POLITECNICO di TORINO

Laurea Magistrale in Ingegneria Civile

STABILITY OF TANK-LEVEL CONTROL
SYSTEMS IN HYDROPOWER PLANTS

ADVISORS

Prof. Luca Ridolfi
Eng. Riccardo Vesipa

CANDIDATE

Alejandro Marmolejo Gutiérrez

Turin, Italy
July 2020



CONTENTS

ABSTRACT ....ucevuiverruecrnccnennnee .6
1. INTRODUCTION....ciiiiinreisinsanssesssesssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssss 7
2. PROBLEM STATEMENT 8
2.1.  Typical Run-of-River Hydropower Plant..............ccccoeeieriiiniiniiieiecieeeeeieeeeeee e 8
2.1.1.  Hydraulic Components and working SCheme ............c.cccccvvreriiiiiiieeriie e 8
2.1.2.  Regulation SYSTEIM ...cccuviiiiiiieiiie et et eeeeeeee e tee s e e sreeeser e e esbeeeeseeenaeesnnseeennns 9

2.2.  Assessment of the Flow Control System Stability.........cccccoecienviiiiiinieeiieieeieee 10
2.2.1.  New Mechanisms included in the present study..........cccccoveevviiiiriieeiiieeeiiee e, 11
Hydraulic tranSICNTS .........eeciieeiiiieeiieeciieeeee e eee ettt e et e et e e sea e e e ssreeeaseeesseeeneseeennns 11
UNCEITAINEICS ..evtentienieeiiestieie ettt ettt sttt et e et e bt et se e sbe et eeate st e entesseesbeenbeentesbeenseeneenee 11
INStantan@ouS MEASUTE ......cccecuiiieeiiiiieeeecieeeeeritee e e ettt e e e sbaeeeesseaeeeeesssaeeeesnssaeeeesnnsaeesanns 11
DICLAYS .ttt ettt ettt eteenaeeenbeeaeas 11
NON-INStANtANEOUS VAIVE .....eeneiiiiiiieiiiieeiiett ettt s 12
BaCKIaSI ...t e e e e aa e e 12
Numerical SITMUIAtIONS. ......ccuviiiiiiiiiiii ettt e e e e e e e e beeeseaeeesaseeessseeens 12

3. METHODS.......ccocevvervueverrrennncee 13
3.1.  Mathematical Model of the dynamic SyStem ...........cccceeevuieriiiiiieniiieiee e, 13
(0707018 00) AV 4 1 o) (<R R PR 13
Dynamic and Continuity EQUAtIONS .........c.ccciiiiieriiiriieiieeie ettt eeee et evee s 14
Boundary COondItiONS .........coeevieriiriinieeieneeieet ettt sttt ettt s 15
FOTEDAY ..ottt ettt et aeas 15

SUIZE tANK ...ttt s e e e eenbeeeaaeeen 16
DOWNSITEAM VALVE ..ottt ettt ettt e saee e e eeees 16

INitial CONAITIONS ...etieiiieiieeie ettt ettt et et e et e st e et e saeeenseesnnes 16
.11 New MEChanISMS.....cocuuiiiiiiiiiiiiiieeitee ettt 17
Uncertainty 0f the MEASUTE .......c.ceeiiiiiiiiiiiicrieeeeet et 17
NON-INStANTANEOUS MEASUTLE .....eeuvveeurierieeeiierireeteeateesteesteesseeanseesseessseesseesseesseesnseesseeenne 17

| 5] £ R 17
NON-INSEANT VALVE ..ottt ettt ettt st e st essae e e e saee e 17
BacKIash ...c..couiiiii s 18

3.2.  Mathematical model of the stability assessment.............cccceeveuieercieeenieeeniie e 19
3.2.1.  The Stability Function, the Stability Criterion, and the Stability Limit................ 19
3.2.2.  Statistical stability aSSESSMENL .........ccueeriuiiriieriieiieeieeiee et 23

4. NUMERICAL METHODS 24
4.1.  Method of the CharacteriStiCs .........cuevirriiriiririirierieeeree ettt 24



4.1.1.  Governing EQUALIONS .......c.cooieiiieiiieeiieiieeie ettt see e sae s e saeesbeesaaeenseennnes 24

4.1.2.  Boundary CONditiOnsS ..........ccceeeeueeriierieeriieeieeniieeieeieeseeeteeseaeeseessaeesseessneenseensnes 25
Boundary condition for upstream tank (forebay).........cccceeevievciiiiiiiiriniie e 25
Boundary condition for Surge tank ............cccceecuieriiiiiieniieeieee e 26
Flow control with new mechanism and boundary condition for downstream valve ......26

4.1.3.  Initial CONAITIONS ..cueiiiiiiiiiiiieiie ettt ettt ettt esaeeenbeeneees 35

4.2, Stability fUNCHION ......eoctiiiiieiiecie et ettt e tee b e e aaeeabeesaae e 35

4.2.1. Set of hydraulic components variables Yp .......ccccocervueriininiinieninenieeeeeeeen 35

4.2.2. Set of variables related to the flow control system mechanisms effects Yre........ 35
Hydraulic TranSientS........cueecuierieeieerie ettt ettt ettt et eaeesaeeesbeessaesnseesaaeenseenenas 35
Instrumental uncertainty fUNCON .........cociiriiiiiiirie et 35
Measuring time fUNCHIOMN .......uieiuiiiiieiie ettt e e 36
DElays fUNCHON .....ooviieiiiiiiecie ettt ettt e et ebe et e e b e e saesabeessseesseensnas 36
Non-instant valve fUNCHON. ......ccueviiiiiiiiieiceie e s 36
Backlash fUNCHON........ccuiiiiiecie et e e e e 36

4.2.3. Set of variables related to the PI Controller............occovveviniiiniininiinieeeeee, 36

4.2.4.  Definitive stability fUNCHION .........cceiviiiiiiiiieiiecie e 36

4.3.  The Benchmark global case ...........ccocuiiiiiiiiiiiiiiie e 37
4.4. Exponential fit Parameter S.........cccveeviiiiiieiiieiieeie ettt 38
4.5.  Stability IIMIt CUIVES ....cooiieiiieeiiieiieeie ettt ettt sve et e e e seaeesbeebeeesbeessnesnseennneenne 38
4.6.  Statistical stability aSSESSMENL .........ccoveriiriiriiiirierieete ettt 38
4.7. Comparison between Jimenez’s and the present document’s approach ...................... 40
4.8, STMUIATION SETUP ..eeeeiiieeiiieeiiieeiie et e ettt e e etteesaeeesereeessbeeessbeeesaseesaseessaeessseeennseas 44
5. RESULTS .cccevververnrercnncsassseesans 48
5.1.  Typical Results of @ Particular Case ..........cccceeveeeiiieeiieeiiieeeiie e e 48
5.2.  Typical Results for Global Cases........cc.eeevuiiieiiiieiiiiieiieeeiie et 50
5.3, RESUILS AISCUSSION ...uueiiuiiiiiieiieeiie ettt ettt ettt et e et e st e et e sateebeesseeenneens 55

5.3.1.  Effect of each variable maintaining the rest off(=0).........c.cccceeviiniiiiiiniieen. 55
TTANSIENES ...ttt ettt et at e et e sat e et esbteesbeenbeesareens 55
DICLAYS ..ttt et et ettt ettt eebe e aee e b e aeas 56
NON-INSTANTANEOUS VALVE ....eoutiiiiiiiiiiiiieriierieee ettt sttt ettt 57
IMEASUTING TIIMIE ...eeeuvvieeniieeeiieeeieeeeieeeeteeeeteeestaeessseeessseeeesseeessseesasseesnsseeesseesnsseesnsseesnnns 57
UNCEITAINEIES ..ottt ettt ettt et st sb e et ebt e bt et sbeesbe et e eate s bt enbeeaeenee 59
BacKIash ...c..couiiiiie s 61

5.3.2.  Remarkable combinations of variables...........ccocceiiiiiiiiiiiiiiiice 64
Delays or measuring time + any other mechanism.............ccocceevieiiieiienieniienieeeeee, 64
Backlash + Non-instant valve without Uncertainties............ccccoeeverererieeneeeiieenieeneeeen. 66



Uncertainties + BaACKIASI ....eeeeeeeeeeeeeee e eeeeeeeeeene 67

Non-instantaneous valve + UNCEItainties .........ccueerueerieeriienieeriienieeiieseeeieeseneeseeseneenne 68

5.3.3.  Exponential fit as a stability Criterion ...........cccccueeeviieeiieeeie e 72
5.3.4. Mean deviation, Standard deviation, and ratio of standard deviation matrices....74
5.3.5.  ReSUILS SUMMUINZUP..c.utiiiiiiriiieiieeiieitie et eriee et e ebeesteesbeesteeesaeessaesnseessaeenseensnes 75
5.3.6. Redefining stability and new stability Criteria ..........ccccoeeeeireecieeriee e, 75
5.3.7.  Recommendations in the design and the running on the plant ...............c...c..c...... 77

6. APPLICATION (STUDY CASE)..ccccirnuinrenseicsensessasssssssssssssssssssssasssssssssssssssssssssssssasssssss 77
REFERENCES..........ovinvinrensunene 80




ACKNOWLEDGEMENTS

This document represents the start of a new cycle but the end of a process that started several
years ago and that would not have been possible without the support and advice of many people.
To this people, I want to be grateful and make a brief dedication.

First, I want to be grateful to my family who have given me not only the opportunity to study
abroad but also the emotional support to become today a master’s degree in Civil Engineering.
They have given me the precise tools to become the person I am today.

Then of course, there is my girlfriend Ana Cristina whose example of a great human being and
support during these years have helped me go through this process and finish this life stage.

I want to acknowledge and feel indebted to the many friends that have supported and been with
me during this process. They know who they are. However, I feel especially grateful to the people
from “Corso Rosselli” and from “Corso Salvemini” who have made of their place a second home
for me during these three years.

I want to extend my gratitude to the people that have made this document possible. Chief among
them: my thesis advisors, specially Eng. Vesipa, who always adviced me willingly and whose
advice has helped me improve as a hydraulic engineer. In addition, I want to thank Mr. Londofio
and CELSIA who provided me with the necessary information to develop the study case.



ABSTRACT

In the operation of a run-of-river hydropower plant, flow control to ensure a suitable head in the
forebay is a key issue and is often performed by a regulation system combining a level sensor, a
controller and a downstream valve. The stability assessment of this system is performed to avoid
filling or emptying of the upstream tank. In the past, stability assessment was performed by
analytical means but neglecting the transients in the conduits, the uncertainties of the sensor, the
delays in the PLC, the finite velocity downstream valve and the backlash in mechanical parts.
However, these mechanisms are real-life phenomena and assessing stability considering them
has gained attention nowadays. For this purpose, a stability assessment is here performed on a
hydropower plant including these mechanisms. The analysis is performed using numerical
simulations where the behaviour of the plant is reproduced and then the oscillations of the level
in the forebay are studied to determine stability. The obtained results include the analysis of the
effect of each mechanism on the stability of the system, the effects of the chosen stability criteria
and stability curves showing when a system is stable under certain combinations of variables of
the system.



1. INTRODUCTION

Hydropower has been present in human history for a long time, dating from the ancient
civilisation to modern times, and today represents one of the most important alternatives facing
the climate change and other social issues in the world (international hydropower association
[iha], 2019). Hydropower has been developed widely in form of big dams, representing even the
largest source of renewable energy in the world, but, though this type of hydropower has been
implemented in many countries in the world, its costs of construction and operation along with
the environmental and social impact has led to the development of small hydropower in the form
of Run-of-river (ROR) hydropower plants (Farris & Helston, 2017; Nunez, 2019). ROR
hydropower plants work diverting only some discharge from a flowing river, maintaining a head
in a forebay (upstream tank) and then conveying water by head difference at a downstream
turbine where electric power is produced (international hydropower association [iha], 2019). The
key difference between ROR hydropower plants and big dams is that in the former, the upstream
tank is not intended for large water volume storage but only to ensure a suitable head in order to
maintain a regular electricity production.

Following this idea, the challenge that arises when designing and operating a ROR hydropower
plant is thus that, since water storage is not the main scope of these systems, a level regulation
needs to be done in order to maintain a suitable head in the forebay. Fluctuations of the level in
the forebay may occur randomly due to river discharge variations, instrumental errors and other
effects, therefore, due to these fluctuations, the level in the forebay is controlled to avoid
emptying or filling because in the former case, air entering could occur, causing cavitation
phenomena and problems in the restarting of the plant and in the latter, water could be wasted
(Vesipa & Fellini, 2019). This control is done by varying the opening of the turbine, but, as
fluctuations in the forebay level may occur randomly and continuously throughout time, an
automatic control system of the level in the forebay and the turbine opening is used.

A usual automatic control system of a hydropower plant integrates a tank level sensor in the
forebay, a PLC or computer that performs the desired algorithms and a downstream valve (Vesipa
& Fellini, 2019). The PLC may have different configurations but one that has been used in this
field is the PI Controller where the level in the forebay is continuously monitored, compared with
the reference or target value and then adjusted via the modification in the downstream valve. The
PI Controller parameters need to be tuned up to fit the hydropower geometry and hydraulic
requirements of the plant to maintain the suitable head and to avoid large deviations (Jiménez &
Chaudhry, 1992). A controller that can restore or keep the reference value head against the
possible disturbances is called a “stable” system whereas a control system where equilibrium is
never restored is called “unstable”. The stability assessment is thus the core task in the tuning of
the controller and the fate of the disturbances need to be determined to fine the optimum
controller parameters (Vesipa & Fellini, 2019). The stability assessment may be performed
through adequate modelling of the plant where a set of equations is stated, and a stability criterion
is then applied to determine stability.

