
POLITECNICO DI TORINO

Corso di Laurea Magistrale in
Ingegneria Energetica e Nucleare

Tesi di laurea magistrale

Detached eddy simulation of an aircraft jet flow using an
open-source CFD code

Relatori
Prof. Marco Carlo Masoero (Politecnico di Torino)
Prof. Roberto Paoli (University of Illinois at Chicago)

Candidato
Riccardo ROMA

Matricola: 257517

Anno accademico 2019/2020



Abstract

This thesis is a preliminary work of the project "High-performance computing and
data-driven modeling of aircraft contrails" granted by the US NFS (National Science
Foundation) and with PI Prof. Roberto Paoli of the Illinois University of Chicago
(UIC). In the work is analyzed the Jet Phase of the contrail formation without con-
sidering soot particles exiting from the aircraft engine; whose drain nozzle geometry
has been considered similar to the NASA acoustic research nozzle ARN-2. The fluid
dynamic study is performed using only open source software, in particular Gmsh
for the mesh generation and OpenFOAM as CFD code. Different geometries and
turbulence models are explored, with a great attention on the results obtained with
the Detached Eddy Simulations based on the k−ω SST model. Furthermore, in the
thesis are described in detail all the settings to properly set up the OpenFOAM’s
solver rhoPimpleFoam for jet flows at sonic conditions, therefore the second aim of
the work is to give to the user a comprehensive guide to launch an OpenFOAM
simulation for this kind of flows.

Keywords:OpenFOAM, Gmsh, Detached Eddy Simulations, Sonic Jets, ARN-2
nozzle

I



Acknowledgments

First, I would like to express my gratitude to my academic advisors, Professor
Roberto Paoli, for his advice and suggestions and Professor Marco C. Masoero,
for his kindness and helpfulness despite the distance. I would also like to thank
Mrs. Jenna Stephens for her patience and availability during my stay in Chicago
and to be always ready to cheer-up me and the other students of the TOP-UIC
project during the pandemic. A thanks goes also to Professor’s Paoli assistant Sibo
Li, who helped me with OpenFOAM and was always available for questions and
clarifications. During the time spent in Chicago, I have been surrounded by friends
that shared with me this incredible experience and made me feel less the distance
from my country. For this I want to thank all the Italian students who left with me
the Politecnico to live this amazing experience. A thanks goes also to my classmates
back in Turin, Edoardo and Francesco, who unburdened me from university pains
and have given me wonderful memories that I will always bring within. Every time
I come back home, in Puglia, I have friends who are always ready to welcome me
with open arms and make me fell like I never went away, for this I want to thank
Andrea, Giuseppe and Cosimo. Last but not the least the biggest and priceless
thanks goes to my family, they allowed me to study away from home, first in Turin
and then in Chicago. They supported me in every decision and they gave me the
strength to complete these five years of university. They have been the lighthouse
in these last dark months, when the Coronavirus pandemic and the miles away from
home would have lower anyone’s mood. Thank to my mother, for her blind love and
for always making believe me in myself, thank to my father who thought me how
to take life lightly and the values honesty and kindness, thank to my sister who is
always behind me with her hidden and silent gestures, if today I am what I am is
mainly thanks to them.

II



List of abbreviations

• ARN-2 Acoustic Research Nozzle 2

• CFD Computational Fluid Dynamics

• CV Control Volume

• DES Detached Eddy Simulation

• DDES Delayed Detached Eddy Simulation

• GAMG Generalized geometric-algebraic multi grid

• LES Large eddy simulation

• NFS National Science Foundation

• OpenFOAM Operation Field and Manipulation

• PbiCG Preconditioned bi-conjugate gradient

• PbiCGStab Stabilized preconditioned bi-conjugate gradient

• PI Principal investigator

• PISO Pressure Implicit with splitting of operators

• RANS Reynolds-Average Navier Stokes

• SGS Sub-grid scales

• SIMPLE Semi-Implicit method for Pressure Linked Equations

• SST Shear Stress transport

• UIC University of Illinois at Chicago

III



Contents

1 Introduction 1

2 Governing equations and modeling 3
2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Incompressibility . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Turbulence modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 k − ε model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 k − ω SST model . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Large-eddy simulation (LES) . . . . . . . . . . . . . . . . . . 9
2.2.4 Detached-Eddy Simulation (DES) . . . . . . . . . . . . . . . . 14

3 Introduction to OpenFOAM 16
3.1 OpenFOAM’s structure . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 The finite volume method . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Time discretization . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Convective discretization . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Viscous discretization . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 Gradient discretization . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Available discretization schemes in OpenFOAM . . . . . . . . 21

3.3 Solution of the discretized equations . . . . . . . . . . . . . . . . . . . 24
3.3.1 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 OpenFOAM equations solvers . . . . . . . . . . . . . . . . . . 28

4 Solver selection, set-up and validation 29
4.1 The PIMPLE algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 The SET-UP case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.1 Mesh Generation using the BlockMesh utility . . . . . . . . . 33
4.2.2 Selection of the turbulence model and of the thermophysical

properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Selection of the discretization schemes . . . . . . . . . . . . . 38
4.2.4 Selection of the equation solvers . . . . . . . . . . . . . . . . . 39
4.2.5 Boundary and initial conditions . . . . . . . . . . . . . . . . . 41
4.2.6 Simulation control . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Results and comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Axisymmetric simulations in flight condition 48
5.1 Flight conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Axisymmetric no-wall case . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . 50

IV



CONTENTS

5.2.2 Boundary and initial conditions . . . . . . . . . . . . . . . . . 52
5.2.3 Simulation control . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.4 Results and validation . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Axisymmetric wall case . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Mesh generation . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Boundary and initial condition . . . . . . . . . . . . . . . . . 62
5.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Full 3D simulations in flight conditions 68
6.1 3D mesh generation using Gmsh . . . . . . . . . . . . . . . . . . . . . 68

6.1.1 Gmsh overview . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.2 Mesh creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.2 Full 3D no wall case - RANS approach . . . . . . . . . . . . . . . . . 73
6.2.1 Group1 - results . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Group2 - results . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.3 Comparisons Axisymmetric-3D . . . . . . . . . . . . . . . . . 78

6.3 Full 3D wall case - RANS approach . . . . . . . . . . . . . . . . . . . 79
6.3.1 Group 1 - results . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 Group 2 - results . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 Comparisons Axisymmetric-3D . . . . . . . . . . . . . . . . . 84

6.4 DES simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.1 No wall case - DES approach . . . . . . . . . . . . . . . . . . 85
6.4.2 Wall case - DES approach . . . . . . . . . . . . . . . . . . . . 93

7 Conclusions and further work 101

A Compressible LES equations i

B OpenFOAM’s near sonic case: blockMesh file, boundary and initial
conditions iii

C Axisymmetric simulations: blockMesh files, boundary and initial
conditions xiv
C.1 Axisymmetric no-wall case . . . . . . . . . . . . . . . . . . . . . . . . xiv
C.2 Axisymmetric wall case . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

D Gmsh files for the 3D mesh generation xxxvii
D.1 No wall case .geo file . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxvii
D.2 Wall case .geo file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . l

V



List of Figures

2.1 Effects of filtering operation on isotropic turbulence . . . . . . . . . . 10

3.1 OpenFOAM structure . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Simulation’s folder structure . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Control volume in three dimension with neighboring nodes . . . . . . 19
3.4 Cartesian notation for a control volume in two dimensions . . . . . . 20

4.1 NASA set-up and validation case . . . . . . . . . . . . . . . . . . . . 33
4.2 Near sonic jet case geometry dimensions . . . . . . . . . . . . . . . . 35
4.3 Near sonic jet case OpenFOAM’s mesh . . . . . . . . . . . . . . . . . 35
4.4 Near sonic jet case OpenFOAM’s mesh blocks (figure not in scale) . . 36
4.5 Near sonic jet case OpenFOAM’s patches . . . . . . . . . . . . . . . . 41
4.6 U magnitude contour plot . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 k contour plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.8 ω contour plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.9 Simulations comparisons OpenFOAM (solid line -), NASA (dashed

line - -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 45
(b) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(c) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(d) u′v′ profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Simulations comparisons OpenFOAM (solid line -), Experimental data
(dashed line - -) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 46
(b) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
(c) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
(d) u′v′ profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.11 Analytical spreading rate . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 No wall case geometry dimensions . . . . . . . . . . . . . . . . . . . . 49
5.2 Blocks in the axisymmetric no-wall case (Figure not in scale) . . . . . 51
5.3 Mesh 3 axisymmetric no-wall case front section . . . . . . . . . . . . 52
5.4 No wall case boundary conditions . . . . . . . . . . . . . . . . . . . . 52
5.5 Diagram of round jet in coflow . . . . . . . . . . . . . . . . . . . . . . 54
5.6 U magnitude contour plot no wall case . . . . . . . . . . . . . . . . . 55

VI



LIST OF FIGURES

5.7 T contour plot no wall case . . . . . . . . . . . . . . . . . . . . . . . 55
5.8 p contour plot no wall case . . . . . . . . . . . . . . . . . . . . . . . . 55
5.9 Ma contour plot no wall case . . . . . . . . . . . . . . . . . . . . . . . 56
5.10 k contour plot no wall case . . . . . . . . . . . . . . . . . . . . . . . . 56
5.11 ω contour plot no wall case . . . . . . . . . . . . . . . . . . . . . . . . 56
5.12 No wall case centerline velocity . . . . . . . . . . . . . . . . . . . . . 57
5.13 No wall case centerline temperature . . . . . . . . . . . . . . . . . . . 57
5.14 No wall case centerline k . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.15 Axisymmetric no wall case profiles Mesh 1( Solid line -), Mesh 2

(Dashed line - -), Mesh 3 (Dotted line ··) . . . . . . . . . . . . . . . . 59
(a) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
(b) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
(c) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
(d) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.16 Geometry dimensions for the axisymmetric wall case . . . . . . . . . 60
5.17 Front section Mesh 3 wall case . . . . . . . . . . . . . . . . . . . . . . 61
5.18 Wall case boundary conditions . . . . . . . . . . . . . . . . . . . . . . 62
5.19 Axisymmetric wall case lipline and centerline velocity-pressure evolution 63

