 

special orthogonal group in three dimension SO(3), and so: 

𝑅𝑇𝑅 = 𝐼 

[

𝑟11 𝑟21 𝑟31

𝑟12 𝑟22 𝑟32

𝑟13 𝑟23 𝑟33

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] = [
1 0 0
0 1 0
0 0 1

] 

From this definition we can obtain the following equations: 

⟨𝑢𝑖 , 𝑢𝑗⟩ = 0, 𝑖 = 1,2,3; 𝑗 = 1,2,3; ∀𝑖 ≠ 𝑗 

⟨𝑢𝑖 , 𝑢𝑗⟩ = 0, 𝑖 = 1,2,3; 𝑗 = 1,2,3; ∀𝑖 = 𝑗 

Where 𝑢𝑖 , 𝑖 = 1,2,3 are the rows of 𝑅. These constraints build a system of 6 equations making the 

degrees of freedom only 3. It is possible to add another equation to the set because det (𝑅) = 1, but it 

wouldn’t add any information about the elements. 

Now we know the model has 6 independent variables. In order to study the observability we could 

compute the Lie derivative of the output with respect to the dynamic of the system. Calling ℎ(𝑥, 𝑢) =

𝑦1(𝑥, 𝑢) and 𝑓(𝑥, 𝑢) = 𝑥̇(𝑥, 𝑢), and considering u=0: 

𝐿𝑓
1ℎ = 0; 

This is predictable because if the drone is still (u=0) the coordinate of a point in the raster plane 

would not change. The same reasoning should be done for the Y coordinate 𝑦2. This means that if we 

have as output of the system only the two coordinate in the raster plane of a single point the system is 

unobservable. 

However, in order to make the system observable is possible to add more outputs, in particular, we 

need 4 more equations. This could be done have two more points. The output equations are: 

𝑦1 =
𝑥4 ∗ 𝑘1 + 𝑥7 ∗ 𝑘2 + 𝑥10 ∗ 𝑘3 − 𝑥1

𝑥6 ∗ 𝑘1 + 𝑥9 ∗ 𝑘2 + 𝑥12 ∗ 𝑘3 − 𝑥3
∗ 𝐶1 + 𝐶2 ; 

𝑦2 =
𝑥5 ∗ 𝑘1 + 𝑥8 ∗ 𝑘2 + 𝑥11 ∗ 𝑘3 − 𝑥2

𝑥6 ∗ 𝑘1 + 𝑥9 ∗ 𝑘2 + 𝑥12 ∗ 𝑘3 − 𝑥3
∗ 𝐶3 + 𝐶4 ; 

𝑦3 =
𝑥4 ∗ 𝑘4 + 𝑥7 ∗ 𝑘5 + 𝑥10 ∗ 𝑘6 − 𝑥1

𝑥6 ∗ 𝑘4 + 𝑥9 ∗ 𝑘5 + 𝑥12 ∗ 𝑘6 − 𝑥3
∗ 𝐶5 + 𝐶6 ; 

𝑦4 =
𝑥5 ∗ 𝑘4 + 𝑥8 ∗ 𝑘5 + 𝑥11 ∗ 𝑘6 − 𝑥2

𝑥6 ∗ 𝑘4 + 𝑥9 ∗ 𝑘5 + 𝑥12 ∗ 𝑘6 − 𝑥3
∗ 𝐶7 + 𝐶8 ; 

𝑦5 =
𝑥4 ∗ 𝑘7 + 𝑥7 ∗ 𝑘2 + 𝑥10 ∗ 𝑘3 − 𝑥1

𝑥6 ∗ 𝑘7 + 𝑥9 ∗ 𝑘2 + 𝑥12 ∗ 𝑘3 − 𝑥3
∗ 𝐶9 + 𝐶10 ; 

𝑦6 =
𝑥5 ∗ 𝑘7 + 𝑥8 ∗ 𝑘8 + 𝑥11 ∗ 𝑘9 − 𝑥2

𝑥6 ∗ 𝑘7 + 𝑥9 ∗ 𝑘8 + 𝑥12 ∗ 𝑘9 − 𝑥3
∗ 𝐶11 + 𝐶12 ; 



62 
 

If these equation are linear independent the system became observable a feedback observer could be 

designed. This could be d 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



63 
 

 
 
Chapter 7 

 

Conclusions 

 
This chapter summarizes the main researches done and contain the final conclusion from this thesis 
work in Section 7.1. In Section 7.2 the resulting topics for future research are discussed.  

