
POLITECNICO DI TORINO

Department of Mechanical, Aerospace, Automotive
and Production Engineering

Master of Science in Automotive Engineering

Master Degree Thesis

3D CFD-Simulation of a working
cycle of the ECN test-bed engine

using OpenFOAM

Professor:
Prof. Ezio Spessa

Supervisor:
Dr. rer. nat. Dietmar Schmidt

Candidate
Vincenzo Damiano Virgilio
Student ID: 254242

Academic year 2019-2020





Abstract

Throughout the history of the IC engine, and decades before climate change concerns
became prominent, researchers have striven to improve its fuel efficiency, to reduce
pollutant emissions and operating costs and to ensure the optimal use of finite fuel
resources for current and future generations. Over the last four decades, in response
to air-quality concerns, research on engine combustion, exhaust after-treatment and
controls has led to a demonstrably cleaner environment.
It is likely that future mobility will be characterized by a mix of solutions, involving
battery electric and hybrid electric vehicles (BEV and HEV), fuel cell electric ve-
hicles (FCEVs) and conventional vehicles, depending on consumer acceptance (e.g.
cost), the country considered and the specific application (city, country, personal,
freight, etc.). Thus, the combustion engine will still play a central role, whether
used for power generation or for powering the vehicle itself, even in strongly electri-
fied powertrain configurations. Because of this, there is great interest in improving
the thermal efficiency of IC engines without significant increases in purchase and
operating costs in the short-to-medium term.
One of the most powerful tools in the investigation of new solutions is the 3D-CFD
simulation, which can provide a very precise and reliable reproduction of thermo-
fluid-dymanical phenomena inside the engine, with consequent savings in time and
financial resources.
Many companies develop software for CFD analysis for commercial use. Each of
them differs from the other in cost, performance, interface and implementation of
mathematical models.
However there is a free, open source CFD software called OpenFOAM. It has an
extensive range of features to solve anything from complex fluid flows involving
chemical reactions, turbulence and heat transfer, to acoustics, solid mechanics and
electromagnetics.
The purpose of this thesis is to analyze the possible advantages of using an open
source program like OpenFoam in the study of ICE. The most important step is to
validate the reliability of the calculations obtained from the simulations. For this
purpose, an experimental engine has been analyzed, whose data are present in the
ECN (Engine Combustion Network) database.

iii



The study will cover all the step, starting from the simple geometry, the creation of
the mesh, the simulation and finally the results.

iv



Acknowledgements

This work is the results of my activity at Institut für Verbrennungsmotoren und
Kraftfahrwesen Lehrstuhl Fahrzeugantriebe (IVK), an institute of the Universität
Stuttgart dedicated to the Research on Internal Combustion Engines.
I would like to thank Dr. rer. nat. Dietmar Schmidt for his patience and help
during the work and also to the other thesis students for their helpfulness. At the
IVK I learned how to overcome problems and help one another. I will carry this
experience with me into my future personal career.
I would also like to thank Prof. Ezio Spessa for meeting my work and university
needs and being available when I needed him.

Vorrei ancora una volta alla fine di quest altro ciclo di studi ringraziare i miei geni-
tori, i quali mi hanno fornito l’appoggio e la motivazione necessaria per conseguire
questo titolo. Il raggiungimento di questo risultato non é solamente frutto della mia
dedizione ma anche dei sacrifici di mio padre Aldo e mia madre Marika.
Un grazie anche a tutti gli amici di una vita, i compagni di studi e i compagni di
avventura gli che sono rimasti al mio fianco e grazie ai quali sono riuscito a raggiun-
gere questo obiettivo.

Torino, 2020

Vincenzo Damiano Virgilio

v





Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 CFD principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Mass conservation in three dimensions . . . . . . . . . . . . . 2
1.1.2 Momentum equation in three dimensions . . . . . . . . . . . . 3
1.1.3 Energy equation in three dimensions . . . . . . . . . . . . . . 4
1.1.4 Navier-Stokes equations for a Newtonian fluid . . . . . . . . . 5

1.2 Turbulence models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Direct Numerical Simulations (DNS) . . . . . . . . . . . . . . 7
1.2.2 The LES (Large Eddy Simulation) . . . . . . . . . . . . . . . 8
1.2.3 The Reynolds-averaged Navier–Stokes equations (RANS equa-

tions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Charge motion within the cylinder . . . . . . . . . . . . . . . . . . . 10

1.3.1 Swirl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Tumble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 OpenFOAM 13
2.1 Get Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Case structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 snappyHexMesh . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Pre-processing 19
3.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 The ECN test-bed engine . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Waterproof surfaces . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Different geometries creation . . . . . . . . . . . . . . . . . . . . . . . 27

vii



4 Mesh creation 33
4.1 Different geometries refinement . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Valve closed refinement . . . . . . . . . . . . . . . . . . . . . . 39
4.1.2 Valve bottoms fine refinement . . . . . . . . . . . . . . . . . . 42
4.1.3 Valve bottoms "course" refinement . . . . . . . . . . . . . . . . 45

4.2 Mesh Generation script . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Mesh quality . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Simulation 49
5.1 Setting the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.1 Parallel running and decomposePar . . . . . . . . . . . . . . . 52
5.2 Starting the simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Executing in background . . . . . . . . . . . . . . . . . . . . . 56

6 Post-processing 57
6.1 Results analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Comparison with experimental data . . . . . . . . . . . . . . . . . . . 60
6.3 3D Data visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3.1 Exhaust phase . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.2 Intake phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.3.3 Charge motion: Swirl . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.4 Compression and expansion phase . . . . . . . . . . . . . . . . 69

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.1 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.4.2 Further studies . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Bibliography 75

viii



List of Tables

3.1 GM 1.9L Engine Geometry . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Valves intake/closing points . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Different snappyHexMeshDict . . . . . . . . . . . . . . . . . . . . . . 37
5.1 Time needed for each Task . . . . . . . . . . . . . . . . . . . . . . . . 56

ix



List of Figures

2.1 OpenFOAM logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 snappyHexMesh workflow . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 snappyHexMeshDict layout . . . . . . . . . . . . . . . . . . . . . . . 18
3.1 Conventional re-entrant piston . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Longitudinal section of the Original STL file. . . . . . . . . . . . . . . 21
3.3 Orthogonal view of the modified CAD geometry. . . . . . . . . . . . . 22
3.4 Top view of the single-cylinder light duty engine with steady-state

swirl ratio of 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Top view of cylinderHead . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7 3D-view of the intersection between cylinderHead and liner . . . . . 26
3.8 Geometry folder structure . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 Piston distance from TDC . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10 Valve lift data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Valve closed Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Fine exhaust Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Fine intake Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4 Course exhaust and intake Mesh . . . . . . . . . . . . . . . . . . . . . 46
4.5 Run folder structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 MakeMesh folder structure . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Initialization Case folder . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 ECN experimental intake pressure . . . . . . . . . . . . . . . . . . . . 51
5.3 Work cycle folder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Different decomposition method . . . . . . . . . . . . . . . . . . . . . 53
6.1 Cylinder volume data from OpenFOAM . . . . . . . . . . . . . . . . 58
6.2 In Cylinder pressure data from OpenFOAM . . . . . . . . . . . . . . 58
6.3 In Cylinder temperature data from OpenFOAM . . . . . . . . . . . . 59
6.4 Volume data comparison . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.5 Pressure data comparison . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6 Close up of pressure about FTDC of different cycles . . . . . . . . . . 62
6.7 Pressure during exhaust phase . . . . . . . . . . . . . . . . . . . . . . 64

x



6.8 Velocity during exhaust phase . . . . . . . . . . . . . . . . . . . . . . 65
6.9 Velocity during intake phase . . . . . . . . . . . . . . . . . . . . . . . 66
6.10 Top view: Evolution of the swirl during intake phase . . . . . . . . . 67
6.11 Side view: Evolution of the swirl during intake phase . . . . . . . . . 68
6.12 Pressure behaviour during compression . . . . . . . . . . . . . . . . . 70
6.13 Temperature behaviour during compression . . . . . . . . . . . . . . . 71
6.14 Side view: Evolution of the swirl during compression phase . . . . . . 72

xi





Chapter 1

Introduction

Computation fluid dynamics (CFD) is an engineering tool used to simulate the
action of thermo-fluids in a system. It is used by many industries in their develop-
ment work to analyze, optimize and verify the performance of designs before costly
prototypes and physical tests. The application of CFD is rapidly expanding with
the growth in affordability of computational resources. It is becoming essential for
CFD solvers to provide validation and verification. Mesh related issues play a very
important role on accuracy and convergence. The means to achieve high fidelity
computational simulations of fluid dynamic phenomena is analyzed by considering
the various constituent parts of the simulation hierarchy including the mathematical
model of the physics, the numerical model, the computational model (including the
mesh), and most importantly the human in the loop.

1.1 CFD principles
Computational Fluid-Dynamics (CFD) is the development of methods and algo-
rithms that allow you to simulate the behavior of fluids in very complex phenomena.
This simulation consists in the numerical elaboration of complicated mathematical
models with the aim of studying the temporal evolution of the fluid through its
main fluid dynamic parameters: pressure, velocity, temperature and density. The
use of numerical processing in the design phase is essential in those situations where
it is necessary to study and analyze a large number of cases. For time-accurate
simulations, the initial conditions should closely correspond to what would occur in
nature.
The multi-dimensional models aim to solve the equations of conservation of: mass,
momentum, energy and chemical species according to the spatial dimensions of the
system and time, with the aim of predicting in detail (local and temporal) the fields
of motion of the fluid in the cylinder and the processes of combustion and heat

1



1 – Introduction

exchange, which depend on those. The fluid-dynamic processes that take place
inside the cylinder and through the intake and exhaust ports are typically three-
dimensional. Introducing three spatial coordinates, next to the temporal one, there
is a strong increase in the complexity of the model and in the necessary calculation
times.
Equations and notions of CFD calculation in detail are not the subject of this thesis.
Nevertheless, a summary of the theoretical basis will be presented below [8].
The governing equations of fluid flow represent mathematical statements of the con-
servation laws of physics:

• The mass of a fluid is conserved

• The rate of change of momentum equals the sum of the forces on a fluid particle
(Newton’s second law)

• The rate of change of energy is equal to the sum of the rate of heat addition
to and the rate of work done on a fluid particle (first law of thermodynamics)

The fluid will be regarded as a continuum. For the analysis of fluid flows at macro-
scopic length scales (say 1µm and larger) the molecular structure of matter and
molecular motions may be ignored. We describe the behavior of the fluid in terms
of macroscopic properties, such as velocity, pressure, density and temperature, and
their space and time derivatives. These may be thought of as averages over suit-
ably large numbers of molecules. A fluid particle or point in a fluid is then the
smallest possible element of fluid whose macroscopic properties are not influenced
by individual molecules.