(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 63
(b) Centerline pressure . . . . . . . . . . . . . . . . . . . . . . . . . 63
(c) Lipline velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
(d) Lipline velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.20 U magnitude contour plot wall case . . . . . . . . . . . . . . . . . . . 64
5.21 T contour plot wall case . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.22 p contour plot wall case . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.23 Ma contour plot wall case . . . . . . . . . . . . . . . . . . . . . . . . 64
5.24 k contour plot wall case . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.25 ω contour plot wall case . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.26 Stream lines plot for the recirculation zone . . . . . . . . . . . . . . . 65
5.27 Axisymmetric wall case profiles Mesh 1( Solid line -), Mesh 2 (Dashed

line - -), Mesh 3 (Dotted line ··) . . . . . . . . . . . . . . . . . . . . . 66
(a) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(b) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(c) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(d) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 66
(e) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
(f) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.28 Centerline comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . 67
(a) Centerline velocity comparison . . . . . . . . . . . . . . . . . . 67
(b) Centerline temperature comparison . . . . . . . . . . . . . . . . 67

5.29 Zoom end of the potential core region axisymmetric cases . . . . . . . 67
(a) Zoom potential core no-wall case . . . . . . . . . . . . . . . . . 67
(b) Zoom potential core wall case . . . . . . . . . . . . . . . . . . . 67

6.1 3D mesh no-wall case . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2 3D mesh wall case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3 Buttefly grid strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VII



LIST OF FIGURES

6.4 Results comparisons Group 1 no-wall case Mesh 2.5M (solid line -),
Mesh 5M (dashed line - -), Mesh 8M (dotted line :) . . . . . . . . . . 74
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 74
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 74
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.5 Results comparisons Group 2 no-wall case Mesh 10° (solid line -),
Mesh 5° (dashed line - -), Mesh 2° (dotted line :) . . . . . . . . . . . 75
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 75
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 75
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.6 U contour plot 3D no-wall case . . . . . . . . . . . . . . . . . . . . . 76
6.7 T contour plot 3D no-wall case . . . . . . . . . . . . . . . . . . . . . 76
6.8 p contour plot 3D no-wall case . . . . . . . . . . . . . . . . . . . . . . 76
6.9 Ma contour plot 3D no-wall case . . . . . . . . . . . . . . . . . . . . . 77
6.10 k contour plot 3D no-wall case . . . . . . . . . . . . . . . . . . . . . . 77
6.11 ω contour plot 3D no-wall case . . . . . . . . . . . . . . . . . . . . . . 77
6.12 Zoom end of the potential core region 3D no-wall cases . . . . . . . . 77

(a) Zoom potential core no-wall case Group 1 . . . . . . . . . . . . 77
(b) Zoom potential core no-wall case Group 2 . . . . . . . . . . . . 77

6.13 Comparisons between the 3D axisymmetric and the full 3D no-wall
cases. 3D axisymmetric (Solid line -) full 3D (Dashed line - -) . . . . 78
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 78
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 78
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.14 3D streamlines wall case - RANS approach . . . . . . . . . . . . . . . 79
6.15 Results comparisons Group 1 wall case Mesh 4M (solid line -), Mesh

8M (dashed line - -), Mesh 12M (dotted line :) . . . . . . . . . . . . . 80
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 80
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 80
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.16 Results comparisons Group 2 wall case Mesh 2° (solid line -), Mesh
5° (dashed line - -), Mesh 10° (dotted line :) . . . . . . . . . . . . . . 81

VIII



LIST OF FIGURES

(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 81
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 81
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.17 U contour plot 3D wall case . . . . . . . . . . . . . . . . . . . . . . . 82
6.18 T contour plot 3D wall case . . . . . . . . . . . . . . . . . . . . . . . 82
6.19 p contour plot 3D wall case . . . . . . . . . . . . . . . . . . . . . . . 82
6.20 Ma contour plot 3D wall case . . . . . . . . . . . . . . . . . . . . . . 82
6.21 k contour plot 3D wall case . . . . . . . . . . . . . . . . . . . . . . . 83
6.22 ω contour plot 3D wall case . . . . . . . . . . . . . . . . . . . . . . . 83
6.23 Zoom end of the potential core region 3D wall cases . . . . . . . . . . 83

(a) Zoom potential core wall case Group 1 . . . . . . . . . . . . . . 83
(b) Zoom potential core wall case Group 2 . . . . . . . . . . . . . . 83

6.24 Comparisons between the 3D axisymmetric and the full 3D wall cases.
3D axisymmetric (Solid line -) full 3D (Dashed line - -) . . . . . . . . 84
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 84
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 84
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.25 Sgs contributions to k no-wall case . . . . . . . . . . . . . . . . . . . 86
(a) Sgs centerline k contribution . . . . . . . . . . . . . . . . . . . . 86
(b) Sgs profiles k contribution . . . . . . . . . . . . . . . . . . . . . 86

6.26 Reynolds stresses comparisons no-wall case . . . . . . . . . . . . . . . 87
(a) Reynolds stresses . . . . . . . . . . . . . . . . . . . . . . . . . . 87
(b) Hussein et al.results . . . . . . . . . . . . . . . . . . . . . . . . 87
(c) Turbulent kinetic energy balance . . . . . . . . . . . . . . . . . 87

6.27 Comparisons between the DES and RANS model for the no-wall case
on Mesh 2° .Solid line (-) RANS, Dashed line (- -) DES . . . . . . . . 88
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 88
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 88
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.28 Centerline velocity and temperature decays for the no-wall case. Solid
line ( - ) Simulation, Dashed line (- -) Power law fitting . . . . . . . . 89
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 89
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 89
(c) Centerline velocity last 5m . . . . . . . . . . . . . . . . . . . . . 89
(d) Centerline temperature last 5m . . . . . . . . . . . . . . . . . . 89

6.29 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

IX



LIST OF FIGURES

6.30 Q criterion isosurfaces u ∈ [250, 420] m/s . . . . . . . . . . . . . . . . 91
(a) Q = 5 · 105 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(b) Q = 5 · 104 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(c) Q = 5 · 103 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(d) Q = 5 · 102 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.31 Profiles with turbulent fluctuations no-wall case . . . . . . . . . . . . 91
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 91
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 91
(c) ux x/D = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
(d) T x/D = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.32 Istantaneous U snapshot no-wall case . . . . . . . . . . . . . . . . . . 92
6.33 U mean snapshot no-wall case . . . . . . . . . . . . . . . . . . . . . . 92
6.34 Istantaneous T snapshot no-wall case . . . . . . . . . . . . . . . . . . 92
6.35 T mean snapshot no-wall case . . . . . . . . . . . . . . . . . . . . . . 92
6.36 Sgs contributions to k wall case . . . . . . . . . . . . . . . . . . . . . 93

(a) Sgs centerline k contribution . . . . . . . . . . . . . . . . . . . . 93
(b) Sgs profiles k contribution . . . . . . . . . . . . . . . . . . . . . 93

6.37 3D streamlines wall case - DES approach . . . . . . . . . . . . . . . . 94
6.38 Comparisons between the DES and RANS model for the wall case on

Mesh 2° Solid line (-) RANS, Dashed line (- -) DES . . . . . . . . . . 95
(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 95
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 95
(c) ux profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(d) uy profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(e) Centerline k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(f) k profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
(g) T profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.39 Mach number and lipline velocity and pressure for the three wall cases 96
(a) Lipline velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
(b) Lipline pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
(c) Centerline Mach . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.40 Centerline velocity and tempeature decays for the wall case at the
end of the domain. Solid line ( - ) Simulation, Dashed line (- -) Power
law fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
(a) Centerline velocities . . . . . . . . . . . . . . . . . . . . . . . . 97
(b) Centerline temperatures . . . . . . . . . . . . . . . . . . . . . . 97
(c) Centerline velocities last 5m . . . . . . . . . . . . . . . . . . . . 97
(d) Centerline temperatures last 5m . . . . . . . . . . . . . . . . . . 97

6.41 Q criterion isosurfaces u ∈ [250, 420] m/s for Q ∈ [5 · 102, 5 · 105] s−2

and u ∈ [0, 500] m/s for Q = 6 · 106 s−2 . . . . . . . . . . . . . . . . . 98
(a) Q = 5 · 105 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
(b) Q = 5 · 104 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
(c) Q = 5 · 103 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
(d) Q = 5 · 102 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
(e) Q = 6 · 106 s−2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.42 Istantaneous U snapshot wall case . . . . . . . . . . . . . . . . . . . . 99
6.43 U mean snapshot wall case . . . . . . . . . . . . . . . . . . . . . . . . 99
6.44 Istantaneous T snapshot wall case . . . . . . . . . . . . . . . . . . . . 99

X



LIST OF FIGURES

6.45 T mean snapshot wall case . . . . . . . . . . . . . . . . . . . . . . . . 99
6.46 Profiles with turbulent fluctuations wall case . . . . . . . . . . . . . . 100

(a) Centerline velocity . . . . . . . . . . . . . . . . . . . . . . . . . 100
(b) Centerline temperature . . . . . . . . . . . . . . . . . . . . . . . 100
(c) Lipline velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
(d) Lipline temperature . . . . . . . . . . . . . . . . . . . . . . . . 100
(e) Ux x/D = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
(f) T x/D = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

XI



List of Tables

2.1 Common LES filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1 OpenFOAM’s time schemes . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 OpenFOAM’s gradient schemes . . . . . . . . . . . . . . . . . . . . . 22
3.3 OpenFOAM’s divergence schemes . . . . . . . . . . . . . . . . . . . . 23
3.4 OpenFOAM’s surface gradient schemes . . . . . . . . . . . . . . . . . 23

4.1 Near sonic jet case OpenFOAM’s cells per block . . . . . . . . . . . . 36

5.1 Internal engine characteristics . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Mesh 1 axisymmetric no-wall case . . . . . . . . . . . . . . . . . . . . 51
5.3 Mesh 2 axisymmetric no-wall case . . . . . . . . . . . . . . . . . . . . 51
5.4 Mesh 3 axisymmetric no-wall case . . . . . . . . . . . . . . . . . . . . 51
5.5 Turbulent quantities initial conditions . . . . . . . . . . . . . . . . . . 53
5.6 Mesh 1 Axisymmetric wall case . . . . . . . . . . . . . . . . . . . . . 61
5.7 Mesh 2 Axisymmetric wall case . . . . . . . . . . . . . . . . . . . . . 61
5.8 Mesh 3 Axisymmetric wall case . . . . . . . . . . . . . . . . . . . . . 61
5.9 Potential core comparisons axisymmetric cases . . . . . . . . . . . . . 67

6.1 Meshes for the full 3D no-wall case . . . . . . . . . . . . . . . . . . . 71
(a) No wall case Group 1 meshes . . . . . . . . . . . . . . . . . . . 71
(b) No wall case Group 2 meshes . . . . . . . . . . . . . . . . . . . 71