In the past, a stability assessment approach that was used included a set of dimensionless
governing equations as a function of time and stability based on the Routh-Hurwitz criterion
(Jiménez & Chaudhry, 1992). However, when this approach has been used, a number of
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mechanisms have been neglected such as the hydraulic transients, the uncertainties in the
measure, delays between the sensor, the PLC and the valve, the finite valve velocity and the
backlash between mechanical parts of the valve. Thus, the purpose of this paper is to propose a
stability assessment including all these mechanisms, discussing the effects of each of them and
the stability criteria.

In this framework, this paper is organized as follows, first a detailed description of the problem
and the variables involved is presented, then the equations and methods through which the
behaviour of the system is modelled is presented followed by the numerical methods to solve
this equations. Finally, the results and a discussion are exposed along with a study case that
helped to prove the effectiveness of the methods that were proposed.

2. PROBLEM STATEMENT

2.1. Typical Run-of-River Hydropower Plant

A typical ROR hydropower plant provided with a surge tank as the one shown in Figure 2.1 is
considered. From the hydraulic point of view this plant is divided in two major group of
components: hydraulic components and regulation system. It is important to study both in detail.

Qin ‘\‘

= Surge fank _T

'enstock

Transmission line

Generaftor

Contral volve — —
Tailroce

Figure 2.1 - Typical ROR Hydropower plant (with surge tank) adapted from Chaudhry (1979)

2.1.1. Hydraulic Components and working scheme

The hydraulic components in this document are defined as the components that are necessary to
run the plant from the hydraulically, this means that the electric components or other structural
components that make up the plant are not taken into account. As shown in Figure 2.1 it is
considered

- The forebay or upstream reservoir
- The head-race tunnel

- The penstock

- The surge tank

- The turbine



The forebay or upstream reservoir is the component of the system that guarantees a low storage
of water and a suitable head on the system. It is characterized by Ar= Surface area of the forebay,
Hr (t)= Theorical head in the forebay, Hsn (t)= Head in the forebay considering uncertainties in
the measure, Hfmeasure = measured head in the forebay, taken every tm seconds, Hiareet = reference
or optimum forebay head and Qi, (t)= Flowrate entering the forebay coming from the river.
Water is conveyed from the forebay to the turbine through a long tunnel which carries the water
with a small slope and low pressure to a point in which a greater slope is going to be found and
a penstock will carry the water at high pressure to the turbine. The tunnel is characterized by
hydraulic diameter Dy, cross-section area Ay, length L, equivalent roughness &, lining Ypung
Modulus E and surrounding rock rigidity modulus Er. The hydraulic diameter is defined by
(White, 2011)

44,
ht — Pt

where P; = wetted perimeter. If the tunnel is circular the hydraulic diameter coincides with the
diameter of the circular tunnel. The penstock is a steel pipe characterized by diameter Dy, Length
L, equivalent roughness g,, wall thickness e, wall’s Young Modulus E and wall’s Poisson’s ratio
W

From the hydraulic point of view, the turbine works as a control valve that is opened or closed
when the level in the forebay Hr increases or decreases to control the discharge that comes in. In
this sense, the characteristics of interest of the turbine are the valve discharge Qy, the valve area
Ay, coefficient of discharge cy, and maximum closing/opening velocity Vv max.

The surge tank is a component of the ROR hydropower plant whose task is to reduce or mitigate
the overpressures developing in the tunnel following a flow change and is characterized by
surface area As and head Hy(t).

2.1.2. Regulation System

The regulation system of the hydropower plant is the component that links the discharge coming
from the forebay and the discharge in the valve to keep the level in the forebay at Hiarget. The
regulation system integrates:

= alevel sensor in the forebay
= aPLC or computer
= the opening/closure mechanism of the turbine

The regulation system is an automatic control system that works continuously in time following
these operations:

1. A level sensor measures the level Hemeasure in the forebay

2. The sensor sends the measured value Hmeasure to the computer and is compared with the
desired level Hiarget

3. Through an algorithm, the computer decides the next position of the actuator in order to
change the opening of the turbine



4. The desired position is then sent to the actuator
5. The actuator performs the mechanical operation to adjust the turbine opening

Different algorithms may be used to transform Hr (input signal) to the next turbine opening Ay
(output signal). In this document the PI Controller is used (Jiménez & Chaudhry, 1992)

Opening/closure mechanism

The opening/closure turbine system depends on the type of turbine, for Pelton and Francis
turbines, for example, the opening systems are a needle nozzle valves and guide vanes,
respectively. Since the opening/closure mechanism of the turbine works as a valve, in this
document, unless specified, this mechanism is called Downstream Valve (DS Valve)

In this document it is going to be referred as flow control system to the whole regulation system
of the plant.

2.2. Assessment of the Flow Control System Stability

The aim of flow control system is to keep a constant level Harget in the forebay by adjusting the
DS valve (opening/closure of the turbine). If the flow that supplies the forebay Qin is constant
and the valve opening, Ay, is such that Qy(Av)=Qin, the level of the forebay Hr is kept constant
and no valve adjustment is required, however, this ideal configuration of equilibrium is very
uncommon in real systems due to variations in the river discharge and other mechanisms. The
result of these processes is that the flow discharged by the DS valve is different from the flow
entering the forebay, thus, since Qv#Qin, the level of the forebay deviates from is target value
Hiarget and adjustments of the valve opening must be performed.

The deviations of the valve opening from its equilibrium configuration are called “disturbances”
and the assessment of the fate of these disturbances (i.e., the stability of the dynamical system)
is a key point. If the characteristics of the control system are such that the disturbances are
damped (i.e., after a transient time the equilibrium configuration is restored), the dynamical
system 1s defined as “stable”. On the other hand, if the disturbances amplify (e.g. flow or level
oscillations arise), the dynamical system is defined as unstable (Vesipa & Fellini, 2019).

To determine the stability of a dynamical system there is no exclusive way and there may be
different approaches. The approach to be used depends on the set of governing equations, that is,
on the level of detail extracted from the plant and ultimately, on the number of variables involved.
When adequate simplifications are considered, namely, if some variables are neglected in the
analysis, the approach to determine stability may be simpler.

Jiménez & Chaudhry (1992) proposed a flow control system that uses a PI Controller and works
neglecting some phenomena that take place in this kind of plants:

= No transients in the conduits

= No measuring instrument issues
e No instrumental uncertainties
e Instantaneous measure
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= No delays
= Instantaneous valve
=  No backlash

This flow control system has been widely used in the past and its key characteristic is that stability
may be assessed linearizing the set of governing equations and using the Routh-Hurwitz criterion,
thus, leading to determination of the dynamic stability by analytical means. Although this
approach has given reasonable results and has been tested by numerical simulations, since the
exposed phenomena are real-life issues in hydropower plants, the question whether the
assumption to neglect them is relevant or not arises, and if considering these variables affect the
stability of the control system. Thus, in this document the assessment of flow control system
stability was performed considering the presence of these phenomena, for this reason they are
exposed in more detail.

2.2.1. New Mechanisms included in the present study

Hydraulic transients

Hydraulic transient is the term referred to the unsteady flow caused by flow changes such as
opening/closing of the valve, starting of a pump, among others. Following a flow change there
is a pressure wave that travels with finite velocity along the conduits, therefore flow rate
variations do not take place immediately but require finite times to be effective (Chaudhry, 1979).
Mathematically speaking, the consideration of hydraulic transients in the conduits means that
flowrate and head variations are considered as functions of both time and distance. In the present
study, hydraulic transients in both the penstock and the head-race tunnel are considered

Uncertainties

In the field of metrology, it is stated that when a variable x is measured, its true value Xz 1S never
known, instead, depending on the measuring instrument, it is only possible to determine a
measured value Xmeasurea With an interval Ax in which x,. lies with a given probability (Freedman
& Young, 2012). The control of ROR hydropower requires continuous measure of the water level
in the forebay, thus, following the ideas stated by metrology, it is always associated to a degree
of uncertainty.

Instantaneous measure

Instantaneous measure means that it was considered that the instrument did the measure in
continuous time. However, no measuring instrument can do this, and it always take finite times
to take a measure.

Delays

Delays in this context are understood as the interval of time taken by the control system from the
measure of the water level in the forebay to the activation of the actuator, or in other words, the
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time to perform the steps 1-4 described in the automation of the control. This time interval is
referred as delay by the fact that the control operations are not performed immediately.

Non-instantaneous valve

An instantaneous valve means that any opening Ay set by the computer may be achieved
This is not always true because the valve has a finite velocity and the A, is requested during a
finite time interval. If the Ay is big enough it may never be achieved by the valve.

Backlash

Backlash (Figure 2.2.) is a clearance or loss of motion in a mechanism due to gaps between the
parts or insufficient torque (friction) (Wang et al., 2019). Considering backlash in control systems
is an important issue because if it occurs, it is not certain that an operation requested by the
controller will be actually achieved.

TTHTT[TW/
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Figure 2.2 - Backlash in mechanical parts adapted from Liu et al. (2017)

Numerical Simulations

The consequence of considering flow transients in the conduits is that no analytical approach has
been developed to assess stability, however, in fluid mechanics and hydraulic engineering, the
stability properties of a dynamical system can be assessed by numerical simulations. To perform
these numerical simulations the characteristics and the governing equations are modelled and
implemented in a computer, then the equations are solved, the behaviour of a hydropower plant
is reproduced and time series of the forebay level and the valve opening are obtained to assess
the stability of the control system.

Numerical simulations were thus adopted in this study to assess the stability of the water-level
PI controller considering the new phenomena exposed. In detail, the Palomo Hydroelectric
Project in Costa Rica was considered (Jiménez & Chaudhry, 1992). The system was set to be at
equilibrium position at the beginning working at the steady-state condition and then subjected to

disturbances caused by the instrumental uncertainties, delays, non-instant valve effects and
12



backlashes, and analysed considering the hydraulic transients in the conduits. Moreover,
different parameters of the PI controller were varied to study its stability.

Time-series of the forebay level and the DS valve opening were analysed to determine whether
the PI-controller was stable or not. The stability of the system was determined after the simulation
evaluating if the oscillations in Hi(t) tended to damp to Htarget in respect to time. Since for every
numerical simulation stability depends on the disturbances considered and the parameters of the
PI controller, stability limit curves were produced and analysed considering combinations of
different instrumental uncertainties, measuring times, delay times, non-instant valve effects,
backlash effects and parameters of the PI controller. The stability limit curves show for given
values of instrument uncertainty, measuring times, delays, non-instant valve parameters,
backlash parameters and PI Controller parameters, the limit values of the PI controller parameters
for which any point inside the curve will represent a stable case and any point outside it an
unstable one. An additional analysis on the mean and the standard deviation of the time-series
was done to control the centre and the amplitude of the oscillations.

3. METHODS

To perform a stability assessment of the flow control system the following two tasks need to be
done, first, it is necessary to state the governing equations that describe the operation of the
dynamic system in a mathematical way. To this scope, control variables that describe this
operation are defined relating them to the plant characteristics in form of equations based on
physical laws. This process is called the construction of the mathematical model of the flow
control system. Then, the second task is to define the mathematical method that determines
whether the dynamic system is stable or not.

3.1. Mathematical Model of the dynamic system

To state the set of equations that describe the system let us first consider the general scheme of
the ROR hydropower plant presented in Figure 2.1. The following notation is used: t is the time,
x 1s the longitudinal coordinate and Q(x,t) and H(x,t) are the space-time dependent discharge
and piezometric head, respectively. The longitudinal coordinate is taken locally for each conduit,
therefore x; and x, are the local longitudinal coordinates of the tunnel and the penstock,
respectively. Using this notation, x=0 represents the entrance in the tunnel, x=L: and xp=0
represent the node at which the tunnel, the penstock and the surge tank converge and, xp=L;
represent the linking node between the penstock and the turbine.

Control Variables

The dynamics of a ROR hydropower plan are controlled by the level in the forebay Hi(t), the
level in the surge tank Hs(t) and the valve opening Ay(t). The water level in the forebay varies
over the time according to the mass balance equation

dHp(t) _ Qin(t) — Qc(t, x, = 0) 3.1
dt Af
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where Hr = head in the forebay, Qq(t,x=0) = the discharge at the entrance of the tunnel, Qi, = the
discharge entering from the river and Ar = Surface area of the forebay. The level in the surge
tank is described by

dH,(t) 1
= — (3.2)
dt AS QS (t)

in which Hs = water level in the surge tank and Qs = flowrate in the surge tank, taken positive if
flow is entering the surge tank, and given by

Qs(t) = Qe(t,xe = L) — Qp(t, x, = 0) (3.3)

The turbine opening Ay is regulated by the PI controller. In this type of control, the level in the
forebay is measured and compared with a reference value, then, if the measured level is different
to the reference value valve opening is modified using the equations (Jiménez & Chaudhry, 1992)

dr(t) Hpm(t) —Hpep  d(Hpp(t) — Hyep) (4)
- +k
dt T, dt
o) = Ay (D) (3.5)
Aref

where 1= the ratio between the current valve opening and the steady-state valve opening and
Href = the reference water level in the forebay which is considered as the steady-state level,
namely

Href = Htarget = Hfo (3.6)
Ti, k are the integral and proportional constants of the PI given by
o Ly QoHtarget To 3.7
' Kl g Hso At
=210 (3.8)
Htarget

in which a and K; are parameters of the PI controller, g is the gravity acceleration and the
subscript o means the initial state of the variable

Dynamic and Continuity Equations
The dynamic and the continuity equations are the equations that couple the discharge and the

piezometric head in the conduits. The dynamic equation is obtained by applying Newton’s
Second Law of motion to an element of fluid and the continuity equation is obtained by
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considering mass conservation and deformation in a control volume of a conduit (Chaudhry,
1979), i.e.,

0Q oH f _ (3.9)
§+9Aa+—2DAQIQI =0
a’9Q oH
__Q_|__= 0 (3.10)
gAox 0Ot

In both equations g = gravity acceleration, D = diameter of the conduit, 4 = cross-sectional area
of the conduit, /= friction factor according to Darcy-Weisbach formula and a = wave speed in
the conduit. The wave speed a is not unique for all conduits and depends on the fluid and the
conduit deformation properties and constraints (Chaudhry, 1979). The wave speed formulas of
the type of conduits considered in this document are (Streeter & Wylie, 1978)

If the conduit is a circular tunnel excavated in rock

K

2

:p[1+(2é{—R+(1+u))]

@3.11)

where p = density of the fluid, K = bulk modulus of elasticity of the fluid, Er = Modulus of
rigidity of the tunnel material, p = Poisson’s ration of the tunnel material.