1.1.1 Mass conservation in three dimensions
The first step in the derivation of the mass conservation equation is to write down
a mass balance for the fluid element:
Rate of increase of mass in fluid element = Net rate of flow of mass into fluid ele-
ment

∂ρ

∂t
+ div(ρu) = 0 (1.1)

Equation 1.1 is the unsteady, three-dimensional mass conservation or
continuity equation at a point in a compressible fluid. The first term on the
left hand side is the rate of change in time of the density (mass per unit volume). The
second term describes the net flow of mass out of the element across its boundaries
and is called the convective term.
For an incompressible fluid (i.e. a liquid) the density ρ is constant and equation
1.1 becomes:

2



1.1 – CFD principles

div(u) = 0 (1.2)

or in longhand notation:

∂u

∂x
+ ∂υ

∂y
+ ∂w

∂y
= 0 (1.3)

1.1.2 Momentum equation in three dimensions
Newton’s second law states that the rate of change of momentum of a fluid
particle equals the sum of the forces on the particle:
Rate of increase of momentum of fluid particle = Sum of forces on fluid particle
The rates of increase of x-, y- and z-momentum per unit volume of a fluid
particle are given by:

ρ
Du

Dt
, ρ

Dυ

Dt
, ρ

Dw

Dt
(1.4)

We distinguish two types of forces on fluid particles:

• surface forces

– pressure forces
– viscous forces
– gravity force

• body forces

– centrifugal force
– Coriolis force
– electromagnetic force

It is common practice to highlight the contributions due to the surface forces as
separate terms in the momentum equation and to include the effects of body forces
as source terms. The pressure, a normal stress, is denoted by p. Viscous stresses
are denoted by τ . The usual suffix notation τij is applied to indicate the direction
of the viscous stresses. The suffices i and j in τij indicate that the stress component
acts in the j- direction on a surface normal to the i-direction.
The total force per unit volume on the fluid due to the surface stresses is equal to
the sum of the net force in the x-direction divided by the volume δxδyδz:

∂(−p + τxx)
∂x

+ ∂τyx

∂y
+ ∂τzx

∂z
(1.5)

3



1 – Introduction

Without considering the body forces in further detail their overall effect can be
included by defining a source SMx of x-momentum per unit volume per unit time.
The x-component of the momentum equation is found by setting the rate
of change of x-momentum of the fluid particle 1.4 equal to the total force in the
x-direction on the element due to surface stresses 1.5 plus the rate of increase of
x-momentum due to sources:

ρ
Du

Dt
= ∂(−p + τxx)

∂x
+ ∂τyx

∂y
+ ∂τzx

∂z
+ SMx (1.6)

It is not too difficult to verify that the textbfy-component of the momentum equation
is given by

ρ
Dυ

Dt
= ∂τxy

∂x
+ ∂(−p + τyy)

∂y
+ ∂τzy

∂z
+ SMy (1.7)

and the z-component of the momentum equation by

ρ
Dw

Dt
= ∂τxz

∂x
+ ∂τyz

∂y
+ ∂(−p + τzz)

∂z
+ SMz (1.8)

The sign associated with the pressure is opposite to that associated with the normal
viscous stress, because the usual sign convention takes a tensile stress to be the
positive normal stress so that the pressure, which is by definition a compressive
normal stress, has a minus sign.
The effects of surface stresses are accounted for explicitly; the source terms SMx ,
SMy and SMz include contributions due to body forces only. For example, the body
force due to gravity would be modeled by SMx = 0, SMy = 0 andSMz = ρg.

1.1.3 Energy equation in three dimensions
The energy equation is derived from the first law of thermodynamics, which
states that the rate of change of energy of a fluid particle is equal to the rate of heat
addition to the fluid particle plus the rate of work done on the particle:
Rate of increase of energy of fluid particle = Net rate of heat added to fluid particle
+ Net rate of work done on fluid particle

As before, we will be deriving an equation for the rate of increase of energy
of a fluid particle per unit volume, which is given by

ρ
DE

Dt
(1.9)

Thus far we have not defined the specific energy E of a fluid. Often the energy of a
fluid is defined as the sum of internal (thermal) energy i, kinetic energy 1

2(u2+υ2+w2)
and gravitational potential energy. This definition takes the view that the fluid

4



1.1 – CFD principles

element is storing gravitational potential energy. It is also possible to regard the
gravitational force as a body force, which does work on the fluid element as it moves
through the gravity field.
Here we will take the latter view and include the effects of potential energy changes
as a source term. As before, we define a source of energy SE per unit volume per unit
time. Conservation of energy of the fluid particle is ensured by equating the rate of
change of energy of the fluid particle 1.9 to the sum of the net rate of work done on
the fluid particle, the net rate of heat addition to the fluid −div(q) = div(kgradT )
and the rate of increase of energy due to sources. If we use the Newtonian model for
viscous stresses in the internal energy equation we obtain after some rearrangement
:

ρ
Di

Dt
= −pdiv(u) + div(kgradT ) + ϕ + Si (1.10)

Where ϕ is the dissipation function.

1.1.4 Navier-Stokes equations for a Newtonian fluid
The governing equations contain as further unknowns the viscous stress components
τij. The most useful forms of the conservation equations for fluid flows are obtained
by introducing a suitable model for the viscous stresses τij. In many fluid flows the
viscous stresses can be expressed as functions of the local deformation rate or strain
rate. In three-dimensional flows the local rate of deformation is composed of the
linear deformation rate and the volumetric deformation rate.
All gases and many liquids are isotropic. Liquids that contain significant quantities
of polymer molecules may exhibit anisotropic or directional viscous stress properties
as a result of the alignment of the chain-like polymer molecules with the flow. Such
fluids are beyond the scope of this introductory course and we shall continue the
development by assuming that the fluids are isotropic.
In a Newtonian fluid the viscous stresses are proportional to the rates of
deformation. The three-dimensional form of Newton’s law of viscosity for com-
pressible flows involves two constants of proportionality: the first (dynamic) vis-
cosity, µ, to relate stresses to linear deformations, and the second viscosity, λ, to
relate stresses to the volumetric deformation. The nine viscous stress components,
of which six are independent, are :

τxx = 2µ
∂u

∂x
+ λdiv(u), τyy = 2µ

∂υ

∂y
+ λdiv(u), τzz = 2µ

∂w

∂z
+ λdiv(u) (1.11)

τxy = τyx = µ(∂u

∂y
+ ∂υ

∂x
), τxz = τzx = µ(∂u

∂z
+ ∂w

∂x
), τyz = τzy = µ(∂υ

∂z
+ ∂w

∂y
) (1.12)

5



1 – Introduction

Not much is known about the second viscosity λ, because its effect is small in
practice. For gases a good working approximation can be obtained by taking the
value λ = −2

3µ (Schlichting, 1979). Liquids are incompressible so the mass conser-
vation equation is div u = 0 and the viscous stresses are just twice the local rate
of linear deformation times the dynamic viscosity. Substitution of the above shear
stresses 1.11 and 1.12 into 1.6 yields the so-called Navier–Stokes equations, named
after the two nineteenth-century scientists who derived them independently.
The viscous stresses in the y- and z-component equations can be recast in a simi-
lar manner. We clearly intend to simplify the momentum equations by ‘hiding’ the
bracketed smaller contributions to the viscous stress terms in the momentum source.
The Navier–Stokes equations can be written in the most useful form for the devel-
opment of the finite volume method:

ρ
Du

Dt
= −∂(p)

∂x
+ div(µgrad(u) + SMx (1.13)

ρ
Dυ

Dt
= −∂(p)

∂y
+ div(µgrad(υ) + SMy (1.14)

ρ
Dw

Dt
= −∂(p)

∂z
+ div(µgrad(w) + SMz (1.15)

6



1.2 – Turbulence models

1.2 Turbulence models

For turbulent flows, the choice of turbulence models is a primary choice to be made,
based on the simulation needs. If a turbulence closure can be chosen just based on its
suitability for modeling certain physical phenomena, it will be a very good situation
indeed. However, often the practitioner may weigh in the robustness of the model
in choosing one. The robustness is strongly tied to both the model itself and its
numerical implementation. Depending on what model is chosen, the corresponding
variables will have to be defined.
Turbulence causes the appearance in the flow of eddies with a wide range of length
and time scales that interact in a dynamically complex way. Given the importance
of the avoidance or promotion of turbulence in engineering applications, it is no
surprise that a substantial amount of research effort is dedicated to the development
of numerical methods to capture the important effects due to turbulence [8].

