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Abstract

Estimating the energy produced by solar panels has been a crucial research
field in the last fifty years, driven by the impellent need of finding alterna-
tive solutions to fossil fuels. The increasing affordability and technological
advancements in this area, along with the exponentially growing number of
IoT devices, allowed to create systems disconnected from the electrical grid
capable of self-sustaining relying solely on the sun’s energy. This research
presents a scalable approach for forecasting solar irradiation and yield of
a moving solar panel, taking into account dynamic location changes and
the influence of the city shading that comes along with these different en-
vironments. The presented machine learning model allows predicting the
Global Horizontal Irradiance (GHI) with an R2 score higher than 0.90, and
for each of its output, a Google Street View imaging method is employed
to assess the obstruction caused by buildings and trees, to have a more
precise measurement at street level. The validation of the selected approach
is performed on data collected in The Bronx, NY, during deployment of City
Scanner, drive-by sensing platform conceived by the MIT Senseable City
Lab. For its scalable nature, this approach can be ported in other cities
with minimal effort and applied to solar panel equipped fleets of the most
diverse types, from drones to electric vehicles, to better assess in advance
their energetic potential in an untested environment.
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Chapter 1

Introduction

1.1 General Overview
Cities are big data factories; cameras, smart buildings, and diverse types of
IoT devices generate an enormous amount of data points every single day.
According to Cisco, within 2030 the number of IoT devices will reach 500
billion [1], empowering engineers and city planners with an incredible tool to
digitalise the urban environment, from self-driving cars and smart buildings
to traffic control systems.

Collected data, once processed with analytical solutions and visualised
intuitively, can also be served directly to citizens to allow informed choices
and made available to city governments and administrators for data-driven
decision making, democratising in this way the acquired knowledge [2].

To make reliable predictions and to provide consistent services to citizens,
few and sporadic data points are not sufficient. The number of data collecting
nodes must be well distributed and provide continuous insights into the
analysed phenomena. However, one of the main challenges faced using
the traditional strategies is the generation of these large datasets, because
a significant number of stationary sensors are needed, often leading to
considerable costs for deployment and maintenance [3].

A partial solution to this problem comes with the advent of new approaches
to urban sensing, which exploit the recently achieved portability and precision
of last generation sensors. These class of devices, with high accuracy and

1



1 – Introduction

embedded communication technologies, can broadcast data at a fraction of
the cost, opening up new possibilities in the city context [4].

Various studies have applied these sensors to several use cases, target-
ing the analysis of one or multiple features of the urban environment, e.g.
infrastructure conditions [5] or air quality [6], [7].

Monitoring the levels of volatile pollutants became of vital importance to
the citizen’s life. In fact, air pollution is the cause of millions of premature
deaths every year [8], and analysing its daily levels, e.g. Particulate Matter
and NOx gasses, can help urban planners and policymakers to adopt effective
strategies to address this compelling issue.

Natural phenomena are generally continuous signals both in temporal
and spatial dimensions; each sampling device must be able to capture dense
enough spatiotemporal data points to obtain their digital representation.
However, in many environmental applications, the collected data from sta-
tionary sensors are constrained on spatial, temporal or both dimensions,
limiting the amount of information that each analysis can derive. From the
study of the Sotiris Vardoulakis and al. and from one of Apte et al. [9, 10],
emerged that air pollutants gradients sensed in fixed locations are subject
to high variance between very close locations and in different time frames
during the day.

On the other hand, satellite measurements on this type of data can give
excellent spatial coverage, but they lack in precision concerning the time
scope. The mathematical models employed in this research field are usually
efficacious but very expensive in term of computational complexity, such in
the case of the estimation of surface temperature [11].

Finally, most of the mentioned projects that employed portable sensors in
the urban environment made use of special-purpose vehicles to achieve their
data collection goal, deploying them specifically for the experiment purposes
[6].

2



1 – Introduction

Figure 1.1: Space and time sensitivity of different approaches; drive-by
solutions offer a trade-off between the two [3].

Drive-by sensing is a new approach to data collection that makes use
of everyday vehicles as mobile sensors. Compared to traditional strategies, it
grants various advantages, such as the creation of highly dense, hyper-local
datasets at a fraction of the cost [3].

The City Scanner [2] project proposed by Senseable City Lab introduces
this novel approach for developing a cost-effective, drive-by modular sensing
platform to evaluate spatiotemporal environmental parameters in munic-
ipalities, such as air quality, ambient temperature and building thermal
dissipation.

1.2 City Scanner
The City Scanner project, conceived by the Senseable City Lab, aims at
developing a sensing platform to enable large scale drive-by deployments
using everyday urban vehicles as sensing nodes.

City Scanner follows a centralised IoT regime to generate a near real-time
map of sensed data. The individual sensing units are installed on urban
vehicles to record data and stream it to the cloud for processing and analysis.
Each sensing unit includes power management, data management, and cloud
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streaming components.

All these nodes also include air quality, temperature and humidity sensors.
Apart from these core components, sensor nodes are designed in a modular
way so they can be added or removed to build different sensing configurations.
These devices are self-sufficient; they are equipped with a solar panel and
provided with a battery to store the generated energy. Furthermore, since all
components are encapsulated in the portable sensor platform, no additional
resources (such as an external power source or an open window) are required
other than some surface area on the external bodyshell. In the case of
city-owned vehicles, this solution gives the local government the power to
decide which and how many sensors to deploy to acquire the data they need
for specific applications.

As stated above, the only source of energy of these devices is the solar
panel installed on top of them. For this reason, this dissertation will assess the
capabilities of these ’mobile’ energy supply units to comprehend further the
operational possibilities of these units before the deployment in an untested
environment.

In the IV chapter, further details on the platform will be presented.

(a) (b)

Figure 1.2: City Scanner devices.
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1.3 Problem Overview
IoT devices, thanks to their increasing portability, are used in locations
where is not trivial to provide a constant energy supply from the electric
grid. However, at the same time, these devices need a constant energy flow
to fulfil their duties.

The convenience and the usability of solar energy harvesting systems
have been improving over the last years; the efficiency increased while the
manufacturing price decreased, facilitating their usage in a broader range of
applications.

Even if for large scale implants bears some drawbacks, it offers a very
convenient energy option in low-power sensors applications. Therefore it has
been implemented in many projects, spanning in the most various fields, from
agriculture [12] to medical devices [13], allowing the creation of solutions
that use it as the primary energy source.

The drive-by sensor solution presented above, namely City Scanner, em-
ploys the sun’s energy as the primary supply to perform sampling and to
transfer the collected data to the cloud [14].

Nevertheless, given the constraints on the size of the panel and the variabil-
ity of the weather, these devices may not continuously operate year-round,
but work intermittently, collecting data points when possible. However,
when the deployment of the project happens in a new, untested city, it is
not trivial to understand the total available energy, directly correlated with
the operational time of the devices, to achieve a data collection goal.

For this reason, this research will focus on the understanding of the amount
of energy produced by a moving solar panel, to enable the fleets of tomorrow
to achieve their goals, anticipating their operation time in an unexplored
environment. This work will provide researchers and companies with an
important instrument to understand better the needs of their prototypes and
products, saving their time and leading them to better results in a fraction
of the time.

1.4 Research Questions
The main research question for the thesis work is:
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MRQ: Which is the estimate of the energy produced from a moving
solar panel.

To answer the main research question the work has been broken down
into two sub-questions:

RQ1: Which machine learning technique can forecast in the most
accurate way how much solar irradiance hits a surface fully
exposed to the sun in a specific geographical area at a given
time?

RQ2: How much of this irradiance can be used by a moving solar
panel considering the influence of the built environment?

1.5 Contributions
The goal of this thesis is to provide researchers with a tool that facilitates
the deployment of solar-powered moving devices. The contribution will come
on two aspects:

Theoretical. It will give an overview of the state of the art of
solar panels, with a specific focus on the methods to predict the
power output, helping in this way future researchers in their
deployment.

Technological. This work will be provided open source as a
Python3 module able to predict the power supply of a moving
solar panel given a set of geographical coordinates.

Deploying a fleet of solar-powered devices will be better quantifiable in
terms of costs and will drive to better decisions in the design phase.

1.6 Structure
The structure of this thesis is the following:

1. Chapter 2, State of the Art. In this section will be presented the
modern methodologies to estimate the amount of solar irradiation (see
appendix A) of an area, alongside the latest technologies to store and
collect it, with a specific focus on the urban environment.

6
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2. Chapter 3, Design. Hereby will be explained the design of the system
implemented during my stay with a high-level description of the latter,
together with an overview of the City Scanner project, the first use case
where my model is applied.

3. Chapter 4, Data Collection. To validate in the most effective way the
prototypes and the solar estimation model, empirical data are needed.
This chapter depicts the preparations done for the deployment done in
January 2020 in the city of New York, along with the expectations and
the results

4. Chapter 5, Implementation. The technical implementation of the
model, including the mathematical formulation of the problem and the
chosen strategy to achieve the highest accuracy.

5. Chapter 6, Evaluation. After the implementation of the model, an
important step in the research is the testing one. The dataset previously
collected data in New York will be employed to quantify the accuracy
of the predictions.

6. Chapter 7, Conclusions and Future Works. This will present the
conclusions on the research, expected outcomes and actual results.

1.7 Senseable City Lab
The variety of miniaturised and connected digital technologies that spread into
the urban environment, permeating our buildings, streets and communication
devices is adding a new functional layer over cities. For this reason, emerges
the need for collaboration across multiple disciplines to shape the urban
future collectively.

SENSEable City Lab, located at Massachusetts Institute of Technology,
stands on the front line of this change, partnering with cities and companies
to address these challenges and opportunities [15].

With a multidisciplinary approach, it performs research focused on the
interface between cities and technology. The key to the lab’s success is the
capability of bringing together people from a wide variety of sciences; thanks
to this peculiarity, it investigates the impact of this revolution on the spaces
in which peoples live.
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This research work was carried out at the Senseable City Lab, in collabo-
ration with Polytechnic of Turin.
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Chapter 2

State of the art

In the first part of this chapter will be presented an overview of the historical
development of photovoltaics and a brief outline of the technology used in
the City Scanner project. Secondly, some modern methodologies to estimate
its yearly power production will be presented.

