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1. Introduction 
 

 Definition 
 Gears are machine parts used to transmit rotational motion, or torque, between two axes are 

known as gears. Each gear is typically circular and has teeth that operate in mesh with the teeth of a 

complementary gear. Teeth in mesh must have a similar shape in order to mesh properly. Gears are 

generally used as a simple machine to produce a change in torque, which is achieved through their gear 

ratio. A gear assembly with a unitary ratio can be replaced with a universal joint, or a pair of such joints if 

axes are to be parallel.  

 Two or more pairs of meshing gears are referred to as a gear train or transmission. The same 

meshing mechanism can combine a circular gear with a linear toothed part, a rack, to combine rotation 

with translation. 

 History 
 Gears have been in use as early as the 4th century BC in China during the late East Zhou dynasty. 

The oldest gears found in Europe are those of the Antikythera mechanism, designed to calculate 

astronomical positions, dating back to 150-100 BC. Other use of gears can be linked to Hero of Alexandria, 

in Roman Egypt in 50 BC, which can be traced back to the development of mechanics in the Alexandrian 

school in the 3rd century BC in Ptolemaic Egypt, primarily done by Archimedes (287 – 212 BC) the Greek 

philosopher. Examples of old gear applications include, but are not limited to: 

- The Antikythera mechanism (2nd century BC) 

- The South-pointing chariot of Ma Jun (200 – 265 AD)  

- The mechanical clocks built in China (725 AD) 

- The water-lifting device invented by Al-Jazari (1206 AD) 

- The cotton gin in the Indian subcontinent (13th -14th centuries) which saw the invention of worm 

gears. 

- The Salisbury Cathedral clock (1386 AD) rumored to have the oldest still functional geared 

mechanical clock. 

 Replacing other drive mechanisms 
 Gears have a similar function to belt pulley systems, as far as torque transmission goes. The 

advantages gears offer are the definite transmission ratio due to the absence of slippage and the reduced 

number of parts in the mechanism. The downsides are the high manufacturing cost and the lubrication 

requirements which result in a high operating cost per unit of time. 

 Material 
 The earliest gear material was wood, which was later replaced by nonferrous alloys, powder-

metallurgy, cast irons and plastics post-industrialization. Nowadays, the most common material used is 

steel due to its high strength-to-weight ratio. Plastics are used in low torque applications where cost and 

weight can be a concern. Plastics also have the advantage of high dirt tolerance compared to steels as 

well as the possibility of operating without lubrication, and the reduction of repair costs. Plastic gears 

have been used in applications such as copy machines, printers, servo motors, and radios. 
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  Types 
 A multitude of gear types exists. They can be classified according to the placement of the 

teeth (external – internal), the orientation of the leading edge of the teeth, or the layout of the 

gear axes. The following is a list of the most common gear types found in the modern industry. 

 

- External gears:   The teeth are formed on the outer surface of a cylinder or cone. 

 

- Internal gears:   The teeth are formed on the inner surface of a cylinder of cone. 

 

- Spur gears:   Straight-cut gears, which are the simplest gears of all, and commonly  

   have an involute tooth profile. 

 

- Helical gears:   An upgrade of spur gears, with the addition of a helix angle. They allow  

   smoother meshing and can be found in parallel or crossed orientations. 

 

- Double helical gears:  Also known as Herringbone gears. They consist of two helical gears  

   mounted together with opposite directions to solve the axial thrust  

   problem of helical gears. 

 

- Bevel gears:   They have a conical shape and are used to transmit rotational motion  

   between non-parallel axes. 

 

- Face gears:   A particular type of bevel gears where the pinion is a spur gear. 

 

- Spiral bevel gears:  They have similar advantages as helical gears do to straight-cut spur gears. 

 

- Hypoid gears:  Similar to spiral bevel gears but whose axes do not intersect. 

 

- Worm gears:  They resemble screws and mesh with a worm wheel that resembles a  

   spur gear. They typically have high gear ratios. Axes are crossed but do  

   not intersect. 

 

- Non-circular gears: They’re characterized by a variable transmission ratio and are used for 

    well-defined special purposes. 

 

- Rack and pinion: It converts rotational motion to translational motion, and can be thought 

   of a gear with infinite radius. 

 

- Epicyclic Gears:  Gear assemblies where one or more gear axes move. Examples are  

   mechanical differentials and sun/planet gearing. 
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 Thesis Description 
 

 In the following pages are presented the detailing of the main parameters in some of the most 

commonly used gears (spur, helical, face-gears), the reason involute profiles are widely standardized for 

gear tooth profiles, the steps of constructing the involute profile of the tooth, as well as the different gear 

forming techniques used in the industry. The importance of standardized tooth systems is highlighted too. 

 The generation by shaping of the tooth profile starting from the creator shape will then be tackled, 

by defining the coordinate transformation procedure coupled with an exemplary application. The types 

of gears that will be considered are spur gears, helical gears and face-gears. 

 Finally, the generation of a cloud of points representing the formed tooth profile starting from a 

cloud of points representing the shaper cutter is presented. The procedure exists for external spur gears, 

and will be modified to account for internal spur gears. 

 All applications in the following thesis are done on the MATLAB computer programming language, 

developed by MathWorks. 
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2. Nomenclature 

 The terminology of spur gear teeth is shown in figure (2.1). The pitch circle is a theoretical circle 

upon which are based all calculations; its diameter is the pitch diameter. The pitch circles of 2 mating 

gears are tangent one to the other. 

The circular pitch p is the distance, from a point on one tooth to a corresponding point on an adjacent 

tooth. Therefore, the circular pitch is equal to the sum of the tooth thickness and the width of space. 

The module m is the ratio of the pitch diameter to the number of teeth. Generally, the adopted unit of 

length is the millimeter. The module is the index of the tooth size in SI. 

The diametral pitch P is the ratio of the number of teeth on the gear to the pitch diameter. Therefore, it 

is the inverse of the module. It is expressed as teeth per inch. 

The addendum a is the radial distance from the top land to the pitch circle. The dedendum b is the radial 

distance from the bottom land to the pitch circle. The whole depth 𝒉𝒕 is the sum of the addendum and 

the dedendum. 

The clearance circle is a circle that is tangent to the addendum circle of the mating gear. The clearance c 

is the amount by which the dedendum in a given gear exceeds the addendum of its mating gear. The 

backlash is the amount by which the width of space of a tooth exceeds the tooth thickness of the engaging 

tooth measured on the pitch circle.  

 

Figure 2.1: Nomenclature of spur-gear teeth 



12 
 

Useful relations: 

𝑃 =
𝑁

𝑑
   Equation 2.1 

𝑚 =
𝑑

𝑁
   Equation 2.2 

𝑝 =
𝜋𝑑

𝑁
= 𝜋𝑚  Equation 2.3 

𝑝𝑃 = 𝜋   Equation 2.4 

Where 𝑃 = diametral pitch, teeth per inch. 

 𝑁 = number of teeth. 

 𝑑 = pitch diameter, mm or in. 

 𝑚 = module, mm. 

 𝑝 = circular pitch, mm or in. 
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3. Conjugate Action 
 In the following paragraphs, it is assumed that the teeth are perfectly formed, perfectly smooth 

and absolutely rigid. This assumption is obviously not realistic, but is adopted for the purpose of the 

discussion. 

 Mating gears teeth acting against each other to generate a rotational motion are similar to cams. 

When the tooth profiles, or cams, are designed to generate a constant angular velocity ratio during 

meshing, these are referred to as having a conjugate action. In theory, at least, it is possible to draw any 

profile for one tooth and then to find a profile for the meshing tooth that will give a conjugate action. One 

of such solutions is the involute profile, which, with few exceptions, is in universal use for gear teeth. 

 When one curved surface pushes against another 

(Figure 3.1), the point of contact occurs at the point of 

tangency (point c), and the forces at any instant are directed 

along the common normal 𝑎𝑏 to the two curves. The line 𝑎𝑏, 

representing the direction of action of the forces, is known as 

the line of action. The line of action will intersect the line of 

centers O-O at some point P. The angular-velocity ratio 

between the two arms is inversely proportional to their radii 

to the point P. Circles drawn through point P from each center 

are called pitch circles, and their respective radii are called the 

pitch radii. Point P is the pitch point. 

 Another observation can be made from Figure (3.1): a 

pair of gears is actually a set of pairs of cams that act through 

a small arc and, before running off the involute contour, are 

replaced by another identical pair of cams. The cams can run 

in either direction and are designed to transmit a constant 

angular-velocity ratio. If involute curves are used, the gears can sustain changes in center-to-center 

distance with no variation in constant angular-velocity ratio. However, the rack tooth profiles are straight-

flanked, which leads to primary cutter/shaper tooling being much simpler. 

 To transmit motion at a constant angular-velocity ratio, the pitch point must remain fixed; that is, 

all the lines of action for every instantaneous point of contact must pass through the same point P. In the 

case of the involute profile, it will be shown that all points of contact occur on the same straight line ab, 

that all normals to the tooth profiles at the point of contact coincide with the line ab, and, thus, that these 

profiles transmit uniform rotary motion. 