1.2.1 Direct Numerical Simulations (DNS)

The direct simulation DNS (acronym of the term Direct Numerical Simulations) re-
quires that the description of the phenomenon, (behavior of a fluid) occurs through
the complete numerical resolution of the Navier-Stokes equations, with all the equa-
tions necessary to close the problem and without the need to introduce sub-models
of turbulence or hypotheses. In order to describe the dynamics of the turbulent flow
up to the smallest space-time scales, it is necessary that the calculation domain and
the time length of the phenomenon are divided into very small intervals. This is due
to the fact that in a turbulent motion the diffusion and dissipation of mechanical
energy are entrusted to microscopic structures with very short characteristic times,
independent of the spatial and temporal scales of the average motion.
All this translates into the need for very high potential of computers to carry out
direct simulation. The DNS also requires very small calculation grids (in the order
of the Kolmogorov length scales: 0.01-0.05 mm) and currently this type of simula-
tion can be performed with very low Reynolds numbers, to have calculation times
that, while remaining long, are dignified. If we raise the number of Reynolds the
times of calculation grow exponentially and become unsustainable, as well as the
costs. For these reasons, direct simulation is confined to low Reynolds numbers and
simple geometries. This is therefore not applied on an industrial level, also because
industrial applications do not require such a high level of precision. The use of
direct simulation for existing applications in reality, and not only at the research
level, remains a long-term goal.

7



1 – Introduction

1.2.2 The LES (Large Eddy Simulation)

The LES (Large Eddy Simulation) simulation technique is an intermediate level
between direct simulation and RANS modeling. It consists in directly simulating
the larger vortex structures, through a grid that is sufficiently dense while the smaller
structures are modeled. The larger structures have a convective nature at relatively
high Reynolds numbers and scales comparable to those of the medium motion. They
have origin and typology deriving from those of the medium motion, from which they
extract energy to produce turbulent kinetic energy, are linked to the geometry and
are generally anisotropic.
It is therefore necessary to simulate directly the vortices of large and medium scale
and model those of smaller scales. In this way a universal methodology is built
to deal with the problem, because the modeled structures are independent of the
geometry. The derivation of the LES equations is similar to that of the equations of
the RANS modeling with the difference that for the LES simulation with respect to
the RANS one must carry out an operation of spatial filtering instead of temporal.
An example of this last operation comes made in the phase of generation of the
grate, in which are generated of the grids of calculation that are not in a position to
simulate the smallest vortexsities, in how much too great, because in the contrary
case a direct simulation would be carried out.

1.2.3 The Reynolds-averaged Navier–Stokes equations (RANS
equations)

Attention is focused on the mean flow and the effects of turbulence on mean flow
properties. Prior to the application of numerical methods the Navier–Stokes equa-
tions are time averaged (or ensemble averaged in flows with time-dependent bound-
ary conditions). Extra terms appear in the time-averaged (or Reynolds- averaged)
flow equations due to the interactions between various turbulent fluctuations. These
extra terms are modeled with classical turbulence models: among the best known
ones are the k–σ model and the Reynolds stress model. The computing resources
required for reasonably accurate flow computations are modest, so this approach
has been the mainstay of engineering flow calculations over the last three decades.
For most engineering purposes it is unnecessary to resolve the details of the turbu-
lent fluctuations. CFD users are almost always satisfied with information about the
time-averaged properties of the flow (e.g. mean velocities, mean pressures, mean
stresses etc.). Therefore, the vast majority of turbulent flow computations has been
and for the foreseeable future will continue to be carried out with procedures based
on the Reynolds-averaged Navier–Stokes (RANS) equations.
It has become clear from our discussions of simple turbulent flows that turbulence

8



1.2 – Turbulence models

levels and turbulent stresses vary from point to point in a flow. Mixing length mod-
els attempt to describe the stresses by means of simple algebraic formulae for µt as
a function of position. The k–σ model is a more sophisticated and general, but also
more costly, description of turbulence which allows for the effects of transport of
turbulence properties by convection and diffusion and for production and destruc-
tion of turbulence.
Two transport equations (PDEs), one for the turbulent kinetic energy k and a fur-
ther one for the rate of dissipation of turbulent kinetic energy ϵ, are solved.
The underlying assumption of both these models is that the turbulent viscosity µt

is isotropic: in other words that the ratio between Reynolds stress and mean rate
of deformation is the same in all directions. This assumption fails in many complex
flows where it leads to inaccurate predictions. Here it is necessary to derive and
solve transport equations for the Reynolds stresses themselves. It may at first seem
strange to think that a stress can be subject to transport. However, it is only nec-
essary to remember that the Reynolds stresses initially appeared on the left hand
side of the momentum equations and are physically due to convective momentum
exchanges as a consequence of turbulent velocity fluctuations. Fluid momentum –
mean momentum as well as fluctuating momentum – can be transported by fluid
particles and therefore the Reynolds stresses can also be transported.
The six transport equations, one for each Reynolds stress, contain diffusion, pres-
sure–strain and dissipation terms whose individual effects are unknown and cannot
be measured. In Reynolds stress equation models (also known in the literature as
second-order or second-moment closure models) assumptions are made about these
unknown terms, and the resulting PDEs are solved in conjunction with the trans-
port equation for the rate of dissipation of turbulent kinetic energy ϵ. The design
of Reynolds stress equation models is an area of vigorous research, and the models
have not been validated as widely as the mixing length and k–σ model. Solving the
seven extra PDEs gives rise to a substantial increase in the cost of CFD simulations
when compared with the k–σ model, so the application of Reynolds stress equation
models outside the academic fraternity is relatively recent.
A much more far-reaching set of modeling assumptions reduces the PDEs describing
Reynolds stress transport to algebraic equations to be solved alongside the k and σ
equations of the k–σ model. This approach leads to the algebraic stress models that
are the most economical form of Reynolds stress model able to introduce anisotropic
turbulence effects into CFD simulations [8].

9



1 – Introduction

1.3 Charge motion within the cylinder
Gas motion within the engine cylinder is one of the major factors that controls the
combustion process in SI engines and the fuel-air mixing and combustion processes
in diesel engines. It also has a significant impact on heat transfer. In 2stroke engines
the flow details in inlet and exhaust port as well as in the cylinder also govern the
scavenging process. The initial in-cylinder flow pattern is set up by the intake
process. It may then be substantially modified during compression.

1.3.1 Swirl
The swirl vortex is an organized rotation of the charge about the cylinder axis.
Swirl is created during the induction stroke, by bringing the intake flow into the
cylinder with an initial angular momentum, for instance by means of either ‘directed
ducts’ (1.2a) or ‘helical ports’ (1.2b).
The directed port brings the flow toward the valve opening in the desired tangential
direction. Its passage is straight, which due to other cylinder head requirements
restricts the flow area and results in a relatively low discharge coefficient.
The helical port uses the port inner side wall to force the flow preferentially through
the outer periphery of the valve opening, in a tangential direction. Since only one
wall is used to obtain a directional effect, the port areas are less restrictive.

10



1.3 – Charge motion within the cylinder

(a) Directed ducts
(b) Helical ports

While some decay in swirl due to friction occurs during engine cycle, intake gen-
erated swirl usually persists through the compression, combustion, and expansion
processes. In engine designs with bowl-in-piston combustion chambers, the rota-
tional motion set up during intake is substantially amplified during compression.
Swirl is used in diesels and some stratified-charge engine concepts to promote more
rapid mixing between the inducted air charge and the injected fuel. Swirl is also
used to speed up the combustion process in SI engines and to improve scavenging
in 2stroke engines.
The angular momentum of the air, which enters the cylinder at each crank angle
during induction, decays throughout the rest of the intake process and during the
compression process due to friction at the walls and turbulent dissipation within the
fluid. Typically one-quarter to one-third of the initial moment of momentum about
the cylinder axis will be lost by top-center at the end of compression. However, swirl
velocities in the charge can be substantially increased during compression by suit-
able design of the combustion chamber. In many designs of direct-injection diesel
combustion systems, air swirl is used to obtain much more rapid mixing between
the fuel injected into the cylinder and the air than would occur in the absence of
swirl. The tangential velocity of the swirling airflow set up inside the cylinder dur-
ing induction is substantially increased by forcing most of the air into a compact
bowl-in-piston combustion chamber, usually centered on the cylinder axis, as the
piston approaches its top-center position. Neglecting the effects of friction, angular
momentum is conserved: so as the moment of inertia of the air is decreased, its
angular velocity must increase (however, the total angular momentum of the charge
within the cylinder decays due to friction at the chamber walls).

11



1 – Introduction

1.3.2 Tumble
Tumble is an organized vortex about an axis that is perpendicular to the cylinder
one. It is used mainly in SI engines in order to enhance turbulence prior to the
spark discharge.
In fact, tumble is generated during expansion and, provided that it is strong enough,
it is ‘accelerated’ during the first part of the compression stroke. Tumble is then
destroyed near TDC, and converted into turbulence energy at small scales.

12



Chapter 2

OpenFOAM

In this section will be introduced the software used for this simulation, the differ-
ence with commercial software listing strengths and weaknesses. Understanding the
structure and operation of the program is essential in order to successfully complete
a reliable simulation.

Figure 2.1: OpenFOAM logo

OpenFOAM (for "Open-source Field Operation And Manipulation") is a C++ tool-
box for the development of customized numerical solvers, and pre-/post-processing
utilities for the solution of continuum mechanics problems, most prominently in-
cluding computational fluid dynamics (CFD).
OpenFOAM is the leading free, open source software for computational fluid dynam-
ics (CFD), owned by the OpenFOAM Foundation and distributed exclusively under
the General Public Licence (GPL). The GPL gives users the freedom to modify and
redistribute the software and a guarantee of continued free use, within the terms of
the license.
OpenFOAM is developed and maintained by individuals who contribute their work
to the project, with the support and consent of the companies that employ them.
The project operates through a network of trust between the individuals, where
greater authority is given to contributors who consistently produce high quality
work and demonstrate long term commitment [1].

13



2 – OpenFOAM

In the list below I have collected some advantages and disadvantages that I be-
lieve are relevant in the choice of a CFD software [2].

Advantages:

• Friendly syntax for partial differential equations

• Fully documented source code

• Unstructured polyhedral grid capabilities

• Automatic parallelization of applications written using OpenFOAM high-level
syntax

• Wide range of applications and models ready to use

• Commercial support and training provided by the developers

• No license costs

Disadvantages:

• The development community suffers from fragmentation, giving rise to numer-
ous forked projects.

