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ABSTRACT 

In the last few years, isogeometric analysis (IGA) has become the object of many 

scientific researches. It is a new numerical analysis method, based on the usage of 

the exact geometry representation in analysis environment instead of the common 

mesh discretization. In the NURBS based IGA, the linear Lagrange polynomials 

basis function, utilized in FEA, are substituted by non uniform rationals b-splines 

basis functions, the same used in CAD environment. 

This new approach, in the future, will lead to a great saving of time and money, 

considering that the meshing phase can be computationally very expensive, hard 

to fully automate, error-prone, and it becomes exponentially more time consuming 

with the growth of the product complexity. 

In this thesis, after a brief theoretical presentation, different types of NURBS 

based IGA are performed by means of the commercial software LS-DYNA, in 

order to assess the state of the art and the limits of the software with this method. 

Moreover, comparisons with FE analyses are made in order to understand the 

accuracy of the results and the cpu complexity of equivalent problems. 

At the end, strong and weak points of the method are presented, based on the 

issues encountered and on the results produced by the analyses. 
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1. INTRODUCTION 

1.1. Background  

During the twentieth century, the increasing number and complexity of the 

engineering problems made it difficult to find the solutions by using hand 

calculations. At this point, engineers started to make use of computers, the most 

important factor behind the development of mankind over the last fifty years. 

Beginning in the 1960s, the design process of construction projects has been 

gradually digitized. With the availability of personal computers In the 1980s, the 

use of software tools became a common practice in engineering consultancies. 

Nowadays all the industrial product development process is based on advanced 

computer calculations. The software packages used by engineers are generally 

organized in three main groups: Computer Aided Design (CAD), Computer Aided 

Engineering (CAE) and Computer Aided Manufacturing (CAM). 

1.1.1 CAD and CAE  

CAD technology is used, as its name implies, for design of structures and design 

process documentation. 3D models, Detailed engineering drawings, material 

information, dimensions and tolerances with specific conventions can be created 

by using CAD programs and such drawings are main input for the manufacturing 

process. It is widely recognized that modern CAD technology has it origins in the 

work of two French engineers: Pierre Bezier, from Renault, and Paul de Faget de 

Casteljau, from Citroen. Bezier [1, 2, 3] used Bernstein’s polynomials [4] as the 

basis for his model of generating lines and surfaces, that he called Bezier curves. 

(de Casteljau did the same some years earlier, without however publishing his 

studies). the term spline was first introduced by Shoenberg [5], who studied them 

as interpolatory function, but his work hasn’t been used in cad technologies until 

the 1960s [6]. In the 70’s there have been a rapid development of these topics: 

Reisenfeld [7] and Vesprille [8] studied in their PhD thesis’, respectively, the B-
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splines and the Non-Uniform Rational B-splines (NURBS). NURBS made the 

usage of rational functions and exact representation of the conic sections possible 

which is not the case for B-Spline. Today, NURBS is in use by most of the 

commercial CAD software packages and data exchange standards due to its 

superior properties. Subsequently, many new techniques were introduced to 

improve the representation, In particular, the introduction of T-splines [9,10] in 

the CAD program in the early 2000s is noteworthy: these functions are an 

extension of the NURBS concept and are very efficient for what concerns local 

refinement. 

 

On the other hand, CAE is used to conduct engineering analyses such as 

Structural Analysis, Computational Fluid Dynamics (CFD) and Multibody 

Dynamics (MBD). In CAE softwares, Engineering designs are evaluated in terms 

of their functions and the structures are analyzed under the working conditions 

with applied forces, pressures or temperatures and so on. For complex geometries 

and boundary conditions, it is not possible to solve the problem of a structure 

under working conditions in an analitycal way. On this purpose, numerical 

methods have been developed and, nowadays, the most commonly used in 

structural problems is the Finite Element Method [FEM]. The origin of the FEM 

goes back to study of Richard Courant (1943) [11] where he proposed 

discretization of the whole domain into a set of finite triangular subregions in 

accordance with the philosophy of the finite element method. A few years later, in 

1960, Dr. Ray Clough has used the term “finite elements” for the first time in his 

study [12]. At the same time, since digital computers were invented with 

capability of making hundreds of operations per second, first commercial FEA 

programs began to be developed. 

The long-term use of these mathematical models, both for CAD and CAE, can be 

shown as a proof that analysis and design mathematical models worked well 

throughout years, even if different solution methods are being used in these two 

fields and this causes extra time consumption. Infact, the models created by using 

CAD software cannot be directly used by FEA technique, because, while the CAD 
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community uses geometry descriptions like e.g. NURBS, subdivision surfaces, T-

splines or others, the FEA community generally uses linear Lagrange polynomials 

to approximate the geometry. So, one should make the design model suitable for 

analysis by transforming the data set, performing well-known method called as 

“meshing”. Although the geometric transformation can be easily achieved for 

many applications in solid mechanics, it constitutes a severe bottleneck for the 

analysis of complex geometries, that can be computationally very expensive, hard 

to fully automate, and often leads to error-prone meshes, which have to be 

manually improved by the user.  

 

 

Figure 1-1: Estimation of the relative time costs of each component of the model generation and 
analysis process at Sandia National Laboratories. [13] 
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Figure 1-2: Manufacturing time in relation with the number of parts of a model [General Dynamics & 
Electric Boat Corporation]  

The generation of a comprehensive structural model for different conceptual 

designs is time consuming.  As can be seen from fig. 1-1, about 75% of overall 

engineering time is required to generate the final simulation model from the 

design input, moreover, the meshing phase becomes exponentially more time 

consuming with the growth of the product complexity (fig. 1-2). 

 

1.2. Isogeometric analysis 

This situation prompted the academy and industry to seek a new solution that 

could be used jointly for the two main disciplines, design and analysis. 

Isogeometric analysis emerged in accordance with these conditions.  IGA is a 

recently born analysis method that combines Finite Element Analysis (FEA) and 

Computer Aided Design (CAD) by providing an appropriate algorithm for 

computerized solution. The main idea behind the emergence of isogeometric 

analysis is utilizing the same basis functions in both design and analysis [14]. It 
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focuses to use one geometric model that can be utilized for analysis directly or can 

be manipulated for analysis easily and automatically.  

A comparison of meshing for standard FE and IGA is shown in Fig. 1-3. Where 

can be seen that the geometry representation based on linear lagrange polynomials 

will lead to a discretization error that can only be reduced to a tolerable value 

performing mesh refinement. On the other hand, IGA uses the exact geometry for 

Analysis, any necessary mesh refinements for enlarging the solution space won’t 

change the geometry. [16] 

 

Figure 1-3: : Comparison of meshing for standard FE and IGA.[16] 

It must be kept in mind that the term “isogeometric analysis” is not restricted to 

any special type of basis functions. It just indicates that the geometrical 

description that is used for FEA is the same than was used in CAD before. [15] 

1.2.1 IGA with NURBS basis functions 

In 2003 the research on isogeometric analysis started to focus on the question if 

finite element analysis could be done with non-uniform rational B-splines 

(NURBS), the most widely used geometry description in commercial CAD 

programs. The first promising results of these studies were presented in 2005 [14]. 

Since then, much research has been done on various topics of FEA (e.g. linear and 

non-linear static and dynamic analysis of thin-walled structures, fluid mechanics, 

fluid structureinteraction, shape and topology optimization, vibration analysis, 
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buckling and others) where many studies were performed using NURBS as basis 

functions.  

This approach is also found in LS-DYNA, the software this thesis will be focusing 

on, where NURBS patch (shell and solid) elements can be created. 

The main reasons behind the choice of NURBS is listed below:  

- NURBS allows exact representation of geometries.  

 

- It is successful in modeling free-form surfaces, conic sections, circular, 

cylindrical, spherical and ellipsoid shapes with great flexibility and 

precision.   

 

- With the help of Cox de Boor formulation, efficient and stable algorithms 

for NURBS can be easily generated or already available algorithms can be 

found.  

 

- NURBS enables users to easily apply geometry refinement without 

regeneration of geometry.  

 

- NURBS has non-interpolatory nature and high continuity.  

In the classical finite element method approach, the geometric approximation 

inherent in mesh can cause accuracy problems. Some of the structures as in the 

case of thin shells are very sensitive to geometric imperfections. Any deficiency 

in the representation of geometry may change the results tremendously. As can be 

seen in Figure 1.2, magnitude of allowable buckling load on the cylindrical shell 

decrease considerably with the introduced geometrical imperfections. 
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Figure 1-4: Thin shell structures exhibit significant imperfection sensitivity: (a) faceted geometry of 
typical finite element meshes introduces geometric imperfections and (b) buckling of cylindrical shell 
with random geometric imperfections [14] 

On the other hand, since NURBS can define such cylindrical shapes free from 

imperfections, these problems can be analyzed with high accuracy. For example, 

in the field of contact mechanics, when finite elements are applied to geometry 

with curved surface, the result is a non smooth geometrical representation of 

interface surface which may lead to mesh interlocking, high jumps and 

oscillations in contact forces. To eliminate these issues, smoothening strategies 

are used in FEM, whereas, in IGA, these are not needed, thanks to the higher 

order continuity of the NURBS basis functions. Moreover, isogeometric analysis 

enables analysts to easily make mesh refinements without communicating and 

changing the geometry. On the other hand, for classical finite element method 

application, mesh refinement necessitates the regeneration of geometry and this 

means a lot of time consumption especially for assemblies with large number of 

parts. 
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1.3. Research objective 

The main objective of this thesis is to conduct a study about isogeometric analysis 

(IGA) and its implementation in the commercial software LS-DYNA, to figure 

out wich are the potentialities of this new method applied to structural mechanics 

problems. 

IGA will be introduced with its theoretical background, Then there will be the 

evaluation of the state of the art of LS-DYNA for what concerns Isogeometric 

analyses capabilities, with an overview on the model set up and definition for 

different types of models and analyses.  

Validation of IG analyses, will be then performed with the software, comparing 

them with analyses carried out using the finite element method. 
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2. THEORETICAL BACKGROUND 

Upon giving the motivation for the use of isogeometric analysis in the 

introductory chapter 1, in this chapter spline geometry is introduced by initially 

discussing univariate Bézier, B-spline, and NURBS curves together with their 

respective underlying basis functions. Afterwards, the univariate curves are 

extended to multivariate formulations. With the definition of the different basis 

functions at hand, their incorporation in the finite element method is illustrated 

and the fundamental properties of the resultant isogeometric analysis concept are 

presented.  

The information contained in the following sections serves as a basis for this work 

but does not provide a complete discussion on the individual topics. For this 

purpose, references to fundamental publications and monographs are given in the 

respective sections. The content provided here stems from studies presented in 

[17, 18, 19, 23, 24, 32, 33, 34], but due to its basic nature, is in general not cited 

explicitly. 

2.1. Spline geometry 

2.1.1 Introduction 

As the geometry description is essential for isogeometric analyses, this section 

shall give a brief overview of the different formulations prior to incorporating 

them in the context of the finite element method. Since NURBS are best 

understood when explained by the steps of its evolution, Bézier curves and 

standard B-spline curves will be briefly addressed before turning the attention to 

NURBS curves. After discussing the one dimensional formulations, the extension  

to higher dimensions, i.e. to surface sand volumes will be presented. 
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2.2. Bézier curves 

The Bézier curves are parametric curves, used in computer graphics and related 

fields. Independently discovered by Pierre Bézier and Paul de Casteljau, it was a 

way to give a mathematical description to the car bodies design with the emerging 

methods of CAD and CAM. [25,26] 

A Bézier curve is defined by a set of p+1 control points P, where p is called its 

order (p = 1 for linear, 2 for quadratic, etc.). The curve is defined in the parameter 

domain [0,1], and the first and last control points are always the end points of the 

curve; however, the intermediate control points (if any) generally do not lie on the 

curve.  

 

Figure 2-1: Example of cubic Bézier curve with its control polygon [wiki]. 

The dashed lines of the curve in fig 2-1 constitute the control polygon of that 

curve. Moving any of the control points will change the shape of the entire curve 

in an intuitive manner. This type of control established the curve’s popularity in 

the world of computer aided design. 

A Bézier curve as shown is defined as 

 𝐶(ξ) =  ∑ 𝑁𝑝
(𝑖)(ξ)𝑷(𝑖)            𝑛

𝑖=0     ∀ξ ∈ [0,1] (2.2.1) 

Where the 𝑖𝑡ℎ basis function 𝑁𝑝
(𝑖) is the Bernstein polynomial of degree 𝑝. 

 𝑁𝑝
(𝑖)(ξ) =  (𝑝

𝑖
)ξ𝑖(1 − ξ)𝑝−𝑖  𝑤ith   00 ≡ 1  and  (𝑝

𝑖
) =  

𝑝!

𝑖!(𝑝−𝑖)
 (2.2.2) 
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Figure 2-2: the evaluation of a point on that curve at 𝜉 = 0.5 with the de Casteljau algorithm.  

The geometric construction of a point on the curve with the help of the de 

Casteljau algorithm is depicted in fig. 2-2. The curve C(𝜉) is evaluated at 𝜉 = 0.5 

by consecutively interpolating the lines connecting the control points at 0.5, 

creating new lines connecting the interpolated points and starting over until at 

iteration 𝑝 the point C(0.5) is found. 

 

Figure 2-3: Bernstein polynomials of different degree plotted over the domain [0,1], i.e. the basis  
functions of a Bézier curve. (a) For the depicted curve in fig. 2-1 (a) with degree 3; (b) the  functions of 
a curve with seven control points (𝑝 = 6) [24]. 

The basis functions of the curve in fig. 2-1 are plotted in fig. 2-3 (a), and for the 

reason of comparison, the respective functions of a Bézier curve with seven 

control points, i.e. a curve of polynomial degree 6, are shown in fig. 2-3(b). The 

functions are non-negative and fulfill the partition of unity property. It is to be 

noted, that all functions are non zero over the entire domain ]0,1[. This is the 

reason why, manipulating the position of a single control point influences the  
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shape of the entire curve, whatever the number of control points of the curve is. 

As none of the function values becomes one over ]0,1[, the curve does not pass 

through any of the control  points 𝑃(1) to 𝑃(𝑛−1)and reversely, passes through the 

start and end point, where the respective basis functions are equal to one at 𝜉 = 0 

and 𝜉 = 1. 

2.3. B-splines 

Owing to the use of the Bernstein polynomial as the basis functions of the Bézier 

curve, it is not possible to define a single curve of low degree with a higher 

number of control points, i.e. more control points than 𝑝+1. The basis also 

prohibits the application of local changes on a given single curve.  