6.2 Meshes for the full 3D wall case . . . . . . . . . . . . . . . . . . . . . 71
(a) Wall case Group 1 meshes . . . . . . . . . . . . . . . . . . . . . 71
(b) Wall case Group 2 meshes . . . . . . . . . . . . . . . . . . . . . 71

6.3 Grid convergence potential core - no wall case . . . . . . . . . . . . . 77
(a) Group 1 - axial and radial refinement . . . . . . . . . . . . . . . 77
(b) Group 2 - radial refinement . . . . . . . . . . . . . . . . . . . . 77

6.4 Grid convergence potential core - wall case . . . . . . . . . . . . . . . 83
(a) Group 1 - axial and radial refinement . . . . . . . . . . . . . . . 83
(b) Group 2 - radial refinement . . . . . . . . . . . . . . . . . . . . 83

6.5 Centerline velocity and temperature decay for the no-wall case . . . . 89
6.6 Estimated recirculation zone length for the three wall cases . . . . . . 96
6.7 Centerline velocity and temperature decay for the no-wall case . . . . 97

XII



Chapter 1

Introduction

This thesis work is part of a preliminary study of the project "High-performance
computing and data-driven modeling of aircraft contrails", granted by the US NFS
(National Science Foundation) and with PI Prof. Roberto Paoli of the Illinois Uni-
versity of Chicago (UIC). The aim of the project is the prediction of contrail for-
mation in fully-three dimensional turbulent jets exhausting the aircraft nozzle exit
using high fidelity LES simulations and use the data obtained by these simulations
to train Artificial Neural Networks (ANN) in order to have an accurate model of
the contrail structure. The main target of this thesis work is to analyze the first
phase of the contrail formation, the so called Jet Phase, where the aircraft jet is
expanded into the atmosphere, mixed with the ambient air and cooled down to the
atmospheric temperature. This phase accours in the first 30 m behind the jet en-
gine and it is assumed that the jet expansion is not influenced by the aircraft vortex
formation. As a preliminary work, the simulations performed in the thesis take
into account only the exhausted gases of the engine without adding soot particles
that can act as nucleation sites for for the sublimation of the atmospheric water va-
por. The simulations are run on OpenFOAM, an open source CFD code, and they
are performed in an increasing level of turbulence model and geometry complexity.
First are run simulations using the k−ω SST RANS model on an axisymmetric grid
with periodic rotating boundary conditions, then it is considered a full 3D geometry
on which is applied the same RANS model and finally the k − ω SST DES model
which is an hybrid model between RANS and LES. On all the three cases the flow
is simulated both considering and not considering the duct surrounding the drain
nozzle of a CFM-56 engine, whose geometry has been considered similar to the one
of the ARN-2 acoustic reference nozzle used at the NASA Glenn Research Center.
In particular the ARN-2 nozzle geometry has been rescaled to account the exit di-
ameter of 0.610 m of the CFM-56 engine. The set-up of the OpenFOAM solver to
perform the simulations, is made on the data for the Axisymmetric near-sonic jet
validation case of the NASA Langley Research, these flow data are for an unheated
jet exiting at Ma = 0.985 from the ARN-2 nozzle and can be easily downloaded
at [1]. In the work one of the main challenges has been the creation of a suitable
structured grid to run the simulation with the k − ω SST DES turbulence model.
For this model it is essential a good grid refinement in order to caught as much as
possible turbulent length scales using the LES part of the model, without having
an excessive computational cost. For this task it has been tried to generate a mesh
with a grid size similar to the works of [2] ,[3] and [4] where it is simulated a fully

1



CHAPTER 1. INTRODUCTION

turbulent jet near sonic condition using a pure LES approach.
To account the large time consuming of all the performed simulations, the capability
of OpenFOAM to run simulation simulation in parallel on different computer cores
has been used. In particular the axisymmetric and the less refined 3D simulations
have been run on Dragon the UIC cluster, while the most refined 3D cases have
been run at the supercomputing infrastructure "Theta" (Cray XC40 with second
generation Intel Xenon Phi processor) at the Argonne National Laboratory. The
work is organized according to the following pattern. In chapter 2 are presented the
governing equation of fluid dynamics together with the mathematical model to de-
scribe the turbulence phenomenon. In Chapter 3 is given a brief introduction to the
OpenFOAM software and the finite volume method to discretize the Navier-Stokes
equation is explained. Chapter 4 gives an overview of the PIMPLE algorithm used
in compressible flow solvers and the parameters for the simulation set-up are tested
on the NASA near sonic validation case. In chapter 5 are reported the boundary
and initial conditions together with the results for the axisymmetric simulations,
while in chapter 6 after the presentation of Gmsh (the open source software used to
generate the 3D structured meshes), are reported the results for the 3D simulation
with the k−ω SST and k−ω SST DES turbulence models. Finally, the last chapter
is dedicated to the conclusion and the further developments of the work.

2



Chapter 2

Governing equations and modeling

In this chapter are presented the governing equation of fluids’ motion and it is
briefly explained the concept of turbulence. The main model techniques to model
the unsteady and chaotic behavior of the fluid’s physical quantities when turbulence
arise are explained and finally, these techniques are compared with their pros and
cons. As a matter of simplicity, in this thesis work, all the equations will be written
according to the Einstein’s tensor notation.

2.1 Governing Equations

The governing equations for fluids are the continuity equation (2.1), the momentum
equation (2.2) and the energy balance equation (2.3).

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 (2.1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
µ

(
∂ui
∂xj

+
∂ui
∂xj

)
− 2

3
µ
∂uk
∂xk

δij

)
+ ρfi (2.2)

∂(ρE)

∂t
+
∂(ρEuj)

∂xj
= −∂(puj)

∂xj
+
∂(uiσij)

∂xj
− ∂qj
∂xj

+ SE (2.3)

In the above equations, fi is any force applied to the fluid, SE is an energy source
term and the tensor σij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
µ∂uk
∂xk

which also appears in (2.2) rep-
resents the viscous stresses, that in a Newtonian fluid are proportional to the rates
of deformation. In (2.3) qj is the heat flux in the j-direction (if there are no
heat sources it can easily computed using the Fourier law qj = −k ∂T

∂xj
), while

E = e+ 1
2
(u2 + v2 +w2) is the sum of internal (thermal) energy e and kinetic energy

1
2
(u2 +v2 +w2). Normally, this term includes the gravitational potential energy, but

it possible to regard the gravitational force as a body force, which does work on the
fluid element as it moves through the gravity field. To close the system a further
equation to relate p and e to the variables ρ and T is required. For compressible
flows, this can be easily achieved using the well known equations of state for an ideal
gas,

p = ρRT and e = cvT. (2.4)

The complete derivation of the equations can be found in [5].

3



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

2.1.1 Incompressibility

At low Mach numbers, the density of the fluid can be considered constant. This
reduces (2.1) to:

∂uj
∂xj

= 0 (2.5)

This allows to simplify the governing equation since there is no need to couple the
energy equation (2.3) with the momentum equation (2.2) that now is only coupled
with the simplified continuity equation (2.5). The new momentum equation can be
written as:

∂ui
∂t

+
∂ (ujui)

∂xj
= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
+ fi (2.6)

The system of equations (2.5) and (2.6) forms the famous incompressible Navier-
Stokes equations.

2.2 Turbulence modeling
The equations in section 2.1 describe in a deterministic way every kind of flow.
However at high Reynolds number the flows exhibit a chaotic behavior called tur-
bulence. The main features of turbulent flows are the strong dependency from the
boundary conditions and the total absence of motion scale. This means that the
flow has a chaotic behavior along all the spatial and temporal scales that need a
statistical approach to be modeled. Actually, it is possible to directly integrate the
complete equations using the DNS (Direct Numerical Simulations) but this requires
a huge computational cost proportional to Re9/4

L (the subscript L means that the
Re number is computed in the energy-containing range of the Kolmogorov’s Energy
spectra) which is too expansive for high Reynolds flow. A complete treatment about
DNS and Kolmogorov’s Energy spectra can be found in [6] and [7].
In general every scalar quantity in turbulent regime can be defined as φ = 〈φ〉+ φ′

where 〈φ〉 is the time-averaged part and φ′ is its instantaneous fluctuation. The
time-averaged part is computed as 〈φ〉 = 1

T

∫
T
φ(x, t)dt where T is the time interval

in which 1
T

∫
T
φ′(x, t)dt = 0 . Therefore, considering the three components of the

velocity and the pressure it is possible to write:

ui = 〈ui〉+ u′i (2.7)

p = 〈p〉+ p′ (2.8)

Sobstituting (2.7) and (2.8) into the Navier-Stokes equations and applying the time-
average operation leads to the Reynolds-averaged Navier–Stokes equations (RANS):

∂ 〈uj〉
∂xj

= 0 (2.9)

∂ 〈ui〉
∂t

+
∂ (〈ui〉 〈uj〉)

∂xj
= −1

ρ

∂ 〈p〉
∂xi

+
∂

∂xj

(
ν
∂ 〈ui〉
∂xj

)
−
∂
〈
u′iu
′
j

〉
∂xj

+ 〈fi〉 (2.10)

After the averaging operation it possible to notice how the averaged continuity equa-
tion (2.9) is basically unchanged, while in the averaged momentum equation (2.10)
a new term, which dimensionally is a stress, appears ρ

〈
u′iu
′
j

〉
. This is the so called

4



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

Reynolds stress tensor and it is formed by the product’s average of the unwanted
velocities fluctuations. It is a symmetric tensor and does not allow anymore the
closure of the system and hence all the RANS models have as their main goal, the
definition of this term. Different RANS models exist in literature and they can be
divided in two big groups :

• Turbulent-viscosity models in which it is supposed a relation between the
Reynolds stress tensor and the spatial derivative of the mean velocity com-
ponents (Boussinesq approximation). This closure can be algebraic or differ-
ential, with one or more equations.

• Reynolds-stress models in which the model transport equation are solved for
the individual Reynolds stresses

〈
u′iu
′
j

〉
and for the dissipation ε or another

quantity (e.g ω) that provides a length or a time scale for the turbulence.

