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Abstract
Hidden Markov models are among the most important machine learning methods
for the statistical analysis of sequential data, but they struggle when applied to big
data. Their relative inefficiency has been addressed several times by the use of some
compression techniques, either for the computation or for the data. This thesis
explores the latter, with the application of a data compression technique based
on wavelets and the subsequent adaptation of the main HMMs algorithms from
the literature: the forward, Viterbi and Baum-Welch algorithms used to solve the
evaluation, decoding and training problem respectively. The testing phase shows
that this new technique generally yields equal or better results, obtaining some
extremely high speedups in the training problem, making it even thousands of times
faster; this enables the training of a HMM with big data on a commodity laptop.

Keywords: machine, learning, sequence, wavelet, compression, hidden, markov,
models, viterbi, training.
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1
Introduction

Nowadays, many real-world problems are tackled trying to get insights from data
with the application of machine learning techniques; it is easy to see that as the
amount of data becomes massive, the algorithms necessarily need to be adapted
and optimized towards a lower computational complexity to retain feasibility in
reasonable execution time.
Hidden Markov Models (HMMs) are among the most important machine learning
methods for the statistical analysis of sequential data. Their mathematical structure
provides a wide range of applications and can serve as a basis for more complex
models, making their study extremely meaningful. Some central and well-known
algorithms for HMMs tend to struggle when applied on big data; this thesis aims
to adapt them so they can be applied on a compressed representation of the data,
preserving their usefulness and applicability.

1.1 Motivation and previous research
There are many examples of real-world applications showing the importance of hid-
den Markov models: computational finance [3], speech recognition [4], and more.
Unfortunately, limitations have been encountered when working with big data due
to the computational complexity of the standard algorithms. This problem has been
tackled with many different approaches: one that has often proved its effectiveness
is the idea of compression, to significantly reduce either the computations or the
scale of the data.
To show some context and establish the relevance of this topic, some efforts and
achievements will be described. For discrete-valued sequences, [5] shows how some
speed improvements are obtained by text compression techniques, based on iden-
tifying repeated substrings in the observed input sequence and obtaining highly
parallelizable algorithms. Bayesian computations that were often avoided in prac-
tice due to long running times have been accelerated in [6], showing considerable
improvements. For continuous observations, Bayesian inference was tackled by [7]
and [2] using wavelet compression; as summarized in Figure 1.1, what has been left
uncovered are the possible speed improvements obtainable by applying compression
techniques to the standard algorithms.
This thesis aims at covering that unexplored case, studying the effects of wavelet
compression for regular HMMs and their possible impact on real-world problems.
Specifically, I will make use of the concepts in Wiedenhoeft’s papers [7] and [2],
using part of the HaMMLET tool for wavelet compression; this is described more

1
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in detail in Section 1.3.

2



1. Introduction

1.2 Hidden Markov Models
This section provides basic information on hidden Markov models and introduces
some needed notation, borrowed from the one used by Rabiner in [8]. Consider
a system which can be described by a set of N distinct states, S1, S2, ..., SN , as
shown in Figure 1.2. At regular discrete time intervals, the system goes through a
state change and moves to another state (or to the same one) according to certain
probabilities associated with the state; if the future evolution of the system depends
solely on the current state, regardless of the system’s history, this is a first-order
Markov process.
Let the time be denoted with t = 1, 2, ..., and the state of the system at a certain
time with qt. For a Markov process, it is true that:

P (qt = Sj|qt−1 = Si, qt−2 = Sk, ...) = P (qt = Sj|qt−1 = Si). (1.1)

The processes that are more often considered are time-homogeneous, meaning that
the transition probabilities aij from a state to another are independent of time;
these probabilities can be collected in a matrix A that obeys the standard stochastic
constraints:

aij = P (qt = Sj|qt−1 = Si) ≥ 0, and (1.2a)

NØ
j=1

aij = 1 (1.2b)

In the Markov model defined above and shown in Figure 1.2, each state corresponds
to an observable event. That is not always the case; sometimes the observations are
not the states of a Markov model, but they are related to the actual state chain
which is hidden, or not observable. A hidden Markov model (as shown in Figure
1.3) has an underlying Markov model which works as described above, with the
observations being a probabilistic function of the current state; this means that for
any observation Ot

P (Ot|Ot−1, Ot−2, ..., qt, qt−1, qt−2, ...) = P (Ot|qt). (1.3)

Based on the type of observations, Markov models can be divided in discrete, where
the alphabet of observations is finite, and continuous, where it’s not. Looking at
the definition of a model, many interesting questions may arise: how likely is it
that a sequence of observations has been generated by a certain model? What is
the most likely state path corresponding to a sequence of observations? What is
a good estimation of a model that suits the observations well? How can we apply
Bayesian inference to train a model? The first three questions are, as defined by
Rabiner in [8], the standard problems of HMMs named evaluation, decoding and
training problem respectively. The aim of this thesis is to address these problems in
the context of big data with a more efficient approach.

3
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1.3 Wavelet compression
The compression technique that will be used throughout this thesis is based on
wavelets. A wavelet is a function that resembles a small oscillation; the convolution
of scaled versions of a wavelet with a signal of interest yields its wavelet transform.
This is often used as a mathematical tool to analyze signals, obtain a different
representation of them, and extract useful information. It is similar to the Fourier
transform, with the main difference that the latter loses all information about the
localization of a given frequency component.
A signal is usually decomposed using a certain wavelet and then, after some pro-
cessing, often recomposed using the corresponding reconstruction wavelet. The
decomposition yields an approximation of the signal and some detail coefficients,
representing a smoothed version of the signal and the higher frequency informa-
tion respectively. Many different wavelets can be used in a transform, based on the
properties needed for a certain application:

• size of support, the interval where the wavelet is non-zero;
• symmetry, that influences the quality of localization;
• number of vanishing moments, a blindness to polynomials of a certain degree;
• regularity, also affecting frequency localization;
• (bi-)orthogonality, meaning that the decomposition and reconstruction wavelets

form two distinct bases which are mutually orthogonal.
Figure 1.4 shows an example of signal decomposition using wavelets; this repre-
sentation allows for effective de-noising against additive white Gaussian noise by
simply setting to zero some detail coefficients above a certain threshold before re-
constructing the signal. An interesting description of a possible use of wavelets is [9].

In the context of this thesis and following Wiedenhoeft’s work in [7] and [2], the
Haar wavelet is used to detect when a sequence of observations has a significant dis-
continuity in values, possibly indicating, under certain conditions, a change of state.
An example result of the compression process is shown in Figure 1.5. Specifically,
two main data structures from the HaMMLET tool will be used: the breakpoint
array and the integral array. The former uses a certain threshold (discussed later
with the implementation) to define a block structure by storing indexes of block
delimiters, dividing the sequence of observations into blocks where the state can
be considered to stay the same; the mechanism is shown in Figure 1.6. The latter
contains sufficient statistics for each block, such as the sum of all elements inside
it. Using two structures instead of one yields a more efficient implementation, as
described in [2].
It is reasonable to expect that this compression method will work well when the
states of the analyzed HMM are well-separated so that the block division is accurate,
and when the self-loop probability for each state is high enough so that a single
block contains more observations. In principle, this approach could also be applied
to multivariate data, but that falls out of the scope of this thesis.