 
7.1 Conclusive Considerations 

 

Autonomous, or self-driving, vehicles are becoming more and more common in our society. Such a 
new and emerging technology that has the potential of completely reinventing the way we live. A sub-
group of the autonomous vehicle is the unmanned aerial vehicle (UAV), commonly known as a drone. 
My thesis work is a part of a bigger and more elaborated project which final goal is the complete 
automation of a Parrot Mambo drone’s flight. 

A crucial point for the automation of a vehicle is the positioning process. The purpose of my research 
is to achieve an online Local positioning on a Mambo Parrot fly drone. In particular, the on-board 
camera is the chosen sensor used in order to achieve the final goal and the homography is the selected 
technique.  

Homography is a technique widely used in computer vision, that takes the name from the 
homonymous matrix that expresses the geometrical transformation between two images of the same 
view, with different points of view. The main idea is that knowing the homography between a 
Reference View and the instantaneous camera image shown captured by the drone’s camera, it would 
be possible to compute the pose of the quadrotor, and so it’s position and attitude with respect to an 
inertial and known reference frame. 

The first instinctive step to perform in order to achieve this goal is the estimation of the homography 
matrix that links two views of the same scene. In order to do this, a set of equation able to solve the 
eight degrees of freedom of the homography matrix. This could be done with a proper choice of the 
Reference Image. The first choice was the use of rectangular shapes that highlight their corners. These 
points correspondences build a set of linearly independent equations able to solve the homography 
matrix. An estimator is designed and tested, revealing good results. Nevertheless, this approach is 
difficult to apply in real situation, because of the not negligible presence of rectangular shapes that 
could trick our operating system.  

The solution adopted in this project is the change of the Reference Image, making its detection easier 
and more reliable. The second and final Reference Image chosen represent two conics, in particular 
two ellipsis. Using this new Reference Image the estimation is not done anymore using points 
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correspondences but conics’ ones. The new approach needed more effort for the computation of the 
homography matrix parameters, but this problem is solved by the usage of a first-order Taylor 
expansion. As before, an estimator is designed and tested, showing good results in simple situation, 
but, especially when the distortion of the shapes due to the prospective is high, the estimation accuracy 
decrease. This new problem is faced changing the estimation process, from a static one to a time 
evolving one. An observer estimator is designed. 

Until now the estimation developed consider the homography as an incidental variable and are not 
focused on improving the estimation over time. The quality of the homography estimates depends 
heavily on the nature of the image features exploited as well as the algorithm used without increasing 
the quality of the estimation over time. The methodology taken exploits the underlying structure of 
the Special Linear group SL(3), a Lie group isomorphic to the group of homographies, designing a 
State Observer in discrete time. The observer is designed and tested, performing the best results 
obtained compare with the ones of the previous estimator. 

All the previous researches have been implemented for estimating the homography matrix linking 
two pictures, for a static case, but the drone’s camera is not static and is actually filming a Video. A 
new approach in order to perform what is called image stabilization using the homography technique 
should be designed. Initially the algorithm was tested using the Static estimator for each single frame. 
This would be an effort too heavy for the drone’s operating system, and the rectified video produced is 
not smooth as expected. The best solution is to merge the Static and the Observer Estimator, exploiting 
the best from each. The Static Estimator was used in order to estimate the homography for the first 
frame, then the Observer is used to perform the estimation for the following ones, increase the quality 
of the estimation over time. This implementation has produced very good and satisfactory results. 

All these researches are preliminary for the final goal, because they can not be applied directly to the 
drone’s operating system. The next step to be done is to build a mathematical model that describes the 
drone’s behaviour using mathematical equations. In Chapter 6, the mathematical model of a 
quadrotor’s dynamics is derived, using Newton’s and Euler’s laws. The output of the model is the 
position of a point in the raster’s coordinate plane. After the modelling of the system, the observability 
is checked. 
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7.2 Recommendations 

 
This thesis develop the homography matrix estimation using points’ and conics’ correspondences. The 
different estimator has been designed and tested in static and non-static case. These experimental tests 
have been taken using pre-recorded and pre-taken, providing satisfying results. However, this options 
would not take into account the problem of having an online estimation on the drone’s operating 
system. Moreover, the code developed should be translated in the language of the operating system. 
Therefore, a possible way of continuing this work could be use the code generation process to generate 
a proper code downloadable on the drone, and use experimental tests of it. 