2.1 Photovoltaics, historical overview
Photovoltaics is the process of converting sunlight directly into electricity
using solar cells. Today it is an increasingly significant and renewable
alternative to conventional fossil fuels, but in comparison to other electricity
generation technologies, it is a relative newcomer.

The first discovery that put the basis of the photovoltaic energy collection
method dates back to 1839, when Alexandre-Edmond Becquerel, a French
physicist, discovered the photovoltaic effect while experimenting on solar light
in his father’s laboratory [16]. In his experiment, he placed silver chloride
in an acidic solution and illuminated it while it was connected to platinum
electrodes. As a result, it generated voltage and current.

The invention of the first solar cell instead, traces back to the American
inventor Charles Fritt, which managed to produce current from solar light
only half a century later [17]. He spread a wide layer of selenium onto a
metal plate and covered it with a thin, semitransparent gold-leaf film and
obtained an energy conversion efficiency between 1 and 2%.

9



2 – State of the art

Photovoltaic’s first practical power harvesting devices were introduced
in the 1950s, with Bell Laboratories intuition to switch from selenium to
silicon [18], which allowed reaching the efficiency of 6%. They presented their
invention in 1954 in a press conference where they impressed the media with
the Bell Solar Battery powering a radio transmitter that was broadcasting
voice and music.

Thanks to the fabrication of n-on-p silicon photovoltaic cells by the US
Signal Corps Laboratories done in 1958, panels durability to space radiation
improved, making them suited for space applications [19]. These space solar
cells were thousands of times more expensive than today’s ones, so their
usage was limited to the missions outside of the atmosphere.

After the 1970s oil crisis, the world focus shifted on the research of
alternative energy sources, which brought to the investigation of terrestrial
applications of the photovoltaic. Even if both their price and their energy
output was distant from the one of today, their advantages to the "remote"
power supply area were quickly recognised and induced investments in the
field. Small scale transportable applications, such as calculators, were utilised,
and remote power applications began to benefit from photovoltaic.

In the 1980s, research into the field started to pay off. In fact, in 1985,
the efficiency of silicon solar cells reached the 20% milestone [20]. Over the
next year, the photovoltaic market steadily increased, with peaks such as in
1997, with an increase of 38%. Nowadays solar power is not only recognised
for granting energy access to the areas disconnected from the grid, but also
as a valid renewable alternative to polluting fossil fuels, diminishing in this
way the impact of conventional electricity generation in advanced industrial
countries.

2.2 Photovoltaic Effect
The photovoltaic effect is a process in which two dissimilar materials in close
contact produce an electrical voltage when struck by light or other radiant
energy. This phenomenon is the functioning principle of the photovoltaic
cell, allowing to create a current from the potential difference created in this
way.

The photovoltaic effect is a particular case of the photoelectric effect,
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discovered by Heinrich Hertz in 1937 but explained by the noble prize Albert
Einstein in 1905, which had the intuition of considering light as packets of
energy, photons.

These particles carry energy, depending on their frequency, which is
transferred to an electron when a collision happens. If this is greater than
a certain threshold, this electron will jump from the valence band to the
conductive one, in a process called absorption. In the absence of an electric
field, the excited particle will eventually bounce back to a lower orbital,
emitting a photon with a wavelength equal to the difference in energy
between those two levels in a process called emission.

A coherent motion of the electrons is needed to use this effect to generate
an electric current. That is why some semiconductor materials, such as
silicon and germanium, have been chemically and physically modified using
the doping method and placed together to create a p-n junction.

Using this technique, we can create a material that has an area with an
excess of electrons – the n side, which stands for negative – and another with
an excess of holes – the p one, which stands for positive –. Some negative
charges cross the junction, creating a hole electron pair across the depletion
area, generating a small electric field with an opposite direction compared to
the original one.

When the cell is stroke by the solar light, if we prevent the light-generated
carriers from exiting the material, the number of free electrons on the n
side and the number of holes on the p side increases because the previously
generated electric field across the connection directs the pair towards their
respective sides.

This separation produces a difference of potential which, after connecting
the two regions with a conductor, will generate a current between the two
areas, which can be used to power a load; this current will flow as long as
solar light is provided.

Nevertheless, not all the energy from the solar beams is converted into
electrical energy. Here are some of the main reasons:

1. Not all photons that strike the surface carry sufficient energy to excite
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an electron.

2. Parasite resistances on the materials dissipate some energy in the process.

3. Due to the recombination effect, new excited electrons may encounter a
hole in their path and recombine with another atom.

4. As the temperature of the cell increases, the band gap of the semiconduc-
tor materials decreases, allowing electrons to flow through the depletion
area and thus decreasing the maximum potential difference achievable.

5. Not optimal exposition of the panel, shadow zones and debris present
on the cell physically blocking light reduce as well the light intake.

2.3 Silicon mono-crystalline solar cell
Because of the reasons for which this thesis was produced, it is not possible
to give an exhaustive overview of all the different technologies to transform
sunlight into energy. This section will give an outline on the principles of
operation of the panel chosen in the Cityscanner project, to facilitate a better
understanding of the parameters investigated and the techniques employed
during the dissertation for its power output estimation.

In the latest version of the prototype described in [14], the employed solar
panel is a 9W, 6,2V mono-crystalline cells solar panel. Mono-crystalline cells
are by far the most widely used solar photovoltaic technology, and they rely
on the classic scheme of photovoltaic production, illustrated in chapter 2.1:
solar light is converted to electrical current using a single pure semiconductor
crystal. For this reason, the panel must be manufactured with an accurate
method to avoid efficiency losses due to impurities.

The Czochralski process is employed to create this monolithic component,
which takes the name from the polish inventor who discovered it in 1916.
High-purity semiconductor silicon is melted in a crucible, doping atoms
such as boron or phosphorus are added in exact quantities, then a precisely
oriented seed crystal is dipped into the molten material and extracted
rotating at a specific speed, temperature and angle allowing to extract a
large, single-crystal, cylindrical ingot from the melt.

This technology allows to reach high efficiency, but it comes with some
downsides in comparison to other more modern technologies. The main
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issues are the costs and the environmental impact, due to the high quantity
of used material.

2.4 Important factors in energy estimation
Discovering methods and technology for accurate and reliable solar forecasting
will be imperative in the future of solar energy. With a lack of solar forecasting
and underdeveloped technology surrounding it, inaccurate forecasts can have
expensive consequences.

Global solar radiation has an essential role in this task; accurate informa-
tion on the number of solar beams that irradiate the deployment area is often
required to obtain a reliable estimate of the total energy production [21].

The measurement of solar radiation is available in some specific areas
but, given the cost of measuring equipment, maintenance and calibration
requirements, for the zones where no sampling has been done, estimation
techniques are used [22].

Another critical factor, which considerably affects the power generation of
solar panels is temperature. Since solar cells are semiconductors, the current
and voltage of these cells are significantly affected by temperature. When the
temperature increases, the excited electrons can more easily get through the
depletion area, creating parasite currents that lower the difference of potential
between the anode and the cathode of the circuit, negatively impacting the
open-circuit voltage [23].

Solar panel data sheets refer to test conditions, which usually consider a
temperature of 25 °C, a solar irradiance value of 1000W/m2 and air mass 1.5.
However, these conditions are not generally valid in a real-case deployment,
given the variability of the weather in different areas of the earth surface.

Therefore, the estimation and analysis of cell temperature have received
extensive attention in recent years to predict better the power output gen-
erated by a solar panel. Some models have been proposed to enhance this
prediction, introducing methods that weight the dynamic change in outdoor
parameters [24].
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Depending on the location and the inclination where the solar cell is
located, the daily irradiation (see appendix A) hours change. For this reason,
is vital to consider the exposition together with the shadows generated by
close objects such as trees and buildings. In urban deployments comparable to
this case study, this factor is especially important, because it can significantly
affect the generated current [25].

Lastly, deposits of dirt or snow on the solar cell can prevent the solar
beams to hit the semiconductor, lowering its efficiency. In a general case,
rain along with the panel inclination is enough to clean the surface regularly,
but in arid or heavily polluted areas regular maintenance helps to sustain
maximum open-circuit voltage [26].

2.5 Irradiation Estimation
Before assessing the impact of urban configuration and the influence of the
route done by a moving solar panel, it is necessary to review the currently
existing methods to estimate the amount of solar irradiation impacting the
area of the deployment.

The existing approaches to predict Global Horizontal Irradiance (GHI)
can be divided into two main categories: Physical and Statistical. Also, a
third category combines them to get the best of the two approaches: Hybrid
models [27].

2.5.1 Physical
The most widely employed physical methods are of two kinds; the first
one consists of Numerical Weather Prediction (NWP) [28], which employs
mathematical models of the atmosphere and the oceans based on current
conditions, to predict future ones. The second kind consists of using Cloud
Imagery data collected by ground and satellite stations, of predicting the
behaviour of the clouds [29].

It has been demonstrated that cloud cover and cloud depth are the
most influential variables regarding the prediction of the GHI. Chow et
al. [30] presented a technique for cloud shadow forecasting using ground-
based sky imaging at UC San Diego, which allows predicting cloud motion,
casted shadow and irradiance. Nevertheless, only short deterministic forecast
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horizons are feasible using a Total Sky Imager (TSI), due to the presence of
low clouds and high weather variability.

2.5.2 Statistical
The inherent issues of the physical models lead to explore methods belonging
to the second class, which rely more on statistics and historical conditions.
The statistical approach uses mathematical models that employ historical
data to predict future values. They can be divided into:

• Persistence model.

• Time-series models. that include the Autoregressive Moving Average
(ARMA) and different variations of artificial neural networks (ANN).