In this thesis work will be presented only the two main eddy-viscosity models the
k − ε model (section 2.2.1) and the k − ω SST model (section 2.2.2). A complete
description about RANS modeling can be found in [8] and [9].
In compressible flow also the flow’s density exhibit fluctuations, this strongly com-
plicates the time-averaging operation especially in the momentum equation where
the Reynolds-stress tensor originates from time averaging the product ρuiuj that
appears in the convective acceleration. Clearly, a triple correlation involving ρ′u′iu′j
appears, thus increasing the complexity of establishing a suitable closure approxi-
mations. A simplification in the equations can be obtained introducing the Favre
averaging operation, defined for a general scalar quantity φ by:

φ̃ =
1

〈ρ〉

∫
T

ρ(x, t)φ(x, t)dt (2.11)

Thus in terms of conventional Reynolds averaging, it is possible to say that:

〈ρ〉 φ̃ = 〈ρ〉 〈φ〉+ 〈ρ′φ′〉 (2.12)

Using the Favre averaging it is customary to decompose the scalar variables in a
mass averaged part φ̃ and a fluctuating part φ′′

φ = φ̃+ φ′′ (2.13)

To form the Favre average it is simply necessary to multiply by ρ both sides of (2.13)
and do the time average operation described at the beginning of this section. After
performing this operation and considering (2.12) it can be shown:

〈ρφ′′〉 = 0 (2.14)

This allows a great mathematical simplification of the Favre averaged continuity
(2.15), momentum (2.16) and energy (2.17) equations that assume a form really
similar to their respective standard form (in order (2.1), (2.2), (2.3)) except for the
presence of the fluctuating components of the variables.

∂ 〈ρ〉
∂t

+
∂ (〈ρ〉 ũj)
∂xj

= 0 (2.15)

5



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

∂ (〈ρ〉 ũi)
∂t

+
∂ (〈ρ〉 ũjũi)

∂xj
= −∂ 〈p〉

∂xi
+

∂

∂xj

(
〈σij〉 −

〈
ρu′′i u

′′
j

〉)
+ 〈ρ〉 f̃i (2.16)

∂
(
〈ρ〉 Ẽ

)
∂t

+
∂
(
〈ρ〉 ũjẼ

)
∂xj

= −∂ 〈p〉 ũj
∂xj

+
∂ 〈ujσij〉
∂xj

−∂ 〈qj〉
∂xj

−
∂
〈
u′′jp
〉

∂xj
−
〈
ρu′′jE

′′〉
∂xj

+〈SE〉

(2.17)
〈p〉 = ρ̄RT̃ and ẽ = cvT̃ (2.18)

As for the RANS modeling in compressible flow solvers the main aim is to compute
a relation between the Favered-Averaged quantities and the fluctuating components
in particular the Favre-averaged Reynolds stress tensor

〈
ρu′′i u

′′
j

〉
that as in the in-

compressible case is a symmetric tensor. The interested reader can find a complete
discussion about the modeling of compressible turbulent flows in [10].

2.2.1 k − ε model

The k−ε model belongs to the class of the turbulent-viscosity models. These models
are all based on the Boussinesq approximation that the Reynolds stresses are given
by: 〈

u′iu
′
j

〉
=

2

3
kδij − νT

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
=

2

3
kδij − 2νT sij (2.19)

Where k = 1
2

〈
u′2i
〉
is the turbulent kinetic energy and sij = 1

2

(
∂〈ui〉
∂xj

+
∂〈uj〉
∂xi

)
.

Therefore, with this assumption, it is necessary to define or compute the turbulent
viscosity scalar quantity νT in all the flow domain to close the system of equations.1
A problem of the models based on the Boussinesq approximation is that they

always implies an isotropic assumption for the normal Reynolds stresses, indeed if
we compute the tensor sii, letting i = 1, 2, 3 while keeping j = i, it possible to
notice considering the incompressibility constraint how

〈
u′2ii
〉

= 2
3
k. This can lead

to inaccurate results even for a simple 2-D flow.
The k−εmodel is a two-equations model, in which two additional transport equation
are solved for the two turbulent quantities turbulent kinetic energy k [m

2

s2
] and turbu-

lent kinetic energy dissipation rate ε [m
2

s3
] . With this two quantities can be formed

a length scale
(
L = k3/2ε

)
, a time scale

(
τ = k

ε

)
and consequently the turbulent

viscosity
(
νt = k2

ε

)
. The exact transport equation for k is: 2

∂k

∂t
+〈uj〉

∂k

∂xj
= − ∂

∂xj

(
1

2

〈
u′iu
′
iu
′
j

〉)
−1

ρ

∂
〈
u′jp
′〉

∂xj
+ν

∂2k

∂x2
j

−
〈
u′iu
′
j

〉 ∂ 〈ui〉
∂xj

−ν
〈
∂u′i
∂xj

∂u′i
∂xj

〉
(2.20)

1Formally the quantity νT is a viscosity only from the dimensional point of view and it is
called viscosity considering the analogy of the Boussinesq approximation and with the shear stress
relations in a Newtonian fluid. The real viscosity is a physical property of the fluid and not of its
motion.

2The exact transport equation for k can be derived in three steps, the first one is to obtain the
transport equation for each velocity fluctuations u′i subtracting 2.9 and 2.10 from 2.5 and 2.6, then
multiplying the obtained equation for the velocity fluctuation u′i and finally summing over i and
applying the time averaging operation.

6



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

In (2.20) the budget for k is made of three terms: energy flux, (2.21), production
(2.22) and energy dissipation (2.23)

Tj ≡
1

2

〈
u′iu
′
iu
′
j

〉
+

〈
u′jp
′〉

ρ
− ν ∂k

∂xj
(2.21)

P ≡ −
〈
u′iu
′
j

〉 ∂ 〈ui〉
∂xj

(2.22)

ε ≡ ν

〈
∂u′i
∂xj

∂u′i
∂xj

〉
(2.23)

In this way introducing the mean total derivative D̄(•)
D̄t
≡ ∂(•)

∂t
+ 〈uj〉 ∂(•)

∂xj
(2.20) can

be written in a simplified way as:

D̄k

D̄t
= −∂ (Tj)

∂xj
+ P − ε (2.24)

As shown in (2.24) the terms D̄k
D̄t

and P are in closed form while Tj and ε need to
be modeled in order to obtain a closed set of model equations. The energy flux is
modeled with a gradient-diffusion hypothesis as:

Tj = −νT
σk

∂k

∂xj
(2.25)

Where σk is one of the five model constant. For the ε an exact equation can be
derived but it is quite complex and involves other terms that do not allow the
closure of the system. Therefore, the standard model equation for ε is best viewed
as begin entirely empirical: it is

D̄ε

D̄t
=

∂

∂xj

(
νT
σε

∂ε

∂xj

)
+ Cε1

Pε
k
− Cε2

ε2

k
(2.26)

Also in this case σε, Cε1 and Cε2 are calibrated model’s constant. To summarize
the final equations to model the Reynolds stress tensor and close the Navier-Stokes
equations with the k − ε model are :

〈
u′iu
′
j

〉
=

2

3
kδij − νT

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
=

2

3
kδij − 2νT sij (2.27)

νT = Cµ
k2

ε
(2.28)

D̄k

D̄t
=

∂

∂xj

(
νT
σk

∂k

∂xj

)
+ P − ε (2.29)

D̄ε

D̄t
=

∂

∂xj

(
νT
σε

∂ε

∂xj

)
+ Cε1

Pε
k
− Cε2

ε2

k
(2.30)

With the five model constant

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92, σk = 1, σε = 1.3 (2.31)

7



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

2.2.2 k − ω SST model

As the k− ε model the k−ω model is a two-equation model that rather than ε uses
as second turbulent variable ω ≡ ε

k
called turbulence frequency. Using ω definition

its transport equation can be derived directly from (2.29) and (2.30) imposing σk =
σε = σω

D̄ω

D̄t
=

∂

∂xj

(
νT
σω

∂ω

∂xj

)
+ (Cε1 − 1)

Pω
k
− (Cε2 − 1)ω2 +

2νT
σωk

∂ω

∂xj

∂k

∂xj
(2.32)

However, the real transport equation for ω in the standard k − ω model is:

D̄ω

D̄t
=

∂

∂xj

(
νT
σω

∂ω

∂xj

)
+ Cω1

Pω
k
− Cω2ω

2 (2.33)

In homogeneous turbulence 2.32 and 2.33 are identical considering (Cε1 − 1) =
Cω1 and (Cε2 − 1) = Cω2. But, because most of the engineering’s flows are in-
homogeneous and do not allow the elimination of the differential term at the end
of (2.32), in the standard transport equation for ω (2.33) the model’s coefficients
are different. About the transport equation for k, the two model are defined in the
same way.
The k − ω shows a better behavior in the viscous sublayer compared to the k − ε
model, indeed in the viscous sublayer where ε = 0, νT , as defined in the k−ε model,
tends to diverge. This is why for the grids used with the k − ε model the first
grid point must be in the logarithmic layer with a y+ > 30. In the k − ω model,
the turbulent frequency in the viscous sublayer tends to infinity and it is possible
to avoid the divergence of the turbulent viscosity with good predictions of turbu-
lence phenomena like flow separation and reattachment near the wall. However, the
k − ω model is very problematic in the free stream where both turbulent kinetic
and turbulence frequency tend to zero. In this region the turbulent viscosity νT is
indeterminate or infinite as ω tend to zero, so a small non zero value of ω needs to be
specified. Unfortunately, results are dependent of the specified value of ω and this
is a serious problem in aerospace and aerodynamics applications where free stream
boundary conditions are used as a matter of routine. To get the best of both the
k− ε and k− ω model the k− ω SST (shear stress transport) model uses the k− ω
model in the boundary layer and the k−ε model in the free-stream. In the transition
between the boundary layer and the free stream blending functions are used. The
transport equation for k and ω are modified compared to the standard k−ω model,
for both of them in the diffusive flux term is added the fluid’s viscosity to better
simulate low Reynolds flows, in the transport equation for ω are inserted the two
blending functions F1 and F2 ,the dissipation term in the k transport equation is
multiplied by the constant β∗ and the production term for k features a limiter. To
summarize the model equations of the k − ω SST model are:

D̄k

D̄t
=

∂

∂xj

[(
νT
σk

+ ν

)
∂k

∂xj

]
+ P̃k − ωkβ∗ (2.34)

D̄ω

D̄t
=

∂

∂xj

[(
νT
σω

+ ν

)
∂ω

∂xj

]
+ Pω − Cω2ω

2 + 2 (1− F1)
σω2

ω

∂ω

∂xj

∂k

∂xj
(2.35)

νT =
a1k

max (a1ω, SF2)
(2.36)

8



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

P̃k = min(Pk, 10 · β∗kω) with Pk = νT

(
∂ 〈ui〉
∂xj

+
∂ 〈uj〉
∂xi

)
∂ 〈ui〉
∂xj

(2.37)

Pω = Cω1S
2 with S =

√
2sijsij (2.38)

a1 =
5

9
(2.39)

F2 = tanh


[
max

(
2
√
k

ωβ∗y
,
500ν

y2ω

)]2
 (2.40)

β∗ =
9

100
, Cω1 = 0.44, Cω2 = 0.0828, σω = 0.5, σω2 = 0.856 (2.41)

F1 = tanh


[
min

(
max

( √
k

ωβ∗y
,
500ν

y2ω

)
,

4σω2k

CDkωy2

)]4
 (2.42)

CDkω = max

(
2
σω2

ω

∂ω

∂xj

∂k

∂xj
, 10−10

)
(2.43)

This last equations show how difficult and empirical is the definition of a good
method to the closure of the RANS equations. About the k − ω SST model, it is
possible to say that it show a low sensibility at the boundary condition, it works
well at low Reynolds number as far as in adverse pressure gradients and flow sepa-
ration problems. These features make it one of the most used RANS models. Most
equation’s derivations in sections 2.2.1 and 2.2.2 are taken from [11], while for the
interested reader a full description of the two mentioned turbulence models can be
found in [12] and [13].