These short comings were overcome with B-spline curves that are built from 

piecewise polynomial functions, defined by knot vectors on non-overlapping 

connected intervals. Within these intervals B-splines are smooth, differentiable 

and continuous while at the boundaries of these intervals they are still continuous 

but not necessarily differentiable. 

Instead of defining the curve over  Ω = [0,1], the domain of a B-spline curve in 

parameter space is given as  Ω =[ξ𝑝+1, ξ𝑛+1], where the variables ξ𝑝+1 and 

ξ𝑛+1 stem from a set of coordinates Ξ, called knot vector. 

Ξ ={ξ1, ξ2, …, ξ𝑛+𝑝, ξ𝑛+𝑝+1} (2.3.1) 

where ξ𝑖  ∈ ℝ is the 𝑖𝑡ℎ knot, i= 1,2,…, n+p+1, is the knot index, p is the 

polynomial order, and n is the number of basis functions used to constitute B-

Spline curve, equal to the number of control points. 

The coordinates in the knot vector, commonly referred to as knots, must not be 

decreasing, i.e: 
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ξ𝑖+1 > ξ𝑖 

 

(2.3.2) 

Must hold for all entries. 

Generally, knot values are normalized in the range between 0 and 1. The knots 

partition the parameter space into elements, usually referred as “knot spans”. 

Element boundaries in the physical space are simply the images of knot lines 

under the B-spline mapping.    

Knot vectors can be classified as uniform or non-uniform and open or periodic 

knot vectors. If knot values in the knot vector are equally spaced in the parameter 

space such as [0 1 2 3 4] or [0 0,1 0,2 0,3 0,4], then knot vector is called as 

uniform. Otherwise it is named as non-uniform knot vector. A knot vector can be 

defined as open if its first and last knot values appear p+1 times. B-Spline basis 

that are constructed from open knot vectors interpolate to the control points at the 

ends of the parameter space interval, [ξ1, ξ𝑛+𝑝+1], for one dimension. On the 

other hand, for multiple dimensions, they interpolate at the corners of patches. 

However, in general they are not interpolatory at interior knots. This is a 

distinctive property between knots in isogeometric analysis and nodes in finite 

element analysis. 

In the parametric space more than one knot can be located at the same coordinate 

and thus, knot values can repeat in knot vector. The number of repetitive knots is 

called as knot multiplicity and this case has essential effects on the properties of 

basis functions. Knot repetition can decrease the continuity of the basis function 

to 𝐶𝑝−𝑚 where 𝑚 is the number of multiplication. When the number of 

multiplication is equal to polynomial degree p, the basis will be 𝐶0 continuous at 

the multiplied knot value [17].  This makes the basis function non-differentiable at 

that knot. This property makes it possible to create sharp corners in the spline 

curve by controlling the continuity to the associated basis functions. 

These coordinates are used for the evaluation of the B-spline basis functions 𝑁𝑝
(𝑖) 

with the Cox-de Boor recursion formula, so: 
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 𝑁0
(𝑖)
= {

1     𝑓𝑜𝑟   ξ𝑖 ≤ ξ < ξ𝑖+1 
0                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(2.3.3) 

And for p>0: 

𝑁𝑖,𝑝(ξ) =
ξ −   ξ𝑖

  ξ𝑖+𝑝 −   ξ𝑖
𝑁𝑖,𝑝−1(ξ)

+ 
  ξ𝑖+𝑝+1 −  ξ

  ξ𝑖+𝑝+1−   ξ𝑖+1
𝑁𝑖+1,𝑝−1(ξ) 

(2.3.4) 

While working with open knot vectors or repeated knots, it is very crucial to take 

into account that one might encounter with zero denominator. This problem was 

solved by defining the result of such equations equal to zero. [16, 17]  

During the calculation of basis functions, due to the recursive nature of 

formulation, results of higher order polynomials require the results of lower 

orders. This dependency is shown in Figure 2-4.  

 

Figure 2-4: Dependencies between results of basis functions for computing a cubic basis function [17] 

For constant and linear basis functions with a uniform knot vector 

Ξ={0,1,2,3,4,5} the results are represented in the figure 2-5. Looking at the figure 
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shown, it can be said dynamic programming code is necessary to improve the 

efficiency of this recursive formula. Otherwise, the same values will be calculated 

several times. It should be noted that for 𝑝 = 0 and 𝑝 = 1, B-Spline basis functions 

have the same values as constant and linear shape functions of classical finite 

element method. However, by increasing the order, B-Spline basis functions 

differentiate from their finite element counterparts. This difference can be 

observed in figure 2-6, where the graphs of quadratic B-Spline basis functions and 

quadratic finite element shape functions are drawn. Quadratic B-spline basis 

functions are exactly same but shifted relative to each other with varying knot 

values. As we continue to higher-order basis functions this “homogeneous” 

pattern continues for the B-spline basis functions. On the other hand, quadratic 

finite element shape function differs according to the corresponding node 

position. This is a distinguishing feature between B-Spline basis and FEM shape 

functions that makes IGA superior to FEA.   

 

Figure 2-5: Basis functions for order 0 and 1 for uniform knot vector = {0,1,2,3,4,5} [21] 
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Figure 2-6: Comparison of quadratic finite element shape functions and B-spline basis functions [23]. 

In addition to mentioned homogeneity, B-Spline basis functions have several 

important properties as explained below [23]: 

• B-Spline basis functions constitute a partition of unity ∑ 𝑁𝑖,𝑝(ξ) = 1𝑛
𝑖=1  

• Each basis function is non-negative over the entire domain 𝑁𝑖,𝑝(ξ) ≥ 0,∀ 𝜉 

• B-Spline basis functions are linearly independent ∑ α𝑖𝑁𝑖(ξ) = 0 
𝑛
𝑖=1 only 

for α𝑖 = 0, 𝑖 = 1,2,…,𝑛. 

• The support of a B-Spline basis function of order p is p+1. 𝑁𝑖,𝑝 is non-zero 

over [ξ𝑖 , ξ𝑖+𝑝+1]. 

• Basis functions of order p have p-𝑚𝑖 continuous derivatives across knot 

ξ𝑖  where 𝑚𝑖 is the multiplicity of knot ξ𝑖. 

• Scaling or translating the knot vector does not alter the basis functions. 
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• B-Spline basis are generally only approximate to control points and not 

interpolate. Therefore, they do not satisfy the Kronecker delta property 

𝑁𝑖,𝑝(ξ)  ≠  δ𝑖𝑗. Only in the case 𝑚𝑖 = p, then 𝑁𝑖,𝑝(ξ) = 1. 

Non-uniform knot vectors should be preferred to obtain richer behavior for basis 

functions rather than uniform knot vectors. An example created in [23] by using 

an open non-uniform knot vector Ξ = [0 0 0 0.2 0.4 0.4 0.6 0.8 1 1 1] is shown in 

figure 2-7. Basis functions are interpolatory at the end points and additionally at 

the repeated knots where multiplicity is equal to polynomial degree p. At this 

repeated knot, only 𝐶0 continuity is attained. Elsewhere the functions have 𝐶1 

continuity. When the multiplicity is p+1, the basis becomes discontinuous and the 

patch boundary is formed.   

 

Figure 2-7: Quadratic basis functions drawn for non-uniform open knot vector Ξ = [0 0 0 0.2 0.4 0.4 
0.6 0.8 1 1 1]. [23] 

2.3.1 Derivatives of B-spline basis functions  

By deriving the B-spline basis functions we obtain: 

𝑑

𝑑ξ
𝑁𝑖,𝑝(ξ) = 𝑁𝑖,𝑝

′ (ξ)

=
p

  ξ𝑖+𝑝 −   ξ𝑖
𝑁𝑖,𝑝−1(ξ)

− 
𝑝

  ξ𝑖+𝑝+1 −   ξ𝑖+1
𝑁𝑖+1,𝑝−1(ξ) 

(2.3.5) 
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This formula defines the derivative of a basis function as a linear combination of 2 

basis functions of degree p-1, this is due to the recursive nature of these functions. 

For the higher order derivatives above formula can be generalized by simply 

taking the derivatives of each side to get: 

𝑁𝑖,𝑝
(𝑘)(ξ) =

p
  ξ𝑖+𝑝 −   ξ𝑖

(
𝑑𝑘−1

𝑑𝑘−1ξ
𝑁𝑖,𝑝−1(ξ))

− 
𝑝

  ξ𝑖+𝑝+1−   ξ𝑖+1
(
𝑑𝑘−1

𝑑𝑘−1ξ
𝑁𝑖+1,𝑝−1(ξ)) 

(2.3.6) 

Expanding (2.3.5) by means of (2.3.6) results in an expression purely in terms of 

lower order basis functions, 𝑁𝑖,𝑝−𝑘,....., 𝑁𝑖+𝑘,𝑝−𝑘, are given below; 

𝑁𝑖,𝑝
(𝑘)(ξ) =

p!
(𝑝− 𝑘)!

∑𝛼𝑘,𝑗

𝑘

𝑗=0

𝑁𝑖+𝑗,𝑝−𝑘(ξ) 
(2.3.7) 

With: 

 𝛼0,0 = 1 (2.3.8) 

 𝛼𝑘,0 =
𝛼𝑘−1,0

  ξ𝑖+𝑝−𝑘+1 −   ξ𝑖
 

 

(2.3.9) 

 𝛼𝑘,𝑗 =
𝛼𝑘−1,𝑗 − 𝛼𝑘−1,𝑗−1

  ξ𝑖+𝑝+𝑗−𝑘+1 −   ξ𝑖+𝑗
  𝑤ℎ𝑒𝑟𝑒  𝑗 =  1, . . . . , 𝑘 −  1,   

 

(2.3.10) 

 𝛼𝑘,𝑘 =
−𝛼𝑘−1,𝑘−1

  ξ𝑖+𝑝+1−   ξ𝑖+𝑘
  (2.3.11) 
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2.3.2 B-spline curves 

B-Spline curves in ℝ𝑑  are created by taking linear combination of multiplication 

of B-Spline basis functions with coefficients called as “control points”. When the 

control points are linearly interpolated, the resultant polygon is referred as 

“control polygon”. Given n basis functions 𝑁𝑖,𝑝 with specific order p, where 𝑖 = 

1,2,...,𝑛, and corresponding control points 𝑩𝑖 ∈ ℝ𝑑, 𝑖 = 1,2,...,𝑛, then B-Spline 

curve is defined by: 

𝐶(𝜉)  =  ∑𝑁𝑖,𝑝(

𝑛

𝑖=1

ξ)𝑩𝑖 
(2.3.12) 

The resulting B-Spline curve does not necessarily interpolate the control points. 

Nevertheless, when the interpolation is desired, by using the properties stated in 

the previous part, curve can interpolate to specific control points.  

A B-Spline curve example is shown in figure 2-8 which is constructed by using 

quadratic basis functions given in figure 2-7 created from specified knot vector         

Ξ = [0 0 0 0.2 0.4 0.4 0.6 0.8 1 1 1]. The control points and control polygon is 

also seen in the figure.  

Since the curve is built from an open knot vector, it interpolates to first and last 

control points. Moreover, curve is also interpolatory at the fourth control point 

due to the repetition of knot ξ = 0.4 as much as the polynomial order.  

B-Spline curves carry many properties of their basis functions. For instance, in the 

absence of repeated knots or control points, B-Spline curves of degree p have p-1 

continuous derivatives. In the light of this information, sample curve is 𝐶𝑝−1 =

𝐶1 continuous everywhere except at the location of the repeated knot, ξ = 0.4, 

where it is 𝐶𝑝−2 = 𝐶0 continuous.  
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Figure 2-8: A Quadratic B-Spline curve example [23]. 

Another property the curves inherit from their basis is “locality”. Due to the 

compact support of the B-spline basis functions, moving a single control point can 

affect the geometry of curve by affecting p + 1 elements of the curve. 

2.3.3 B-spline surfaces  

in order to obtain a B-spline surface, it is necessary to take a bidirectional net of 

control points, {𝑩𝑖,𝑗}, 𝑖 = 1,2, ...,𝑛, and  𝑗 = 1,2, ...  ,𝑚 and two knot vectors                

Ξ = {  ξ1,   ξ2, ...,  ξ𝑛+𝑝+1}, ℋ = {  𝜂1,   𝜂2  ,...,   𝜂𝑚+𝑞+1} where p and q are 

polynomial orders.  

Calculation is done by the combination of the tensor products of corresponding 

univariate B-spline functions defined as follows:  

𝑆(𝜉, 𝜂) =  ∑∑𝑁𝑖.𝑝

𝑚

𝑗=1

𝑛

𝑖=1

(ξ)𝑀𝑗,𝑞(𝜂)𝑩𝑖,𝑗   
(2.3.13) 

An example for the B-Spline surface is considered by using following knot 

vectors Ξ = {0, 0, 0, 0.5, 1, 1, 1} of degree q = 2 and ℋ = {0, 0, 0, 0.25, 0.5, 0.75, 

1, 1, 1} of degree p = 2. Basis functions for these knot vectors are given in figure 

2-9 and the created surface is shown in figure 2-10. 
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Figure 2-9: Basis functions of knot vectors (a) 𝛯 = {0, 0, 0, 0.5, 1, 1, 1} and  b) ℋ = {0, 0, 0, 0.25, 0.5, 
0.75, 1, 1, 1} [23]. 

Coordinates of the utilized control net on the surface is given in figure 2-11 [22]. 

 

Figure 2-10: An Example B-Spline surface [22]. 
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Figure 2-11: control net 𝑩𝒊,𝒋 [22]. 

2.3.4 B-spline solids  

B-spline solids are produced by using control lattice, {𝑩𝑖,𝑗,𝑘}, 𝑖 = 1,2,...,𝑛;                

𝑗 = 1,2,...,𝑚 and 𝑘 = 1,2,...,𝑙    knot vectors are Ξ = { ξ1,   ξ2, ...,  ξ𝑛+𝑝+1}, ℋ = 

{  𝜂1,   𝜂2  ,...,   𝜂𝑚+𝑞+1} and ℒ = {  ζ1, ζ2,...,  ζ𝑙+𝑟+1} where p, q and r are 

polynomial orders.  

Construction formulation for the B-Spline solids is given by: 

𝑆(𝜉, 𝜂, ζ ) =  ∑∑∑𝑁𝑖.𝑝

𝑙

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

(ξ)𝑀𝑗,𝑞(𝜂)𝐿𝒌,𝒓(ζ)𝑩𝑖,𝑗,𝑘  
(2.3.14) 

2.4. Refinement techniques 

In classical finite element method approach, in order to get more accurate results,  

basis  enriched  by  using  two  common  refinement  techniques:  h-refinement 

and p-refinement. The former method, h-refinement, increases the number of 

elements by decreasing the element size to get higher resolutions. On the other 

hand, the latter one, p-refinement, increases the polynomial degree of basis 

functions.   