If the conduit is a steel pipe
5 K

U o[+ (BD)e]

where p = density of the fluid, D = diameter of the pipe, K = bulk modulus of elasticity of the
fluid, E = Young modulus of elasticity of the conduit material, e = conduit wall thickness and c;
is a coefficient that depends on the support conditions of the conduit. In the cases considered
ci=1 if pipe anchored with expansion joints throughout and c¢i1=2Ee/(ErD+2Ee) for steel lined
circular tunnels.

Boundary Conditions

Since the equations involve both time and space dependence, boundary and initial conditions
must be stated. The boundary conditions depend on the physical constrictions found in the
hydropower plant. Boundary conditions for forebay, surge tank and downstream valve are here
presented (Chaudhry, 1979):

Forebay

As aresult of the flow entering from the forebay, the discharge Q«(t=0, x=0) and the head Q(t=0,
x=0) at the entrance of the tunnel may be computed coupling equation (3.1) with the following
equation
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(Q¢(t, x; = 0))?
2g4,°

Hi(t,x, =0) = He(t) — (1 + k) (3.13)

ke = coefficient of entrance loss

Surge tank

The losses at the junction are neglected, so the head in the node in which the tunnel, the penstock
and the surge tank converge is

H(t,x, = L) = H,(t,x, = 0) = Hy(t) (3.14)

Downstream valve

Considering the datum at the free surface of the tailrace (approximately the level of the turbine),
the discharge flowing through the needle valve is described by the equation

Qv(t) = Av(t)cv\/ ZgHv(t) 3.15)

In which the head at the end of the penstock is taken as the head at the valve that is
Hu(t) = Hp(t, xp = Lp)

Initial Conditions

The initial conditions are set as the steady-state flow when the level in the forebay is Htarget. The
initial condition is thus obtained solving the following system of equations

Htarget —H(t=0x=0)=—-1+k) (QO)ZZ (3.16)
294
l
Hy(t=0,x=0) = H(t = 0,x = L) = ftﬁgzlj"zl @3.17)
,t t
H(t =0,x = L) = Hy(t =0,x = 0) (3.18)
lp QolQl
H,(t =0,x = 0) — H,(0) = f, = (3.19)
14 v p Dp ZgApz
- — (3.20)
Qo = Ay (t = 0)cyy/2gH, (0)

Where the subscript o represents a steady-state condition. The system is solved for H«(t=0, x=0),
Hi(t=0,x=Ly), Hs(t=0,x=0), A\(t=0) and Hy(t=0)
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3.1.1. New Mechanisms

Uncertainty of the measure

The uncertainty in a measure may be accounted in the mathematical model by considering the
measured value as a random variable X=Hmeasure described by a certain probability distribution
function. In the present study, the Standard Normal Distribution is used described by the
probability density function (Devore, 2012)

72

e 2 (3.21)

¢o(2) = N

with standardized normal random variable

7 = Hf,measure - Hf (3.22)
01

where o= standard deviation of the distribution.

Non-instantaneous measure

The finite time that a measuring instrument takes to perform a measure is considered setting a
measuring time tmeasure, 1.€., the level in the forebay is supposed to be measured every tmeasure
seconds.

Delays

The delay in the system is considered by setting a delay time tdelay, therefore, the operation
performed by the actuator is supposed to be carried out teelay seconds after the measure in the
forebay.

Non-instant valve

To acknowledge the presence of a non-instant valve it is considered that the valve has a finite
maximum velocity vy,max. In consequence, the maximum operation that the valve can perform for
a given time t is

(3.23)

(dr(t)

= VUyalve,max
dt ) max

The dr that can be arranged due to the non-instant-valve effects, denoted by dzefis
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w_ f dt(t) < (dr(t))

dterr(t) ac Y Tar dt (3.24)
) sdr(t dr(t dr(t
dt (r()) L if T()2<r()>
dt /) max dt dt /) max

Due to insufficient velocity of the valve, the quantity of dr that could not be arranged, denoted
by dfm[ss IS

( N dr(t) _ (dr(t)>
o o - ’ dt — \ dt Jjax (3.25)
miss , ; o de(®) _ qda(t)
t(t) —dtepp(t); 5 if dt >< dt >max

Backlash

The gaps are modelled as a percentage of the steady-state area (Norconsult SA, 2016), referring
to Figure 2.2 this means that

Gapys(t) = 22ce Zvening(t) (3.26)
vo
9QaPneg (t) - _ ASPace,Aclosing (t) 3.27)
vo

where Aspaceopening(t)= area of space between mechanical parts in the opening direction,
gappos(t) = ratio between the area of space between mechanical parts in the opening direction and
the steady-state area of the valve, Agpace ciosing(t)= area of space between mechanical parts in the
closing direction and gapueq(?) = ratio between the area of space between mechanical parts in the
closing direction and the steady-state area of the valve, considered always as a negative quantity.
The total amount of gap is always given by

9Protar = 9APpos() + |gaPney (0| (3.28)
The friction is considered setting a parameter b defined as
b=00-fr) (3.29)

in which b = is a parameter that expresses for each operation what percentage of movement
between mechanical parts can be effectively performed due to frictional losses and fi = friction
coefficient between mechanical parts expressed as a percentage of area that cannot be opened or
closed due to frictional losses. The friction forces are always opposite to the direction of the
movement. The dt that can be arranged due to backlash effects, denoted by dtreal is

For opening operations, i.e. dt is positive

18



T t) = ’
e T b - (dr(e) — gappos(®); dT(t) > gapyos(t)
For closing operations, i.e. dt is negative
0; dr(t) = 9aAPneg(t) 331
ATreq(t) = (3.31)
b (dT(6) = gaPreg(®));  dT(t) < GaPney(t)
For a given time t, the dtrea1 con be obtained from the graph shown in Figure 3.1
drreal
~Tb
1
« I I » dt
N gapneg 8appos
b~
) Closing v Opening

Figure 3.1 - dtrea obtained at a given time t as a function of dz, the gaps and b

If the non-instant-valve effects are taken into account, the t in equations (3.30) and (3.31) must
be taken as e

3.2. Mathematical model of the stability assessment

3.2.1. The Stability Function, the Stability Criterion, and the Stability Limit

A dynamic system is defined as “stable” if the disturbances tend to damp in time and “unstable”
if the disturbances amplified or did not converge to a certain value. This definition is rather
qualitative and the necessity of defining stability in a more mathematical way arises to
systematically determine it. For this reason, the stability function and the stability criterion are
here defined.

Let us define mathematically the stability as a Boolean function of the form
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1, if the dynamic system = "stable" (3.32)

Stability = {0, if the dynamic system = "unstable"

To determine the stability of the flow control system by numerical simulations time-series of
Hi(t) as shown in Figure 3.2 (a) are obtained. The stability requires the oscillations of H(t) to
damp after a certain transient time t;, in this sense let us define H as

H = lim(Hf — Higrget) (3.33)

t—)tt
The dynamic system will be stable if

=1j - = 3.34
H gl_)ntlt(Hf Hegrger) =0 3.34)

To determine whether this condition is satisfied or not, after the time-series of Hi(t) has been
obtained, the peaks of the oscillations of Hi(t) around Hiarget are identified (Figure 3.2 (b)) and
subjected to an exponential fit (Figure 3.2 (c)) of the form

expfit =ef = a-est (3.35)
If S<O0 then H tends to 0 and the system is stable because
lima-eSt =0 (3.36)
t—oo
only if
§$<0
This behaviour is known as asymptotic stability so stability may be redefined as
. 1,5<0
Stability = agapitity = aS = {O;S >0 (3.37)
or
Stability = agqpiey = as = {1i H =0 (3.38)

0;H=+0

It is important to emphasize that S=0 does not represent asymptotic stability because in this case,
although the oscillations do not amplify, H does not tend to 0. The condition of S<O in the
exponential fit is defined as the stability criterion and is used to determine whether the system is
stable or not.
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Figure 3.2 — (a) Evolution of Hj(t) throughout time — (b) Individuation of the peaks of Hf(t) around Hiarge:— (c) Peaks of Hx(t)
around Hiarges subjected to an exponential fit

Now, to compute S, the time-series of Hi(t) must first be obtained. This time-series are obtained
after defining a certain number of variables Y;, so S is a function of Y;, that is

S =f(Y, Y, Yy) (3.39)

Where n is the number of variables involved

If the set of variables that need to be defined to find S is called Y these variables may be classified
into three major subsets (Figure 3.3)

- Set of variables related to the hydraulic components of the plant Yp, e.g., the surface area
of the forebay Ar or the length of tunnel Lt

- Set of variables related to the effects of the mechanisms of the flow control system Yk,
e.g., the uncertainties effects or the backlash effects

- Set of variables related to the PI Controller Y.

So
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S = f (YP]J sz, ey anp ) YFEl' YFEZ' ey YFEnfe ) YCl’ YC2, T YCTLC ) (3-40)

Where n, = number of variables contained in Yp, nf. = number of variables contained in Yrg and
ne = number of variables contained in Yc.

Each of the variables contained in the set of Yre may be also a function of two subsets of variables
- The set Boolean variables which represent the on or off variables of the mechanisms that
are taken into consideration ygm

- The set of parameters that describe the effects of that mechanism yrgm

where the subscript M represents the M-th mechanism so that

Yeem = f1 (YB,Mt Yeem 1 YrE M2 o0 YFE,M,nm) (3.41)
in which n,, = number of variables contained in Yrgm.
Combining equations (3.40) and (3.41) it is obtained
P (YPL Yp2, .oe, YPnp ) YFE,l(YB,lﬁ Yeg 1,1 YrE 1,20 0 YFE,l,nm}l)' Yrg2 (YB,Z! Yeg 2,1, YrE 2,25 o) YFE,Z,nm}Z)' ) (3.42)
- e Yegng, (Yoo Yegmgots Yegmgozs - Yesmgonn ) » Yor Yezs oo Yen '

In which S is defined as the stability function and its form depends on the fitting technique.

[ 7
- -
-

Y ¥ >
e FE. 1 \\\\
Y / - b FE 2 \
P // ~ - N
S / ) .
~ / { Y \ \
/7 v N / ‘ B )/ Yepaa | / Y5s \
/e \ /o | A\
[ 'ﬂ.\ anp ‘;" ;I / YrEzn, 1| "'.
I\l \\\ o 7 |‘| — ) o ‘I III
Y \ FEng, / -
c . e/ (o,
! c1 N . . )
\ I YFE.H,:E.J. \ /
YC2 I A ' l /
Cn c \\\\ L"‘... Yfls-!lfg.}l,_“_ / / y B
| AN Yy
. //

Figure 3.3 — Set of variables necessary to define the stability function
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Let us now define as global case any combination of the variables Yp; and Yrr (without
considering Yc¢) and a particular case of a global case as any combination of all the variables Y¢
after already defined the variables Yp;and Yrg. to determine the stability of a stability function, a
particular case must be defined, i.e. all the variables ¥; may be defined, then time-series must be
obtained and at last the stability criterion is applied.

Now, it is defined as stability limit for a global case the surface of the stability function where
S(Yer, Yoz o YCnc) =0 (3.43)

This surface represents the border between the “stable” and the “unstable” particular cases of a
global case.

3.2.2. Statistical stability assessment

In addition to the exponential fit of the oscillations of Hg(t) around Hiarget it is of interest to
determine the mean value and the standard deviation of the time-series of Hi(t) and t(t). This is
done fundamentally to study the centre and the amplitude of the oscillations.

The mean values H_f and T and the standard deviations Sd_Hf and sd_t of a particular case are
computed with (Devore, 2012)

—_ L (3.44)
H==| H :
s fo ¢ (t) dt
1 (te (3.45)
T= —f T(t) dt
te Jo
;1% . (3.46)
Sd_Hf = t—t . (Hf(t) — Hf)z dt :
1 e (3.47)
sdt?>=—| (z(t) —1)*dt
te Jo
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4. NUMERICAL METHODS

The dynamic and continuity equations have been adopted to describe transient flow in the
conduits

aQ oH f _ 4.1)
ot T94%5¢ Tapallel =0
a’?9Q OH (42)
— =i =0
gAox 0Ot

are hyperbolic, partial differential equations (PDE). The functions Q(x,t) and H(x,t) that satisfy
the equations are the solution of the system. Due to the nature of this problem, analytical solutions
of these equations are impossible to find. Instead, some numerical methods have been developed
to solve them. The method of the characteristics is here used (Chaudhry, 1979)

4.1. Method of the Characteristics

To apply the method of the characteristics to these equations the following procedure is followed

= The equations (a) and (b) are reduced to ordinary differential equations, valid
along the characteristic lines, and solved by the finite-difference technique.