 

 

 

 

Figure 3.1: Cam A and follower B 
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4. Involute Properties 
 An involute curve can be generated as 

evidenced in Figure (4.1). A partial flange B is 

attached to the cylinder A, around which is 

wrapped a cord def, which is held tight. Point b on 

the cord represents the tracing point, and as the 

cord is wrapped and unwrapped about the cylinder, 

point b will trace out the involute curve ac. The 

radius of the curvature of the involute varies 

continuously, being zero at point a and a maximum 

at point c. At point b the radius is equal to the 

distance be, since point b is instantaneously 

rotating about point e. Thus, the generating line de 

is normal to the involute at all points of intersection 

and, at the same time, is always tangent to the 

cylinder A. The circle on which the involute is 

generated is called base circle. 

 

 

 It is essential to learn how to construct an 

involute curve. As shown in Figure (4.2), divide the 

base circle into a number of equal parts, and 

construct radial lines 𝑂𝐴0 , 𝑂𝐴1 , 𝑂𝐴2 , etc. 

Beginning at 𝐴1 , construct perpendiculars 𝐴1𝐵1 , 

𝐴2𝐵2 , 𝐴3𝐵3 , etc., Then along  𝐴1𝐵1  lay off the 

distance  𝐴1𝐴0 , along  𝐴2𝐵2  lay off twice the 

distance  𝐴1𝐴0 , etc., producing points through 

which the involute curve can be constructed. To 

investigate the fundamentals of tooth action, let us 

proceed step by step through the process of 

constructing the teeth on a pair of gears. 

 When two gears are in mesh, their pitch circles roll on one another without slipping. Designate 

the pitch radii as 𝑟1  and 𝑟2  and the angular velocities as 𝜔1  and 𝜔2 , respectively. Then the pitch-line 

velocity is 𝑉 = |𝑟1𝜔1| = |𝑟2𝜔2|. 

 Therefore, the relation between the radii on the angular velocities is |
𝜔1

𝜔2
| = |

𝑟2

𝑟1
|, and starting from 

this relation and the desired input and output gear velocities, a radii ratio can be found, and numbers of 

teeth selected accordingly. 

 

Figure 4.1: Generation of an involute 

         Figure 4.2: Construction of an involute 
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5. Construction of a gear tooth profile 

 The primary procedure in drawing teeth on a pair of mating gears is shown in Figure (5.1). The 

center distance is the sum of the pitch radii, already found in previous step, and thus are located the 

pinion and gear centers 𝑂1 and 𝑂2. Then are constructed the pitch circles of radii 𝑟1 and 𝑟2. These are 

tangent at P, the pitch point. Next is drawn the line ab, the common tangent, through the pitch point. 

Next is drawn a line cd through point P at an angle 𝜑 to the common tangent ab. The line cd has three 

names, all of which are in general use. It is called the pressure line, the generating line, and the line of 

action. It represents the direction in which the resultant force acts between the gears. The angle 𝜑 is 

called pressure angle, and it usually has values of 20o  or 25o , though 14.5o was once used. Smaller 

pressure angles result in lower backlash, smoother operation and less sensitivity to manufacturing errors. 

 Next, on each gear draw a circle 

tangent to the pressure line. These circles 

are the base circles, and since they are 

tangent to the pressure line, the pressure 

angle determines their size. As shown in 

Figure (5.2), the radius of the base circle is 

𝑟𝑏 = 𝑟 𝑐𝑜𝑠𝜑, where 𝑟 is the pitch radius. 

 Next, an involute is generated on 

each base circle as previously described 

and as shown in Figure (4.1). This involute 

is to be used as a template which can be 

turned over and replicated to obtain the other side of the tooth. 

Figure 5.1: Circles of a gear layout 

Figure 5.2: Base circle construction 
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 The addendum and dedendum distances for standard interchangeable teeth are, as shall be 

mentioned later, 1/𝑃 and 1.25/𝑃, respectively. Using these distances, the addendum and dedendum 

circles on the pinion and the gear can be drawn as shown in Figure (5.1). 

 To draw a tooth, tooth thickness must be known. From equation (2.4), the circular pitch is 𝑝 =
𝜋

𝑃
 

Therefore, the tooth thickness is 𝑡 =
𝑝

2
=

𝜋

2𝑃
 measured on the pitch circle. 

 Using this distance for the tooth thickness as well as the tooth space, it is possible to draw as 

many teeth as desired. Trouble could arise when drawing these teeth if one of the base circles happens 

to be larger than the dedendum circle. The reason for this is that the involute begins at the base circle and 

is undefined below this circle. So, in drawing gear teeth, a radial line is usually drawn for the profile below 

the base circle. The actual shape, however, will depend upon the kind of machine tool used to form the 

teeth in manufacture, that is, how the profile is generated. 

 The portion of the tooth between the clearance circle and the dedendum circle includes a fillet. 

Clearance corresponds to the amount by which the dedendum in a given gear exceeds the addendum of 

its mating gear 𝑐 = 𝑏 − 𝑎. The construction is finished when these fillets have been drawn. The results 

are shown in Figure (5.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Tooth profile construction 

Addendum circle 
Dedendum circle 

Pitch circle 

Base circle 
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6. Gear Forming 
 Numerous ways exist for forming the gear teeth, such die casting, investment casting, sand 

casting, shell molding, permanent-mold casting, and centrifugal casting. Teeth forming can also be done 

by using the powder-metallurgy process, or by extrusion, a single aluminum bar can be formed then sliced 

into gears. Gears that have to sustain high loads with respect to their size are generally made of steel and 

are cut either generating cutters or form cutters. In form cutting, the tooth space takes the exact shape 

of the cutter. Whereas in generating, the tool has a shape different than the tooth profile desired and it 

is moved relative to the blank gear in a way as to obtain the correct tooth shape. 

 Gear teeth can be machined by milling, shaping, or hobbing. They can be finished by shaving, 

burnishing, grinding, or lapping. 

 

6.1 Milling 
 Gear teeth may be cut with a form milling cutter shaped to conform to the tooth space. With this 

method it is theoretically necessary to use a different cutter for each gear, because a gear having n teeth 

will have a different-shaped tooth space from one having n+1 teeth. Actually, the change in space is not 

too great, and it has been found that eight cutters may be used to cut with reasonable accuracy any gear 

in the range of 12 teeth to a rack. A separate set of cutters is required for each pitch for sure. 

 In Figure (6.1) can be seen the golden cutter gear rotating about its axis while the gray blank gear 

is in a fixed position. When each tooth space is completely cut, the blank gear is rotated about its own 

axis by an increment angle corresponding to a full tooth, also known as angular pitch 𝜃𝑁: 

𝜃𝑁 =
𝑝

𝜌𝑝
=

2𝑝𝑃

𝑁
=

2𝜋

𝑁
    Equation 6.1 

Figure 6.1: Gear forming via milling 
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6.2 Hobbing 
 The hob (golden tool in Figure 6.2) is a cutting tool that is shaped like a worm, and has a motion 

sequence like that of worm. The teeth have straight sides, as in a rack, but the hob axis must be turned 

through the lead angle in order to cut spur-gear teeth. The cross-sectional profile of the hob is actually 

identical to that of a rack. During one rotation of the hob, the gear moves forward by one tooth. In this 

respect, the pitch of the cutters corresponds exactly to the tooth pitch of the gear. Therefore, both the 

hob and the blank must be rotated at the proper angular-velocity ratio. When manufacturing a gear with 

n teeth, the rotational speed of the hob must be n times higher than the speed of the gear. The hob is fed 

slowly across the face of the blank until all the teeth have been cut. 

 

 Figure (6.3) is a 

schematic of the main 

parameters of the hob profile. 

The resemblance of the hob to 

a rack is quite apparent. The 

geometry mainly depends on 

the desired flank profile of the 

gear tooth. The tool flanks have 

an inclination angle against the 

vertical equal to the desired 

pressure angle 𝛼0  (usually 

equal to 20o ). The profile 

center line corresponds to the 

pitch line of the gear with 𝑝0 the circular pitch, and the maximum height of the fillet on the top of the hob 

teeth is equal to the clearance distance 𝑐.  

Figure 6.3: Standard reference profile for hob cutter 

Figure 6.2: Gear forming via hobbing 
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6.3 Shaping 
 Teeth may be generated with either a pinion cutter or a rack cutter. The pinion cutter reciprocates 

along an axis perpendicular to its plane and is slowly fed into the gear blank to the required depth.  When 

the pitch circles are tangent, both the cutter and the blank rotate slightly after each cutting stroke. Since 

each tooth of the cutter is a cutting tool, the teeth are all cut after the blank has completed one rotation. 

The sides of an involute rack tooth are straight. For this reason, a rack generating tool provides an accurate 

method of cutting gear teeth. In operation, the cutter reciprocates and is first fed into the gear blank until 

the pitch circles are tangent. Then, after each cutting stroke, the gear blank and cutter roll slightly on their 

pitch circles. When the blank and cutter have rolled a distance equal to the circular pitch, the cutter is 

returned to the starting point, and the process is continued until all the teeth have been cut. 

 Figure (6.5) shows the relation between gear and rack dimensions. The perpendicular distance 

between the involutes for all gears with the same module always corresponds to the perpendicular 

distance between two adjacent flanks. This distance is referred to as base pitch 𝑝𝑏 and corresponds to the 

distance between two contacting flanks in mesh with a mating gear (or rack). 