These refinement techniques in isogeometric analysis are named as knot insertion 

which is similar to h-refinement and order elevation similar to p-refinement. 



23 
 

Contrary to the finite element methods, the geometry remains unchanged under 

each refinement and the continuity across each element is more controllable in 

isogeometric analysis. Moreover, IGA has one more refinement technique 

superior to FEM. It is the combination of order elevation and knot insertion 

respectively and called as “k-refinement” that brings many benefits to analysis 

world. Details of these refinement techniques are given in the succeeding parts. 

2.4.1 Knot Insertion (h-refinement) 

In isogeometric analysis first technique used to enhance basis is knot insertion 

which is analogous to h-refinement in FEA. During the application of knot 

insertion, new knots are inserted into already existing knot vector without 

changing the geometry. 

For a given knot vector  Ξ = {ξ1, ξ2, ...  , ξ𝑛+𝑝+1} , a new knot vector can be 

obtained by inserting additional knots as    Ξ̅ ={ξ̅1, ξ̅2  ...  , ξ̅𝑛+𝑚+𝑝+1} such that 

ξ̅1=ξ1 and ξ̅𝑛+𝑚+𝑝+1= ξ𝑛+𝑝+1}  and thus, Ξ ⊂ Ξ.̅ New n+m basis functions should 

be calculated by using cox de boor algorithm. The novel n+m control points,                                                    

ℬ̅= {𝐁̅1, 𝐁̅2,..., 𝐁̅𝑛+𝑚}𝑇, are generated from linear combinations of the original 

control points, ℬ = {𝐁1, 𝐁2,..., 𝐁𝑛}𝑇, as defined by,  

B̅𝑖 = α𝑖B𝑖 + (1 − α𝑖)B𝑖−1 (2.4.1) 

where, 

α1 = 

{
 
 

 
 1                            𝑖𝑓         1 ≤ 𝑖 ≤ 𝑘 − 𝑝               

ξ̅𝑖 − ξ𝑖
ξ𝑖+𝑝 − ξ𝑖

                    𝑖𝑓         𝑘 − 𝑝 + 1 ≤ 𝑖 ≤ 𝑘              

0                            𝑖𝑓        𝑘 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑝 + 2

     

(2.4.2) 

 

 Insertion of the already existing knot value causes a repetition and decreases the 

continuity of the basis functions. In order to preserve the continuity, equations 

2.3.15 and 2.3.16 are developed for the choice of proper control points.    
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An example of knot insertion procedure for a simple, one-element, quadratic B-

spline curve is given in the figure 2-12. A new knot is inserted at ξ̅ = 0.5 to the 

existing knot vector Ξ = {0,0,0,1,1,1}, which is used to create the original curve. 

The newly created curve is geometrically and parametrically identical to the 

original curve. However, control points have been changed, the mesh has 

partitioned, and the basis functions have been enriched. In the new case, the 

number of control points, elements and basis functions, all increased by one. This 

process may be repeated to enrich the solution space by adding more basis 

functions of the same order until the desired sensitivity is reached. 

Knot insertion refinement method is similar to the h-refinement technique of finite 

element method. As can be understood from the above mentioned procedure, knot 

insertion creates new knot spans i.e. new elements in the knot vector. Similarly, in 

finite element method, h-refinement increases the element number, creates a finer 

mesh of the same type of element to improve the results. However, IGA and FEA 

differ in the number of new basis functions and in the continuity of the basis 

across the novel element boundaries. To perfectly replicate h-refinement, one 

would need to insert each of the new knot values p times so that the functions will 

be 𝐶0 continuity.  
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Figure 2-12: Knot insertion refinement technique [18]. 

2.4.2 order elevation (p-refinement) 

Another basis improvement method which B-Spline theory enables the users is 

order elevation also called as degree elevation since the degree and order terms 

are used interchangeably in B-Spline theory. In this technique, polynomial order 

of the basis functions is increased. Since the basis functions have p-𝑚𝑖 continuous 

derivatives across element boundaries, if the continuity is desired to be preserved, 
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it is obvious that when the order p is increased, multiplicity m must also be 

increased by the same amount of degree. Therefore, during order elevation 

process, the multiplicity of each knot value is increased. As in the case of knot 

insertion, geometry and parameterization remains unchanged.    

Order elevation begins by replicating existing knots by the same amount as the 

increase in polynomial order. Thereafter, the order of polynomial is increased. 

Several efficient algorithms for the application of order elevation procedure can 

be found in Piegl and Tiller, 1997 [17]. 

An example for the order elevation procedure from quadratic to cubic order is 

represented in Figure 2-18. The original control points, mesh, and quadratic basis 

functions are shown on the left. Each knot value in knot vector has been increased 

by one but no new knot values were added. For this example, number of control 

points and basis functions increased from 8 to 13. The new control points 

calculation procedure is again given in Piegl and Tiller, 1997.  

Although the locations of the control points change, the order elevated curve is 

geometrically and parametrically identical to the original curve. Additionally, 

multiplicities of the knots have been increased but the element number is 

preserved.   

Order elevation process is analogues to p-refinement technique in finite element 

analysis. Both of the strategies increases the order of basis functions. The most 

critical distinction between these two is that p-refinement always begins with a 

basis that is 𝐶0 everywhere, while order elevation is compatible with any 

combination of continuities. 
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Figure 2-13: Order elevation refinement technique [18] 

2.4.3 k-refinement 

As mentioned in the previous parts, when a new knot values with multiplicities 

equal to one are inserted, functions across the boundaries will have 𝐶𝑝−1 

continuity. It is possible to lower the continuity by increasing the multiplicity as 

well. This shows knot insertion is a more flexible process than simple h-

refinement. Likewise, order elevation technique is also more flexible than p-

refinement technique. The stated flexibilities of knot insertion and order elevation 

techniques force us to develop another refinement technique which is unique in 

the field.  
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In a curve of order p, if a unique knot value, 𝜉̅, is inserted between two distinct 

knots, the number of continuous derivatives of the basis functions at 𝜉̅ is p-1. 

After knot insertion, even though the order is elevated, the basis still has p-1 

continuous derivatives at 𝜉̅. However, if we change the sequence i.e. if the order 

of the original curve elevated to order q first and then a unique knot value is 

inserted, the basis will have q-1 continuous derivatives at 𝜉̅. Thus an alternative 

order elevation method which has significant advantages over standard order 

elevation emerges. This procedure is called k-refinement. There is no analogous 

refinement technique in finite element method similar with k-refinement. The 

concept of k-refinement is important and potentially a superior approach to high-

precision analysis than p-refinement. In traditional p-refinement there is an 

inhomogeneous structure to arrays due to the different basis functions associated 

with surface, edge, vertex and interior nodes. In k-refinement, there is a 

homogeneous structure within patches and growth in the number of control 

variables is limited.  

In order to make it more clear, two different sequences of refinement processes 

are compared with an example in Figure 2-14. Initial domain consists of one 

element and p+1 basis functions. On the left side of the figure, firstly, knot is 

inserted until getting n-p elements and n basis functions and then order is 

elevated. In this process, to maintain the continuity at the p-1 level each distinct 

knot value is replicated and the total number of basis functions is increased by 2n-

p. After a total of r order elevations of this type, we have (r+1)(n)-(r)(p) basis 

functions, where p is still the order of our original basis functions. On the right 

side of figure, beginning with the same element domain this time order elevation 

is applied primarily, and then knot insertion is proceeded which is suitable to k-

refinement procedure. In this case for each order elevated r times, total number of 

basis functions increases by only one for each refinement. Then domain can be h-

refined until having n-p elements. The final number of basis functions is n+r, each 

having r + p -1 continuity. This amounts to an enormous savings in the number of 

basis functions as n + r is considerably smaller than (r+1)(n)-(r)(p). Moreover, this 

technique enables the arrangement of continuity of basis contrast to p-refinement.  
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Figure 2-14: k-refinement sequence comparison (a) Base case of one linear element. (b) Classic p-
refinement approach:  knot insertion followed by order elevation results in seven piecewise quadratic 
basis functions that are C0 at internal knots (c) New k-refinement approach: order elevation followed 
by knot insertion results in five piecewise quadratic basis functions that are C1 at internal knots. [14] 
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2.5. Non Uniform Rational B-Splines (NURBS) 

Although the B-Splines are convenient for free-form modeling and provide some 

advantages in geometry definition which were mentioned in the previous sections, 

they have still deficiencies in exact representation of some simple shapes such as 

circles and ellipsoids. In order to overcome this lack of ability, NURBS, a 

superset of B-Splines with its rational nature, is preferred. Today, NURBS is 

accepted as a de facto standard in CAD technology. Therefore, this section was 

devoted to discussion of NURBS concept and aims to show how they are 

constructed, what their advantages are and what separates them from B-splines.  

As its name implies, NURBS are piecewise rational polynomials built from B-

Splines and inherit all the favorable properties of them. The rational term refers to 

the fact that NURBS are a combination of B-splines basis functions multiplied by 

a weighting factor.  If all the weights are equal to one, then NURBS will be equal 

to B-splines. On the other hand, non-uniform term is used to define non-uniform 

knot vector. Therefore, in addition to the polynomial degree, knot vector values 

and multiplicity parameters, one more parameter weight is introduced to obtain 

more flexible design with desired properties.   

NURBS are constructed in ℝ𝑑 by the projective transformation of B-Splines 

defined in ℝ𝑑+1. To illustrate, a circle in ℝ2 constructed by the projective 

transformation of a piecewise quadratic B-spline defined using homogenous 

coordinates in ℝ3 is shown in Figure 2-15.   

In this figure, 𝐶𝑤(𝜉) is a B-spline curve in ℝ3 which is created by {𝐵𝑖𝑤} set of 

control points. These control points are defined utilizing homogenous coordinates. 

Terminologically, this curve is called as “projective curve” and its associated 

control points are called as “projective control points”, 𝐵𝑖𝑤, while the terms 

“curve” and “control points” are used to describe NURBS curve 𝐶(𝜉) and its 

control points 𝐵𝑖 respectively.   
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Figure 2-15: An Example of projective transformation of (a) Control points (b) Curves [14] 

The projected control points for the NURBS curve are obtained by the following 

relations: 

(𝐵𝑖)𝑗 =
(𝐵𝑖

𝑤)𝑗

𝑤𝑖
                 𝑗 = 1,… , 𝑑 (2.5.1) 

Where, 

𝑤𝑖 = (𝐵𝑖
𝑤)𝑑+1 (2.5.2) 

Here, (𝐵𝑖)𝑗 is the jth component of the vector Bi and 𝑤𝑖 is the 𝑖𝑡ℎ weight. In 

ℝ𝑑+1, the weights correspond to the (𝑑 + 1)𝑡ℎ component of the homogenous 

coordinates  of B-spline curve. For example, in Figure 2-15, weights are taken as 

z-components of projective curves. Dividing the B-Spline control point by its 

corresponding weight is thus named as a projective transformation. The same 

transformations need to be exploited on every point on the curve by the definition 

of weighting function: 

𝑊(ξ) =  ∑𝑁𝑖,𝑝(ξ)

𝑛

𝑖=1

𝑤𝑖 
(2.5.3) 
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Now the NURBS curve can be defined as 

(𝐶(𝜉))𝑗 = 
(𝐶𝑤(ξ))𝑗

𝑊(ξ)
       𝑗 = 1, … , 𝑑 (2.5.4) 

The curve 𝑪(𝜉) is a piecewise rational function since each element of it is found 

by division of 𝐶𝑤(𝜉) to 𝑊(𝜉) which are both piecewise polynomial functions. 

Since this projective transformation seems intimidating, it is rarely used in 

practice. The main reason behind the explanation of projective transformation is 

to understand the underlying nature of NURBS and recognize that everything that 

have been discussed thus far for B-splines still holds true for NURBS. 

2.5.1 NURBS basis functions and derivatives 

In order to define the construction and manipulation of NURBS geometries it is 

necessary to introduce a basis function as in the case of B-Splines. NURBS basis 

function can be defined as follows: 

𝑅𝑖
𝑝(𝜉) =

𝑁𝑖,𝑝(𝜉)𝑤𝑖

𝑊(𝜉)
=

𝑁𝑖,𝑝(𝜉)𝑤𝑖
∑ 𝑁𝑖,𝑝(𝜉)𝑤𝑖
𝑛
𝑖=1

 (2.5.5) 

Thereafter, NURBS curve defined by: 

𝐶(𝜉) =∑𝑅𝑖
𝑝(𝜉)𝑩𝑖

𝑛

𝑖=1

 
(2.5.6) 

One should note that, the weighting function in equation 2.5.3 is developed for the 

projection of B-Spline curve from ℝ𝑑+1 into ℝ𝑑. Since it is embedded into basis 

function definition, we can built geometries and meshes in ℝ𝑑 without regarding 

the projective geometry behind the scenes. For this reason, equation 2.5.6 is 

generally preferred to Eqn. 3.5.4 due to the usage of practical basis function 

although they are equivalent. 

Rational basis functions are also defined analogously for the generation of rational 

surfaces and solids in Eqn. 2.5.7 and 2.5.8 respectively as follows 

𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗
∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗

𝑚
𝑗=1

𝑛
𝑖=1

 (2.5.7) 
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𝑅𝑖,𝑗,𝑘
𝑝,𝑞,𝑟(𝜉, 𝜂, 𝜁) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)𝑤𝑖,𝑗,𝑘

∑ ∑ ∑ 𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)𝑤𝑖,𝑗,𝑘
𝑙
𝑘=1

𝑚
𝑗=1

𝑛
𝑖=1

 (2.5.8) 

Related NURBS surfaces and solids are defined respectively by 

𝑆(𝜉, 𝜂) =∑∑𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂)𝑩𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 
(2.5.9) 

𝑉(𝜉, 𝜂, 𝜁) =∑∑∑𝑅𝑖,𝑗,𝑘
𝑝,𝑞,𝑟(𝜉, 𝜂, 𝜁)

𝑙

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

𝑩𝑖,𝑗,𝑘 
(2.5.10) 

The derivatives of NURBS basis functions get by using quotient rule and their 

non-rational similitudes 

𝑑

𝑑𝜉
𝑅𝑖
𝑝(𝜉) = 𝑤𝑖

𝑊(𝜉)𝑁′
𝑖,𝑝(𝜉) −𝑊

′(𝜉)𝑁𝑖,𝑝(𝜉)

(𝑊(𝜉))
2  (2.5.10) 

Finally, an example of a NURBS surface represents a torus geometry which is 

difficult to create by using B-Splines is given in figure 2-16. 