= A suitable time step A7 and the total simulation time #..; are chosen. The solutions
at each time step are indexed with the subscript i.

= The conduits are numbered and are indexed with m. For the plant considered, m=1
represents the tunnel and m=2 represents the penstock.

= The wave speed a, is computed for every conduit

= To guarantee a numerically stable solution a space discretization of Ax,=A4¢t-am is
computed for each conduit.

= FEach conduit is divided in # reaches of length Ax,, where n=0 and n=N refer to
the first and last nodes, respectively.

= The following notation is used

i
Ym,n

where Y=the generic variable that is being computed, i = i-¢h time step, m = m-th conduit and
n = n-th node

4.1.1. Governing Equations

Following the finite difference scheme, the flowrate and the piezometric head at the m-th
conduit, at the n-th node at time step i can be calculated as a function of Q and H, at previous
time step i-/ and at the neighbouring nodes n+/ as
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Qrin,n =0.5 (Cpos + Cneg) (@.3)

0.5 (Cpos — Cneg) (“4.4)

Ca,m

i _
Hm,n -

where Cpos and Creg are the positive and negative characteristics defined as

e gAm -1 JmAt Qi 4.5)
pOS mn 1 am m,n—l ZDmA mn 1 mn— 1
gAm i—1 fmAt (4.6)
neg Qm n+1 am mmn+1 ZDmA mn+1|an+1
and
9Am
Cam = @, 4.7)

The equations shown above may be used to compute the discharge and head for any internal
point of the m-th pipe, however, special boundary conditions are required to determine the
discharge and the head at the nodes n=0 and n=N of each m-th conduit.

4.1.2. Boundary Conditions

Boundary condition for upstream tank (forebay)

The time evolution of the water level in the US tank from the i-th to the (i+1)-th time step is
given by the finite-difference expression of equation (3.1)

i _ pi-1 i-1 i-1 At
Hf - Hf + (Qin - Qm:l,n=0 A_f (4.8)
in which Q5" and Q42 ,—, = flows into and out from the forebay at time step i+1 , H} is assumed
to remain constant during each i-th time step and is used to evaluate the head H. “’11 n=o and the

discharge Q,iﬁ;ll,nzo at the initial section of the conduit according to the relation in equation

(3.13).

Using the finite-difference scheme, this equation is solved together with the negative
characteristic [Equation (4.6)] and gives the upstream boundary conditions
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-1+ J 1+ 4k(Cpeg + Cam=1Hf) 4.9)

Qrin=1,n=0 = 2k,
i _ Qrin=0,n=0 - Cneg (4.10)
m=1n=0 — C
a,m=1
where
C 1+k
L= Cam(1 + k) 2) @.11)
(29Am=1")

k=coefficient of entrance loss

Boundary condition for surge tank

In the case of the surge tank, the boundary conditions are given combining the time variations of
the level in the surge tank and the characteristic equations of the adjacent pipes. To start, the
losses at the junction are neglected, therefore at any time

. o o 4.12)
7ln=1,n=N - Hrln=2,n=0 - Hsl

The flowrates at the final and initial section of the adjacent pipes are given by their characteristic
equations

Q1in=1,n=N = Cpos — Cam=1 Hrin=1,n=N @.13)
Qrin=2,n=0 = Cneg — Cam=2 Hyin=2,n=0 (4.14)
The flowrate in the surge tank at the end of the time step is given by
i i i-1) (24s i—1pgi i i (4.15)
Qs = (Hs — Hj ) A Qs " Hm=1n=n = Hm=2n=0 = H;s ’

Flow control with new mechanism and boundary condition for downstream valve

The boundary condition for the downstream valve depends on the opening set by the PI
Controller at each time step i, therefore it is first presented how the opening of the valve is
computed by the controller and then the boundary condition of the valve. The flow control of the
system is carried out varying the opening of the valve using equation (3.4) in a finite-difference
form.
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. Hl - Ht t . P 4.1
At = (%) + (k((H;m - Htarget) - (Hlml - Htarget))) * At (4.16)
i

However, to account for uncertainties, delays, non-instant-valve and backlashes this equation
may take several forms. In the first place, the measured forebay water level Hp, (t) in the finite-

difference scheme takes the form of H}m. As shown in Figure 4.1 (a) to determine H}m a level

measure Hpeasure 18 sSimulated to be taken every tmeasure sSeconds where tmeasure>At and the index j
is used. The number of time intervals A¢ to take a measure is

Umeasure 4.17)

"TTTAr

This means that a measure is taken every time that

i =n,r with n, = integer (4.18)

To model the behaviour of H}m between each measure a filter is used with the form of

_(t=t 4.19
. ( Tf’) (4.19)

where #; = current time step, t*= elapsed time when the j-t& measure has been taken and 7=
parameter of the filter. Thus, Hfim is described by the following equation

' _ ti—t*j>
Hip = Hjronsure + AH * (1 —f-e ( Ty ) forti* <t; <t (4.20)
where
_ ) j-1 4.21)
AH - Hmeasure - Hmeasure

The variable f'in equation (4.20) allows to decide whether the signal filtering is used (f=1) or not
(/=0). If the filter is not used, then

i _ * * 4.22
H;m = Hmeasure fOT' tj < ti < tj+1 ( )
This means that the measured water level is considered constant until the next measure. Every r

time intervals the measured level H J

measure 15 computed with the expression

Hrjr'leasure = H} + (0 * rand) 4.23)
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where H,J,'wasure = measured value taken by the sensor at time i, H} = theoretical value in the

forebay at time i, 0 = instrumental uncertainty (precision) and rand is a casual number extracted
from the standard normal distribution (equation (3.21)) . If the delays are considered, the flow
control is performed with a delay of Zay seconds or s time intervals after Hg,,; has been

computed (Figure 4.1 (b))

s = laetay 4.24)
At
Hem (filter=0) = Hmezsurs
H — Him (filter=1)
R
-+ - t
@ |
- T
* — > t
.:_:;r
I
| 1
- I [ T T I T I .t
o A i+2r
1 i j+1
H -.::-: Hmezsure, delayed = Him [filter=0)
= o Hfm, delayed {ﬁlter= l]l

Figure 4.1 — (a) Hyin the finite difference scheme (without delays) — (b) Hy in the finite difference scheme (with delays)

The general equation of the PI Controller with delays and uncertainties included is

HES —H . .
; f target - —s— 4.2
ATt = <m—> + (k((Hjl’ms - Htarget) - (H;ms t— Htarget))) * At (4.25)

T;

- Ifno delays are considered, then s=0
- If no measurement is performed

H}m _ H} (4.26)

That is, the level in the forebay is known from the mass balance equation (4.8)
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- The usage of filter is considered in equation (4.20)

To account for the effect of the non-instant-valve in the flow control then, equation (3.23) is used
in the finite-difference form, the maximum operation At,,,, that can be achieved during time
interval At is

ATimax = Vvaive,max * At “.27)
Therefore, it could be supposed that
N AtY; |A7!| < ATynax (4.28)
eff Tmax * Sign(ATh); |A‘L'i| > ATy

However, this is not the situation. Instead, for the computation of At} 7 the following analysis is
made: for each time step i the ATi, sr depends on the consideration of the measurements, the
delays and especially on the filter usage. Let us consider a case with no delays and redefine

equation (4.25) as
Att = ((E%) + (k dEi)> x At (4.29)
i
where
E' = H}m — Hiarget (4.30)
dE' = ((Hfm — Hearger) = (Hfm' — Hearget)) @30

From equations (4.30) and (4.31) and according to equation (4.20), the form of Hs depends on
the filter usage and it is possible to say that (Figure 4.2)

Hyt #Hh,  fort <t <t,; if f=1 (4.32)

Hipl=Hl,  fort <t <t if f=0 4.33)

Hfm (fllter=0) = Hmeasure
—— H#m (filter=1)

Figure 4.2 — Hpn(t) modelled with and without filter

A
\ 4
-+
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When a filter is used then both E* and dE" is considered in the computation of At and therefore
At'is in general different to 0. However, as shown in Figure 4.3 when the filter is not considered
dE" is only considered when a new measure is taken [equation (4.18)] because only it this time
step that equation

H}T;ll + Hfim (4.34)
for the successive time steps
Hil=H,=H fort <t <t 4.35)
and therefore
dE' = ((Hj - Htarget) - (Hj - Htarget)) (4.36)
dE' =0 4.37)

Thus only E! is used in the computation of At’. In this research it is concerned on the stability of
the flow control system and therefore variations of the forebay level are expected to be close to
the target value, thus in a range of some centimetres, therefore E® is often little and has little
impact in the computation of At‘ compared to that of dE*. In consequence when no filter is used
(Figure 4.3)

Att+0 if i=n,r with n, = integer (4.38)

Attt =0 if i #n,r with n, = integer (@.39)

H Hfm l:ﬁrter:[]} = Hmeasure
—————————————————————————————— Htarget
]t
AT
- —_— 1 t
I-r i i+l i+r
1 j j*1

Figure 4.3 — Computation of At when a filter is not used
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Now, the consequence of this situation is that if to account for non-instant-valve effects the
equation (4.28) was and it happened that

|ATY| > At
when the measure has just been taken then
ATLfr = NTpgy " Sign(At)
and then for the other time intervals
Athep =0

As shown in Figure 4.4

Hfm |:fi|tEF=0) = Hmeasure

Figure 4.4 — Comparison between the computation of At and Ateyr when a filter is not used

The consequence is that the valve could not arrange the desired operation when the measure is
taken and, in addition, it would not perform any operation until the next measure.

To take advantage that however the level in the forebay is supposed to be constant until the next
measure is taken then if filter is not used the A‘ré 7 18 determined as follows (Figure 4.5).
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If a measure has just been taken that is

[ =n,r with n, = integer
gt = ATY; |AT!| < ATpax (4.40)
e Tmax Sign(ATi); |ATi| 2 ATypax
Arl o { 0; |ATY| < ATpax 41
S |ATE] = AT |AT!| = Atpan
after the measure, that is
[ #n,r with n, = integer
ATi _ {A mzss Slgn(ATeff) A mlss < ATma;»c 4.42)
eff —
ATpnay - Slgn(ATeff) At} mlss 2 ATipax
ATi = 7 A mlss < ATmax (4.43)
AT — At AT > AT
miss max’ mlSS - max

Hs., (filter=0) = H

il Bl BB e e i Htarget
ettt} t
—_— AT
Emmwm ﬂ-[eﬁ
- =  ATmax
l t
I+r
j+1

Figure 4.5 — Actual modelled computation of Ater when a filter is not used

measure
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If a filter is considered

ATi _ ATi; |AT | + ATmlSS < ATmax (444)
ST\ ATy - sign(ATY); |AT!| + Atlte = Aty
Al = {0; |aTt| + Armm < ATmax (4.45)
e |ATl - ATmaxlr At mLss > ATinax

If the non-instant valve effects are not considered

ATi’ff — ATL' (4.46)

To account for the backlash effects, consider that at time i the mechanical parts of the valve have

a positive gap gappos, a negative gap gapeg then Att,,; is given by

If ATl £f 18 positive, i.e. the valve is opened

; 0; Atler < gaphos (4.47)
ATreq = i i
b- (ATeff - gappos)' A"'-eff = gappos
i gapi;?)i - ATéff; ATeff < gappos (4.48)
gapPpos = )
0; ATeff = gappos

i— i i 4.49
gapi _ {_(gaptotal - gapzlooé ) ATéff < gapzlws ( )

e —9Ptotal; ATeff = gappos

If Aréff is negative, 1.e. the valve is closed

i b (ATesr — gaPrey); ATeff < gapreg (4.50)
ATreal - . i
0; Atppr > gapneg
P 0; Atgsy < gapneg (4.51)
9aPneg = i-1 _ A7l . A i
gapneg Teffr Teff > gapneg
4.52
i 9aPtotal; ATeff = gapneg ( )
9QaPpos = ;
(gaptotal + gapneg ATeff > 9QPneg
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Which is the same behaviour described in Figure 3.1. and which in the finitie-difference scheme
becomes Figure 4.6 - Atea Obtained at a given time t as a function of dr, the gaps and b

ATreal a

A
r

F 3

L J

Closing v Opening

Figure 4.6 - Atreal obtained at a given time t as a function of dt, the gaps and b

Once the PI controller has determined the operation to be performed, the t of the valve at time
interval 1 may be computed as

it =11 + Atl,,;;  backlash considered (4.53)
ti =17t + Atl;;  noninstant valve considered (4.54)
1t = 171 + AtY; instant valve and no backlash considered (4.55)
Hence the area of the valve at any time interval is
A =gio4 (4.56)

Once the area of the valve at time step i has been determined, the boundary conditions for the
downstream valve may be found solving together the equation (3.15) in the finite-difference

scheme and equation (4.5)
—n' + /(Ui)z +4n'C, (4.57)

ern=2,n=N = 2
i _ Cn - ernzz,n:N (4.58)
m=1,n=0 — I
am=2
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where

ni = Zg(chi,)z (4.59)

Ca,m=2

4.1.3. Initial Conditions

The system of equations that described the steady-state flow described in the Mathematical
Model is solved using iterative methods

4.2. Stability function

The variables that make up the stability function were determined analysing the sets defined in
Chapter 3.

