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ABSTRACT

In the last few years, isogeometric analysis (IGA) has become the object of many
scientific researches. It is a new numerical analysis method, based on the usage of
the exact geometry representation in analysis environment instead of the common
mesh discretization. In the NURBS based IGA, the linear Lagrange polynomials
basis function, utilized in FEA, are substituted by non uniform rationals b-splines

basis functions, the same used in CAD environment.

This new approach, in the future, will lead to a great saving of time and money,
considering that the meshing phase can be computationally very expensive, hard
to fully automate, error-prone, and it becomes exponentially more time consuming

with the growth of the product complexity.

In this thesis, after a brief theoretical presentation, different types of NURBS
based IGA are performed by means of the commercial software LS-DYNA, in
order to assess the state of the art and the limits of the software with this method.
Moreover, comparisons with FE analyses are made in order to understand the

accuracy of the results and the cpu complexity of equivalent problems.

At the end, strong and weak points of the method are presented, based on the

issues encountered and on the results produced by the analyses.
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1. INTRODUCTION

1.1. Background

During the twentieth century, the increasing number and complexity of the
engineering problems made it difficult to find the solutions by using hand
calculations. At this point, engineers started to make use of computers, the most
important factor behind the development of mankind over the last fifty years.
Beginning in the 1960s, the design process of construction projects has been
gradually digitized. With the availability of personal computers In the 1980s, the

use of software tools became a common practice in engineering consultancies.

Nowadays all the industrial product development process is based on advanced
computer calculations. The software packages used by engineers are generally
organized in three main groups: Computer Aided Design (CAD), Computer Aided
Engineering (CAE) and Computer Aided Manufacturing (CAM).

1.1.1 CAD and CAE
CAD technology is used, as its name implies, for design of structures and design
process documentation. 3D models, Detailed engineering drawings, material
information, dimensions and tolerances with specific conventions can be created
by using CAD programs and such drawings are main input for the manufacturing
process. It is widely recognized that modern CAD technology has it origins in the
work of two French engineers: Pierre Bezier, from Renault, and Paul de Faget de
Casteljau, from Citroen. Bezier [1, 2, 3] used Bernstein’s polynomials [4] as the
basis for his model of generating lines and surfaces, that he called Bezier curves.
(de Casteljau did the same some years earlier, without however publishing his
studies). the term spline was first introduced by Shoenberg [5], who studied them
as interpolatory function, but his work hasn’t been used in cad technologies until
the 1960s [6]. In the 70’s there have been a rapid development of these topics:
Reisenfeld [7] and Vesprille [8] studied in their PhD thesis’, respectively, the B-



splines and the Non-Uniform Rational B-splines (NURBS). NURBS made the
usage of rational functions and exact representation of the conic sections possible
which is not the case for B-Spline. Today, NURBS is in use by most of the
commercial CAD software packages and data exchange standards due to its
superior properties. Subsequently, many new techniques were introduced to
improve the representation, In particular, the introduction of T-splines [9,10] in
the CAD program in the early 2000s is noteworthy: these functions are an
extension of the NURBS concept and are very efficient for what concerns local

refinement.

On the other hand, CAE is used to conduct engineering analyses such as
Structural Analysis, Computational Fluid Dynamics (CFD) and Multibody
Dynamics (MBD). In CAE softwares, Engineering designs are evaluated in terms
of their functions and the structures are analyzed under the working conditions
with applied forces, pressures or temperatures and so on. For complex geometries
and boundary conditions, it is not possible to solve the problem of a structure
under working conditions in an analitycal way. On this purpose, numerical
methods have been developed and, nowadays, the most commonly used in
structural problems is the Finite Element Method [FEM]. The origin of the FEM
goes back to study of Richard Courant (1943) [11] where he proposed
discretization of the whole domain into a set of finite triangular subregions in
accordance with the philosophy of the finite element method. A few years later, in
1960, Dr. Ray Clough has used the term “finite elements” for the first time in his
study [12]. At the same time, since digital computers were invented with
capability of making hundreds of operations per second, first commercial FEA

programs began to be developed.

The long-term use of these mathematical models, both for CAD and CAE, can be
shown as a proof that analysis and design mathematical models worked well
throughout years, even if different solution methods are being used in these two
fields and this causes extra time consumption. Infact, the models created by using

CAD software cannot be directly used by FEA technique, because, while the CAD



community uses geometry descriptions like e.g. NURBS, subdivision surfaces, T-
splines or others, the FEA community generally uses linear Lagrange polynomials
to approximate the geometry. So, one should make the design model suitable for
analysis by transforming the data set, performing well-known method called as
“meshing”. Although the geometric transformation can be easily achieved for
many applications in solid mechanics, it constitutes a severe bottleneck for the
analysis of complex geometries, that can be computationally very expensive, hard
to fully automate, and often leads to error-prone meshes, which have to be

manually improved by the user.
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Figure 1-1: Estimation of the relative time costs of each component of the model generation and
analysis process at Sandia National Laboratories. [13]
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The generation of a comprehensive structural model for different conceptual
designs is time consuming. As can be seen from fig. 1-1, about 75% of overall
engineering time is required to generate the final simulation model from the
design input, moreover, the meshing phase becomes exponentially more time

consuming with the growth of the product complexity (fig. 1-2).

1.2. Isogeometric analysis

This situation prompted the academy and industry to seek a new solution that
could be used jointly for the two main disciplines, design and analysis.
Isogeometric analysis emerged in accordance with these conditions. IGA is a
recently born analysis method that combines Finite Element Analysis (FEA) and
Computer Aided Design (CAD) by providing an appropriate algorithm for
computerized solution. The main idea behind the emergence of isogeometric

analysis is utilizing the same basis functions in both design and analysis [14]. It



focuses to use one geometric model that can be utilized for analysis directly or can

be manipulated for analysis easily and automatically.

A comparison of meshing for standard FE and IGA is shown in Fig. 1-3. Where
can be seen that the geometry representation based on linear lagrange polynomials
will lead to a discretization error that can only be reduced to a tolerable value
performing mesh refinement. On the other hand, IGA uses the exact geometry for
Analysis, any necessary mesh refinements for enlarging the solution space won’t

change the geometry. [16]

standard FE
(Lagrange polynomials)
'_.___________._.-—-?
L refinement
T
meshing 1

2Meshin o
(i.e. NURBS) 1

Figure 1-3: : Comparison of meshing for standard FE and IGA.[16]

geometry (CAD)

It must be kept in mind that the term “isogeometric analysis” is not restricted to
any special type of basis functions. It just indicates that the geometrical

description that is used for FEA is the same than was used in CAD before. [15]

1.2.1 IGA with NURBS basis functions

In 2003 the research on isogeometric analysis started to focus on the question if
finite element analysis could be done with non-uniform rational B-splines
(NURBS), the most widely used geometry description in commercial CAD
programs. The first promising results of these studies were presented in 2005 [14].
Since then, much research has been done on various topics of FEA (e.g. linear and
non-linear static and dynamic analysis of thin-walled structures, fluid mechanics,

fluid structureinteraction, shape and topology optimization, vibration analysis,



buckling and others) where many studies were performed using NURBS as basis

functions.

This approach is also found in LS-DYNA, the software this thesis will be focusing
on, where NURBS patch (shell and solid) elements can be created.

The main reasons behind the choice of NURBS is listed below:

NURBS allows exact representation of geometries.

- It is successful in modeling free-form surfaces, conic sections, circular,
cylindrical, spherical and ellipsoid shapes with great flexibility and

precision.

- With the help of Cox de Boor formulation, efficient and stable algorithms
for NURBS can be easily generated or already available algorithms can be

found.

- NURBS enables users to easily apply geometry refinement without

regeneration of geometry.

- NURBS has non-interpolatory nature and high continuity.

In the classical finite element method approach, the geometric approximation
inherent in mesh can cause accuracy problems. Some of the structures as in the
case of thin shells are very sensitive to geometric imperfections. Any deficiency
in the representation of geometry may change the results tremendously. As can be
seen in Figure 1.2, magnitude of allowable buckling load on the cylindrical shell

decrease considerably with the introduced geometrical imperfections.
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On the other hand, since NURBS can define such cylindrical shapes free from
imperfections, these problems can be analyzed with high accuracy. For example,
in the field of contact mechanics, when finite elements are applied to geometry
with curved surface, the result is a non smooth geometrical representation of
interface surface which may lead to mesh interlocking, high jumps and
oscillations in contact forces. To eliminate these issues, smoothening strategies
are used in FEM, whereas, in IGA, these are not needed, thanks to the higher
order continuity of the NURBS basis functions. Moreover, isogeometric analysis
enables analysts to easily make mesh refinements without communicating and
changing the geometry. On the other hand, for classical finite element method
application, mesh refinement necessitates the regeneration of geometry and this
means a lot of time consumption especially for assemblies with large number of

parts.



1.3. Research objective

The main objective of this thesis is to conduct a study about isogeometric analysis
(IGA) and its implementation in the commercial software LS-DYNA, to figure
out wich are the potentialities of this new method applied to structural mechanics

problems.

IGA will be introduced with its theoretical background, Then there will be the
evaluation of the state of the art of LS-DYNA for what concerns Isogeometric
analyses capabilities, with an overview on the model set up and definition for

different types of models and analyses.

Validation of IG analyses, will be then performed with the software, comparing

them with analyses carried out using the finite element method.



2. THEORETICAL BACKGROUND

Upon giving the motivation for the use of isogeometric analysis in the
introductory chapter 1, in this chapter spline geometry is introduced by initially
discussing univariate Bézier, B-spline, and NURBS curves together with their
respective underlying basis functions. Afterwards, the univariate curves are
extended to multivariate formulations. With the definition of the different basis
functions at hand, their incorporation in the finite element method is illustrated
and the fundamental properties of the resultant isogeometric analysis concept are

presented.

The information contained in the following sections serves as a basis for this work
but does not provide a complete discussion on the individual topics. For this
purpose, references to fundamental publications and monographs are given in the
respective sections. The content provided here stems from studies presented in
[17, 18, 19, 23, 24, 32, 33, 34], but due to its basic nature, is in general not cited

explicitly.

2.1. Spline geometry

2.1.1 Introduction

As the geometry description is essential for isogeometric analyses, this section
shall give a brief overview of the different formulations prior to incorporating
them in the context of the finite element method. Since NURBS are best
understood when explained by the steps of its evolution, Bézier curves and
standard B-spline curves will be briefly addressed before turning the attention to
NURBS curves. After discussing the one dimensional formulations, the extension

to higher dimensions, i.e. to surface sand volumes will be presented.



2.2. Bézier curves

The Bézier curves are parametric curves, used in computer graphics and related
fields. Independently discovered by Pierre Bézier and Paul de Casteljau, it was a
way to give a mathematical description to the car bodies design with the emerging

methods of CAD and CAM. [25,26]

A Bézier curve is defined by a set of p+1 control points P, where p is called its
order (p = 1 for linear, 2 for quadratic, etc.). The curve is defined in the parameter
domain [0,1], and the first and last control points are always the end points of the
curve; however, the intermediate control points (if any) generally do not lie on the

curve.

Figure 2-1: Example of cubic Bézier curve with its control polygon [wiki].

The dashed lines of the curve in fig 2-1 constitute the control polygon of that
curve. Moving any of the control points will change the shape of the entire curve
in an intuitive manner. This type of control established the curve’s popularity in

the world of computer aided design.

A Bézier curve as shown is defined as

C®) = To Ny (©PD vE € [0,1] (2.2.1)

p
Where the i*" basis function Nzgi) is the Bernstein polynomial of degree p.
NO® = ()EA-9PL with 0°=1 and (?) = —2—  (2.2.2)

il(p—0)
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Figure 2-2: the evaluation of a point on that curve at £ = 0.5 with the de Casteljau algorithm.

The geometric construction of a point on the curve with the help of the de
Casteljau algorithm is depicted in fig. 2-2. The curve C(¢) is evaluated at £ = 0.5
by consecutively interpolating the lines connecting the control points at 0.5,
creating new lines connecting the interpolated points and starting over until at

iteration p the point C(0.5) is found.

0

0 | 0 1
(a) (h)

Figure 2-3: Bernstein polynomials of different degree plotted over the domain [0,1], i.e. the basis
functions of a Bézier curve. (a) For the depicted curve in fig. 2-1 (a) with degree 3; (b) the functions of
a curve with seven control points (p = 6) [24].

The basis functions of the curve in fig. 2-1 are plotted in fig. 2-3 (a), and for the
reason of comparison, the respective functions of a Bézier curve with seven
control points, i.e. a curve of polynomial degree 6, are shown in fig. 2-3(b). The
functions are non-negative and fulfill the partition of unity property. It is to be
noted, that all functions are non zero over the entire domain ]0,1[. This is the

reason why, manipulating the position of a single control point influences the

11



shape of the entire curve, whatever the number of control points of the curve is.
As none of the function values becomes one over ]0,1[, the curve does not pass
through any of the control points PV to P™~Dand reversely, passes through the
start and end point, where the respective basis functions are equal to one at £ =0

and £ = 1.

2.3. B-splines

Owing to the use of the Bernstein polynomial as the basis functions of the Bézier
curve, it is not possible to define a single curve of low degree with a higher
number of control points, i.e. more control points than p+1. The basis also

prohibits the application of local changes on a given single curve.

These short comings were overcome with B-spline curves that are built from
piecewise polynomial functions, defined by knot vectors on non-overlapping
connected intervals. Within these intervals B-splines are smooth, differentiable
and continuous while at the boundaries of these intervals they are still continuous

but not necessarily differentiable.

Instead of defining the curve over Q = [0,1], the domain of a B-spline curve in
parameter space is given as Q =[§,,1, §y41], Where the variables §&,,; and

&n+1 Stem from a set of coordinates E, called knot vector.

B :{Ela EZ) AR €n+pa En+p+1} (231)

where §; € R is the i*" knot, i= 1,2,..., ntp+l, is the knot index, p is the
polynomial order, and n is the number of basis functions used to constitute B-

Spline curve, equal to the number of control points.

The coordinates in the knot vector, commonly referred to as knots, must not be

decreasing, i.e:

12



Siv1 > & (2.3.2)

Must hold for all entries.

Generally, knot values are normalized in the range between 0 and 1. The knots
partition the parameter space into elements, usually referred as “knot spans”.
Element boundaries in the physical space are simply the images of knot lines

under the B-spline mapping.

Knot vectors can be classified as uniform or non-uniform and open or periodic
knot vectors. If knot values in the knot vector are equally spaced in the parameter
space such as [0 1 2 3 4] or [0 0,1 0,2 0,3 0,4], then knot vector is called as
uniform. Otherwise it is named as non-uniform knot vector. A knot vector can be
defined as open if its first and last knot values appear p+1 times. B-Spline basis

that are constructed from open knot vectors interpolate to the control points at the

ends of the parameter space interval, [&;, En+p+1], for one dimension. On the

other hand, for multiple dimensions, they interpolate at the corners of patches.
However, in general they are not interpolatory at interior knots. This is a
distinctive property between knots in isogeometric analysis and nodes in finite

element analysis.