Persistence Model

Persistence model is the simplest one; it predicts the next value assuming it
will be similar to the previous one. It is a naive predictor and is often used
to benchmark other models [31].

Time Series Models

Time series models instead, are based on the historical data and are defined
as a sequence of observations measured over time, such as hourly, daily and
weekly.

The ARMA [32] model is composed by two parts: the Autoregressive part
(AR), which predicts next value based on its past ones, and the Moving
Average (MA) part, which helps to model the error as a linear combination
of the error values at various time in the past.

In the study of Rui Huang et al. [33], for each month of the year, the Mean
Absolute Error (MAE) of the ARMA model has been proven smaller than
the one of the persistence model in the case of 1 hour-ahead forecasting. In
January, for example, the ARMA model shows an improvement of as much
as 44.38% compared to the persistence one.

The Autoregressive Integrated Moving Average (ARIMA) is a version of
ARMA equipped with a differencing component d, which aims at reducing
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seasonality. Its improvement compared to ARMA is that it allows treating
non-stationary series. In the research of Atique et al. [34], they achieved a
Mean Absolute Percentage Error (MAPE) of 17.70%.

Artificial Neural Networks (ANN) has been demonstrated as a valid
alternative to the traditional approaches being able to recognise patterns
in data, and have been widely applied to solar forecast. In [35] it has
been demonstrated that their artificial neural network outperforms ARIMA,
K Nearest Neighbours and Markov Chains methods, utilising 19 years of
meteorological data from Ajaccio, France.

Alzahrani and his team [36] used a Nonlinear Autoregressive Network
with Exogenous Inputs (NARX) for forecasting global solar radiation using
data from Vichy National Airport in Rolla. They achieved a Mean Squared
Error (MSE), ranging from 5.7% to 15.33%.

Hybrid models

The use of hybrid models became more popular, as it takes advantage of
combining different techniques to assess the weak points of the single methods.
Practical and theoretical studies have demonstrated that these combinations
can help to increase the forecast performance.

Karkados et al. [37] proposed two seasonal auto-regressive integrated
moving average (SARIMA) techniques; the first, based on seasonal ARIMA
time-series analysis, is further improved by incorporating short-term solar
radiation forecasts derived from NWP model, while the second is ANN-based.
They achieved a NRMSE average over the year of 11,12% with the first one,
while the neural network scored 11,26%.

2.5.3 Online Tools
Finally, there are online tools that can give an estimation of the solar
irradiance for a specific area, making use of data extracted from databases
collected by different institutions. The most famous examples are PVGIS
[38] (done by the European Commission’s science and knowledge service, the
JRC), PVWatts (developed by NREL) and RETScreen (commissioned by
the Canadian Government) [39].
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These applications have been created for quick estimations and calculations
relevant to photovoltaic (PV) electricity production, but some of them
include an extension that can also give an evaluation of solar irradiation
using historical data from that location.

Space Resol. Time Resol. Type Cited Studies
NWP 1-150Km [30] 1-1000h [27] Physical [28, 27, 30]
Cloud Imagery 0,1-100Km [30, 27] 6h [31] Physical [31, 30, 29, 27]
Persistence 0,01Km [27] 1h [31] Statistical [31, 27]
ARMA 0-0,1Km [27] 1-36h [33] Statistical [27, 33]
ARIMA 0-0,1Km [27] 1-36h [33] Statistical [27, 33]
ANN 0,1-5Km [27] 1-36h [33] Statistical [27, 33, 35, 36]
PVGIS Adjustable Adjustable Online Tool [38, 39]

Table 2.1: Different solar estimation methods compared.

2.6 Irradiance in the Urban Environment
Given the fact that the deployment of the City Scanner devices and other
solar-powered IoT applications happens mostly in an urban context, it is
necessary to assess the influence of the built environment on the irradiance
that directly hits the ground level. Many have assessed the impact of
radiation in urban street canyons: in studies like Wang and Png [40] or
Thorsson et al. [41] for thermodynamic reasons (to evaluate the Urban
Heat Island effect (UHI)), in other researches for meteorological modelling
or photovoltaic generation [42].

Nevertheless, as indicated by Gong et al. [43], there is a shortage of
an analytical quantification of solar radiance at street level mainly for two
reasons: firstly because current meteorological data consider free horizon,
and secondly because most of the existing studies rely on computationally
heavy 3D models, which dramatically reduce scalability and adaptability
among different locations.

However, among the existing studies and tools, are worth mentioning
Gong et al.’s [43] model and the ArcMap Solar Radiation toolset to evaluate
the street-level Global Horizontal Irradiance.
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Gong et al.’s model makes use of images extracted from Google Street
View (GSV) to determine the Sky View Factor (SVF); it indicates the portion
of sky visible from the ground in a particular point. Afterwards, it uses sun
data extracted from the Hong Kong Observatory (HKO) and the SOLPOS
algorithm developed by NREL [44] to understand the direction and intensity
of solar rays. Combining these pieces of information, they have been able
to assess the amount of irradiation reaching the streets in Hong Kong with
an overall correlation coefficient for global solar irradiance under all-sky
conditions of 0.87.

ArcGIS [45] is a desktop application that supports data visualisation,
advanced analysis and data maintenance in both 2D and 3D. The solar
radiation analysis tools included in this software enable to map and analyse
the effects of the sun over a geographic area for specific periods. The
calculation is based on methods from the hemispherical viewshed algorithm
developed by Rich et al. [46, 47] and further developed by Fu and Rich [48].
The calculation of direct, diffuse, and global irradiance are applied on the
given topographic surface, producing heat maps for an entire geographic
area.
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Chapter 3

Design

3.1 Problem Elaboration
As introduced in the first chapter, City Scanner is a drive-by sensing platform
aimed at analysing environmental parameters in the urban context. The
system is composed of a fleet of devices installed on cars, equipped with
several sensors, a solar panel and a battery, and of a back-end application
capable of collecting data and able to send commands to the devices.

It is possible to adjust the behaviour of these modules depending on the
aim of the deployment, using both these remote and local settings. To be
able to optimise their functioning mode, it is first necessary to understand
in detail the energetic needs of each module, to prevent prolonged periods of
downtime due to lack of power. Being City Scanner a sensing platform, we
will refer to the project goals as sensing goals; examples are space coverage,
in case the focus is reaching as many streets as possible, and time coverage,
where the interest is in having a constant data flow for a prolonged period.

Thus, to make data-driven decisions useful to reach our sensing goals,
the system has to adapt real-time in the best way possible also to several
external variables:

1. The meteorological conditions, directly correlated with the location and
the period where deployment takes place.

2. The city configuration; the presence of obstacles, such as very high build-
ings, can obstruct the direct solar rays for most of the days, drastically
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reducing the available solar energy at street level.

3. The route of the vehicles influences the sensing goals and effect of the
previous point.

To take into account all these variables, in this chapter will be presented
several components able to maximise the efficacy of every deployment.

3.2 System description

A complete system is necessary to create an automated platform orchestrator,
capable of dynamically respond to the previously presented external factors.

This system can be logically separated into four different modules, each
addressing one aspect of the bigger problem:

1. Device module, which focuses on the efficiency of the devices.

2. Solar module, which is the one presented in this thesis, focused on
predicting the available energy.

3. Path forecasting module, which anticipates the path taken by the vehicles

4. Coordination module, which responds in real-time aggregating data from
the other modules.

The focus of this dissertation is to extensively study and develop the
second one, namely the Solar module, but following a brief description of
each of them can be found.

To effectively evaluate the second module, a data collection phase was
needed. Before this stage, some improvements were introduced in the pro-
totypes, to increase the overall on-field performances. The upcoming sec-
tions will also include a concise description of the technical modifications
propaedeutic to this thesis.
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Figure 3.1: Architecture chart

3.2.1 Device module
Before dynamically adjusting the behaviour of the devices, it is necessary to
embed some energy-saving functioning modes, to prolong their base operating
time.

The task of this module is to have a responsive device, which can save
energy whenever possible, that can work in different operating modes depend-
ing on the objective, and that can be controlled remotely from a command
line. These functionalities are critical for the success of City Scanner, aiming
at an independent fleet that can sustain without any human intervention.

At the beginning of this research, the devices had only one functioning
mode, which was collecting samples periodically, without considering the
battery level and they had to be manually deactivated at the end of the day.
The need for a more efficient implementation drove to this new prototype
version, with the resulting additional characteristics:

• It enters a standby state, switching off sensors and connection if no
movement is detected, to save energy in case the car stops moving.
When motion is detected, the device awakens and starts sampling.

• It enters a standby state similar to the one previously described if the
GPS signal is absent for a prolonged period. In this case, most of the
times the car is parked inside a garage, and also samples without any
location metadata are not usable.
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Moreover, these devices were able to send data only through a proprietary
API of the programmable board used, and these frames were managed
at the server-side by an instance of Node-RED. This browser, flow-based
programming tool built on Node.js, allows to wire together APIs and online
services (cite) and allows to parse and operate on the incoming packets.
During this first step, we introduced the possibility of transferring entire
files through a TCP connection from the command line, with noticeable
improvements in the transfer speed and decreasing costs.

Furthermore, in the previous implementation, the Node-RED service was
managed by the producer of the board in the beta version. Because we needed
more customisation and stability, we transferred the service into an Amazon
Elastic Compute Cloud (EC2) server hosted by Amazon Web Services.
The Node-RED instance was deployed inside a Docker container, reachable
through an Apache reverse proxy and a protected HTTPS connection.

Lastly, some functioning modes were added to the devices, so that they
could have different behaviours depending on the battery level and the
sensing goals, with the sampling frequency remotely adjustable, in particular:

• Idle. The device waits for commands, mainly used for troubleshooting.

• Real-Time. Similar to the previously existing mode, the device sends a
constant stream of data.

• Logging. The device records all samples on an SD card and transfers
them to the server on demand.

• Hourly. The device records data and stores them on the SD card while
being offline, and connects for 5 minutes per hour to receive commands.