• Absence of an integrated graphical user interface (stand-alone open-source and
proprietary options are available)

• The Programmer’s guide does not provide sufficient details, making the progress
slow if you need to write new applications or add functionality

2.1 Get Started
A CFD simulation usually consists of the steps of pre-processing, flow field compu-
tation and post-processing. The pre-processing includes above all the preparation,
meshing and definition of the flow area of the CFD model. In the next step, the
calculation is carried out with the previously defined boundary conditions. In post-
processing, data can be evaluated through sampling or visually evaluated through
a third-party program (ParaView).

14



2.1 – Get Started

2.1.1 Pre-processing
Often the starting point for a CFD simulation is the creation of geometry using CAD
software. Having a defect-free geometry is the basis for avoiding numerous errors
during the Mesh phase and consequently the subsequent phases of the simulation.
If the geometry is supplied by a third party or downloaded from the Internet, it is
necessary to verify it. In this case I used a popular open source program: Blender.
To create the Mesh I used an OpenFOAM utility: snappyHexMesh.
The preparation of the geometry and the Mesh will be explained in detail in a
dedicated chapter because often from them depends the reliability of the results.

2.1.2 Case structure
OpenFOAM cases are configured using several plain text input files located across
the three directories [3]:

1. system

• controlDict
• fvSchemes
• fvSolution
• fvOptions (optional)
• <system dictionaries>

2. constant

• polyMesh
• <constant dictionaries>

3. <initial time directory>

• <field files>

4. Additional directories can be generated, depending on user selections. These
may include:

• <result time directories>: field predictions as a function of iteration
count or time

• postProcessing: data typically generated by function objects
• data conversion, e.g. VTK

15



2 – OpenFOAM

2.1.3 snappyHexMesh
This section describes the mesh generation utility, snappyHexMesh, supplied with
OpenFOAM. The snappyHexMesh utility generates 3-dimensional meshes contain-
ing hexahedra (hex) and split-hexahedra (split-hex) automatically from triangulated
surface geometries, or tri-surfaces, in Stereolithography (STL) or Wavefront Object
(OBJ) format. The mesh approximately conforms to the surface by iteratively re-
fining a starting mesh and morphing the resulting split-hex mesh to the surface. An
optional phase will shrink back the resulting mesh and insert cell layers. The spec-
ification of mesh refinement level is very flexible and the surface handling is robust
with a pre-specified final mesh quality. It runs in parallel with a load balancing step
every iteration [4].

Figure 2.2: snappyHexMesh workflow

16



2.1 – Get Started

This utility includes:

• creation of the background mesh using the blockMesh utility (or any other
hexahedral mesh generator). The following criteria must be observed:

1. The mesh must consist purely of hexes.
2. The cell aspect ratio should be approximately 1, at least near the STL

surface.
3. There must be at least one intersection of a cell edge with the STL surface

• extraction of features on the surfaces with surfaceFeatureExtract utility from
the geometry files in STL format.

1. The STL geometry can be obtained from any geometry modeling tool.
2. The STL file can be made up of a single surface describing the geometry,

or multiple surfaces that describe the geometry.
3. In the case of a STL file with multiple surfaces, we can use local refinement

in each individual surface. This gives us more control when generating
the mesh.

4. The STL geometry is always located in the directory constant/triSurface

• setting up the snappyHexMeshDict input dictionary

• running snappyHexMesh in serial or parallel

Meshing controls are set in the snappyHexMeshDict located in the case system
directory. This has five main sections, described by the following:

• geometry: specification of the input surfaces

• castellatedMeshControls: starting from any pure hex mesh, refine and option-
ally load balance when running in parallel. The refinement is specified both
according to surfaces, volumes and gaps

• snapControls: guaranteed mesh quality whilst morphing to geometric surfaces
and features

• addLayersControls: prismatic layers are inserted by shrinking an existing mesh
and creating an infill, subject to the same mesh quality constraints

• meshQualityControls: mesh quality settings enforced during the snapping and
layer addition phases

• Global settings

17



2 – OpenFOAM

Figure 2.3: snappyHexMeshDict layout

2.2 Solvers
OpenFOAM has suitable solvers for different flows and since OpenFOAM is an open
source software, you can also create your own solvers and extensions. The LibICE
is such an extension, which was developed by the Polytechnic of Milan (Politecnico
di Milano), for the improved network movement with the simulation of combustion
engines. Above all, this extension makes it possible to perform a valve movement
during the calculations. This is necessary to be able to simulate a complete work-
ing cycle including charge change. Note that this extension is compatible with the
OpenFOAM versions 2.2.2 and 2.2.x. Thus the solver ivkEDCsprayEngineFoam is
also a solver developed at the Institut für Verbrennungsmotoren und Kraftfahrwesen
Lehrstuhl Fahrzeugantriebe (IVK) of the University of Stuttgart, which was devel-
oped as part of a final thesis. This implements the Solver SprayFoam in LibICE
and enables the simulation of direct injection engines.

18



Chapter 3

Pre-processing

In this chapter will be listed all the necessary steps of the preparation for the actual
calculation: the pre-processing. This includes the creation of the geometry, the
creation of the different meshes necessary for the calculation and the definition
of the boundary conditions. The creation of the Meshes in particular is directly
connected to the stability of the calculation, to the time of the simulation and to
the precision of the results. The ECN test-bed engine will be examined in order to
reproduce the experimental results.

3.1 Geometry

3.1.1 The ECN test-bed engine
The ECN (Engine Combustion Network) is an international collaboration among ex-
perimental and computational researchers in engine combustion [5]. The objectives
of this network are:

1. Establish an internet library of well-documented experiments that are appro-
priate for model validation and the advancement of scientific understanding of
combustion at conditions specific to engines.

2. Provide a framework for collaborative comparisons of measured and modeled
results.

3. Identify priorities for further experimental and computational research.

The engine under investigation is small-bore, swirl-supported diesel research en-
gine. Browsing the repository of the ECN site we can easily download engine ge-
ometry files needed for CFD simulations, as well as for experimental data used to
evaluate CFD simulation results at this page: https://ecn.sandia.gov/engines/

19

https://ecn.sandia.gov/engines/small-bore-diesel-engine/
https://ecn.sandia.gov/engines/small-bore-diesel-engine/


3 – Pre-processing

small-bore-diesel-engine/ The cylinder head is from a GM 1.9L, light-duty
diesel engine. Two piston geometries are available: re-entrant and stepped-lip. The
piston used in this work will be the conventional re-entrant, shown in Figure 4.1.
The engine data are listed in the Table 3.1.

(a) 3D view of the piston with valve cutouts

(b) Piston section

Figure 3.1: Conventional re-entrant piston

20

https://ecn.sandia.gov/engines/small-bore-diesel-engine/
https://ecn.sandia.gov/engines/small-bore-diesel-engine/


3.1 – Geometry

Property Value Dimension
Bore 82 [mm]

Stroke 90.4 [mm]
Rod length 166,67 [mm]

Displacement volume 0,477 [L]
Bowl volume 23442,51 [mm3]

Cycle 4 [-]
Geometric compression ratio rc 16.7:1 [-]

Squish height 1,09 [mm]
Piston geometry Re-entrant (with valve cut-outs) [-]

Intake / Exhaust valves 2/2 [-]

Table 3.1: GM 1.9L Engine Geometry

Figure 3.2: Longitudinal section of the Original STL file.

21



3 – Pre-processing

To prove the reliability of OpenFOAM, the engine geometry will not be modified
or simplified. It represents a true representation of the real model.
The original geometry in STL format provided by ECN in the Figure 4.6 includes,
at the intake and exhaust manifolds, large volume containers in order to simulate
the external environment. Since they are not necessary for CFD calculation and
increase the number of cells that will compose the Mesh, these containers will not
be considered, positioning the inlet and the outlet port at the ends of the manifolds,
see Figure 3.3.

Figure 3.3: Orthogonal view of the modified CAD geometry.

As is often the case with many engines with 4 valves per cylinder, tangential
ports and helical ports are combined to create swirl within the cylinder. The intake
manifold of this engine is equipped with Swirl Flap to change the swirl ratio inside
the cylinder according to the operating points. In this experiment we will operate
the engine in wide-open flaps position as shown in the Figure 3.4.

22



3.1 – Geometry

Figure 3.4: Top view of the single-cylinder light duty engine with steady-state swirl
ratio of 2.2.

In order to create the part movement that occurs during a complete work cycle,
it is necessary to create part files in STL format for each component. The entire
assembly is divided into 13 parts listed and shown in Figure 3.5:

1. piston

2. liner

3. cylinderHead

4. Inlet

5. Outlet

6. Wall_inl

7. Wall_exh

8. Valve_stem_exh

9. Valve_stem_inl

10. Valve_top_exh

11. Valve_top_inl

12. Valve_bottom_exh

13. Valve_bottom_inl

23



3 – Pre-processing

(a) Engine assembly

(b) Valve assembly

Figure 3.5: Components

24



3.1 – Geometry

3.1.2 Waterproof surfaces
I experienced the necessity of a good surface triangulation while using snappy-
HexMesh with this particular geometry downloaded from the ECN site. Based
on the experience of other colleagues, this problem does not arise if the geometry is
simple and is created from the scratch. Nevertheless, I have found that other users
using SHM had to deal with problematic surfaces. Most people are using common
CAD software packages and export single surfaces as STL files. These STL files
have two big problems, if they represent a closed volume [6]:

• If the whole model is exported, the volume is closed, but the triangulation is
very bad (see Figure 3.6a);

• If you export the model in several steps (several STL’s), the connected edges
share not the same points (never be waterproof; see Figure 3.7a)

(a) STL file with bad triangulation (b) STL file with good triangulation

Figure 3.6: Top view of cylinderHead

25



3 – Pre-processing

(a) Gaps between different STL files (b) Waterproof closed volume

Figure 3.7: 3D-view of the intersection between cylinderHead and liner

Both (and especially the second one) influences the mesh generation tremen-
dously. The good thing is that in some case it does not matter as mentioned before
. The bad thing is, that you could really get unexpected results. Some of them
were:

• snapping problems

• due to snap problems the layer generation was influenced too

• other unexpected behavior with refinement, snapping and zones

• Finally it could happend that snappyHexMesh can not recognize which fluid
domain should be used (no cells will be removed, this happen due to gaps)

To avoid this I highly recommend to use:

1. a nice triangulated surface for each patch (see Figure 3.6b).