In the parametric space more than one knot can be located at the same coordinate
and thus, knot values can repeat in knot vector. The number of repetitive knots is
called as knot multiplicity and this case has essential effects on the properties of
basis functions. Knot repetition can decrease the continuity of the basis function
to CP7™ where m is the number of multiplication. When the number of
multiplication is equal to polynomial degree p, the basis will be C° continuous at
the multiplied knot value [17]. This makes the basis function non-differentiable at
that knot. This property makes it possible to create sharp corners in the spline

curve by controlling the continuity to the associated basis functions.

These coordinates are used for the evaluation of the B-spline basis functions Nzgi)

with the Cox-de Boor recursion formula, so:

13



Néi) — {1 for Ei <&< Ei+1 (2.3.3)

0 otherwise

And for p>0:

E_Ei

234
N;, (&) = ¥ —t N;p-1() ( )
i+p i

Siaptr1 —
+ i+p+1

N'+1,p—1(€)
Ei+p+1_ Sit1

While working with open knot vectors or repeated knots, it is very crucial to take

into account that one might encounter with zero denominator. This problem was

solved by defining the result of such equations equal to zero. [16, 17]

During the calculation of basis functions, due to the recursive nature of

formulation, results of higher order polynomials require the results of lower

orders. This dependency is shown in Figure 2-4.

\ 3,0
Nisag
o . e 8
\ 1 Jm__ \ ) ()
i e, o~
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Viao Nit1,1
Vi “Nis10
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~ o
N
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_\'.',II

Figure 2-4: Dependencies between results of basis functions for computing a cubic basis function [17]

For constant and linear basis functions with a uniform knot vector

=={0,1,2,3,4,5} the results are represented in the figure 2-5. Looking at the figure

14



shown, it can be said dynamic programming code is necessary to improve the
efficiency of this recursive formula. Otherwise, the same values will be calculated
several times. It should be noted that for p = 0 and p = 1, B-Spline basis functions
have the same values as constant and linear shape functions of classical finite
element method. However, by increasing the order, B-Spline basis functions
differentiate from their finite element counterparts. This difference can be
observed in figure 2-6, where the graphs of quadratic B-Spline basis functions and
quadratic finite element shape functions are drawn. Quadratic B-spline basis
functions are exactly same but shifted relative to each other with varying knot
values. As we continue to higher-order basis functions this “homogeneous”
pattern continues for the B-spline basis functions. On the other hand, quadratic
finite element shape function differs according to the corresponding node
position. This is a distinguishing feature between B-Spline basis and FEM shape
functions that makes IGA superior to FEA.

| NI.O 11
% 1 2 3 4 5 & % 1 2 3 4 5 &
| N Nz.o |
Go 1 2 3 4 5§ 00 5 ¢
1 . If
M
% 1 2 3 4 5§ % 5 &

Figure 2-5: Basis functions for order 0 and 1 for uniform knot vector = {0,1,2,3,4,5} [21]
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Figure 2-6: Comparison of quadratic finite element shape functions and B-spline basis functions [23].

In addition to mentioned homogeneity, B-Spline basis functions have several

important properties as explained below [23]:

e B-Spline basis functions constitute a partition of unity .7y N; ,(§) = 1

e Each basis function is non-negative over the entire domain N; ,(§) = 0,V &

e B-Spline basis functions are linearly independent }i=; a;N;(§) = 0 only
fora; =0,i=1,2,....n.

e The support of a B-Spline basis function of order p is p+1. N;,, is non-zero
over [&;, §iyps1]-

e Basis functions of order p have p-m; continuous derivatives across knot
& where m; is the multiplicity of knot ;.

e Scaling or translating the knot vector does not alter the basis functions.
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e B-Spline basis are generally only approximate to control points and not
interpolate. Therefore, they do not satisfy the Kronecker delta property
N;, (&) # §8;;. Only in the case m; = p, then N; ,,(§) = 1.

Non-uniform knot vectors should be preferred to obtain richer behavior for basis
functions rather than uniform knot vectors. An example created in [23] by using
an open non-uniform knot vector Z=[000 0.2 0.4 0.4 0.6 0.8 1 1 1] is shown in
figure 2-7. Basis functions are interpolatory at the end points and additionally at
the repeated knots where multiplicity is equal to polynomial degree p. At this
repeated knot, only C° continuity is attained. Elsewhere the functions have C?!
continuity. When the multiplicity is p+1, the basis becomes discontinuous and the

patch boundary is formed.

Quadratic B-Spline Basis Functions

o8 [
My 2 f \ .

a7 C . I IIII|'
0.8

0.5

0.4 I,."

B-3phne Basls Function yalue

L " i .
o 0.1 0.2 0.3 0.4 [+ 0.8 0.7
MHormalized Knots

Figure 2-7: Quadratic basis functions drawn for non-uniform open knot vector == [0000.204 04
0.6 0.8111].[23]

2.3.1 Derivatives of B-spline basis functions

By deriving the B-spline basis functions we obtain:

d , 235
7N ® = Ny ® (2.3.5)
__ b
C Eep— EiNl'p_l(E)
p

- Nit1p-1(8)
Sitpr1 —  Giv1 trip—d
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This formula defines the derivative of a basis function as a linear combination of 2

basis functions of degree p-1, this is due to the recursive nature of these functions.

For the higher order derivatives above formula can be generalized by simply

taking the derivatives of each side to get:

a* 2.3.6
Nl(,lli)(g) = E.+ p_ E (dk_lzNi,p—l(E)) ( )
i+p i
p dk—l
E.+ M E'+1 (dk—lgNHLp—l(E))
i+p i

Expanding (2.3.5) by means of (2.3.6) results in an expression purely in terms of

lower order basis functions, N; ,_k.,....., Niykp—k, are given below;
@ p! k (2.3.7)
N, (©) = m; 0 j Nigjp-k (8
With:
(oo =1 (2.3.8)
o = Pr-1,0 (2.3.9)

Ei+p—k+1 -

A1 i — Appq i
Ak,j = ) kTl where j=1,....k — 1, (2.3.10)

Ei+p+j—k+1 o Ei+j

—Tk-1k-1 (2.3.11)
Ei+p+1 o Ei+k

gk =
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2.3.2 B-spline curves

B-Spline curves in R¥ are created by taking linear combination of multiplication
of B-Spline basis functions with coefficients called as “control points”. When the
control points are linearly interpolated, the resultant polygon is referred as
“control polygon”. Given n basis functions N;,, with specific order p, where i =
1,2,...,n, and corresponding control points B; € R%, i = 1,2,....n, then B-Spline

curve is defined by:

n (2.3.12)
CE) = ) Nip(DB;
i=1

The resulting B-Spline curve does not necessarily interpolate the control points.
Nevertheless, when the interpolation is desired, by using the properties stated in

the previous part, curve can interpolate to specific control points.

A B-Spline curve example is shown in figure 2-8 which is constructed by using
quadratic basis functions given in figure 2-7 created from specified knot vector

Z=[0000.2040.40.60811 1]. The control points and control polygon is

also seen in the figure.

Since the curve is built from an open knot vector, it interpolates to first and last
control points. Moreover, curve is also interpolatory at the fourth control point

due to the repetition of knot & = 0.4 as much as the polynomial order.

B-Spline curves carry many properties of their basis functions. For instance, in the
absence of repeated knots or control points, B-Spline curves of degree p have p-/
continuous derivatives. In the light of this information, sample curve is CP~1 =
C* continuous everywhere except at the location of the repeated knot, & = 0.4,

where it is CP~2 = C° continuous.
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Quadratic B-Spline Curve

Figure 2-8: A Quadratic B-Spline curve example [23].

Another property the curves inherit from their basis is “locality”. Due to the
compact support of the B-spline basis functions, moving a single control point can

affect the geometry of curve by affecting p + I elements of the curve.

2.3.3 B-spline surfaces

in order to obtain a B-spline surface, it is necessary to take a bidirectional net of
control points, {B;;}, i = 1,2, ..,n, and j = 1,2, ... ,m and two knot vectors
E=1{8&. & Snaprr)s = {0y, Ny s Mmigq+1} Where p and g are

polynomial orders.

Calculation is done by the combination of the tensor products of corresponding

univariate B-spline functions defined as follows:

n m (2.3.13
SEM = ). > Ny M (DB )

i=1j=1

An example for the B-Spline surface is considered by using following knot
vectors 2= {0, 0,0, 0.5, 1, 1, 1} of degree ¢ =2 and #'= {0, 0, 0, 0.25, 0.5, 0.75,
1, 1, 1} of degree p = 2. Basis functions for these knot vectors are given in figure

2-9 and the created surface is shown in figure 2-10.
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Figure 2-9: Basis functions of knot vectors (a) £ = {0, 0, 0, 0.5, 1, 1, 1} and b) s#= {0, 0, 0, 0.25, 0.5,
0.75,1, 1, 1} [23].

Coordinates of the utilized control net on the surface is given in figure 2-11 [22].

D-fpline Burface

X Direction

Figure 2-10: An Example B-Spline surface [22].
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(i.i) 1 2 3 a 5 6
1 (0,1) (0.5,2) (0,3) (0.4,4) (0,5) (0.2,6)
2 (1,0) (1.5,1) (1,2) (0.5,3) (1,4) (1,5)
3 (2,1) (2.5,2) (2,3) (2,4) (2.5,5) (2,6)
4 (3,0) (3.5,1) (3,2) (3,3) (3.5,4) (3,5)

Figure 2-11: control net B,-J- [22].

2.3.4 B-spline solids

B-spline solids are produced by using control lattice, {B;;}, i = 1,2,...,n;
j=12,.;mand k=12,.,l knotvectors are £ = { &, &, ... Enips1}, H=

{ Ny My sees Mmag+1) and £ = { 0,050y G g} Where p, g and r are

polynomial orders.

Construction formulation for the B-Spline solids is given by:

m
(2.3.14)
SEN = D" Nep Mg Lir(DBi

n
i=1j=1k=1

2.4. Refinement techniques

In classical finite element method approach, in order to get more accurate results,
basis enriched by using two common refinement techniques: h-refinement
and p-refinement. The former method, h-refinement, increases the number of
elements by decreasing the element size to get higher resolutions. On the other
hand, the latter one, p-refinement, increases the polynomial degree of basis

functions.

These refinement techniques in isogeometric analysis are named as knot insertion

which is similar to h-refinement and order elevation similar to p-refinement.

22



Contrary to the finite element methods, the geometry remains unchanged under
each refinement and the continuity across each element is more controllable in
isogeometric analysis. Moreover, IGA has one more refinement technique
superior to FEM. It is the combination of order elevation and knot insertion
respectively and called as “k-refinement” that brings many benefits to analysis

world. Details of these refinement techniques are given in the succeeding parts.

2.4.1 Knot Insertion (h-refinement)
In isogeometric analysis first technique used to enhance basis is knot insertion
which is analogous to h-refinement in FEA. During the application of knot

insertion, new knots are inserted into already existing knot vector without

changing the geometry.
For a given knot vector E = {&,&;, ... ,&n4p+1} > @ new knot vector can be
obtained by inserting additional knots as Z ={§, &, ... , §n+m+p+1} such that

£,=¢, and §n+m+p+1= En+p+1) and thus, E Z. New n+m basis functions should
be calculated by using cox de boor algorithm. The novel n+m control points,
B= {B;,B,,..., B, )T, are generated from linear combinations of the original

control points, B = {B4, B,,..., B;;} T, as defined by,

B; = a;B; + (1 — )B4 (2.4.1)
where,
1 if 1<i<k-p (2.4.2)
@ = S if k-p+l1<i<k
Sivp — &
0 if k+1<i<n+p+2

Insertion of the already existing knot value causes a repetition and decreases the
continuity of the basis functions. In order to preserve the continuity, equations

2.3.15 and 2.3.16 are developed for the choice of proper control points.

23



An example of knot insertion procedure for a simple, one-element, quadratic B-
spline curve is given in the figure 2-12. A new knot is inserted at € = 0.5 to the
existing knot vector Z = {0,0,0,1,1,1}, which is used to create the original curve.
The newly created curve is geometrically and parametrically identical to the
original curve. However, control points have been changed, the mesh has
partitioned, and the basis functions have been enriched. In the new case, the
number of control points, elements and basis functions, all increased by one. This
process may be repeated to enrich the solution space by adding more basis

functions of the same order until the desired sensitivity is reached.

Knot insertion refinement method is similar to the h-refinement technique of finite
element method. As can be understood from the above mentioned procedure, knot
insertion creates new knot spans i.e. new elements in the knot vector. Similarly, in
finite element method, h-refinement increases the element number, creates a finer
mesh of the same type of element to improve the results. However, IGA and FEA
differ in the number of new basis functions and in the continuity of the basis
across the novel element boundaries. To perfectly replicate h-refinement, one
would need to insert each of the new knot values p times so that the functions will

be Cy continuity.
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Figure 2-12: Knot insertion refinement technique [18].

2.4.2 order elevation (p-refinement)

Another basis improvement method which B-Spline theory enables the users is
order elevation also called as degree elevation since the degree and order terms
are used interchangeably in B-Spline theory. In this technique, polynomial order
of the basis functions is increased. Since the basis functions have p-m; continuous

derivatives across element boundaries, if the continuity is desired to be preserved,
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it is obvious that when the order p is increased, multiplicity m must also be
increased by the same amount of degree. Therefore, during order elevation
process, the multiplicity of each knot value is increased. As in the case of knot

insertion, geometry and parameterization remains unchanged.

Order elevation begins by replicating existing knots by the same amount as the
increase in polynomial order. Thereafter, the order of polynomial is increased.
Several efficient algorithms for the application of order elevation procedure can

be found in Piegl and Tiller, 1997 [17].

An example for the order elevation procedure from quadratic to cubic order is
represented in Figure 2-18. The original control points, mesh, and quadratic basis
functions are shown on the left. Each knot value in knot vector has been increased
by one but no new knot values were added. For this example, number of control
points and basis functions increased from 8 to 13. The new control points

calculation procedure is again given in Piegl and Tiller, 1997.

Although the locations of the control points change, the order elevated curve is
geometrically and parametrically identical to the original curve. Additionally,
multiplicities of the knots have been increased but the element number is

preserved.

Order elevation process is analogues to p-refinement technique in finite element
analysis. Both of the strategies increases the order of basis functions. The most
critical distinction between these two is that p-refinement always begins with a
basis that is C° everywhere, while order elevation is compatible with any

combination of continuities.
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Figure 2-13: Order elevation refinement technique [18]

2.4.3 k-refinement

As mentioned in the previous parts, when a new knot values with multiplicities
equal to one are inserted, functions across the boundaries will have Cp—1
continuity. It is possible to lower the continuity by increasing the multiplicity as
well. This shows knot insertion is a more flexible process than simple h-
refinement. Likewise, order elevation technique is also more flexible than p-
refinement technique. The stated flexibilities of knot insertion and order elevation
techniques force us to develop another refinement technique which is unique in

the field.
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In a curve of order p, if a unique knot value, &, is inserted between two distinct
knots, the number of continuous derivatives of the basis functions at & is p-1.
After knot insertion, even though the order is elevated, the basis still has p-/
continuous derivatives at &, However, if we change the sequence i.e. if the order
of the original curve elevated to order ¢ first and then a unique knot value is
inserted, the basis will have ¢-/ continuous derivatives at £. Thus an alternative
order elevation method which has significant advantages over standard order
elevation emerges. This procedure is called k-refinement. There is no analogous
refinement technique in finite element method similar with k-refinement. The
concept of k-refinement is important and potentially a superior approach to high-
precision analysis than p-refinement. In traditional p-refinement there is an
inhomogeneous structure to arrays due to the different basis functions associated
with surface, edge, vertex and interior nodes. In k-refinement, there is a
homogeneous structure within patches and growth in the number of control

variables is limited.