4.2.1. Set of hydraulic components variables Yp

Since an existing plant is analysed, all these variables have already been defined, therefore they
are not considered in the stability function.

4.2.2. Set of variables related to the flow control system mechanisms effects Yrg

The mechanisms that are considered in the flow control system are:

- Hydraulic transients

- Instrumental uncertainties
- Measuring times

- Delays

- Non-instant valve effects
- Backlash effects

Therefore, the function Yrg s for each of these mechanisms must be found

Hydraulic Transients

The hydraulic transients are considered in the model itself when the governing equations as
functions of time and space were stated, therefore, it will not be considered as a function or as a
variable in the stability function.

Instrumental uncertainty function

The instrumental uncertainty function U. has as Boolean variable Uz = Boolean variable and
parameters ¢ = instrumental uncertainty and /= function. However, considering 0=0 is equivalent
to considering the Boolean variables Ug=0 therefore it is convenient not to consider the Boolean
variable always on (=1), hence
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Ue = F(0,f) (4.60

Measuring time function

The measuring time function M. does not have a Boolean variable to turn it on or off, instead it
is considered always on. The only parameter is the time of measuring tmeasure SO

M, = f(tmeasure) (4.61)

Delays function

As well as the measuring time function the delays function has no Boolean variable and is
considered always turned on. The only parameter that defines it is the time of delay tgealy, hence

D, = f(tdelay) (4.62)

Non-instant valve function

The non-instant valve function NIV. has Boolean variables NIVp and the parameter
Vvmax=maximum valve velocity. This parameter is considered to be already known so

NIV, = f(NIVg) (4.63)

Backlash function

The backlash effects function BL. has Boolean variable BLg=Boolean variable and parameters
ZapPpos, ZaPneg, fr. The gaps and the friction are constant values (Norconsult SA, 2016), thus

BL, = f(BLg) (4.64)

4.2.3. Set of variables related to the PI Controller

The only parameters that are variable in the PI Controller are a and K; therefore

PIController, = f(a,K;) (4.65)

4.2.4. Definitive stability function
Ultimately, combining equations (4.60), (4.61), (4.62), (4.63), (4.64) and (4.65) with equation

(3.42), the stability function of this dynamical system is made up by the following variables
(Figure 4.7)
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S= f(BLe (BLB); NIV; (NIVB): Ue (0: f)» De(tdelay)' Me(tmeasure)' a, Kl) (4.66)

S = f(BLB; NIVB; o, f, tdelay: tmeasurer & Kl) (4.67)

Figure 4.7 — Definite set of variables considered in this study

The empty sets in Figure 4.7. are intended to show the lack of Boolean or other variables in a set.

Let us now define w=generic global case, ox, a generic o value and K1y, a generic K1 value so
that the exponential fit parameter S associated to a particular case is called

Swayk1, = SW, ay, K1) (4.68)

4.3. The Benchmark global case
Let us define as the benchmark case the global case in which none of the exposed mechanisms
but the hydraulic transients are considered, therefore a case in which all the variables in the set

of Yk are 0. If the benchmark case is denoted with the subscript BM then stability function of
the benchmark case is named as Sg M,ay K1, and is defined by

Semayk1, = f(BLg = 0,NIVy = 0,0 =0,f = 0,D = 0,M = 0,a,K;) (4.69)
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4.4. Exponential fit parameter S

To find the parameter S of a particular case S, 4 | K1, it was followed this process:

After finding the time series of Hi(t), the new function Hri(t) was computed as

Hfl(t) = |Hf(t) - Htargetl (4.70)

As Hri(t) was expected to oscillate around 0, all the peaks were identified and tagged. The peaks
were subjected to an exponential fit using a certain fitting method, obtaining the function

P — Sw,ax,K1yt 4.71
expflt = efw,ax,l{ly = aw,ax,Kly - g~ Kly ( )
The values of a,, o, K1, and Sy, ¢, K1, depend on the fitting technique used, in this document the

least squares method was used.

4.5. Stability limit curves

The stability limits were defined in chapter 3 as the surfaces that represent the border between
the “stable” and “unstable” cases. The control in this plant is performed by a PI Controller thus
the variables Yc are only a and K therefore the stability limit of a generic global case for this
plant is defined as

Sw=fl@K)=0 @7

Since it involves only two variables then it is a curve in the a-K; plane and is called stability limit
curve of a certain global case. To determine the stability limit curve of a global case a finite
number of particular cases are simulated. Each of the S, o | K1, are organized in an exponential

fit stability matrix [Sw] defined as

Sw,al,Kll Sw,al,Kly
. . . 4.73
Sul=| & e

Sw,anx,Kll o Sw,anx,Klny

where nx=number of a values considered and ny=number of K1 values considered. The stability
limit curve is obtained interpolating the values of S=0 in the matrix.

4.6. Statistical stability assessment

Since Hi(t) and t(t) are discrete functions the mean values and the standard deviations of a
particular case are described by the discrete form of equations (3.44) to (3.47), hence
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ne
Yiti Hrway iy (4.74)
ne

fw,ax,Kly =

P
i=1 Tw,ax K1yi 4.75)

Tw,ay K1y —
W y nt

2
n J—
ZI.=t1 (Hf'W'“x'Kly - Hf,w,ax,Kly) (4'76)
n,—1

S_Hf,w,ax,Kly =

2
Ng -
21’:1 (Tw,ax,Kly i Tw,ax,Kly) 4.77)

nt_l

S Tw,ax k1, =

When the oscillations tended very fast to Hiarger the computation of the mean value and the
standard deviation was limited to the time intervals before a level AHsubiliy Was reached, this
means that if for a particular case it existed a time t; where

. 4.78
|Hf - Htargetl < AHstability' fOT t= ts ( )

the mean values and the standard deviations were computed for values of ni= n¢s where nystabitity
are the time intervals comprised in t<ts. Here the value AHgbiliy = lmm was used.

Regarding the mean value, more than the mean value itself it was of interest to analyse how much
it deviated from Hiarger therefore the deviations were computed as

— 4.79
AHf,w,ax,Kly - Hf,w,ax,Kly - Htarget ( )

— 4.80
ATw,ax,Kly - Tw,ax,Kly — Ttarget ( )

where Tuarget 1S taken as the steady-state value of T which in this case is Twurger=1.

To compare the standard deviation of a particular case of a global case w with the standard
deviation of a particular case of the benchmark case the ratios of standard deviations were
computed as well as

s H

rs H _ S waxKly (4.81)
Ty T s He puagia
— ) Ex, y

St

rsT _ TowexKly (4.82)
—weRKly T g TBM,a K1
- »rx, y

The mean values, the standard deviations and the ratios of standard deviations were organized in
matrices called statistical matrices and defined as:
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Mean deviation matrices

AHf,w,al,Kll
[8Hp ] = :
AHf,w,oznx,Kll
ATW,al,Kll
[At,] =
A‘L'W,ot,u,l{ll

Standard deviation matrices

S—Hf,W,al,Kll

[S—Hf,W] =
S_Hf,w,anx,Kll

S_Tw,a,,K14

[s_Tw] =
S_Tw,ap, K1,

Ratio of standard deviation matrices

r_S_Hfwa, k1,

[r_S_Hf,W] =
S Hewa, k1,

T—S—TW,al,Kll
[r_s_t,] =
r.s _Tw,an K11

4.7.Comparison between Jimenez’s and the present document’s approach

AHf,w,al,Kly
AHf.W,anx;Klny
Aty q, k1,

ATW,anx,K 1ny

S_Hf,w,al,Kly
S_Hf,w,anx,l(lny
S_Tw,a1,K1y

S_Tw,anyKlny

r_S_ Hfwa, k1,

T—S—Hf'annx:Klny

r_S_Tw,al,Kly

T_S_Tw,anx,Klny

(4.83)

(4.84)

(4.85)

(4.86)

(4.87)

(4.88)

Before stepping into the simulation setup and the results it is interesting to make a comparison
between the approach proposed by Jimenez and the present document approach to analyse their
differences and the consequences of using each one. The comparison is done confronting the
characteristics of both methods in two separate columns, being able to compare the
characteristics of each method in parallel. At the left side, the Jimenez’s approach is presented
and at the right side the present document’s one.
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Sets of variables involved
- Set of wvariables related to the
hydraulic components Yp
- Set of variables related to the PI
Controller Y¢

Control variables
- Hy
- H
-1

Governing equations

- Conduit dynamic equation

b 20 100000 + ColQsl0s = Hy — H
gAt dt tINtINt sI¥¢siI¥s f s

The equation involves the whole tunnel length,
moreover, since the penstock length is much
shorter than the tunnel length it is neglected

Continuity equation for the forebay

dH;
A = =CQw — &

Continuity equation for the surge tank

dH,
S dt

=0Q0s=0:—Qy

Discharge in the downstream valve

Hs + C510510Qs

Qv =10, H

Water-level controller (PI Controller)

E _ Hf - Href + kd(Hf - Href)
dt T, dt

C,, C&= head loss coefficients for the tunnel
and the surge tank orifice

Sets of variables involved

- Set of variables related to the
hydraulic components Yp

- Set of variables related to the effects
of the mechanisms of the flow control
system Yre

- Set of variables related to the PI
Controller Yc

Control variables
- Hf
- H
-1

Governing equations

- Generic conduit dynamic equation

30 oH f
E+9Aa+—2DAQ|Q| =0

- Generic conduit continuity equation

a’?0Q O0H
——+—=0
gAodx Ot

- Continuity equation (mass balance
equation in the forebay)

dH, (t)
Fde

= Qin(t) — Qc(t,x = 0)

- Continuity equation for the surge tank
(mas balance equation in the surge
tank)

dH(t) _

A~ = (@t x = L) — Qp(t,x = 0)

- Discharge in the downstream valve

Qv(t) = Av(t)cvv ZgHv(t)

Water-level controller (PI Controller)

g _ Hf B Href + kd(Hf - Href)
dt T, dt
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Methods of solution and stability analysis

The aim is to find

- Q@

- Hq®)

- Hi((t)

- ()
Jimenez rewrites the governing equations to
obtain a set of dimensionless form and
linearized. This allows him to obtain a system
of equations written in the matrix form as
follows

ODE

dx
— =AX+B
dt

Where X is the vector of dimensionless
variables to be found.

Jimenez determines the stability without
solving the system of equations but by means
of the Routh-Hurwitz criterion.

According to the Routh-Hurwitz criterion, the
system is stable if the real parts of the
eigenvalues of the matrix A are negative.

The stability assessment is performed by
analytical means.

Using this criterion, Jimenez determines that
the stability of the system is a function of five
variables:

n, m, p = variables related to the characteristics
of the plant

and
a, K; = variables related to the PI controller

if the variables n, m and p are known, i.e., the
stability analysis is studied over an existing
plant, then the stability depends only on the
parameters of the PI controller. Since only two
variables are left, Jimenez presents his stability
analysis on the Rio Macho Hydropower plant
using stability curves shown plotted in a a- K;
plane where the points inside the curve
represent the stable region.

Methods of solution and stability analysis

The aim is to find

- Q(x,t) in the conduits

- H(x,t) in the conduits

- Hi®)

- Hy(®)

- 1(b)
In opposition to the method exposed by
Jimenez, there is no analytical way to assess
the stability and, in addition, the set of
equations is a set of hyperbolic partial
differential equations that has no analytical
solution, therefore numerical methods need
to be used. In this context the method of the
characteristics is used to solve the PDE.

PDE

Since the equations are functions of the time #
and the distance x, both initial and boundary
conditions need to be stated.

In the case of the initial conditions they are
found by computing the steady-state flow. In
the case of the boundary conditions, special
conditions are used in each special node of the
system, i.e., the forebay, the surge tank and the
control valve. All the new mechanisms are
included in the boundary condition for the
control valve

Since no analytical solution exists, the
behaviour of the system needs to be
numerically modelled. The stability of the
system is determined after the simulation
evaluating if the oscillations in H(t) tend to
damp in respect to time. To determine if the
oscillations dampened the maximum values of
the oscillations were subjected to an
exponential fit of the form

f=a-est

If the coefficient S<O it meant that the
oscillations tended to damp.

Since no analytical way exists to assess
stability with this method the equations must
be solved for different values of variables Yp
and Yrr and then the stability is determined.
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Stability function, Stability criterion

According to the method of solution exposed
and the stability analysis done by Jimenez it is
possible to say that:

If the assessment is performed over an existing
plant, the Stability function will have the
following variables

Stability = f(a, K;)

And would be represented by the characteristic
polynomial of the Matrix A. It is necessary to
highlight the fact that the stability function in
this approach is not represented by the
parameter S because an exponential fit is no
necessary.

In addition, due to the simplifications, the
stability is only function of the PI Controller
parameters

The Stability criterion in this approach would
be the Routh-Hurwitz criterion, i.e., if the real
parts of the eigenvalues of the matrix A are
negative.

Stability function, Stability criterion
The Stability function is

S = f(BLB' NIVB’ g, f' tdelay! tmeasure: a, Kl)
Where S is the parameter of the exponential fit
and whose form depend on the fitting
technique.
Since the new mechanisms are considered, the
stability function depends not only on the PI
Controller parameters but on the variables of
the different mechanisms.
The Stability criterion used was:

a dynamic system is stable if

$<0
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4.8.Simulation setup

Numerical simulations were performed to systematically assess the stability of the flow control
system.