 

Figure 2-16: An Example for NURBS surface (a) Control net for toroidal surface (b) Toroidal surface 
[14] 
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2.6. NURBS modelling softwares 

The high standards that CAD have reached nowadays allow the maximum 

freedom of choice to designers and engineers, with a good compatibility of 

NURBS solid and surfaces with almost all the softwares. 

Some of them are powerful and/or easy to use. The most famous free form surface 

modeler, that utilizes NURBS mathematical model, is Rhinoceros 3D.   

Rhinoceros is used in processes of computer-aided design (CAD), computer-aided 

manufacturing (CAM), rapid prototyping, 3D printing and reverse engineering in 

industries including architecture, industrial design  (e.g. automotive  

design, watercraft design), product design (e.g. jewelry design) as well as 

for multimedia and graphic design.  

The Rhinoceros file format (.3DM) is useful for the exchange of NURBS 

geometry. The Rhino developers started the open NURBS Initiative to provide 

computer graphics software developers the tools to accurately transfer 3-D 

geometry between applications. 

 

Figure 2-17: Rhinoceros 3D environment. 

https://en.wikipedia.org/wiki/Computer-aided_manufacturing
https://en.wikipedia.org/wiki/Computer-aided_manufacturing
https://en.wikipedia.org/wiki/Rapid_prototyping
https://en.wikipedia.org/wiki/3D_printing
https://en.wikipedia.org/wiki/Reverse_engineering
https://en.wikipedia.org/wiki/Architecture
https://en.wikipedia.org/wiki/Industrial_design
https://en.wikipedia.org/wiki/Automotive_design
https://en.wikipedia.org/wiki/Automotive_design
https://en.wikipedia.org/wiki/Shipbuilding
https://en.wikipedia.org/wiki/Product_design
https://en.wikipedia.org/wiki/Jewelry_design
https://en.wikipedia.org/wiki/Multimedia
https://en.wikipedia.org/wiki/Graphic_design
https://www.rhino3d.com/opennurbs
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To make some other mentions, two powerful parametric CAD softwares used for 

engineering are, definitely, NX (siemens) and CATIA (Dassault systèmes). Their 

huge capabilities range over all the types of mechanical modelling, NURBS 

included. 

NX, formerly known as "unigraphics", is an advanced high-end CAD/CAM/CAE, 

which has been owned since 2007 by Siemens PLM Software. It is spreading all 

around the world and it is used in many famous companies (Ducati, FCA and 

Beretta armi are some of the instances).  

 

Figure 2-18: Car body design on Siemens NX. 

CATIA, the most famous one, started as an in-house development in 1977 by 

French aircraft manufacturer AVIONS MARCEL DASSAULT, at that time 

customer of the CADAM software to develop Dassault's Mirage fighter jet. It was 

later adopted by many companies of the aerospace, automotive, shipbuilding and 

other industries (Boeing, Ferrari, Volkswagen, Audi…). 

https://en.wikipedia.org/wiki/Computer-aided_design
https://en.wikipedia.org/wiki/Computer-aided_manufacturing
https://en.wikipedia.org/wiki/Computer-aided_engineering
https://en.wikipedia.org/wiki/Siemens_PLM_Software
https://en.wikipedia.org/wiki/Dassault_Aviation
https://en.wikipedia.org/wiki/CADAM
https://en.wikipedia.org/wiki/Mirage_(aircraft)
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Figure 2-19: Airbus A380 modelling in CATIA V5. 
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3. ISOGEOMETRIC ANALYSIS WITH LS-DYNA 

3.1. LS-DYNA 

LS-DYNA is an advanced general-purpose multiphysics simulation software package 

developed by the Livermore Software Technology Corporation (LSTC). It is widely 

used in many fields, such as automotive, aerospace, bioengineering and civil 

engineering. 

 

Figure 3-1: Screenshot from LS-PrePost showing the results of an LS-DYNA simulation of a car 
impacting a rigid wall at 120 kph. [Wikipedia] 

LS-DYNA originated from the 3D FEA program DYNA3D, developed by Dr. 

John O. Hallquist at Lawrence Livermore National Laboratory (LLNL) in 1976. 

DYNA3D was created in order to simulate the impact of the Full Fusing Option 

(FUFO) or "Dyal-A-Yeld" nuclear bomb for low altitude release (impact velocity 

of ~ 40 m/s). At the time, no 3D software was available for simulating impact, and 

2D software was inadequate. Though the FUFO bomb was eventually canceled, 

development of DYNA3D continued. 
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LS-DYNA's potential applications are numerous and can be tailored to many 

fields. LS-DYNA is not limited to any particular type of simulation. In a given 

simulation, any of LS-DYNA's many features can be combined to model a wide 

variety of physical events. An example of a simulation that involves a unique 

combination of features is the NASA JPL Mars Pathfinder landing which 

simulated the space probe's use of airbags to aid in its landing. 

It is typically used for non-linear analysis (where therefore large deformations, 

variable boundary conditions or non-linear materials are involved), or for transient 

dynamic events simulations (automotive crash, explosions, sheet metal stamping 

etc.). 

LS-DYNA is therefore used by the automotive industry to analyze vehicle 

designs. LS-DYNA accurately predicts a car's behavior in a collision and the 

effects of the collision upon the car's occupants. With LS-DYNA, automotive 

companies and their suppliers can test car designs without having to tool or 

experimentally test a prototype, thus saving time and expense. 

LS-DYNA's specialized automotive features: 

• Seatbelts 
• Slip rings 
• Pretensioners 
• Retractors 
• Sensors 
• Accelerometers 
• Airbags 
• Hybrid III dummy models 
• Inflator models 
 

One example among all LS-DYNA's applications is sheet metal forming. LS-

DYNA accurately predicts the stresses and deformations experienced by the 

metal, and determines if the metal will fail. LS-DYNA supports adaptive 

remeshing and will refine the mesh during the analysis, as necessary, to increase 

accuracy and save time. 

Metal forming applications for LS-DYNA include: 

https://en.wikipedia.org/wiki/Seatbelts
https://en.wikipedia.org/wiki/Slip_ring
https://en.wikipedia.org/w/index.php?title=Pretensioners&action=edit&redlink=1
https://en.wikipedia.org/wiki/Sensors
https://en.wikipedia.org/wiki/Accelerometers
https://en.wikipedia.org/wiki/Airbags
https://en.wikipedia.org/wiki/Crash_test_dummy#Hybrid_III_family
https://en.wikipedia.org/w/index.php?title=Inflator_models&action=edit&redlink=1
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• Metal stamping 
• Hydroforming 
• Forging 
• Deep drawing 
• Multi-stage processes 

 
3.1.1 Pre-Post processors 

LS-DYNA consists of a single executable file and is entirely command-line 

driven. Therefore, all that is required to run LS-DYNA is a command shell, the 

executable, an input file, and enough free disk space to run the calculation. All 

input files are in simple ASCII format and thus can be prepared using any text 

editor. Input files can also be prepared with the aid of a graphical preprocessor. 

There are many third-party software products available for preprocessing LS-

DYNA input files. LSTC also develops its own preprocessor, LS-PrePost, which 

is freely distributed and runs without a license. Licensees of LS-DYNA 

automatically have access to all of the program's capabilities, from simple linear 

static mechanical analysis up to advanced thermal and flow solving methods. 

Furthermore, they have full use of LSTC's LS-OPT software, a standalone design 

optimization and probabilistic analysis package with an interface to LS-DYNA. 

[Wiki] 

IGA models set up in this thesis will be carried out using LS-PrePost. 

3.2. IGA modelling 

The implementation of IsoGeometric Analysis in LS-DYNA started in 2011, 

when the keyword ELEMENT_NURBS_PATCH_2D appeared for the first time. 

During the years a lot of improvements, that will be explained in the next chapter 

have been made. 
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3.2.1 Shell elements 

Since the most widely used and best understood mathematical description in CAD 

is based on Non Uniform Rational B-splines, NURBS-based shell and solid finite 

element have been implemented in LS-DYNA over the last few years. 

The term “isogeometric analysis” is not restricted to any special type of basis 

functions. It just indicates that the geometrical description that is used for FEA is 

the same than was used in CAD before. 

In case of NURBS shells, thin shell element based on Kirchoff-love theory as well 

as shear deformable shell elements based on the Reissner-Mindlin shell theory are 

available, moreover the software allows to trim the standard patch with defined 

trimming loops and to apply contact boundary conditions. [27] 

As indicated before, the definition of a NURBS surface necessitates a set of 

NURBS basis functions and associated control points with proper weights. The set 

of control points is called a control net (or control grid), which is similar to a 

finite element mesh with the very important difference, that the individual control 

points are normally not a part of the actual geometry.  

This fact makes the application of boundary conditions, at the spot where they 

should be, a little bit more complicated. To solve this problem, the keyword 

*CONSTRAINED_NODE_TO_NURBS_PATCH is available, which allows to 

define a massless node on the actual NURBS surface and tie it to the NURBS 

patch. This will allow the application of either Neumann or Dirichlet boundary 

condition. [16] 

Another difference to the definition of a classical finite element, a NURBS 

surface is described rather through a so-called NURBS-patch than through 

individual elements. A typical definition of a NURBS patch using the keyword 

*ELEMENT_NURBS_PATCH_2D is depicted in Fig. 4-2 together with the 

resulting subdivision into “finite elements”. [15] 
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Figure 3-2: The keyword *ELEMENT_NURBS_PATCH_2D in LS-DYNA [15] 

The contact treatment as well as the post-processing of the NURBS-finite 

elements in LS-DYNA is based on so-called interpolation nodes and elements. 

The idea is to superimpose a standard bi-linear mesh on top of each NURBS-

finite-element by generating interpolation-nodes placed on the real surface. In Fig. 

3-3 the result of an automatic generation of interpolation-nodes and elements is 

shown for the marked NURBS-element. With the parameters NISR and NISS 

(number of interpolation shells in local r/s-direction per NURBS-element) the user 

can specify the mesh density of the resulting interpolation elements. The term 

interpolation indicates that the constructed interpolation nodes are dependent 

nodes with respect to the control points. Their particular position is interpolated 

on basis of the actual location of the control points by using the corresponding 

NURBS-basis functions. In case of contact, the contact forces evaluated at the 

interpolation nodes will be extrapolated to equivalent forces at the primary 

variables at the control points. Therefore the mesh density of the interpolation 

elements will not have any influence on the time step size nor on the overall 

number of degrees of freedom.  
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Figure 3-3: Interpolation nodes and elements [15] 

3.2.3 Available shell formulations 

At present five different shell formulations are available in LS-DYNA to use with 

the new NURBS based finite elements. They can be chosen under the parameter 

FORM in the keyword *ELEMENT_SHELL_NURBS_PATCH, with the 

following code:  

- 0: “shear deformable theory” with rotational degrees of freedom   

- 1: “shear deformable theory” without rotational degrees of freedom   

- 2: “thin shell theory” without rotational degrees of freedom  

- 3: “thin shell theory” with rotational degrees of freedom  

- 4: combination of FORM 0 and FORM 1(allows the mixture of control points 

with and without rotational DOFs.  This might be useful at the boundaries of 

NURBS patches where the continuity usually drops to C0 and rotational DOFs are 

necessary) 
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The shear deformable theory is based on the degenerated solid element 

formulation. The kinematics is defined in terms of the nodal coordinates at the 

reference lamina of the shell, and a unit orientation vector, 𝑦̂, which we take to be 

the unit normal as in the Belytschko-Tsay element,  

 
𝑥(𝜂, 𝜉, 𝜁) =∑𝑁𝑖(

𝑖

𝜂, 𝜉)(𝑥𝑖 +
ℎ

2
𝜁𝑦̂𝑖) 

 

(3.2.1) 

and the velocity is expressed as  

 

 
𝑥̇(𝜂, 𝜉, 𝜁) =∑𝑁𝑖(

𝑖

𝜂, 𝜉)(𝑥̇𝑖 +
ℎ

2
𝜁𝑦̂𝑖̇) 

 

(3.2.2) 

The formulations with and without rotations differ only in the expression of the 

time derivative of the unit orientation vector. With rotations, the derivative is: 

 𝑦̂𝑖̇ = 𝜔𝑖 × 𝑦̂𝑖 (3.2.3) 

   

where 𝜔𝑖 is the angular velocity at the control point, and, for the formulation 

without rotations, the rate is obtained by differentiating the expression for the 

orientation vector as a function of the control point coordinates with time,  

 

 
𝑦̂𝑖̇ =∑

𝜕𝑦̂𝑖
𝜕𝑥𝑗

𝑗

𝑥𝑗̇ 
(3.2.4) 

The thin shell formulation is similar, however, the normal vector is evaluated at 

the current point on the reference lamina,  
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𝑥(𝜂, 𝜉, 𝜁) =∑𝑁𝑖(

𝑖

𝜂, 𝜉)𝑥𝑖 +
ℎ

2
𝜁𝑛̂(𝜂, 𝜉) (3.2.5) 

Differentiating with time gives the velocity: 

 
𝑥̇(𝜂, 𝜉, 𝜁) =∑𝑁𝑖(

𝑖

𝜂, 𝜉)𝑥̇𝑖 +
ℎ

2
𝜁𝑛̇̂(𝜂, 𝜉) (3.2.6) 

As with the shear deformable theory, implementations with and without rotations 

are created based on the how the time derivative of the normal is evaluated. For 

the formulations that are rotation free, the basis functions must have first 

derivatives that are continuous across the element boundaries to correctly transmit 

the moments between adjacent elements. Due to the generally higher continuity of 

the NURBS-finite elements it is possible to use rotation free shell formulations. 

This leads to a significant reduction of global degrees of freedom and 

automatically removes possible problems with the treatment of rotational inertias 

of classical shell formulations. [15] 
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3.2.4 ELEMENT_SHELL_NURBS_PATCH KEYWORD 

ELEMENT_SHELL_NURBS_PATCH is the keyword used to define 

isogeometric shell elements in the latest release of LS-DYNA. This chapter will 

focus on the explanation of its cards and variables. 

 

Figure 3-4: Data cards: title card, card 1, card 2 [28] 

The variables operations and values are descripted in the table below. [28] 

VARIABLE DESCRIPTION 

NPID NURBS surface element / patch ID. A unique number 

must be chosen. 
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PID PART ID. 

NPR Number of control points in the local 𝑟-direction. 

PR Polynomial degree of the basis function in the local 𝑟-

direction. 

NPS Number of control points in the local 𝑠-direction. 

PS Polynomial degree of the basis function in the local 𝑠-

direction. 