Moreover, this thesis research are limited in the homography estimation. An important step to be 
developed should be the decomposition of the homography matrix, knowing the camera’s specification. 
This would allow to find the position and the attitude of the Moved Camera, with respect to the 
Reference one. 

Furthermore, it was discussed a new modelling procedure in order to describe how the pose of the 
drone changes the position of a point in the raster coordinate system. The originality of this modelling 
relays in the choice of the attitude representation and in the selected outputs. The observability of this 
model has been checked, finding that is possible to have an estimation of the states (attitude and 
position) adding more outputs (in particular using three points). A possible future approach should 
be study the modelling of this system with more accuracy, finding a way to estimate the observation 
of the states limiting the points’ used.  

Finally, the scope of this thesis was limited on the homography technique in order to achieve the 
Local Positioning of an autonomous quadrotor. Another approach could be the implementation of a 
state observer designed using the mathematical model cited before. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
By far the greatest danger of Artificial Intelligence 

is that people conclude too early that they understand it. 
(Eliezer Yudkowsky) 
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Appendix A 

 

Proofs and Methods 

 

A.1 Single Value Decomposition (SVD) 

 
In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex 

matrix that generalizes the eigendecomposition of a square normal matrix to any m x n matrix via 

an extension of the polar decomposition. 

Specifically, the singular value decomposition of an m x n real or complex matrix M  is a 

factorization of the form U∑V*, where U is an m x n real or complex unitary matrix, ∑ is an m x m 

matrix with non-negative real numbers on the diagonal, and V is an m x n real or complex unitary 

matrix. If M  is real, U and VT = V* are real orthogonal matrices. 

The diagonal entries of ∑ are known as the singular values of M. The number of non-zero singular 

values is equal to the rank of M. The columns of U and the columns of V are called the left-singular 

vectors and right-singular vectors of M, respectively. 
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A.2 “Harris Corner Detection” Algorithm 
 
Harris Corner Detector is a corner detection operator that is commonly used in computer vision 

algorithms to extract corners and infer features of an image. It was first introduced by Chris Harris 

and Mike Stephens in 1988 upon the improvement of Moravec's corner detector. Compared to the 

previous one, Harris' corner detector takes the differential of the corner score into account with 

reference to direction directly, instead of using shifting patches for every 45 degree angles, and has 

been proved to be more accurate in distinguishing between edges and corners. Since then, it has been 

improved and adopted in many algorithms to preprocess images for subsequent applications. 

Without loss of generality, is assumed a grayscale 2-dimensional image is used. Let this image be 

given by I. Consider taking an image patch (𝑥, 𝑦) ∈ 𝑊(window) and shifting it (𝛥𝑥, 𝛥𝑦). The sum 

of squared differences (SSD) between these two patches, denoted f, is given by: 

𝑓(𝛥𝑥, 𝛥𝑦) = ∑ (𝐼(𝑥𝑘, 𝑦𝑘) − 𝐼(𝑥𝑘 + 𝛥𝑥, 𝑦𝑘 + 𝛥𝑦))2

(𝑥𝑘,𝑦𝑘)

 

 

 

𝐼(𝑥𝑘 + 𝛥𝑥, 𝑦𝑘 + 𝛥𝑦) can be approximated by a Taylor expansion. Let Ix and Iy be the partial 

derivatives of I, such that 

𝐼(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦) ≈ 𝐼(𝑥, 𝑦) + 𝐼𝑥(𝑥, 𝑦)𝛥𝑥 + 𝐼𝑦(𝑥, 𝑦)𝛥𝑦 

This produces the approximation 

𝑓(𝛥𝑥, 𝛥𝑦) ≈ ∑ (𝐼𝑥(𝑥, 𝑦)𝛥𝑥 + 𝐼𝑦(𝑥, 𝑦)𝛥𝑦)2

(𝑥𝑘,𝑦𝑘)

 

 

which can be written in matrix form: 

𝑓(𝛥𝑥, 𝛥𝑦) ≈ (𝛥𝑥, 𝛥𝑦)𝑀 (
𝛥𝑥
𝛥𝑦

) 

where M is the structure tensor, 

𝑀 = ∑ [
𝐼𝑥
2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦
2 ]