The followed process was:

1. Set hydropower plant characteristics
- Hydraulic conditions
- Geometry
- Steady-state conditions
- Simulation parameters
=  Total time of simulations
= At
= Ax
Fix a global case, i.e., define the Yrg variables
Fix a particular case, i.e., define o and K.
Perform numerical simulation using the Method of the Characteristics for the given case
Obtain time-series of Hy(t) and t(t)
Determine stability using the exponential fit and the stability criterion
Determine the mean values and the standard deviations of Hi(t) and t(t)

Nk WD

The steps 2-7 were performed in a loop varying all the variables to finally

8. Obtain the exponential fit matrices [S]

9. Obtain the stability limit curves in the o-K; plane.

10. Obtain the mean values, standard deviations, and ratio of standard deviations matrices
[H] [<] [s_H] [s_t] [r_s_H] [_s_t]

Regarding the stability function the Boolean variables considered were those considered in Table
4.1.

Table 4.1 — Boolean variables considered

Boolean variable Symbol Range
Non-instant valve NIVs 0,1
Backlash BLg 0,1

The rest of the variables were considered in ranges reported in Table 4.2
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Table 4.2 — Values and ranges of the non-Boolean variables

Variable Symbol  Unit Range

Instrumental uncertainty o m 0, 0.01, 0.05, 0.1

Filter f ) 0,1

Delay time tdelay S 0,0.1,0.5,1

Measuring time tmeasure s 0,1

PI Controller parameter 1 o ) 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75,

80, 85, 90

PI Controller parameter 2 K, ) 0.5,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0, 6.5

7.0,7.5,8.0,8.5,9.0

= ]f 6#0 then tmeasure=1
= Jfo =0 then =0

Any combination of these parameters was tested and the only restrictions that were added were

These combinations can be organized in a tree diagram from Figure 4.8. In the figure the delays
taelay and the measuring time tmeasure are represented by the variables D and M, respectively. The
most relevant constant parameters that describe the plant and each of the mechanisms are shown

in Table 4.3
Table 4.3 —Most relevant constant parameters used in the simulations

Variable Symbol Unit Value
Forebay

Incoming river flow Qin m?/s 36.1

Surface area of the forebay Ag m? 1297.3

Head target value Hiarget m 112

Tunnel

Tunnel Length L; m 4005.00

Cross-sectional area of the tunnel A m? 8.04

D-W Friction factor f; ) 0.009

Tunnel wave speed a m/s 1365.1
Penstock

Penstock Length L, m 276

Cross-sectional area of the penstock Ap m? 8.04

D-W Friction factor fp (-) 0.01

Penstock wave speed ap m/s 683.5

Surge tank
Surface area of the surge tank A m? 61.20
Non-instant valve

Maximum valve velocity Vv, max %ls 2.5
Backlash

Positive gap £aPpos % 0.15

Negative gap £aPneg % -0.15

Backlash friction fr % 0.5
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Figure 4.8 — Tree diagram of the possible combinations of global cases
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The particular and global cases shown in Table 4.4 and Table 4.5 respectively are considered to

show typical results.
Table 4.4 — Particular cases shown in typical results

Variable Symbol Unit Particular Particular Particular Particular
Case A (BM) Case B Case C Case D
Non-instant valve NIVs () 0 0 1 0
Backlash BLg () 0 0 0 1
Instrumental uncertainty c m 0 0.1 0 0
Filter f (-) 0 0 0
Delay time tdelay ] 0 0.5 0.1 1
Measuring time tmeasure ] 0 0 1
PI Controller parameter 1 o (-) 65 45 25 50
PI Controller parameter 2 Ky () 2.5 5.5 3.5 5

Table 4.5 — Global Cases shown in typical results

Exponential Fit Statistical Analysis
Variable Symbol Unit Setof Set of Set of Global  Global Global
Global Global Global Case D Case E Case F
Cases A CasesB  Cases C
Non-instant valve NIV ) 0 1 0 0 1 1
Backlash BLs () 0 0 0 1 1
Instrumental uncertainty c m 0 0 0.05 0 0.05 0.1
Filter f () 0 0 0 0 0 1
Delay time tdelay S 0,1 0,1 0,1 1 1 1
Measuring time tmeasure s 0 0 1 0 1 1
The simulations were performed for the values shown in Table 4.6.
Table 4.6 — Values used for the simulation
Variable Symbol Unit Value
Tunnel space discretization Ax¢ m 58.44
Penstock space discretization Axp m 29.26
Time discretization At s 0.04
Total simulation time thotal S 10
Number of time intervals n -) 25x10°
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expfit

Mean -
Std dev

S.
5.

RESULTS
1.Typical Results of a Particular Case

Typical results of a particular case after one simulation consisted of: time-series of the level in
the forebay Hi(t), the valve opening t(t) and the valve opening derivative At(t), namely, the
variable that is modified by the PI Controller; Exponential fit of the peaks of the oscillations of
Hi(t) around Hiarget and computations of the mean, the standard deviation and the ratio of standard
deviation of He(t) and 1(t). The results from the particular cases exposed in Table 4.4 are shown
in Figure 5.1 and Figure 5.2

Particular Case A

Particular Case B
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Figure 5.1 — Results of the Particular Cases A and B from Table 4.4
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Figure 5.2 - Results of the Particular Cases C and D from Table 4.4

The time-series are graphs showing the simulation time t and the variables At(t), t(t) and Hi(t) as
a function of time. The straight black lines in the time-series graphs represent the reference
values, thus, in the case of the level in the forebay Hit) and the valve opening 1(t) these lines
represent Hiarget and Trarget, and in the case of the valve opening derivative At(t), this black line
represent the zero-value which is arranged when Hg(t) has converged to Hiarger. The exponential
fit part of the figures shows a variable y which is the same variable described by equation (4.70),
namely y=Hri(t) and the peaks and exponential fit curves in red colour. Finally, the part of the
statistical values shows the time series of Hi(t) and t(t) at left and at right the obtained probability
density function (pdf) of the corresponding variables. The dashed lines indicate the interval

|Hf - Htargetl < AHstability

Described in section 4.6. The results obtained from the particular cases in Table 4.4 are shown
in Table 5.1.
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Table 5.1 — Computed typical results for the particular cases

Variable Symbol Unit Particular Particular Particular Particular
case A (BM) case B case C case D
Parameter S of the expfit Sw.axKly ) -3.52E-05 1.73E-06  -9.88E-05 -1.52E-06
Hi(t) mean value Hiwaxkly m 111.99 112.00 111.99 112.00
7(t) mean value Tw,axKly ) 0.9985 0.9992 0.9984 0.9986
Hi(t) mean deviation value AHfw ax K1y cm -4.47E-02 5.56E-02  -8.21E-02  1.16E-03
1(t) mean deviation value ATy oxkly ) -0.0015 -8.43E-04 -0.0016 -0.0014
Hx(t) standard deviation s Hiwaxkly cm 0.26 1.85 0.42 0.48
1(t) standard deviation S TwaxKly ) 0.0014 0.0346 0.0011 0.0017
Hx(t) ratio of standard r s Hewaxxiy ) 1 5.02 1.0009 1.42
deviation
7(t) ratio of standard I S TwaxKly ) 1 21.71 1.0011 1.12
deviation

5.2.Typical Results for Global Cases

Typical results of a global case were obtained after the simulation of all the particular cases and
consisted on the stability limit curve obtained from the exponential fit matrix, mean deviation,
standard deviation, and ratio of standard deviation matrices of Hgw and 1y (Figures Figure 5.3 to
Figure 5.6). The results are shown in graphs instead of numerical. On the first hand, the
exponential fit the stability limit curve was obtained interpolating the O-value across the
exponential fit matrix and is plotted in the a-K; plane in red colour. On the other hand, the mean,
standard deviation and ratio of standard deviation matrices are shown in form of graphs with
scaled colors using the values shown in Table 5.2. This means that for the computed value of
each pair (ax, Kiy) (€.g. s_Hewaxkiy), @ color was assigned, so that the computed values could be
compared easily knowing that the scaled colours go from the lightest colour (lower numerical
value) to the darkest colour (greater numerical value). In Figure 5.3, in black colour, it was also
plotted the analytical stability limit curve obtained by Jimenez & Chaudhry (1992), This is done
to compare the effect the variables on the stability of the system. In each of the graphs of Figure
5.4 and Figure 5.5, the analytical stability limit curve obtained by Jimenez & Chaudhry (1992)
is also shown together with the stability limit curve obtained from the global benchmark case.
This is done to show only results of the statistical values under these curves because there was
no concern of studying the statistical parameters on presumably unstable pairs of (a, K1).

Table 5.2 — Values and units of the colorbars

Variable Symbol Colorbar Unit
range
Hf mean deviation matrix graph [Hew] 0-05 m
T mean deviation matrix graph [Atw] 0 - 0.01 )
Hr standard deviation matrix graph [s_ Hgw] 0-15 m
1 standard deviation matrix graph [s_Tw] 0-0.25 )
He ratio of standard deviation matrix graph [r s Hgw] 0 - 400 )
7 ratio of standard deviation matrix graph [r s Tw] 0 - 250 )
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Figure 5.3 — Stability limit curves for the set of global cases A, B and C from Table 4.5
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Figure 5.4 — Computed statistical matrices from the Global Case D from Table 4.5 shown in scaled color graphs
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Figure 5.6 - Computed statistical matrices from the Global Case F from Table 4.5 shown in scaled color graphs
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5.3. Results discussion

The analysis of the results may be divided in two: first, it is discussed the effect of each variable
(mechanism) alone on the stability and then, some remarkable combinations of variables are
analysed. In the second place the exponential fit technique as stability criterion is studied with
the statistical matrices.

5.3.1. Effect of each variable maintaining the rest off(=0)

It is now possible to expose the effect of each of the mechanisms involved. They are shown first
as isolated cases, that is, the effect of them alone maintaining the other variables off (=0) and
then some of their combinations are shown in more detail due to their impact

Transients

The only transients’ particular cases have a stability function of the form
S=f(BLg =0,NIVg = 0,6 =0,f = 0,tge1ay = 0, tmeasure = 0, &, Ky)

and make up the benchmark global case. Considering the transients in the conduits alone (while
keeping the other variables off), as in the Particular Case A of Figure 5.1, showed to have
negligible impact on the stability of the flow control system. In fact, the stability limit curve of
the Global Cases A in Figure 5.3 with tgelay=0s, here amplified (Figure 5.7), corresponds to the
benchmark case and as observed the curve has just slightly shrunk in respect to the analytical
curve.

BM GLOBAL CASE
STABILITY LIMIT CURVE

10

10 20 30 40 50 60 70 80 90 100
[0
Figure 5.7 — BM Global Case stability limit curve
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Delays

With stability function of the form
S=f(BLg=0,NIVg =0,0 =0,f = 0,tge10y # 0, tmeasure = 0, K1)

the delays in the control system did not show to have an important impact on the stability of the
controller. In the particular cases the behaviours of Hit) and t(t) were similar to that of the only
transients case and in the global cases the impact in the stability curve is very similar to the only
transients case as well, as may be seen in the set of Global Cases A of Figure 5.3 with tgelay=1s.
In fact, if a delay were applied to the Particular Case A of Table 4.4, almost identical time-series
would be obtained as shown in Figure 5.8.
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Figure 5.8 — Comparison of the time-series of Particular Case A from Table 4.4 for delay times of Os and 1s

For the delays to be an important issue in the flow control system, the t4elay must be of around 30
seconds or more, which is not verified in these systems. The time-series of the Particular Case A
from Table 4.4 are shown with a time of delay of 30 and 45 seconds in Figure 5.9 to evidence
how the flow control system starts to lose control with the delay of 30s and how it becomes
absolutely instable for a delay of 45s.
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Figure 5.9 — Particular Case A from Table 4.4 with time of delay of 30 and 45 seconds
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Non-instantaneous valve

With stability function of the form

S=f(BLg=0,NIVg =1,0 = 0,f = 0,tge1ay = 0, tmeasure = 0, K7 )
the non-instantaneous valve alone did not affect the stability of the controller, in fact, the cases
with NIVe=1 while maintaining the other variables off(=0) showed to have the same behaviour
of the BM case. However, this behaviour may be explained analysing that in the BM case the
A1(t) kept always under Atmax hence Ater(t)=At(t). As a matter of fact, the stability limit curves

from the set of global cases B (Figure 5.3) shows that the non-instantaneous valve alone is
equivalent to have the BM case.

Measuring time

The measuring time alone is described by a stability function of the form
S=f(BLg=0,NIVg =0,0 =0,f = 0,tge1ay = 0, tmeasure = 1, @ K1)
To analyse the physical effect of this variable let us inspect Figure 5.10 in which a measuring

time has been added to the particular case A from Table 4.4.
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Figure 5.10 - Comparison of the time-series of Particular Case A from Table 4.4 for measuring times of Os and Is

As may be observed, the main difference is present in the form of the function At(t) in which,
when the measuring time is not considered, the function is continuous whereas when the
measuring time is considered it appears to have a strange form giving the sense like if an integral
were being computed. However if a little interval of At(t) with measuring time is amplified, as
in Figure 5.11, it will show that in fact what happens is that the function is discontinuous but
when shown in a bigger interval seems to have that form of “integral” and, in addition, it has
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non-zero values only for integer values of time every second. This situation arises from the fact
that, in reality, the measuring time has been set as 1s and additionally, when this measuring time
is set up, it considers the level in the forebay to be constant during the measuring time interval
(except for the case of uncertainties with filter whose case is analysed later) and therefore it is
only at this time interval that the controller performs an operation. This situation was already
described in section 4.1.2 where the details of the flow control were given.