3.2.2 Solar Module
The objective of the solar module is to understand how much energy is
available to use in a specific location and period of the year. This information
is decisive for a successful outcome, assisting the preliminary decision-making
phase, during and after the deployment:

• Ahead, it can assist throughout the planning phase to predict the oper-
ating time and to understand how much data is potentially achievable.
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Moreover, knowing this duration in advance allows informing the part-
ners about the best time to recharge the device, if needed.

• During, because in combination with module 2 and 3, we can dynamically
adjust the device operating mode to save as much energy as possible
based on the route taken.

• After, to evaluate the quality of the deployment and to verify that
everything operated properly.

This module is further composed of two sub-modules:

1. Solar irradiation forecast, which outputs the solar radiation on an area
given the weather forecast

2. City coverage analysis, which output is used to understand how much
the built environment influences the solar radiation at street level.

In chapter 5, this section will be described more in detail.

3.2.3 Path Forecasting Module
City Scanner, for its scalable, non-intrusive nature, aims to deploy its devices
excluding the use of special-purpose carriers. In fact, the ideal hosts of the
sensing nodes are vehicles that already travel through cities to perform other
tasks, such as trash trucks, taxis and buses. In this way, environmental
parameters can be continuously monitored at lower traffic and pollution
impact. Depending on the selected medium, the path of the vehicles will
differ; in the case of buses or trucks, their itinerary is deterministic, making
it trivial to forecast the energy produced through the second module. In
case taxis are chosen, we can have excellent coverage of the city utilising a
few devices, as demonstrated by O’Keeffe et al. in [49] for Manhattan, but
their behaviour is less predictable.

For this reason, this component responsibility is to understand in which
streets the vehicles are headed whenever the selected carrier behaves in a non-
deterministic fashion. Once combined with the previous module output and
with the collected data, this information permits to dynamically select the
most suitable operating mode to achieve our sensing goals while preserving
battery life.
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If, by predicting the path of a specific car, we understand that the current
vehicle is heading towards an area of the city where at that time of the day
the buildings obstruct most of the sun rays, and the device has low battery,
it would be possible to suspend it to save battery life in case another one
has already sampled those street segments.

3.2.4 Coordination Module
This last module is conceived to take decisions and changing dynamically
the behaviour of the devices, based on the real-time analysis of the output
of the previous modules during the deployment.

In fact, when the devices are active in a city, all the generated data and
metadata are sent to the remote server, hosted on the cloud. Depending on
the objectives of the specific deployment, this module has to take decisions
at single-device and fleet level, working towards the maximisation of the
selected sensing goal.

This component acts as a fleet coordinator; it is necessary to make all the
previous modules work in an organised process towards the common purpose.
When data are received, it parses and organises them in databases for further
analyses, but at the same time, it can directly provide them to the second
and third module. After having analysed their output, it successively sends
to the single nodes fine-grained adaptations in every new state.

3.3 Chosen methods elaboration
Here will be presented the methods used to create the second module, in
both its parts. Given the fact that City Scanner and other moving solar-
powered IoT fleets have to operate in different environments and locations,
they require high scalability. During the state-of-the-art evaluation, were
preferred methods that keep in mind this requirement, so that they are
tunable with minimal effort in changed conditions.

3.3.1 Irradiation forecast module
As introduced in the previous chapter, exists different methods to estimate
the solar irradiation given the weather forecast. For our research goals, the
ideal approach should be able to provide an adequate estimate of the solar
radiation for any location in the world with minimal changes. As previously
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explained, it ought to be usable before, during and after deployment without
a model re-adaptation.

For this reason, the model that we have chosen takes as input meteorolog-
ical data of the location and outputs the Global Horizontal Irradiance (GHI),
for allowing the user to provide either the weather forecast for the following
days or the historical weather data. In our situation, statistical methods
are the most suitable compared to physical ones, due to their ease of use
and adaptability. In chapter 5 will be shown a performance comparison of
different statistical approaches, with their associated pros and cons.

3.3.2 Urban influence on irradiation
In this second part, values most taken into account are again scalability and
ease of use, with a difference; were favoured computationally lighter and
open source methods. During the evaluation, methods that imply the usage
of proprietary tools or techniques that require a 3D model of the city were
put in second place. For this reason, were analysed mostly GSV image-based
methods, to come up with a plug and play solution for this problem.
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Chapter 4

Data collection

4.1 Deployments

During the last months, a City Scanner deployment took place in New York
City on the 21st January and went on for three weeks, specifically in the
borough of The Bronx. This on-field experiment was beneficial for testing
the previously added software enhancements and essential to gather the
necessary data for validating this research.

In fact, from this deployment, we were able to obtain more than 120’000
data points, containing air quality data and useful metadata, such as GPS
coordinates, the energy produced and the battery levels.

In figure 4.1, it is possible to see the spatial distribution and density of
the collected samples during these periods; the methods used in this study
are validated with The Bronx data.
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Figure 4.1: Collected points during the City Scanner deployment in The
Bronx.

(a) (b)

Figure 4.2: City Scanner deployment in The Bronx.

4.2 Datasets Description
In this section will be presented the dataset used in this research. Our
devices, during the deployment, gathered two datasets; the first one contains
air quality data, while the second one contains metadata about the devices
status and the spacial and time location of the sample. The metadata
dataset is the one that has more relevance to this research, and it contains
the following features:
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• Device Id, which identifies the device that recorded the sample.

• Timestamp, UNIX timestamp of the collected sample.

• Latitude.

• Longitude.

• Error on latitude and longitude.

• Internal device temperature.

• Solar panel instantaneous voltage.

• Solar panel instantaneous current.

• Battery instantaneous voltage.

• Battery instantaneous current.

• Battery level.

Moreover, New York City provided us with a dataset containing the
deployment vehicles behaviour; the available information is:

• Vehicle Id.

• Start Date, which indicated the starting date and time of a drive.

• Driving Duration.

• Stop Date.

• Stop Duration.

• Miles Driven.

• Max Speed.

• Idling Duration.
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4.2.1 Solar Estimation Model data
During the solar module study and testing, were used other three datasets. In
particular, the first one, namely National Solar Radiation Database (NSRDB),
contains historical meteorological data for the New York deployment area.
It is available open-source for download through a web application or APIs
from the National Renewable Energy Lab (NREL) website [50]. It includes
weather data from 1997 to 2018 collected every half an hour, with a spatial
resolution of 4x4 Km. The available features in this dataset are:

• Year, month, day, hour, minute.

• Temperature.

• Clearsky GHI, DNI, DHI.

• Cloud Type.

• Dew Point.

• GHI, DNI, DHI.

• Fill Flag.

• Relative Humidity.

• Solar Zenith Angle.

• Surface Albedo.

• Pressure.

• Precipitable Water.

• Wind Direction and Speed.

The data used in this research can be retrieved by supplying these param-
eters to the provided API:

1 lat, lon = 40.829, -73.897 # Location data
2 year = '2010' # Starting year
3 n_years = 8 # Number of years from the starting one
4 leap_year = 'true' # Whether to include leap years or not
5 interval = '60' # Time interval between samples
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The issue with this dataset is that our deployments happened after 2018,
so another dataset containing more recent data was employed.

To our knowledge, a free for use dataset containing very recent solar
irradiation index was not available, so a weather dataset was joined with the
previous one to create a predictive tool that could estimate Global Horizontal
Irradiance (GHI) exclusively from forecast data; the resulting features of this
merge will be presented in chapter 5. We chose to use World Weather Online
(WWO) [51] in this phase because it has data about the needed locations
and provides a free trial period, but similar services can be employed as well.
In particular, its Python3 interface with the following parameters to retrieve
the necessary weather information [52]:

1 frequency = 1 # One sample per hour
2 start_date = '1-JAN-2010' # Start date
3 end_date = '31-DEC-2018' # End date
4 location_list = ['10467'] # The Bronx zipcode

In a similar way, the meteorological information about the deployment
period was retrieved, namely from 21-JAN-2020 to 21-FEB-2020.

4.2.2 Google Street View Images
As introduced in section 3.3.2, the employed methods heavily rely on Google
Street View Images. For this reason, the first step consists in obtaining the
location points where the study is needed, as latitude and longitude pairs;
this can be done either with the help of a Geographic Information System
(GIS) software or manually.

As a next step, we developed a JavaScript tool able to, for each latitude
and longitude pair, downloads the panoramic identifier of the image from
Google Street View (GSV), namely panoId [53], along with the car facing
direction in relation to North. These unique identifiers were later provided
as input to a Python3 script that, for each location, retrieves all the tiles of
the panorama, orients them towards the North and merges them, giving a
complete fish-eye image of the area.

Performing this procedure with the data points sampled in the deployment
and eliminating duplicates, we were able to obtain a complete photographic
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mapping of the interested area.

The last dataset utilised was retrieved from the Solar Position And Inten-
sity (SOLPOS) website [54], and contained geometrical information about
the sun position over the deployment area. It was essential for the second
part of the solar module, to understand where the sun was in the sky at a
certain point in time.

4.3 The Bronx Results

As a first step, we analysed the metadata dataset collected in New York,
looking for meaningful insights about the deployment outcomes. This ex-
amination was necessary to understand if better energy management could
effectively improve the results of the deployment, while it allowed us to
understand some criticalities in the current implementation.

First of all, some pre-processing operations allowed to remove from the
dataset outliers and meaningless data. In particular, were excluded from the
dataset points with Horizontal Dilution of Position (HDOP) error on the
GPS higher than 15. Afterwards, data points recorded in times where the
cars were not operative, such as night hours, were also removed.

The first inquiry was to understand if the devices had been recording
samples for the total of the driving hours or if they failed due to external or
internal variables. To obtain this information, we begun with understanding
for how many hours each day the deployment cars drove.

In the vehicles behaviour dataset, grouping by samples by the vehicle Id
and day allowed to understand the total driving time in each working shift.
To that time, we added three minutes per each stop, because the devices
entered standby after three minutes without any solicitation, continuing to
record data in that lag time. Finally, we obtained the maximum theoretical
number of collectable samples by multiplying this total operational time for
the devices sampling frequency. It is possible to see these results in figure
4.2.
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(a) Theoretically collectable samples.