2. a water proofed STL if it represent a closed surface (that means the shared
edges have to be identical for each STL).

For this purpose I used a free CAD software called BLENDER, a valid alternative
could be SALOMONE.
However, when the faces are very elaborate, fixing the surface may be too time-
consuming. SnappyHexMesh can be used instead. The result is not as accurate as
the triangulation using Salome but finally you will end up with a waterproofed STL.
In order to do that, the non-closed STL file has to be meshed as accurate as it can

26



3.2 – Different geometries creation

be.
Once the snapped mesh is obtained, the following command 3.1 will transform the
unique surface edges extracted in a STL file resulting in a 100% waterproofed STL
(as shown in Figure 3.7b) and the surfaces can be refined as much as the user wants
without moving into a danger zone (cell size is small enough that snappyHexMesh
will realize the gaps).

Listing 3.1: Command
#!/bin/sh
# Source tutorial run functions
. $WM_PROJECT_DIR/bin/tools/RunFunctions

runApplication blockMesh
runApplication decomposePar
runApplication mpirun -np 4 snappyHexMesh -overwrite -parallel
runApplication reconstructParMesh -constant
rm -r processor*
runApplication checkMesh
surfaceMeshTriangulate myNewSurface.stl

3.2 Different geometries creation
Since multiple meshes are required in order to calculate a work cycle, the appropriate
geometry for each mesh is also required. However, it is difficult to determine from
the beginning which positions of the engine crank angle require a mesh, which is
why it makes sense to create geometries at a distance of one degree of crank angle.
By convention we will use 0 to 720 CA. In which the 0 and 720 correspond to the
beginning of the power stroke (piston at TDC and all valve closed).
For this reason another thesisist at IVK developed a procedure that allows, with
the help of Bash scripts in Linux environment, to create geometries at the distance
of one degree crank angle. For this purpose the surfaceTransformPoints utility is
used, which allows different manipulations of STL files.
Before editing STL files, the names inside the STL file must be adapted. Before
proceeding, make sure that the name in the STL file matches the name assigned to
the file (i.e. in Listing 3.2).

27



3 – Pre-processing

Listing 3.2: Example of STL file
solid cylinderHead
facet normal -0.749118 -0.662302 -0.0133178
outer loop
vertex -0.0318761 -0.0258009 0.107105
vertex -0.0318621 -0.0258091 0.106733
vertex -0.0316401 -0.0260609 0.106759

endloop
endfacet

[...]

facet normal -0.622957 0.781525 -0.0338266
outer loop
vertex 0.0231458 0.0334396 0.107901
vertex 0.0232348 0.0334884 0.107391
vertex 0.0229085 0.033601 0.107865

endloop
endfacet

endsolid cylinderHead

The next step is to check the file sizing. Since most CAD systems work in
millimeters, but OpenFOAM works in meters, the geometry for the OpenFOAM
application could be scaled incorrectly. If this is not evident from the STL file,
the file can be opened in Paraview and the size of the loaded part is displayed in
the Information tab of the Object Inspector. Paraview displays the dimensions in
meters here. If a scale is required, this can be done using the surfaceTransformPoints
command with the -scale option. With this (Listing 3.3) procedure all components
can be scaled to the correct unit.

Listing 3.3: Command to scale
surfaceTransformPoints -scale "(0.001 0.001 0.001)" cylinderHead.stl

cylinderHead.stl

28



3.2 – Different geometries creation

Once the files have been named and scaled correctly, you can actually create
the geometry. Creating geometry is scripted in a Geometry folder that contains the
following folder structure (Figure 3.8):

Figure 3.8: Geometry folder structure

• The 13 components of the initial geometry must be placed in the Init_Geometry.

• The folder Movement contains 3 .txt files:

– movePiston.txt
– moveExhaustValve.txt and moveIntakeValve.txt

• The Create_Engine script creates additional folders and copies into them the
corresponding components:

– Fixed_Geometry: contains all fixed parts such as the cylinderHead, liner,
Inlet, Outlet, Wall_inl, Wall_exh.

– Piston: contains the piston for each CA. The appropriate value is read
from the corresponding file in the Movement folder and the component
is moved using the surfaceTransformPoints command.

– Valve_exh: Contains all components of the exhaust valve for each CA.
– Valve_inl: Contains all components of the intake valve for each CA.

• The Skripte folder contains piston and valve displacement sequences per-
formed by Create_Engine script.

The movePiston.txt specifies the distance of the piston from the TDC (sα) during
a complete work cycle. The value corresponding to the single CA can be determined
by the equation 3.1 [7]:

sα = r(1 − cos(α) + r

4l
(1 − cos(2α)) (3.1)

A quick way to quickly calculate and directly write the .txt file is to use code
3.4 using MATLAB from which we will get the values shown in the Figure 3.9.

29



3 – Pre-processing

Listing 3.4: movePiston.txt creation
clear all
close all
clc

lk=166.6748*10^-3; %conrod lenght
ls=0.271187; %throw/rodLength
rk=lk*ls; %crank throw
alpha=0; %crank angle

for i=1:721
s(i)=rk*(1-cos(deg2rad((alpha)))+(ls/4)*(1-cos(2*deg2rad(alpha))));
alpha=alpha+1;

end

%write data on .txt file
fileID = fopen(’movePiston.txt’,’w’)
fprintf(fileID,’%f\n’,s)
fclose(fileID)

Figure 3.9: Piston distance from TDC

30



3.2 – Different geometries creation

Data on valve lifts can be found in the documentation provided by ECN. In
this specific case, to obtain a value for each CA, fitting curves have been made. In
addition, the original Valve lifting involved valve overlap and too small lift values
that would have required too fine mesh and therefore too long simulation time. For
this reason, all values lower than 0.7 mm were discarded (Listing 3.5).

Listing 3.5: moveIntakeValve.txt creation
%intake valves

y= xlsread(’Valve lift data.xlsx’,’Rearranged’,’J2:J654’)*10^-3;
x= xlsread(’Valve lift data.xlsx’,’Rearranged’,’I2:I654’);
x_new=0:1:720;
y_new=interp1(x,y,x_new);
lift=y_new’;

for i=1:721
if lift(i,1)<0.0007 % all the values lower than this are thrown away

lift(i,1)=0;
else
end

end

lift(1,1)=0;
lift(721,1)=0;
fileID = fopen(’moveIntakeValve.txt’,’w’);
fprintf(fileID,’%f\n’,lift);
A = importdata(’moveIntakeValve.txt’);
fclose(fileID);

Valve movement Crank Angle [°]
Exhaust valves opening 144
Exhaust valves closing 348
Intake valves opening 374
Intake valves closing 556

Table 3.2: Valves intake/closing points

The piston and valve displacement sequences executed by the Create_Engine
script stored in the Script folder are executed one after the other. The appropriate
value is read from the corresponding file in the Movement folder and the component
is moved using the surfaceTransformPoints command.

31



3 – Pre-processing

Figure 3.10: Valve lift data

The valves are rotated in the vertical direction with the -rollPitchYaw option before
the translation movement, then moved along the Z axis and rotated again in the
original direction (as in Listing 3.6).
Finally, a folder is created for each crank angle and the pistons and valves corre-
sponding to the fixed components are merged into an Engine.stl file using the cat
(Listing 3.7) command and stored in the corresponding folder.

Listing 3.6: Valve lifting command example
surfaceTransformPoints -rollPitchYaw "(0 -"$Valve_angle" 0)"

Valve_top_inl.stl Valve_top_inl1.stl
surfaceTransformPoints -translate "(0 0 -"$displacement")"

Valve_top_inl1.stl Valve_top_inl2.stl
surfaceTransformPoints -rollPitchYaw "(0 "$Valve_angle" 0)"

Valve_top_inl3.stl "$CA"_Valve_top_inl.stl

Listing 3.7: cat command
cat Fixed_Geometry/*.stl Piston/"$CA"_piston.stl Valve_exh/"$CA"_*.stl

Valve_inl/"$CA"_*.stl > Engine.stl

32



Chapter 4

Mesh creation

At this point we should have a perfect geometry that allows the user to take full
advantage of all the features of the reference utility: snappyHexMesh.
As mentioned in the introductory chapter of OpenFOAM, the accuracy and reliabil-
ity of the calculation depend on the number of cells that make up the Mesh. On the
other hand, a high number of cells significantly prolongs the calculation time. It is
therefore necessary to find the right compromise between precision and calculation
time, and consequently adapt the mesh to the different geometries. For this purpose
we will use another script created at the IVK that, however, did not include the use
of SHM and therefore was adapted by me to use this utility.

4.1 Different geometries refinement
As introduced in chapter two, the first step is to create the blockMeshDict (see
Listing 4.1) in order to create a block of hexagonal cells that totally envelopes our
Engine.stl file.
It is not important to create a refined block, as the cells will be re-finished via SHM.
It is convenient to create square cells to have as uniform a region as possible.
The boundaries will also be specified later.

33



4 – Mesh creation

Listing 4.1: blockMeshDict creation
/*--------------------------------*- C++

-*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 4.0 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object blockMeshDict;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * //

convertToMeters 1;

//These vertices define the block below. It envelopes the stl files. The
block can be even bigger than the stl files

//Watch out if the stl files are created in mm or m!

vertices
(

( -0.287 -0.088 -0.02)
( 0.380 -0.088 -0.02)
( 0.380 0.064 -0.02)
( -0.287 0.064 -0.02)
( -0.287 -0.088 0.277)
( 0.380 -0.088 0.277)
( 0.380 0.064 0.277)
( -0.287 0.064 0.277)

);

blocks
(

hex (0 1 2 3 4 5 6 7) (68 20 34) simpleGrading (1 1 1)
);

edges

34



4.1 – Different geometries refinement

(
);

boundary
(

allboundary//Don’t worry about these settings
{

type patch;
faces
(

(3 7 6 2)
(0 4 7 3)
(2 6 5 1)
(1 5 4 0)
(0 3 2 1)
(4 5 6 7)

);

}

);

//
*************************************************************************
//

The second step is to create the surfaceFeatureExtractDict simply as shown in
Listing 4.2.