5
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Figure 1.4: A signal decomposed with wavelets in its approximation and different
levels of detail. Image taken from [1].
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Figure 1.5: Typical sequence data undergoing block compression; the vertical red
lines show the block borders in the case of an ideal compression.
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Figure 1.6: Example of block generation using a breakpoint array. During the
query (thick red), when values are above the threshold (horizontal blue line), a
breakpoint is returned (vertical blue line). This figure has been taken from [2].
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2
Theory

This chapter tackles the theory behind hidden Markov models and their main prob-
lems of interest, using that as a stepping stone to analyze the theoretical transfor-
mations required by the data compression process. At this point the elements of a
HMM should be clearly defined and denoted; again, the notation used is taken from
Rabiner [8]:

• N , the number of states in the model; specifically, individual states will be
denoted as S = {S1, S2, ..., SN} and the state at time t will be denoted as qt;

• A = {aij}, the state transition probability distribution, where aij indicates the
probability of going from state i to state j in one time step;

• B = {bj}, the emission probability distribution of observations for each state
j;

• π = {πi}, the initial state distribution.
To indicate the complete set of parameters, this compact notation is generally used,

λ = (N,A,B, π). (2.1)

To add on this and clarify the notation used: the observation sequence is denoted by
O, with the element observed at time t being indicated by Ot; in the same way, the
state sequence (also state path, generating path) is denoted by Q, and the state at
time t is indicated by qt. The HMMs that will be used in this thesis are continuous-
valued; each state is associated and characterized by an emission distribution. For
many applications, using Gaussian distributions is a good choice (e.g. autoregressive
HMMs for speech recognition). As stated in the introduction, three main problems
will be tackled; each one will be described and discussed in a separate section below.

2.1 Evaluation problem

The problem is about evaluating how well a specific sequence of observations is
represented by a given model, through the computation of the probability that the
observed sequence was produced by the model. Solving this problem is important
because it allows the comparison of different models to decide which one better
represents a sequence of observations. Formally, given the observation sequence
O = O1, O2, ..., OT and a model λ = (A,B, π), the goal is to efficiently compute its
likelihood. A very intuitive but inefficient way of doing it would be applying the law
of total probability, enumerating every possible sequence of states and summing the

9



2. Theory

conditional probability of all observations over all those sequences:

P (O|λ) =
Ø

all Q

P (O|Q, λ) =
Ø

all Q

πq1bq1(O1)aq1q2bq2(O2) . . . aqT −1bqT
(OT ) (2.2)

For a specific state sequence, this equation starts in the state q1 with probability
πq1 , produces the symbol O1 with probability bq1(O1) and moves to the next state
q1 to q2 with probability aq1q2 , and then follows the same logic to cover the whole
observation sequence. When looking at the computational complexity, the number
of state paths obtained by enumeration is given by the dispositions with repetition of
the states, that is NT ; for each state, the number of calculations scales linearly with
the length of the observation sequence; this yields a total computational complexity
that is O(T ·NT ).

2.1.1 Forward algorithm
The standard algorithm used to solve the evaluation problem is the forward algo-
rithm, which is much more efficient than the approach considered before. The key
element is the forward variable αt(i), defined as the joint probability of observing
the sequence up to time t and being in state Si at time t

αt(i) = P (O1O2 . . . Ot, qt = Si|λ). (2.3)

Through induction, the following procedure can be defined:

α1(i) = πibi(O1), 1 ≤ i ≤ N (2.4a)

αt+1(j) =
5 NØ

i=1
αt(i)aij

6
bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N (2.4b)

P (O|λ) =
NØ

i=1
αT (i). (2.4c)

The first step is the initialization of the forward variable in (2.4a) using the initial
probability distribution π. The actual induction happens on the second step (2.4b),
where αt+1 is calculated using the forward variables at the previous instant αt; to
make that calculation for a certain state Sj, it is necessary to consider the probability
of getting there from any state Si multiplied by the probability of observing the
symbol Ot+1. This procedure terminates with (2.4c), that simply takes the sum
of the forward variables over all the states. The procedure can be visualized well
through Figure 2.1.
Looking at the computational complexity, the number of calculations for each obser-
vation is N2 (N per each state); repeating this for the whole sequence length gives a
complexity that is O(T ·N2), which is faster than the previous approach, especially
for increasingly long sequences.
Very closely tied to this algorithm is the backward algorithm. Although it’s not
necessary to solve the evaluation problem, it can be helpful in the solution of both
the decoding and the training problems.

10
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Figure 2.1: Graphical representation of the lattice structure used for dynamic
programming in the standard algorithms.

2.1.2 Backward algorithm
The backward variable is defined as the probability of the partial observation se-
quence from t+ 1 to the end, given a certain state at time t and the model

βt(i) = P (Ot+1Ot+2 . . . Ot|qt = Si, λ). (2.5)

This variable can also be calculated using the lattice structure shown in Figure 2.1,
in an inductive fashion with the use of dynamic programming:

βT (i) = 1, 1 ≤ i ≤ N, and (2.6a)

βt(i) =
NØ

j=1
aijbj(Ot+1) βt+1(j), t = T − 1, T − 2, · · · , 1, 1 ≤ i ≤ N. (2.6b)

The initialization step in (2.6a) chooses an arbitrary starting point; the induction
(2.6b) computes the other variables by accounting for all the possible states the
system could have been in at the following time step. The calculation of the com-
putational complexity of this algorithm follows the same reasoning of the forward
algorithm; this leads to conclude that the backward algorithm also has a complexity
that is O(T ·N2).

11
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2.2 Decoding problem
A very common situation when dealing with hidden Markov models is the need
to predict the generating state path of a certain observed sequence. There is no
exact answer to this question; the goal is to find the solution that better fits the
data. Many optimization criteria can be used based on the definition of better. An
example is finding the most likely state individually for each observation; using this
criterion, the key variable is

γt(i) = P (qt = Si|O, λ), (2.7)

which is the probability of being in state Si at time t, given both the observation
sequence and the model. This variable can be expressed using the forward and
backward variables in the following way

γt(i) = αt(i)βt(i)
P (O|λ) = αt(i)βt(i)qN

j=1 αt(j)βt(j)
, (2.8)

because the forward variable accounts for the observations before time t, while the
backward variable refers to the observations after t. The most likely state at time t
is easily obtained through the γt variable by looking at which state as the highest
associated probability:

qt = argmax
1≤i≤N

5
γt(i)

6
, 1 ≤ t ≤ T. (2.9)

Although this approach obtains the highest number of expected correct matches
between predicted and actual state, it is often discarded since it disregards the
transition probabilities of the model. In particular, if some transitions have zero
probability, meaning they cannot happen, this criterion would still be able to include
them in the result.
For this reason, it is often more interesting to compute the most likely generating
path; mathematically, this means finding the maximization of P (Q|O, λ). The stan-
dard algorithm used to solve this problem is the Viterbi algorithm; as the forward
algorithm, it uses a dynamic programming approach that allows to reduce computa-
tional complexity. The Viterbi algorithm substitutes the summations of the forward
algorithm with a maximization; the key variable to calculate is δt(i), defined as the
highest probability along a single path, after the first t observations and ending in
state i:

δt(i) = max
q1,q2,...,qt−1

P (q1q2 . . . qt = i, O1O2 . . . Ot|λ) (2.10)

The most likely path will be the argument of this maximization over all the states
considering the whole observations sequence; it can be defined in the notation as ψ.
Through induction it is possible to write the following equations:

δ1(i) = πibi(O1), 1 ≤ i ≤ N (2.11a)
ψ1 = 0

12
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δt(j) = max
1≤i≤N

5
δt−1(i) aij

6
bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N (2.11b)

ψt(j) = argmax
1≤i≤N

5
δt−1(i) aij

6
, 2 ≤ t ≤ T, 1 ≤ j ≤ N

P ∗ = max
1≤i≤N

5
δT (i)

6
(2.11c)

q∗
T = argmax

1≤i≤N

5
δT (i)

6

q∗
t = ψt+1(q∗

t+1), t = T − 1, T − 2, . . . , 1 (2.11d)

The initialization phase in (2.11a) starts with an empty solution for the state ψ1.
The induction in (2.11b) relies on the lattice structured defined previously in Figure
2.1; the contribution of the previous δt variables is given through the max operator
instead of using summation. During this process, the argmax is saved to later use
the variable ψ to recover the most likely path. The termination (2.11c) happens
at the end of the observations sequence. After the final step, the most likely state
path associated with the sequence is given by backtracking through the ψ variables
as shown in (2.11d).
To discuss the computational complexity of this algorithm, the same points of the
forward algorithm can be made, leading to affirm that the complexity of the Viterbi
algorithm is also O(T ·N2).