In spite of this difference in the form of At(t), the time-series Hi(t) and t(t) seem to be almost
identical. The comparison of the BM global case with the global case

S=f(BLg=0,NIVg =0,0 =0,f = 0,tg010y = 0, tmeasure = 1)

as shown in Figure 5.12 shows us that the stability limit curves are almost identical, therefore, it
could be said that the measuring time alone has negligible impact on the stability of the system.
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Figure 5.11 — Time- series of a particular case with measuring time considered and amplification of a little interval of At(t)
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Figure 5.12 — Comparison of the stability limit curves of the BM case and the global case with only measuring time considered
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Uncertainties

Considering the case of uncertainties alone, i.e., having stability function with the form of
S=f(BLg=0,NIVg =0,0 #0,f = 0,tge10y = 0, tmeasure = 0, K1)

showed to significantly affect the behaviour of the flow control system. From the Particular Case
B in Figure 5.1 it can be seen that with the uncertainties, Hi(t) oscillates around Hiarger but does
not converge to it throughout time, meaning that asymptotic stability is not verified with this
mechanism. This situation however, may can be explained studying equations (4.16) and (4.20)
to (4.23)

H: —H , .
i fm target 3 16
Att = ( T. > + (k((H]im — Hiarget) — (H}ml - Htarget))) * At (4.16)
i
; {tﬁ)
H;m = Hr]n_eilsure + AH * (1 —f e Ts ) fort;" <t; <tjuq" (4.20)
: -1 4.21
AH = Hr]neasure - Hr]neasure ( )
(4.23)

H111'leasure = H]i + (0 * rand)

Let us suppose that for given values of o and K the PI Controller could in fact make Hr converge
to Hiarget, in this case if Hiarget 1s subtracted from equation (4.23) and the limit is taken then

' j 5.1
(Hrjneasure - Htarget) = (H]lf - Htarget) + (0 * rand) G-1)
gi_)rg(Hr]neasure - Htarget) = EI_)IE(H} - Htarget) + gl_f{}t(o- * rand) (5.2)
gil’? (Hr]neasure - Htarget) = glntl (o * rand) (5-3)

>t Sty

Since the limit has no fixed value and does not converge to 0 because the combination (g+rand)
always gives a casual number, then in general from equations (4.20) and (4.21)

j j—1 5.4
Hr]neasure -_'t Hr]neasure ( )
AH # 0 5
H}m # Hearget (5-6)
And therefore, from equation (4.16)
ATt #0 (5.7)
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In addition to the non-convergence (non-asymptotical stability) of the uncertainties case, another
important effect that this variable has on the dynamic system is the magnitude of the amplitude
of the oscillations. As may be seen in Figure 5.13 where the time-series of the Particular Case B
from Table 4.4 are compared to the time-series of the same case but with 6=0m, the maximum
amplitude of the uncertainties case is around six times bigger than the BM particular case. This
situation may be observed in a more general way in Figure 5.14 where the standard deviation and
the ratio of standard deviation matrices of the level in the forebay are shown. The oscillations
may be up to 10 times greater but are kept in a smaller range for pairs (o, Ki) away from the
stability limit curve. Though the amplitude of the alone uncertainties cases is in general bigger
than the BM cases, they do not have the biggest amplitudes, instead the biggest amplitudes are

found in a combination of uncertainties with other variables which is detailed in section 5.3.2.
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Figure 5.14 — Standard deviation and Ratio of standard deviation matrices for a global case considering only uncertainties

Backlash

With stability function of the form

S=f(BLg =1,NIVg = 0,6 =0,f = 0,tg01ay = O, tmeasure = 0, &, Ky)

with 0=0.1 with and without filter

Backlash is a mechanism that showed to have a significant impact on the stability of the flow
control system. Just as what happened to the instrumental uncertainty and as can be observed in
the particular case D of Figure 5.2, Hr oscillates around Hiarget without converging to it, i.e., there
is no asymptotic stability. This behaviour may be explained inspecting equations (4.16), (4.47)
and (4.50) and Figure 4.6 supposing NIVe=0 (Ates=AT).

ATreal 4

gapneg

Bappos AT

Closing

Opening

Figure 4.6. (repeated) - Atrea obtained at a given time t as a function of dz, the gaps and b
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The valve opening is given by

_ H: — Higroet , i
At = (u> + (k((H;m - Htarget) - (Hlml - Hfa?’get))) * At

T;

If At is positive, i.e. the valve is opened

AT! = . ,
reat {b'(AT‘—gap{;;});

If At ., is negative, i.e. the valve is closed
eff g

. b- (At — gapil);
AT;eal = { ( J%Pneg

0;

0; ATt < gaphoi

ATt > gaphot

At < gapias

ATt > gaple,

Let us analyse an interval of time from the particular case D
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Figure 5.15 — Sample interval from the time-series of the particular case D
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From points A to B, Hris close enough to Harget and therefore
9apreg < At' < gapyos
So
ATjeq =0
The level in the forebay will keep rising because no operation has been performed due to backlash
effects. Then at point B the gap is overpassed, and the valve starts to change its 1, so from points

B to C the flow control is going to have nonzero Atreal

gapiey > Att or At > gaphol

Arﬁeal *#0

As Hrapproaches again Hurget in the C-D interval, the At decreases and enters again in the zone
where

9aPrey < AT' < gapyos

And will have zero Atrea until the backlash effects will be again overpassed at interval D-E. This
situation occurs in loops throughout time and that is why asymptotic stability is never verified.

Though the backlash cases are not asymptotically stable, in contrast to the uncertainties case, the
amplitudes of the oscillations are not a big issue as may be seen in Figure 5.16 where the time-
series of the Particular Case D from Table 4.4 are shown with and without backlash. As observed,
the amplitude of the oscillations is kept under similar values which, in this case, is around 0.1m.
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Figure 5.16 - Comparison of the time-series of Particular Case D from Table 4.4 with and without backlash

Evaluating the standard deviation and the ratio of standard deviation matrices of Hi(t) of the only-
backlash global case (Figure 5.17) (using a different scale colour than the one from Table 5.2) it
may also be seen that the standard deviations are, in general, kept within a small range of 0.05m
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and the ratios of standard deviation exceed the value of 5 only for cases near the BM stability

limit curve.
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Figure 5.17 — Standard deviation and ratio of standard deviation matrices of the only backlash global case

5.3.2. Remarkable combinations of variables

The effects of the mechanisms in the last section were exposed for those mechanisms maintaining
the rest of the variables off(=0), however, there are some remarkable combinations of variables
that need special attention and that represent the key derivations from the stability assessment.

Delays or measuring time + any other mechanism

The delays and measuring time with any other mechanism are represented by the stability

functions of the form

S§= f(BLB»NIVB»O-ff: tdelay # 0, tmeasure # 0, @, Kl)

Their combination with any other variable has shown to have no significant impact in the stability
of the controller. Table 5.3 shows three particular that were evaluated in Figure 5.18 (a)-(c) with

and without the effect of the delays.

Table 5.3 — Particular Cases used to show the negligible effect of the delays and the measuring times

Variable Symbol Unit Particular Particular Particular
cases D-M-1 cases D-M-2 cases D-M-3
Non-instant valve NIVs (-) 0 0 0 0 0 0
Backlash BLs -) 0 0 0 0 1 1
Global Instrumental uncertainty c m 0 0 0.1 0.1 0 0
Cases  Filter f ) 0 0 1 1 0 0
Delay time tdelay S 0 1 0 1 0 1
Measuring time tmeasure S 0 1 1 0 1
PI Controller parameter 1 o (-) 35 35 50 50 25 25
PI Controller parameter 2 Ky ) 3 3 2 2 1 1
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Figure 5.18 — Time-series of the Particular cases from Table 5.3

As shown in the figures the consideration of these mechanisms has no relevant impact on the
stability and therefore may be neglected. However, the measuring time must be always
considered when combined with uncertainties because it has no sense to have an instantaneous
measuring instrument.
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Backlash + Non-instant valve without Uncertainties

The combination of the backlash and non-instant variables without uncertainties is represented

by a stability function of the form

S = f(BLB =1,NIVg =1,0=0,f, tdelay) tmeasures @ Kl)

Such a combination results to have little impact on the stability of the system as shown in figures
This occurs because though backlash does not have asymptotic stability, its amplitudes are very
narrow, thus At is in general kept under Atmax and therefore Atesr= At. Figure 5.19 shows the
Particular Case C from Table 4.4 for only backlash, only non-instant valve and the combination
of both and, as may be seen, when backlash is combined with non-instant valve without
uncertainties, the backlash predominates over non-instant valve effects.
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Figure 5.19 - Comparison of the time-series of Particular Case C from Table 4.4 for only backlash, only non-instant valve and
the combination of both

66



Uncertainties + Backlash
In both uncertainties and backlash consideration there was no asymptotic stability in the dynamic

system, and they were the most relevant cases when the other variables are not considered,
however, when both mechanisms are combined, namely

S =f(BLg = 1,NIVg,0 # 0, f, teiay tmeasure & K1)
the backlash effects vanish because due to the uncertainties in general
gapiey > Att or At > gaphol
ATioq # 0
Therefore, when they are combined the uncertainties effects have more weight and backlash

effects become negligible, as shown in Figure 5.20 where the Particular Case B from Table

4.4Figure 4.4 has been evaluated also for only backlash and for the combination of backlash and
uncertainties.

c=0.1 m-BLzs=(

delta ()

Y o
£ 4]l e i Bl g =

- oL I ot e
] 1000 2000 3000 4000 5000 6000 7000 BODD 8000 10000
t(s)
12 T T T T T T T

¢=0.1 m-BLs=1

0 1000 2000 3000 4000 5000 G000 7000 8000 9000 10000
t(s)
= 11208 T T T T T
‘E; / f f fi A /‘ H A |
8 12 = v/\\ ﬂ AA fﬂ\i; ‘ (H /\"\/ ”l’rj Lﬂu{ /\\ \ f 0 u}lou 2000 3000 4060 so‘ou 6000 7000 subo 9060 10000
2 TR Y \/ /
2 Y | \ \' \j v v v U t(s)
HE1L90 : y - 12 T T : T T
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 :
t(s) " | 1
smuﬁ ! | LU I
% "o 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
?0 Lyl Lrl Lrl L]lylyl L L'J ‘@)
= [ [ r r T Enzns T T T T T T T
@ n
- =
7000 2000 3000 4000 5000 G000 7000 8000 8000 10000 g | \
t(s) g \J/ \‘ U
1.002 ‘-‘ VR T T T LT —— pE T 11195 \f v
P O 1 O O i O i R 1 7 0 G 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
= u,“l‘w..u-‘,c‘;;“ l tis)
voomf| | || R \ |
0996 | \I\ \ \ 110 1 ¥ ¥,
998 | \

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

gmof || /
%‘“2;\)'[\/\’(\]\!\ I\F‘\u“‘i"\,‘”\#\/\rﬂ\ \ |
Z imsell U VVVVVVVVVY VVVV |

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1(s)

6 =0 m- BLzs=1

Figure 5.20 - Comparison of the time-series of Particular Case B from Table 4.4 for only uncertainties, only backlash and the
combination of both
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Non-instantaneous valve + Uncertainties
Although the non-instantaneous valve has shown to have no impact in the stability while keeping

the other variables off, it takes a key role when it is combined with the instrumental uncertainties,
ie.,

S = f(BLB» NIVg = 1,0 # 0, f, tgeiay, tmeasures @ Kl)
This situation occurs because it is when uncertainties are considered that significant values of At
take place, causing the available Atesr to have an important effect and making it not certain
whether the desired operations will be actually achieved. To examine this situation in a more
detailed way, let us analyse the Particular Case B from Table 4.4 including this time the non-

instant valve and evaluated with and without filter.

When the filter is considered (Figure 5.21)

§= f(BLB:NIVB =1,0+#0,f =1, taelay tmeasurer & Kl)
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Figure 5.21 — Time-series of the Particular Case B from Table 4.4 with filter and non-instant valve
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the effects of the non-instant valve are important but less harmful for the stability because the
filter gives the opportunity to perform gradual opening/closing operations in the valve. This
situation has been depicted in Figure 5.21 amplifying a little interval of time and enclosing with

a blue square a portion of the function Artesr, where a gradual change could be performed due to
the filter effects.

In contrast when a filter is not considered (Figure 5.22)

S= f(BLB:NIVB =1,0+#0,f =0, Laelayr tmeasurer @ Kl)
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Figure 5.22 - Time-series of the Particular Case B from Table 4.4 without filter and non-instant valve

The non-instantaneous valve becomes a big problem in the stability assessment, because without
a filter and with big instrumental uncertainty, the values of At become significantly high respect
to the other cases. Although the model was programmed to adjust the equations when filter was
not considered (as shown in Figure 4.5 and equations (4.40) to (4.43) ) the differences in the
amplitude of the oscillations considering filtering or not showed to be very high. To illustrate
this situation, Figure 5.23 and Figure 5.24 show the standard deviations s H;, of the set global

cases from Table 5.4. Both sets of global cases include non-instant valve and uncertainties with
and without filter.
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Table 5.4 — Set of Global Cases used to show the effect of the combination of the uncertainties and non-instant valve

Variable Symbol Unit Set of Global Set of Global
Cases G Cases H

Non-instant valve NIVs ) 1 1
Backlash BLg ) 0 0
Instrumental uncertainty c m 0.05 0.1
Filter f ) 0,1 0,1
Delay time tdelay ] 1 1
Measuring time tmeasure ] 1 1

f=0 f-1

6 =0.05m
10 20 30 4 5 60 70 8 90 10 20 3 40 s 60 70 80 90
(83 (43
Figure 5.23 — Standard deviation matrices of the forebay level of the set of Global Cases G from Table 5.4
f=0 f=1
15 s ; , , ; ; ‘ ; ; 15
1 1
c=0.1m

0.5

0
10 20 30 40 50 60 70 80 90 10 20 30 40 50 60 70 80 90

Figure 5.24 - Standard deviation matrices of the forebay level of the set of Global Cases H from Table 5.4
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As observed from Figure 5.23 and Figure 5.24, the usage of a filter can reduce the standard
deviation significantly. In the worst case scenario, which corresponds to 6=0.1m, the usage of
filter may keep the standard deviation even under a meter and for pairs (o, K1) well inside the
curve, enclosed with a red square (approximately in the range of (20<a<50, 1<K;<3.5)) the
standard deviation may be kept even around 0.5m whereas when a filter is not used, for either
0=0.05m or 6=0.1m, the standard deviation is in general equal or greater than 1.5m.