(𝑥𝑘,𝑦𝑘)

=

[
 
 
 
 ∑ 𝐼𝑥

2

(𝑥𝑘,𝑦𝑘)

∑ 𝐼𝑥𝐼𝑦
(𝑥𝑘,𝑦𝑘)

∑ 𝐼𝑥𝐼𝑦
(𝑥𝑘,𝑦𝑘)

∑ 𝐼𝑦
2

(𝑥𝑘,𝑦𝑘) ]
 
 
 
 

. 
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A.3 Least Square Method 
 
The method of least squares is a standard approach in regression analysis to approximate the 

solution of overdetermined systems (sets of equations in which there are more equations than 

unknowns) by minimizing the sum of the squares of the residuals made in the results of every single 

equation. 

In this thesis is used the ordinary least squares (OLS) is a type of linear least squares method for 

estimating the unknown parameters in a linear regression model. 

Consider an overdetermined system 

∑𝑋𝑖𝑗𝛽𝑗 = 𝑦𝑖

𝑝

𝑗=1

, (𝑖 = 1,2, … , 𝑛), 

of n linear equations in p unknown coefficients, β1, β2, ..., βp, with n > p. This can be written in 

matrix form as 

𝑿𝜷 = 𝒚, 

where 

𝑿 = [

𝑋11 ⋯ 𝑋1𝑝

⋮ ⋱ ⋮
𝑋𝑛1 ⋯ 𝑋𝑛𝑝

] , 𝜷 = [

𝛽1

⋮
𝛽𝑝

] , 𝒚 = [

𝑦1

⋮
𝑦𝑝

]. 

Such a system usually has no exact solution, so the goal is instead to find the coefficients 𝜷 which 

fit the equations "best", in the sense of solving the quadratic minimization problem 

𝜷̂ = 𝑎𝑟𝑔 𝑚𝑖𝑛 𝑆( 𝜷) 

 where the objective function S is given by 

𝑆(𝜷) = ∑|𝑦𝑖 − ∑𝑋𝑖𝑗𝛽𝑗

𝑝

𝑗=1

|

𝑛

𝑖=1

= ‖𝒚 − 𝑿𝜷‖2 

A justification for choosing this criterion is given in Properties below. This minimization problem 

has a unique solution, provided that the p columns of the matrix X are linearly independent, given 

by solving the normal equations 

(𝑿𝑻𝑿)𝜷̂ = 𝑿𝑻𝒚. 

The matrix 𝑿𝑻𝒚 is known as the moment matrix of regressand by regressors.[1] Finally, 

{\displaystyle {\hat {\boldsymbol 𝜷̂ is the coefficient vector of the least-squares hyperplane, expressed 

as 

𝜷̂ = (𝑿𝑻𝑿)−𝟏𝑿𝑻𝒚. 
 

Armiko back-tracking procedure 
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Appendix B 

 

Glossary 

 

Min  : transformation matrix with intrinsic parameters; 

Mex  : transformation matrix with intrinsic parameters; 

x : position wrt the x axis; 

y : position wrt the y axis; 

z : position wrt the z axis; 

e : eccentricity of a conic; 

CQ : matrix of the quadratic; 

𝜌 : position of the drone’s centre of mas with respect to the inertial frame; 

𝜌𝐶 : position of the camera’s eye with respect to the body fixed frame; 

𝑅 : rotation matrix from the body fixed frame to the inertial one; 

𝑅𝐶 : rotation matrix from the body fixed frame to the camera one; 

𝑃 : position of a generic point with respect to the inertial frame; 

𝑃𝑐𝑎𝑚𝑒𝑟𝑎 : position of a generic point with respect to the camera frame; 

𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 : position of a generic point with respect to the NDC frame; 

𝑃𝑟𝑎𝑠𝑡𝑒𝑟 : position of a generic point with respect to the raster frame; 

𝑓 : focal length of the camera; 
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Appendix C 

 

Code Lines 

 
%% INITIALIZATION 

  

global K; 

clear all, close all, clc; 

  

alpha=0.005; beta=0.75; sigma=0.25; K=diag([1,1,2]); 

  

%% REFERENCE IMAGE FEATURES EXTRACTION 

  

Img1=rgb2gray(imread('Reference.jpg')); 