35



4 – Mesh creation

Listing 4.2: surfaceFeatureExtractDict creation
/*--------------------------------*- C++

-*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 4.0 |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object surfaceFeatureExtractDict;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * //

//JN: Here we define, which edges we want to use as features for the
geometry. Usually we use all of them

Engine.stl
{

extractionMethod extractFromSurface;

extractFromSurfaceCoeffs
{

includedAngle 180;
}

writeObj yes;
}

//
*************************************************************************
//

36



4.1 – Different geometries refinement

The final step is to create the different snappyhexMeshDict because, depending
on the positions of the piston and valves, the size of the cells in the Mesh must be
differently shaped (see Table 4.1).

Dictionary Condition
snappyHexMeshDictVC All valves closed
snappyHexMeshDictFE Fine mesh around Exhaust valve bottoms
snappyHexMeshDictCE "Course" mesh around Exhaust valve bottoms
snappyHexMeshDictFI Fine mesh around Intake valve bottoms
snappyHexMeshDictCI "Course" mesh around Intake valve bottoms

Table 4.1: Different snappyHexMeshDict

When one of the valves (exhaust or intake) opens, the space between the valve
bottom and the valve seat is very small and requires a very dense mesh in that
region. The valve will then open more and more, so a narrow mesh is no longer
necessary.
When both valves are closed, a refinement of the valve area is unhelpful. However,
a refinement suitable for the cylinder head must be considered as when the piston
is at the TDC (i.e. power stroke) the squish height is very small (about 1mm).

37



4 – Mesh creation

Now, referring to the structure shown in the Figure (2.3), the geometry must be
inserted as follows:

Listing 4.3: Geometry in snappyHexMeshDict
geometry
{

Engine.stl // name of the stl file
{

type triSurfaceMesh;
regions
{

cylinderHead // Named region in the STL file
{

name cylinderHead; // User-defined patch name
}

[...]

}
}
//refinement_box
//{
// type searchableBox; // region defined by bounding box
// min (-0.043 -0.043 0.105);
// max (0.043 0.043 0.110);
//}

};

38



4.1 – Different geometries refinement

4.1.1 Valve closed refinement

When setting the Dict, always consider the most critical geometry. In the case where
both valves are closed, the geometry to be considered is when the piston is at the
TDC and therefore, in this case, the space between the piston and the cylinder head
is 1.09 mm.
For this reason we have to refine as follows:

Listing 4.4: Refinement in VC Dict
refinementSurfaces

{

Engine.stl//JN: name of the stl file
{

level (2 2); //tutto 2
regions
{

cylinderHead
{

level (4 4);
}
piston
{

level (3 3);
}
Wall_inl
{

level (3 3);
}
Wall_exh
{

level (3 3);
}
Valve_bottom_inl
{

level (4 4);
}
Valve_bottom_exh
{

level (4 4);
}

}

39



4 – Mesh creation

}

}

An alternative could be to introduce in the geometry a refinement box section and
then enter our parameters in refinementRegions.

refinementRegions
{

box_head
{
mode inside;
levels ((1 4));
}

}

In this way we will have a Mesh without issues when the piston is at the TDC
(Figure 4.1a) and also when it is close to the BDC (Figure 4.1b). As we can see
from the images the cells gradually become larger when they move away from our
points of interest. This allows us to decrease the total number of cells and therefore
the simulation time. How gradually we set it through nCellsBetweenLevels.

40



4.1 – Different geometries refinement

(a) Valve closed Mesh at 0° CA

(b) Valve closed Mesh at 557° CA

(c) Valve closed Mesh bottom view

Figure 4.1: Valve closed Mesh

41



4 – Mesh creation

4.1.2 Valve bottoms fine refinement
This Mesh is the one that requires the highest degree of refinement, as it will include
all geometries where the valve lift is between 0.7 mm and 2 mm.
Clearly the Dict for intake valves are distinct from those for exhaust valves, but
they are finished in a specular manner.
Since a high level of refinement substantially increases the number of cells, it is
essential to try to limit the area in question as much as possible. In addition, when
the valve opens the inlet and outlet air will also bag the final part of the intake
and exhaust ducts and the valve stem. For this reason it is necessary to refine
the surrounding areas as well. In this case I used the box refinement: box_valve
that includes also the valve stem and box_special that includes only the small gap
between the valve bottom and the valve seat.

refinementSurfaces
{

Engine.stl//JN: name of the stl file
{

level (2 2); //all the other surfaces 2
regions
{

cylinderHead
{

level (4 4);
}

piston
{

level (3 3);
}

}
}

}

refinementRegions
{

box_valve
{
mode inside;
levels ((1 3));
}

42



4.1 – Different geometries refinement

box_special
{

mode inside;
levels ((1 6));

}
}

(a) Cylinder section at 348° CA

(b) Close-up of exhaust valve

Figure 4.2: Fine exhaust Mesh

43



4 – Mesh creation

(a) Cylinder section at 374° CA

(b) Close-up of intake valve

Figure 4.3: Fine intake Mesh

44



4.1 – Different geometries refinement

4.1.3 Valve bottoms "course" refinement
While the fine mesh will only cover a few cases in our cycle, this mesh will cover a
much higher number of cases. This is why we prefer to have a lighter mesh. Setting
and images are shown below.

refinementSurfaces
{

Engine.stl//JN: name of the stl file
{

level (2 2); //tutto 2
regions
{

cylinderHead
{

level (4 4);
}
Valve_bottom_exh
{

level (3 3);
}

}
}

}

refinementRegions
{

box_valve
{
mode inside;
levels ((1 3));
}

box_special
{

mode inside;
levels ((1 3));

}
}

45



4 – Mesh creation

(a) Cylinder section at 300° CA

(b) Cylinder section at 402° CA

Figure 4.4: Course exhaust and intake Mesh

46



4.2 – Mesh Generation script

4.2 Mesh Generation script

Figure 4.5: Run folder structure

In the course of a complete work cycle, LibICE requires the use of several meshes.
Even if LibICE has a utility that moves the grids connected to the moving compo-
nents, you should not compress or stretch the grids too much. As experienced in
this case, you will need one graticule every 6 CA° when both valves are closed and
a 3 CA° interval when moving the valves.
However, in some cases you may need to use mesh at specific points.
A script has been developed for this purpose: MeshGeneration , which executes a
cycle for interlacing set by us. The operations include:

Figure 4.6: MakeMesh folder structure

1. read the .txt files (MoveIntake and MoveExhaust) in order to select the snap-
pyHexMeshDict corresponding to our needs.

2. copy the corresponding geometry (in STL format) in the triSurface folder.

3. execute the mesh using the RunMesh script.

4. merge one or both the manifolds.

This last operation is necessary because in case 2 or all the valves are closed the
manifold mesh is removed because it is outside the closed surface. Therefore we use
the mergeMesh application to add the missing part of the engine. For this purpose

47



4 – Mesh creation

the Mesh for Intake and Exhaust must be previously created in the corresponding
folders as shown in Figures 4.5.

The RunMesh script has been modified to allow the use of snappyHexMesh.
The SingleMesh script has the same function as MeshGenaration but used to

create a single Mesh.
After all networks are created the MeshList script creates a list of all the CA for

which the Mesh were created.

4.2.1 Mesh quality
At the end you have to verify that there are no errors in any of the generated
meshes. This can be verified visually using Paraview. Also in the folders containing
the mesh is saved the log.checkMesh file that reports the quality of the generated
mesh and any errors. A parameter that can dramatically affect the result is Mesh
non-orthogonality whose maximum value must not exceed 70. Instead the Max
skewness value even if reported as warning can be tolerated if it does not exceed 10.

48



Chapter 5

Simulation

Once you have created and verified the meshes, it is time to set up and run the
simulation.
Depending on the number of cells in each mesh and also on the characteristics of
the fluid, it can take a long time. The type of machine used and the number of
processors also affects the calculation time, and in some cases the stability of the
calculation.
Again, a script will be used to set the parameters and run the simulation.

5.1 Setting the simulation
The parameters of the simulation are contained in the Initialisierungscase (structure
shown in Figure 5.1):

Figure 5.1: Initialization Case folder

49



5 – Simulation

• 258_init: This folder is used as a template to start our calculation. This
crank angle is chosen because it represents the maximum opening moment of
the exhaust valves and therefore the pressure inside the cylinder is plausibly
similar to the atmospheric one. Inside this folder are set the characteristics
of all the components and the internal field. The initial values entered are as
close as possible to reality.

• chemkin: define the chemical reactions during combustion, in this case ne-
glected.

• constant_init: This folder contains all the data that remains constant during
the entire simulation:

– triSurface: CylinderZone.stl, ExhaustZone.stl and IntakeZone.stl files are
stored in this folder. These are necessary to recognize which cells belong
to the respective zones. In order to obtain results that relate to a specific
zone, i.e. pressure exclusively in the cylinder.

– combustionProperties: here you can activate combustion (in this case
disabled) and insert the combustion model to be used.

– engineGeometry: here are the engine characteristics (conRod lenght,
bore, stroke, clearance, rpm). In order for the mesh to be moved, here are
the coordinates of the moving parts, the axis and direction of movement.
For the piston the origin is in TDC position and the axis is the Z axis.
For valves, the origin must be considered when the valves are closed and,
even if the type of coordinates entered is cylindrical, in the axis entry it is
sufficient to enter the coordinates of a point belonging to the valve axis.

– exhaustValve.txt / intakeValve.txt: previously reviewed files that contain
the Valve Lift data.