2.2.3 Large-eddy simulation (LES)

In large eddy simulation the larger three dimensional unsteady turbulent motions
are directly solved, whereas the effects of the smaller scales motions are modeled. In
terms of computational cost they lie between the Reynolds stress model and DNS
and the separation between the two scales of motion is done through a filtering
operation. To better understand the concept behind the filtering operation, it can
be useful to consider the Kolmogorov’s spectra of isotropic turbulence (Figure 2.1
[14]). The filtering operation cuts the energy spectra and in this way the eddies
below a certain wavenumber are completely resolved, while the small eddies of high
wave number are modeled, these modeled eddies are commonly called small sub-
grid scales (SGS). The cutoff curve is a function of the adopted filter and in physical
space this means that the actual velocity can be decomposed (2.44) in a filtered
quantity ūi and a modeled sub-grid quantity u′i.

ui = ūi + u′i (2.44)

The quantity ūi is defined through the use of the filtering function G(x, r) by the
convolution integral

ū (x, t) =

∫ ∞
−∞

G (x, r)u (x− r, t) dr (2.45)

9



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

Figure 2.1: Effects of filtering operation on isotropic turbulence

that must satisfy the normalization condition:

∫ ∞
−∞

G (x, r) dr = 1 (2.46)

There are different kind of filter functions and their mathematical definition is dif-
ferent in the physical and spectral space which are connected through the Laplace
transform operation.Table 2.1 [15] shows the most common filters in both spectra
and physical space. For the filters ∆ is the filter length and among them the most
commonly used are the box filter and the sharp spectral filter. The box filter has a
very simply explanation in physical space, it computes ū(x) as the average of u(x’)
in the interval x − 1

2∆
< x′ < x + 1

2∆
. The sharp spectral filter has instead a very

clear explanation in spectral space. For this filter, all wave numbers below the cut
off value κc are resolved while all wave numbers above the cut-off are modeled.
The derivation of the LES equation is done in this section for the hypothesis of in-
compressible flow, however the filtering operation can be applied also for compress-
ible flow (see Appendix A). Before proceeding with the derivation of the filtered
Navier-Stokes equation, it is important to define some properties of the filtering
operation. First of all, unlike the averaging operation in RANS for a generic scalar
quantity φ, we have that ¯̄φ 6= φ̄ and that φ̄′ 6= 0. Second, since the convolution in-
tegral in the filtering operation involves the product of two functions, the operation
commutes only for a spatially uniform filter ∂φ

∂x
= ∂φ̄

∂x
.

10



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

Name Filter function Transfer function

General G (r) Ĝ(κ) =
∫∞
−∞ e

iκrG (r)

Box 1
∆
H
(

1
2
∆− |r|

) sin( 1
2
κ∆)

1
2
κ∆

Gaussian
(

6
π∆2

)1/2
exp

(
−6r2

∆2

)
exp

(
−κ2∆2

24

)

Sharp spectral
sin(πr∆ )
πr H (κc − |κ|) ; κc ≡ π

∆

Cauchy a

π∆[( r
∆)+a2]

; a = π
24

exp(−a∆|κ|)

Pao exp
[
−π2/3

24
(∆|κ|)4/3

]

Table 2.1: Common LES filters

Considering a spatially uniform filter and applying the filtering operation to the
Navier-Stokes equations leads to:

∂ūj
∂xj

= 0 (2.47)

∂ūi
∂t

+
∂uiuj
∂xj

= ν
∂2ūi
∂x2

j

− 1

ρ

∂p̄

∂xi
(2.48)

Since the product uiuj 6= ūiūj, using (2.44) and applying again the filtering operation
to (2.48) gives:

∂ūi
∂t

+
∂ūiūj
∂xj

= ν
∂2ūi
∂x2

j

− 1

ρ

∂p̄

∂xi
− ∂τij
∂xj

(2.49)

The term :
τij = uiuj − ūiūj (2.50)

in (2.49) is called sub-grid stress tensor and it is the analogous of the Reynolds-
stress tensor of the RANS. As for the RANS the main goal of LES models is to
define this tensor in terms of the filtered velocities. However, it must be underlined,
that the fields ū(x, t), p̄(x, t) and τij are random three dimensional and unsteady
even in case of homogeneous flow. Moreover, the sub-grid stress tensor depends on
the specification of the type and width of the filter. In this work will be presented
only the two most common models to the closure of the system of equations the

11



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

Smagorisky Model and the Dynamic Smagorisky model, many other models are
discussed in literature. The interested reader can have a look at [16], [17] and [18]

Smagorisky model

The main hypothesis of the Smagorisky model is that the residual stress tensor is
a scalar multiple of the rate of strain tensor. This is a very weak assumption in
fact, the sub-grid stress tensor correlates very poorly with the rate of strain tensor.
This is obvious for incompressible fluids where the trace of the strain tensor is zero,
which implies that at least one term on the diagonal is positive and one is negative,
while the diagonal terms of the sub-grid stress tensor are all grater than zero. For
these reasons, it is not possible to find a scalar that will correctly relate the sub-
grid stress tensor to the rate of strain tensor. To help this realizability problem,
the trace of the sub-grid stress tensor is added to the sub-grid stress tensor making
the diagonal positive. However, this make the problem ill posed because there are
an infinite number of sub-grid stresses traces that will satisfy the expression. To
guarantee consistency in the equation, the trace term is also added to the filtered
pressure to give a pseudo-pressure. Defining kr ≡ 1

2
τii (Residual Kinetic Energy)

the Smagorisky model takes the form:

p̄ ≡ p̄+
2

3
kr (2.51)

τij = νTSij +
2

3
krδij (2.52)

With the filtered rate of strain tensor Sij and the eddy viscosity νT defined as:

Sij =
1

2

(
∂ūi
∂xj

+
∂ūj
∂xi

)
(2.53)

νT = −2Cs∆
2|S| (2.54)

|S| is the magnitude of the rate of strain tensor and it is computed as:

|S| =
(
2S̄ijS̄ij

)1/2 (2.55)

The parameter Cs is a user-defined coefficient that may vary significantly depending
on the flow and grid resolution. This is another weakness of the Smagorisky model
that for complex flow requires an a priori knowledge of the Cs value that sometimes
is not available. Furthermore, for this kind of flows the coefficient may not be
appropriate for the whole domain at all times.

Dynamic Smagorisky model

The dynamic modeling has been developed by [19], with this technique instead of
using an universal model coefficient, the model coefficient is dynamically determined
as a function of space and time from the resolved field. This approach is based on an
assumed scaling between resolved and subgrid scales and a mathematical identity
that arises. The main advantage of these models is that they do not require an
a priori knowledge of the flow to set the flow coefficient. The dynamic modeling
involves filters of different widths, the Grid Filter and the Test Filter. Generally

12



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

the grid filter has a width proportional to the grid spacing, while the test filter has
generally a width twice the one of the grid filter. Denoting with u the filtering
operation with the grid filter, with û the one with the test filter and considering
that both are spatially uniform it is possible to write:

û ≡
∫

u(x−r)G(|r|; ∆̄)G(|r|; ∆̂)dr ≡
∫

u(x−r)G(|r|; ∆̂)dr ≡
∫

u(x−r)G(|r|; ̂̄∆)

(2.56)
It directly follow the decomposition:

u = û +
(
u− û

)
+ u’ (2.57)

u − û can be interpreted as the smallest resolve motions by of grid of spacing ∆̄

or equivalently the largest motions not resolved by a grid of spacing ̂̄∆. As for the
single filtered equations it is possible to define a sub-grid stress tensor based on the
double filtering operation:

Tij ≡ ûiuj − ̂̄ui ̂̄uj (2.58)

Subtrating (2.58) to the test filtered (2.50) leads to the famous Germano identity

Lij ≡ Tij − τ̂ij = ̂̄uiūj − ̂̄ui ̂̄uj (2.59)

This identity is extremely powerful because it relates the unknown stress tensor at
the two scales to Lij (the so called Leonard stress Tensor) which is known in terms
of ū . Therefore, all dynamics models are based on the definition of Tij and τij
in terms of the filtered velocity, and then using the Germano identity obtain an
adequate coefficient Cs for the specific flow. The dynamic Smagorisky model follows
the same assumptions of the simple Smagorisky model in the definition of τij and
Tij. Therefore using (2.52), (2.53), (2.54) and (2.55) it is possible to define:

τij ≡ −2Cs∆
2|S|Sij +

1

3
τkkδij (2.60)

Tij ≡ −2Cs∆̂
2

|̂S|Ŝij +
1

3
Tkkδij (2.61)

Then defining

Mij ≡ 2∆̂2|̂S|Sij − 2∆̂
2

|̂S|Ŝij (2.62)

The deviatoric part of the Leonard stress tensor can be modeled as:

Lij −
1

3
Lkk = CsMij (2.63)

(2.63) can be used to obtain the best value of the coefficient Cs because both Lij
and Mij are known in terms of u. However, Cs can not be determined in order to
match exactly the nine components of the two tensors, but as shown by [20] the
mean square error between the two tensor is minimized by the algebraic equation:

Cs =
MijLij
MklMkl

(2.64)

The coefficient Cs obtained in this way can be positive or negative, a positive value
means that the energy flows from the resolved to the sub-grid scales while a nega-
tive coefficient implies the contrary. This short summary about the mathematical
modeling of LES has been mainly done consulting [21] and [15].