BWperimref=bwperim(Img1<150); 

[B,~,~,A] = bwboundaries(BWperimref,'noholes'); 

  

for i=1:length(B) 

     

    enclosing_boundary  = find(A(i,:)); 

    enclosed_boundaries = find(A(:,i)); 

    if length(B{i}(:,1))>50 && length(enclosing_boundary)==1 && 

isempty(enclosed_boundaries) && length(find(A(:,enclosing_boundary)))==1  

             

            e1=enclosing_boundary; 

            e2=i; 

  

    end 

end 

  

[a1,b1,phi1,Xc1,Yc1] = fit_ellipse_light( B{e1}(:,2),B{e1}(:,1) ) 

[a2,b2,phi2,Xc2,Yc2] = fit_ellipse_light( B{e2}(:,2),B{e2}(:,1) ) 

  

[C1,phi1] = fit_ellipse_light1( (B{e1}(:,2)-Xc1)./300,(B{e1}(:,1)-Yc1)./300 ); 

[C2,phi2] = fit_ellipse_light1( (B{e2}(:,2)-Xc1)./300,(B{e2}(:,1)-Yc1)./300 ); 

  

C1=C1./(abs(det(C1))^(1/3)); 

C2=C2./(abs(det(C2))^(1/3)); 

  

C(:,:,3)=C1; 

C(:,:,4)=C2; 

  

%% 

  

obj=VideoReader('Video.mp4'); 

vid=VideoWriter('NewVideObserver.mp4','MPEG-4');%use h264 encoding 

open(vid); 
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Imov = read(obj,1); 

Img2=rgb2gray(Imov); 

BWperimmov=bwperim(Img2<150); 

[Bmov,~,~,Amov] = bwboundaries(BWperimmov,'noholes'); 

  

for i=1:length(Bmov) 

     

    enclosing_boundary  = find(Amov(i,:)); 

    enclosed_boundaries = find(Amov(:,i)); 

    if length(Bmov{i}(:,1))>50 && length(enclosing_boundary)==1 && 

isempty(enclosed_boundaries) && length(find(Amov(:,enclosing_boundary)))==1  

  

            emov1=enclosing_boundary; 

            emov2=i; 

    

    end 

end 

  

[amov1,bmov1,phimov1,Xcmov1,Ycmov1] = fit_ellipse_light( 

Bmov{emov1}(:,2),Bmov{emov1}(:,1) ) 

[amov2,bmov2,phimov2,Xcmov2,Ycmov2] = fit_ellipse_light( 

Bmov{emov2}(:,2),Bmov{emov2}(:,1) ) 

  

[Cmov1,phimov1] = fit_ellipse_light1( (Bmov{emov1}(:,2)-

Xcmov1)./300,(Bmov{emov1}(:,1)-Ycmov1)./300 ); 

[Cmov2,phimov2] = fit_ellipse_light1( (Bmov{emov2}(:,2)-

Xcmov1)./300,(Bmov{emov2}(:,1)-Ycmov1)./300 ); 

Cmov1=Cmov1./(abs(det(Cmov1))^(1/3)); 

Cmov2=Cmov2./(abs(det(Cmov2))^(1/3)); 

  

T1=[1,0,0; 0, 1, 0; -Xc1, -Yc1, 1]'; 

T2=[1,0,0; 0, 1, 0; -Xcmov1, -Ycmov1, 1]'; 

  

S1=[300, 0, 0; 0, 300, 0; 0, 0, 1]; 

S2=[300, 0, 0; 0, 300, 0; 0, 0, 1]; 

  

H1 = hg_2elin(Cmov1,Cmov2,C1,C2); 

H1=-H1./(abs(det(H1))^(1/3)); 

H=inv(T1)*S2*H1*inv(S1)*T2; 

H=H./(abs(det(H))^(1/3)); 

H=H./H(3,3); 

  

H_hat(:,:,1)=H1; 

%% 

  

for img=1:obj.NumberOfFrames; 

     

    img 

    frames{img}=read(obj,img); 

    Imov = frames{img}; 

    Img2=rgb2gray(Imov); 

    BWperimmov=bwperim(Img2<150); 

    [Bmov,~,~,Amov] = bwboundaries(BWperimmov,'noholes'); 

  

    for i=1:length(Bmov) 