 In addition to that, Figure 

(6.5) shows that the base pitch 𝑝𝑏 is 

directly related to the circular pitch 

𝑝0 by the standard pressure angle 𝛼0 

(Equation 6.1). It’s worth noting that 

the circular pitch 𝑝0 is identical for all 

gears with the same module 

(evidenced in equation 2.3), 

otherwise they cannot mesh 

properly. This is why the circular pitch 

𝑝0  of the rack is also equal to the 

circular pitch of the gears. 

𝑝𝑏 = 𝑝0. 𝑐𝑜𝑠𝛼0                Equation 6.1 

Figure 6.4: Gear forming via shaping 

Figure 6.5: Connection 

between gear and rack 
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7. Contact Ratio 

 Figure (7.1) shows the action zone of meshed gear teeth. Point a represent the initial contact 

point. Point b represents the final contact point. Both points a and b are in fact the intersections between 

the addendum circles and the pressure line. Tooth profiles drawn through points a and b intersect the 

pitch circle at points A and B, respectively. The distance AP is known as the arc of approach 𝑞𝑎, and the 

distance PB is known as the arc of recess 𝑞𝑟. The sum of these arcs is known as the arc of action 𝑞𝑡.        

(𝑞𝑡 = 𝑞𝑎 + 𝑞𝑟) 

We define the term contact ratio 𝑚𝑐 as: 

𝑚𝑐 =
𝑞𝑡

𝑝
     Equation 7.1 

a number that indicates the average number of pairs of teeth in contact. 

 If 𝑞𝑡 = 𝑝, then 𝑚𝑐 = 1, and that means that one tooth and its space will occupy the entire arc AC. 

When one tooth enters in contact at a, the previous tooth has just ended contact at b. If 𝑞𝑡 is slightly 

larger than 𝑝, that means that for short periods of time two teeth will be in contact, one in the vicinity of 

a and one in the vicinity of b. The contact ratio is also equal to the length of the path of contact divided 

by the base pitch: 

𝑚𝑐 =
𝐿𝑎𝑏

𝑝.𝑐𝑜𝑠𝜙
     Equation 7.2 

where 𝐿𝑎𝑏 is the length of line 𝑎𝑏, and the base pitch 𝑝𝑏 is substituted by its equivalent expression from 

Equation (6.1). 

 Gears should not have a contact ratio no less than approximately 1.20, because mounting 

inaccuracies can reduce the contact ratio even further, which leads to more impact between teeth and by 

extension, more noise. 

 

Figure 7.1: Definition of contact ratio 
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8. Tooth Systems 
 A tooth system is a standard that specifies the relationships involving addendum, dedendum, 

working depth, tooth thickness, and pressure angle. The standards were originally planned to attain 

interchangeability of gears of all tooth numbers, but of the same pressure angle and pitch. 

 Table (8.1) contains the latest standards most used for spur gears. The standardization was done 

by the American Gear Manufacturers Association (AGMA) and changes are made from time to time. 

  A 7.5o pressure angle was once used for these but is now obsolete; the resulting gears had to be 

comparatively larger to avoid interference problems.  

 Table (8.2) is particularly useful in selecting the pitch or module of a gear. Cutters are generally 

available for the sizes shown in this table. 

 
 
 
 
 

 In what follows is presented the shaping process by pinion cutter in its profile generation aspect 

for spur gears. 

Table 8.1: Standards and commonly used tooth systems for spur gears 

Table 8.2: Tooth sizes in general uses 
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9. Coordinate Transformation for externally tangent spur gears 

 

Figure 9.1: centrodes in rotational motions in opposite directions. 

In figure (9.1) are shown 2 tangential centrodes with 4 coordinates systems: 

• 𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1) is the primary coordinate system rigidly connected to rotating gear 1. 

• 𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) is the primary coordinate system rigidly connected to rotating gear 2. 

• 𝑆𝑓(𝑂𝑓 , 𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓) is an auxiliary coordinate system rigidly connected to the gear housing. 

• 𝑆𝑝(𝑂𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is an auxiliary coordinate system rigidly connected to the gear housing. 
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𝜙1 and 𝜙2 are related by equation (9.1): 

𝜙1

𝜙2
=

𝜌2

𝜌1
                                                                    Equation 9.1 

𝐸 is the shortest distance between the 2 axes of rotation. (𝐸 = 𝜌1 + 𝜌2) 

To find the coordinates of points from centrode 2 to centrode 1, a coordinate transformation 

transition is required, and is based on the relation in the matrix equation (9.2): 

𝑟1 = 𝑀12𝑟2 = 𝑀1𝑓𝑀𝑓𝑝𝑀𝑝2𝑟2                                    Equation 9.2 

where 𝑀1𝑓 and 𝑀𝑝2 are rotational matrices and 𝑀𝑓𝑝 is a translational matrix. 

𝑟2 = [

𝑥2

𝑦2
𝑧2

1

] , 𝑀𝑝2 = [

   𝑐𝑜𝑠𝜙2  𝑠𝑖𝑛𝜙2 0 0
−𝑠𝑖𝑛𝜙2 𝑐𝑜𝑠𝜙2 0

0 0 1
0 0 0

0
0
1

] 

𝑟1 = [

𝑥1

𝑦1
𝑧1

1

] , 𝑀1𝑓 = [

   𝑐𝑜𝑠𝜙1  𝑠𝑖𝑛𝜙1 0 0
−𝑠𝑖𝑛𝜙1 𝑐𝑜𝑠𝜙1 0

0 0 1
0 0 0

0
0
1

] 

𝑀𝑓𝑝 = [

1 0 0 0
0
0
0

1 0 𝐸
0 1 0
0 0 1

]. 

It is assumed that positive angles are clockwise. 

Equation (9.2) gives 

𝑀12 = [

   cos (𝜙1 + 𝜙2) sin (𝜙1 + 𝜙2) 0 𝐸 𝑠𝑖𝑛𝜙1

−sin (𝜙1 + 𝜙2) cos (𝜙1 + 𝜙2) 0
0 0 1
0 0 0

𝐸 𝑐𝑜𝑠𝜙1

0
1

] 

The inverse transformation can be done using matrix 𝑀21 = 𝑀12
−1 in equation (9.3): 

𝑟2 = 𝑀21𝑟1     Equation 9.3 

where  

𝑀21 = [

cos (𝜙1 + 𝜙2) −sin (𝜙1 + 𝜙2)  0    𝐸 𝑠𝑖𝑛𝜙2

sin (𝜙1 + 𝜙2)  cos (𝜙1 + 𝜙2)   0
0 0   1
0 0   0

−𝐸 𝑐𝑜𝑠𝜙2

0
1

] 
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10. Applications for external spur gears 

10.1 Application to a generic shape 
In the following is discussed the generation of the gear tooth profile by a generic trapezoidal shape 

via 2 tangent circles rotating without slipping. 

The generic trapezoidal tooth used is shown in 

figure (10.1). By setting the coordinates of the trapeze 

in coordinate system 𝑆2 and pre-multiplying them with 

the transformation matrix 𝑀12 according to equation 

(9.2), coordinate in system 𝑆1 are found. 

Running a loop continuously varying 𝜙 angles, 

the motion of the generic tooth can be generated and 

visualized by the successive positions taken by the 6 

points as can be seen in figure (10.2). 

Both centrodes have a radius of 50 units in the previous simulation: (𝐸 = 𝑅1 + 𝑅2 = 100) 

Figure 10.1: generic tooth shape 

Figure 10.2: generated tooth 

profile 
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10.2 Refined application 

10.2.1 Data given 
➢ The shaper cutter data is as follows: 

• Tooth profile is shown in Figure (10.3) 

• Number of teeth:   𝑁 = 17 

• Module:      𝑚 = 3 

• Pressure angle:      𝛼 = 20𝑜 

• Radius:   𝑅1 =
𝑚𝑁

2
= 25.5         Equation 10.1 

➢ Target dimension for the blank gear: 

• 𝑅2 = 𝑅1 = 25.5        

 Both the shaper and the work gears are assumed to have identical radii equal to 25.5 according 

to the previous equation and equal number of teeth (𝑁 = 17). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In the following, the shaper gear cutter vane profile shown in figure (10.4) will be used in order to 

generate a tooth shape in the work gear, instead of using the tooth profile to generate a vane shape. 

Figure 10.3: 2-teeth section of the shaper gear 

cutter 

Figure 10.4: Shaper gear cutter vane profile 
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10.2.2 Results 
 The vane profile data is given as 𝑥, 𝑦 coordinates in the 𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) coordinate system 

represented in figure (9.1). 

 Using equation (9.2) and matrix 𝑀12 for continuously incremented 𝜙 angles (always in relation 

according to equation (9.1)), it is possible to find the trajectory of the vane profile with respect to the 

𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1) coordinate system. 

 By plotting those consecutive positions, the tooth profile on the work gear is generated as is 

shown is figure (10.5). 

 

 

 It is worth noting that a shaper cutter with involute profiles create teeth with identical flank profile 

to the cutter. 

Figure 10.5: Generated tooth profile on the work gear 
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11. Coordinate transformation for internally tangent spur gears 

 

Figure 11.1: centrodes in rotational motions of the same direction 

In Figure (11.1) are shown 2 tangential centrodes with 4 coordinates systems: 

• 𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1) is the primary coordinate system rigidly connected to rotating gear 1. 

• 𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) is the primary coordinate system rigidly connected to rotating gear 2. 

• 𝑆𝑓(𝑂𝑓 , 𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓) is an auxiliary coordinate system rigidly connected to the gear housing. 