13



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

2.2.4 Detached-Eddy Simulation (DES)

The Detached eddy simulation is an hybrid approach between LES and RANS. The
definition of this approach is given by [22]:

A Detached-Eddy simulation is a three-dimensional unsteady solution using a sin-
gle turbulence model, which functions as a sub-grid scale model in regions where the
grid density is fine enough for a large-eddy simulation, and as a Reynolds-averaged
model in region where it is not.

Therefore in a Detached-Eddy Simulation according to the provided mesh, the
model chooses turbulent the length scale as:

LDES = min(LRANS, CDES∆) (2.65)

Where CDES is a modeling parameter empirically determined and ∆ is the filter
width taken as maximum dimension of the local grid cell:

∆ = max(∆x,∆y,∆z) (2.66)

The advantages of DES are that they are capable to treat high Reynolds number
flows with massive separation, without requiring the huge computational cost of a
true wall-bounded layer LES. Indeed LES requires a very fine mesh resolution near
the walls to model in a good way the small eddies of this flow region. However,
the drawback of this model is in the so called grey area where LRANS ≈ CDES∆.
Here the solution is not neither pure RANS or pure LES and the model needs to
convert from fully modeled turbulence (RANS) to mostly resolved turbulence with
mass separation (LES). This results in a weakened eddy viscosity, but not too weak
to allow LES eddies to form, resulting in lower Reynolds stress levels compared to
those provided by the RANS model. These eddyes are generally extremely elongated
and with unphysically long time scales [23].

The k − ω SST DES turbulence model

The k − ω SST DES model is a DES modification of the RANS k − ω SST model.
In this model the transport equations for k and ω are exactly the same of the k−ω
model (Eqs. (2.34) - (2.43))3 the only difference is in the dissipation term of the k
transport equation. This term is multiplied by the term FDES which reads as:

FDES = max

(
LT

CDES∆
, 1

)
(2.67)

In (2.67) LT is the turbulent length scale computed according to k−ω SST model as
LT =

√
k/(β∗ω), as described in (2.66) ∆ is the largest side of a cell at the present

point in the grid and CDES is the empirical constant of the k − ω SST DES model
equal to 0.61 . When the grid is fine enough the term FDES grows, this reduces k
and consequently νT , allowing the solution to go unsteady and to be treated as a

3The transport equation can be written independently of ui or 〈ui〉 because the averaging or
the filtering operation are not actually done in the solver. This is possible because the form of the
filtered and averaged Navier-Stokes equations is exactly the same and hence also the algorithm to
solve the equations

14



CHAPTER 2. GOVERNING EQUATIONS AND MODELING

pure LES. To prevent the model to go unsteady in the grey zone the term FDES can
be further modified as:

FDDES = max

(
Lt

CDES∆
(1− FS), 1

)
(2.68)

Where FS is a blending function chosen as either F1 or F2. Because they assume
a value close to 1 in the boundary layer, this will grantee to the solution to not go
unsteady near the wall, avoiding the entrance in the grey zone. With these feature
the model is called DDES (Delayed Detached Eddy Simulation).

15



Chapter 3

Introduction to OpenFOAM

OpenFOAM (Operation Field and Manipulation) is a an open source software mainly
created for the CFD analysis and it’s main aim is to solve partial differential equation
through the finite volume method. Strictly speaking it is not a a real software, but a
library written in C++ which can create executable files called applications. Inside
this library are already compiled a huge amount of applications which cover different
physical phenomena like complex fluid with chemical reactions, heat transfer and
turbulence models. The applications are divided in two categories : solvers and
utilities. The former are coded to solve continuum mechanics problems, the latter
are used for the pre- and post- processing of the simulation data. One of the strong
points of OpenFOAM is that it’s source code is completely available to the user,
who can modify and change it. This helps the creation of personalized applications
in a small amount of time compared to their creation from scratch.

3.1 OpenFOAM’s structure

The structure of OpenFOAM can be summarized in Figure 3.1 [24] and during the
post-processing phase it is very important to use third-party software to view the
simulation results. Between these software the most used is certainly ParaView (it
has been used also for this thesis work) that interacts with OpenFOAM through the
utility paraFoam. To launch a simulation in OpenFOAM it is necessary to define
a folder which contains all the necessary files to handle the simulation. This folder
has inside it other three subfolders (Figure 3.2):

• constant which depending on the analyzed problem and the used solver, con-
tains the thermophysical properties file that specifies the thermodynamical and
physical properties of the fluid, the transport property file in which are defined
the fluid’s transport properties, the turbulence properties file with the used
turbulence model and the PolyMesh folder where are stored all the mesh data
and the simulation boundary conditions.

• system in which are stored the files for the mesh generation (an example is
the blockMeshDict file), the controlDict file where it is possible to define the
settings of the simulation like the simulation time, the time-step, the write
interval and the used solver. The methods for the discretization of the solved
equations are specified in the fvSchemes file, while in the fvSolutions file are

16



CHAPTER 3. INTRODUCTION TO OPENFOAM

specified the solvers for the discretize equations. Depending on the case prob-
lem, other files can be included in the system directory, like the decomposeP-
arDict file to decompose the domain simulation on several processors and run
the simulation in parallel, the snappyHexMeshDict that reconstructs the mesh
around a 3D-body starting from the description of its surfaces in a .stl file and
other files for the pre-processing (ex. topoSetDict and setFieldsDict) and the
post-processing (ex. sampleDict).

• 0 directory which is the first of the time directories that will be created
by the solver during the simulation. In this directory are specified the initial
condition for each physical quantity of the simulation like velocity, temperature
and pressure.

Figure 3.1: OpenFOAM structure

Figure 3.2: Simulation’s folder structure

17



CHAPTER 3. INTRODUCTION TO OPENFOAM

3.2 The finite volume method

As stated in the previous paragraph the solution of partial differential equation in
OpenFOAM is based on the finite volume method, therefore it is appropriate to
summarize the theory behind this method to better understand the discretization
schemes in the fvSchemes file. Considering the general transport equation for a
scalar quantity φ:

∂ (ρφ)

∂t
+
∂ (ρφuj)

∂xj
=

∂

∂xj

(
ρΓ

∂φ

∂xj

)
+ Sφ (3.1)

With the hypothesis of continuum functions in the whole domain, the operations of
integration and derivation can be commuted and applying the volume integral on
each of the mesh cells it is possible to write:

∂

∂t

∫
V

(ρφ) dV +

∫
V

∂

∂xj
(ρujφ) dV =

∫
V

∂

∂xj

(
ρΓ

∂φ

∂xj

)
dV +

∫
V

SφdV (3.2)

Using the Gauss theorem and denoting with ∂V the surfaces of each cell of the mesh
and with nj the versor normal to each surface:

∂

∂t

∫
V

(ρφ) dV +

∮
∂V

(ρujφ)njdS =

∮
∂V

(
ρΓ

∂φ

∂xj

)
njdS +

∫
V

SφdV (3.3)

The aim of the finite volume method is to solve (3.3) for each cell of the mesh
(control volume), considering as unknown the value of φ at the cell center and
approximating the fluxes through the cell’s surfaces using the nearby cells. In this
way it is possible to have the value of φ in all the cells of the domain and have
an approximation of the scalar field that is obviously more accurate increasing the
number of cells.The approximation of the surfaces flux and the time discretization
can be done in several ways depending on which term in the equation is discretized
(convective term, gradient term, diffusive term etc.), the desired order of accuracy
and the time available for the simulation.

3.2.1 Time discretization

In the finite volume method the time derivative term as well as the source term is
taken as piecewise constants over the control volume.

∂

∂t

∫
V

(ρφ) dV = VCV
∂

∂t
(ρφ) (3.4)

∫
V

SφdV = VCV Sφ (3.5)

The discretization of the time derivative term determines the way the algorithm
update the solution in time. The main discretization schemes are the implicit Euler,
the explicit Euler and the Crank Nicholson method.Considering a generically partial
differential equation:

∂ (ρφ)

∂t
= f (φ, ψ) (3.6)

18



CHAPTER 3. INTRODUCTION TO OPENFOAM

They can be explained using the discretization:

φn+1 − φn

∆t
= f

(
θφn+1 + (1− θ)φn, ψn

)
(3.7)

The variable ψ is set as explicit as it is not solved in the equation. If θ = 0 the
discretization is called explicit Euler and it is first order accurate 4. For θ = 1 the
discretization is called implicit Euler and it is also first order accurate. For θ = 1/2
it is the Crank-Nicholson method which is between the implict and explicit Euler
but it is second order accurate. More advanced schemes like Runge-Kutta are also
available for time discretization, they can reach higher order of accuracy, but are
more computationally expansive.

3.2.2 Convective discretization

The convective term can be approximated by:∮
∂V

(ρujφ)njdS =
∑
k

∫
Sk

ρujφnjSk (3.8)

Where k is the number of faces of the control volume. For a Cartesian grid in three
dimension, a control volume is an hexahedron and it has six faces (Figure 3.3).

Figure 3.3: Control volume in three dimension with neighboring nodes

3The explicit Euler method is called explicit because it can computes φn+1 knowing only the
solution at the time t = n, while the Crank-Nicolson and the implicit Euler are both implicit
because φn+1 can not be determined only from the solution at time t = n but also at time
t = n+1. This involves the solution of a system of algebraic equations. It must be also added that
the explicit Euler and the Cranck-Nicholson method are not unconditionally stable, while this is
true for the implicit Euler.

19



CHAPTER 3. INTRODUCTION TO OPENFOAM

Because the value of φ is not known at the volume’s faces, an interpolation has
to be made between the cell nodes. The treatment of this terms is one of the major
challenges in CFD and there are many options to compute it. In this work will be
presented only the most common, the Centered scheme and the Upwind scheme

Centered scheme

The centered scheme interpolates linearly the value of φ at the control volume faces
using the near control volume that has the same common face . This approach
is unlikely to be used in CFD applications as the interpolation schemes are not
bounded and do not fulfill trasportiveness requirements.

Upwind sheme

A very simple solution is the Upwind schemes, a first order accurate scheme which
evaluates the value of φ on a face of the control volume following the main direction
of the flow. For example, considering a 2D mesh and the east face (e) of one its cells
(P),(Figure 3.4) the upwind schemes can be expressed as:

φe =

{
φP if (u · n)e > 0
φE if (u · n)e < 0

(3.9)

Figure 3.4: Cartesian notation for a control volume in two dimensions

Where the subscript E refers to the east neighbor cell of P. The issue with this
scheme is that when the flow is not aligned with the grid a false diffusion error is
introduced in the solution. Other versions of the Upwind scheme are the LUDS
(linear upwind scheme) and the QUICK (quadratic upwind scheme), they are based
on the same principle but they use interpolation between nodes to increase the
order of accuracy.The LUDS is second order accurate while the QUICK is third
order accurate.