2.3 Training problem
Real-world applications present many scenarios where the HMMs’ parameters are
not explicitly known. The relevance of this problem is easily shown by noting that a
model gives a lot of insights on the system; moreover, its accuracy was a key assump-
tion in the previous computations. The goal is to find the model λ that maximizes
the probability of the observation sequence given the model, P (O|λ). Unfortunately,
this problem is very complex and there is no known way to analytically solve this
maximization problem for any given finite observation sequence.
Despite this, a number of techniques can be used to locally maximize P (O|λ); a very
popular one is the Baum-Welch method, that starts from a guess of the model and
iteratively performs reestimations of the parameters to improve it. This algorithm
introduces a new key variable: ξ(i, j), the probability of being in state Si at time t
and in state Sj at time t+ 1

ξt(i, j) = P (qt = Si, qt+1 = Sj|O, λ). (2.12)

It can be useful to express this equation using the forward and backward variables.
In fact, the forward variable αt(i) accounts for the observations from the first one
up to Ot in state Si; the backward variable βt+1(j) does the complementary job,
considering the observation sequence starting in state Sj and from observation Ot+1
up to the last one. The step between t and t + 1 has been left out: to tie the two

13



2. Theory

variables, it is necessary to include the probability of transitioning from state Si

to Sj and observing Ot+1, which is aijbj(Ot+1). The new formulation of ξt can be
written as

ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
P (O|λ) = αt(i)aijbj(Ot+1)βt+1(j)qN

p=1
qN

q=1 αt(p)apqbq(Ot+1)βt+1(q)
. (2.13)

By looking at the definition of the γt variable given in (2.7), it can be related with
ξt:

γt(i) =
NØ

j=1
ξt(i, j) (2.14)

Recalling the previous definition of γt given in (2.7) is important to notice that
by summing γt(i) over t, the obtained quantity can be interpreted as the expected
number of times that the state Si is visited, or equivalently as the expected number
of transitions from state Si (if we exclude the last observation at time T ):

T −1Ø
t=1

γt(i) = expected number of transitions from state Si (2.15)

In a similar way, the sum of ξt(i, j) over t can be interpreted as the expected number
of transitions from Si to Sj:

T −1Ø
t=1

ξt(i, j) = expected number of transitions from state Si to Sj (2.16)

These interpretations lead to the definition of two reestimation formulas for the
initial distribution and the transition probabilities:

π̄i = γ1(i) (2.17a)

āij =
qT −1

t=1 ξt(i, j)qT −1
t=1 γt(i)

(2.17b)

The HMMs that have been considered throughout this thesis work have continuous
emission densities, that in the most general case can be written as:

bj(O) =
MØ

m=1
cjmR[O, µjm, Ujm] (2.18)

where O is the observations sequence, cjm is the mixture coefficient of the m-th
mixture in state Sj and R is a log-concave or elliptically symmetric density with
mean vector µjm and covariance matrix Ujm, again for the m-th mixture in state Sj.
It can be shown ( [10–12] ) that the reestimation formulas for the coefficients of the
mixture density have the following form

c̄jk =
qT

t=1 γt(j, k)qT
t=1

qM
k=1 γt(j, k)

, (2.19a)

14
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µ̄jk =
qT

t=1 γt(j, k) ·OtqT
t=1 γt(j, k)

, and (2.19b)

Ūjk =
qT

t=1 γt(j, k) · (Ot − µjk)(Ot − µjk)ÍqT
t=1 γt(j, k)

. (2.19c)

where prime denotes the transposition of the vector and γt(j, k) is simply γt(j)
relative to the k-th mixture component. According to the context and the scope of
the thesis, the mixture model is reduced to a univariate Gaussian distribution; the
emission density for a state Sj can be rewritten as

bj(O) = R[O, µj, σ
2], (2.20)

where µj is the mean and σ2 is the variance of the Gaussian distribution associated
with the state Sj. Thus, the reestimation formulas can also be simplified (e.g. by
getting rid of the mixture weight coefficients) and rewritten:

µ̄j =
qT

t=1 γt(j) ·OtqT
t=1 γt(j)

(2.21a)

σ̄2
j =

qT
t=1 γt(j) · (Ot − µj)2qT

t=1 γt(j)
(2.21b)

Applying the reestimation formulas (2.17a), (2.17b), (2.21a) and (2.21b) produces a
reestimated model λ̄; the Baum-Welch algorithm guarantees that either the original
model λ is a critical point of the likelihood function (the result would be λ = λ̄) or the
model λ̄ is more likely than the previous one, meaning that P (O|λ̄) > P (O|λ). The
iteration of this procedure converges to a local maximum and produces a maximum
likelihood estimate of the model, providing a solution to the training problem.

2.3.1 Starting model
The Baum-Welch procedure requires the definition of a starting model; even though
the number of states is generally known (or can be guessed or estimated), to obtain
good results a good definition of the starting model λ = (A,B, π) is necessary.
Unfortunately, most of the time little knowledge is possessed about the system; thus,
there is no straightforward answer to this problem. As discussed by Rabiner in [8],
experience shows that for A and π either random or uniform initial estimates are
adequate for useful parameters’ reestimation. For continuous emission distributions
B, the starting parameters are essential. Such parameters can be obtained with
several techniques, such as manual segmentation of the observation sequence into
states or k-means segmentation with clustering.

2.4 Compressed algorithms
The wavelet compression of the data has a big impact on the mechanisms of the
algorithms. The compression removes the necessity to consider the observations
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Figure 2.2: The structure on which the compressed algorithms operate; it generates
from a subset of the links in the lattice structure.

individually, allowing to focus on groups of them called blocks. As anticipated in
Section 1.3, a block is a series of observations where the underlying state can be con-
sidered constant and with sufficient statistics to perform the computations required
in the algorithms of interest. The structure used by all the algorithms above, as said
many times, is the one in Figure 2.1; not knowing anything about the generating
path of the observations forces to consider all the possible ones, evaluating at each
time step the contribute of every possible state. Compressing the observations opens
up new possibilities by modifying that lattice structure into the one represented in
Figure 2.2. Since inside a block the state can be assumed to remain the same, the
transitions from other states are reputed too unlikely and thus ignored.
To talk formally about compression and its impact on the computations, it is nec-
essary to introduce some notation; this is done taking [13] as a starting point, but
applying some changes to avoid conflicts with already defined symbols and to put
more emphasis on some concepts.
A partition of the observations in blocks can be denoted as Y := {Yw}W

w=1, where
Yw is a single block and W is the number of blocks forming the partition. A block
contains nw observations; each one is referred to using the symbol yw,k which is
indexed by the block number w and by the position inside the block k. The summary
statistics gathered for each block are the following;

nw, Σ1,w :=
nwØ
k=1

yw,k, Σ2,w :=
nwØ
k=1

y2
w,k (2.22)
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To figure out how the computation varies with the introduction of this block struc-
ture, it is useful to thoroughly examine the calculations in Wiedenhoeft’s PhD the-
sis [13] where HaMMLET was developed. Remembering the definition of the forward
variable at (2.3) and its computation formula at (2.4b), being inside a block Yw only
allows self-transitions; this reduces the computation of the next forward variable to