• 𝑆𝑝(𝑂𝑝, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝) is an auxiliary coordinate system rigidly connected to the gear housing. 

Centrode 2 is assumed to be the external centrode (𝜌2 > 𝜌1). 
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𝜙1 and 𝜙2 are related by equation (11.1): 

𝜙1

𝜙2
=

𝜌2

𝜌1
                                                                Equation 11.1 

𝐸 is the shortest distance between the 2 axes of rotation. (𝐸 = 𝜌2 − 𝜌1) 

To find the coordinates of points from centrode 2 to centrode 1, a coordinate transformation 

transition is required, and is based on the relation in the matrix equation (11.2): 

𝑟1 = 𝑀12𝑟2 = 𝑀1𝑓𝑀𝑓𝑝𝑀𝑝2𝑟2                           Equation 11.2 

where 𝑀1𝑓 and 𝑀𝑝2 are rotational matrices and 𝑀𝑓𝑝 is a translational matrix. 

𝑟2 = [

𝑥2

𝑦2
𝑧2

1

] , 𝑀𝑝2 = [

   𝑐𝑜𝑠𝜙2  𝑠𝑖𝑛𝜙2 0 0
−𝑠𝑖𝑛𝜙2 𝑐𝑜𝑠𝜙2 0

0 0 1
0 0 0

0
0
1

] 

𝑟1 = [

𝑥1

𝑦1
𝑧1

1

] , 𝑀1𝑓 = [

 𝑐𝑜𝑠𝜙1 −𝑠𝑖𝑛𝜙1 0 0
  𝑠𝑖𝑛𝜙1   𝑐𝑜𝑠𝜙1 0

0 0 1
0 0 0

0
0
1

] 

𝑀𝑓𝑝 = [

1 0 0
0 1 0
0 0 1

0
−𝐸
0

0 0 0 1

]. 

It is assumed that positive angles are clockwise. 

Equation (11.2) gives 

𝑀12 = [

cos(𝜙1 − 𝜙2) −sin (𝜙1 − 𝜙2) 0   𝐸 𝑠𝑖𝑛𝜙1

 sin(𝜙1 − 𝜙2)    cos (𝜙1 − 𝜙2) 0
0 0 1
0 0 0

−𝐸 𝑐𝑜𝑠𝜙1

0
1

] 

The inverse transformation can be done using matrix 𝑀21 = 𝑀12
−1 in equation (11.3): 

𝑟2 = 𝑀21𝑟1     Equation 11.3 

where  

𝑀21 = [

 cos (𝜙1 − 𝜙2)     sin (𝜙1 − 𝜙2)    0   −𝐸 𝑠𝑖𝑛𝜙2

−sin (𝜙1 − 𝜙2)  cos (𝜙1 − 𝜙2)   0
0 0   1
0 0   0

   𝐸 𝑐𝑜𝑠𝜙2

0
1

] 
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12.  Application for internal spur gears 

12.1 Data given 
➢ The shaper cutter data is as follows: 

• Tooth profile is shown in Figure (12.1) 

• Number of teeth:     𝑁1 = 17 

• Module:     𝑚 = 3 

• Pressure angle:     𝛼 = 20𝑜 

• Addendum:  𝑎1 = 1.3𝑚 

• Dedendum:  𝑏1 = 1𝑚 

• Radius:  𝑅1 =
𝑚𝑁1

2
= 25.5 

 

➢ Target dimensions for the blank gear: 

• Radius  𝑅2 = 8𝑅1 = 204 

• Number of teeth 𝑁2 = 8𝑁1 = 136 

• Addendum  𝑎2 = 1𝑚 

• Dedendum  𝑏2 = 1.25𝑚  

Addendum and Dedendum targets are selected in accord with tooth system standards from Table (8.1). 

12.2 Results 
 The vane profile data is given as 𝑥, 𝑦  coordinates in the 𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1)  coordinate system 

represented in figure (11.1). 

 Using equation (11.3) and matrix 𝑀21 for continuously incremented 𝜙 angles (always in relation 

according to equation (11.1)), it is possible to find the trajectory of the vane profile with respect to the 

𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1) coordinate system. 

 By plotting those consecutive positions, the tooth profile on the work gear is generated as is 

shown is Figure (12.2). It is noticeable that the generated tooth profile does not meet the targeted 

dimensions of addendum and dedendum. 

 Given that the inequality ( 𝑎2 + 𝑏2 < 𝑎1 + 𝑏1  ) is verified, the issue can easily be solved by 

changing 𝐸, the distance between the centers of rotation of the cutter and blank gears according to 

equation (12.1) 

 𝐸 = 𝑅2 − 𝑅1 − 𝑜𝑓𝑓𝑠𝑒𝑡            Equation 12.1 

with: 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝑎1 − 𝑏2 

Thus 𝐸 = 𝑅2 − 𝑅1 − 𝑎1 + 𝑏2 

 After correction, results are shown in Figure (12.3). The blank gear dedendum matches the 

requirement, but the addendum is slightly larger than wanted (area situated beneath the tooth envelope 

and above the yellow addendum circle). This, however, is not an issue. That additional area can be easily 

removed via a separate machining process or even by sizing the inner diameter of the blank gear 

accordingly before cutting the blank gear. It is common with shaper cutter that the dedendum of the tool 

be greater than the addendum of the blank gear to be cut. Addendum is set from the blank gear itself. 

Figure 12.1: Shaper cutter gear vane profile 
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Figure 12.2: Generated tooth shape pre-correction 

Figure 12.3: Generated tooth shape post-correction 
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13.  Involute helical gears with parallel axes 
 Helical gears can be used to transmit motion between parallel 

shafts. The helix angle should be identical on both gears, but one gear 

must have a right-hand helix and the other a left-hand helix in order for 

them to mesh properly. Consequently, the shape of the tooth is an 

involute helicoid, shown in Figure (13.1). 

 Conversely to spur gears, whose contact is a line extending all 

the way across the face of the tooth, the initial contact of helical-gear 

teeth is a point that extends into a line as the line comes into more 

engagement. In spur gears the line of contact is parallel to the axis of 

rotation (Figure 13.2b), while in helical gears the line is diagonal across 

the face of the tooth (Figure 13.2a). This progressive engagement 

ensures a smooth load transfer from one tooth to another which allows 

helical gears to transmit heavy loads at high speeds. 

 Due to this different nature of contact in helical 

gears, the contact ratio is of little significance, rather it’s 

the contact area, proportional to the face width of the 

gear, that is significant. 

 Helical gears subject the shaft bearings to radial 

and thrust loads. When thrust loads exceed allowable 

values, it is advisable to mount a double helical gear 

(herringbone) that is equivalent to two helical gears of 

opposite orientation mounted side by side on the same 

shaft. The thrust load cancels out because each pair of 

gears develop a thrust load opposite to the other. 

 When mounting more than a single helical gear 

on the same shaft, the hand of the gears should always 

be selected in a way to reduce the total thrust load 

generated as much as possible. 

 Figure (13.3) shows a top view of a helical rack, 

which will be used to define some parameters related to 

helical gears. Lines ab and cd are the centerlines of two 

adjacent helical teeth taken from the same pitch plane. 

The angle 𝜓 is the helix angle. The distance ac is the 

transverse circular pitch 𝑝𝑡 in the plane of rotation 

(usually referred to as the circular pitch). The distance ae 

is the normal circular pitch 𝑝𝑛 and is related to the 

transverse circular pitch by 

𝑝𝑛 = 𝑝𝑡𝑐𝑜𝑠𝜓     Equation 13.1 

The distance ad is the axial pitch 𝑝𝑥  and is related to previous parameters by 

Figure 13.1: Helical gear tooth 

Figure 13.2: Contact lines on tooth 

surfaces of a helical gear (a) and a spur 

gear (b) 
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𝑝𝑥 =
𝑝𝑡

𝑡𝑎𝑛𝜓
     Equation 13.2 

Since 𝑝𝑛𝑃𝑛 = 𝜋, the normal diametral pitch is presented by 

𝑃𝑛 =
𝑃𝑡

𝑐𝑜𝑠𝜓
     Equation 13.3 

The pressure angle 𝜙𝑛 in the normal direction is different from the pressure angle 𝜙𝑡 in the direction of 

rotation, because of the angularity of the teeth. These angles are related by 

𝑐𝑜𝑠𝜓 =
𝑡𝑎𝑛𝜙𝑛

𝑡𝑎𝑛𝜙𝑡
     Equation 13.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 13.3: Nomenclature of helical gears 
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13.1 Design procedure 
 The design parameters of the normal section of the helical rack cutter are standardized. A 

standard helical gear is generated when the middle line of Section A-A in Figure (13.3) lies in the plane 

that is tangent to the gear pitch cylinder. The input data for computation of the design parameters of a 

standard helical gear are: 

• Normal pressure angle 𝜙𝑛 

• Normal diametral pitch 𝑃𝑛 

• Helix angle  𝜓 

• Number of teeth 𝑁 

• Addendum  𝑎 = 1/𝑃𝑛 

• Dedendum  𝑏 = 1.25/𝑃𝑛 

 The procedure is as follows: 

o Lead angle on the pitch cylinder 𝜆𝑝 (complement of the helix angle): 

𝜆𝑝 =
𝜋

2
− 𝜓     Equation 13.5 

o Tangential pressure angle 𝜙𝑡: 