PERIR Flag for surface periodicity in the 𝑟-direction:  

EQ.0: Non-periodic  

EQ.1: Periodic 

PERIS Flag for surface periodicity in the s-direction:  

EQ.0: Non-periodic  

EQ.1: Periodic 

WFL Flag for user defined control weights:  

EQ.0: Control weights are assumed to be uniform and 

positive; that is, the surface is a B-spline surface.  No 

optional Cards D is allowed.  

EQ.1: Control weights are defined using optional 

Cards D. 

FORM Available shell formulations, as previously discussed. 

INT In-plane numerical integration rule:  

EQ.0: Uniformly reduced Gauss integration.  NIP = PR 

× PS.  
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EQ.1: Full Gauss integration.  NIP = (PR+1)×(PS+1).  

EQ.2: Reduced, patch-wise integration rule for C1 

continuous quadratic NURBS surfaces. 

NISR Number or average edge length of automatically 

created interpolation shell elements per each knot span 

in the 𝑟-direction.  

GT.0: NINT(NISR) is the number of interpolation 

elements in the 𝑟-direction  

LT.0: |NISR| is the average edge length of the 

interpolation elements in the 𝑟-direction.   

NISS Number or average edge length of automatically 

created interpolation shell elements per each knot span 

in the s-direction.  

GT.0: NINT(NISS) is the number of interpolation 

elements in the s-direction  

LT.0: |NISS| is the average edge length of the 

interpolation elements in the s-direction.   

IMASS Mass matrix lumping scheme:  

EQ.0: Row sum.  

EQ.1: Diagonal weighting. 

IDFNE Element ID of first NURBS-Element within this 

NURBS-Patch definition. 
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Knot Vector Cards (for 𝑟-direction).  The knot vector in 𝑟-direction with length 

NPR + PR + 1 is given below requiring a total of ceil[(NPR+PR+1)/8] cards.  The 

knot vector must be normalized to the [0,1] interval.   

 

Figure 3-5: knot vector cards for r-direction. Variables 𝑹𝑲𝒎 are the values of the univariate knot 
vector in 𝑟-direction [28] 

Knot Vector Cards (for 𝑠-direction).  The knot vector in 𝑠-direction with length 

NPS + PS + 1 is given below requiring a total of ceil[(NPS+PS+1)/8] cards.  The 

knot vector must be normalized to the [0,1] interval. 

 

Figure 3-6: knot vector cards for r-direction. Variables SKm are the values of the univariate knot 
vector in 𝑟-direction [28] 

Connectivity Cards. The connectivity of the control grid is a two dimensional 

table of NPS rows and NPR columns.  This data fills the NPS sets (one set for 

each row) of NPR points tightly packed into ceil (NPR/8) connectivity cards, for a 

total of NPS×ceil(NPR/8) cards. 
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Figure 3-7: Control Grid cards, variables Nk are the control point IDs, defined via *NODE, to define 
the control grid - LT.0: Control point with rotational DOFs for FORM = 4 /-4; [28] 

Control Weight Cards (Optional). Additional cards are used to set a weight for 

each control point if WFL = 1 on Card 2. These cards have an ordering identical 

to the connectivity cards (Cards C). 

 

Figure 3-8: Control weight cards, variables Wk are the control weights of the surface patch. [28] 

Trimming loop title card 

 

Figure 3-9: Trimming loop title card. [28] 
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Trimming Loop Connectivity Cards 

 

Figure 3-10: Variables Cl are Trimming curve ID pointing to a curve defined using *DEFINE_ 
NURBS_CURVE.  A unique number has to be chosen. [28] 

Trimmed NURBS surface elements / patches can be analyzed by defining 

trimming loops.  A trimming loop is formed by a set of NURBS curves defined in 

the surface parametric coordinate system.   

Each trimming curve is defined using the *DEFINE_NURBS_CURVE keyword. 

Trimming loops may be given a distinct title on Cards E and the connectivity of 

trimming curves defining a loop is stored on Cards F.  The end and starting points 

of two consecutive curves must coincide.  If the loop is defined by a single curve, 

the starting and end points of the curve must match.  Furthermore, the orientation 

of the trimming loop is essential to define the trimmed surface.  Travelling along 

the trimming loop, the surface on the right-hand side of the loop will be trimmed.  

There is no limitation on either the number of trimming curves forming a loop or 

the number of loops used to trim a NURBS surface element/patch. [28] 

Important remarks:  

-Shell thickness is defined in *SECTION_SHELL and referenced via *PART. 

- ELFORM=201 has to be used in *SECTION_SHELL. 

3.2.5 DEFINE_NURBS_CURVE keyword 

Purpose: Define a NURBS curve using a univariate knot vector, a control 

polygon, and optionally a set of control weights.  The knot vector defines the 

necessary shape functions and parameterize the curve. There is no limit on the 

size of the input data. Hence, the total number of keyword cards depends on the 
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parameters defined on the first card. The total number of cards is 

1+ceil[(N+P+1)/8]+N, where N and P designate the number of control points 

forming the control polygon and the polynomial degree, respectively. While the 

keyword is meant to store NURBS curves in two or three spatial dimension, it is 

also employed to describe trimming curves defining trimmed NURBS 

elements/surfaces, see *ELEMENT_SHELL_NURBS_PATCH for further details.  

In the latter case, the control point coordinates are in fact parametric coordinates 

of the surface to be trimmed, i.e. (x, y, z, w) = (r, s, 0, w) and TYPE = 1 on Card 

1. 

 

Figure 3-11: *DEFINE_NURBS_CURVE card. [28] 

 

Figure 3-12: Knot vector card. The knot vector of length N+P+1 is given below requiring 
ceil[(N+P+1)/8] cards in total.  The knot vector has to be normalized to the [0,1] interval. [28] 
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Figure 3-13: Control point cards.  The spatial coordinates of the control points and the control weights 
are listed on N cards. Control weight entries are disregarded unless WFL = 1 on Card 1. [28] 

Variable Description 

ID Curve ID. A unique number has to be 

chosen. 

N Number of control points. 

P Polynomial degree. 

PERI Flag for curve periodicity.  

EQ.0: Non-periodic. 

EQ.1: Periodic. 

TYPE Coordinate type.  

EQ.0: Spatial.  

EQ.1: Parametric. 

WFL Flag for user defined control weights.  

EQ.0: Control weights are assumed to 

be uniform and positive, i.e. the curve 

is a B-spline curve, and the fourth 

entries on cards B are disregarded. 
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 EQ.1: Control weights are defined on 

the forth entry of cards B. 

Kn Values of the univariate knot vector 

defined in cards A with n=1,…,N+P+1. 

Xk Spatial coordinates in the global X 

direction defined in cards B with 

k=1,…,N. 

Yk Spatial coordinates in the global Y 

direction defined in cards B with 

k=1,…,N. 

Zk Spatial coordinates in the global Z 

direction defined in cards B with 

k=1,…,N. 

Wk Control weights defined in cards B 

with k=1,…,N. 

 

 

Figure 3-14: Defining a quadratic NURBS curve using the *DEFINE_ NURBS_CURVE keyword. [28] 
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3.2.6 Solid NURBS elements 

Cad models are collections of surfaces and for this reason not suitable for the 

analysis of solid structures. Therefore the behaviour of IGA solid models is not 

well understood but still in evolution and already implemented in LS-DYNA. [29] 

 

Figure 3-15: A NURBS volume example. [29] 

The keyword ELEMENT_SOLID_NURBS_PATCH is used to define the solid 

NURBS element. The concept is similar to the ELEMENT_SHELL_NURBS_ 

PATCH keyword, with a further spatial direction. A NURBS-block element 

(patch) based on a cuboid grid of control points is defined.  This grid consists of 

NPR*NPS*NPT control points, where NPR, NPS and NPT are the number of 

control points in local 𝑟-, 𝑠- and 𝑡-directions, respectively.  The necessary shape 

functions are defined through three knot-vectors:  

1. Knot-Vector in 𝑟-direction with length NPR + PR + 1   

2. Knot-Vector in 𝑠-direction with length NPS + PS + 1  

3. Knot-Vector in 𝑡-direction with length NPT + PT + 1 

There is no limit on the size of the underlying grid to define a NURBS-block 

element, so the total number of necessary cards depends on the parameters given 

in the first two cards and is given by:  
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# 𝑜𝑓 𝑐𝑎𝑟𝑑𝑠 = 2 + [
𝑁𝑃𝑅 + 𝑃𝑅 + 1

8
] + [

𝑁𝑃𝑆 + 𝑃𝑆 + 1

8
] + [

𝑁𝑃𝑇 + 𝑃𝑇 + 1

8
]

+ 𝑁𝑃𝑇 × 𝑁𝑃𝑆 × [
𝑁𝑃𝑇

8
] 

where ⌈𝑥⌉=ceil(𝑥). (NOTE: the last term in the sum is doubled if WFL = 1, 

indicating that the weights are user-specified). 

 

Figure 3-16: ELEMENT_SOLID_NURBS_PATCH, Cards 1 and 2. [28] 

The Variables have an analogy in name and function to the case of shell 

formulation, obviously with the addition of t-direction. 

The same worths for the knot vector cards, with variables RK, SK, TK, the 

values of the univariate knot vector in local 𝑟/s/t-direction. 

The connectivity of the control grid is a two dimensional table of NPT × NPS 

rows and NPR columns.  This data fills NPT × NPS sets (one set for each row) of 

NPR points tightly packed into ceil(NPR/8) Connectivity Cards, for a total of 

NPT × NPS × ceil(NPR/8) cards.   
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The same ordering is kept in the Weight cards, as in shell case additional card for 

WFL ≠ 0 sets a weight for each control point. (Variables 𝑊𝑖 are the weighting 

factor of the 𝑖𝑡ℎ control point. 

For WFL = 0, all weights at the control points are set to 1.0 (B-spline basis) and 

no optional Card 7 sets are allowed. 

Important remark: ELFORM = 201 has to be used in *SECTION_SOLID. 

 

 

Figure 3-17: Example of definition of ELEMENT_SOLID_NURBS_PATCH. [28] 
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3.3. Contacts and boundary conditions 

On top of the NURBS patches, LS-DYNA automatically creates bi-linear shell 

elements (interpolation elements), whose nodes (interpolation nodes) are placed 

on the real surface. The interpolation elements may be used to apply boundary 

conditions (i.e. contact) and for postprocessing. Its resolution can be defined using 

the parameters NISR and NISS (see figure 3-18). It is important to notice, that the 

interpolation nodes are fully constrained to the underlying NURBS patch. For 

instance, contact forces are in fact first evaluated at the interpolation nodes, but 

then transferred to the primary degrees of freedom (DOF) at the control points. 

The actual analysis is exclusively performed using the NURBS elements and their 

correspondig DOFs. For post-processing, results at the integration points of the 

NURBS elements are mapped onto the interpolation elements, such that standard 

post-processing tools can be used. [30] 

 

Figure 3-18: Bi-quadratic NURBS patch and interpolation elements dependent on the parameter NISR 
and NISS. [30] 

3.3.1 Penalty based contacts 

Up to now, all penalty based contacts are available for IGA. 

“Single surface” are the most widely used contact options in LS-DYNA, 

especially for crashworthiness applications. With these types, the slave surface is 

typically defined as a list of part ID’s. No master surface is defined. Contact is 
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considered between all the parts in the slave list, including self-contact of each 

part. If the model is accurately defined, these contact types are very reliable and 

accurate. However, if there is a lot of interpenetrations in the initial configuration, 

energy balances may show either a growth or decay of energy as the calculation 

proceeds. 

For crash analysis, *CONTACT_AUTOMATIC_SINGLE_SURFACE is 

recommended, This contact has been improved from version to version of LS-

DYNA implementing now also NURBS elements and is the most popular contact 

option. 

In automotive crashworthiness, also the two-ways treatment of contact can be 

used. *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE is a good 

choice with Isogeometric elements. 

3.3.2 Tied NURB contacts 

In tied contact types, the slave nodes are constrained to move with the master 

surface. At the beginning of the simulation, the nearest master segment for each 

slave node is located based on an orthogonal projection of the slave node to the 

master segment. If the slave node is deemed close to the master segment based on 

established criteria, the slave node is moved to the master surface. In this way, the 

initial geometry may be slightly altered without invoking any stresses.  

It is always recommended that tied contacts NOT be defined by part Ids but rather 

by node/segment sets. In this way, the user has more direct control over what gets 

tied to what and thus can prevent unintended constraints. 

 As the simulation progresses, the isoparametric position of the slave node with 

respect to its master segment is held fixed using kinematic constraint equations. 

Currently, 3 pure nurbs tied contact definition are implemented: 

-NURBS_TIED_NODES_TO_SURFACE 

-NURBS_TIED_EDGE_TO_SURFACE 

-NURBS_TIED_EDGE_TO_EDGE 
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All of them are defined with the same variables: SSID, MSID that are the master 

and slave IDs, whose types are chosen with SSTYP and MSTYP:  

EQ.0:Nurbs-Patch Element ID. 

 EQ.2:part set ID. 

 EQ.3:part ID, 

 EQ.4:node set ID for node to surface contact. 

CFORM is the constraint formulation, defined with: 

EQ.0:mortar method (currently it doesn’t work).  

EQ.1:point-to-point formulation. 

 

Figure 3-19: NURBS_TIED keyword interface in LS-PrePost. 

NURBS_TIED_EDGE_TO_EDGE is the most interesting of the 3, because it 

allows the connection of multi-patch structures. It is currently available only in 

the SMP (shared memory parallel processing) version of LS-DYNA. 

In CAD environment, geometries are typically defined by a so called boundary 

representation (B-Rep). This means that the standard NURBS patch is descripted 

together with a set of outer trimming curves, that define visible and invisible 

regions on the surface. Moreover specific topology information are embedded in 

the cad to specify if two or more patches represent a connected part. In analysis 

environment, anyway, the solver needs to make sure that certain mechanical 

properties, like stresses, strain and bending moments are transferred across the 

patches, through the common interface. 



60 
 

To mechanically couple the individual elements, some algorithm basic ideas: 

Interface condition, strong form:  

The condition to fulfill is that rotations and displacements must be the same at 

both sides of the interface. In a strong form this can be witten as: 

 𝑢1 = 𝑢2|𝜞 ;  𝜽𝟏 = 𝜽𝟐|𝜞 (3.3.1) 

Where 𝜞 represents the interface. 