(b) Experimentally collected samples.

Figure 4.3: New York deployment results.

By comparing this number with the one recorded, it is possible to see that
some devices had some operative issue. Most of them, such as the vehicle
P7457 identified by the yellow line, worked properly having downtime only
in case of low battery. However looking at the data can be seen that others,
such as P5597 identified by the orange line, stop working on the first day.
This behaviour cannot be due to battery issues; in this case, some debugging
to understand the underlying reason is necessary.

Finally, these data show that the actual operational time, compared to
the theoretically compute one, is overall much lower. From these graphs,
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excluding software issues, it is evident that a study about the energy produced
by the solar panel is needed, to be able to predict the number of collectable
samples in advance.
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Chapter 5

Implementation

At the beginning of the chapter, will be presented the methods and procedures
utilised to obtain a forecast on the hourly GHI levels. The second part,
instead, will show how the city influences this estimate.

5.1 Solar Irradiation Forecast
First of all, it is crucial to understand and correctly pre-process of the
available data to build a powerful regression model.

5.1.1 Pre-processing
As a first step, the information regarding the Solar Zenith Angle and Global
Horizontal Irradiance were extracted from the NREL dataset and merged
over date and time with the historical weather dataset previously obtained
from World Weather Online. Considering that the Solar Zenith Angle is
yearly recurrent, the only parameter that we cannot access using weather
data exclusively is the Global Horizontal Irradiance, which becomes our
target variable.

As a next step, some features not useful for our goals such as minimum
daily temperature, wind chill information and moon illumination, were
excluded from the data. All the numeric features misinterpreted as strings
were converted into floating-point or integer values.

Successively, the rows containing information about nightly hours were
filtered out, because in that case, the irradiation is always zero. This
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operation was easily achievable comparing the hour of the sample with the
hour of the sunset and sunrise, present in the dataset.

As a next step, we added to the data frame the Extraterrestrial Solar
Radiation (EHI) using the following formula [55]:

Gon = Gsc

[
1 + 0.033 cos

(360N
360

)]
(5.1)

where:

Gon = the extraterrestrial radiation measured on the plane normal to
the radiation on the Nth day of the year (W/m2).

Gsc = solar constant (W/m2).

Once the dataset was complete, it was necessary to understand the impor-
tance of the different features adequately. For this reason, the SelectKBest
function from sklearn Python3 package was applied to the dataset using
the f_regression scoring function.

This method tests the individual effect of each of the multiple regressors,
calculating the correlation between the single regressor and the target variable,
allowing to understand which are the most prominent features on the decision.
The results of this method, along with the final dataset features, can be seen
in the following table:

Solar Zenith Angle

hour

EHI

sunHour

uvIndex

DewPointC

HeatIndexC

tempC

WindGustKmph

cloudcover

humidity

windspeedKmph

month

visibility

Surface Albedo

pressure

precipMM

F_Scores

4093.95

754.46

225.6

148.84

115.72

115.39

109.73

106.8

62.27

54.32

47.57

24.75

23.21

15.55

14.56

1.21

0.05

Feature_Name

Figure 5.1: Features with the corresponding f-score function.
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As expected, the height of the sun and the hour of the day are the most
significant ones, while cloud cover has a secondary impact. Some columns,
such as pressure and rain millimetres have a shallow effect on the decision
but were kept in the dataset because we have not experienced performances
issues, and the tests showed that the accuracy of the prediction was superior
including them. No dimensionality reduction technique was employed for
the same reason.
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Figure 5.2: Correlation of the various features.

From the correlation matrix shown in figure 5.2, it is possible to see that
the only noticeable correlation of the GHI feature is a negative one with the
sun height with respect to the zenith (the higher the angle, the lower is the
sun position). The only slight positive correlation of our target variable is
with the Uv Index, with a value of 0,44.

Once decided the features to use, the shape of the dataset was analysed;
the resulting frame contains 39694 rows and contains only numeric values,
so no encoding technique was necessary.
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5.1.2 Metrics
Before presenting the various regression models employed, it is necessary to
give an overview of the performance metrics used. The first one is the root
mean squared error, which is defined as:

RMSE =

√√√√ΣN
i=1(Yi − Ŷi)2

N
(5.2)

This quantity indicates the average geometrical distance of the predicted
values from the real ones, all under the square root; the smaller it is, the
better is the model.

The second evaluation metric employed is the R squared one, which is
defined like this in its more general formulation:

R2 = 1 − SSres
SStot

(5.3)

where:

SSres = ΣN
i=1(yi − fi)2 is the total sum of squares, which is proportional

to the variance of the data.

SStot = ΣN
i=1(yi − y)2 is the residual sum of squares.

It is a statistical measure that represents the proportion of the variance
for a dependent variable that’s explained by an independent variable or
variables in a regression model. The higher this value is, the better the
prediction. Minimising these values during training is not enough to evaluate
the performances of a model; even with the best possible value for RMSE or
R2, the model has to achieve a score as high during the test phase; otherwise,
it is a sign of overfitting the data.

Successively, a copy of the dataset was made. One of these data frames
was used as previously described, without further modification, while the
other was scaled and centred. In the scaling phase, the MinMaxScaler
from sklearn library was employed, because different solutions such as
RobustScaler and StandardScaler yielded inferior regression performances.
This specific scaler transforms each feature in this way:

Xsc = Xi −Xmin

Xmax −Xmin
(5.4)
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Bringing them in a range between 0 and 1 if positive, and [-1,1] if also
negative values are present. It was convenient to separate the two datasets
in this way because, in some of the tree-based methods employed, scaling is
unnecessary or even detrimental.

To conclude the pre-processing phase, the two datasets were split into test
and training sets using the train_test_split function of sklearn, with a
test size of 20%.

5.1.3 Linear Regression
As the first step in this phase, a straightforward model was used to have
a general idea of how complex the problem is. For this reason, a Linear
Regression model was fitted and tested on the scaled dataset; it produced a
cross-validation R2 score of 0.78.
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Figure 5.3: Results of LinearRegression model over 14 days.

It is possible to notice from the figure that the simple classifier can grasp
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the trend of the GHI during sunny days, but in more overcast conditions tends
to stray from the actual values. For this reason, more complex classifiers will
be presented successively.

5.1.4 SARIMA
ARIMA is the acronym for Autoregressive Integrated Moving Average, and
it is one of the most widely used models in time series forecasting. The
downside of this method is that it cannot support data that have a seasonal
trend, and requires the removal of these cycles with techniques such as
seasonal differencing.

SARIMA model, where S stands for Seasonal, adds three hyperparameters
to specify the autoregression (AR), differencing (I) and moving average (MA)
for the seasonal component of the series, as well an additional parameter for
seasonality.

Before modelling, it is interesting to look at the behaviour of the Global
Horizontal Irradiance during the day; we can see from the graphs that the
trend repeats after 24 samples. This behaviour was predictable, being our
target variable heavily dependent on the sun position. While in simpler
models like ARMA is necessary to transform the input data in a stationary
series if they are not, in the SARIMA model, the differencing component
(I) can resolve the non-stationarity in most of the cases, so no further
transformation is required. Moreover, the Augmented Dickey-Fuller test was
done on the data; it returned a p-value of ~0, so the null hypothesis can be
safely rejected and we can say that the target variable is in fact stationary.

For fitting the regression model to our data, it is necessary to find out the
best value for all the components in the formula SARIMA(p, d, q)x(P, D, Q,
m), where:

• p and seasonal P indicate the number of autoregressive terms.

• d and D represent the differencing needed to make the series stationary.

• q and Q indicate the number of moving average components, which are
the lags of the forecast errors.

• m represents the seasonal period.

39



5 – Implementation

Figure 5.4: Auto correlation and partial auto correlation plots of the scaled
data.

As a first step, it is useful to look into the plot of the autocorrelation
function (ACF), intending to reduce the searching space for these parameters.
It is possible to see that the trend oscillates, showing that we are dealing
with periodic data. We set m equals 24, being our points sampled every hour
over the course of the day.

Analysing the graph, it is possible to initialise the other values in this
way:

• p and P equal 1, because of the significant positive spike in the PACF
plot.

• d and D respectively at 1 and 0, because simple differencing could be
enough, being our series already stationary.

• q and Q respectively at 2, due to the negative spike in the PACF plot
at that position.
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Plotting the ACF and the PACF using these test values, we noticed that no
noticeable spikes or trends emerge. At this point, the function auto_arima
from the pyramid Python3 package is used to perform a grid search over the
specified parameter ranges to seek the optimal order for the model, providing
the remaining features as exogenous variables.

The function returns the following values: (2,1,3)x(1, 0, [1, 2], 24).

Fitting with the Powell optimisation method with the SARIMAX function
from statsmodel and evaluating the model, it gives an R2 score of 0.78 and
an RMSE of 99. The plot in 5.6 shows the model accuracy over a week; it is
possible to see that the model is able to grasp the trend of the data, but in
cloudy days it has poor performances. Plotting the ACF for one last time
shows that the process is now wholly uncorrelated, meaning that the used
parameters are adequate, as it is possible to see in 5.5.

Figure 5.5: Auto correlation and partial auto correlation plots of the
residuals.

To be able to compare these scores with the ones from the other models, a
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re-evaluation is needed after removing the night hours. After this procedure,
the final score achieved is an R2 score of 0.73.
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Figure 5.6: Results of SARIMA model over 14 days.

5.1.5 Tree based methods
Tree-based methods are considered one of the best and most widely used mod-
els in supervised learning. Their capacity to model non-linear relationships
and their ease of interpretation make them suitable for both classification and
regression problems. Even though neural network models tend to outperform
tree-based models in unstructured data such as text or images, these methods
have proved themselves to be better in case of tabular data.