𝑡𝑎𝑛𝜙𝑡 =
𝑡𝑎𝑛𝜙𝑛

𝑐𝑜𝑠𝜓
     Equation 13.6 

o Tangential circular pitch 𝑝𝑡: 

𝑝𝑡 =
𝑝𝑛

𝑠𝑖𝑛𝜆𝑝
=

𝑝𝑛

𝑐𝑜𝑠𝜓
    Equation 13.7 

o Tangential diametral pitch 𝑃𝑡: 

𝑃𝑡 = 𝑃𝑛𝑠𝑖𝑛𝜆𝑝 = 𝑃𝑛𝑐𝑜𝑠𝜓   Equation 13.8 

o Radius 𝑟𝑝 of the pitch cylinder: 

𝑟𝑝 =
𝑁

2𝑃𝑡
=

𝑁

2𝑃𝑛𝑠𝑖𝑛𝜆𝑝
=

𝑁

2𝑃𝑛𝑐𝑜𝑠𝜓
   Equation 13.9 

o Radius 𝑟𝑏 of the base cylinder: 

𝑟𝑏 = 𝑟𝑝𝑐𝑜𝑠𝜙𝑡 =
𝑁𝑐𝑜𝑠𝜙𝑡

2𝑃𝑛𝑐𝑜𝑠𝜓
                          Equation 13.10 

o Lead angle 𝜆𝑏 on the base cylinder: 

𝑡𝑎𝑛𝜆𝑏 =
𝑝

𝑟𝑏
=

𝑟𝑝𝑡𝑎𝑛𝜆𝑝

𝑟𝑏
               Equation 13.11 

Alternative equation for 𝜆𝑏: 

𝑐𝑜𝑠𝜆𝑏 = 𝑐𝑜𝑠𝜆𝑝𝑐𝑜𝑠𝜙𝑛               Equation 13.12 

o Addendum radius of the cylinder: 

𝑟𝑎 = 𝑟𝑝 + 𝑎 =
𝑁+2𝑠𝑖𝑛𝜆𝑝

2𝑃𝑛𝑠𝑖𝑛𝜆𝑝
=

𝑁+2𝑐𝑜𝑠𝜓

2𝑃𝑛𝑐𝑜𝑠𝜓
             Equation 13.13 

o Dedendum radius of the cylinder: 

𝑟𝑑 = 𝑟𝑝 − 𝑏 =
𝑁−2.5𝑠𝑖𝑛𝜆𝑝

2𝑃𝑛𝑠𝑖𝑛𝜆𝑝
=

𝑁−2.5𝑐𝑜𝑠𝜓

2𝑃𝑛𝑐𝑜𝑠𝜓
              Equation 13.14 

o Tooth thickness and Space width on the pitch circle: 

𝑠𝑡 = 𝑤𝑡 =
𝑝𝑡

2
=

𝑝𝑛

2𝑠𝑖𝑛𝜆𝑝
=

𝜋

2𝑃𝑛𝑠𝑖𝑛𝜆𝑝
 =

𝜋

2𝑃𝑛𝑐𝑜𝑠𝜓
       Equation 13.15 
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13.2 Virtual number of teeth 
 

 

  

 

 

 

 Figure (13.4) shows a plane ab obliquely cutting a cylinder at an angle 𝜓. Plane ab cuts an ellipse 

through the cylinder. The shape of the tooth in the normal plane is nearly the same as the shape of a spur 

gear tooth having a pitch radius equal to radius of curvature 𝑅𝑒 of the ellipse. 

𝑅𝑒 =
𝑑

2 cos2 𝜓
     Equation 13.16 

For the condition of 𝜓 = 0, the radius of curvature is 𝑅𝑒 = 𝑑/2. If the angle 𝜓 is increased from 0 to 90 

degrees, 𝑅𝑒 goes from a value of 𝑑/2 and tends to ∞. 

 The radius 𝑅𝑒 is the apparent pitch radius viewed in the direction of the tooth elements. A gear 

having the same pitch 𝑝𝑛 with a radius equal to 𝑅𝑒 will have a greater number of teeth, due to the larger 

radius. In helical gear terminology, it’s referred to as the virtual number of teeth 𝑁′. 

𝑁′ =
2𝑅𝑒

𝑚𝑛
=

𝑑

𝑚𝑛 cos2 𝜓
    Equation 13.17 

By substituting 𝑚𝑛 = 𝑚. 𝑐𝑜𝑠𝜓, and 𝑑 = 𝑁.𝑚, we get 

𝑁′ =
𝑁

𝑐𝑜𝑠3𝜓
     Equation 13.18 

 The virtual number of teeth is useful for design considerations for strength, and the apparently 

larger radius of curvature translates into the possibility of having fewer teeth per gear. 

 

 

 

 

 

 

 

Figure 13.4: A cylinder cut by an oblique plane 
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14.  Coordinate transformation for externally tangent gears 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure (14.1) are shown 2 tangential centrodes with 3 coordinates systems: 

• 𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1) is the primary coordinate system rigidly connected to the rotating gear. 

• 𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) is the primary coordinate system rigidly connected to the translating rack. 

• 𝑆𝑓(𝑂𝑓 , 𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓) is an auxiliary coordinate system rigidly connected to the gear housing. 

 

Figure 14.1: Centrodes in translation-rotation motions 
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Translation 𝑠 and rotation 𝜙 are related by equation (14.1) 

𝑠 = 𝜌𝜙      Equation 14.1 

To find the coordinates of points from centrode 1 to centrode 2, a coordinate transformation 

transition is required, and is based on the relation in the matrix equation (14.2): 

𝑟1 = 𝑀12𝑟2 = 𝑀1𝑓𝑀𝑓2𝑟2                                    Equation 14.2 

where 𝑀1𝑓 is a rotational matrix and 𝑀𝑓2 is a translational matrix. 

𝑟1 = [

𝑥1

𝑦1
𝑧1

1

] , 𝑀1𝑓 = [

   𝑐𝑜𝑠𝜙  𝑠𝑖𝑛𝜙 0 0
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0

0 0 1
0 0 0

0
0
1

], 

𝑟2 = [

𝑥2

𝑦2
𝑧2

1

] , 𝑀𝑓2 = [

1   0
0   1

    0 −𝜌𝜙
    0 𝜌

0   0
0   0

1    0
0    1

]. 

It is assumed that positive angles are clockwise. 

Equation (14.2) gives 

𝑀12 = [

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙

    0 𝜌(𝑠𝑖𝑛𝜙 − 𝜙𝑐𝑜𝑠𝜙)
    0 𝜌(𝑐𝑜𝑠𝜙 + 𝜙𝑠𝑖𝑛𝜙)

  0         0
  0         0

1                           0
0                           1

] 

The inverse transformation can be done using matrix 𝑀21 = 𝑀12
−1 in equation (14.3): 

𝑟2 = 𝑀21𝑟1     Equation 14.3 

where  

𝑀21 = [

𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜙    𝑐𝑜𝑠𝜙

    0 𝜌𝜙
    0 −𝜌

  0        0
  0        0

1 0
0 1

] 
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15.  Application for parallel helical gears 

15.1 Data given 
The cutter rack is similar to the one shown in Figure (13.3) with the following input parameters: 

• Normal pressure angle 𝜙𝑛 = 20o 

• Module   𝑚 = 3   Circular pitch        𝑝 = 𝜋𝑚 = 3𝜋 

• Helix angle  𝜓 = 30o Tangential pressure angle  𝜙𝑡 = arctan (
𝑡𝑎𝑛𝜙𝑛

𝑐𝑜𝑠𝜓
) 

• Number of teeth 𝑁 = 17 

• Addendum  𝑎 = 1𝑚 = 3 

• Dedendum  𝑏 = 1.25𝑚 = 3.75 

• Rack thickness  𝑡 = 50 

A tangential tooth profile of the rack with the aforementioned parameters is shown in Figure (15.1) and 

the coordinates of its six vertices (𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹) can be defined the following RackProfile Matrices: 

𝑅𝑎𝑐𝑘𝑃𝑟𝑜𝑓𝑖𝑙𝑒1 =

[
 
 
 
 0

𝑝

4
− 𝑏. 𝑡𝑎𝑛𝜙𝑡

𝑝

4
+ 𝑎. 𝑡𝑎𝑛𝜙𝑡

−𝑏 −𝑏 𝑎
𝑡

2

𝑡

2

𝑡

2

3𝑝

4
− 𝑎. 𝑡𝑎𝑛𝜙𝑡

3𝑝

4
+ 𝑏. 𝑡𝑎𝑛𝜙𝑡 𝑝

𝑎 −𝑏 −𝑏
𝑡

2

𝑡

2

𝑡

2 ]
 
 
 
 

 

𝑅𝑎𝑐𝑘𝑃𝑟𝑜𝑓𝑖𝑙𝑒2 = 𝑅𝑎𝑐𝑘𝑃𝑜𝑟𝑓𝑖𝑙𝑒1 − [

𝑡. 𝑡𝑎𝑛𝜓
0
𝑡

2

] 

A 3D representation of the rack vane is shown in Figure (15.2). 

 

Figure 15.1: Rack tangential tooth profile 
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Figure 15.2: Rack vane in 3D 
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15.2 Results 
 The vane profile data is given as 𝑥, 𝑦 coordinates in the 𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) coordinate system 

represented in Figure (14.1). 

 Using equation (14.2) and matrix 𝑀12 for continuously incremented 𝜙, it is possible to find the 

trajectory of the vane profile with respect to the 𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1) coordinate system. 