– RASProperties: If the RAS method is chosen, the turbulence model used
is entered here: kEpsilon.

– LESProperties: If the LES method is chosen, the turbulence model used
is entered here: Smagorinsky.

– turbulenceProperties: Here is selected the dict to use: LES or RAS.

• system_init: here are the dict that control the various parts of the simula-
tion.

– controlDict: This dict is used to control the start, end and step time
of the simulation. We can also set the maximum value of the Courant
number. This represents the base dict that will be manipulated by the
skripts as shown below.

50



5.1 – Setting the simulation

– decomposeParDict: In order to conduct a parallel simulation it is first
necessary to divide the cells into various subdomains. In this Dict we set
the number of subdomains and the method of subdivision.

• dataTime: The files containing the pressure data within the intake (p_in.t)
and exhaust manifolds (p_ex.t), extracted from the experimental tests (Figure
5.2)), must be entered here.

• skripte: Here are the skripts that will be later explained to prepare and start
the simulation.

Figure 5.2: ECN experimental intake pressure

After properly setting up our default Initialisierungscase, we have to create the
folder where all the Mesh will be inside and where the simulation will take place.
The RechnungVorbereiten.sh skript creates a folder (shown in Figure 5.3) numbered
by us with the option STROKE and will copy inside it the Mesh we indicated, then
it will use other scripts to modify the startTime and endTime in the controlDict for
each of the selected CA.

51



5 – Simulation

Figure 5.3: Work cycle folder

5.1.1 Parallel running and decomposePar
A parameter that can greatly influence the time and reliability of the simulation is
not only the number of subdomains but also the method of subdivision. In order
to obtain a compromise between speed and accuracy I investigated the difference
between the various methodologies [bibliografia 4]:

• simple: Simple geometric decomposition in which the domain is split into
pieces by direction, e.g. 2 pieces in the x direction, 1 in y etc.
When the number of cells is not evenly distributed, using this method is not
recommended because you create subdomains with more cells compared to
others.

• hierarchical: Hierarchical geometric decomposition which is the same as sim-
ple except the user specifies the order in which the directional split is done,
e.g. first in the y-direction, then the x-direction etc.

• scotch: Scotch decomposition which requires no geometric input from the
user and attempts to minimise the number of processor boundaries. The user
can specify a weighting for the decomposition between processors, through
an optional processorWeights keyword which can be useful on machines with
differing performance between processors.

• manual: Manual decomposition, where the user directly specifies the alloca-
tion of each cell to a particular processor.

52



5.1 – Setting the simulation

The most suitable methods for this study are hierarchical and scotch method. An
example is shown in Figure 5.4 where the engine has been divided into 8 subdomains,
4 in x direction and 2 in y direction.

(a) Hierarchical method

(b) Scotch method

Figure 5.4: Different decomposition method

53



5 – Simulation

Although the scotch method is also recommended by other users in the forums
for its ability to minimize the number of processor boundaries, in the tests done in
this case in most cases it reported single floating point error. Given these consider-
ations, the method chosen for this simulation is the hierarchical one.
Another important parameter is the number of subdomains to use. Logically you
could think that to speed up our simulation we must increase the number of proces-
sors to use. In reality the time taken is not proportional to the number of processors
used. This depends very much on the number of cells present in the Mesh which in
this case varies from CA to CA. Moreover OpenFOAM requires the assignment of
a minimum number of cells for each processor. Increasing too much the number of
processors you can also obtain a slowdown of the simulation.

54



5.2 – Starting the simulation

5.2 Starting the simulation
At this point the folder containing the first work cycle has been created through the
Initialiesirungscase.sh script. It’s time to start our simulation through the Rech-
nungStarten situated in the skripte folder in the work cycle folder. The script runs
the following applications in order, beginning from the starting folder (i.e. 258 as
shown in the Figure 5.3):

1. checkMesh:it controls the initial mesh and is required for the following ap-
plication.

2. moveEngineTopoMesh: this application moves the mesh as set in engine-
Geometry Dict. The time step is set in the controlDict to 1 CA by default.

3. topoSet: this command creates the cell zones as indicated in the STL files
(IntakeZone , ExhaustZone, CylinderZone), fundamental step to create the log
files pertinent to the cylinder area.

4. decomposePar: the mesh is divided into several processors as indicated in
the appropriate Dict so as to allow the simulation in parallel.

5. ivkEDCsprayEngineFoam: this application uses the solver developed at
the University of Stuttgart for the simulation of engine duty cycles on the
basis of existing solvers in LibICE.
When this application is run in parallel you must make sure that the number
of processors coincides with the number indicated in decomposeParDict.
The results of this solver are written in real time in a file in each processor
folder: logCylinderSummary*.

6. reconstructPar: rebuilds and merges processor folders.

7. cp: copies the logCylinderSummary* to the folder Log that collects all the
results of the various CA.

8. mapMyFields: This application transfers the data from each cell obtained
in this case folder to the next one.

Once these steps are completed, the script can jump in the next case folder as spec-
ified in the initialization folder.
The progress of the simulation can be monitored through the top command on the
terminal to see which application the processors are running. We can also track
in real time the logCylinderSummary that contains: time step, volume, pressure,
temperature and turbulence.
This can be easily done using the tail -f terminal command as an example:

55



5 – Simulation

tail -f CA_0258/processor2/logCylinderSummary.258.dat

Usually the initial cycle does not produce results close to reality, because the veloc-
ity field is created from scratch. So after the so-called cycle 0, we should perform at
least 1 or more cycles.
To transfer cell data from one cycle to another we still have to use the mapMyFields
application, this time manually, as shown below:

mapMyFields arbeitsspiel_0/CA_0714 -sourceTime 720 -case arbeitsspiel_1/CA_00

5.2.1 Executing in background
Since the simulation of a single cycle requires several days of calculation, it is rec-
ommended to use a cluster that does not cause overheating problems and that can
remain on for as long as necessary. In this case I had at disposal a cluster with 32
processors provided by IVK.
When you execute a job in the background (i.e. using &), and logout from the ses-
sion, your process will get killed. You can avoid this executing the job with nohup
as shown below:

nohup .RechnungStarten &

As support for the discussion above and the importance of running the simula-
tion in the background in clusters, the timing of the tasks are shown in the Table
5.1.

Order Task Time
#1 Geometry creation up to 8 hours
#2 Mesh creation up to 2 days
#3 Running the simulation (cold flow) up to 2 weeks
#4 Log Data transfer few minutes
#5 Data transfer for visual analys several hours

Table 5.1: Time needed for each Task

56



Chapter 6

Post-processing

This section is dedicated to data collection and analysis. After having carefully
monitored in real time the development of the simulation, avoiding interruptions
and unexpected CA skipping, the results of the entire cycle will be obtained.

6.1 Results analysis
As previously mentioned, pressure, temperature and volume data are saved in the
respective log files (logCylinderSummary*). This data can be quickly analyzed using
the Linux gnuplot application to view the trend of the above mentioned parameters.
I preferred to analyze the data using Matlab for the convenience with which I could
compare the data obtained from the simulation to those obtained experimentally.
Once we have discussed the parameters present in the log files, we can show the
trend of some of these parameters inside the cylinder using Paraview.
In the figures below are shown the values of Volume (6.1), Pressure (6.2) and Tem-
perature (6.3) obtained with OpenFOAM.

57



6 – Post-processing

Figure 6.1: Cylinder volume data from OpenFOAM

Figure 6.2: In Cylinder pressure data from OpenFOAM

58



6.1 – Results analysis

Figure 6.3: In Cylinder temperature data from OpenFOAM

59



6 – Post-processing

6.2 Comparison with experimental data
The comparison of the simulation data with the experimental data is decisive to
determine whether the calculation was performed well and whether the model is
reliable.
The volume inside the cylinder measured during the simulation by OpenFoam is
extremely similar to the experimental one, showing that the movement occurred as
indicated which indicates that the Mesh is geometrically flawless (Figure 6.4).

Figure 6.4: Volume data comparison

60



6.2 – Comparison with experimental data

A data that can help us understand whether the model is reliable or not is the
pressure. In the Figure (6.5) we can see that in a large part of the cycle the pressure
trend in the chamber is equal to the experimental one. A closer look at the pressure
curve in Figure (6.6) shows that the calculation produces constant results only after
several cycles. This is due to the fact that at the beginning of the simulation the
flow field of our model is stationary. This is why it is necessary to repeat more than
one cycle, mapping the flow field of the previous cycle into the new one in order to
develop the flux properties and achieve a model as close as possible to reality.

Figure 6.5: Pressure data comparison

The operation must be repeated until the results converge. In this case 3 cycles
were necessary to obtain robust pressure traces. The analysis results show that the
difference in peak pressure at TDC in the first cycle was 3 bar compared to the
experimental results. This difference is reduced to 0.3 bar in the third cycle.
These results show that the model is quite reliable and that by increasing the com-
puting power and the number of cells in the mesh it is possible to get closer and
closer to real data.

61



6 – Post-processing

Figure 6.6: Close up of pressure about FTDC of different cycles

62



6.3 – 3D Data visualization

6.3 3D Data visualization
While the log files only show averaged values for the entire combustion chamber, a
closer look at the flow conditions in the cylinder can be obtained with the help of
Paraview. With the help of 3D simulation, local phenomena can be investigated.

6.3.1 Exhaust phase
The exhaust phase (EO) starts at 144° crank angle after TDC, in this instant the
valve moves up by 0.7 mm, which in the calculation set in our calculation is the
minimum lift to consider the valve open. As shown in Figure (6.7) below, the
pressure in the cylinder before the valves are opened is higher than that of the
exhaust pipe (6.7a). As soon as the exhaust phase starts, the air in the cylinder starts
to flow into the exhaust pipe (6.7b). We can also observe the behaviour (direction
and magnitude) of the speed in the Figure (6.8) . Initially directed towards the
piston (6.8a) following the movement of the piston changes direction abruptly as
soon as the valves open (6.8b). The maximum velocity magnitude, above 100 m/s
can be observed during the first degrees of exhaust in which the passage area of
the valves is very narrow. The change of flow direction in the cylinder causes a low
intensity vortex that dissipates (6.8d), and the phase finally ends without any other
particular phenomena.