In order to make it more clear, two different sequences of refinement processes
are compared with an example in Figure 2-14. Initial domain consists of one
element and p+1 basis functions. On the left side of the figure, firstly, knot is
inserted until getting n-p elements and n basis functions and then order is
elevated. In this process, to maintain the continuity at the p-1 level each distinct
knot value is replicated and the total number of basis functions is increased by 2n-
p. After a total of r order elevations of this type, we have (r+1)(n)-(r)(p) basis
functions, where p is still the order of our original basis functions. On the right
side of figure, beginning with the same element domain this time order elevation
is applied primarily, and then knot insertion is proceeded which is suitable to k-
refinement procedure. In this case for each order elevated r times, total number of
basis functions increases by only one for each refinement. Then domain can be h-
refined until having n-p elements. The final number of basis functions is n+r, each
having r + p -1 continuity. This amounts to an enormous savings in the number of
basis functions as n + r is considerably smaller than (r+1)(n)-(r)(p). Moreover, this

technique enables the arrangement of continuity of basis contrast to p-refinement.

28



F= il p=l
im)

K o § e i e el i

1 i

i Wl ela=v wiaim [N R T el

| l

Figure 2-14: k-refinement sequence comparison (a) Base case of one linear element. (b) Classic p-
refinement approach: knot insertion followed by order elevation results in seven piecewise quadratic
basis functions that are C0 at internal knots (c) New k-refinement approach: order elevation followed
by knot insertion results in five piecewise quadratic basis functions that are C1 at internal knots. [14]

29



2.5. Non Uniform Rational B-Splines (NURBS)

Although the B-Splines are convenient for free-form modeling and provide some
advantages in geometry definition which were mentioned in the previous sections,
they have still deficiencies in exact representation of some simple shapes such as
circles and ellipsoids. In order to overcome this lack of ability, NURBS, a
superset of B-Splines with its rational nature, is preferred. Today, NURBS is
accepted as a de facto standard in CAD technology. Therefore, this section was
devoted to discussion of NURBS concept and aims to show how they are

constructed, what their advantages are and what separates them from B-splines.

As its name implies, NURBS are piecewise rational polynomials built from B-
Splines and inherit all the favorable properties of them. The rational term refers to
the fact that NURBS are a combination of B-splines basis functions multiplied by
a weighting factor. If all the weights are equal to one, then NURBS will be equal
to B-splines. On the other hand, non-uniform term is used to define non-uniform
knot vector. Therefore, in addition to the polynomial degree, knot vector values
and multiplicity parameters, one more parameter weight is introduced to obtain

more flexible design with desired properties.

NURBS are constructed in Rd by the projective transformation of B-Splines
defined in Rd+1. To illustrate, a circle in R2 constructed by the projective
transformation of a piecewise quadratic B-spline defined using homogenous

coordinates in R3 is shown in Figure 2-15.

In this figure, Cw(§) is a B-spline curve in R3 which is created by {Biw} set of
control points. These control points are defined utilizing homogenous coordinates.
Terminologically, this curve is called as “projective curve” and its associated
control points are called as “projective control points”, Biw, while the terms
“curve” and “control points” are used to describe NURBS curve C(§) and its

control points Bi respectively.
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Figure 2-15: An Example of projective transformation of (a) Control points (b) Curves [14]

The projected control points for the NURBS curve are obtained by the following

relations:

(B");

i

2.5.1)

(B)j =
Where,
w; = (B{)a+1 (2.5.2)

Here, (Bi)j is the jth component of the vector Bi and wi is the ith weight. In
Rd+1, the weights correspond to the (d + 1)th component of the homogenous
coordinates of B-spline curve. For example, in Figure 2-15, weights are taken as
z-components of projective curves. Dividing the B-Spline control point by its
corresponding weight is thus named as a projective transformation. The same
transformations need to be exploited on every point on the curve by the definition

of weighting function:

- 253
WE = ) Nyp@®w 233
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Now the NURBS curve can be defined as

(C"(®);
W)

1. 254)

C©N; =
The curve C(§) is a piecewise rational function since each element of it is found
by division of C%(§) to W(&) which are both piecewise polynomial functions.
Since this projective transformation seems intimidating, it is rarely used in
practice. The main reason behind the explanation of projective transformation is
to understand the underlying nature of NURBS and recognize that everything that
have been discussed thus far for B-splines still holds true for NURBS.

2.5.1 NURBS basis functions and derivatives
In order to define the construction and manipulation of NURBS geometries it is
necessary to introduce a basis function as in the case of B-Splines. NURBS basis

function can be defined as follows:

Nip(@Ow;  Nip(©w; (2.5.5)

p = =
RO ="we ~SLN,owm

Thereafter, NURBS curve defined by:

- 2.5.6
C©) =) RP®B, (220

One should note that, the weighting function in equation 2.5.3 is developed for the
projection of B-Spline curve from Rd+1 into Rd. Since it is embedded into basis
function definition, we can built geometries and meshes in Rd without regarding
the projective geometry behind the scenes. For this reason, equation 2.5.6 is
generally preferred to Eqn. 3.5.4 due to the usage of practical basis function

although they are equivalent.

Rational basis functions are also defined analogously for the generation of rational

surfaces and solids in Eqn. 2.5.7 and 2.5.8 respectively as follows

Ni,p (f)%q (n)Wi,j (257)
i1 2= Nip (M g (Mwy 5

R m) =
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Ni,p ('S)]W]q (n)Lk,r ({)Wi,j,k (258)
T 2T Dhemt Nip (OM; g () Ly (W j i

RPF @€ m, Q) =

Related NURBS surfaces and solids are defined respectively by

L 2.59
S n) = ZzRf}q(f:U)Bi,j ( :
Jj=1

17

(2.5.10)

V(= iiiREﬂr(fﬁ' {)Bijk

The derivatives of NURBS basis functions get by using quotient rule and their

non-rational similitudes

d
dg

W(EN';,(§) — W' (E)N;(E) (2.5.10)
(w©)

RY (&) =w;

Finally, an example of a NURBS surface represents a torus geometry which is

difficult to create by using B-Splines is given in figure 2-16.

Figure 2-16: An Example for NURBS surface (a) Control net for toroidal surface (b) Toroidal surface
[14]
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2.6. NURBS modelling softwares

The high standards that CAD have reached nowadays allow the maximum
freedom of choice to designers and engineers, with a good compatibility of

NURBS solid and surfaces with almost all the softwares.

Some of them are powerful and/or easy to use. The most famous free form surface

modeler, that utilizes NURBS mathematical model, is Rhinoceros 3D.

Rhinoceros is used in processes of computer-aided design (CAD), computer-aided
manufacturing (CAM), rapid prototyping, 3D printing and reverse engineering in
industries including architecture, industrial design (e.g. automotive
design, watercraft design), product design (e.g. jewelry design) as well as

for multimedia and graphic design.

The Rhinoceros file format (.3DM) is useful for the exchange of NURBS
geometry. The Rhino developers started the open NURBS Initiative to provide
computer graphics software developers the tools to accurately transfer 3-D

geometry between applications.
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Figure 2-17: Rhinoceros 3D environment.
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To make some other mentions, two powerful parametric CAD softwares used for
engineering are, definitely, NX (siemens) and CATIA (Dassault systémes). Their
huge capabilities range over all the types of mechanical modelling, NURBS

included.

NX, formerly known as "unigraphics", is an advanced high-end CAD/CAM/CAE,
which has been owned since 2007 by Siemens PLM Software. It is spreading all
around the world and it is used in many famous companies (Ducati, FCA and

Beretta armi are some of the instances).
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Figure 2-18: Car body design on Siemens NX.

CATIA, the most famous one, started as an in-house development in 1977 by
French aircraft manufacturer AVIONS MARCEL DASSAULT, at that time
customer of the CADAM software to develop Dassault's Mirage fighter jet. It was
later adopted by many companies of the aerospace, automotive, shipbuilding and

other industries (Boeing, Ferrari, Volkswagen, Audi...).
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Figure 2-19: Airbus A380 modelling in CATIA V5.
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3. ISOGEOMETRIC ANALYSIS WITH LS-DYNA

3.1. LS-DYNA

LS-DYNA is an advanced general-purpose multiphysics simulation software package
developed by the Livermore Software Technology Corporation (LSTC). It is widely
used in many fields, such as automotive, aerospace, bioengineering and civil

engineering.

Figure 3-1: Screenshot from LS-PrePost showing the results of an LS-DYNA simulation of a car
impacting a rigid wall at 120 kph. [Wikipedia]

LS-DYNA originated from the 3D FEA program DYNA3D, developed by Dr.
John O. Hallquist at Lawrence Livermore National Laboratory (LLNL) in 1976.
DYNA3D was created in order to simulate the impact of the Full Fusing Option
(FUFO) or "Dyal-A-Yeld" nuclear bomb for low altitude release (impact velocity
of ~ 40 m/s). At the time, no 3D software was available for simulating impact, and
2D software was inadequate. Though the FUFO bomb was eventually canceled,

development of DYNA3D continued.
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LS-DYNA's potential applications are numerous and can be tailored to many
fields. LS-DYNA is not limited to any particular type of simulation. In a given
simulation, any of LS-DYNA's many features can be combined to model a wide
variety of physical events. An example of a simulation that involves a unique
combination of features is the NASA JPL Mars Pathfinder landing which

simulated the space probe's use of airbags to aid in its landing.

It is typically used for non-linear analysis (where therefore large deformations,
variable boundary conditions or non-linear materials are involved), or for transient
dynamic events simulations (automotive crash, explosions, sheet metal stamping

etc.).

LS-DYNA is therefore used by the automotive industry to analyze vehicle
designs. LS-DYNA accurately predicts a car's behavior in a collision and the
effects of the collision upon the car's occupants. With LS-DYNA, automotive
companies and their suppliers can test car designs without having to tool or

experimentally test a prototype, thus saving time and expense.

LS-DYNA's specialized automotive features:

e Seatbelts

o Slip rings

e Pretensioners
e Retractors

e Sensors
e Accelerometers
e Airbags

o Hybrid III dummy models
e Inflator models

One example among all LS-DYNA's applications is sheet metal forming. LS-
DYNA accurately predicts the stresses and deformations experienced by the
metal, and determines if the metal will fail. LS-DYNA supports adaptive
remeshing and will refine the mesh during the analysis, as necessary, to increase

accuracy and save time.

Metal forming applications for LS-DYNA include:
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e Metal stamping

e Hydroforming

o Forging

e Deep drawing

o Multi-stage processes

3.1.1 Pre-Post processors

LS-DYNA consists of a single executable file and is entirely command-line
driven. Therefore, all that is required to run LS-DYNA is a command shell, the
executable, an input file, and enough free disk space to run the calculation. All
input files are in simple ASCII format and thus can be prepared using any text
editor. Input files can also be prepared with the aid of a graphical preprocessor.
There are many third-party software products available for preprocessing LS-
DYNA input files. LSTC also develops its own preprocessor, LS-PrePost, which
is freely distributed and runs without a license. Licensees of LS-DYNA
automatically have access to all of the program's capabilities, from simple linear
static mechanical analysis up to advanced thermal and flow solving methods.
Furthermore, they have full use of LSTC's LS-OPT software, a standalone design
optimization and probabilistic analysis package with an interface to LS-DYNA.

[Wiki]

IGA models set up in this thesis will be carried out using LS-PrePost.

3.2. IGA modelling

The implementation of IsoGeometric Analysis in LS-DYNA started in 2011,
when the keyword ELEMENT NURBS PATCH_2D appeared for the first time.
During the years a lot of improvements, that will be explained in the next chapter

have been made.
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3.2.1 Shell elements
Since the most widely used and best understood mathematical description in CAD
is based on Non Uniform Rational B-splines, NURBS-based shell and solid finite

element have been implemented in LS-DYNA over the last few years.

The term “isogeometric analysis™ is not restricted to any special type of basis
functions. It just indicates that the geometrical description that is used for FEA is

the same than was used in CAD before.

In case of NURBS shells, thin shell element based on Kirchoftf-love theory as well
as shear deformable shell elements based on the Reissner-Mindlin shell theory are
available, moreover the software allows to trim the standard patch with defined

trimming loops and to apply contact boundary conditions. [27]

As indicated before, the definition of a NURBS surface necessitates a set of
NURBS basis functions and associated control points with proper weights. The set
of control points is called a control net (or control grid), which is similar to a
finite element mesh with the very important difference, that the individual control

points are normally not a part of the actual geometry.