 By plotting those consecutive positions, the helical tooth shape on the work gear is generated as 

is shown in Figure (15.3).  

Figure 15.3: Generated tooth profile on the work gear 
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16.  Alternative coordinate transformation for externally tangent 

helical gears 
 In the following is considered the unconventional cutting of a helical gear using a spur shaper 

cutter. This can be done due to helical gear teeth having a spur profile in their normal plane. A procedure 

similar to the one described in section (9) is used, adding to it a relative rotation of one of the two 

centrodes about the 𝑦 axis with respect to the second centrode. The coordinate transformation would be 

as follows: 

The relative rotation angles of the two centrodes does not depend exclusively on the radii in this scenario. 

Having figure (13.3) in mind, a normal angular pitch 𝜃𝑛1 of the spur cutter corresponds to a tangential 

angular pitch 𝜃𝑡2 of the blank helical gear. Combining equations (6.1) and (13.1), 

𝜃𝑛1

𝜃𝑡2
=

𝑝𝑛𝜌2

𝑝𝑡𝜌1
= 𝑐𝑜𝑠𝜓

𝜌2

𝜌1
    Equation 15.1 

The rotation angle ratio of the two centrodes is equal to their corresponding angular pitch ratio, therefore 

𝜙1 and 𝜙2 are related by equation (15.2): 

𝜙1

𝜙2
= 𝑐𝑜𝑠𝜓

𝜌2

𝜌1
      Equation 15.2 

𝐸 is the shortest distance between the 2 axes of rotation. (𝐸 = 𝜌1 + 𝜌2) 

To find the coordinates of points from centrode 2 to centrode 1, a coordinate transformation 

transition is required, and is based on the relation in the matrix equation (15.3): 

𝑟1 = 𝑀12𝑟2 = 𝑀1𝑓𝑀𝑓𝑚𝑀𝑚𝑝𝑀𝑝2𝑟2  Equation 15.3 

where 𝑀1𝑓 , 𝑀𝑚𝑝 and 𝑀𝑝2 are rotational matrices and 𝑀𝑓𝑝 is a translational matrix. 

                                  𝑟2 = [

𝑥2

𝑦2
𝑧2

1

] ,                                  𝑟1 = [

𝑥1

𝑦1
𝑧1

1

] , 

                              𝑀1𝑓 = [

   𝑐𝑜𝑠𝜙1  𝑠𝑖𝑛𝜙1 0 0
−𝑠𝑖𝑛𝜙1 𝑐𝑜𝑠𝜙1 0

0 0 1
0 0 0

0
0
1

],        𝑀𝑓𝑚 = [

1   0  0 −𝐸
0
0
0

1  0   0
0  1   0
0  0   1

], 

                              𝑀𝑚𝑝 = [

1
0
0

0 0 0
𝑐𝑜𝑠𝜓 −𝑠𝑖𝑛𝜓 0
𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0

0     0         0      1

],       𝑀𝑝2 = [

   𝑐𝑜𝑠𝜙2  𝑠𝑖𝑛𝜙2 0 0
−𝑠𝑖𝑛𝜙2 𝑐𝑜𝑠𝜙2 0

0 0 1
0 0 0

0
0
1

].   

It is assumed that positive angles are clockwise. 

Equation (15.3) gives 

𝑀12 = [

𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙1𝑠𝑖𝑛𝜙2 −𝑐𝑜𝑠𝜙1𝑠𝑖𝑛𝜙2 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙1𝑐𝑜𝑠𝜙2 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙1 −𝐸𝑐𝑜𝑠𝜙1

−𝑠𝑖𝑛𝜙1𝑐𝑜𝑠𝜙2 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙1𝑠𝑖𝑛𝜙2 𝑠𝑖𝑛𝜙1𝑠𝑖𝑛𝜙2 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙1

−𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙2 −𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙2 𝑐𝑜𝑠𝜓
0 0 0

𝐸𝑠𝑖𝑛𝜙1

0
1

] 
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The inverse transformation can be done using matrix 𝑀21 = 𝑀12
−1 in equation (15.4): 

𝑟2 = 𝑀21𝑟1     Equation 15.4 

Where 

𝑀21 = [

𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙1𝑠𝑖𝑛𝜙2 −𝑠𝑖𝑛𝜙1𝑐𝑜𝑠𝜙2 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙1𝑠𝑖𝑛𝜙2 −𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙2 𝐸𝑐𝑜𝑠𝜙1

𝑐𝑜𝑠𝜙1𝑠𝑖𝑛𝜙2 + 𝑐𝑜𝑠𝜓𝑠𝑖𝑛𝜙1𝑐𝑜𝑠𝜙2 𝑠𝑖𝑛𝜙1𝑠𝑖𝑛𝜙2 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙1𝑐𝑜𝑠𝜙2 −𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙2

𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙1 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙1 𝑐𝑜𝑠𝜓
0 0 0

−𝐸𝑠𝑖𝑛𝜙1

0
1

] 
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17.  Alternative application for parallel helical gears 

17.1 Data given 
 The spur shaper cutter used in this application has the same tooth profile as the one used in 

Section (12) and is shown in Figures (17.1) and (17.2). 

 

 

➢ The shaper cutter data is as follows: 

• Tooth profile is shown in Figure (12.1) 

• Number of teeth:    𝑁1 = 17 

• Module:      𝑚 = 3 

• Pressure angle:      𝛼 = 20𝑜 

• Addendum:   𝑎1 = 1.3𝑚 

• Dedendum:   𝑏1 = 1𝑚 

• Radius:   𝑅1 =
𝑚𝑁1

2
= 25.5 

➢ Target dimensions for the blank gear: 

• Radius:   𝑅2 = 𝑅1 = 25.5 

• Number of teeth:  𝑁2 = 𝑁1 = 17 

• Normal pressure angle: 𝛼𝑛 = 20o 

• Normal module:  𝑚𝑛 = 3 

• Helix angle:   𝜓 = 10o 

 

Figure 17.1: Shaper cutter vane profile  Figure 17.2: Shaper cutter vane (3D) 
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17.2 Results 
 The vane profile data is given as 𝑥, 𝑦, 𝑧 coordinates in the 𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) coordinate system. 

Using equation (16.3) and matrix 𝑀12 for continuously incremented 𝜙 angles (always in relation according 

to equation (16.2)), it is possible to find the trajectory of the vane profile with respect to the 

𝑆1(𝑂1, 𝑥1, 𝑦1, 𝑧1) coordinate system. 

By plotting those consecutive positions, the tooth profile on the work gear is generated as is shown is 

Figure (17.3). 

 

 

 

 

Figure 17.3: Generated helical tooth 
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 With reference to Figure (13.3), it is possible to generate to envelope tooth profiles in both the 

corresponding sections A-A and B-B of the generated helical gear. 

 Section B-B is characterized by a tooth profile identical to the one generated by the cutting 

process of a spur gear with the same shaper cutter, and is shown in Figure (17.5). 

 Section A-A is characterized by a tooth profile similar to the one in cross section B-B but slightly 

stretched in the tangential direction, and is shown in Figure (17.4). 

 Effectively, section B-B is the projection of section A-A along an angle equal to the helix angle 𝜓. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.4: Section A-A 

Figure 17.5: Section B-B 
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18.  Face Gears 
 A Face-Gear Drive is used to transmit a rotational motion between crossed or intersected axes. 

Conventionally, a face-gear drive combines a spur pinion with its conjugate face-gear. 

 

  

 

 

 

 

 

 When generating a face-gear with a shaper, contact between the shaper surface and the face gear 

surface is always a contact line. If the pinion using in the application is identical to the shaper that 

generated the face-gear, the whole assembly will be extremely sensitive to misalignment, which can 

translate in an undesirable shift of the bearing contact and even a separation of the surfaces. This is why 

it is important to provide a point contact rather than a line contact between the pinion and the face-gear, 

which leads to a localized bearing contact and an assembly less sensitive to misalignment. 

 Point contact between the pinion and the face-gear can be provided by using a shaper with a 

greater number of teeth 𝑁𝑠 than that of the pinion 𝑁𝑝 to be used in the application. 

 

 

 

 

 

 

 

 The structure of a face-gear tooth is shown in Figure (18.2). The tooth is divided in two parts: the 

working part made by the contact lines 𝐿2𝑠 that are the tangency lines between the shaper and the face-

gear, and the fillet surface generated by the top edge of the shaper. 𝐿∗ is the common line between the 

working line and the fillet surface. 

Figure 18.1: Face-gear drive 

Figure 18.2: Structure of face-gear tooth 



46 
 

 

 

 

 

 

 

 

 

 Figure (18.3) shows schematics of a face-gear drive. The pinion and the face-gear rotate about 

axes Oa and Ob respectively. The gear ratio is defined in equation (18.1) 

𝑚12 =
𝜔1

𝜔2
=

𝑁2

𝑁1
     Equation 18.1 

where 𝜔𝑖 and 𝑁𝑖  are respectively the rotational speed and the number of teeth of the pinion (𝑖 = 1) and 

the face-gear (𝑖 = 2). The axodes are the two cones of semi-angles 𝛾1 and 𝛾2 defined in equations (18.2) 

and (18.3) 

               𝑐𝑜𝑡𝛾1 =
𝑚12+𝑐𝑜𝑠𝛾

𝑠𝑖𝑛𝛾
                   Equation 18.2 

𝑐𝑜𝑡𝛾2 =
𝑚21+𝑐𝑜𝑠𝛾

𝑠𝑖𝑛𝛾
=

1+𝑚12𝑐𝑜𝑠𝛾

𝑚12𝑠𝑖𝑛𝛾
                  Equation 18.3 

where            𝑚21 =
1

𝑚12
. 