αt+1(j) = αt(j)ajjbj(Ot+1). (2.23)

Using induction, the forward variable relative to the whole block has to account
for nw − 1 self-transitions, one transition to state Sj and nw emissions; it can be
expressed as

αw(j) =
NØ

i=1

5
αw−1(i)aij

6
anw−1

jj

nwÙ
k=1

bj(yw,k). (2.24)

An analogous point can be made on the backward and the Viterbi algorithms; the key
part, though, is that this formula still relies on individual observations. To exploit
summary blocks statistics, the term accounting emissions and self-transitions within
a block can be rewritten by making the Gaussian emissions explicit

anw−1
jj

nwÙ
k=1

bj(yw,k) =
anw−1

jj√
2πnw

σnw
j

exp
 −

nw−1Ø
k=1

(yw,k − µj)2

2σ2
j

. (2.25)

The factors outside the exponential can be brought in, also providing implementation
advantages discussed later in Section 3.2.2. This yields

exp
 −

nw−1Ø
k=1

(yw,k − µj)2

2σ2
j

+ (nw − 1) log(ajj) − nw log(σj) − nw log(
√

2π)
. (2.26)

The exponent can finally be rewritten using the blocks summary statistics:

Ew(j) := 2µjΣ1,w − Σ2,w

2σ2
j

+K(nw, j), and (2.27a)

K(nw, j) := (nw − 1) log(ajj) − nw

3
log(σj) +

µ2
j

2σ2
j

+ 1
2 log(2π)

4
. (2.27b)

As pointed out in Wiedenhoeft’s PhD thesis [13], an equivalent term can be easily
derived also for non-Gaussian emissions that belong to the exponential distribution
family.

2.5 Formal transformations
To perform the other calculations, the equations have to be adapted using the re-
formulation above. The following sections contain the adaptation of the algorithms
to the compression scheme.
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2.5.1 Forward algorithm
Restructuring the forward algorithm does not bring a new meaning to the new vari-
able; for a block, αw(i) is the approximation of the uncompressed forward variable
at the end of the block. The induction phase has already been defined in (2.24);
adding the other steps yields:

α1(i) = πie
E1(i), 1 ≤ i ≤ N (2.28a)

αw(j) =
5 NØ

i=1
αw−1(i)aij

6
eEw(j), 1 ≤ w ≤ W, 1 ≤ j ≤ N (2.28b)

PY (O|λ) =
NØ

i=1
αW (i). (2.28c)

2.5.2 Backward algorithm
The backward algorithm follows a very similar transformation; βw(i) is defined here
as the backward variable at the start of a block:

βW (i) = 1, 1 ≤ i ≤ N (2.29a)

βw(i) =
NØ

j=1
aije

Ew+1(j)βw+1(j), w = W − 1,W − 2, . . . , 1, 1 ≤ i ≤ N. (2.29b)

2.5.3 Viterbi algorithm
The Viterbi algorithm is based on the forward algorithm with the substitution of
the sum over all the states with the max operator; again, all the variables refer to
the end of a block:

δ1(i) = πie
E1(i), 1 ≤ i ≤ N (2.30a)

ψ1 = 0,

δw(j) = max
1≤i≤N

5
δw−1(i) aij

6
eEw(j), 1 ≤ w ≤ W, 1 ≤ j ≤ N (2.30b)

ψt(j) = argmax
1≤i≤N

5
δw−1(i) aij

6
, 1 ≤ w ≤ W, 1 ≤ j ≤ N

P ∗ = max
1≤i≤N

5
δW (i)

6
, (2.30c)

q∗
W = argmax

1≤i≤N

5
δW (i)

6
,

q∗
w = ψw+1(q∗

w+1), w = W − 1,W − 2, . . . , 1. (2.30d)
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2.5.4 Baum-Welch algorithm
The Baum-Welch algorithm is more complex than the others, having more variables
to calculate for the parameters reestimation. Following the same order of Section
2.3, the first computation of interest is ξt(i, j), as defined in (2.13). To reason about
the following computations, it is important to remember that both the compressed
forward and backward variables refer to the end of a block. Given this, two different
situations happen based on computing ξ inside or outside a block. Inside a block,
it is easy to see that ξt(i, j) = 0 for i Ó= j; if w indicates the block, when i = j it
becomes:

ξt(i, i) = αt(i)aiibi(Ot+1)βt+1(i)
P (O|λ) = (2.31)

= αw(i)
anw−t

ii

rnw
k=t bi(Ok)

aiibi(Ot+1)βw(i)anw−(t+1)
ii

nwÙ
k=t+2

bi(Ok) 1
PY (O|λ) =

= αw(i)βw(i)
PY (O|λ)

Since the right expression is not dependent on t, inside a block the variable is
constant over time. Instead, at the boundary between two blocks:

ξt(i, j) = αt(i)aijbj(Ot+1)βt+1(j)
P (O|λ) = (2.32)

= αw(i)aijbj(Ot+1)βw+1(j)anw+1−1
jj

nw+1Ù
k=t+2

bj(Ok) 1
PY (O|λ) =

= αw(i)aije
Ew+1(j)βw+1(j)

PY (O|λ)

For the purpose of rewriting reestimation equations, it is useful to define the ξ
variable for a block in the following way:

ξw(i, j) =
Ø

t∈Yw

ξt(i, j) = (2.33)

= 1
P (O|λ) ·


(nw − 1)αw(i)βw(i) + αw(i)aije

Ew+1(j)βw+1(j) , for i = j ∧ w Ó= W

(nW − 1)αW (i)βW (i) , for i = j ∧ w = W

αw(i)aije
Ew+1(j)βw+1(j) , for i Ó= j ∧ w Ó= W

0 , for i Ó= j ∧ w = W

(2.34)

Moving forward, it is interesting to note that by interpreting γt(i) as the probability
of visiting the state Si at time t, the variable is also constant over t inside a block (also
implied from the result above); this means that for any t inside a block, any γt(i)
can be representative for the whole block; recalling that the forward and backward
variables both refer to the end of a block, equation (2.8) can be rewritten:

γt(i) = αt(i)βt(i)
P (O|λ) = αw(i)βw(i)

PY (O|λ) (2.35)
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It is worth noting that this reformulation correctly maintains the definition given in
(2.14). For convenience it is useful to define γw(i) as the representative value for a
block, which means that for all the t associated with a block, γw(i) = γt(i).
The reestimation formulas at (2.17a), (2.17b), (2.21a) and (2.21b) follow the new
definitions of ξt(i, j) and γt(i). Using the equations above, they can be rewritten:

π̄i = γ1(i) (2.36a)

āij =
qW

w=1 ξw(i, j)qW
w=1

è
nwγw(i)

é
− γW (i)

(2.36b)

The mean and standard deviation reestimations follow a slightly more complex re-
formulation, both for the general mixture and the single Gaussian distribution. In
particular, (2.21a) multiplies the single observation value by the respective γt(i).
Since γt(i) is constant inside a block, the equation can be rewritten as:

µ̄j =
qT

t=1 γt(j)OtqT
t=1 γt(j)

=
qW

w=1 γw(j) qnw
k=1 yw,kqW

w=1 γw(j) · nw

=
qW

w=1 γw(j) · Σ1,wqW
w=1 γw(j) · nw

(2.37)

The same reasoning applies to the variance reestimation:

σ̄2
j =

qT
t=1 γt(j)(Ot − µj)2qT

t=1 γt(j)
=

qW
w=1 γw(j)

è
Σ2,w − 2µ̄jΣ1,w + nwµ̄

2
j

é
qW

w=1 γw(j) · nw

(2.38)

2.6 Relevant model parameters
The computational complexity of the compressed algorithms is lower than the stan-
dard versions; since the blocks are used instead of the individual observations, it
goes from O(T ·N2) to O(W ·N2), where W is the total number of blocks obtained
from the compression. The complexity analysis refers to an infinite amount of data;
the actual efficiency gain depends on several factors: the separation of the states, the
self-transition probabilities, and the implementation details (which will be discussed
in Chapter 3).
These parameters also impact the results errors due to the approximation introduced
by the block compression (as in (2.24)). Trying to find some conditions for which the
compressed algorithms always work well (or badly) in terms of speed and accuracy
is one of the main goals of this thesis, leading to a sensible choice on which set of
algorithms to utilize in different situations.
This section presents the most relevant factors that influence the quality of the re-
sults, discussing their relevance and eventual conditions under which the compressed
algorithms should yield a substantial advantage over the standard ones.