This fact makes the application of boundary conditions, at the spot where they
should be, a little bit more complicated. To solve this problem, the keyword
*CONSTRAINED NODE TO NURBS PATCH is available, which allows to
define a massless node on the actual NURBS surface and tie it to the NURBS
patch. This will allow the application of either Neumann or Dirichlet boundary

condition. [16]

Another difference to the definition of a classical finite element, a NURBS
surface is described rather through a so-called NURBS-patch than through
individual elements. A typical definition of a NURBS patch using the keyword
*ELEMENT NURBS PATCH 2D is depicted in Fig. 4-2 together with the

resulting subdivision into “finite elements”. [15]

40



“ELEMENT NURDS PAT SI:_ZD
R EID————+—— EID-———+——
- 12
S———t—-w FL-————+- FORM-———+--—
[_.
Srk—+-———L1——+——- A S I—t—-
) .0
fgk-+-——-l----t———- et
1.0
snet+-—N1-———+-—- Ni————+——-
2
5 G
10
1 14
7 18

Control-Points

L]
Control-Net
- .Finite Element”

Connectivity of
JFinite Element”

Figure 3-2: The keyword *ELEMENT _NURBS_PATCH_2D in LS-DYNA [15]

The contact treatment as well as the post-processing of the NURBS-finite
elements in LS-DYNA is based on so-called interpolation nodes and elements.
The idea is to superimpose a standard bi-linear mesh on top of each NURBS-
finite-element by generating interpolation-nodes placed on the real surface. In Fig.
3-3 the result of an automatic generation of interpolation-nodes and elements is
shown for the marked NURBS-element. With the parameters NISR and NISS
(number of interpolation shells in local r/s-direction per NURBS-element) the user
can specify the mesh density of the resulting interpolation elements. The term
interpolation indicates that the constructed interpolation nodes are dependent
nodes with respect to the control points. Their particular position is interpolated
on basis of the actual location of the control points by using the corresponding
NURBS-basis functions. In case of contact, the contact forces evaluated at the
interpolation nodes will be extrapolated to equivalent forces at the primary
variables at the control points. Therefore the mesh density of the interpolation
elements will not have any influence on the time step size nor on the overall

number of degrees of freedom.
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Figure 3-3: Interpolation nodes and elements [15]

3.2.3 Available shell formulations
At present five different shell formulations are available in LS-DYNA to use with
the new NURBS based finite elements. They can be chosen under the parameter

FORM in the keyword *ELEMENT SHELL NURBS PATCH, with the

following code:

- 0: “shear deformable theory” with rotational degrees of freedom

- 1: “shear deformable theory” without rotational degrees of freedom
- 2: “thin shell theory” without rotational degrees of freedom

- 3: “thin shell theory” with rotational degrees of freedom

- 4: combination of FORM 0 and FORM 1(allows the mixture of control points
with and without rotational DOFs. This might be useful at the boundaries of
NURBS patches where the continuity usually drops to CO and rotational DOFs are

necessary)
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The shear deformable theory is based on the degenerated solid element
formulation. The kinematics is defined in terms of the nodal coordinates at the
reference lamina of the shell, and a unit orientation vector, y, which we take to be

the unit normal as in the Belytschko-Tsay element,

h
X(1,6,9) = ) Ni(n, ) +569) (3.2.1)

and the velocity is expressed as

h .
£01,6,0) = ) N0, ) + 5690 (3:22)

The formulations with and without rotations differ only in the expression of the

time derivative of the unit orientation vector. With rotations, the derivative is:

P = w; X P (3.2.3)

where w; is the angular velocity at the control point, and, for the formulation
without rotations, the rate is obtained by differentiating the expression for the

orientation vector as a function of the control point coordinates with time,

N (3.2.4)
yl : ax] ]
j
The thin shell formulation is similar, however, the normal vector is evaluated at

the current point on the reference lamina,

43



h
x(,¢,9) =ZNi(n,§)xi +§§ﬁ(77.€) (3.2.5)

Differentiating with time gives the velocity:

h_.
x(m,€,9) =ZNi(n,s‘)9'ci + 540, §) (3.2.6)

As with the shear deformable theory, implementations with and without rotations
are created based on the how the time derivative of the normal is evaluated. For
the formulations that are rotation free, the basis functions must have first
derivatives that are continuous across the element boundaries to correctly transmit
the moments between adjacent elements. Due to the generally higher continuity of
the NURBS-finite elements it is possible to use rotation free shell formulations.
This leads to a significant reduction of global degrees of freedom and
automatically removes possible problems with the treatment of rotational inertias

of classical shell formulations. [15]
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3.2.4 ELEMENT SHELL NURBS PATCH KEYWORD

ELEMENT SHELL NURBS PATCH is the keyword used to define

1sogeometric shell elements in the latest release of LS-DYNA. This chapter will

focus on the explanation of its cards and variables.

Title Card. Additional card for the TITLE keyword option.

Card Tithe 1 2 3 4 5 B 7 8
Wariable TITLE
Type ABD
VARIAELE DESCRIPTION
TITLE Description of the NURBS patch surface
Card 1 1 2 3 4 5 B 7 8
ariable NPID (2 1] NFR PR NP5 PS PERIR PERLS
Type I [ I I [ I I I
Default | none Mione Mone reona none | nong 0 1]
Card 2 1 2 a 4 5 6 7 8
Variable WEL FORM INT HISR HISS IMASS IDFME
Type | I F F [ [
Dafault ] i 0 PR Ps i (1]

Figure 3-4: Data cards: title card, card 1, card 2 [28]

The variables operations and values are descripted in the table below. [28]

VARIABLE DESCRIPTION

NPID NURBS surface element / patch ID. A unique number

must be chosen.
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PID PART ID.

NPR Number of control points in the local r-direction.

PR Polynomial degree of the basis function in the local 7-
direction.

NPS Number of control points in the local s-direction.

PS Polynomial degree of the basis function in the local s-
direction.

PERIR Flag for surface periodicity in the r-direction:
EQ.0: Non-periodic
EQ.1: Periodic

PERIS Flag for surface periodicity in the s-direction:
EQ.0: Non-periodic
EQ.1: Periodic

WFL Flag for user defined control weights:
EQ.O: Control weights are assumed to be uniform and
positive; that is, the surface is a B-spline surface. No
optional Cards D is allowed.
EQ.1: Control weights are defined using optional
Cards D.

FORM Available shell formulations, as previously discussed.

INT In-plane numerical integration rule:

EQ.0: Uniformly reduced Gauss integration. NIP = PR
x PS.
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EQ.1: Full Gauss integration. NIP = (PR+1)x(PS+1).

EQ.2: Reduced, patch-wise integration rule for Cl1

continuous quadratic NURBS surfaces.

NISR Number or average edge length of automatically
created interpolation shell elements per each knot span
in the r-direction.

GT.0: NINT(NISR) is the number of interpolation
elements in the r-direction

LT.0: |NISR| is the average edge length of the
interpolation elements in the r-direction.

NISS Number or average edge length of automatically
created interpolation shell elements per each knot span
in the s-direction.

GT.0: NINT(NISS) is the number of interpolation
elements in the s-direction

LT.0: |NISS| is the average edge length of the
interpolation elements in the s-direction.

IMASS Mass matrix lumping scheme:

EQ.0: Row sum.
EQ.1: Diagonal weighting.
IDFNE Element ID of first NURBS-Element within this

NURBS-Patch definition.
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Knot Vector Cards (for r-direction). The knot vector in r-direction with length
NPR + PR + 1 is given below requiring a total of ceil[(NPR+PR+1)/8] cards. The

knot vector must be normalized to the [0,1] interval.

Cards A 1 2 3 4 5 6 7 8

Variable RK1 RK2 RK3 RK4 RK5 RK6 RK7 RK8

Type | F F F F F F F F

Default none none None none none none none none

Figure 3-5: knot vector cards for r-direction. Variables RK,, are the values of the univariate knot
vector in r-direction [28]

Knot Vector Cards (for s-direction). The knot vector in s-direction with length
NPS + PS + 1 is given below requiring a total of ceil[(NPS+PS+1)/8] cards. The

knot vector must be normalized to the [0,1] interval.

Cards B 1 2 3 4 5 6 7 8
Variable SK1 SK2 SK3 SK4 SKb SKb SK7 SKB
Type F F F F F F F F

Default none none None none none none none none

Figure 3-6: knot vector cards for r-direction. Variables SKm are the values of the univariate knot
vector in r-direction [28]

Connectivity Cards. The connectivity of the control grid is a two dimensional
table of NPS rows and NPR columns. This data fills the NPS sets (one set for
each row) of NPR points tightly packed into ceil (NPR/8) connectivity cards, for a
total of NPSxceil(NPR/8) cards.
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Cards C 1 2 3 4 5 6 7 8
Variable N1 N2 N3 N4 N5 NG N7 N8
Type | | | | |
Default none none none none none none none none

Figure 3-7: Control Grid cards, variables Nk are the control point IDs, defined via *NODE, to define
the control grid - LT.0: Control point with rotational DOFs for FORM = 4 /-4; [28]

Control Weight Cards (Optional). Additional cards are used to set a weight for

each control point if WFL = 1 on Card 2. These cards have an ordering identical

to the connectivity cards (Cards C).

Cards D 1 2 3 4 5 6 7 8
Variable W1 w2 W3 w4 W5 W6 w7 w8
Type F F F F F F F F
Default none none none none none none none none

Figure 3-8: Control weight cards, variables WKk are the control weights of the surface patch. [28]

Trimming loop title card

Cards E 1 2 3 4 5 6 7 8
Variable TITLE
Type AB0
Default trimming loop

Figure 3-9: Trimming loop title card. [28]
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Trimming Loop Connectivity Cards

Cards F 1 2 3 4 5 6 7 8
Variable C1 C2 c3 C4 C5 C6 C7 C8
Type | | | | |

Figure 3-10: Variables Cl are Trimming curve ID pointing to a curve defined using *DEFINE_
NURBS_CURVE. A unique number has to be chosen. [28]

Trimmed NURBS surface elements / patches can be analyzed by defining
trimming loops. A trimming loop is formed by a set of NURBS curves defined in

the surface parametric coordinate system.

Each trimming curve is defined using the *DEFINE NURBS CURVE keyword.
Trimming loops may be given a distinct title on Cards E and the connectivity of
trimming curves defining a loop is stored on Cards F. The end and starting points
of two consecutive curves must coincide. If the loop is defined by a single curve,
the starting and end points of the curve must match. Furthermore, the orientation
of the trimming loop is essential to define the trimmed surface. Travelling along
the trimming loop, the surface on the right-hand side of the loop will be trimmed.
There is no limitation on either the number of trimming curves forming a loop or

the number of loops used to trim a NURBS surface element/patch. [28]
Important remarks:

-Shell thickness is defined in *SECTION SHELL and referenced via *PART.
- ELFORM=201 has to be used in *SECTION_SHELL.

3.2.5 DEFINE NURBS CURVE keyword

Purpose: Define a NURBS curve using a univariate knot vector, a control
polygon, and optionally a set of control weights. The knot vector defines the
necessary shape functions and parameterize the curve. There is no limit on the

size of the input data. Hence, the total number of keyword cards depends on the
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parameters defined on the first card. The total number of cards is
1+ceil[(N+P+1)/8]+N, where N and P designate the number of control points
forming the control polygon and the polynomial degree, respectively. While the
keyword is meant to store NURBS curves in two or three spatial dimension, it is
also employed to describe trimming curves defining trimmed NURBS
elements/surfaces, see *ELEMENT SHELL NURBS PATCH for further details.
In the latter case, the control point coordinates are in fact parametric coordinates

of the surface to be trimmed, i.e. (x, y, z, w) = (1, s, 0, w) and TYPE =1 on Card
1.

Card 1 1 2 3 4 5 6 7 8
Variable D N P PERI TYPE WFL
Type | | | |
Default none none none 0 0 0

Figure 3-11: *DEFINE_NURBS_CURVE card. [28]

Cards A | 1 2 3 4 5 6 7 8
Variable | K K2 K3 K4 K5 K6 K7 K8
Type | F F F F F F F F

Default none none none none none none none none

Figure 3-12: Knot vector card. The knot vector of length N+P+1 is given below requiring
ceil[(N+P+1)/8] cards in total. The knot vector has to be normalized to the [0,1] interval. [28]

51



Cards B 1 2 3 4 5 6 7 8
Variable X Y z W
Type F F F F
Default none none none none

Figure 3-13: Control point cards. The spatial coordinates of the control points and the control weights
are listed on N cards. Control weight entries are disregarded unless WFL =1 on Card 1. [28]

Variable Description
ID Curve ID. A unique number has to be
chosen.
N Number of control points.
P Polynomial degree.
PERI Flag for curve periodicity.

EQ.0: Non-periodic.

EQ.1: Periodic.

TYPE Coordinate type.
EQ.O: Spatial.

EQ.1: Parametric.

WFL Flag for user defined control weights.

EQ.0: Control weights are assumed to
be uniform and positive, i.e. the curve
is a B-spline curve, and the fourth

entries on cards B are disregarded.
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EQ.1: Control weights are defined on
the forth entry of cards B.

Kn Values of the univariate knot vector

defined in cards A with n=1,...,N+P+1.

Xk Spatial coordinates in the global X
direction defined in cards B with
k=1,...,N.

Yk Spatial coordinates in the global Y
direction defined in cards B with
k=1,...,N.

Zk Spatial coordinates in the global Z
direction defined in cards B with
k=1,...,.N.

Wk Control weights defined in cards B
with k=1,...,N.

*DEFINE NUEB L B

ard 1 -
+ ID--=--4-=-=-M-==-#=-===P--p=-== F +---TYPI 4+ Wi
| I

"...: Ir" LIL]. 4 4 + [

o .25 ! | 5 1.0 1.1
1

P a4

). 13

). 2 1

Figure 3-14: Defining a quadratic NURBS curve using the *“DEFINE_ NURBS_CURVE keyword. [28]
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3.2.6 Solid NURBS elements
Cad models are collections of surfaces and for this reason not suitable for the
analysis of solid structures. Therefore the behaviour of IGA solid models is not

well understood but still in evolution and already implemented in LS-DYNA. [29]

Figure 3-15: A NURBS volume example. [29]

The keyword ELEMENT SOLID NURBS PATCH is used to define the solid
NURBS element. The concept is similar to the ELEMENT SHELL NURBS
PATCH keyword, with a further spatial direction. A NURBS-block element
(patch) based on a cuboid grid of control points is defined. This grid consists of
NPR*NPS*NPT control points, where NPR, NPS and NPT are the number of
control points in local 7-, s- and t-directions, respectively. The necessary shape

functions are defined through three knot-vectors:

1. Knot-Vector in r-direction with length NPR + PR + 1
2. Knot-Vector in s-direction with length NPS + PS + 1
3. Knot-Vector in t-direction with length NPT + PT + 1

There is no limit on the size of the underlying grid to define a NURBS-block
element, so the total number of necessary cards depends on the parameters given

in the first two cards and is given by:
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NPR + PR+ 1 NPS+PS+1 NPT + PT + 1
#ofcards=2+[ 3 ]+[ 3 ]+[ ]

8

NPT
+ NPT X NPS X [T

where [x]=ceil(x). (NOTE: the last term in the sum is doubled if WFL = 1,

indicating that the weights are user-specified).

Card 1 1 2 3 4 5 6 7 8
Variable NFID FID NFR FR NPS F5 NPT FT
Type | I I I I |

Default none none none none none none none none

Card 2 1 2 3 4 5 6 7 8
Variable WFL NISR NISS NIST IMASS IINT IDFNE

Type | | | | |

Default 0 PR Ps PT 0 0 0

Figure 3-16: ELEMENT_SOLID_NURBS_PATCH, Cards 1 and 2. [28]

The Variables have an analogy in name and function to the case of shell

formulation, obviously with the addition of t-direction.

The same worths for the knot vector cards, with variables RK, SK, TK, the

values of the univariate knot vector in local r/s/t-direction.

The connectivity of the control grid is a two dimensional table of NPT x NPS
rows and NPR columns. This data fills NPT x NPS sets (one set for each row) of
NPR points tightly packed into ceil(NPR/8) Connectivity Cards, for a total of
NPT x NPS x ceil(NPR/8) cards.
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The same ordering is kept in the Weight cards, as in shell case additional card for
WFL # 0 sets a weight for each control point. (Variables W; are the weighting

factor of the i control point.

For WFL = 0, all weights at the control points are set to 1.0 (B-spline basis) and

no optional Card 7 sets are allowed.

Important remark: ELFORM = 201 has to be used in *SECTION_SOLID.