Interface condition, penalty weak form:  

Using a penalty tipe formulation, the interface conditions can be translated into a 

weak, integral form: 

 𝛼𝑑𝑖𝑠𝑝∫(𝒖1 − 𝒖2
𝜞

)(𝛿𝒖1 − 𝛿𝒖2)𝑑𝛤 = 0 (3.3.2) 

 𝛼𝑟𝑜𝑡∫(𝜽1 − 𝜽2
𝜞

)(𝛿𝜽1 − 𝛿𝜽2)𝑑𝛤 = 0 (3.3.3) 

Where 𝛼𝑑𝑖𝑠𝑝 𝑎𝑛𝑑 𝛼𝑟𝑜𝑡 are the penalty factors for inforcing the displacements and 

the rotational constraints and 𝛿𝜽 and 𝛿𝒖 are variations of the continuous 

displacement and rotation fields, sometimes also called virtual displacement and 

rotations, in the context of the principle of virtual work. [27] 

The enforcement of the rotational constraint (EQ. 3.3.3), can be directly related to 

the rotational DOFs in case of shear deformable shell formulation, but, for thin 

shell element formulations, no rotational DOFs are introduced, so the rotational 

constraint is enforced in a different way. A total Lagrangian constraint formuation 

is used: 

sin(𝜽 − 𝜽0) = sin(𝜽) 𝑐𝑜𝑠(𝜽0) − cos(𝜽) 𝑠𝑖𝑛(𝜽0)

= 0; cos(𝜽) = 𝒏1 ∙ 𝒏2 𝑎𝑛𝑑 sin(𝜽)

= 𝒕 ∙ 𝒏1⨂𝒏2 

(3.3.4) 
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Where 𝜽 and 𝜽0 represent the initial and current angle at the interface, 𝒏1 𝑎𝑛𝑑 𝒏2 

are the surface normal vectors of the two joining patches at the interface, and t is 

the tangent vector at the interface curve. This constraint expression is evaluated at 

the integration points of the B-Rep edge elements and numerically integrated 

along the interface [27]. 

B-Rep edge elements are used to discretize the integration domain along the 

interface, then, as in standard contact algorithms, one side of the interface is 

chosen to be the master side and one side is chosen to be the slave side. On the 

master side the numerical integration is performed, thus, necessary terms 

including shape functions and their derivatives need to be mapped from the 

parameter space of the slave side to the one of the master side. 

 

Figure 3-20: Mapping procedure to define the B-Rep edge elements on the master curve. A B-Rep edge 
element is defined between any two consecutive points (either black or red) shown in the right part of 
the figure. [27] 

Once the numerical integration in the B-Rep edge elements is performed, 

equivalent penalty forces and stiffnesses (for implicit analyses) for the involved 

control points are computed and assembled to the global force vector and stiffness 

matrix if necessary. [27] 
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4. LS-PrePost Isogeometric analysis set up and 

capabilities 

LS-PrePost is an advanced pre/post processor available for free from LSTC, LS-

PP is particularly capable of importing, editing and exporting LS-DYNA keyword 

files for generating LS-DYNA input files and processing the results from LS-

DYNA analyses. 

For the purpose of this thesis, the capabilities of the softwares regarding IGA 

models have been examinated, in order to set up a guide updated to the latest 

improvements.  

As stated by Mr. Hartmann from Dynamore, it is still difficult and cumbersome to 

set up an IGA model for LS-DYNA. This is especially true in case the underlying 

CAD data is rather complex, with many patches, different orders and highly 

different “mesh sizes” (knot spans mapped to physical space).  

The instability and the not easy set up of the models, nowadays, can be the biggest 

downside of IGA analyses compared with classic FEA. Anyway the great 

potential of the method is pushing the software houses to develope new solutions 

every year. 

4.1. Shell NURBS elements set up  

As explained before, to define a NURBS shell element in LS-DYNA, the keyword 

ELEMENT_SHELL_NURBS_PATCH is needed. 

4.1.1 ELEMENT_SHELL_NURBS_PATCH creation 

For simple patch shapes, this operation can be manually done from the keyword 

input form, with free choice for what concerns knot spans and polynomial orders. 
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Anyway, this operation is definitely not practical and not suited for multi patch 

structures and complex geometries, that are the main target of IGA. 

 

Figure 4-1: Keyword input editor. Variables RK, SK and N are defined for the NURBS patch on the 
left. 

Although LS-PrePost allows simple spline, surface and solid modelling, the 

easiest way to define a model, is obviously to start from an imported CAD 

geometry. All the most common formats (STEP, IGES, STL) are supported by the 

software. 

 

Figure 4-2: Single patch CAD surface imported in LS-PrePost. 
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To create Isogeometric elements, a NURBS editor is implemented in LS-PrePost, 

to deal with shell elements the NURBS 2D EDITOR must be utilized. 

By means of the function “create”, the user can generate one or more NURBS 

patch element. A useful subfunction is “build contact”, that builds a 

NURBS_TIED_EDGE_TO_EDGE contact on the common edges of multi patch 

structures. In case this procedure does not work automatically (no common edge 

found), the edge curve must be manually defined via DEFINE_NURBS_CURVE 

or DEFINE_CURVE_TRIM_3D keyword. With the latter the conversion of CAD 

imported curve into the keyword itself is possible.  

This issue can increase the complexity of the model set up, especially in case of 

intricate geometries. 

 

Figure 4-3: NURBS single patch element creation in LS-PrePost 

In figure 4-3 a single NURBS patch is created from CAD geometry, while in 

figure 4-4 a simple multi patch structure is examinated (square tube). This is 

useful to understand the “build contact” command but also to understand the 
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concept of “elements” in IGA. In IGA the number of elements does not depend on 

the mesh size, that represents the knot vector spans, but only on the number of 

patches. 

For this reason, even with a refined mesh, the tube in figure 4-4 is composed by 

four elements, with four NURBS_TIED_EDGE_TO_EDGE contacts, 

automatically created using the command “build contact” (one for each common 

edge between the patches). 

The number of parts created (one) can be also noticed from the picture. This is not 

due to the presence of the contact but only to the fact that the patches were created 

together (into the same part ID), so the existence of a unique part with not 

mechanically connected patches is possible. 

 

Figure 4-4: Multi patch Isogeometric part. Four SHELL_NURBS_PATCH elements are created, with 
four NURBS_TIED_EDGE_TO_EDGE contacts. In order to form a single part, the NURBS patch 
elements were created using the same part ID. 
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4.1.2 ELEMENT_SHELL_NURBS_PATCH refinement 

As explained in chapter 1, in b-spline environment we have the possibility to 

perform 3 types of refinement: H, P and K-refinement. 

H-refinement: LS-PrePost allows either to change the knot vector spans or to 

choose the number of segments (“subdivide” command) in r and s directions, the 

mesh size of the model derives from this process. To have reliable analysis results 

the mesh size should be chosen comparable to a normal FE model. 

Due to IGA nature, obviously, the geometry doesn’t change if the mesh size does. 

P-refinement: The polynomial degree can be increased without changing the 

geometry or the parametrization (nodes multiplicity must be increased in order to 

maintain the initial continuity). 

 

Figure 4-5: H-refinement (left) and P-refinement (right) interfaces. 

K-refinement: order elevation is followed by knot insertion in order to keep a 

good continuity, LS-PrePost allows to play with both polynomial degree and knot 

vectors spans. 
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Figure 4-6: K-refinement interface of LS-Prepost. 

 

Figure 4-7: The same NURBS patch element, after creation (left) and after refinement (right) 

4.1.3 Trimmed NURBS patch 

When a trimmed NURBS patch is imported from CAD, LS-PrePost is able to 

define the trimming loops and to create the trimmed element 

(ELEMENT_SHELL_NURBS_PATCH_TRIMMED) automatically from the 

editor.  
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Figure 4-8: Example of trimmed NURBS patch. The geometry imported from the CAD is already 
trimmed, the element created by the editor is a SHELL_NURBS_PATCH_TRIMMED and 16 
NURBS_CURVE have been automatically defined (used as trimming loops). 

Anyway, if needed, the user is free to trim a shell NURBS element by the 

keyword input form. NURBS curves to be used as trimming loops must be 

defined by means of the keyword DEFINE_NURBS_CURVE. 

Trimming loops must then be added in ELEMENT_SHELL_NURBS_PATCH_ 

TRIMMED  keyword. 

4.2. Solid nurbs elements 

To create solid NURBS elements, ELEMENT_SOLID_ NURBS_PATCH is the 

keyword needed. 

For simple shapes, similarly to the shell case, this operation can be manually done 

from the keyword input form, with free choice for what concerns knot spans and 

polynomial orders. This is not practical and not suited for complex solid 

geometries. 
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Figure 4-9: simple parallelepiped NURBS element created from the keyword input form, on the right 
the 3 knot vectors variables. 

Also in case of solid NURBS elements, in LS-PrePost a 3D NURBS editor is 

available, with the purpose to create, refine and modify solid NURBS elements 

from CAD imported geometries. 

In this case, anyway, there are problems in the creation process. After many trials 

it turned out that is better to import only the basic generation geometries of the 

solid that we want to analyze (surfaces and lines) and use the 3D solid editor of 

LS-PrePost to create the final solid shape . 

4.2.1 NURBS solid elements creation with 3D NURBS editor 

After the definition of the Solid geometry, by means of LS-PrePost 3D functions 

(example in figure 4-10), the 3D NURBS editor is used to create an 

ELEMENT_SOLID_NURBS_PATCH (figure 4-11). 
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Figure 4-10: CAD imported basic surface (left), revolution solid created in LS-PrePost (right) 

The creation is easy and immediate after the selection of the solid body faces. 

However, the stability of the tool is probably not there yet to deal with all the 

types of geometries, infact in many situations the creation process doesn’t work at 

all. 

 

Figure 4-11: Solid NURBS element creation with the 3D NURBS editor 

The “by sweeping” command, allows the generation of a swept solid NURBS 

patch starting from a surface and a sweeping curve.  
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Anyway, also in this case, the software seems to have problems in the recognition 

of the basis sweeping surface, as shown in Fig. 5-11. The refinement is not a 

solution. 

 

Figure 4-12: Sweeping surface and curve (left), solid NURBS element created with the editor (right) 

To obtain swept solids the normal 3D editor of LS-PrePost could be used before. 

4.2.2 Refinement 

As in the shell element case, H-P and K-refinement are available. The 

functionality is the same with the addition of the T knot vector. 

 

Figure 4-13: Solid bullet model, before and after refinement 
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4.3. Analysis performance 

As a first approach, some simple isogeometric analyses are shown. An 

hemispheric bullet (FE shell) impacts on a plate (Isogeometric element). Three 

different versions of the plate are presented: the first is flat, the second with 

bulges and the third with the addition of trimming loops. 

 

Figure 4-14: The three versions of the plate. 

The bulges are created changing the position of some of the nodes of the control 

grid, manually from the nodes keyword or by means of the command “control 

grid” in the nurbs editor. 

4.3.1 Model set up 

The set up of this kind of analysis is simple and similar to a normal FE analysis. 

The SECTION_SHELL that will be assigned to the NURBS part must have 

ELFORM=201, that defines isogeometric shell elements. 

The main difference to consider, is that in IGA the nodes are part of the control 

grid, and not included among the mesh elements. This is important for the 

definition of boundary conditions (SPCs, loads, velocity ecc.), and the accuracy 

depends on geometry and refinement (In these simple examples this is negligible). 

However, in case of need the keyword CONSTRAINED_NODE_TO_NURBS 

_PATCH is available as already explained. 
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Figure 4-15: Simple IGA model, impact of and emispheric bullet  on a plate 

The plate has four fixed constraints at the four corners, the bullet impacts with a 

constant velocity of 5 m/s and an AUTOMATIC_SINGLE_SURFACE contact is 

defined including all surfaces. 

A MAT 003 (PLASTIC-KINEMATIC) is defined for the plate and a MAT 001 

(ELASTIC) is assigned to the bullet, both steel. The thickness assigned to the 

plate is 0.5 mm. 

4.3.2 Run 

The purpose of this first examples is to test the stability of simple IGA performed 

with LS-DYNA and check the pre/post processing capabilities of LS-PrePost, so 

there won’t be a comparative with FEA. 

The first point to underline, in this case, is that IGA functions are still in an initial 

stage and are being improved year by year by LS-DYNA developers, so to have 

the possibility to run all the models, the latest version of the software is needed. 

Right now, the latest build available is LS-DYNA 11.1.0. Some simulations have 

been carried out with the 11.0.0 version and for instance any model with trimmed 

nurbs elements didn’t run. 
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4.3.3 Post-processing 

The first thing noticed in the post processing environment is the presence of two 

nurbs element instead of one in the components tree. 

The first one (red plate in Fig. 5-16), is the NURBS patch itself, while the second 

one is the interpolated mesh, that is generated with an igaplot file and is stored in 

the regular d3plot file. 

The interpolated mesh is useful from the user point of view because many fringe 

data can only be processed with it for now. (The NURBS patch, if trimmed, 

presents graphical issues during the animations or contour plots as shown in Fig. 

4-17). 

 

Figure 4-16: From left to right: Both geometries are turned on, only NURBS patch turned on(red), 
interpolated mesh turned on (green). 

 

Figure 4-17: Displacement contour plot in case the NURBS patch is not turned off. 
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However, with the correct visualization, the results for all the 3 examples are 

satisfactory. The initial states are represented in fig. 4-18 , than the maximum 

displacements are plotted in fig. 4-19 and they present the expected trend: the 

bulged plate is slightly stiffer than the original one that, in turn, is slightly stiffer 

than the bulged/trimmed one. 

The maximum stresses in the plates are plotted in Fig. 5-20. They are located at 

the four corners, where the constraints are placed, with a distribution coherent 

with the bulges location (in the first case it is homogeneous). 

 

Figure 4-18: The three models are represented at time t=0. 

 

Figure 4-19: Maximum displacements of the plates during the impacts. 
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Figure 4-20: Maximum stresses suffered by the plates. 

The plots of the total kinetic energy over time are shown in the figures below. 

Results are as expected in the first and second models, while in the last trimmed 

one the graph is quite unreal. 

This is probably due to the incorrect behaviour of the trimmed parts. This issue 

will be encountered also in the next chapters. (see Fig. 5-17).   

 

Figure 4-21: Kinetic energy plot: flat plate. 
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Figure 4-22: Kinetic energy plot: bulged plate. 

 

Figure 4-23: Kinetic energy plot: bulged/trimmed plate. 

To obtain the real energy data separate parts plot must be produced in order to 

isolate the error. 

The three plots below are, in order: kinetic energy of the bullet, internal energy of 

the plate and kinetic energy of the plate. The problems are clearly located in the 

last one, anyway all the data needed can be obtained with this strategy. 
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Figure 4-24: Kinetic energy of the bullet 

 

Figure 4-25: Internal energy of the plate 

 

 

Figure 4-26: Kinetic energy of the plate. 
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5. IGA PERFORMANCE 

The purpose of this chapter will be the discovery of the IGA limits and 

capabilities of the software in case of more complex crash simulations. The results 

will be compared to standard FEA. 