2.6.1 State separation
The state separation is a key factor in the compressed algorithms; if the states are
well-separated, it is easier to distinguish between two of them. This means that the
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Figure 2.3: Data generated using a two-state HMM with distributions N(0, 12)
and N(10, 12).

wavelet compression will produce blocks with clear boundaries, because some detail
coefficients of the Maxlet transform will be high due to a bigger jump between two
observations values belonging to different states. Figure 2.3 shows an example of
data with clear distinction between the states.
If the states are well-separated, the approximation made by the block compression
of neglecting some states’ contribution becomes more accurate. This is true because
the emission probability of an observation for a state that did not generate it gets
very close to zero. In this context, it is useful to formally define a measure ηS1,S2

of how well-separated two states are. Since for a Gaussian distribution N(µ, σ2) it
is known that 99.97% of the values lie within three standard deviations from the
mean, a good measure definition could be:

ηS1,S2 = |µS1 − µS2 |
3(σS1 + σS2) (2.39)

The power of this definition lies in the fact that it is easy to understand visually: if
ηS1,S2 = 1 it means that the two distributions touch exactly after their respective 3σ;
if ηS1,S2 ¹ 1, the distributions overlap for a significant portion; if ηS1,S2 º 1, then
the distributions are clearly separated. Also, a measure of ηS1,S2 = 0 indicates that
the two distributions have the same mean. When having more than two states, this
separation should apply between every pair of consecutive distributions (ordered by
mean). This η will be denoted as separation coefficient for easier reference.
It should be clear that a higher state separation should reduce the error between the
compressed and the standard algorithms; a more precise analysis will be conducted
with the evaluation of the results in Chapter 4.
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2.6.2 Self-transition probabilities
High self-transition probabilities should help the compression process in more than
one way: for example, they make the blocks bigger, directly implying the production
of fewer blocks for a fixed amount of observations and thus saving precious compu-
tation time. The impact on accuracy is hard to evaluate: for a fixed observation
sequence, having fewer blocks could increase the error because more state paths
are ignored; on the other hand, the contribution of the other state paths becomes
smaller, thus decreasing the approximation error. To better understand the actual
effects of this parameter, an extensive testing process will be discussed in Chapter
4.
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Methods

This chapter describes the implementation structure, covering in detail the differ-
ences between the standard algorithms and their compressed version. Moreover,
typical problems (e.g. numerical precision) will be addressed, discussing applied
solutions and possible improvements.
The language of choice is C++, after considering others such as Python and R;
it sacrifices some simplicity for the sake of efficiency, both in terms of speed and
memory management. A great and popular compromise is to expose some Python
bindings to an internal C++ structure, providing a simpler interface to the under-
lying complex implementation.

3.1 Framework description
In the design phase of a new project it is very useful to draw a scheme describing
the class structure as the one in Figure 3.1, also listing what external tools will be
used and how they will interface to the main components. To have more control
over the code and allow for fair speed comparisons, both the HMM representation
and the standard algorithms have been implemented from scratch.
The external components used are: CXXopts, to parse input arguments from com-
mand line; HaMMLET [13], for wavelet compression and the related data structures;
Pomegranate, a Python framework used for data generation.
The tool has been named WaHMM, after Wavelets Hidden Markov Model and
following the style of HaMMLET. The core interfaces with the external components
through the parser and the Compressor elements. The standard algorithms and
their compressed version have been separated in different files for easier management.
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Main module
WaHMM.cpp
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Algorithms Compressed 
Algorithms
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Parser CompressorCXXopts HaMMLET

Figure 3.1: Structure of the implemented code (thin border) and its connection
points to the external libraries used (thick border).

3.2 Implementation details
This section will describe several implementation choices, the reasoning behind
them, and their impact on the results.

3.2.1 Parser
The parser allows for easy interaction with the tool through the specifications of
various options using the common UNIX style. Although it can be quite verbose,
it is a very effective instrument to define input parameters and which algorithms to
execute. This interface makes it possible to input a model through command line or
file, as well as giving input observations as a space-separated list of floats in a file or
with a binary file format. Several options allow the user to choose which algorithms
to execute, together with controls for verbosity and saving the results to files.

3.2.2 Numerical errors
Any kind of numerical method or scientific computation faces the problem of numer-
ical errors. Representing real numbers on a machine is one thing, but observing that
representation forces their decimal expansion to be truncated at some point. There is
an entire sub-field of programming language theory called “exact real-number com-
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putation” devoted to representing real numbers on computers; more information on
that can be found on Haskell’s wiki page [14]. At the end of the day, the smallest
difference between two numbers that a computer can recognize is called machine
epsilon; if their difference is smaller, it is rounded to zero producing a rounding
error. The machine epsilon is platform-dependent, but generally, it can be close
to 10−16. Since the product of probabilities can get very small fairly quickly, this
problem would cause increasingly bigger errors on all computations (e.g. forward
matrix after some time steps).
To address this well-known problem, many approaches are possible: to achieve higher
precision, a double data type is used to store results, redefined as wahmm::real_t;
the workspace wahmm is used to avoid naming conflicts with libraries such as HaMM-
LET. For numerical problems, the strategy followed in this thesis is to use logarithms
of probabilities. There are several advantages with this approach: the logarithm nat-
urally scales the [0, 1] interval to (−∞, 0] so that when probabilities get smaller, their
logarithm becomes more negative; all the products required by the algorithms be-
come summations, which is much easier and faster to perform. Using a logarithmic
space also saves computations in the compressed algorithms; in fact, this transfor-
mation removes the exponential function in (2.27a), making it a natural choice for
the use in these algorithms.

3.2.3 State representation

For the scope of this thesis, a state is associated with a Gaussian distribution that
defines its emission probabilities. As such, accepting the trade-off between gener-
alization loss and efficiency gain, the State class directly embeds the parameters
of the associated Gaussian distribution. This allows for faster retrieval and update
of the parameters, and can be easily expanded to other probability distributions
(for future work) by turning State into an abstract class and deriving distribution-
specific State classes from it. It is worth noting that the emission probability is
provided directly in logarithmic space, to avoid useless overheads and to speed up
the computation.