We applied to our problem three different tree-based models and then
improved their single performances by creating a stacked classifier. For
optimising the hyperparameter, the Python3 package hyperopt was used;
it allows to specify ranges for each parameter and performs a heuristic grid
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search over the possible values, improving the model performances in a
reasonable time.

Gradient Boosting Regression

Gradient Boosting is a machine learning technique for regression and clas-
sification problems, which produces a prediction model in the form of an
ensemble of weak prediction models, in this case, decision trees. It is an exam-
ple of a boosting algorithm because, during training, subsequent predictors
learn from the mistakes of the previous predictors. In fact, the observations
have an unequal probability of appearing in subsequent models. Only the
ones with the highest error appear most; samples are not chosen based on
the bootstrap process but based on the error.

The hyperparameters of the model were optimised in 100 iterations, and
the best ones were:

1 best_gb = {
2 'learning_rate': 0.05,
3 'max_depth': 11,
4 'max_features': 'sqrt',
5 'min_samples_leaf': 8,
6 'min_samples_split': 0.1,
7 'n_estimators': 975,
8 'subsample': 0.9345503093012107
9 }

The final score of the model on the test set is an R2 of 0.856 and a RMSE
of 99.18.
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Figure 5.7: Results of Gradient Boosting Regression model over 14 days.

Is it possible to see in the graph that the accuracy is higher than the
simpler linear model, even though some fluctuations cannot be adequately
detected.

XGBoost

The second model employed is XGBoost [56], which is a is a decision-tree-
based ensemble Machine Learning algorithm which uses a gradient boosting
framework as well. Compared to the previously used method, it uses a
parallelised implementation, and it has been designed to make optimised
use of the hardware resources, making it very fast. Moreover, it presents
more regularisation options and more randomisation, improving overall
performance by reducing overfitting.

After the optimisation, the parameters used are:

1 best_xgb = {
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2 'colsample_bytree': 0.6,
3 'eta': 0.9543574177848344,
4 'gamma': 7.493135053072937,
5 'learning_rate': 0.05,
6 'max_depth': 11,
7 'min_child_weight': 7,
8 'n_estimators': 1375,
9 'reg_alpha': 166,

10 'reg_lambda': 0.8509315054191489,
11 'subsample': 0.9,
12 'booster' : 'gbtree'
13 }

The score achieved using the dart booster was slightly better, but the
training time was exponentially higher, so gbtree was chosen. The R2 and
RMSE of the prediction on the test set are respectively 0.8972 and 86.57.
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Figure 5.8: Results of XGB Regression over 14 days.
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The score of this model is slightly higher than the previous ones; from the
graph, it is possible to see a minor improvement, in particular on less regular
days.

LGBM

The second method employed is LightGBM, another tree-based model devel-
oped by Microsoft Research [57]. It is based on Gradient Boosting Decision
Trees, but presents some differences compared to XGBoost, such as the Ex-
clusive Feature Bundling; it takes advantage of the sparsity of large datasets.
The essential observation behind this method is that the sparsity of features
means that some features are never non-zero together. In this case, they will
be joined in a single one without losing information.

Moreover, it implements Gradient-based One-Side Sampling; the essential
observation behind this method is that not all data points contribute equally
to training; data points with small gradients tend to be more well trained
(close to a local minimum). This means that it is more efficient to concentrate
on data points with more significant gradients.

After the optimisation using hyperopt, the final parameters used are
these:

1 best_lgbm_found = {
2 'bagging_fraction': 0.9,
3 'bagging_freq': 4,
4 'boosting_type': 'dart',
5 'colsample_bytree': 0.5,
6 'learning_rate': 0.3,
7 'max_depth': 15,
8 'min_child_weight': 2,
9 'n_estimators': 2900,

10 'subsample': 0.5
11 }

And the final score on the test set is 0.894 for R2 and 88.1 for RMSE.
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Figure 5.9: Results of LGBM Regression model over 14 days.

Again, the accuracy is high compared to the simple linear regression, and
it can predict fluctuations better than XGBoost, even if its score is a bit
lower.

5.1.6 Neural Networks
Neural networks are a useful technique also for tabular data analysis, requiring
little feature engineering and less maintenance than other methods. For
this reason, as presented in chapter 2, this method has been applied to this
problem in several studies [58].

Feed Forward Neural Network

Feed-forward neural networks are artificial neural networks where the con-
nections do not form a cycle. The name feed-forward indicates that the
information travels only in one direction; every layer takes input from the
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upper layer and propagates into the successive ones. These architectures,
also called Multi-Layer Perceptrons, are composed by one input layer, one
or more hidden layers and an output layer.

Figure 5.10: Architecture of a Feed-forward neural network.

In our case, as a starter model, we used one similar to [58], with one single
hidden layer. This model could learn all the complexity adequately, and
its test RMSE score applied to our problem was low. As a next step, we
started adding fully connected hidden layers and augmenting the number of
units, while tracking the shape of the loss on test data to avoid overfitting.
Successively, we used Adam [59] optimiser, which gave us better results
and faster convergence compared to Adadelta [60] and Stochastic Gradient
Descent. With several trials, we set the learning rate to 0,0008 because it
achieved the highest score.

At last, we introduced some regularisation techniques to reduce the over-
fitting on the input data and some normalisation layers to speed up training.

The first one of these layers is the Batch Normalisation [61]. This layer
normalises the activations of the previous layer at each batch; it applies
a transformation that maintains the mean activation close to 0 and the
activation standard deviation close to 1. Even if the problem of covariance
shift becomes more significant in deeper architectures, one of these layers
after three fully connected layers helps to speed up training time by increasing
the learning rate with a slight performance increase.

Afterwards, we introduced one dropout layer after some fully connected
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layer in the network [62]. The idea is to randomly drop units (along with
their connections) from the neural network during training, which prevents
input units from co-adapting too much.

Regarding the activation layers, in the hidden layers, the ReLu function
was used, because it is more computationally efficient than other solutions,
e.g. sigmoid, and introduces some non-linearities that can boost prediction
score. Whereas in the last layer, the ’insert final layer’ function allowed to
output a value between zero and one

The Python3 package hyperopt was again employed to fine-tune the
number of units, the dropout coefficients and the number of layers to maximise
its efficiency on our problem.

The final architecture is defined as:

1 random_norm_init = RandomNormal(seed=1)
2

3 model = Sequential()
4 model.add(Dense(128, input_shape=(X.shape[1],),
5 kernel_initializer=random_norm_init,
6 bias_initializer=random_norm_init,
7 activation='relu'))
8 model.add(Dense(256, kernel_initializer=random_norm_init))
9 model.add(BatchNormalization())

10 model.add(Activation('relu'))
11 model.add(Dropout(0.11))
12 model.add(Dense(256, kernel_initializer=random_norm_init,
13 activation='relu'))
14 model.add(Dropout(0.09))
15 model.add(Dense(256, kernel_initializer=random_norm_init,
16 activation='relu'))
17 model.add(Dropout(0.11))
18 model.add(Dense(1, activation='relu'))
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Figure 5.11: Training and validation losses of the Neural Network.

To better understand the correct number of epochs necessary to achieve
the maximum score, an EarlyStop callback was employed. This function
monitors the validation loss of the network through the training; if for n
iterations the specified parameter has not seen any improvement, the training
stops and the is restored the configuration with the best weights. The model
in analysis, as it is possible to notice from the line chart, converged after 112
epochs with n set to 25, achieving a normalised validation score of 0.0090.

The neural network achieved similar performances to the trees based
methods; its R2 score on the test set reached 87.4 while its RMSE touched a
value of 93.
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Figure 5.12: Results of Neural Network over 14 days.

5.2 Urban Irradiation
The output of the previous step, to assess the influence of the city on
its estimate, has to take into account the type of environment where the
fleet deployment takes place. For this reason, this section will present two
similar approaches to identify and quantify the obstruction caused by trees
or buildings. Both these methodologies are based on Google Street View
images, but the assessment of the percentage of the covered sky is different.

5.2.1 Preliminary steps
As introduced in the data collection chapter, the first step consists of re-
trieving the images of the deployment’s area. This collection was achieved
using a JavaScript tool, which takes as input a file with the latitudes and
longitudes of the streets of interest. For each of these coordinates pairs,
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it uses the google street view service [53] to retrieve metadata about the
provided locations. The file collected in this way contains, for each point,
this information:

• Date.

• Panorama Id, which identifies the unique code of the panoramic picture
in Google’s databases.

• Sample number, determines to which input pair this information corre-
sponds.

• Latitude.

• Longitude.

• Heading, that indicates which direction the GSV car was facing when
acquiring the picture, in relation to North. This information is crucial
to be able to rotate the image to face that direction; otherwise, the
geometrical calculations about the sun position cannot be successfully
completed.

Figure 5.13: Example panoramic image, it corresponds to a street where
the deployment cars drove by in The Bronx, in particular the coordinates
are 40.818816, -73.89859162.

Once this file is available, the next step is to download the images corre-
sponding to the supplied locations. We created a Python3 tool that could
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retrieve in parallel the needed images; the images are downloaded from the
API in tiles with a shape of 26 horizontal tiles and 13 vertical ones, using a
zoom level of 5. These tiles were successively joined together to obtain an
image with 2:1 aspect ratio and 946x473 resolution; this specific resolution
was chosen for the next step.

5.2.2 Image segmentation
Deep learning method

This methodology, proposed by Gong et al. in [63] makes use of Pyramid
Scene Parsing [64] deep neural network to segment images in the different
city components to identify the sky region.

PSPnet uses a first Convolutional Neural Network to create a feature map
of the last convolutional layer, which sub-region representations are collected
by a pyramid parsing module. This module is then followed by upsampling
and concatenation layers to form the final feature representation, which
carries both local and global context information. Lastly, this representation
is fed into a convolution layer to obtain the final per-pixel classification.

This network reached optimum performances in classifying the different
components of the urban environment, achieving a score of 80.2% accuracy
on the Cityscapes dataset [65].

Figure 5.14: PSP net architecture.