5.1. Multi-patch simple crashbox impact 

5.1.1 Set up 

The first model considered consists in the impact of a rigid barrier on a square 

tube crashbox. 

The impactor consists in a simple FE block normally meshed, with a speed of 8 

m/s. The material assigned is a steel - MAT 24 (RIGID). 

The crashbox is composed by 4 shell NURBS patch elements, 1 mm thick, with a 

fixed constraint on one side. The material assigned is a steel modelled as MAT 

024 (PIECEWISE LINEAR PLASTICITY). 

An AUTOMATIC_SINGLE_SURFACE contact is defined for the crashbox, 

while an AUTOMATIC_NODE_TO_SURFACE contact is used to model the 

interface of the two parts, both contacts have non-zero friction coefficients.  

In the IGA model 4 NURBS_TIED_EDGE_TO_EDGE contact are generated in 

order to connect the four patches. 
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Figure 5-1: Impactor (blue) and crashbox (red) 

 

Figure 5-2: Model boundary conditions 

5.1.2 Results 

Nine different simulations have been carried out, three classic FE analysis, three 

IGA with quadratic polynomial degree in both directions, and three IGA with 

cubic polynomial degree in both directions. All the analyses are built with 

comparable mesh sizes (20, 10, 5mm). 
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 Max. crashbox 

displacement at t=30ms 

Runtime (NCPU=2) 

FEM (20mm) 8.56mm 15 seconds 

FEM (10mm) 10.58mm 1 minute 54 seconds 

FEM (5mm) 12.26mm 20 minutes 15 seconds 

IGA(quadratic, 20mm) 6.05mm 24 seconds 

IGA(quadratic, 10mm) 8.13mm 1 minute 52 seconds 

IGA(quadratic, 5mm) 11.48mm 1 hour 18 minutes 

IGA(cubic, 20mm) 10.98mm 1 minute 48 seconds 

IGA(cubic, 10mm) 12.01mm 54 minutes 7 seconds 

IGA(cubic, 5mm) 12.70mm 4 hours 11 minutes 

 

The maximum displacement of the crashboxes clearly converges towards a value 

that’s major than 12mm. This underlines the weakness of quadratic IGA and the 

importance of all the types of refinement. Moreover, in the kinetic energy plot 

(fig. 5-7), the trend of the blue curves (the three cubic IGA) is regular and close to 

the others even in case of coarse mesh (20mm), while the green curves (quadratic 

IGA) reach a satisfactory result only in case of fine mesh (5mm). FEA needs a 

minumum of refinement to converge to the right trend, anyway the result are 

satisfactory because of the low runtimes (the maximum displacement of 5mm 

cubic IGA is probably more precise, but the difference with fine meshed FEA 

does not justify the runtime, that is twelve times higher). 

In general, the higher runtimes with respect to FEA, suggest that the accuracy of 

the result and the complexity of the model are affected by the presence of the 

contacts between patches. 
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In the figures below the displacements contour plots at time t=30 are shown. As 

stated in chapter 4, many fringe data are available only for the interpolated mesh 

elements, so this graphic visualization will be used. An example of not 

interpolated NURBS patches deformation is shown in fig. 5-3. 

 

Figure 5-3: NURBS patch deformation in the post processor. 

 

Figure 5-4: IGA- quadratic patch - Resultant displacement at time t=30ms. Mesh size decreases rom 
left to right: 20, 10, 5 mm. 

 

Figure 5-5: IGA- cubic patch - Resultant displacement at time t=30ms. Mesh size decreases rom left to 
right: 20, 10, 5 mm. 
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Figure 5-6: FEM - Resultant displacement at time t=30ms. Mesh size decreases rom left to right: 20, 10, 
5 mm. 

 

Figure 5-7: Kinetic energy plot for all the models. IGA quadratic (green), IGA cubic (blue) and FEM 
(red), mesh size from coarse to fine in the direction of the arrow. 
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5.2. Spot welded s-rail impact analysis 

5.2.1 Set up 

Spotweld modelling is available for IGA in LSDYNA. An ‘s’ shaped crashbox 

impact on a rigid wall is analyzed. 

 

Figure 5-8: Spotwelded s-rail isogeometric model. 

The spotwelds are modelled as beam elements, whose nodes are connected to the 

NURBS patches by means of a TIED_SHELL_EDGE_TO_SURFACE_ BEAM_ 

OFFSET contact. Another effective way to do this is to use a CONSTRAINED_ 

NODE_TO_NURBS_PATCH_SET card. With this method the results obtained 

don’t change, while trials performed using a common SPOTWELD contact 

produced problems with IGA. 

To the part composed by the beam elements, A MAT 100 (SPOTWELD) is 

assigned together with the card SECTION_BEAM (where ELFORM=9 must be 

selected). 

 

Figure 5-9: Particular of the spotweld beam elements 
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Analysis were performed with three different mesh sizes (20, 10, 5 mm). The 

NURBS patch polynomial degree is chosen to be cubic in both directions, further 

P-refinement would increase exponentially the runtime (from minutes to hours). 

The effect of the mesh size on the geometry is shown in the figure below. In FE 

method, the resolution is very low in the case of a 20mm elements size, and this 

can cause inaccuracies during the analyses.  

 

Figure 5-10: Three different levels of refinement (20, 10, 5 mm) in IG model (left) and FE model 
(right). 

5.2.2 Results 

The runtime of the Isogeometric analyses, also in this case, turned out to be higher 

than the FE ones. This is probably due to the polynomial degree of the NURBS 

patch elements (3, 3), that is anyway the minimum needed in order to have a good 

interpolation avoiding tiny knot vector spans. 
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ANALYSIS RUNTIME (4 cpu) 

FE 5mm 8 minutes 12 seconds 

FE 10mm 52 seconds 

FE 20mm 16 seconds 

IGA (cubic, 5 mm) 3 hours 29 minutes  

IGA(cubic, 10 mm) 21 minutes  8 seconds 

IGA (cubic, 20 mm) 3 minutes  6 seconds 

 

To focus on the spotweld elements failure, the behaviour of the two methods is 

similar, with some little differences (highlighted in the figures below), due to the 

different distribution of the reaction forces along the part because of the diversity 

of the geometries. 

 

Figure 5-11: Spotwelds failure at time t=10 ms, mesh size 20mm, IGA (left) and FEM (right). 
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Figure 5-12: Spotwelds failure at time t=10 ms, mesh size 10mm, IGA (left) and FEM (right). 

 

Figure 5-13: Spotwelds failure at time t=10 ms, mesh size 5mm, IGA (left) and FEM (right). 

The kinetic energy dissipations converge to two slightly different values (4650 J 

for the FE model and 4875 J fot the IG one). Anyway, known the geometry 

inaccuracies due to the FE discretization, the translation of the result between the 

two methods is coherent with the effect of the mesh refinement on the FE model 

plot. (details in Fig. 5-14) The accuracy of this isogeometric model, if compared 

to the previous one (squared crashbox), clearly underlines the better performance 

produced in case of single patch body with respect to a multi patch one. 
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Figure 5-14: Kinetic energy plot. A, B, C curves represent the FE model, from coarse to fine mesh, D, 
E, F curves represent IG model from coarse to fine mesh. 

5.2.3 Issues 

Some problems have been found in spotwelds modelling, the usage of a 

SPOTWELD contact caused a wrong behaviour of the beam elements. (Fig. 5-15) 

 

Figure 5-15: Spotwelds failure at time t=10ms, only two beam elements didn’t fail. In this model a 
SPOTWELD contact is used. 



89 
 

5.3. Analysis of complex models 

More intricated crash elements have been modelled in order to test the limits of 

IGA. The impact on a rigid wall of the geometry shown in fig. 5-14, composed by 

a bumper and two crashboxes, has been assessed. After IG modelling, the 

structure consisted in 141 NURBS patches. 

 

Figure 5-16: Automotive crash structure. 

No problems were encountered during the NURBS creation and editing phase, 

while many issues regarding the boundary conditions between the patches have 

been found while running the solution.  

 

Figure 5-17: FE model (up), IG model (low). 
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Figure 5-18: Example of NURBS contact errors. 

 

Figure 5-19: FEM solution. 

An analysis of a simplified version of the same model has been performed in 

order to better understand the limits. 

In this case, the whole model is composed by 14 NURBS patches (8 of which are 

trimmed), and the impact arrives with a non-zero angle. Anyway, some problems 

during the generation of the patch shown in figure 5-22 were spotted (on both car 
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sides): in the CAD file a non-open knot vector was used, but LS-PrePost 

somehow translated it to an open-knot vector with a non properly trimmed result. 

 

Figure 5-20: Simplified geometry. 

 

Figure 5-21: FE model (up), IG model (down). 

 

Figure 5-22: Particular of the badly trimmed patch (the problem is spotted on both crashboxes). 
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Moreover, the results produced are unsatisfactory, with graphic and mechanical 

issues generated by the trimmed NURBS patches and confirmed by the kinetic 

energy profile, where some impossible energy fluctuations can be spotted. 

 

Figure 5-23: IGA solution. 

 

Figure 5-24: FEM solution. 

 

Figure 5-25: Particular of the kinetic energy plot. FEM (red) and IGA (green). 
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5.4. Implicit solver and eigenvalue analysis 

Implicit solution of isogeometric analyses is supported by LS-DYNA. To do so 

the activation of the implicit solver, from CONTROL_IMPLICIT_GENERAL 

card, is needed (IMFLAG must be set equal to 1).  

In the following example a foil with “L” profile is excited with a sinusoidal load. 

In Fig. 5-14, CONTROL_IMPLICIT_GENERAL card is shown, IMFLAG value 

is set to 1 and the initial time step size for implicit analysis DT0 is also selected.   

 

Figure 5-26: Set up of the implicit solution via CONTROL_IMPLICIT_GENERAL card. 

After a certain number of iterations (in this case the timestep size is not 

automatically set), the solution is reached without problems. An explicit analysis 

is also performed in order to make a comparison. 

 RUNTIME (4CPUs) 

IMPLICIT 4 minutes 40 seconds 

EXPLICIT 8 minutes 26 seconds 
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The explicit simulation takes almost the double of the time. Anyway, the results 

are coherent with some differences close to the peak values, probably due to the 

low accuracy of the implicit model.  

in the following graphs stresses and strain in the excited point are plotted over 

time. Contour plot of the Von Mises stress, in the moment of maximum load is 

shown in Fig. 5-15. 

 

Figure 5-27: Stress distribution in the instant of max stress. Implicit (left) and explicit (right). 

 

Figure 5-28: Displacement of the excited node. Explicit (red) and implicit (green). 
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Figure 5-29: Stress of the most stressed interpolated element. Explicit (red) and implicit (green). 

5.4.1 Eigenvalue analysis of shell isogeometric elements 

To set and eigenvalue analysis with NURBS patch elements for simple models it 

is needed to operate in the classical way, including CONTROL_ 

IMPLICIT_EIGENVALUE card to the implicit model and setting the number of 

eigenvalues to extract from the variable NEIG.  

 

Figure 5-30: CONTROL_ IMPLICIT_EIGENVALUE card. 

An igaplot file is generated together with the D3eigv file by the solver, so the 

interpolated mesh is available in the post-processing. 

One hundred vibration modes have been extracted analyzing the foil already seen 

in this chapter, the first six of them are graphically shown in fig. 5-19 compared to 

an analogue FE model. 
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The results are satisfactory, the values of the frequencies diverge a few after the 

50th mode probably because of the different deformations of the exact geometry 

with respect to the discretized one at high frequency (plot in figure 5-20). 

 

Figure 5-31: The first six modes in IG and FE model. 

 

Figure 5-32: Plot of the frequency over one hundred modes. 
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5.4.2 Issues 

The foil of the previous analysis has been modelled as a single NURBS patch, 

thanks to the knots multiplicity that allows the creation of sharp edges. Anyway 

also in case of eigenvalue analysis, the IGA performance with complex multi-

patch geometries and trimmed NURBS elements is not assessable because of the 

amount of errors. 

The rim shown in figure 5-21, composed by 5 shell NURBS patches and 15 

trimmed NURBS patches, has been modelled to perform a frequency analysis that 

didn’t work due to the problems produced by the trimmed NURBS elements. 

 

Figure 5-33: Wheel rim IGA model (left) and geometry (right). 

 

Figure 5-34: Example of the warning messages appeared for all the trimmed NURBS patches. 
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5.4.2 Eigenvalue analysis with solid NURBS elements 

In the same way, using the card CONTROL_IMPLICIT_GENERAL to activate 

the implicit solver and CONTROL_IMPLICIT_EIGENVALUE an eigenvalue 

analysis can be performed on solid NURBS patch elements.  

In the following model a sinusoidal load is applied to one extremity of a cantilever 

beam.  

 

Figure 5-35: Solid NURBS model 

In this case 20 eigenvalue are extracted and the comparison with the FE model 

produces good results, only in high frequency modes some considerable 

differences can be noticed. 

 

Figure 5-36: Plot of the frequency over twenty modes. 
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Figure 5-37: The first six modes in IG and FE model. 
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6. Composite modelling 

IGA with composite materials can be performed in LS-DYNA, even though the 

possibility to model composites with NURBS elements is limited to rather simple 

geometries and constant through thickness properties. 

Infact, the layup within a patch, i.e. number of layers, the thickness of individual 

layers, the orientations of the layers with respect to each other, need to be 

constant. Furthermore, the possibility to define the baseline orientation throughout 

a patch is currently limited to some global directions that are then mapped onto 

the shell surface. 

6.1. Definition  

6.1.1 Material definition 

To map the material orientation, first of all an anisotropic/ortotropic layered 

material model must be defined. This option applies to material types 22, 23, 33, 

34, 36, 40, 41-50, 54-56, 58, 59, 103, 116 and 194. 

MAT-022 keyword is shown in figure below, to define the global directions, a 

suitable AOPT (material axes options) value must be chosen. 

 

Figure 6-1: MAT-022 keyword, AOPT with A and D directions vector are highlighted. 
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AOPT values [28]: 

EQ. 0.0: locally orthotropic with material axes determined by element nodes as 

shown in part (a) of Figure 6-2. The a-direction is from node 1 to node 2 of the 

element. The b-direction is orthogonal to the a-direction and is in the plane 

formed by nodes 1, 2, and 4. When this option is used in two-dimensional planar 

and axisymmetric analysis, it is critical that the nodes in the element definition be 

numbered counterclockwise for this option to work correctly.  

EQ. 1.0: locally orthotropic with material axes determined by a point in space and 

the global location of the element center; this is the 𝐚-direction.  This option is for 

solid elements only.  

EQ. 2.0: globally orthotropic with material axes determined by vectors defined 

below, as with *DEFINE_COORDINATE_VECTOR.  