3.2.4 Data generation

To generate data from the model, the framework Pomegranate is being used. It is
a general HMM library, but the fact that the implementation language is Python
makes any eventual speed comparison unfair, and thus it will not be used to apply
standard algorithms to the model. Pomegranate can generate data in a simple and
fast way; some Python scripts interface with it by defining a model that is coherent
with the one used or estimated in WaHMM.
Specifically, generate_data.py reads the model from a file and generates an ob-
servation sequence of some length, optionally saving both the sequence and the
generating state path to file in both plaintext and binary form; this allows to read
the binary file for faster input processing, shrinking the running times considerably.
At this time, k-means clustering can be performed on the data after it is generated.
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3.2.5 Wavelet compression
The compression of the data happens through the Compressor class, which wraps an
interface to HaMMLET. The observation sequence undergoes the Maxlet transform
and is encapsulated in a BreakpointArray, a data structure that, given a certain
threshold, subdivides the sequence into blocks. Each block gathers observations that
are sufficiently close and thus are likely to have been generated while the model was
in the same hidden state. A summary of each block statistics is stored in a parallel
structure called IntegralArray. The combination of these two structures enables
the creation of an interface for simple and efficient querying of consecutive blocks
and their statistics summary. More information on how HaMMLET works can be
found in [13].
The threshold used to define blocks can surely be subject to discussions: a low
threshold will yield more blocks than needed, reducing the efficiency of compres-
sion; a high threshold will instead generate fewer bigger blocks that may group
observations belonging to different states. The choice is taken from HaMMLET: the
threshold is obtained by computing an estimate of the noise variance from the finest
detail coefficients of the wavelet transform.

3.2.6 Logarithms summation
Some very useful declarations and functions are present in utilities.hpp and
commons.hpp; other than functions to easily print and free matrices, the most im-
portant one is sum_logarithms(). Since the program operates in the logarithmic
space, the probability products are converted into summations. A sum in the orig-
inal space, though, has no simple logarithmic equivalent; this situation happens
often, as in equation (2.4b).
Using symbols, the function needed to solve this problem is some function F so that,
given two elements in logarithmic space, log(x) and log(y), it should produce:

log(x+ y) = F (log(x), log(y)) (3.1)

The simplest option would be converting both elements back to the original space
through exponentiation:

log(x+ y) = log(elog(x) + elog(y)) (3.2)

However, this solution can cause underflow when log(x) or log(y) are too negative.
A simplification of this allows to write

log(x+ y) = log(x) + log(elog(y)−log(x) + 1) (3.3)

when log(x) > log(y). Some workaround is required if any of the operands is
−∞, implying the presence of some if clauses before the actual computation. The
sum_logarithms() function implements this operation using the std::log1pf()
function from the standard library of C++ for a more efficient computation of the
logarithm.
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3.2.7 Saving results

The algorithms’ results can be saved to file by adding the correct option when calling
the program. Although the results directory may be changed, the default choice is
the /results folder. After running the algorithms, WaHMM will write the results
in properly named files. To produce an example, a set of standard results can also
be generated using Pomegranate through the script pomegranate_test.py, more
for a comparison with a different approach than for speed and performance.

3.2.8 Test automation

The process of testing the algorithms against generated data is of course central
to the thesis work; given the huge number of tests to conduct, it makes sense to
automate not only the testing process but also the extraction of meaningful results.
The Python script automated_test.py takes care of the testing process through a
very simple sequence of steps:

• generate the model according to the topology and number of states relative to
the current case that is subject to test;

• generate data from the model and save to file both the sequence and the
generating path;

• estimate a model for the training problem from the data and save it to file;
• execute the algorithms, time their execution and compute some performance

measures;
• periodically save the test results to file for future analysis.

The Python script results_aggregation.py analyzes the results in an automated
way, by not only computing the differences between the compressed and standard
algorithms in the chosen metrics, but also producing their graphical representation
in the form of plots, boxplots, and a merge of the two. The last one is the format
used for the figures discussed in Chapter 4.

3.2.9 Other Python files

Several Python scripts have been written to ease WaHMM’s usage and setup, not
only with an interface that may be simpler to use but that also allows easier automa-
tion of the testing process. The generate_model.py script defines a model and saves
it to file so that it can be used in other scripts and later be imported by WaHMM.
plot_data.py and plot_kmeans.py are utilities to produce some outlook on the
generated data and the estimated model respectively. viterbi_comparison.py sim-
ply compares Viterbi paths obtained with different algorithms to point out the differ-
ences, particularly useful when checking the accuracy of the compressed algorithms
against the real generating path. utilities_io.py and utilities_kmeans.py
simply provide helper functions for the other scripts.

27



3. Methods

3.3 Standard algorithms
This section will discuss the implementation of the standard algorithms; for an easier
understanding, it can be useful to reference Figure 2.1 for a structural overview. All
the three functions solving the problems accept some boolean flags to influence the
type of output: verbose prints more information to the standard output; silence
suppresses all the output messages; tofile specifies that the output results should
be saved to file.

3.3.1 Evaluation problem
The evaluation problems can be solved by computing the forward matrix. Looking
at Figure 2.1, each row is associated with a state; each column represents a time
step. After the initialization described in (2.4a), the induction phase is constructed
by initializing the forward variables to −∞ for the current time step; then, the
sum_logarithms() function is applied to accumulate the sum of the products in
(2.4b); at last, the emission probability is added and the computation moves to the
following time step. A simple sum of the forward variables over all states at the last
time step yields the desired P (O|λ) probability. Looking at the code, it is easy to
confirm the computational complexity of O(T · N2) (as it was previously stated in
Section 2.1.1).

3.3.2 Decoding problem
From a theoretical perspective, the decoding problem is very similar to the evaluation
problem; in fact, the Viterbi algorithm differs from the forward algorithm in applying
the max operator instead of the sum. The implementation is slightly more complex,
requiring an additional matrix (named statesViterbi) with the same structure to
hold the argmax results from (2.11b). After the initialization phase, a loop is used to
join the computation with a classic maximum search on-the-fly; this allows to only
iterate once over the states. The backtracking described in (2.11d) is then applied
by appending each state of the path at the head of a list; in this way, a simple visit
of the list yields the Viterbi state path. Again, the computational complexity of
O(T ·N2) that was discussed in Section 2.2 is confirmed by the implementation.

3.3.3 Training problem
The Baum-Welch algorithm is the most complex of the three. It is performed it-
eratively for a maximum amount of iterations or until the procedure is improving
P (O|λ) by an amount smaller than a predefined threshold (10−9 in the implemen-
tation). For this reason, to avoid a big overhead, most of the memory allocations
happen in training_problem_wrapper(), which also handles the iterations of the
algorithm. The result returned at each iteration is the evaluation probability P (O|λ)
relative to the model before the reestimation; this implementation choice avoids one
useless computation of the forward matrix at each iteration of the Baum-Welch al-
gorithm at the cost of performing one more iteration than needed after matching
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the threshold.
The starting model supplied to the procedure can be directly read from a file using
the option estimate; in the absence of a solid estimation from domain knowledge,
it is possible to generate the model estimate through an automatic procedure that,
given the number of states, selects some means and variances to be associated with
states. The chosen method for this automatic procedure is the application of k-
means clustering to the sequence; the proposed Python implementation uses the
clusters’ centroids as estimated means and computes the standard deviation with
the canonical squared distance formula. The model is then saved to an output
data/kmeans_model file, to be imported as a starting model when executing the
training algorithm. This clustering operation can happen either directly when the
data is generated, for faster execution, or later on, for externally supplied data.
The theory presented in Section 2.3 advocates for calculating every variable for all
time steps: this implies a huge memory usage to store the forward and backward
variables, plus γt and εt. The procedure does not need to store all the intermediate
results: to save space, the backward variable and γt are calculated only for the
considered time step; the other variables are simply summed to obtain the final
cumulative sum over all time steps. Looking at the reestimation equations, it can
be seen that the denominator P (O|λ) gets simplified in all of them except for (2.17a);
thus, it is more convenient to remove it from the equations and just add it to (2.17a)
at the end.
Performing the reestimation of the Gaussian’s mean using the formula in (2.21a)
causes a problem; although working in logarithmic space eases the computations for
the variable γt, it cannot be done when observations are negative; that is, if the
reestimated mean is negative, it cannot be represented in the logarithmic space. To
overcome this problem, the observation sequence must be rescaled by translating it
by a value that is strictly greater than the minimum observed value so that only
strictly positive observations are present. This rescaling is applied on-the-fly and
for the mean reestimation only to avoid unnecessary computations; the added offset
must be removed when moving out of the logarithmic space.