Regarding the implementation, this [66] PSPnet Python3 version was
used. Because the network takes as input bitmaps with 473x473 resolution,
the downloaded pictures were split into two images with the requested size,
fed into the model and re-joined after the classification.
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Figure 5.15: Segmented image using the PSP neural network.

The next step consists of changing the orientation of the images so that
all are facing North. Using the information retrieved from Google Street
View service, a portion of the image, equivalent to the rotation needed, either
from the right or the left side, is moved on the opposite side of the image,
obtaining in this way the correctly oriented panorama.

Figure 5.16: From the Google Street View API, we found out that the
orientation of the car when the picture was taken was of 37.5 degrees to
North. The section of the image corresponding in proportion to this value is
moved on the other side.

Once we obtained these segmented views, a polar transformation allows
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converting the photos from a wide-angle panorama to fish-eye images, with
the zenith in the centre. This procedure is the one employed in [67]. Having
Wc andHc as the height and the width of the cylindrical panorama, the radius
of the transformed image becomes r0 = Wc/2π, while the new dimensions
of the image become Wc/π. The central point of the new representation
(Cx, Cy) becomes:

Cx = Cy = Wc

2π (5.5)

Each pixel of the original image (xc, yc) corresponds to (xf , yf ) in the new
one, following this relationship:

xc = θ

2πWc (5.6)

yc = r

r0
Hc (5.7)

where:

θ =


π
2 + arctan ( yf −Cy

xf −Cx
), xf < Cx

3π
2 + arctan ( yf −Cy

xf −Cx
), xf > Cx

(5.8)

r =
√

(xf − Cx)2 + (yf − Cy)2 (5.9)

The result of this transformation can be seen in the following figure.
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(a) Azimuthal projection of the cilin-
drical panorama.

(b) The transformation allowed us
view the cilindrical panorama as an
azimuthal fish-eye image.

Figure 5.17: Azimuthal projection of the panoramas pictures.

In contraposition with the original method described in the paper [43],
some test showed that applying the mean-shift algorithm to the segmented
fish-eye image on our deployment area yielded better results compared to the
suggested approach. This algorithm in fact, which will be further explained
in the subsequent section, allows reducing the shades of colours, decisively
simplifying the classification process. As the last processing step, the function
cdist from scipy.spatial.distance was chosen to calculate the distance
of every colour of the picture from reference ones defined in a palette, to
repaint the image with the preferred shades.
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(a) Azimuthal projection of the cylin-
drical panorama after mean-shift al-
gorithm; edges are more defined and
there is less noise.

(b) Recoloring of the segmented image
using geometrical distance from refer-
ence colours.

Figure 5.18: Mean-shited colours and repaint of the image.

Brightness Based Method

This other method, described in Li et al. [67], makes use of the mean shift
algorithm to limit the number of different colours and to segment the pictures
in more specific colour areas. With the segmentation results, it is possible to
differentiate the sky pixels from the non-sky ones by calculating a brightness
value for each of them and compare this value with a threshold.

First of all, the images are oriented to face North and transformed into
azimuthal views using the same methods presented in the previous section.
The mean shift algorithm, firstly presented in 2002 by Comaniciu et al. in [68]
is a clustering algorithm that assigns data points to the clusters iteratively
by shifting them towards the mode. In fact, given a set of data points,
the algorithm iteratively assigns each datapoint towards the closest cluster
centroid. The Python3 pymeanshift package was used as an implementation
of this procedure.
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(a) Azimuthal projection of the cilin-
drical panorama.

(b) Meanshifted azimuthal image.

Figure 5.19: Azimuthal projection of the panoramas pictures.

Regarding the classification, the intuition is that the sky points have the
blue band more accentuated compared to buildings and trees; the brightness
was adjusted giving more weight to this particular channel using the formula
presented by Li et al. in [67]:

Brightness = (0.5 ×Red+Green+ 1.5 ×Blue)
3 (5.10)

All the points that had this value higher than a certain threshold were
classified as sky, while the remaining pixels were further separated into
vegetation and buildings, using a similar technique to the one before, but
with the colour green:

ExG = 2 ×Green−Blue−Red (5.11)

As suggested in the paper, Otsu’s method [69] was used to pick these
thresholds; this technique looks at the set of values and tries to minimise the
within-class variance. In other words, it works to find a cut-off value such
that the variance of the resulting both classes in the Gaussian distributions
is as small as possible.
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(a) Distribution of blu-band enhancing
formula results.
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(b) Distribution of green-band enhancing
formula results on remaining points.

Figure 5.20: Distribution of brightness values on example picture containing
sky, trees and buildings.

As it is possible to see from the figure, it is possible to separate the two
classes respectively for values around 150 in the (a), and 6 in (b); applying
Otsu’s method for this sample picture the values returned are very close to
these values.

(a) Azimuthal projection of the cilin-
drical panorama.

(b) Each pixel in the meanshifted im-
age has been classified using adjusted
brightness rules.

Figure 5.21: Azimuthal projection of the panoramas pictures.
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As pointed out in Li et al.’s work, this method can be enhanced using
some geometrical rules, but for this research, it showed a satisfying accuracy
also without further modifications.

As it is possible to see in the picture, the trees that have a colour towards
brown can be mistaken for buildings. In the irradiation assessment, they are
treated as an obstruction to direct irradiation equally, so it is not problematic.

5.2.3 Irradiation reduction assessment
As a next step, is calculated the Sky View Factor (SVF) for each of the
analysed points. The panorama images, after the polar transformation, have
a resolution of 301x301. It is possible then to calculate the number of pixels
contained in it using the formula for the circle area, being the actual image
shaped like a circle with diameter 301. Once the photo is segmented, the
number of pixels classified as the sky is calculated.

This number is then divided by the total pixel number, obtaining in this
way a coefficient between 0 and 1, which indicates the sky portion sky visible
from that spot.

Once is identified which part of the image is the sky and which one consists
of buildings or trees, and after having estimated the SVF, is necessary to
understand in which hours that street segment is illuminated. Using the
information about the Solar Zenith Angle and the Solar Azimuth Angle
contained in the SOLPOS [54] dataset presented in chapter 4, it is possible
to determine the position of the sun at a specific time in the fish-eye images.

Figure 5.22: Using zenith and azimuth angle is possible to identify the sun
position on a hemispheric image.
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Once the point (xf , yf) is established, the nearest 8 pixels around the
point are analysed to classify the spot using the majority class (obstructed
or not obstructed).

The GHI value, estimated in 5.1, can be decomposed into DNI and DHI,
to better assess its impact at street level. This decomposition is done using
the well known Erbs et al.’s model [70]; in particular, the implementation
done in pvlib is chosen. Once the two components of the GHI are obtained,
the SVF and the information about the building and trees obstruction can
be combined to have the street-level GHI, using this formula:

GHIstreet = DNI × cosα× f +DHI × SV F (5.12)

where:

• GHIstreet is the total irradiance at street level.

• α is the solar zenith angle.

• f is a binary value that indicates whether the sun path is obstructed or
not; this information can be retrieved from the GSV images.

• SV F is the Sky View Factor.
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Chapter 6

Evaluation

After having presented all the techniques tested on the weather dataset, to
reach the best results on the prediction, an ensemble regressor is used.

6.0.1 Stacking Classifier
Multiple approaches exist to combine several models into one to improve
the overall performances. For example, a simple weighted average of the
different classifier predictions can boost the base score and the robustness of
the single ones.

Stacking, similar to bagging and boosting methods, involves joining the
predictions from multiple machine learning models on the same dataset. The
architecture of stacking unravels into two levels; at the first level, two or
more classifiers deliver a prediction in parallel on the same dataset. At the
second level, a meta-model takes as input features the output of each model
at the upper level, and learns how to combine them in the best way possible
to predict the target variable.

The efficiency of stacking is maximised when the predictions made at the
first level or their forecast errors have a low correlation or better they are
uncorrelated. Regarding the types of models to use at the different levels,
while the base models are usually complex, the meta-model instead is often
simple, providing a smooth interpretation of the predictions made by the
base models.

Using as base models LGBM, GBTree, XGBoost and the ANN, and using
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Lasso regressor as a meta-model, we were able to increase the prediction
accuracy, reaching an R2 score of 90.12.
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Figure 6.1: Results of Stacked model prediction over 14 days.

Another consideration needs to be taken into account on this forecast
accuracy. We chose to exclude the feature Cloud Type, contained into the
NSRDB dataset because it is not included in the most common weather
datasets and APIs, and may result hard to retrieve for some locations.

Including that feature, the accuracy increased dramatically, reaching
values of R2 of 0.96 on average, while staying over 0.99 for sunny days.
Even if, with this modification, we were able to reach these high scores,
we preferred scalability over accuracy, because the current implementation
allows to port the system to another city with minimal effort. The network
was tested on Los Angeles weather data to validate this claim, achieving a
score higher than the one for The Bronx, namely 0.921 as R2 accuracy, most
likely because of lower weather variability and a higher presence of sunny
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Figure 6.2: Results of Stacked model prediction on Los Angeles data
without re-training.

There is also another way to increase prediction accuracy further. The
data employed for the training, contained in the NSRDB, are calculated with
a physical estimation model, and not sampled using tailored equipment. If
the network is re-trained with data recorded with accurate instruments, we
believe that the model’s scores can reach higher values.

6.1 Irradiation reduction assessment
The two photographic methods described in section 5.2 were compared to
assess the city’s influence on the estimate of the first part. After the download
and the pre-processing phase, the two techniques were implemented, applied
and then compared with the data experimentally collected. From the tests, it
emerges that the deep learning-based method is able to classify the different
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city components with higher accuracy. In particular, the brightness-based
method performs poorly in case of trees with no leaves or with colours shifted
towards autumnal shades.

Moreover, it misclassifies some components of buildings if they heavily
reflect the sky (e.g. glass skyscrapers) or if they present bright colour facades.
The advantage of this approach is in its speed; the Pyramid scene parsing
network takes a noticeable amount of time to classify the images, especially
on machines where a dedicated GPU is not available.