 The line 𝑂𝐼 is the line of tangency of the axodes and the instantaneous axis of rotation in relative 

motion of the pinion and face-gear. An axode is the family of instantaneous axes of rotation that is 

generated in coordinate systems rigidly attached to the pinion and gear. The axodes are the pitch cones 

of the bevel gear drive and are the basis for designing a bevel gear drive. 

Figure 18.3: Axodes and pitch cones 
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 The pitch surfaces of a face-gear drive are the cylinder of radius 𝑟𝑝1 (pitch surface of the pinion) 

and the cone of semi-angle 𝛾 (the pitch surface of the face-gear) shown in Figure (18.3). For 𝛾 = 90o, the 

face-gear corresponds to a flat plane. 

 The pitch line is 𝑂′𝑀. It is the tangency line between the pitch surfaces. 

 The pitch point 𝑃 is the intersection of the pitch line 𝑂′𝑀 with the instantaneous axis of rotation 

𝑂𝐼. The relative motion of the pinion and the face-gear at point 𝑃 is pure rolling, whereas it is sliding and 

rolling at other points of the pitch line 𝑂′𝑀. 

 The generation process of a face-gear is similar to any other gear forming by shaping. It is an exact 

meshing simulation where the shaper cutter is an identical copy of the pinion. Both the cutter and the 

blank gear are rotated with relative angular velocities following Equation (18.4), and the cutter also 

performs a reciprocating motion in the direction of the generatrix of the face-gear cone which is parallel 

to the axis of the shaper cutter. 

𝜔𝑠

𝜔2
=

𝑁2

𝑁𝑠
      Equation 18.3 

where index 𝑖 = 𝑠 refers to the shaper, and index 𝑖 = 2 refers to the blank face-gear. 

 It is worth re-iterating generating a cutter identical to the pinion generates a face-gear drive that 

is sensitive to misalignment, which is why the bearing contact between the face-gear and the pinion must 

be localized, and the line of contact must be replaced by an instantaneous point contact. 

 

 

  

 

 

 

 

 

 

 

The reasoning behind the localization of the bearing contact is summarized in as follows: 

- The shaper cutter number of teeth 𝑁𝑠 must be larger than the number of teeth of the pinion 𝑁1. 

Generally, 𝑁𝑠 − 𝑁1 = 2 𝑜𝑟 3. 

- The pinion and shaper are simulated to have an imaginary internal meshing as shown in Figure 

(18.4). 

Figure 18.4: Tangency of pinion and shaper tooth profiles 
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- In the previously mentioned meshing, the axodes of the shaper and pinion are the pitch cylinders 

of radii 𝑟𝑝𝑠 and 𝑟𝑝1 (Figure 18.4). The common tangent to the pitch cylinders is parallel to their 

axes of rotation and passes through the pitch point 𝑃. This common tangent is in fact the 

instantaneous axis of rotation 𝐼𝐴𝑠1 (Figure 18.5) in the relative motion of the pinion with respect 

to the shaper. 

 

 

 

 

 

 

 

 

 

 

 

- Three surfaces can be considered in mesh simultaneously: 

o Surface Σ1 corresponding to the generated face-gear. 

o Surface Σ2 corresponding to the pinion. 

o Surface Σ𝑠 corresponding to the shaper. 

 Surfaces Σ𝑠 and Σ2 are in line contact throughout the shaping of the face-gear. Surfaces Σ𝑠 and Σ1 

are in line contact throughout the imaginary meshing of the shaper and the pinion. Surfaces Σ1 and Σ2 are 

in point contact throughout the meshing. 

- Figure (18.5) shows the instantaneous axes of rotation in the meshing of the three surfaces Σ1, Σ2 

and Σ𝑠. They are designated by 𝐼𝐴𝑠1, 𝐼𝐴𝑠2 and 𝐼𝐴12 indicating the respective meshings between Σ𝑠 and 

Σ1, Σ𝑠 and Σ2, and Σ1 and Σ2. The angle 𝛾𝑠 formed between the shaper axis and 𝐼𝐴𝑠2 is determined by 

Equation (18.4) 

𝑐𝑜𝑡𝛾𝑠 =
𝑚𝑠2+𝑐𝑜𝑠𝛾

𝑠𝑖𝑛𝛾
=

𝑁2
𝑁𝑠

+𝑐𝑜𝑠𝛾

𝑠𝑖𝑛𝛾
    Equation 18.4 

which is similar to Equation (18.2) to determine 𝛾1. 𝐼𝐴𝑠1 coincides with the pitch line. All three 

instantaneous axes of rotation intersect at the pitch point 𝑃. 𝐵 is the shortest distance between the axes 

of rotation of the pinion and the shaper and can be determined according to Equation (18.5) 

𝐵 = 𝑟𝑝𝑠 − 𝑟𝑝1 =
𝑁𝑠−𝑁1

2𝑃𝑑
     Equation 18.5 

Figure 18.5: Instantaneous axes of rotation 
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19.  Coordinate transformation for face-gears 

 

Figure 19.1: Coordinate system for generation of face-gear surface: (a) illustration of installation; 

(b) derivation of coordinate transformation 
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 The surface Σ2 of the generated face-gear is the envelope of the family of shaper tooth surfaces 

Σ𝑠 are rotate about their axis of rotation. 

In Figure (19.1) are shown 4 coordinate systems: 

• 𝑆𝑠(𝑂𝑎 , 𝑥𝑠, 𝑦𝑠, 𝑧𝑠) is the primary coordinate system rigidly connected to rotating shaper gear. 

• 𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) is the primary coordinate system rigidly connected to rotating blank face-gear. 

• 𝑆𝑚(𝑂𝑚, 𝑥𝑚, 𝑦𝑚, 𝑧𝑚) is an auxiliary coordinate system rigidly connected to the gear housing. 

• 𝑆𝑎(𝑂𝑎, 𝑥𝑎 , 𝑦𝑎 , 𝑧𝑎) is an auxiliary coordinate system rigidly connected to the gear housing. 

 Coordinate axis 𝑂𝑎𝑥𝑎 passes through the pitch point 𝑃. 

 During the shaping process, the shaper rotates about axis 𝑧𝑎 and the blank face-gear about axis 
𝑧𝑚 according to the relation in Equation (19.1) 

𝜓𝑠

𝜓2
=

𝑁2

𝑁𝑠
      Equation 19.1 

The family of shaper surfaces is based off the matrix Equation (19.2) 

𝑟2 = 𝑀2𝑠𝑟𝑠 = 𝑀2𝑚𝑀𝑚𝑎𝑀𝑎𝑠𝑟𝑠                           Equation 19.2 

where: 

𝑀𝑎𝑠 = [

 𝑐𝑜𝑠𝜓𝑠 −𝑠𝑖𝑛𝜓𝑠 0 0
  𝑠𝑖𝑛𝜓𝑠   𝑐𝑜𝑠𝜓𝑠 0

0 0 1
0 0 0

0
0
1

],             𝑀𝑚𝑎 = [

−𝑐𝑜𝑠𝛾   0    𝑠𝑖𝑛𝛾 𝑟𝑝2

0    1 0
−𝑠𝑖𝑛𝛾    0 −𝑐𝑜𝑠𝛾

0    0 0

0
−𝑟𝑝2𝑐𝑜𝑡𝛾

1

], 

𝑀2𝑚 = [

   𝑐𝑜𝑠𝜓2  𝑠𝑖𝑛𝜓2 0 0
−𝑠𝑖𝑛𝜓2 𝑐𝑜𝑠𝜓2 0

0 0 1
0 0 0

0
0
1

],                        𝑟𝑠 = [

𝑥𝑠

𝑦𝑠
𝑧𝑠

1

],                               𝑟2 = [

𝑥2

𝑦2
𝑧2

1

]. 

Equation (19.2) gives 

𝑀2𝑠 = [

−𝑐𝑜𝑠𝜓2𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓𝑠 + 𝑠𝑖𝑛𝜓2𝑠𝑖𝑛𝜓𝑠 𝑐𝑜𝑠𝜓2𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑠 + 𝑠𝑖𝑛𝜓2𝑐𝑜𝑠𝜓𝑠 𝑐𝑜𝑠𝜓2𝑠𝑖𝑛𝛾 𝑟𝑝2𝑐𝑜𝑠𝜓2

𝑠𝑖𝑛𝜓2𝑐𝑜𝑠𝛾𝑐𝑜𝑠𝜓𝑠 + 𝑐𝑜𝑠𝜓2𝑠𝑖𝑛𝜓𝑠 −𝑠𝑖𝑛𝜓2𝑐𝑜𝑠𝛾𝑠𝑖𝑛𝜓𝑠 + 𝑐𝑜𝑠𝜓2𝑐𝑜𝑠𝜓𝑠 −𝑠𝑖𝑛𝜓2𝑠𝑖𝑛𝛾
−𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝜓𝑠 𝑠𝑖𝑛𝛾𝑐𝑜𝑠𝜓𝑠 −𝑐𝑜𝑠𝛾

0 0 0

−𝑟𝑝2𝑠𝑖𝑛𝜓2

−𝑟𝑝2𝑐𝑜𝑡𝛾

1

] 
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20.  Application for face-gears 

20.1 Data given 
 The same spur shaper cutter defined in Section (12) is still being used in this application with its 

vane profile shown in Figure (20.1) 

➢ The shaper cutter data is as follows: 

• Number of teeth:   𝑁1 = 17 

• Module:     𝑚 = 3 

• Pressure angle:   𝛼 = 20𝑜 

• Radius:   𝑅1 =
𝑚𝑁1

2
= 25.5 

➢ Target dimensions for the blank face-gear: 

• Radius:   𝑅2 = 10𝑅1 = 255 

• Number of teeth: 𝑁2 = 10𝑁1 = 170 

 

 

 

20.2 Results 
 The spur gear shaper cutter vane profile data is given as 𝑥, 𝑦 coordinates in the 𝑆𝑠(𝑂𝑎 , 𝑥𝑠, 𝑦𝑠 , 𝑧𝑠) 

coordinate system represented in Figure (19.1). 