3.4 Compressed algorithms

This section contains a description of how the data compression changes the algo-
rithms in the implementation. To ease the computations, the summary statistics
of a block can be retrieved both individually (through Compressor::blockSize(),
::blockSum() and ::blockSumSq()) and together, through an ad hoc data struc-
ture called blockdata and the related function Compressor::blockData().
A key part of the computation is calculating eEw(i) for a block. As a first observa-
tion, working in logarithmic space makes it possible to avoid the exponentiation and
just calculate Ew(i). More interestingly, from (2.27a) it can be seen that K(nw, j)
only depends on the state and the size of the block, and not on the actual observa-
tions. To make the algorithms faster, the Model class stores an array of hashmaps
Model::mKValues of the K(nw, j) values per each state, adding entries as they are
computed.
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3.4.1 Evaluation problem
The forward algorithm is modified to deal with compressed data. The implementa-
tion is very similar to the uncompressed one: the Compressor class allows iterating
through the blocks to perform the computation of the compressed forward variable
following the equations (2.28a), (2.28b) and (2.28c).

3.4.2 Decoding problem
The compressed Viterbi algorithm iterates over the blocks in a similar fashion to the
forward algorithm, as it happens for the uncompressed algorithms. To keep track
of the actual Viterbi path, though, the block sizes must be recorded somewhere; in
this way, during the backtracking phase, any block state can be associated with its
size, specifying how long the sequence stays in that state.

3.4.3 Training problem
As shown in previous discussions, the compressed training algorithm is the one that
differs the most from the uncompressed version. A first difference that is worth
noting is that the backward matrix is computed fully using a compressed backward
algorithm; the space overhead is more manageable in this case since the backward
matrix has one column per block and not one per observation. The variables are
computed according to the new definitions given in Section 2.5; the mean and vari-
ance computations are done outside of the logarithmic space, to avoid the problems
caused by negative values of the sum that would require a translation of all values.
An important consideration can be made for (2.27b): K(nw, j) can be precomputed
at each iteration of the Baum-Welch algorithm. To find a balance between avoiding
unnecessary computations and performing the same calculation every time, a map
is used to keep track of the K(nw, j) values that have already been encountered;
whenever a new one is found, the computation is made for all the states and stored
in the map; this allows to speed up the compressed algorithm a little bit more, at
the cost of some extra memory.
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This chapter presents the methodologies that have been chosen to evaluate the de-
veloped algorithms, discussing the parameters influence and how the results will be
observed; this has the purpose to identify some conditions under which the com-
pressed algorithms are worth using.

4.1 Testing setup

4.1.1 Choosing the parameters
To test the approach developed in this thesis, some HMMs need to be defined. Choo
et al. [15] do a very good job defining some of the most frequent and useful model
topologies in the field of reference, which is computational biology; nonetheless, they
have a much broader scope and are found in many different applications. Three
topologies will be analyzed:

• fully connected model, with every pair of states being connected and thus with
the underlying graph being complete; the fully connected graph also includes
the self-loops for each state;

• circular model, with an ergodic graph: the states are arranged in a circle, and
a transition can only occur towards the same state or to the next one;

• left-to-right model, with an acyclic graph except for self-loops; the states are
partially ordered and there are uniquely defined starting and ending states;
transitions must be taken to visit the states following that order.

Each topology will be explored using different numbers of states, to see how the
performance and accuracy varies. Specifically, models will be defined with 2, 3, and
5 states; this choice should give a perspective on how this parameter influences the
results. About the observation sequence, both its length and an expected number
of transitions should be discussed. For typical applications, the observations’ length
usually is in the order of 105. Empirical experience from other research suggests that
an adequate expected number of transitions is 10, which is a realistic magnitude for
several kinds of sequences of interest. The state separations that will be tested are
10 different values of η as defined in (2.39), going from 0.1 to 1.0 in increases of 0.1.
Testing algorithms against randomly generated data always presents the risk of
introducing a non-deterministic bias into results. To contrast this problem, 100
sequences have been generated for each model. This allows not only to analyze
some aggregate values to obtain some summarized information but also to study
the spread of the performance measures and thus the results’ stability. The chosen
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aggregation method is the median since its robustness makes it possible to correctly
ignore a solid number of outliers. The number of sequences has been chosen as
a compromise between the robustness of the statistics and the feasibility of the
execution times on a laptop.

4.1.2 Results evaluation
Before rushing to the results’ discussion, it is useful to overview what type of in-
formation will be presented to analyze the results and the mathematical tools used
to process them. Every measure defined in this section will be plotted against the
state separation η.
Defining some measure of relative error is necessary, but it can be tricky, especially
when facing zero values; the approach used in this thesis is to use the relative
difference, defined as

dr = |x− y|
max (|x|, |y|) , (4.1)

with the caveat of setting the error to zero when both x and y are zero.
For the states’ estimation, the accuracy is evaluated using another measure borrowed
from information theory: the Kullback-Leibler divergence (or KL-divergence), an
indicator of how much a probability distribution differs from another one taken as a
reference. A deeper explanation of this measure falls out of the scope of this thesis;
the formula is

DKL(P ||Q) =
Ú ∞

−∞
p(x)log

3
p(x)
q(x)

4
dx (4.2)

Now that the mathematical tools have been described, the different performance
measures can be properly explained.
The evaluation problem produces the logarithm probability P (O|λ) as defined in
(2.4c); the performance of the compressed algorithm is measured as the relative
difference from the standard result.
For the decoding problem, the indicator has been chosen to be the fraction of errors
in the estimated generating path; thus, the performance measure is the relative
difference between the compressed and the standard results.
The training problem is much more complex, and summarizing its results to obtain
some indicator of how well the algorithm performs is not an easy task. The choice
for this thesis is to compare both the compressed and the standard estimates against
the real model, along three dimensions: the average accuracy on the states, mea-
sured with the KL-divergence; the average error on the transition log probabilities;
the average error on the log probability of the initial distribution evaluated at the
starting state. These three indicators are computed for both the compressed and
the standard algorithms and then compared by simply computing their difference.
Finally, the speedup will be analyzed with a simple ratio of the execution times,
separately for the three algorithms; this measure includes the data input processing
time to account for the overhead that the compressed algorithms require to elaborate
the data.
To provide more insights about the plotted information, each plot has boxplots on
the side to describe the distribution of the results. It is easy to see how discussing
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the results will generate a lot of figures; for this reason, the main discussion will
only concern the tests for the fully connected model; the other topologies will be
discussed in relation with this model and their plots will be grouped at the end of
this Chapter.

4.2 Evaluation problem

Figure 4.1: Relative difference between the P (O|λ) log probabilities of the com-
pressed and standard algorithms. Since the errors are on a big negative log proba-
bility, the actual error magnitude is approximately of 10−5000.

Figure 4.2: Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.