In general, such combination of non-instantaneous valve with uncertainties and no filter showed
to change absolutely the behaviour. Figure 5.5 shows the Global Case E where this combination
was used and inspecting the mean values it could be thought that the cases are in general unstable,
however, when a particular case of this global case is analysed, using values of a=55 and K=4,
the situation depicted in Figure 5.25 is observed. The Mean value of Hi(t) is evidently away from
Hiarget but the particular case does not seem to have a strong instability, meaning that nor remarked
filling or emptying of the forebay nor unreasonable values of t (e.g. negative values) are
observed. A similar situation was found for pairs (o, K1) out of the BM stability limit curve as
shown in Figure 5.25, where the same global case with a=20 and K;=7.5, showed not to be
strongly unstable.

When the combination of non-instant valve with uncertainties and no filter is thus used, it is
obtained: deviated mean and wide oscillations but no strong instability for the whole a - K. The
incompatibility of these results suggests that the non-instant valve effects should not be
considered as in equations (4.40) to (4.43) but should be implemented in the tuning of the PI
Controller itself rather than from this numerical approach.
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Figure 5.25 — Time-series of two particular cases, one with (a=55, K1=4) and the other one with (a=20, K1=7.5)), of the
Global Case E from Table 4.5
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5.3.3. Exponential fit as a stability criterion

Up to this point a lot has been said about the effect of the mechanisms on Hy or T themselves but
none has been said about the stability criterion to define mathematically if they were stable or
not. The exponential fit technique showed to be an effective stability criterion when the
oscillations of Hr showed an asymptotic stability as was observed in any case where uncertainties
or backlash were not considered, that is where

S= f(BLB = 0,NIVg,0 = O,f =1, tdelayr tmeasure)

In such cases the 0-values can be easily interpolated in the exponential fit matrix [Sw] because
they show a clear monotonical decay until some (a, K1) pairs and then amplify. In addition, for
such cases, a small zone shown in green colour is enclosed (Figure 5.3) representing a zone
defined as very stable zone where Hr did not even oscillated around Hireer but converged
immediately as can be observed in Figure 5.26 where the following particular case was simulated

S=f(BLg=0,NIVg =0,0 =0,f = 0,tg01ay = 0, tmeasure = 0,a = 35,K; = 0.5)
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Figure 5.26 — Time-series for a particular case in the very stable zone

The nearby points to this zone are also very stable cases as they show very fast convergence to
Hiarget or small oscillations around it, so it is convenient to defined as optimum stability zone the
pairs (o, K1) contained in the following domain (Figure 5.27)
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Figure 5.27 — optimum stability zone on the o - K; plane
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When the uncertainties or the backlashes are considered, the peaks oscillations of Hraround Hiarget
do not have a monotonical decay but have a random behaviour as may be seen in Figure 5.28
which show the particular cases B and D from Table 4.4.
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Figure 5.28 — Exponential fit applied on the Particular cases B and D
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Because of this randomness, when the exponential fit is applied, the fitting parameter S, o K1,

may take any value and as a consequence, the interpolation of the 0-values in the exponential fit
matrix [Sw] does not enclose a defined stability limit curve as shown in Figure 5.3 for the set of
global cases C which has been amplified in Figure 5.29

tdum}:ﬂs taetay=18

20 30 40 50 &0 [ a0 80 100 10 20 30 an 50 60 7o Ed a0 100

Figure 5.29 — Exponential fit for the set of global cases C

5.3.4. Mean deviation, Standard deviation, and ratio of standard deviation matrices

The mean deviation, standard deviation and the ratio of standard deviation matrices graphs show
information about the centre and the amplitude of the oscillations. From the obtained matrices it
is possible to say that

- The mean deviation is not affected by any global cases and thus the centre of the
oscillations remains very close to Hiarget.

- The amplitude of the oscillations is very narrow where there is asymptotic stability and
do not represent a problem for the dynamic system, but for the cases in which there are
uncertainties this becomes an important issue. In the graphs, many of the uncertainties’
cases show standard deviations of Im or more, therefore, attention must be paid to the
maximum amplitude and safety zones where the Hr may be allowed to oscillate.

- It is important to notice the amplitude differences of using or not filtering, because as
shown in the graphs a difference between their standard deviations may have values up
to 50cm. Nevertheless, as has been said before the combination of non-instantaneous
valve with no filtering should not be analysed because of the incompatibility of the results
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5.3.5. Results summing-up

To end the discussion, Table 5.5 summarized the effect of the variables and their combinations
as well as the effect of the stability criterion and the statistical analysis.

Table 5.5 — Results summary

Variable Method of analysis Effect of the Remarkable Final
Expfit  Statistical variable alone combination observations
Transients v v Negligible - -
Very harmful Should be
. . when implemented in
Non-instant valve v v Negligible combined with the PI Controller
uncertainties tuning
No asymptotic Backlash may
stability When combined increase in
Backlash X v but small with uncertainties  time due to wear
amplitude of it is negligible of mechanical
oscillations parts
No asymptotic Very harmful Consider
stability . . .
Instrumental . when combined implementation
. X v but considerable . . .
uncertainty . with non-instant in PI controller
amplitude of .
L valve effects tuning
oscillations
Negligible for the -
Delay time v v considered values Neghglbl'e for any -
combination
of tdelay
. Negligible for the i
Measurlng v v considered values NegllglbIF: for any -
time of t combination

5.3.6. Redefining stability and new stability criteria

Until now and based on the stability criterion of the exponential fit only for the global cases
without uncertainties or backlash a defined stability limit curve has been obtained and only for
their particular cases the dynamic systems have been classified as “stable” or “unstable”. The
results obtained from the exponential fit showed not to be suitable for any global case having
uncertainties or backlashes because the time-series of their particular cases did not expose
monotonic decay or asymptotic stability. However, for such cases, although the oscillations of
Hi(t) did not damp or converge to Hiarget, as long as the (a, Ki) pairs remained under the BM
stability curve, the oscillations of Hi(t) did not amplify, giving a new sense of stability. This
suggests that stability may be also assessed for these cases if the concepts of “stability” in a
mathematical way and the stability criterion are changed.
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In this sense, let us redefine stability and divide it in two types, the first being the already defined
asymptotic stability based upon convergence of Hit) to Hager throughout time using the
exponential fit criterion, hence using the same equations from chapter 3 for a particular case

1; SW,ax,Kly < 0 (5.8)

as =
W, K1y {O;SW,ax,my >0

Where S is the exponential fit parameter from equation (4.71). The stability limit curve is found
afterwards using the interpolation of S=0 along the exponential fit matrix.

Now, let us define a second type of stability called pseudo-stability

L psly ek, =1land ps2yq k1, =1 (5.9)
y y

PSw,a,, k1, = {
oy 0; else case

Where

1; |AHf,w,ax,K1y| < AHlim

pSlW,ax,Kly = -
0; [ A sy ap s, | > AHiim (5.10)

, 1; S_Hf,w,ax,Kly < s_Hjim (5.11)
S = .
PSaw,ayK1, 0; S_Hf,w,ax,Kly > s_Him

AHf,W,ax,Kly and S_Hf,w,ax,my are the mean deviation and the standard deviation defined in
equations (4.79) and (4.76)

This means that a new type of stability has been created based upon the fact that H«(t) of a
particular case may oscillate around Hiarget Without converging to it but without amplifying its
oscillations. The pseudo-stability type I (ps1) refers to the centre of the oscillations and limits the
mean deviation and the pseudo-stability type II (ps2) refers to the amplitude of the oscillations
and limits their width. The values of AHiim and s Hiim are not fixed and depend on the particular
case considered, because every plant has its own restrictions and the designer shall have
knowledge of the restrictive value that keeps the oscillations harmless to the conditions of the
plant.

The stability limit curves based on pseudo stability may be found inspecting the limit values of

the both types of pseudo-stability or shall be omitted simply performing the stability assessment
for pairs of (a, K1) under the BM case stability curve.
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5.3.7. Recommendations in the design and the running on the plant

After deriving the consequences of considering each of the mechanisms, some recommendations
in the design or the running phases may be proposed:

1.

6.

Considering the transients in the flow may be negligible because their effect made the
stability limit curve to shrink slightly compared to Jimenez’s model

The values of delays and measuring times should be kept as little as possible. It has been
proven that when the values remain in the ranges used in this document, they can be
neglected.

When considering backlash effects, though the dynamic system does not show asymptotic
stability, there is no significant impact on the oscillations as they remain very narrow.
However, it should be highlighted that the backlash effects were considered constant in
time but they may change after some months or years of operation due to wear of the
mechanical parts and therefore changing their impact on the flow control system

Since the instrumental uncertainties are the most significant mechanism considered,
special attention should be paid to them and the precision of the instrument should be
kept in ranges less than 0.05m. It was proved that keeping the uncertainties under this
value allows to have very narrow oscillations.

The non-instantaneous valve should be only used with filtering when considered with the
uncertainties case. However, in general, to the author’s opinion, the non-instant valve
effects should be included in the PI Control tuning rather than in the numerical
simulations.

APPLICATION (STUDY CASE)

To validate the information extracted from the simulations applied on the Palomo Hydroelectric
Project in Costa Rica, a set of simulations were also applied in the Bajo Tulua ROR hydropower
plant in Colombia. This plant, unlike the Palomo one, had a different hydraulic scheme because
the surge tank was not directly linked to the tunnel but was connected with a standpipe, as shown
in Figure 6.1.
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Figure 6.1 — Bajo Tuluda ROR Hydropower plant scheme adapted from Chaudhry (1979)

The Bajo Tulud ROR hydropower plant has two Francis turbines and the characteristics shown
in Table 6.1

Table 6.1 — Characteristics of the Bajo Tulua ROR Hydropower plant

Variable Symbol Unit Value
Incoming river flow Qin m?/s 12

Surface area of the forebay Ar m? 810.98
Surface area of the surge tank A m? 102.07
Tunnel Length L m 5735.04
Penstock length L, m 398.03
Standpipe length Lsp m 106.73

The behaviour of the plant was simulated for the same particular cases from Table 4.4 and the
results are shown in Figure 6.2
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Figure 6.2 — Results of the particular cases A, B, C and D for the Bajo Tulud ROR Hydropower plant

79



REFERENCES

Chaudhry, M. H. (1979). Applied Hydraulic Transients. New York: Van Nostrand Reinhold.
Devore, J. L. (2012). Probability & Statistics for Engineering and the Sciences. Boston:
Cengage.

Farris, A., & Helston, C. (2017, February). Run of River Power. Retrieved from EnergyBC:

http://www.energybc.ca/runofriver.html

Freedman, R. A., & Young, H. D. (2012). University Physics. San Francisco: Pearson.

international hydropower association [iha]. (2019, June 18). Hydropower facts. Retrieved from

international hydropower association Web site: https://www.hydropower.org/a-brief-
history-of-hydropower

international hydropower association [iha]. (2019, June 18). Hydropower facts. Retrieved from

international hydropower association Web site: https://www.hydropower.org/types-of-
hydropower

Jiménez, O. F., & Chaudhry, M. H. (1992). Water-Level Control in Hydropower Plants.

Journal of Energy Engineering, 118(3), 180—193. https://doi.org/10.1061/(ASCE)0733-

9402(1992)118:3(180)

Liu, F., Jiang, H., Zhang, L., & Chen, L. (2017). Analysis of vibration characteristic for helical
gear under hydrodynamic conditions. Advances in Mechanical Engineering, 9(1), 1-9.
https://doi.org/10.1177/1687814016687962

Norconsult SA. (2016, 03 07). Svenska krafindt. Retrieved from Svenska kraftndt SA:

https://www.svk.se/en/press-och-nyheter/news/news/nordic-common-project-for-
review-of-primary-reserve-requirements--finalized-phase-1/

Nunez, C. (2019, May 13). Hydropower, explained. Retrieved from National Geographic Web

site: https://www.nationalgeographic.com/environment/global-warming/hydropower/

Vesipa, R., & Fellini, S. (2019). Instability of the Tank-Level Control System of Water Mains
in Mountainous Environments. Journal of Hydraulic Engineering, 145(7), 04019025.
https://doi.org/10.1061/(ASCE)HY.1943-7900.0001609

Wang, B., Liu, J., & Wang, C. (2019). Measurement and analysis of backlash on harmonic
drive. {IOP} Conference Series: Materials Science and Engineering, 542, 12005.
https://doi.org/10.1088/1757-899x/542/1/012005

White, F. M. (2011). Fluid Mechanics. New York: McGraw-Hill.

Wylie, E. B., & Streeter, V. L. (1978). Fluid Transients. McGraw-Hill.

80