 Using equation (19.2) and matrix 𝑀12 for continuously incremented 𝜓𝑠 and 𝜓2 always according 

to equation (19.1), it is possible to find the trajectory of the vane profile with respect to the 

𝑆2(𝑂2, 𝑥2, 𝑦2, 𝑧2) coordinate system. 

 By plotting those consecutive positions, the tooth profile on the blank face-gear is generated as 

is shown in Figure (20.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20.1: Shaper cutter gear vane profile 

Figure 20.2: Generated face-gear tooth profiles 
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 Figure (20.2) shows five equidistant profiles of the generated face-gear tooth, highlighting the 

continuously changing tooth profile in such an application. The tooth profile on the left of Figure (20.2) is 

close to the spur vane profile (the inside of the face-gear) and gradually takes a triangular shape moving 

to the right side of the figure (the outside of the face-gear). 
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21.  Envelope of Internal Spur Gears 
 This section builds upon an already existing Matlab code used to generate the envelope of an 

external spur gear via a shaping procedure.  

 The code takes in as input all the various parameters of the desired spur gear, then it generates 

the geometry of the rack required to form the desired spur gear geometry. The code then takes in the 

relative motion of the rack cutter and the blank gear in a way analogous to what was previously detailed 

in Section 14. 

 Figure (21.1) shows the rack geometry, Figure (21.2) shows the relative motion of the pair or 

gears, and Figure (21.3) shows the corrected envelope of the spur gear generated by this shaping process. 

This same envelope is also represented by the blue line in Figure (21.2). 

 Figure 21.1: Rack geometry (vane) 

    Figure 21.2: Relative motion 
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Figure 21.3: Envelope of the generated spur gear tooth 

 Generating the envelope is based on the theorem that states that a point of the cutter generates 

a respective point on the blank gear if the normal to the profile of the cutter at that point passes through 

the instantaneous center of rotation, also known as the Pitch Point P (shown in Figure 5.1). Figure (21.4) 

shows some normals (green arrows) of the cutter profile used in Figure (21.2). 

 

Figure 21.4: Normals of the cutter profile 
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 The additions and modifications done to the code consist in using the output (spur gear profile) 

as the pinion shaper cutter of an internal spur gear. The spur tooth profile (Figure 21.3) has to be first 

transformed into a vane as is shown in Figure (21.5) 

 Figure 21.5: Vane profile 

 Relative motion is then administered to the vane profile. Results are shown in Figure (21.6) 

 

 

 

 

 

 

 

 

 

 

Figure 21.6: Relative motion 

for the internal gear shaping 
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 By applying the aforementioned theorem to generate the envelope curve, we obtain a plot that 

is missing the two fillets at the root of the tooth, shown in Figure (21.7) 

 

 

 

 

 

 

 

 

 

 

 

Figure 21.7: Internal 

gear tooth profile 

 The solution to this problem lies at the angular tip of the shaper cutter. The missing fillet is the 

portion of the internal gear tooth profile that is generated by the angular tip of the cutter. The normals to 

the cutter profile show a sudden change in direction at the angular tip, which results in an inaccurate 

normal at the angular point. 

 A proposed solution to this issue is to have a variable normal direction at the tip, ranging within 

an interval of values delimited by the normal directions of the two adjacent points to the angular tip as is 

shown in Figure (21.8). The generated points that fit the previously mentioned theorem would be grouped 

with the other points of the envelope, pending a correction. Figure (21.9) shows the uncorrected envelope 

resulting from the presented solution. 

  Figure 21.8: Normals at the angular tip 
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 Figure 21.9: Uncorrected envelope 

 It is obvious that many generated points do not belong to the envelope, and it is evident that 

among them, any point whose radius is smaller than the radius of the center point of the envelope does 

not belong to the envelope. Once those points are removed, the results look like Figure (21.10). 

  

 

 

 

 

 

 

 

 

 

Figure 21.10: First correction of 

the envelope 

 Few points remain to be removed from the generated envelope, which is easily doable by deleting 

points that are fairly distant from the previous point on the envelope. The fully-corrected envelope is 

presented in Figure (21.11). Figure (21.12) shows the relative cutter-blank motion combined with the 

finished envelope. 
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Figure 21.11: Second correction of the envelope 

 

Figure 21.12: Final Result, relative motion and generated envelope 
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 Figure (21.12) has a shaper cutter with the following data: 

- Number of teeth: 48 

- Gear ratio:  8 

- Pressure angle:  20o 

- Module:  3.125 

- Root fillet coefficient: 0.38 

- Addendum:  1m 

- Dedendum:  1.25m 

 Here are presented some other results with one different parameter in each case. The other 

parameters are identical to the previous case. 

 

                         Figure 21.13: Module = 2             Figure 21.14: Number of teeth = 30 

 

 

          Figure 21.15: Gear ratio = 3      Figure 21.16: Root fillet coefficient = 0.01 
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  Figure 21.17: Pressure angle = 14.5o             Figure 21.18: Pressure angle = 22o 

    Figure 21.19: Addendum = 1.75m                 Figure 21.20: Addendum = 1m 

      Figure 21.21: Dedendum = 1.1m              Figure 21.22: Dedendum = 0.8m 
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22.  Conclusion 
 This thesis tried to shed some light on the wide range of gear types, the various parameters that 

define a gear tooth profile and the procedure to constructing that profile in a way such that the gear can 

fulfill its function of having a constant angular velocity ratio. 

 After a  short description of various forming techniques, the bulk content of the thesis details 

applications of forming by shaping for external spur gears, internal spur gears, helical gears and face-

gears. These applications are the first step in generating the profile on the blank gear that is the envelope 

of the cutter movement positions. That procedure was developed for internal spur gears. 

 The fillet correction that has been used is empirical rather than theoretical but it gives in relatively 

acceptable results as far as the scope of the thesis is concerned. Better fillet enhancement could be made, 

with a deeper theoretical background in play. 

 This envelope generating procedure can also be adopted and modified accordingly to 

accommodate the other aforementioned gear types. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



62 
 

23.  References 
 

• Section 1:   On the Origin of Clockwork, Perpetual Motion Devices, and the Compass 

  Derek J. de Solla Price 

  Page 84 

    Design of Machinery – Third Edition 

  Norton, Robert L. 

  Page 462 

    Gearing in the Ancient World. Endeavour 

  Lewis, M. J. T. 

    The Book of Knowledge of Ingenious Mechanical Devices 

  Donald Hill 

  Page 273 

    Economic of Medieval India, 1200-1500 

  Irfan Habib 

  Page 53 

    Science and Civilization in China: Volume 4, Part 2 

  Joseph Needham 

  Page 298 

• Section 2:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-2  Pages 675-676 

• Section 3:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-3  Page 677 

    Machine Design: An Integrated Approach – Third Edition 

  Norton, R.L. 

• Section 4:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-4  Page 678 

• Section 5:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-5  Pages 679-681 

    Fundamentals of Machine Component Design – Fourth Edition 

  Juvinall, R.C. and K.M. Marshek 

  Page 598 

    Open Gearing Catalog 

  Boston Gear Company 

• Section 6:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-8  Pages 687-689 

    Pictures: https://www.tec-science.com/mechanical-power- 

     transmission/involute-gear/gear-cutting/  

https://www.tec-science.com/mechanical-power-


63 
 

• Section 7:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-6  Pages 684-685 

• Section 8:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-12  Pages 696-697 

    AGMA 913 standards – American Gear Manufacturers Association 

• Section 9:   Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 1-5.2 Pages 17-19 

• Section 11:   Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 1-5.3 Pages 19-20 

• Section 13:   Shigley’s Mechanical Engineering Design – Ninth Edition 

  Richard G. Budynas and Keith Nisbett 

  Chapter 13-10 Pages 691-693 

    Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 14- ‘Lines of Contact’, ‘Relation between Design Parameters’ 

  Pages 388,390-392 

• Section 14:   Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 1-5.1 Pages 15-17 

• Section 16:   Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 1-5.5 Pages 22-24 

• Section 18:   Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 18-1,2,3,4 Pages 508-514 

• Section 19:   Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 18-5 Pages 517-518 

• Section 21:   Gear Geometry and Applied Theory – Second Edition 

  Faydor L. Litvin and Alfonso Fuentes 

  Chapter 6-9 Pages 119-121 

 