The information plotted in Figure 4.1 is the relative difference of the logarithmic
probability P (O|λ) between the compressed and the standard algorithm. The first
thing to notice is that as the state separation increases, the error decreases; this is
expected since having more distinguishable states helps the compression process. In
all cases, the error is relatively small and tightly spread, indicating that the com-
pressed algorithm does a good job approximating the standard one on the evaluation
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problem. Also, the error appears to decrease with a higher number of states in the
model. To understand if the use of the compressed algorithm is worth it, Figure 4.2
shows the different speedups obtained; although they don’t change much with the
state separation, the main parameter affecting them is the number of states: the use
of the compressed algorithm is thus advised only when the model has a relatively
high number of states.
The circular and left-to-right topologies have slightly worse results, but they go
through the same considerations made for the fully connected model.

4.3 Decoding problem

Figure 4.3: Relative difference between the fractions of errors in the estimated
generating path.

Figure 4.4: Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.

As properly explained in Section 2.2, the decoding problem is quite similar to the
evaluation problem with the forward algorithm being partly modified. Thus, the
expected results should more or less align to the performances in the evaluation
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problem. As Figure 4.3 shows, the general trend is the same. When the state
separation is extremely low, the uncertainty on the values is high; thus the actual
ordering between the states, although consistent with Figure 4.1, may vary slightly
in certain points. Although the performance indicator seems good, Figure 4.4 shows
how the compressed algorithm is generally less efficient than the standard one when
the model has a small number of states; moreover, the data has a very high spread,
suggesting that the actual speedup depends a lot on the data being generated.
The model that scores best in the decoding problem is the left-to-right model,
which intuitively makes sense since each state only has one allowed transition; again,
though, the results are pretty similar and thus the compressed algorithm should only
be used when the number of states is high enough to achieve an actual speedup.

4.4 Training problem

The training problem is the most complex of the three, as it has been said many
times at this point. The first plot of interest is in Figure 4.5, showing how well the
states are estimated by the compressed algorithm compared to the standard one.
While the overall trend is that of a constant small difference for most values of state
separation, it is noteworthy that the plotted values are negative when the states are
not well-separated. This means that the compressed algorithm is more accurate than
the standard one, and this accuracy appears to increase with the number of states
if the state separation is small enough; the main problem is that, for an increasing
number of the states, the spread of the results starts becoming very high. Despite
this, for a 5-states model that is not enough to cause problems or big inaccuracies.

Figure 4.5: Difference between the average KL-divergence for the compressed and
standard algorithms.

Similar considerations can be made for both the transition probabilities and the
initial distribution estimations; the compressed training does an overall better job
by a small margin, that gets more consistent when the state separation is very low.
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Figure 4.6: Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.

Figure 4.7: Relative difference between the average error on the log probability of
the starting state for the compressed and standard algorithms.

The results for other topologies resemble the presented ones quite well. The generally
high instability of the results can make the appearance of the plot less meaningful;
but when taking a deeper look at the data, the distribution of the results is mostly
skewed towards favoring the compressed algorithm over the standard one. Looking
at the speedup in Figure 4.8, there is a very noticeable performance gain that is
higher when the state separation is low and the number of states is high. In general,
the speedup tends to be extremely high, giving a solid reason to use the compressed
training algorithm.
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Figure 4.8: Speedup on the training problem using the compressed algorithm,
including the input data processing time.
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4.5 Circular topology
This section presents the results of the testing process performed on the circular
model topology. The compressed results are very close to the ones produced by the
standard algorithms; comparing the speedups in Figure 4.10 or Figure 4.12 with the
respective plots for the fully connected model, it is worth noting that the compressed
evaluation and decoding algorithms yield a smaller speedup. This is not true for the
training algorithm, that maintains the considerable speedup that was achieved for
the fully connected model.

4.5.1 Evaluation problem

Figure 4.9: Relative difference between the P (O|λ) log probabilities of the com-
pressed and standard algorithms.

Figure 4.10: Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.
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4.5.2 Decoding problem
In Figure 4.12 the speedup for an increasing number of states is shown to be less and
less stable; however, the outliers in the boxplot are skewed mostly towards higher
speedups. This number of outliers suggests that having more tests could yield better
information on the actual results distribution.

Figure 4.11: Relative difference between the fractions of errors in the estimated
generating path.

Figure 4.12: Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.
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4.5.3 Training problem
The training results are very similar to the plots for the fully connected model, thus
they follow a similar discussion.

Figure 4.13: Difference between the average KL-divergence for the compressed
and standard algorithms.

Figure 4.14: Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.
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Figure 4.15: Relative difference between the average error on the log probability
of the starting state for the compressed and standard algorithms.

Figure 4.16: Speedup on the training problem using the compressed algorithm,
including the input data processing time.
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4.6 Left-to-right topology
This section presents the results of the testing process performed on the left-to-right
model topology.

4.6.1 Evaluation problem
The evaluation plotted results are more separated than in the previous cases; it is
important to remember that the scale of the error is generally very small, thus this
difference is not extremely relevant.

Figure 4.17: Relative difference between the P (O|λ) log probabilities of the com-
pressed and standard algorithms.

Figure 4.18: Speedup on the evaluation problem using the compressed algorithm,
including the input data processing time.
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4.6.2 Decoding problem
The decoding algorithm for this topology compared to the other ones is more spread
out for a lower number of states and less spread out for a higher number of states.
In the end, the plots in Figure 4.20 appear a bit more stable; the key point is still
that the speedup becomes greater than 1 for a number of states greater than 5.

Figure 4.19: Relative difference between the fractions of errors in the estimated
generating path.

Figure 4.20: Speedup on the decoding problem using the compressed algorithm,
including the input data processing time.
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4.6.3 Training problem
These results are visually somewhat different from the previous ones. It is important
to always consider the scale at which the error is represented and the number of
outliers present in the data; in fact, a more attentive look shows that the results for
the training algorithm with the left-to-right model topology are not that different
from the other ones. It is worth noting that the speedups are generally slightly
higher, at least for an increasing amount of states.

Figure 4.21: Difference between the average KL-divergence for the compressed
and standard algorithms.

Figure 4.22: Relative difference between the average error on the log transition
probabilities of the compressed and standard algorithms.
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Figure 4.23: Relative difference between the average error on the log probability
of the starting state for the compressed and standard algorithms.

Figure 4.24: Speedup on the training problem using the compressed algorithm,
including the input data processing time.
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Conclusion

5.1 Main takeaways
The previous chapter presented a description of the results on a case-by-case basis;
after that, it is useful to summarize the insights that have been extracted from the
testing process.
The first thing to point out is that the results are pretty consistent over all the
tested topologies; this makes it possible to draw some general conclusions that are
independent of the topology of the model. Overall, the compressed algorithms per-
form with extremely high precision. Specifically, the evaluation and the decoding
compressed algorithms perform as well as the standard ones regardless of the states’
separation. They are slower than their standard counterpart for models with a low
number of states, because of the overhead caused by the data compression; fortu-
nately, the speedup gets better for models with a higher number of states, when the
running times would start to grow more and more. The training algorithm is the
one that performs best: it performs better than the standard algorithm for a low
state separation, and the achieved speedup is extremely high.
It is important to remember that there are elements that have been assumed con-
stant throughout the testing process, such as the self-transition probabilities or the
sequence length. In the context of big data, for sequences that are much longer than
the ones used in testing, the compressed algorithms certainly perform even better
than what is shown in Chapter 4.

5.2 Wrapping up
WaHMM gives the opportunity to apply either standard or compressed algorithms
to solve the evaluation, decoding, and training problems with an efficient C++
implementation. In the context of scientific research, this thesis will hopefully serve
as another confirmation that wavelet compression can work really well to allow
hidden Markov models to scale to big sequence data. In particular, it enables the
training of a hidden Markov model on a commodity laptop instead of requiring more
complex machinery, since the training might be even thousands of times faster.
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