Example:
SR R I [ I [ T [T DI I [ T I S I
% An Iscgeometric Solid NURBS Example
= O R [P R [ RO [ Ot U - PR [T - e P I
*SECTION_SOLID
=4 gecid elform
1 201
*ELEMENT SOLID NURBS PATCH
SCARD 1
43 npeid pid npr pPr nps pe npt rt
1 1 3 2 & 2 3 2
SCARD 2
=4 1 wfl nisr nigs nist imass
o 2 2 2 o
SCARD R
1 rkl rk2 rk3 rk4 rkh kb k7 rk8
0.0 0.0 0.0 1.0 1.0 i.0
SCARD B
.o 0.0 0.0 Q.25 0.5 0.75 1.0 1.0
1.0
SCARD
0.0 0.0 0.0 1.0 1.0 1.0
£CARD D
1001 1002 1003
1082 1053 1054

SCARD E (Opticnal if wifl .eg. 0}

Figure 3-17: Example of definition of ELEMENT_SOLID_NURBS_PATCH. [28]
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3.3. Contacts and boundary conditions

On top of the NURBS patches, LS-DYNA automatically creates bi-linear shell
elements (interpolation elements), whose nodes (interpolation nodes) are placed
on the real surface. The interpolation elements may be used to apply boundary
conditions (i.e. contact) and for postprocessing. Its resolution can be defined using
the parameters NISR and NISS (see figure 3-18). It is important to notice, that the
interpolation nodes are fully constrained to the underlying NURBS patch. For
instance, contact forces are in fact first evaluated at the interpolation nodes, but
then transferred to the primary degrees of freedom (DOF) at the control points.
The actual analysis is exclusively performed using the NURBS elements and their
correspondig DOFs. For post-processing, results at the integration points of the
NURBS elements are mapped onto the interpolation elements, such that standard

post-processing tools can be used. [30]

Interpalation Elements

HURES

. MISRMIS5=1 MNISRIMIS5=2 {default)
MISRMISE=-5.0 MISRMISE=-2.0

Figure 3-18: Bi-quadratic NURBS patch and interpolation elements dependent on the parameter NISR
and NISS. [30]

3.3.1 Penalty based contacts

Up to now, all penalty based contacts are available for I[GA.

“Single surface” are the most widely used contact options in LS-DYNA,
especially for crashworthiness applications. With these types, the slave surface is

typically defined as a list of part ID’s. No master surface is defined. Contact is
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considered between all the parts in the slave list, including self-contact of each
part. If the model is accurately defined, these contact types are very reliable and
accurate. However, if there is a lot of interpenetrations in the initial configuration,
energy balances may show either a growth or decay of energy as the calculation

proceeds.

For crash analysis, *CONTACT_AUTOMATIC_SINGLE_SURFACE is
recommended, This contact has been improved from version to version of LS-
DYNA implementing now also NURBS elements and is the most popular contact

option.

In automotive crashworthiness, also the two-ways treatment of contact can be
used. *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE is a good

choice with Isogeometric elements.

3.3.2 Tied NURB contacts

In tied contact types, the slave nodes are constrained to move with the master
surface. At the beginning of the simulation, the nearest master segment for each
slave node is located based on an orthogonal projection of the slave node to the
master segment. If the slave node is deemed close to the master segment based on
established criteria, the slave node is moved to the master surface. In this way, the

initial geometry may be slightly altered without invoking any stresses.

It is always recommended that tied contacts NOT be defined by part Ids but rather
by node/segment sets. In this way, the user has more direct control over what gets

tied to what and thus can prevent unintended constraints.

As the simulation progresses, the isoparametric position of the slave node with
respect to its master segment is held fixed using kinematic constraint equations.

Currently, 3 pure nurbs tied contact definition are implemented:
-NURBS_TIED _NODES_TO_SURFACE
-NURBS_TIED_EDGE_TO_SURFACE

-NURBS_TIED EDGE_TO EDGE
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All of them are defined with the same variables: SSID, MSID that are the master
and slave IDs, whose types are chosen with SSTYP and MSTYP:

EQ.0:Nurbs-Patch Element ID.

EQ.2:part set ID.

EQ.3:part ID,

EQ.4:node set ID for node to surface contact.
CFORM is the constraint formulation, defined with:
EQ.O0:mortar method (currently it doesn’t work).

EQ.1:point-to-point formulation.

1 CID TITLE

[ [
2 55D MSID SSTYP MSTYP  CFORM
| | 0 v|o v|lo v

Figure 3-19: NURBS_TIED keyword interface in LS-PrePost.

NURBS_TIED_EDGE_TO_EDGE is the most interesting of the 3, because it
allows the connection of multi-patch structures. It is currently available only in

the SMP (shared memory parallel processing) version of LS-DYNA.

In CAD environment, geometries are typically defined by a so called boundary
representation (B-Rep). This means that the standard NURBS patch is descripted
together with a set of outer trimming curves, that define visible and invisible
regions on the surface. Moreover specific topology information are embedded in
the cad to specify if two or more patches represent a connected part. In analysis
environment, anyway, the solver needs to make sure that certain mechanical
properties, like stresses, strain and bending moments are transferred across the

patches, through the common interface.

59



To mechanically couple the individual elements, some algorithm basic ideas:
Interface condition, strong form:

The condition to fulfill is that rotations and displacements must be the same at

both sides of the interface. In a strong form this can be witten as:

U = Uslr; 61 = 0:lr (3.3.1)
Where I' represents the interface.
Interface condition, penalty weak form:

Using a penalty tipe formulation, the interface conditions can be translated into a

weak, integral form:

s f (1 — 1) (8uy — 61,)dl’ = 0 (3.3.2)
r

art f (6, —0,)(60, — 66,)dl =0 (3.3.3)
r

Where a? and a™t are the penalty factors for inforcing the displacements and
the rotational constraints and §0 and du are variations of the continuous
displacement and rotation fields, sometimes also called virtual displacement and

rotations, in the context of the principle of virtual work. [27]

The enforcement of the rotational constraint (EQ. 3.3.3), can be directly related to
the rotational DOFs in case of shear deformable shell formulation, but, for thin
shell element formulations, no rotational DOFs are introduced, so the rotational
constraint is enforced in a different way. A total Lagrangian constraint formuation

is used:

sin(@ — 0,) = sin(@) cos(0,) — cos(@) sin(B,) (3.3.4)
= 0; cos(@) = n, - n, and sin(0)

=t-n,®n,
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Where 0 and 0, represent the initial and current angle at the interface, n, and n,
are the surface normal vectors of the two joining patches at the interface, and # is
the tangent vector at the interface curve. This constraint expression is evaluated at
the integration points of the B-Rep edge elements and numerically integrated

along the interface [27].

B-Rep edge elements are used to discretize the integration domain along the
interface, then, as in standard contact algorithms, one side of the interface is
chosen to be the master side and one side is chosen to be the slave side. On the
master side the numerical integration is performed, thus, necessary terms
including shape functions and their derivatives need to be mapped from the

parameter space of the slave side to the one of the master side.

master curve mapped intersection parameters
= ;} _
master patch _7_/14_ & ) T
e — ___i | e__/
e = € ; -
— ff T €5 i
o = / =i
— Ay
2 o -
-__45_/___1%
= '“ P g slave patch
S
R%\Z slave patch clipped master curve

Figure 3-20: Mapping procedure to define the B-Rep edge elements on the master curve. A B-Rep edge
element is defined between any two consecutive points (either black or red) shown in the right part of
the figure. [27]

Once the numerical integration in the B-Rep edge elements is performed,
equivalent penalty forces and stiffnesses (for implicit analyses) for the involved
control points are computed and assembled to the global force vector and stiffness

matrix if necessary. [27]
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4. LS-PrePost Isogeometric analysis set up and

capabilities

LS-PrePost is an advanced pre/post processor available for free from LSTC, LS-
PP is particularly capable of importing, editing and exporting LS-DYNA keyword
files for generating LS-DYNA input files and processing the results from LS-
DYNA analyses.

For the purpose of this thesis, the capabilities of the softwares regarding IGA
models have been examinated, in order to set up a guide updated to the latest

improvements.

As stated by Mr. Hartmann from Dynamore, it is still difficult and cumbersome to
set up an IGA model for LS-DYNA. This is especially true in case the underlying
CAD data is rather complex, with many patches, different orders and highly

different “mesh sizes” (knot spans mapped to physical space).

The instability and the not easy set up of the models, nowadays, can be the biggest
downside of IGA analyses compared with classic FEA. Anyway the great
potential of the method is pushing the software houses to develope new solutions

every year.

4.1. Shell NURBS elements set up

As explained before, to define a NURBS shell element in LS-DYNA, the keyword
ELEMENT SHELL NURBS PATCH is needed.

4.1.1 ELEMENT SHELL NURBS PATCH creation
For simple patch shapes, this operation can be manually done from the keyword

input form, with free choice for what concerns knot spans and polynomial orders.
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Anyway, this operation is definitely not practical and not suited for multi patch

structures and complex geometries, that are the main target of IGA.

*ELEMENT_SHELL_NURBS_PATCH_(TITLE) (1)

3 RKL RK2 RK3 RK4 RKS RK6 RK7 RKB
0.0 0.0 0o 0.05 01 015 0.2 0.25
1 0.0 0.0 15 ).25 DataPt. 1
203035 5
3070750.8085090351.01.0
Temmmm e
Repeated Data by Button and List
4 sa ska Sk3 Ska Sks SKe SK7 ske
0.0 0.0 0o 0.05 01 015 0.2 0.25
1000 0.10.150.20.25 DataPt. 1
2 0303504045050.55060.6
3070750.2085090951.010

Repeated Data by Button and List

nie] 2] =100 [0 us(e] 16 o] nz'e| ng'el

' 2= [+ = == Js |
2 3 4 5 6 7 8

w

1 78 DataPt. 1

2 9 10 1 12 13 14 15 16

4 B 24 25 26 27 228 29 3D

5 31 32 33 34 35 35 37 38
6 39 4 4N 42 4#8 M 0 0 o

Total Card: 1 Smallest ID: 1 Largest ID: 1 Total deleted card: 0

Figure 4-1: Keyword input editor. Variables RK, SK and N are defined for the NURBS patch on the
left.

Although LS-PrePost allows simple spline, surface and solid modelling, the
easiest way to define a model, is obviously to start from an imported CAD
geometry. All the most common formats (STEP, IGES, STL) are supported by the

software.

u »

Figure 4-2: Single patch CAD surface imported in LS-PrePost.
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To create Isogeometric elements, a NURBS editor is implemented in LS-PrePost,

to deal with shell elements the NURBS 2D EDITOR must be utilized.

By means of the function “create”, the user can generate one or more NURBS
patch element. A useful subfunction is “build contact”, that builds a
NURBS TIED EDGE TO EDGE contact on the common edges of multi patch
structures. In case this procedure does not work automatically (no common edge
found), the edge curve must be manually defined via DEFINE NURBS CURVE
or DEFINE CURVE TRIM 3D keyword. With the latter the conversion of CAD

imported curve into the keyword itself is possible.

This issue can increase the complexity of the model set up, especially in case of

intricate geometries.

File Misc. View Geometry FEM Application Settings Help NURES Editor X
[ I

Option

?%% (@) Create ) Refine
(O Control Grid () Delete
(O Merge Edge (C)Reverse normal
() Convert geometry () Combine
(O Transform () Clamp end

Create

Node ID: 1] new |

Elem D0: | 1] new |

Part I: | 1] nEw |

Isoline tol: 0.00001
2D edge tol: 0.0001

[]Build contact
[] Remove tiny span

S minimum span: 0.001

T minmum span: 0.001
[ Merge node
Node tol: 0.001

Keep Min Order 2 | | By knot value
[] Control Grid [] Element Normal

Control Grid Line Width:
Control Point Size:

ﬁ'j o

nana | ]

ENEICEEISIEEE L] KXY

Figure 4-3: NURBS single patch element creation in LS-PrePost

In figure 4-3 a single NURBS patch is created from CAD geometry, while in
figure 4-4 a simple multi patch structure is examinated (square tube). This is

useful to understand the “build contact” command but also to understand the
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concept of “elements” in IGA. In IGA the number of elements does not depend on
the mesh size, that represents the knot vector spans, but only on the number of

patches.

For this reason, even with a refined mesh, the tube in figure 4-4 is composed by
four elements, with four NURBS TIED EDGE TO EDGE contacts,
automatically created using the command “build contact” (one for each common

edge between the patches).

The number of parts created (one) can be also noticed from the picture. This is not
due to the presence of the contact but only to the fact that the patches were created
together (into the same part ID), so the existence of a unique part with not

mechanically connected patches is possible.

File Misc. View Geometry FEM Application Settings Help

Keyword Manager >
m i
- Keyword Edit Keyword Search
Edit:| conTacT vl Edi
® Model (O All RefBy
Mame Count
=R CONTAC 4~
- NURBS_TIED_EDGE_TO_EDGE 4
- DEFINE 18

E-ELEMENT 4

SHELL_MURBS_PATCH 4
- IMITIAL 30
- KEYWORD 1
[F-MAT 2
E-NODE 698

Material arrange
GroupBy Sort List
Model Type Al

Load From MatDB

Model Chack Keyword Del ResForm

ExpandAll Colapseal

Figure 4-4: Multi patch Isogeometric part. Four SHELL_NURBS_PATCH elements are created, with
four NURBS_TIED_EDGE_TO_EDGE contacts. In order to form a single part, the NURBS patch
elements were created using the same part ID.
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4.1.2 ELEMENT SHELL NURBS PATCH refinement
As explained in chapter 1, in b-spline environment we have the possibility to

perform 3 types of refinement: H, P and K-refinement.

H-refinement: LS-PrePost allows either to change the knot vector spans or to
choose the number of segments (“subdivide” command) in r and s directions, the
mesh size of the model derives from this process. To have reliable analysis results

the mesh size should be chosen comparable to a normal FE model.
Due to IGA nature, obviously, the geometry doesn’t change if the mesh size does.

P-refinement: The polynomial degree can be increased without changing the
geometry or the parametrization (nodes multiplicity must be increased in order to

maintain the initial continuity).

MURBS Editor X | NURBS Editor X
Option Option

() Create (®) Refine () Create (® Refine

(O Control Grid () Delete (O Control Grid (O Delete

() Merge Edge () Reverse normal () Merge Edge (O Reverse normal

(O Convert geometry () Combine () Convert geometry () Combine

O Transform () Clarmp end (O Transform (O Clamp end

Refine Refine

Method: Method:

@®HRefine (O PRefne () K-Refine (OH-Refne @ P-Refine () K-Refine
(O subdivide () Refit () Tiny span (O Subdivide (O Refit O Tiny span

[~ Keep Geometry M Keep Geometry
Parameter: Parameter:
degree  span segment degree  span  segment

R 5 5 Fr 5 5
s '| 5 5 Ms 5] 5 5

Rmin  Rmax Srmnm Smax Rmin Rmax Smin Smax
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tol: | 0.005 Tol: | 0.005]

Figure 4-5: H-refinement (left) and P-refinement (right) interfaces.