  

        enclosing_boundary  = find(Amov(i,:)); 

        enclosed_boundaries = find(Amov(:,i)); 

        if length(Bmov{i}(:,1))>50 && length(enclosing_boundary)==1 && 

isempty(enclosed_boundaries) && length(find(Amov(:,enclosing_boundary)))==1  

  

            emov1=enclosing_boundary; 
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            emov2=i; 

  

        end 

    end 

  

   

    [amov1,bmov1,phimov1,Xcmov1,Ycmov1] = fit_ellipse_light( 

Bmov{emov1}(:,2),Bmov{emov1}(:,1) ) 

    [amov2,bmov2,phimov2,Xcmov2,Ycmov2] = fit_ellipse_light( 

Bmov{emov2}(:,2),Bmov{emov2}(:,1) ) 

  

    [Cmov1,phimov1] = fit_ellipse_light1( (Bmov{emov1}(:,2)-

Xcmov1)./300,(Bmov{emov1}(:,1)-Ycmov1)./300 ); 

    [Cmov2,phimov2] = fit_ellipse_light1( (Bmov{emov2}(:,2)-

Xcmov1)./300,(Bmov{emov2}(:,1)-Ycmov1)./300 ); 

  

    Cmov1=Cmov1./(abs(det(Cmov1))^(1/3)); 

    Cmov2=Cmov2./(abs(det(Cmov2))^(1/3)); 

  

    T2=[1,0,0; 0, 1, 0; -Xcmov1, -Ycmov1, 1]'; 

  

    %% OBSERVER 

  

    C(:,:,1)=Cmov1; 

    C(:,:,2)=Cmov2; 

  

    for k=1:1000 

  

        k; 

  

        ek1(:,:,k)=inv(H_hat(:,:,k))'*C(:,:,1)*inv(H_hat(:,:,k)); %->M1=C(:,:,3) 

        ek2(:,:,k)=inv(H_hat(:,:,k))'*C(:,:,2)*inv(H_hat(:,:,k)); %->M2=C(:,:,4)   

  

        innovation(:,:,k)=-projection_operator(... 

            ek1(:,:,k)*(ek1(:,:,k)-C(:,:,3))*K+ek1(:,:,k)*K*(ek1(:,:,k)-

C(:,:,3))+... 

            ek2(:,:,k)*(ek2(:,:,k)-C(:,:,4))*K+ek2(:,:,k)*K*(ek2(:,:,k)-

C(:,:,4)));   %->0 

  

        clear tempm; 

        stat=1; 

        i=2; tempm(1)=1; tempm(i)=2; min(1)=1; min(2)=1; 

  

        while stat~=0 && tempm(i)~=Inf 

  

  

            t(k)=alpha*((beta)^tempm(i)); 

            H_hat(:,:,k+1)=(expm(-innovation(:,:,k).*t(k)))*H_hat(:,:,k);        

%->H 

  

            AGG(k)=aggcost(H_hat(:,:,k),C,K); 

            AGG(k+1)=aggcost(H_hat(:,:,k+1),C,K); 

            diff(k)=AGG(k)-AGG(k+1); 

            kost(k)=sigma*alpha*trace(innovation(:,:,k)*innovation(:,:,k)'); 

            cond(k)=diff(k)/kost(k)-t(k); 

  

            if cond(k)>=0 

                stat =-1; 

            end 

  

            if stat == 1 

  

                tempm(i+1)=2*tempm(i); 
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                min(i+1)=tempm(i); 

  

            end 

  

            if stat == -1 

  

                if cond(k)>0 

  

                    tempm(i+1)=tempm(i)-((tempm(i)-min(i))/2); 

                    min(i+1)=min(i); 

  

                else 

  

                    tempm(i+1)=tempm(i)+(abs(tempm(i-1)-tempm(i))/2); 

                    min(i+1)=tempm(i); 

  

                end 

  

                if abs(tempm(i)-tempm(i-1))==1  

  

                    m(k)=min(i+1)+1; 

                    stat=0; 

  

                end 

  

            end 

  

            i=i+1; 

  

        end 

  

        t(k)=alpha*((beta)^m(k)); 

        H_hat(:,:,k+1)=expm(-innovation(:,:,k).*t(k))*H_hat(:,:,k);        %->H 

    %     E(:,:,k+1)=H_hat(:,:,k+1)*inv(H); 

    end 

  

    Htot=inv(T1)*S2*H_hat(:,:,end)*inv(S1)*T2; 