63



6 – Post-processing

(a) 143°CA AFTDC (b) 153°CA AFTDC

(c) 161°CA AFTDC (d) 237°CA AFTDC

Figure 6.7: Pressure during exhaust phase

64



6.3 – 3D Data visualization

(a) 143°CA AFTDC (b) 153°CA AFTDC

(c) 161°CA AFTDC (d) 237°CA AFTDC

Figure 6.8: Velocity during exhaust phase

65



6 – Post-processing

6.3.2 Intake phase
The intake phase (IO) starts at -346° CA AFTDC, in this instant the valve rises 0.7
mm in the same way as the exhaust phase. The descending piston causes a lower
pressure in the cylinder than the intake manifold. This promotes flow entry into the
cylinder.
The inlet flow velocity, shown in Figure (6.9), reaches its maximum value of around
150 m/s, immediately after the valves are opened (6.9a). From this moment on, the
velocity slowly decreases to zero around the bottom dead center (6.9d).
The study of the motion field that is formed inside the cylinder in this phase of
intake is very useful, because some interesting phenomena happen, which will be
fundamental for the performance of the engine when fuel is injected into the cylinder.

(a) -340°CA AFTDC (b) -318°CA AFTDC

(c) -240°CA AFTDC (d) -180°CA AFTDC

Figure 6.9: Velocity during intake phase

66



6.3 – 3D Data visualization

6.3.3 Charge motion: Swirl
The ability to accurately predict charge behavior is crucial in the initial design phase
of an engine. Therefore it is necessary to verify the reliability of this simulation by
comparing the results to the literature, previously reported in Chapter 1.
In the Figure (6.9c) we can see the jet-like character of the intake flow, interacting
with the cylinder walls and moving piston, creates large-scale rotating flow patterns
within the cylinder. These flows usually persist until about the end of the intake
stroke, as in (6.9d). The analyzed engine is equipped with a directed duct and an
helical duct combined in order to promote the creation of the swirl.
The Figure (6.10) show exactly the expected results: the helical port produce the
swirl in the port upstream of the valve and the directed port produces a tangential
flow into the cylinder by increasing the flow resistance through that part of the valve
open area where flow is not desired.
From the side views in Figure (6.11) we can better observe the evolution of the
vortex around the cylinder axis.

(a) -297°CA AFTDC (b) -256°CA AFTDC

(c) -220°CA AFTDC (d) -171°CA AFTDC

Figure 6.10: Top view: Evolution of the swirl during intake phase

67



6 – Post-processing

(a) -297°CA AFTDC (b) -256°CA AFTDC

(c) -220°CA AFTDC (d) -171°CA AFTDC

Figure 6.11: Side view: Evolution of the swirl during intake phase

68



6.3 – 3D Data visualization

6.3.4 Compression and expansion phase
The compression phase begins at -163° AFTDC. As the intake valves close, the
pressure begins its gradual rise to its maximum value, which is reached when the
piston, after having completed the entire compression stroke, reaches the firing top
dead center. At this point the pressure begins to decrease, until it reaches, once
the piston has made a good part of the expansion stroke, the value it had at the
beginning of the cycle.
The pressure (Figure 6.12) starts, at the beginning of the compression phase with
a value of 1.46 bar and reaches a maximum value, at the firing top dead center, of
50.7 bar and returns to about the initial value of 1.25 bar, just before the opening
of the exhaust valve.
The temperature has not been described up to this point because it is of no interest,
since its values are very close to the ambient temperature, since the conduits com-
municate with the tanks and the latter communicate with the external environment.
In this phase instead the temperature value rises due to the increase in pressure and
the decrease in cylinder volume. This starts from a value of 437 K at the beginning
of compression and reaches a maximum value of 1055 K at the upper dead centre
(Figure 6.13).
The velocity, both during the compression phase and during the expansion phase,
maintains very low values starting from a value of little more than 20 m/s, up to
values of about 8 m/s at the end of the expansion.
As far as the range of motion is concerned, at the beginning of the compression
phase we have the presence of the large swirl vortex that remains from the suction
phase. This vortex is crushed into the bowl by the rising of the piston. You can
observe the evolution of the flow in the following images (Figure 6.14).

69



6 – Post-processing

(a) -83°CA AFTDC (b) -47°CA AFTDC

(c) -30°CA AFTDC (d) FTDC

Figure 6.12: Pressure behaviour during compression

70



6.3 – 3D Data visualization

(a) -94°CA AFTDC (b) -76°CA AFTDC

(c) -40°CA AFTDC (d) FTDC

Figure 6.13: Temperature behaviour during compression

71



6 – Post-processing

(a) -109°CA AFTDC (b) -76°CA AFTDC

(c) -40°CA AFTDC (d) FTDC

Figure 6.14: Side view: Evolution of the swirl during compression phase

72



6.4 – Conclusions

6.4 Conclusions
The validation of calculation models has assumed an increasingly important role in
recent years. In order to achieve this, increasingly detailed calculation models are
needed, which are able to solve even the smallest of flow peculiarities.
In order to support the calculation models, there must be excellent quality meshes
that ensure even better results.
The calculation mesh realized in this thesis work required a lot, both in terms of
learning the program functionalities and in terms of study, in order to generate a
mesh as suitable as possible to the engine morphology.
For the first time, this engine mesh generation work was performed, aimed at sim-
ulating an entire motored engine cycle, with the above-described grid generation
program. This required a considerable effort, as the geometry of this engine was not
simplified in any way, but the results in terms of mesh quality were pretty good, as
it was possible to create a grid that allowed a wide adjustability to the movement
of the valves and piston, while maintaining a good quality.
The mesh built using the solver snappyHexMesh, described in detail in Chapter
4, has made it possible to carry out successfully: the simulation of the stationary
fluxing and the simulation of the entire motored cycle, of the ECN experimental
engine. The results obtained from the engine cycle simulation were in line with the
experimental values available, both in terms of pressure values.

6.4.1 Limits
To begin with, although all the simulations for the entire cylinder strokes are au-
tomated through the correction of the existing bash scripts and additional bash
scripts, simulating more than one hundred mesh is still time-consuming process and
it leads to ridiculously tiring post-processing tasks since all the results are generated
in separate case folders and therefore, have to be viewed separately in ParaView.
The effort to achieve these results remains very high, despite the methods developed
to simplify pretreatment. There are still many steps to set the calculation cases and
there are many levers to optimize and adjust the simulation.
The snappyHexMesh solver, although accurate, requires meticulous attention and
knowledge of each line of the setup code.

73



6 – Post-processing

6.4.2 Further studies
Simulations could be implemented over the entire cycle, changing the turbulence
model and evaluating the effects on the results. It is necessary to specify that, to
carry out the simulation of a whole engine cycle, using the calculation in parallel with
a last generation 12-processor computer, about 10 days have been used, using the
right time step and this mesh with a maximum number of cells equal to 1400000.
By further refining the mesh and changing some details, improvements could be
achieved. As regards the results, however, we can say that the calculation model is
validated.
The calculation approach presented in this thesis work can be maintained in future
applications, as far as this engine is concerned. In this thesis work we have limited
ourselves to carry out simulations with a RANS approach, in the future we can think
of dealing with LES type simulations, using, as a starting point for the calculation,
the results obtained and compare them with the experimental data that will be made
available by the ECN in the near future, in order to carry out a further validation
of the calculation models used.
In addition, with the IVKsprayEngineFoam solver it is possible to introduce the fuel
spray and also the combustion, without making any particular changes to the model
created in this thesis. The mesh should only be thickened near the injector and the
bowl which are the areas involved in the spray and combustion.

74



Bibliography

[1] The OpenFOAM Foundation , [Online] https://openfoam.org/, 2019.
[2] Wikipedia , [Online] https://en.wikipedia.org/wiki/OpenFOAM, 2019.
[3] OpenFOAM: User Guide , [Online]

https://www.openfoam.com/documentation/guides/latest/doc/, 2019.
[4] CFD Direct, The Architects of OpenFOAM , [Online]

https://cfd.direct/openfoam/user-guide/v6-snappyhexmesh/, 2019.
[5] ECN, Engine Combustion Network , [Online] https://ecn.sandia.gov/, 2019.
[6] CFD-Online , [Online] https://www.cfd-online.com/Forums/openfoam-

meshing/, 2019.
[7] Dietmar Schmidt, Engine Combustion and Emissions, IVK University of

Stuttgart, 2017.
[8] H K Versteeg and W Malalasekera, An Introduction to Computational Fluid

Dynamics The Finite Volume Method (Second Edition), Pearson Prentice Hall,
2007.

75


	Abstract
	Acknowledgements
	Introduction
	CFD principles
	Mass conservation in three dimensions
	Momentum equation in three dimensions
	Energy equation in three dimensions
	Navier-Stokes equations for a Newtonian fluid

	Turbulence models
	Direct Numerical Simulations (DNS)
	The LES (Large Eddy Simulation)
	The Reynolds-averaged Navier–Stokes equations (RANS equations)

	Charge motion within the cylinder
	Swirl
	Tumble


	OpenFOAM
	Get Started
	Pre-processing
	Case structure
	snappyHexMesh

	Solvers

	Pre-processing
	Geometry
	The ECN test-bed engine
	Waterproof surfaces

	Different geometries creation

	Mesh creation
	Different geometries refinement
	Valve closed refinement
	Valve bottoms fine refinement
	Valve bottoms "course" refinement

	Mesh Generation script
	Mesh quality


	Simulation
	Setting the simulation
	Parallel running and decomposePar

	Starting the simulation
	Executing in background


	Post-processing
	Results analysis
	Comparison with experimental data
	3D Data visualization
	Exhaust phase
	Intake phase
	Charge motion: Swirl
	Compression and expansion phase

	Conclusions
	Limits
	Further studies


	Bibliography