20



CHAPTER 3. INTRODUCTION TO OPENFOAM

3.2.3 Viscous discretization

The viscous term can be approximated by:∮
∂V

(
ρΓ

∂φ

∂xj

)
njdS =

∑
k

∫
Sk

ρΓ
∂φ

∂xj
njdSk (3.10)

This requires the calculation of the gradients at the surfaces of the control volumes,
considering again a 2D mesh and supposing that it necessary to compute the gradient
at the east face (e) of its control volume, this can be approximated using the relation:(

∂φ

∂x

)
e

≈ φE − φP
xE − xP

(3.11)

Where again, P denotes the center of the control volume and E the center of the
control volume near to P which has in common face e. This operation needs to be
done for all the faces of the control volume in all the three directions, then all the
gradients need to be multiplied for their respective faces and summed to approximate
the value of the integral in (3.10).

3.2.4 Gradient discretization

Even if in the general transport equation for a scalar quantity φ are not present
gradients terms, this is not true for the equations of fluid motion (2.1, 2.2 and 2.3).
These terms can be easily approximated by∮

∂V

∂φ

∂xi
njdS =

∑
k

∫
Sk

φnjdSk (3.12)

Where the values of φ are calculated at the surfaces of the control volumes using an
interpolation technique.

3.2.5 Available discretization schemes in OpenFOAM

In the fvSchemes dictionary of OpenFOAM, the set of terms for which numerical
schemes must be specified are subdivided in:

• timeScheme : first and second derivative e.g. ∂/∂t and ∂2/∂t2

• gradSchemes : gradient terms e.g. ∂φ/∂xi

• divSchemes : convective terms e.g. ∂ (ujφ) /∂xj

• laplacianSchemes : diffiusive terms e.g. ∂
∂xj

(
Γ ∂φ
∂xj

)
• interpolationSchemes : cell to face interpolation of values

• snGradSchemes : component of gradient normal to a cell face

• wallDist : distance to wall calculation where required e.g. in the wall func-
tions of the k − ω SST model.

21



CHAPTER 3. INTRODUCTION TO OPENFOAM

timeSchemes

Euler First order, bounded, implicit
localEuler Local-time step, first order, bounded, implicit

CrankNicholson Second order bounded implicit
backward Second order implicit
steadyState No solving for time derivatives

Table 3.1: OpenFOAM’s time schemes

Table 3.1 summarize the available time schemes in OpenFOAM, for the CrankNi-
cholson method the parameter ψ needs to be specified. For ψ = 1 , the normal
Crank-Nicholson is used, whereas if ψ = 0 it correspond to the Euler scheme.

gradSchemes

Gauss <interpolationScheme> Second order, Gaussian integration
leastSquares Second order, least square

Cubic Third order, least square
cellLimited <gradScheme> Second order implicit
faceLimited <gradScheme> No solving for time derivatives

Table 3.2: OpenFOAM’s gradient schemes

Table 3.2 summarize the gradient schemes in OpenFOAM. The Gauss entry speci-
fies the standard finite volume discretization (3.2.4). If the <interpolationScheme>
is specified as linear it means that the values at the CV faces are calculated us-
ing a linear interpolation between the center of the nearby cells.The other available
interpolation schemes are CubicCorrection (cubic scheme) and midPoint (linear in-
terpolation with symmetric weighting). The cellLimited and the faceLimited options
limits the gradient such that when cells values are extrapolated to faces using the
calculated gradient, the faces values do not fall outside the bounds of values in sur-
roundings cells. This requires the specification of a limiting coefficient between 0
and 1. 1 guarantees boundedness and 0 applies no limiting. In general 1 is used as
coefficient. In the least square the values at the CV’s surfaces is approximated using
the least square distance calculation using all the neighbor cells. The Third scheme
is only used on regular meshes for DNS simulations. In general for this terms the
default scheme is set as Gauss linear.

divSchemes

This schemes include the discretization of all the convective terms in the equations.
The keyword identifier for the convective terms are usually of the form div (phi,..) ,
where phi denotes the volumetric flux of the velocity through the faces of the CVs.
It is better to subdivide the convective terms in two categories, the convective term
for the velocity ( div (phi,U) ) and the convective terms for the scalar quantities (
div(phi,k) , div(phi,e) etc.). Table 3.3 summarize the Gauss discretization schemes
for the velocity’s convection

22



CHAPTER 3. INTRODUCTION TO OPENFOAM

Gauss linear Second order unbounded
Gauss linear upwind Second order, upwind-biased, unbounded

Gauss LUST Blended scheme 75% linear/ 25% linearUpwind
Gauss limitedLinear Schemes that limits towards upwind on

the regions of rapid changing gradient
Gauss upwind first-order bounded generally

too inaccurate to be recommended

Table 3.3: OpenFOAM’s divergence schemes

The LUST discretization needs the specification of the velocity gradient while the
limitedLinear discretization needs a coefficient between 0 and 1 to specify the type
of limitation. 1 is the strongest limiting tending to upwind, while 0 is the weakest
tending to linear. For the advection of the velocity there are also specialized V-
schemes that computes a limits for the velocity based on its most rapidly changing
component. They can be linear or upwind based. For the convection of scalar
quantities the available options are the same and the Gauss limited case is specified
without the final V. Moreover, for these quantities the limitedLinear and the upwind
schemes are more used since there is more interest in the boundedness of the solution.
An additional appearance in the transport of scalar quantities is finally the VanLeer
scheme which is another limiting scheme less strong than the option limitedLinear.
Due to the large amount of options for the convective terms, the default divScheme
is set to none.

lapalacianSchemes

For the Laplacian terms the Gauss scheme is the only choice of discretization and
requires a selection of both an interpolation scheme for the diffusion coefficient
(linear,cubic or midPoint) and a surface normal gradient scheme. Therefore the
general syntax for the Laplacian terms is : Gauss <interpolationScheme> <snGrad-
Scheme>. In general the default specification is Gauss linear corrected. A detailed
explanation of how the surface normal gradients are evaluated is presented in the
next paragraph.

snGradSchemes

The surface normal gradients are very important for the approximation of the Lapla-
cian terms. They allow to computes the gradient of a physical quantity normal to a
cell face using the CV centers of the 2 cells that the face connects. Table 3.4 shows
the availble option for these schemes.

Corrected Explicit non-orthogonal correction
Limited corrected Limited non-orthogonal correction

Orthogonal Simple approximation for Cartesian grids
Uncorrected No non-orthogonal correction

Table 3.4: OpenFOAM’s surface gradient schemes

The orthogonal scheme is the one described by (3.10). However this requires a
regular mesh, typically aligned with the Cartesian co-ordinate system which does not

23



CHAPTER 3. INTRODUCTION TO OPENFOAM

occur for meshes of engineering geometries. Therefore to maintain a second order
accuracy, an explicit non-orthogonal correction can be added to the orthogonal com-
ponent, forming the corrected scheme. The non-orthogonality correction increases
as the angle α between the cell-cell vector and the face normal vector increases and
as α tends to 90° the correction can be so large to slow down the simulation time and
get the solution unstable. Because of this, the limited corrected scheme introduce a
coefficient ψ between 0 and 1 to define a blended scheme between the corrected and
uncorrected ones. 1 corresponds to the corrected scheme, while 0 corresponds to the
uncorrected scheme. The uncorrected and corrected schemes are recommended for
meshes with very low non-orthogonality and for meshes with maximum orthogonal-
ity above 70° the limited option may be required. All the details about the finite
volume method and the various discretization techniques can be found in [25] while
for the details on OpenFOAM discretization techniques the reader can have a look
at [24]

3.3 Solution of the discretized equations

After the equations have been discretized they form a system of equations of the
form

Ax = Q (3.13)

Because for large geometries these systems are too big to solve directly (e.g using
Gaussian elimination or LU decomposition), OpenFOAM uses iterative procedures
to solve them.

3.3.1 Iterative methods

The main idea about iterative methods consists in setting up a sequence of vectors
xn that converges to the exact solution x so that :

lim
n→∞

xn = x. (3.14)

In this way after n iterations it is possible to say that:

Axn = Q− rn (3.15)

And subtracting it from (3.13) it is possible to derive a relation between the iteration
error en = x− xn and the residual rn:

Aen = rn (3.16)

At convergence the e and rmust be zero and this can be reached forming an iterative
scheme of the form :

Mxn+1 = Nxn + B (3.17)

Since at convergence by definition xn+1 = xn = x the relations between the matrix
M,N and B and the original system (3.13) can be expressed as :

A = M −N and B = Q (3.18)

24



CHAPTER 3. INTRODUCTION TO OPENFOAM

Or more generally
PA = M −N and B = PQ (3.19)

Where P is a non-singular pre-conditioning matrix. Different kind of iterative meth-
ods exist in literature but in this work will be summarized only the ones used in
OpenFOAM. The interested reader can find further information in [26] and [27].

Conjugate Gradient Methods

These methods are mainly used to solve systems of non-linear equations like the
Navier-Stokes equations. The main idea behind these methods is to convert the
original system of equations into a minimization problem of the form:

F =
1

2
xTAx− xTQ (3.20)

For positive definite matrices, find the solution of the system (3.13) is equivalent
to find the minimum of F for all the xi . However, most matrices associated with
problems in fluid dynamics are not symmetric or positive defined, and a way to
convert the original system into a minimization problem, that does not require the
positive definiteness, is to take the sum of squares of all the equations. The best
known method for seeking the minimum of a function is the steepest descend, where
the function F is thought to be a surface in a (hyper)-space of the same dimension
of x. Starting from an initial guess x0, that represents a point in the hyper-space,
the gradient of F is computed in this point allowing to find the steepest downward
path on the surface. Then the lowest point of the path is found and by construction
it has a lower value on F compared to x0. The new value is then chosen as new
starting point and the procedure is repeated until convergence. To speed up the
convergence the conjugate gradient method is based on the remarkable discovery that
it is possible to minimize a function with respect to several directions simultaneously
while searching in one direction at a time. Considering two directions p1 and p2 to
minimize F in the p1 − p2 plane it must be verified that :

p1Ap2 = 0 (3.21)

This property is akin orthogonality and the vectors p1 and p2 are said to be conjugate
respect matrix A, which gives the method its name. This property can be extended
to any number of directions and each new search direction is required to be conjugate
with all the previous ones.
The rate of convergence of this method depends on the condition number κ = λmax

λmin
where λmax and λmin are the largest and smallest eigenvalues of the matrix. Because
the condition number of matrices that arise in CFD problems is approximately the
square of the maximum number of grid points in any direction, it is necessary to
multiply A by a preconditioning matrix to increase the rate of convergence. The
preconditioning take the form of:

C−1AC−1Cx = C−1Q (3.22)

Applying the conjugate gradient method to the new problem formulation the follow-
ing algorithm results. In the description rk is the residuals of the kth iteration, pk is
the kth search direction, zk is an auxiliary vector and αk and βk are parameters used
in constructing the new solution, residual and search direction. Here is reported a
summary of the algorithm:

25



CHAPTER 3. INTRODUCTION TO OPENFOAM

• Initialize by setting: k = 0, x0 = xin, r0 = Q− Axin, p0 = 0, s0 = 1030

• Advance the counter: k = k + 1

• Solve the system: Mzk = rk−1

• Calculate:
sk = rk−1 · zk
βk = sk/sk−1

pk = zk + βkpk−1

αk = sk/(pk · Apk)
xk = xk−1 + αkpk

rk = rk−1 − αkApk

• Repeat until convergence.