    Htot=Htot./(abs(det(Htot))^(1/3)); 

    Htot=Htot./Htot(3,3); 

  

    dim=imref2d(size(Img1)); 

    Htform=projective2d(transpose(Htot)); 

    [out, ref] = imwarp(Imov,Htform,'OutputView',dim); 

  

    figure(1), hold on;   

    Ref=insertText(frames{img},[0,0],['Frame ', num2str(img)],'FontSize',15); 

    subplot(1,2,1), imshow(Ref); title('Video Image'); 

    subplot(2,2,2), imshow(Img1); title('Reference Image'); 

    subplot(2,2,4), imshow(out); title('Warped Image'); 

  

    H_hat(:,:,1)=H_hat(:,:,end); 

  

    frame=getframe(gcf); 

    writeVideo(vid,frame); 

     

end 

  

close(vid); 
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Epilogue 

 
Non è facile, quando qualcosa finisce, dire addio. Congedare in poche, umide parole una parte della 

vita che con la sua mano ti sta salutando, fermamente convinta ad abbandonarti e a non tornare mai 

più. Così cerchi di fare ordine nella tua mente, ma, proprio in quel momento, tutti quei ricordi che 

fino a un attimo prima erano vividi, ora sono coperti da una fitta nebbia che li rende confusi e 

offuscati. E tu non riesci a produrre neanche l’accenno del meraviglioso discorso che ti eri 

immaginato. E resti pietrificato, fisso, a guardare il tuo passato, che ad andamento sostenuto (tipico 

dello scorrere del tempo) si allontana. In quel momento realizzi come qualsiasi tavola imbandita di 

svenevoli parole di cortesia sarebbe stata soltanto un inutile e pesante pasto di fronte ad un 

commensale già sazio.  

Così, per rendere questa parte conclusiva della tesi più sopportabile, almeno dal mio punto di vista, 

la porterò avanti considerandola come un viaggio a ritroso nel tempo. Come un discorso fatto alla 

sola compagnia di me stesso.  

Il mio percorso magistrale è stato, come ogni percorso che si rispetti, tortuoso e sterrato. Ma è stato 

proprio questo a renderlo tanto formativo. Se il me stesso di quando iniziai vedesse come sono 

diventato sarebbe contento? Forse. Se il me stesso di quando iniziai vedesse come sono cambiato 

sarebbe orgoglioso? Sicuramente. I profondi e imprevedibili eventi che hanno avuto luogo in questi 3 

anni sono stati solo un assaggio di quello che è la vita. La vita vera. Quella cattiva, come una madre 

che sgrida il proprio figlio. Quella dolorosa, come lo schiaffo di un padre che vuole insegnarti una 

lezione. Quella appagante, come il panorama mozzafiato che scruti dopo aver scalato una montagna.  

Buffo come riguardando indietro mi vengano in mente per lo più i momenti difficili, stampati con 

inchiostro indelebile nella mia corteccia celebrale. D’altronde non è forse vero che soltanto gli 

infanti e le bestie possono essere felici, poiché privi di memoria? Penso di sì. 

Ed altrettanto buffo come solo ora mi renda conto che in questi momenti non ero mai solo. Me ne 

renda conto proprio ora che sono solo. Strano. Tendo sempre a dare per scontato le cose positive, 

focalizzandoci sui traumi. Affascinante.  

Vediamo allora se riesco a buttar giù tale scabroso e tetro muro di malinconia per edulcorare questo 

epilogo con i nomi di quelli che possono essere considerati i veri protagonisti di questa laurea, i miei 

angeli custodi, le mie cose positive. 

Il primo pensiero è ovviamente rivolto al mio nucleo familiare. In particolare a mia madre, mio 

padre e mio fratello. 

Mia madre, Porzia detta Lella, figura che nella mia microscopica esistenza è paragonabile a quella 

di una Dea, se la concezione di Dio è quella di Creatore. Mia madre mi ha creato, e come se non 

bastasse, non si è limitata a ciò. Ha continuato a curarsi di me senza pretendere nulla in cambio, 

anche nei momenti in cui me lo sono meritato meno. Ma in fondo la differenza tra amare e voler 

bene si può figurare nel rapporto di un uomo con un fiore. Se ti piace un fiore tu lo cogli, ma 
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quando ami un fiore continuerai a curarlo senza chiedere nulla in cambio. Ovviamente io sono il 

fiore, e grazie a lei la mia linfa vitale non si è ancora esaurita. 