EQ. 3.0: locally orthotropic material axes determined by rotating the material 

axes about the element normal by an angle, BETA, from a line in the plane of the 

element defined by the cross product of the vector 𝐯 with the element normal.  

The plane of a solid element is the midsurface between the inner surface and outer 

surface defined by the first four nodes and the last four nodes of the connectivity 

of the element, respectively.  

EQ. 4.0: locally orthotropic in cylindrical coordinate system with the material 

axes determined by a vector 𝐯, and an originating point, 𝐏, which define the 

centerline axis. This option is for solid elements only.  

LT. 0.0: the absolute value of AOPT is a coordinate system ID number (CID on 

*DEFINE_COORDINATE_NODES, *DEFINE_COORDINATE_SYSTEM or 

*DEFINE_COORDINATE_VECTOR.  
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Figure 6-2: AOPT values explanation. [28] 
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6.1.2 Section and composite layers definition 

To model composite layers on isogeometric element the only way is to switch on 

the option ICOMP in the SECTION_SHELL keyword. 

ICOMP: Flag for orthotropic/anisotropic layered composite material model. This 

option applies to material types 22, 23, 33, 34, 36, 40, 41-50, 54-56, 58, 59, 103, 

116 and 194. 

EQ.0: Flag is tuned off (default), 

EQ.1: A material angle in degrees is defined for each through thickness 

integration point. Thus, each layer has one integration point. 

In Fig. 6-3 SECTION_SHELL keyword is shown. 8 carbon fiber layers are 

created, Bi variables represent the material angles of each layer (with respect to 

the chosen AOPT). 

 

Figure 6-3: Definition of composite layers from SECTION_SHELL keyword. 

An analysis with this laminate have been carried out, simulating the impact of the 

emispheric bullet already seen in chapter 5. 

Results have been compared with a FE model created with the composite interface 

in the element edit tool. This simplified approach is not available yet for NURBS 

elements. 
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Figure 6-4: Composite interface with graphical rendering of the ply thickness. 

 

Figure 6-5: Ply orientation definition. 

Using this method, normal SHELL elements are turned into 

SHELL_COMPOSITE elements, allowing the definition of a different layered 

structure for each selected element (Fig. 6-6). In IGA this freedom of modelling is 
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not achieved yet because, as seen before, a NURBS element is constituted by the 

whole patch, independently from the mesh size.  

 

Figure 6-6: ELEMENT_SHELL_COMPOSITE keyword 

6.1.3 Through thickness definition of different materials 

If needed, different materials can be defined through the shell thickness. This is 

useful in case of sandwich panels or laminates composed by plies of different 

materials or properties. 

A user defined integration rule must be created, using the keyword 

INTEGRATION_SHELL which, in turn, will be pointed by the SECTION_ 

SHELL variable IRID (integration rule ID).  

In defining the integration rule, the location and the weight for each integration 

point through the thickness can be specified and, moreover, the user can point to 

addional parts, with the purpose to specify the layer material. 

 

Figure 6-7: INTEGRATION_SHELL keyword. 
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IRID: Integration rule ID (IRID refers to IRID on *SECTION_SHELL card).  

NIP: Number of integration points  

ESOP: Equal spacing of integration points option:  

-EQ.0: integration points are defined below,  

-EQ.1: integration points are equally spaced through thickness such that the shell 

is subdivided into NIP layers of equal thickness.  

FAILOPT: Treatment of failure when mixing different constitutive types, which 

do and do not include failure models, through the shell thickness.  For example, 

consider the case where a linear viscoelastic material model, which does not have 

a failure option, is mixed with a composite model, which does have a failure 

option.  Note: If the failure option includes failure based on the time step size of 

the element, element deletion will occur regardless of the value of FAILOPT. 

-EQ.0: Element is deleted when the layers which include failure, fail.  

-EQ.1: Element failure cannot occur since some layers do not have a failure 

option.  

S: Coordinate of integration point in range -1 to 1.  

WF: Weighting factor. This is typically the thickness associated with the 

integration point divided by actual shell thickness, that is, the weighting factor for 

the ith integration point = 𝛥𝑡𝑖/𝑡  as seen in fig. 6-8.  

 

Figure 6-8: User defined shell integration rule. [28] 
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PID: Optional part ID if different from the PID specified on the element card.  

The average mass density for the shell element is based on a weighted average of 

the density of each layer that is used through the thickness.  When modifying the 

constitutive constants through the thickness, it is often necessary to defined 

unique part IDs without elements that are referenced only by the user integration 

rule.  These additional part IDs only provide a density and constitutive constants 

with local material axes (if used) and orientation angles taken from the PID 

referenced on the element card.  In defining a PID for an integration point, it is 

okay to reference a solid element PID.  The material type through the thickness 

can vary. [28] 

6.2. Analysis 

6.2.1 Impact on a carbon fiber plate  

As stated before, the impact of a hemispheric bullet on a plate has been simulated 

in order to compare the performance of IGA composite modelling with FE 

analysis. 

The model set up has already been presented and the plate is composed by 8 

layers of T800 carbon fiber, laminated as shown in fig. 6-3. The tested NURBS 

patch have quadratic and cubic polynomial degree in both directions with a mesh 

size of 2.5, 5, 10 mm. (same size is chosen for FEA). 

The results of IGA are not really satisfactory: the CPU runtimes are exponentially 

higher with respect to the FEA ones. 

 RUNTIME (2CPUs) 

FEA (10mm) 39 seconds 

FEA (5mm) 4 minutes 38 seconds 

FEA (2.5mm) 32 minutes 15 seconds 
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IGA (quadratic, 10mm) 2 minutes 53 seconds 

IGA (quadratic, 5mm) 18 minutes 53 seconds 

IGA (quadratic, 2.5mm) 2 hours 29 minutes 

IGA (cubic, 10mm) 9 minutes 20 seconds 

IGA (cubic, 5mm)  1 hour 7 minutes 

IGA (cubic, 2.5mm) 8 hours 12 minutes 

 

The results of the nodal displacement (measured on the plate center) and kinetic 

energy are similar for comparable mesh sizes, converging to the same values after 

refinement. An higher polynomial degree gives an advantage only in case of 

coarse mesh (10 mm), where the displacement peak at the beginning is smaller 

with respect to the other two models. 

The quadratic IGA displacement peak has been cut for graphic reasons but it 

resulted 3 times higher than the FEA one. 

 

Figure 6-9: Kinetic energy plotted over time. IGA quadratic (green), IGA cubic (blue) and FEA (red). 
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Figure 6-10: Z-displacement of the central node of the plate plotted over time. IGA quadratic (green), 
IGA cubic (blue) and FEA (red). 

6.2.2 Three point bending of a sandwich panel 

A sandwich panel composed by 4 plies of carbon fiber and a foam core has been 

modelled by means of the INTEGRATION_SHELL card. A 3 points bending 

simulation has been then performed, in order to compare the result with a FE 

analogue model, created using the composite tool. 

 

Figure 6-11: FE model with visible thickness. 
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Figure 6-12: Particular of the plies. 

A MAT 22 (COMPOSITE_DAMAGE) is used to model both carbon fiber and 

core, to avoid errors related to the material angle definition. 

In the table below, the cpu runtime to simulate the first 75 seconds of the test is 

shown. In a second analysis the FEA termination is increased to 200 seconds, with 

a final cpu time of 55 minutes. 

 RUNTIME (4CPUs) 

IGA (quadratic, 10mm) 4 hours 41 minutes 

FEA (10mm)  21 minutes 

 

In this case, the cpu results are even worse than in the case before, with a runtime, 

for the isogeometric model, more than thirteen times higher with respect to FEA. 

Moreover, processing the results, is noticed that in the isogeometric analysis, a 

sudden failure takes place at time t=62 ms, while in FEA this doesn’t happen for 

the whole duration of the test. 
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Figure 6-13: IGA - The simulation at time t=61s (above) and t=62s (below). 

 

Figure 6-14: FEM – The simulation at time t=100s 

The behaviour of the FE model is much more coherent with a real sandwich 

panel, as can be seen in the graph below. (Fig. 6-16 z-force plotted over time). 

To have a better overview of the results, the FE analysis duration is increased to 

200s.   
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The FE panel reaches some local peaks, while the NURBS model only one, after a 

perfectly elastic behaviour (the test rig has a constant velocity).  

The peaks represent the failures of the carbon fiber, moreover the perfectly linear 

behaviour of the IG model makes arouse suspicions on the actual performance of 

the INTEGRATION_SHELL method. 

 

Figure 6-15: Z-force plotted over time, IGA (green) and FEA (RED). 

 

Figure 6-16: FE analysis termination time changed to 200s. 
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7. Sheet metal forming 

7.1. State of the art 

Many researches confirm that IGA has shown good stability and accuracy in sheet 

metal forming simulations. 

This kind of simulations are part of a multi-stage process, therefore the analysis 

tool should be capable of mapping the results achieved from one step to another, 

no matter what the individual stage may be (deep-drawing, trimming, hemming, 

springback and others). The most important results to map are: current stress and 

strain states, the equivalent plastic strain and the thickness variations due to the 

forming process. 

In LSDYNA this is typically done with a so called DYNAIN file, using the 

keyword INTERFACE_SPRINGBACK. The file is written during the simulation 

of one stage and is then read back in the next one, in order to reinitialize the 

necessary values. Two keywords have been added to LS-DYNA to perform this 

task in IGA: INITIAL_STRESS/STRAIN_NURBS_PATCH (keyword not 

available in LS-PrePost). [16] 

 

Figure 7-1: INITIAL_STRESS _NURBS_PATCH keyword. [60] 
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Figure 7-2: Von mises stress distribution at the end of stage one (left) and at the beginning of stage 2 
(right). [16] 

Another important feature that has been developed recently is the possibility to 

perform one step simulations with IGA, improving the performance of the crash 

analysis by including forming history into the model. Infact, many parts are 

manufactured from flat sheet metals in car design, and their mechanical properties 

variations, due to the forming process, can create big inaccuracies in the crash 

analyses. 

In the one step method the part is assumed to deform from an initial flat blank, to 

its final shape, in only one step. It requires the mechanical properties of the part 

and its final geometry, subsequently an initial blank is optimized for minimum 

energy. 

The one step analysis in IGA can be activated using the keyword 

CONTROL_FORMING_ONESTEP, setting the variable OPTION to 7. The 

output result are written in a igaonestepresult file that can be used exactly in the 

same way as a DYNAIN file. [31] 

 

Figure 7-3: CONTROL_FORMING_ONESTEP keyword. 
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The IGA one step approach is demonstrated and compared to FEA in [31], with a 

couple of examples. The first example uses a single untrimmed NURBS patch 

while the second uses a TRIMMED one. 

A comparison of the Von Mises stress is shown in fig. 7-4. The distribution is 

similar in the two models, while the maximum stress slightly differs, which is best 

explained by localization. 

A comparison of the effective plastic strain fields is shown in fig. 7-5. 

 

 

Figure 7-4: Comparison of the Von Mises stress obtained via the one-step approach, FEA (left) and 
IGA (right). [31] 

 

Figure 7-5: Comparison of the effective plastic strain fields obtained via the one-step approach, FEA 
(left) and IGA (right). [90] 
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Effective plastic strain fields of the second example (trimmed NURBS patch) are 

shown in Fig. 7-6. due to localization, te maximum strains are slightly different in 

the FE model as shown in Fig. 7-7. 

 

Figure 7-6: Comparison of the effective plastic strain fields obtained via the one-step approach, FEA 
(left) and IGA (right). Second example (trimmed NURBS patch). [31] 

 

7.2. Multi-stage simulations. 

A multi-stage simulation is presented in [16], proceding with the following steps: 

1 – Gravity 

2 – Deep drawing 

3 – Trimming 

4 – Springback analysis  

In each step the stress/ strain situation is mapped as already explained using 

INITIAL_STRESS/STRAIN_SHELL_NURBS_PATCH. 

In stage 1, the blank is planced into the forming tool. An implicit static analysis 

has been carried out. 
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Figure 7-7: Stage 1 (Gravity). FEA (left) and IGA (right). Results are then mapped and loaded into the 
next step. [60] 

In the stage 2, an explicit analysis has been carried out to simulate the deep 

drawing process. 

 

Figure 7-8: Effective plastic strain fields after the deep drawing process. FEA (left) and IGA (right). 
[16] 

In stage 3, no analysis has been carried out, the part has been trimmed and the 

results mapped for the next stage. 

To trim the part, the keyword CONTROL_FORMING_TRIMMING must be used 

together with the keyword DEFINE_CURVE_TRIM_3D. The latter is needed to 

define the trim loop, while the former receives a part set ID in input. Elements in 
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the part set will be automatically trimmed in the defined direction if they intersect 

the trim curves. 

 

Figure 7-9: Effective plastic strain fields comparison after trimming, FEA (left) and IGA (right). [16] 

In the stage 4, Springback analysis, an implicit static analysis must be carried out 

to find the equilibrium for final geometry. However, it is not available yet for IGA 

in LSDYNA. 
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8. CONCLUSIONS 

In IGA, the exact geometry can be represented by utilizing a coarse mesh 

structure. This prevents unnecessary mesh refinements for geometrical 

representation. Thus, refinement techniques are only used for the solution 

accuracy. Moreover, mesh refinement is simply handled by reindexing the 

parametric space without interacting with the geometry contrarly to the refinement 

strategies of FE method that require interaction with the CAD system at each 

stage. 

Good results have been obtained from simple shell models composed by one or a 

few NURBS patches, while many instabilities have been found in more complex 

multi-patch structures. The first source of problems seems to be the presence of 

trimmed NURBS patches that are subjected to wrong energy fluctuations even in 

basic analyses. 

The runtimes are, in general, much higher with respect to FEA. This is probably 

due to the generation of the igaplot files and to the computational complexity 

induced by the p-refinement. Moreover the creation of additional files for IGA, 

makes the output folder much heavier than the equivalent FEA one (an 

interpolated mesh is needed in contacts and in the post-processing). 

The analysis of solid elements is possible only in case of small deformations and 

simple shapes: stamping, crashes and penetrations are impossible to be set up. 

Elements erosion is not practicable, considering the IGA element definition. 

Composite modelling showed a good behaviour in the first simple example, while 

the 3 point bending simulation has underlined the limits of the through thickness 

integration method, that after many trials hasn’t actually worked. Moreover, other 

weak points in in composites IGA are the limits given by the element definition (a 

whole patch must have a single lay up) and the gigantic CPU times. 
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IGA is well implemented in LS-DYNA for what concerns sheet metal forming 

analysis, with the availability of the full multi stage process (except for 

springback analysis) and the one step approach. 
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