K-refinement: order elevation is followed by knot insertion in order to keep a
good continuity, LS-PrePost allows to play with both polynomial degree and knot

vectors spans.
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i IURES Editc X
i -
Option
(O Create (® Refine

BSpline Face 1

(O Control Grid O Delete

() Merge Edge (C) Reverse normal
() Convert geometry () Combine

() Transfarm (O Clamp end
Refine

Method:

(O H-Refine  ()P-Refine (@) K-Refine
(C) Subdivide () Refit (O Tiny span

Keep Geometry

Parameter:

degree  span  segment
R 4 10 5
s 4 10 5

Rmin  Rmax Smin Smax
28.10 77.14 2397 6145

Tol: | 0.005

Figure 4-6: K-refinement interface of LS-Prepost.

e =

\:[—-‘r BSpline Face 1

5
A

Figure 4-7: The same NURBS patch element, after creation (left) and after refinement (right)

4.1.3 Trimmed NURBS patch

When a trimmed NURBS patch is imported from CAD, LS-PrePost is able to
define the trimming loops and to create the trimmed element
(ELEMENT _SHELL NURBS PATCH _TRIMMED) automatically from the

editor.

67



w5

Otrimmed sheet
] ShapeGroup Keyword Manager X
Offset Face 1
BSpline Edge 1 Keyword Edt  Keyword Search
BSpline Edge 2 Edit:| ELEMENT “] Edit
kd
@® Model (O Al RefBy
Mame Count
= DEFINE 16
; MNURBS_CURVE 16
[ERELEMENT| 1
-~ SHELL_NURBS_PATCH_TRIMMED 1
- NODE 6728
[#-PART 1

Material arrange
GroupBy Sort List
Model Type Al

Figure 4-8: Example of trimmed NURBS patch. The geometry imported from the CAD is already
trimmed, the element created by the editor is a SHELL NURBS PATCH_TRIMMED and 16
NURBS_CURVE have been automatically defined (used as trimming loops).

Anyway, if needed, the user is free to trim a shell NURBS element by the
keyword input form. NURBS curves to be used as trimming loops must be

defined by means of the keyword DEFINE NURBS CURVE.

Trimming loops must then be added in ELEMENT SHELL NURBS PATCH
TRIMMED keyword.

4.2. Solid nurbs elements

To create solid NURBS elements, ELEMENT SOLID NURBS PATCH is the
keyword needed.

For simple shapes, similarly to the shell case, this operation can be manually done
from the keyword input form, with free choice for what concerns knot spans and
polynomial orders. This is not practical and not suited for complex solid

geometries.
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“ELEMENT _SOLID_NURBS_PATCH (1)

3 RKL RK2 RK3 RKd RKS RKO RKZ RKB
[0 [ oo [[o1zs s [0 Jos [os Jors |

§32° 4E

1 00 000.1250.2503730.5 0.6230.75 Data Pt. 1
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1 0.0 0.00.03125 0.0625 009375 0.125 0.15625 0.1875 DataPt. 1
2 021875025 0.28125 0.3125 D.34375 0.375 0.40625 04375
3 0.46875 0.5 0.53125 0.5625 0.59375 0,625 D.63625 0.6875 Replace Insert
4 0.718750.75 0.78125 0.8125 0.84375 0.675 0.90625 9375
50968751010 0.0 0.0 00 0.0 0O Delete Help
Repeated Data by Button and List
5 TKL TK2 TK3 Tk4 TKS TKE TK7 TKB
[0 [ oo [[o12s o2s [o37s os [og2s o7 |
1 0.0 000.250250.375 05 0625075 Data Pt. 1
208751010 00 00 00 00 00
Replace Insert
Delete Help

Total Card: 1 Smallest ID: 1 LargestID: 1 Total deleted card: 0

Figure 4-9: simple parallelepiped NURBS element created from the keyword input form, on the right
the 3 knot vectors variables.

Also in case of solid NURBS elements, in LS-PrePost a 3D NURBS editor is
available, with the purpose to create, refine and modify solid NURBS elements
from CAD imported geometries.

In this case, anyway, there are problems in the creation process. After many trials
it turned out that is better to import only the basic generation geometries of the
solid that we want to analyze (surfaces and lines) and use the 3D solid editor of

LS-PrePost to create the final solid shape .

4.2.1 NURBS solid elements creation with 3D NURBS editor

After the definition of the Solid geometry, by means of LS-PrePost 3D functions
(example in figure 4-10), the 3D NURBS editor is used to create an
ELEMENT SOLID NURBS PATCH (figure 4-11).
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Figure 4-10: CAD imported basic surface (left), revolution solid created in LS-PrePost (right)

The creation is easy and immediate after the selection of the solid body faces.
However, the stability of the tool is probably not there yet to deal with all the
types of geometries, infact in many situations the creation process doesn’t work at

all.

File Misc. View Geometry FEM  Application Seff pURBS 2D Editor W
u > Option
b (®) Create (") Refine
BSpline Face 1 O Delete O Morph
) Transform () Clamp end
Create
Node ID: | 2| nEw |
Elern ID: | 2| nEw |
Part ID: | 2 || new |
] By sweeping
Selection
[+] select surface

Select sweeping curve

2D edge tok 0.0000001

[IMerge node

Mode tol: 0.001

Figure 4-11: Solid NURBS element creation with the 3D NURBS editor

The “by sweeping” command, allows the generation of a swept solid NURBS

patch starting from a surface and a sweeping curve.
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Anyway, also in this case, the software seems to have problems in the recognition

of the basis sweeping surface, as shown in Fig. 5-11. The refinement is not a

solution.

Figure 4-12: Sweeping surface and curve (left), solid NURBS element created with the editor (right)

To obtain swept solids the normal 3D editor of LS-PrePost could be used before.

4.2.2 Refinement
As in the shell clement case, H-P and K-refinement are available. The

functionality is the same with the addition of the T knot vector.

=l Fle Misc. View Geometry FEM  Application  Seftings Hel NURES 2D Editor x
B E | optian
O] BSpline Face 1 T (OCreate  ®Refne
ll?ﬂ Solid Revolve 1 E l.-'i BSpline Face 1 CrDelete ) Morph
a7l b_ ) Solid-Revolve 1 O Trensform. C camp end

Refine

Method:

(CIH-Refna  ()P-Refine
@ KRefine (O Subdivide

[] Keap Geomstry
Paramaten:

degree  span  segment
2R | 3|[ b..ooon| 5
Bs[ sfrowoe s
=T 3 | 1.0000] 5

Figure 4-13: Solid bullet model, before and after refinement
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4.3. Analysis performance

As a first approach, some simple isogeometric analyses are shown. An
hemispheric bullet (FE shell) impacts on a plate (Isogeometric element). Three

different versions of the plate are presented: the first is flat, the second with

bulges and the third with the addition of trimming loops.

Figure 4-14: The three versions of the plate.

The bulges are created changing the position of some of the nodes of the control
grid, manually from the nodes keyword or by means of the command “control

grid” in the nurbs editor.

4.3.1 Model set up

The set up of this kind of analysis is simple and similar to a normal FE analysis.

The SECTION_SHELL that will be assigned to the NURBS part must have
ELFORM=201, that defines isogeometric shell elements.

The main difference to consider, is that in IGA the nodes are part of the control
grid, and not included among the mesh elements. This is important for the
definition of boundary conditions (SPCs, loads, velocity ecc.), and the accuracy
depends on geometry and refinement (In these simple examples this is negligible).
However, in case of need the keyword CONSTRAINED NODE TO NURBS
_PATCH is available as already explained.
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Figure 4-15: Simple IGA model, impact of and emispheric bullet on a plate

The plate has four fixed constraints at the four corners, the bullet impacts with a
constant velocity of 5 m/s and an AUTOMATIC SINGLE SURFACE contact is

defined including all surfaces.

A MAT 003 (PLASTIC-KINEMATIC) is defined for the plate and a MAT 001
(ELASTIC) 1s assigned to the bullet, both steel. The thickness assigned to the

plate is 0.5 mm.

4.3.2 Run
The purpose of this first examples is to test the stability of simple IGA performed
with LS-DYNA and check the pre/post processing capabilities of LS-PrePost, so

there won’t be a comparative with FEA.

The first point to underline, in this case, is that IGA functions are still in an initial
stage and are being improved year by year by LS-DYNA developers, so to have

the possibility to run all the models, the latest version of the software is needed.

Right now, the latest build available is LS-DYNA 11.1.0. Some simulations have
been carried out with the 11.0.0 version and for instance any model with trimmed

nurbs elements didn’t run.
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4.3.3 Post-processing
The first thing noticed in the post processing environment is the presence of two

nurbs element instead of one in the components tree.

The first one (red plate in Fig. 5-16), is the NURBS patch itself, while the second
one is the interpolated mesh, that is generated with an igaplot file and is stored in

the regular d3plot file.

The interpolated mesh is useful from the user point of view because many fringe
data can only be processed with it for now. (The NURBS patch, if trimmed,
presents graphical issues during the animations or contour plots as shown in Fig.

4-17).

a7
1w

2
{] ZLSHELL2 — 2 LSHELL2 E
il (1 3152 1 Nurbs1

1 Huorbst
2 LSHELLZ

Figure 4-16: From left to right: Both geometries are turned on, only NURBS patch turned on(red),
interpolated mesh turned on (green).

Figure 4-17: Displacement contour plot in case the NURBS patch is not turned off.
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However, with the correct visualization, the results for all the 3 examples are
satisfactory. The initial states are represented in fig. 4-18 , than the maximum
displacements are plotted in fig. 4-19 and they present the expected trend: the
bulged plate is slightly stiffer than the original one that, in turn, is slightly stiffer
than the bulged/trimmed one.

The maximum stresses in the plates are plotted in Fig. 5-20. They are located at
the four corners, where the constraints are placed, with a distribution coherent

with the bulges location (in the first case it is homogeneous).

Figure 4-18: The three models are represented at time t=0.

Figure 4-19: Maximum displacements of the plates during the impacts.
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Figure 4-20: Maximum stresses suffered by the plates.

The plots of the total kinetic energy over time are shown in the figures below.
Results are as expected in the first and second models, while in the last trimmed

one the graph is quite unreal.

This is probably due to the incorrect behaviour of the trimmed parts. This issue

will be encountered also in the next chapters. (see Fig. 5-17).

Kinetic Energy

Figure 4-21: Kinetic energy plot: flat plate.
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Figure 4-23: Kinetic energy plot: bulged/trimmed plate.

To obtain the real energy data separate parts plot must be produced in order to

isolate the error.

The three plots below are, in order: kinetic energy of the bullet, internal energy of
the plate and kinetic energy of the plate. The problems are clearly located in the

last one, anyway all the data needed can be obtained with this strategy.
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Figure 4-25: Internal energy of the plate

LS-DYNA keyword deck by LS-PrePost
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Figure 4-26: Kinetic energy of the plate.
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5. IGA PERFORMANCE

The purpose of this chapter will be the discovery of the IGA limits and
capabilities of the software in case of more complex crash simulations. The results

will be compared to standard FEA.

5.1. Multi-patch simple crashbox impact

5.1.1 Set up
The first model considered consists in the impact of a rigid barrier on a square

tube crashbox.

The impactor consists in a simple FE block normally meshed, with a speed of 8

m/s. The material assigned is a steel - MAT 24 (RIGID).

The crashbox is composed by 4 shell NURBS patch elements, 1 mm thick, with a
fixed constraint on one side. The material assigned is a steel modelled as MAT

024 (PIECEWISE LINEAR PLASTICITY).

An AUTOMATIC SINGLE SURFACE contact is defined for the crashbox,
while an AUTOMATIC NODE TO SURFACE contact is used to model the

interface of the two parts, both contacts have non-zero friction coefficients.

In the IGA model 4 NURBS TIED EDGE TO EDGE contact are generated in

order to connect the four patches.
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Figure 5-1: Impactor (blue) and crashbox (red)
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Figure 5-2: Model boundary conditions

5.1.2 Results

Nine different simulations have been carried out, three classic FE analysis, three
IGA with quadratic polynomial degree in both directions, and three IGA with
cubic polynomial degree in both directions. All the analyses are built with

comparable mesh sizes (20, 10, Smm).
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Max. crashbox Runtime (NCPU=2)
displacement at t=30ms

FEM (20mm) 8.56mm 15 seconds
FEM (10mm) 10.58mm 1 minute 54 seconds
FEM (5mm) 12.26mm 20 minutes 15 seconds
IGA(quadratic, 20mm) | 6.05mm 24 seconds
IGA(quadratic, 10mm) | 8.13mm 1 minute 52 seconds
IGA(quadratic, Smm) 11.48mm 1 hour 18 minutes
IGA(cubic, 20mm) 10.98mm 1 minute 48 seconds
IGA(cubic, 10mm) 12.01mm 54 minutes 7 seconds
IGA(cubic, Smm) 12.70mm 4 hours 11 minutes

The maximum displacement of the crashboxes clearly converges towards a value
that’s major than 12mm. This underlines the weakness of quadratic IGA and the
importance of all the types of refinement. Moreover, in the kinetic energy plot
(fig. 5-7), the trend of the blue curves (the three cubic IGA) is regular and close to
the others even in case of coarse mesh (20mm), while the green curves (quadratic
IGA) reach a satisfactory result only in case of fine mesh (5mm). FEA needs a
minumum of refinement to converge to the right trend, anyway the result are
satisfactory because of the low runtimes (the maximum displacement of Smm
cubic IGA is probably more precise, but the difference with fine meshed FEA

does not justify the runtime, that is twelve times higher).

In general, the higher runtimes with respect to FEA, suggest that the accuracy of
the result and the complexity of the model are affected by the presence of the

contacts between patches.
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In the figures below the displacements contour plots at time t=30 are shown. As
stated in chapter 4, many fringe data are available only for the interpolated mesh
elements, so this graphic visualization will be used. An example of not

interpolated NURBS patches deformation is shown in fig. 5-3.

Figure 5-3: NURBS patch deformation in the post processor.

e | EE—— ; !

Figure 5-4: IGA- quadratic patch - Resultant displacement at time t=30ms. Mesh size decreases rom
left to right: 20, 10, 5 mm.

Figure 5-5: IGA- cubic patch - Resultant displacement at time t=30ms. Mesh size decreases rom left to
right: 20, 10, 5 mm.
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Figure 5-6: FEM - Resultant displacement at time t=30ms. Mesh size decreases rom left to right: 20, 10,
S mm.

Kinetic Energy (E+3)

Figure 5-7: Kinetic energy plot for all the models. IGA quadratic (green), IGA cubic (blue) and FEM
(red), mesh size from coarse to fine in the direction of the arrow.
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5.2. Spot welded s-rail impact analysis

5.2.1 Set up
Spotweld modelling is available for IGA in LSDYNA. An ‘s’ shaped crashbox

impact on a rigid wall is analyzed.

Figure 5-8: Spotwelded s-rail isogeometric model.

The spotwelds are modelled as beam elements, whose nodes are connected to the
NURBS patches by means of a TIED SHELL EDGE TO SURFACE BEAM
OFFSET contact. Another effective way to do this is to use a CONSTRAINED
NODE _TO NURBS PATCH_SET card. With this method the results obtained
don’t change, while trials performed using a common SPOTWELD contact

produced problems with IGA.

To the part composed by the beam elements, A MAT 100 (SPOTWELD) is
assigned together with the card SECTION BEAM (where ELFORM=9 must be
selected).