Mio padre, Aldo. Un uomo di poche ma buone parole. Un uomo mite che mi ha insegnato il rispetto 

ed il sacrificio. Un uomo di altri tempi, che in una società dove la coerenza ormai è un motivo di 

vergogna, mi ha tramandato ideali che contano più di qualche falsa amicizia in più. Un uomo che 

per me ha fatto più sacrifici di chiunque altro, e senza mai farmelo pesare né tantomeno notare. Ma 

io lo so, e farò tutto quel che è in mio potere per ripagarlo un giorno. Spero non troppo lontano. 

Mio fratello, Alessandro. Un fratello come pochi ce ne sono. Penso che chiunque sarebbe, aggiungo 

giustamente, invidioso di un rapporto di fratellanza così ben riuscito. Un rapporto rafforzato da una 

complicità e sorprendente affinità nel modo di pensare e di approcciare la vita, che ci rende, a mio 

parere, la stessa persona in due corpi diversi. E chi meglio di te stesso con diverse esperienze può 

consigliarti? Questa serie di fattori non fa altro che saldare il nostro rapporto, pattuito oltre che dal 

corredo genetico, dall’affinità e stima reciproca. Sono sicurò sarà che ci saremo utili nelle nostre 

vite.  

Precedente ho utilizzato il termine nucleo familiare. Scelta voluta, perché la mia famiglia non si 

limita ai consanguinei, ma è molto più allargata. Il mio pensiero va a loro, a uno a uno, gli devo 

molto, gli devo tutto. Ho deciso di non nominarne nessuno, perché in fondo ognuno di loro sa che 

ruolo ha giocato in questa incredibile partita durata più di qualche attimo. Gente con cui ho 

condiviso camere doppie, case durante la quarantena, pranzi, cene, telefonate infinite, viaggi, piste 

da ballo, festività lontano da casa, partitelle di calcetto, pomeriggi al campino, serate olandesi, 

serate torinesi, serate acquavivesi, weekend immersi nello sport, nottate di studio, aperitivi, bottiglie 

di vino, compleanni, progetti… e potrei continuare riempiendo intere pagine ma in questo periodo in 

cui la lotta ambientale è così importante non mi va di abbattere altri alberi. Insomma nelle risate e 

nei pianti la loro presenza non è mai stata in dubbio. 

In questo percorso a ritroso non posso fare a meno di ripensare anche alle figure professionali che 

ho incontrato. Figure diverse, che mi hanno insegnato, che mi hanno supportato, che mi hanno 

illuminato. Colleghi, professori, professionisti che hanno reso il Politecnici una seconda casa per 

me. Anche grazie a loro devo la buona riuscita di questo percorso, oltre che di vita, è stato un 

percorso universitario. Colgo l’occasione per ringraziare in particolare il professor Carlo Novara, 

relatore di questa tesi, e il mio supervisore olandese Erjen Lefeber, una personalità fantastica che 

mi ha lasciato molto, non soltanto di nozioni tecniche ma anche di etica del lavoro, oltre ad esser 

stato il mio Cicerone nei Paesi Bassi, rendendo tale esperienza più piacevole. 

Il viaggio in questi lunghi e brevi anni è terminato. Il mio pensiero durante le ultime righe di 

questo prologo si rivolge alla persona più importante della mia vita. La persona a cui penso prima di 

addormentarmi per addolcire il mondo onirico. La persona senza la quale sarei probabilmente molto 

peggio di quel che sono. Mia nonna, nonna Chella. Da bambino le dicevo che sarei diventato un 

mago per ringiovanirla e sposarla. Purtroppo nonna sono diventato un ingegnere, spero che questo ti 

renda comunque orgogliosa. Il mio “bagaglio della vita”, come lo chiami tu, è evidentemente più 

pesante grazie a tutto ciò che ci hai messo dentro. Ti amerò per sempre. 

Se avete letto tutta questa parte della tesi sappiate che probabilmente siete tra le persone che non ho 

citato, ma che fanno parte di me. Perché in fondo “in questo mondo terrificante, tutto quello che 

abbiamo sono i legami che creiamo”. 

Grazie. 

 

Ivan Domenico Barbieri 