If high classification accuracy is needed, the best method is the first; the
second, which gives slightly worse results but it is orders of magnitude faster,
can be chosen in case of a very extended area of interest and a short amount
of time. The advantage of both these approaches is that, for every street that
the devices are expected to cross in deployment, a database of irradiation
reduction can be computed in advance, reducing in this way the assessment
phase to a simple table lookup.

In the following graphs, it is possible to see the performances of the two
methods applied to the data collected during a deployment day by one of
the vehicles, in particular on the 22nd January 2020.
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(a) Brightness based method.
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(b) Deep learning based method.

Figure 6.3: Comparison of brightness based and deep learning methods.

It is possible to see that the prediction, represented by the dark blue line,
is similar. The brightness based method, being intrinsically noisier, has more
obstruction points, which in this example follow better than the other the
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trend of the real value.

Moreover, it can be seen that between 11:10 am and 11:15 am there are
some fluctuations in the energy produced; both models managed to predict
in an accurate way this behaviour.

In the chat, all the measures are represented in Watts. As introduced
in chapter 2, solar panels lose some of their efficiency when they heat up,
due to parasite currents that appear between the adjacent cells. We did not
consider this yield reduction because in the deployment period temperatures
never exceeded 15 degrees Celsius and, at that temperature, the decrease
is negligible. The sun energy was transformed to Watts through a simple
multiplication for the panel surface area, namely 0,0583m2.

There is an energy gap between the peak wattage supplied by the sun and
the actual energy produced. This gap can be explained by the settings of the
employed solar panel; the reason resides in the possibility to set the voltage
threshold at which it starts to produce energy. If this threshold is high, the
peak power yielded is higher, but it necessitates of more energy to start
producing current. On the other hand, if this limit is low, the peak power
will be lower, but the production is also triggered in overcast situations.

Being the deployment planned during the cold season, we decided to set
the threshold lower to have a more constant energy flow, generating some
current even in harsher conditions.
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Figure 6.4: Intensity calculated using the two methods compared to the
one sensed in one street.

This alternative representation shows the differences between the two
methods and the sensed values. First of all, it is essential to consider that the
main limitation of these methods resides in the distance between one GSV
photo and the next one. In fact, GSV API, given a latitude and longitude
pair, will return the closest image to the needed location. This location
could coincide with the requested point, but most of the time, it is slightly
translated to a contiguous site.

These methods are susceptible to the precise position because a tree or a
building could obscure one section of the street where the picture is available,
and not obscure the remaining part.
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Moreover, from the tests in The Bronx area, we noticed that the GSV car
usually shoots panoramas at intersections, probably to maximise the field of
view, and often, the SVF at the intersections is higher than the one in street
tunnels.

This last hypothesis can be confirmed comparing the top-left zone of
the figure 6.2a with the same area in figure 6.2b/c; it is possible to notice
that in the second and third ones, the points are all placed at intersections
with streets oriented towards the south-east, where the sun is located in
that season in the morning. This phenomenon causes some misclassification,
mistakenly increasing the number of illuminated points.

69



Chapter 7

Conclusions and Future
Works

This last chapter aims to conclude this thesis, summarising what has been
presented so far, highlighting the most important goals achieved and the
limits of the proposed solution.

7.1 Overview
Recent technological advances allowed IoT devices, thanks to their low
power usage and reduced overall dimensions, to have increasing relevance
in applications such as remote sensing. In fact, in most of this kind of
applications, the power from the electric grid is not always available, and
alternative sources of energy are employed to sustain them. At the same
time, the discovery of different materials to build solar panels was able to
reduce their price, offering a convenient solution to harvest a resource widely
available at low costs.

Many studies assessed the efficiency of solar panels placed in a precise
location and inclination, but most of these models lose their efficacy when
their position is not stationary anymore.

For this reason, the focus of this research is the understanding of the
amount of energy produced by a moving solar panel, to enable the fleets
of tomorrow to achieve their goals, anticipating their operation time in an
unexplored environment. The presented method was validated on the data
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collected in The Bronx, NY, by the City Scanner project; a novel approach,
conceived by MIT’s Senseable City Lab, for developing a cost-effective,
drive-by modular sensing platform to evaluate spatiotemporal environmental
parameters in municipalities, such as air quality, ambient temperature and
building thermal dissipation. These solar-powered devices follow a centralised
IoT regime to generate a near real-time map of sensed data, and the individual
sensing units are installed on urban vehicles to record data and stream it to
the cloud for processing and analysis.

7.2 Objectives
The objective is to obtain a consistent method able to predict the irradiance
over an area of a city and assess the influence of the buildings and trees on
the final street-level values for the provided locations. This model must be
able to to take decisions in all the phases of a solar-powered fleet deployment:

• Before, to forecast the collectable energy and thus the operating time to
adjust the devices to achieve their goals.

• During, to make data-driven decisions on whether to enable power
saving behaviours or to increase uptime (e.g. using a higher sampling
frequency).

• After, to assess the performances of the devices.

This method must have the flexibility to adapt to different environments
and has to be functional with no or minimal change in configurations. More-
over, the presented methodology is conceived as the first step towards a
fully automated fleet manager, that can maximise the efficacy of the fleet
deployment under the energetic aspect.

7.3 Methodology and results
As a first step, some software and hardware enhancements were introduced
in the devices and the backend of City Scanner, that allowed to deploy the
project in New York for one month at the beginning of 2020. During this
deployment, have been collected more than 120’000 data points containing
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information about air quality and metadata about the energy produced by
the panel and stored in the battery.

Successively, to obtain data to use as ground truth for irradiation, some
models found in the literature and some not yet applied on this problem
were tested on a combined database containing weather and irradiation data
of the City Scanner deployment area. This approach resulted in a flexible
procedure to predict the Global Horizontal Irradiance (GHI) in different
locations with an R2 score higher than 0.90; it has also been tested in another
city, namely Los Angeles reaching, without re-training, similar scores.

A further analysis allowed to assess the influence of the built environment
on the previously obtained estimate; in fact, being the solar panels installed
on vehicles at street level, they frequently enter zones shaded by human-
made or natural obstacles. Two different Google Street View (GSV) imaging
methods found in literature were modified and compared, to quantify the
visible portion of the sky and the presence of obstructions for several streets
in the area of the deployment.

One method required a pre-processing phase using a deep neural network,
while the other classified images through brightness rules. The first one
yielded better results but needed more time throughout the segmentation
phase, while the second one was faster but less precise to identify the different
urban components. In both techniques, panoramic images downloaded by
the provided API were transformed into azimuthal fisheye views, and succes-
sively the sky pixels were classified from the non-sky ones. Combining this
information with solar geometry data about the location of the deployment
allowed the estimate the reduction on the solar irradiation values obtained
in the first step.

The advantage of these techniques over software that makes use of 3D
models resides in its inherent scalability, which allows creating a dataset
containing this information for an untested location even if the 3D scan of
the city area is unavailable.

The proposed method has been published on the platform GitHub [71]
divided into three repositories, each solving a sub-problem of the bigger one:

• pygsvpano [72], which contains the tool needed to download the images
from the Google Street View database.
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• fos [73], from the Greek word light (ϕω̃ς), which contains the first part
of the second module, namely the model to forecast the irradiation given
the weather forecasts.

• skia [74], which means shade in Greek (σκιά), contains the function to
assess the obstruction of the provided points given all the needed input
data.

In the README.md files contained in these repositories is possible to
find more precise instructions on how to use them. A high-level description
of the steps needed to reproduce this research are:

1. Retrieve the car headings data and the panorama ids using the web tool
inside the pygsvpano repository.

2. Download the needed images using the pygsvpano download tool.

3. Either load the pre-trained model or train a new one to forecast Global
Horizontal Irradiance (GHI) values with the fos model.

4. Evaluate the reduction on the clear-sky GHI values using the function
perform_classification, found in the skia repository.

7.4 Future works
As future steps of this project, the third and fourth modules presented in
chapter 3 are needed to obtain a complete fleet manager. In fact, a component
able to forecast the path of the devices can help to evaluate the available
energy through the deployment day; using the energetic map created with
the proposed method is possible to assign to a path a value that indicates
its “energetic potential”. The forecasted power production is then provided
to the last module, which aggregates the information from each device and
dynamically adjusts their behaviour to achieve the selected sensing goal.

Furthermore, we will work on a higher-level interface on top of the provided
python3 packages, capable of automatically gathering all the needed data
and of performing the estimate straightforwardly. The only input data will
be a set of latitude and longitude points with the associated timestamp in
which the position of the panel matches with that location.
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Given the increasing interest in renewable energy and the developments
of the solar industry, the number of applications of devices powered by
photovoltaics is expected to increase both in transportation and remote
sensing fields. The presented methodology demonstrates then its future
applicability also because of its flexibility, offering open-source components
that can be employed on all kinds of solar panel powered fleets, to schedule
in the most efficient way their behaviour in view of their goals.
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Appendix A

Solar Energy

Solar irradiation is the incident energy per unit area on a surface, found by
integration of irradiance over specified time (hour/day); the measure unit is
J/m2 [75].

Solar Irradiance is defined as the amount of electromagnetic energy pro-
duced by the sun incident on a surface per unit area (W/m2). This energy
calculated on the earth surface can be decomposed in different components.

The Direct Normal Irradiance (DNI) is the energy received by a surface
perpendicular to the current position of the sun carried only by rays that
come in a straight line, namely the ones that directly hit the area without
any reflection. This value is directly dependent on the height of the sun
with respect to the azimuth, in particular to Solar Zenith Angle (SZA). The
Diffuse Horizontal Irradiance (DHI) is composed by the light which does
not come directly from the direction of the sun, but instead is scattered by
molecules in the atmosphere or reflected by buildings or ground, and comes
equally from every direction. At last, the Global Horizontal Irradiance (GHI)
is the combination of these two values on a horizontal surface; it is calculated
with the following formula:

GHI = DNI ∗ cos(SZA) +DHI (A.1)
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Figure A.1: Components of solar radiation.
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