_—

Figure 5-9: Particular of the spotweld beam elements
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Analysis were performed with three different mesh sizes (20, 10, 5 mm). The
NURBS patch polynomial degree is chosen to be cubic in both directions, further

P-refinement would increase exponentially the runtime (from minutes to hours).

The effect of the mesh size on the geometry is shown in the figure below. In FE

method, the resolution is very low in the case of a 20mm elements size, and this

can cause inaccuracies during the analyses.

Figure 5-10: Three different levels of refinement (20, 10, 5 mm) in IG model (left) and FE model
(right).

5.2.2 Results

The runtime of the Isogeometric analyses, also in this case, turned out to be higher
than the FE ones. This is probably due to the polynomial degree of the NURBS
patch elements (3, 3), that is anyway the minimum needed in order to have a good

interpolation avoiding tiny knot vector spans.
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ANALYSIS RUNTIME (4 cpu)
FE 5Smm 8 minutes 12 seconds
FE 10mm 52 seconds
FE 20mm 16 seconds
IGA (cubic, 5 mm) 3 hours 29 minutes
IGA(cubic, 10 mm) 21 minutes 8 seconds
IGA (cubic, 20 mm) 3 minutes 6 seconds

To focus on the spotweld elements failure, the behaviour of the two methods is
similar, with some little differences (highlighted in the figures below), due to the
different distribution of the reaction forces along the part because of the diversity

of the geometries.

Cleigen First| 1 [Last| 12[inc[ 1]Time 100003 sume] 12 Dltigen Fist|  1]tase] 12[ine] 1Time: 10,0007 State] 12

Figure 5-11: Spotwelds failure at time t=10 ms, mesh size 20mm, IGA (left) and FEM (right).
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[Jtigen Fint 1| Last: 1z§|n.—_g-f_1}1img 10.0002 Statel 12 [JEigen First: 1|Lask| 12 [lnc| 1 [Time 10,0000 Shk:_lﬂ

Figure 5-12: Spotwelds failure at time t=10 ms, mesh size 10mm, IGA (left) and FEM (right).

Animiate x

Cleigen First[ 1 ]tast| 12 ]inc[ 1[Time: 100001 State 12 Deigen First| 1 |Last[ 12]inc 1]Time: 100003 state] 12

Figure 5-13: Spotwelds failure at time t=10 ms, mesh size Smm, IGA (left) and FEM (right).

The kinetic energy dissipations converge to two slightly different values (4650 J
for the FE model and 4875 J fot the IG one). Anyway, known the geometry
inaccuracies due to the FE discretization, the translation of the result between the
two methods is coherent with the effect of the mesh refinement on the FE model
plot. (details in Fig. 5-14) The accuracy of this isogeometric model, if compared
to the previous one (squared crashbox), clearly underlines the better performance

produced in case of single patch body with respect to a multi patch one.
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Figure 5-14: Kinetic energy plot. A, B, C curves represent the FE model, from coarse to fine mesh, D,
E, F curves represent IG model from coarse to fine mesh.

5.2.3 Issues
Some problems have been found in spotwelds modelling, the usage of a

SPOTWELD contact caused a wrong behaviour of the beam elements. (Fig. 5-15)

Figure 5-15: Spotwelds failure at time t=10ms, only two beam elements didn’t fail. In this model a
SPOTWELD contact is used.
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5.3. Analysis of complex models

More intricated crash elements have been modelled in order to test the limits of
IGA. The impact on a rigid wall of the geometry shown in fig. 5-14, composed by

a bumper and two crashboxes, has been assessed. After IG modelling, the

structure consisted in 141 NURBS patches.

Figure 5-16: Automotive crash structure.

No problems were encountered during the NURBS creation and editing phase,
while many issues regarding the boundary conditions between the patches have

been found while running the solution.

Figure 5-17: FE model (up), IG model (low).
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input phase will continue 1f po

Figure 5-18: Example of NURBS contact errors.

Figure 5-19: FEM solution.

An analysis of a simplified version of the same model has been performed in

order to better understand the limits.

In this case, the whole model is composed by 14 NURBS patches (8 of which are
trimmed), and the impact arrives with a non-zero angle. Anyway, some problems

during the generation of the patch shown in figure 5-22 were spotted (on both car
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sides): in the CAD file a non-open knot vector was used, but LS-PrePost

somehow translated it to an open-knot vector with a non properly trimmed result.

Figure 5-20: Simplified geometry.

Figure 5-21: FE model (up), IG model (down).

Figure 5-22: Particular of the badly trimmed patch (the problem is spotted on both crashboxes).
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Moreover, the results produced are unsatisfactory, with graphic and mechanical
issues generated by the trimmed NURBS patches and confirmed by the kinetic

energy profile, where some impossible energy fluctuations can be spotted.

gen First 1|Last:| 13 inezt 1 Time: Saate: 1 TIfigen First Vst wjieal 1Vinm oatel 13

Figure 5-23: IGA solution.

Figure 5-24: FEM solution.

Global History

Kinetic Energy (E+3)

Figure 5-25: Particular of the kinetic energy plot. FEM (red) and IGA (green).
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5.4. Implicit solver and eigenvalue analysis

Implicit solution of isogeometric analyses is supported by LS-DYNA. To do so
the activation of the implicit solver, from CONTROL IMPLICIT GENERAL
card, is needed (IMFLAG must be set equal to 1).

In the following example a foil with “L” profile is excited with a sinusoidal load.
In Fig. 5-14, CONTROL IMPLICIT GENERAL card is shown, IMFLAG value

is set to 1 and the initial time step size for implicit analysis DTO is also selected.

Keyword Input Ferm

[ use "Parameter [ ] Comment

*CONTROL_IMPLICIT_GENERAL (1)

1 IMFLAG[e| DTO[® IMFORM ~ NSBS 15/ CNSTH[e| FORM ZERQ V
[l || 1.000e02 |2 v|[0 2 v|o Vo v|o v

COMMENT:

IMFLAG:=Implicit/Explicit switching flag

EQ.0: explicit analysis (default)

EQ.1: implicit analysis

EQ.2: explicit followed by one implicit step (springback analysis)
EQ.4: implicit with automatic implicit-explicit switching

EQ.5: implicit with automatic switching and mandatory implicit finish

Figure 5-26: Set up of the implicit solution via CONTROL_IMPLICIT GENERAL card.

After a certain number of iterations (in this case the timestep size is not
automatically set), the solution is reached without problems. An explicit analysis

1s also performed in order to make a comparison.

RUNTIME (4CPUs)
IMPLICIT 4 minutes 40 seconds
EXPLICIT & minutes 26 seconds
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The explicit simulation takes almost the double of the time. Anyway, the results
are coherent with some differences close to the peak values, probably due to the

low accuracy of the implicit model.

in the following graphs stresses and strain in the excited point are plotted over
time. Contour plot of the Von Mises stress, in the moment of maximum load is

shown in Fig. 5-15.

Nodal History

EXPLICIT

Resultant Displacement (E-03)

Figure 5-28: Displacement of the excited node. Explicit (red) and implicit (green).
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Figure 5-29: Stress of the most stressed interpolated element. Explicit (red) and implicit (green).

5.4.1 Eigenvalue analysis of shell isogeometric elements

To set and eigenvalue analysis with NURBS patch elements for simple models it
is needed to operate in the classical way, including CONTROL
IMPLICIT EIGENVALUE card to the implicit model and setting the number of

eigenvalues to extract from the variable NEIG.

*CONTROL_IMPLICIT_EIGEMVALUE (1)

1 MNEIG = CENTER LFLAG LFTEND REFLAG EHTEND EIGMTH SHESCL
EE XX O X O X R [
2 ISOLID IBEAM ISHELL ITSHELL MSTRES EVDUME MSTRSCL
| 0 || 0 || 0 || 0 | 1 " | 0 || 0.0100000 |

Figure 5-30: CONTROL_ IMPLICIT_EIGENVALUE card.

An igaplot file is generated together with the D3eigv file by the solver, so the

interpolated mesh is available in the post-processing.

One hundred vibration modes have been extracted analyzing the foil already seen
in this chapter, the first six of them are graphically shown in fig. 5-19 compared to

an analogue FE model.
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The results are satisfactory, the values of the frequencies diverge a few after the
50" mode probably because of the different deformations of the exact geometry

with respect to the discretized one at high frequency (plot in figure 5-20).
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Eigenvalue analysis

Figure 5-32: Plot of the frequency over one hundred modes.
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5.4.2 Issues

The foil of the previous analysis has been modelled as a single NURBS patch,
thanks to the knots multiplicity that allows the creation of sharp edges. Anyway
also in case of eigenvalue analysis, the IGA performance with complex multi-
patch geometries and trimmed NURBS elements is not assessable because of the

amount of errors.

The rim shown in figure 5-21, composed by 5 shell NURBS patches and 15
trimmed NURBS patches, has been modelled to perform a frequency analysis that
didn’t work due to the problems produced by the trimmed NURBS elements.

Figure 5-33: Wheel rim IGA model (left) and geometry (right).

*%% Warning 308453 (INI+453)
*ELEMENT_SHELL_MNURBS_PATCH_TRIMMED: Quadrature design #1 has failed.

=%% Warning 38453 (INI+453)
*ELEMENT_SHELL_MNURBS_PATCH_TRIMMED: Quadrature design #1 has failed.

Figure 5-34: Example of the warning messages appeared for all the trimmed NURBS patches.
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5.4.2 Eigenvalue analysis with solid NURBS elements
In the same way, using the card CONTROL IMPLICIT GENERAL to activate
the implicit solver and CONTROL IMPLICIT EIGENVALUE an eigenvalue

analysis can be performed on solid NURBS patch elements.

In the following model a sinusoidal load is applied to one extremity of a cantilever

beam.

Figure 5-35: Solid NURBS model

In this case 20 eigenvalue are extracted and the comparison with the FE model
produces good results, only in high frequency modes some considerable

differences can be noticed.

Radians

Eigenvalue analysis

Figure 5-36: Plot of the frequency over twenty modes.
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Figure 5-37: The first six modes in IG and FE model.
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6. Composite modelling

IGA with composite materials can be performed in LS-DYNA, even though the
possibility to model composites with NURBS elements is limited to rather simple

geometries and constant through thickness properties.

Infact, the layup within a patch, i.e. number of layers, the thickness of individual
layers, the orientations of the layers with respect to each other, need to be
constant. Furthermore, the possibility to define the baseline orientation throughout
a patch is currently limited to some global directions that are then mapped onto

the shell surface.

6.1. Definition

6.1.1 Material definition
To map the material orientation, first of all an anisotropic/ortotropic layered

material model must be defined. This option applies to material types 22, 23, 33,
34, 36, 40, 41-50, 54-56, 58, 59, 103, 116 and 194.

MAT-022 keyword is shown in figure below, to define the global directions, a

suitable AOPT (material axes options) value must be chosen.

*MAT_COMPOSITE_DAMAGE_(TITLE) (022) (1)

=
=
Im

LI
Toray Carben/Epoxy (T8005/3900-2) |
1D

1

=

MID RO EA EB EC ERBA ERCA PRCB
[ |[1:400e08 || 1.470e-05 |[7s80.0000 |[0.0 [o01s4700 |00 o0 |

2 GAB GBC GCA KFALL AOPT|®[) MACF ATRACK
|3senncmu H 3000.0000 H 3960.0000 Hnn Hznunnunn 1 ~|[o =
3 xe Y b (1) 1% (23]
0o 0o 0o 1.0000000 oo oo
4 vz v3 (o1 (D2} (03} BETA
[00 |EE) |EE) | EX) 1.0000000 || 0.0 00

5 SC XT YT YC ALPH SN SYZ SZX
Total Card: 1 SmallestID: 3 Largest|D: 3 Total deleted card: 0

Figure 6-1: MAT-022 keyword, AOPT with A and D directions vector are highlighted.
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AOPT values [28]:

EQ. 0.0: locally orthotropic with material axes determined by element nodes as
shown in part (a) of Figure 6-2. The a-direction is from node 1 to node 2 of the
element. The b-direction is orthogonal to the a-direction and is in the plane
formed by nodes 1, 2, and 4. When this option is used in two-dimensional planar
and axisymmetric analysis, it is critical that the nodes in the element definition be

numbered counterclockwise for this option to work correctly.

EQ. 1.0: locally orthotropic with material axes determined by a point in space and
the global location of the element center; this is the a-direction. This option is for

solid elements only.

EQ. 2.0: globally orthotropic with material axes determined by vectors defined
below, as with *DEFINE_COORDINATE VECTOR.

EQ. 3.0: locally orthotropic material axes determined by rotating the material
axes about the element normal by an angle, BETA, from a line in the plane of the
element defined by the cross product of the vector v with the element normal.
The plane of a solid element is the midsurface between the inner surface and outer
surface defined by the first four nodes and the last four nodes of the connectivity

of the element, respectively.

EQ. 4.0: locally orthotropic in cylindrical coordinate system with the material
axes determined by a vector v, and an originating point, P, which define the

centerline axis. This option is for solid elements only.

LT. 0.0: the absolute value of AOPT is a coordinate system ID number (CID on
*DEFINE_COORDINATE NODES, *DEFINE COORDINATE SYSTEM or
*DEFINE_COORDINATE VECTOR.
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AOPT = 0.0

7
8 § 6
a=vy
Vg
4
[—
] 1
b=v14'a 3“14 z;a.bzo
AOPT = 2.0 (solid
/_._._-’ cC=ax d
¢ is orthogonal a,d are input
to the a,d plane The computed
axes do not
depend on the

element.

b is orthogonal
b=cxa to the c,a plane d
AOPT =3.0
cT=n
v
a=bxn X
Zz b=v- cﬂ

c-c

b is the projection of v
y (from input) onto the
midplane/shell.

Figure 6-2: AOPT values explanation. [28]

AOPT = 1.0 (solid only)

d/e, 8

b=cxa

e a is set parallel to the
x line segment connecting
p to the element center.
d is set parallel to e,.

input(p) — {a} — {c} — {b}
AOPT = 2.0 (shell

- alnpul'n

a=a,
et = T

Qinput

AOPT = 4.0 (solid only)

V  Taken together, point
p and vector v define
the axis of symmetry.

a=bxc

¢ is parallel to the segment
connecting the element
p center to the symmetry axis.
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6.1.2 Section and composite layers definition
To model composite layers on isogeometric element the only way is to switch on

the option ICOMP in the SECTION SHELL keyword.

ICOMP: Flag for orthotropic/anisotropic layered composite material model. This
option applies to material types 22, 23, 33, 34, 36, 40, 41-50, 54-56, 58, 59, 103,
116 and 194.

EQ.O: Flag is tuned off (default),

EQ.1: A material angle in degrees is defined for each through thickness

integration point. Thus, each layer has one integration point.

In Fig. 6-3 SECTION SHELL keyword is shown. 8 carbon fiber layers are

created, Bi variables represent the material angles of each layer (with respect to

the chosen AOPT).

*SECTION_SHELL_(TITLE) (2]

T

=
m

Ll

)

1 SECID ELFORM SHRF NIP PROFT IRID|®| ICOMP SETYP
[1 | 201 |[ 1-0000000 & Ih /[0 I «|[1 -
21 Iz I3 T4 NLOC MAREA IDOE EDGSET
[ 05000000 || 05000000 || 0.5000000 || 05000000 | 00 [0 |00 [0 |
Repeated Data by Button and List
3 Bi Bi Bi Bi Bi Bi Bi Bi

[[00 |[4s0 ||7au.u |r45.u “70.0 [+ 0.0 [~+50 |

1 0.045.090.0-45.0 0.045.090.0 -45.0 DataPt. 1

Total Card: 2 Smallest ID: 1 Largest ID: 2 Total deleted card: 0

Figure 6-3: Definition of composite layers from SECTION_SHELL keyword.

An analysis with this laminate have been carried out, simulating the impact of the

emispheric bullet already seen in chapter 5.

Results have been compared with a FE model created with the composite interface
in the element edit tool. This simplified approach is not available yet for NURBS

elements.
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Figure 6-5: Ply orientation definition.

Using this method, normal SHELL elements are turned into
SHELL COMPOSITE elements, allowing the definition of a different layered
structure for each selected element (Fig. 6-6). In IGA this freedom of modelling is
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not achieved yet because, as seen before, a NURBS element is constituted by the

whole patch, independently from the mesh size.

*ELEMENT_SHELL_COMPOSITE (423) 255_276
277268
299320
1 ED PD[® nife N2'e n3le 10 ns'e lig|e b7 e Nglel  ~ I3
|h57 || 3 ” 689 || 2 H 773 || 691 || [ ” || 0 H 343 364
365_386
Repeated Data by Button and List 387_408
409_430
2 MID1(e|  THICKI Bl UNUSED  MID2|e  THICK2 B2 o
| 3 || 0.2 ” 1.0000E-15 || 0 H 3 || 0z || 450 | 453474
475 408 &
1 3021000015 0 302450 Data Pt 1
2 302900 0 302450 = ~
3 30.2 1.0000E-15 0 302450 Replace Insert 160
4302900 0 302450 1
Delete Help :
17
172
¥ (173
< > |17
Total Card: 423 Smallest ID: 167 Largest ID: 589 Total deleted card: 0 Eg
177

Figure 6-6: ELEMENT SHELL_COMPOSITE keyword

6.1.3 Through thickness definition of different materials
If needed, different materials can be defined through the shell thickness. This is
useful in case of sandwich panels or laminates composed by plies of different

materials or properties.

A user defined integration rule must be created, using the keyword
INTEGRATION_SHELL which, in turn, will be pointed by the SECTION
SHELL variable IRID (integration rule ID).

In defining the integration rule, the location and the weight for each integration
point through the thickness can be specified and, moreover, the user can point to

addional parts, with the purpose to specify the layer material.

*INTEGRATION_SHELL (1)

1 IRID NIP ESOP FAILOPT

Repeated Data by Button and List

25 WE PID®
[04 [omes & |
10100185 & Data Pt. 1
20300185 &
305082 M Replace Insert
40700185 6
50900185 & Delete Help

CORARAFMIT:

Figure 6-7: INTEGRATION_SHELL keyword.
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IRID: Integration rule ID (IRID refers to IRID on *SECTION_SHELL card).
NIP: Number of integration points

ESOP: Equal spacing of integration points option:

-EQ.0: integration points are defined below,

-EQ.1: integration points are equally spaced through thickness such that the shell
is subdivided into NIP layers of equal thickness.

FAILOPT: Treatment of failure when mixing different constitutive types, which
do and do not include failure models, through the shell thickness. For example,
consider the case where a linear viscoelastic material model, which does not have
a failure option, is mixed with a composite model, which does have a failure
option. Note: If the failure option includes failure based on the time step size of

the element, element deletion will occur regardless of the value of FAILOPT.
-EQ.0: Element is deleted when the layers which include failure, fail.

-EQ.1: Element failure cannot occur since some layers do not have a failure

option.
S: Coordinate of integration point in range -1 to 1.

WF: Weighting factor. This is typically the thickness associated with the
integration point divided by actual shell thickness, that is, the weighting factor for
the ith integration point = At;/t as seen in fig. 6-8.

*s =1
T _— AL —
t midsurface
5=-1

Figure 6-8: User defined shell integration rule. [28]
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PID: Optional part ID if different from the PID specified on the element card.
The average mass density for the shell element is based on a weighted average of
the density of each layer that is used through the thickness. When modifying the
constitutive constants through the thickness, it is often necessary to defined
unique part IDs without elements that are referenced only by the user integration
rule. These additional part IDs only provide a density and constitutive constants
with local material axes (if used) and orientation angles taken from the PID
referenced on the element card. In defining a PID for an integration point, it is
okay to reference a solid element PID. The material type through the thickness

can vary. [28]

6.2. Analysis

6.2.1 Impact on a carbon fiber plate
As stated before, the impact of a hemispheric bullet on a plate has been simulated
in order to compare the performance of IGA composite modelling with FE

analysis.

The model set up has already been presented and the plate is composed by 8
layers of T800 carbon fiber, laminated as shown in fig. 6-3. The tested NURBS
patch have quadratic and cubic polynomial degree in both directions with a mesh

size of 2.5, 5, 10 mm. (same size is chosen for FEA).

The results of IGA are not really satisfactory: the CPU runtimes are exponentially

higher with respect to the FEA ones.

RUNTIME (2CPUs)

FEA (10mm) 39 seconds
FEA (Smm) 4 minutes 38 seconds
FEA (2.5mm) 32 minutes 15 seconds
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IGA (quadratic, 10mm) 2 minutes 53 seconds
IGA (quadratic, Smm) 18 minutes 53 seconds
IGA (quadratic, 2.5mm) 2 hours 29 minutes
IGA (cubic, 10mm) 9 minutes 20 seconds
IGA (cubic, Smm) 1 hour 7 minutes
IGA (cubic, 2.5mm) 8 hours 12 minutes

The results of the nodal displacement (measured on the plate center) and kinetic
energy are similar for comparable mesh sizes, converging to the same values after
refinement. An higher polynomial degree gives an advantage only in case of
coarse mesh (10 mm), where the displacement peak at the beginning is smaller

with respect to the other two models.

The quadratic IGA displacement peak has been cut for graphic reasons but it

resulted 3 times higher than the FEA one.
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Figure 6-9: Kinetic energy plotted over time. IGA quadratic (green), IGA cubic (blue) and FEA (red).
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Nodal History

Z-displacement

Figure 6-10: Z-displacement of the central node of the plate plotted over time. IGA quadratic (green),
IGA cubic (blue) and FEA (red).

6.2.2 Three point bending of a sandwich panel

A sandwich panel composed by 4 plies of carbon fiber and a foam core has been
modelled by means of the INTEGRATION SHELL card. A 3 points bending
simulation has been then performed, in order to compare the result with a FE

analogue model, created using the composite tool.

Figure 6-11: FE model with visible thickness.
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Figure 6-12: Particular of the plies.

A MAT 22 (COMPOSITE DAMAGE) is used to model both carbon fiber and

core, to avoid errors related to the material angle definition.

In the table below, the cpu runtime to simulate the first 75 seconds of the test is
shown. In a second analysis the FEA termination is increased to 200 seconds, with

a final cpu time of 55 minutes.

RUNTIME (4CPUs)

IGA (quadratic, 10mm) 4 hours 41 minutes

FEA (10mm) 21 minutes

In this case, the cpu results are even worse than in the case before, with a runtime,

for the isogeometric model, more than thirteen times higher with respect to FEA.

Moreover, processing the results, is noticed that in the isogeometric analysis, a
sudden failure takes place at time t=62 ms, while in FEA this doesn’t happen for

the whole duration of the test.
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Figure 6-13: IGA - The simulation at time t=61s (above) and t=62s (below).

Animate

[JEigen First|  1|Last| 202 |Inc:| 1 |Time 100 State:| 101

Figure 6-14: FEM — The simulation at time t=100s

The behaviour of the FE model is much more coherent with a real sandwich

panel, as can be seen in the graph below. (Fig. 6-16 z-force plotted over time).

To have a better overview of the results, the FE analysis duration is increased to

200s.
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The FE panel reaches some local peaks, while the NURBS model only one, after a

perfectly elastic behaviour (the test rig has a constant velocity).

The peaks represent the failures of the carbon fiber, moreover the perfectly linear

behaviour of the IG model makes arouse suspicions on the actual performance of

the INTEGRATION SHELL method.

0 LS-DYNA keyword deck by LS-PrePost

Figure 6-15: Z-force plotted over time, IGA (green) and FEA (RED).

LS-DYNA keyword deck by LS-PrePost
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Figure 6-16: FE analysis termination time changed to 200s.
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7. Sheet metal forming

7.1. State of the art

Many researches confirm that IGA has shown good stability and accuracy in sheet

metal forming simulations.

This kind of simulations are part of a multi-stage process, therefore the analysis
tool should be capable of mapping the results achieved from one step to another,
no matter what the individual stage may be (deep-drawing, trimming, hemming,
springback and others). The most important results to map are: current stress and
strain states, the equivalent plastic strain and the thickness variations due to the

forming process.

In LSDYNA this is typically done with a so called DYNAIN file, using the
keyword INTERFACE SPRINGBACK. The file is written during the simulation
of one stage and is then read back in the next one, in order to reinitialize the
necessary values. Two keywords have been added to LS-DYNA to perform this
task in IGA: INITIAL STRESS/STRAIN NURBS PATCH (keyword not
available in LS-PrePost). [16]

*INI TIAL STRESS_SHELL NURBS_PATCH

1 2 3 L] 5 ] 7 8
Card 1 EID NPLANE NTHICK MNHISV LARGE
Card 2 R 5 T
Card 3 SIGKX SIGYY SIGZZ SIGKY SIGYZ SIGZX EPS
Card 4 HISV1 HISV2 HISV3 HISV4 HISV5 HISVE HISWV7 HISVS
Card ...

Figure 7-1: INITIAL_STRESS NURBS_PATCH keyword. [60]
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INIT/ex1l opl0.d3plot /INIT/ex1l op20.d3plot

Figure 7-2: Von mises stress distribution at the end of stage one (left) and at the beginning of stage 2
(right). [16]

Another important feature that has been developed recently is the possibility to
perform one step simulations with IGA, improving the performance of the crash
analysis by including forming history into the model. Infact, many parts are
manufactured from flat sheet metals in car design, and their mechanical properties
variations, due to the forming process, can create big inaccuracies in the crash

analyses.

In the one step method the part is assumed to deform from an initial flat blank, to
its final shape, in only one step. It requires the mechanical properties of the part
and its final geometry, subsequently an initial blank is optimized for minimum

energy.

The one step analysis in IGA can be activated using the keyword
CONTROL FORMING ONESTEP, setting the variable OPTION to 7. The
output result are written in a igaonestepresult file that can be used exactly in the

same way as a DYNAIN file. [31]

*CONTROL_FORMING_OMESTEP (0)

1 OPTION  TSCLMAX AUTOBD TSCLMIN EPSMAX  unused  LCSDG  DMGEXP
K (KN N ECR N I I |
2 FLATNAME

Figure 7-3: CONTROL_FORMING_ONESTEP keyword.
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The IGA one step approach is demonstrated and compared to FEA in [31], with a
couple of examples. The first example uses a single untrimmed NURBS patch

while the second uses a TRIMMED one.

A comparison of the Von Mises stress is shown in fig. 7-4. The distribution is
similar in the two models, while the maximum stress slightly differs, which is best

explained by localization.

A comparison of the effective plastic strain fields is shown in fig. 7-5.
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Figure 7-4: Comparison of the Von Mises stress obtained via the one-step approach, FEA (left) and
IGA (right). [31]
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Figure 7-5: Comparison of the effective plastic strain fields obtained via the one-step approach, FEA
(left) and IGA (right). [90]
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Effective plastic strain fields of the second example (trimmed NURBS patch) are
shown in Fig. 7-6. due to localization, te maximum strains are slightly different in

the FE model as shown in Fig. 7-7.
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Figure 7-6: Comparison of the effective plastic strain fields obtained via the one-step approach, FEA
(left) and IGA (right). Second example (trimmed NURBS patch). [31]

7.2. Multi-stage simulations.

A multi-stage simulation is presented in [16], proceding with the following steps:
1 — Gravity

2 — Deep drawing

3 — Trimming

4 — Springback analysis

In each step the stress/ strain situation is mapped as already explained using

INITIAL STRESS/STRAIN_SHELL NURBS PATCH.

In stage 1, the blank is planced into the forming tool. An implicit static analysis

has been carried out.
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Figure 7-7: Stage 1 (Gravity). FEA (left) and IGA (right). Results are then mapped and loaded into the
next step. [60]

In the stage 2, an explicit analysis has been carried out to simulate the deep

drawing process.
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Figure 7-8: Effective plastic strain fields after the deep drawing process. FEA (left) and IGA (right).
[16]

In stage 3, no analysis has been carried out, the part has been trimmed and the

results mapped for the next stage.

To trim the part, the keyword CONTROL FORMING TRIMMING must be used
together with the keyword DEFINE CURVE TRIM 3D. The latter is needed to

define the trim loop, while the former receives a part set ID in input. Elements in
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the part set will be automatically trimmed in the defined direction if they intersect

the trim curves.

| integration pte
=0.0005 134,

Standard Finite Elements

Isogeometric Elements

Figure 7-9: Effective plastic strain fields comparison after trimming, FEA (left) and IGA (right). [16]

In the stage 4, Springback analysis, an implicit static analysis must be carried out
to find the equilibrium for final geometry. However, it is not available yet for IGA

in LSDYNA.

118



8. CONCLUSIONS

In IGA, the exact geometry can be represented by utilizing a coarse mesh
structure. This prevents unnecessary mesh refinements for geometrical
representation. Thus, refinement techniques are only used for the solution
accuracy. Moreover, mesh refinement is simply handled by reindexing the
parametric space without interacting with the geometry contrarly to the refinement
strategies of FE method that require interaction with the CAD system at each

stage.

Good results have been obtained from simple shell models composed by one or a
few NURBS patches, while many instabilities have been found in more complex
multi-patch structures. The first source of problems seems to be the presence of
trimmed NURBS patches that are subjected to wrong energy fluctuations even in

basic analyses.

The runtimes are, in general, much higher with respect to FEA. This is probably
due to the generation of the igaplot files and to the computational complexity
induced by the p-refinement. Moreover the creation of additional files for IGA,
makes the output folder much heavier than the equivalent FEA one (an

interpolated mesh is needed in contacts and in the post-processing).

The analysis of solid elements is possible only in case of small deformations and
simple shapes: stamping, crashes and penetrations are impossible to be set up.

Elements erosion is not practicable, considering the IGA element definition.

Composite modelling showed a good behaviour in the first simple example, while
the 3 point bending simulation has underlined the limits of the through thickness
integration method, that after many trials hasn’t actually worked. Moreover, other
weak points in in composites IGA are the limits given by the element definition (a

whole patch must have a single lay up) and the gigantic CPU times.
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IGA is well implemented in LS-DYNA for what concerns sheet metal forming
analysis, with the availability of the full multi stage process (except for

springback analysis) and the one step approach.
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