The algorithm involves solving a system of linear equations at the first step. The
matrix involved is M = C−1 where C is the preconditioning matrix which is in
fact never constructed. The most common choice for M is the incomplete Cholesky
factorization of A which is very easy to invert.

Biconjugate Gradients and CGSTAB

The conjugate gradient method it is applicable only to symmetric systems , to ap-
ply the method to systems of equations that are not symmetric it is necessary to
convert an asymmetric problem to a symmetric one. To make this, the system can
be decompose into two subsystems. The first is the original system, the second in-
volves the transpose matrix ATy = 0 and it is irrelevant. When the pre-conditioned
conjugate gradient method is applied to this system, the following method, called
biconjugate gradients results:

• Initialize by setting: k = 0, x0 = xin, r0 = Q − Axin, r0 = Q − ATxin,
p0 = p0 = 0, s0 = 1030

• Advance the counter: k = k + 1

• Solve the systems: Mzk = rk−1, MTzk = rk−1

• Calculate:
sk = zk · rk−1

βk = sk/sk−1

pk = zk + βkpk−1

pk = zk + βkpk−1

αk = sk/(pkApk)
xk = xk−1 + αkpk

rk = rk−1 − αkApk
rk = rk−1 − αkATpk

• Repeat until convergence

26



CHAPTER 3. INTRODUCTION TO OPENFOAM

This algorithm requires twice as much effort per iteration as the the standard con-
jugate gradient method but it converges in about the same number of iterations.
Other variant of the biconjugate gradient method are the CGS (conjugate gradient
squared) algorithm; the CGSStab(CGS stabilized) and the GMRES, another ver-
sion of the CGSStab. All these algorithms works for symmetric and non-symmetric
matrices and both structured and un-structured grids. Here is finally reported the
CGSTAB algorithm:

• Initialize by setting: k = 0, x0 = xin, r0 = Q− Axin, u0 = p0 = 0

• Advance the counter k = k + 1 and calculate:
βk = r0 · rk−1

ωk = (βkγk−1)/(αk−1βk−1)
pk = rk−1 + ωk(pk−1 − αk−1uk−1)

• Solve the system : Mz = pk

• Calculate:
uk = Az
γk = βk/(uk · r0)
w = rk−1 − γkuk

• Solve the system : My = w

• Calculate :
v = Ay
αk = (v · rk)/(v · v)
xk = xk−1 + γkz + αky
rk = w− αkv

• Repeat until convergence

Multigrid Methods

The basis of multigrid methods is that in iterative methods the rate of convergence
depends on the eigenvalues of the iteration matrix. In particular, the eigenvalue(s)
with largest magnitude determines how rapidly the solution is reached and the
eigenvector(s) associated with this eigenvalue(s) determines the spatial distribution
of the iteration error. Specifically, some iterative methods (ex. Gauss-Seidel) remove
after a few iterations the rapidly varying component of the iteration error that
becomes a smooth function of the spatial coordinate. This means that it is possible
to compute the update (an approximation to the iteration error) on a coarse grid,
reducing the iteration cost. As an example on a 2d-grid twice as coarse as the
original one, iterations cost 1/4 as much. Therefore, the procedure in a multigrid
method is the following:

• On the fine grid, perform iterations with a method that gives a smooth error
(smoother)

27



CHAPTER 3. INTRODUCTION TO OPENFOAM

• Once the error is smooth and the most rapidly component of the iteration
error have been removed compute the residuals on the fine grid

• Restrict the residuals on the coarse grid

• Perform iterations on the coarse grid until the iteration error is again smooth

• Using the iteration error computed on the coarse grid correct the one on the
fine grid using an interpolation technique

• Update the solution on the fine grid

• Repeat the entire procedure until the residual is reduced to the desired level

This is a very general procedure and it is possible to continue to use coarser grids
to improve the rate of convergence. Moreover, multigrid is more a strategy than a
particular method and a lot of parameters (smoother, number of iterations on each
grid, interpolation schemes etc.) are selected more or less arbitrarily.
This short summary about iterative methods for the solution of system of equations
have been done consulting [28]

3.3.2 OpenFOAM equations solvers

The available equations solvers in OpenFOAM are:

• PCG/PBiCGStab: Stabilized preconditioned (bi-)conjugate gradient, for
booth symmetric and asymmetric matrices.

• PCG/PBiCG: preconditioned (bi-)conjugate gradient, with PCG for sym-
metric matrices, PBiCG for asymmetric matrices.

• smoothSolver: solver that uses a smoother.

• GAMG: generalized geometric-algebraic multi-grid.

• diagonal: diagonal solver for explicit system.

As it is clear from the name the PCG/PBiCGStab and the PCG/PBiCG belongs to
the class of the conjugate gradient methods while the smooth solver and the GAMG
are multigrid methods. The diagonal solver is the only direct method an it uses the
LU factorization for the solution of a system of equations.
An equation solver must be specified for each simulation’s variable in the fvSchemes
file, together with the desired tolerance and relative tolerance to stop the iterations
in the solution of the system. Generally, in transient simulation the relative tolerance
is set to 0 to force the solution to converge to the solver tolerance in each time step.
Depending on the solver used in the simulation the fvSchemes file contains also
other parameters involving the algorithm used by the simulation solver (ex. number
of external loop for the PIMPLE algorithm) and the relaxation factors in case of
steady state simulations involving the SIMPLE algorithm.

28



Chapter 4

Solver selection, set-up and
validation

The entire thesis work has as main aim the simulation of a jet flow exiting from
a CFM-56 aircraft engine in flight condition, the selected solver in OpenFOAM
is rhoPimpleFoam. This is a transient solver for turbulent flows of compressible
fluids and it is a pressure-based solver that uses the PIMPLE algorithm to solve
the Navier-Stokes equations. Even if the flow is in steady-state conditions, it has
been decided to use a transient solver because at flight conditions the flow exiting
from the nozzle is at sonic conditions, therefore during the simulations, if the mesh
is enough refined, some shocks can be captured without allowing the solution to
diverge. Moreover, the rhoPimpleFoam solver differently from the other steady-
state solvers like rhoSimpleFoam can support the k−ω SST DES turbulence model
that is used in the final part of the work.

4.1 The PIMPLE algorithm
The PIMPLE algorithm is a mix between the SIMPLE (Semi-Implicit Method for
Pressure Linked Equations) and the PISO algorithm (Pressure Implicit with Split-
ting of Operators). These algorithms were borne to solve incompressible flow simu-
lations and are all pressure-based, which means that the velocity and pressure field
are solved together through the so called pressure-velocity coupling. Even if the
simulated flow is clearly compressible, it is useful to have a brief introduction to
the incompressible version of these algorithms to better understand their modified
compressible version.
The problem of the incompressible Navier-Stokes equations is that there is not an in-
dependent pressure equation, but it appears in the gradient form in the momentum
equation. Therefore a relation that directly relates the pressure to the velocity field
is needed an it can be obtained applying the divergence operator to the continuity
equation. Considering the incompressibility constraints, this leads to the Poisson
equation:

∂

∂xi

(
∂p

∂xi

)
= − ∂

∂xi

[
(∂ρuiuj)

∂xj

]
(4.1)

where the outer derivatives of the pressure inside the brackets must be discretized
in the same way they are discretized in the momentum equations; while the outer
derivatives, which come from the continuity equation must be approximated in the

29



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

way they are discretized in the continuity equation. In all the three algorithms the
iterations within one time-steps are called outer iterations, they are performed in an
outer loop in which the coefficients and the source matrix of the discretized equations
are updated. The operations performed on linear systems with fixed coefficients are
called instead inner iterations and they occur in the so called inner loop. Starting
with the SIMPLE algorithm the first step is to solve the discretized momentum
equation considering the pressure field and the source term of the previous iterations:

AuiP u
m∗
i,P +

∑
l

Auil u
m∗
i,l = Qm−1

ui
−
(
δpm−1

δxi

)
P

(4.2)

here P is the index of the computed node, l is the index of the center of the cell
adjacent to p, Q is the matrix of the source terms, A the matrix of the velocity coef-
ficients referred to node P and m the a generic index to identify a generic iteration.
In a compact way this system of equations can be seen as [A]um∗ = bm−1−5pm−1.
The velocities um∗ obtained at node P can be expressed as:

um∗i,P =
Qm−1
ui
−
∑

lA
ui
l u

m∗
i,l

AuiP
− 1

AuiP

(
δpm−1

δxi

)
P

(4.3)

or in a more compact form as:

um∗i,P = ũm∗i,P −
1

AuiP

(
δpm−1

δxi

)
P

(4.4)

These velocities do not satisfy the continuity equation, which is why they carried an
asterisk. The next step is therefore to introduce a small correction to the velocity
and pressure field inside the inner loop, denoting with the apex m the velocity field
that satisfy the continuity equation it is possible to write:

umi = um∗i + u′and pm = pm−1 + p′ (4.5)

Sobstituting (4.5) in (4.3) allows to introduce a relation between u′ and p′

u′i,P = ũ′i,P −
1

AuiP

(
δp′

δxi

)
P

(4.6)

where

ũ′i,P = −
∑

lA
ui
l u
′
i,l

AuiP
(4.7)

Then considering the discretized continuity equation

δ (ρumi )

δxi
= 0 (4.8)

with the use of (4.6) it is possible to introduce an equation that directly relates p′
with the velocities um∗i

δ

δxi

[
ρ

AuiP

(
δp′

δxi

)]
P

=

[
δ(ρum∗i )

δxi

]
P

+

[
δ(ρũ

′
i)

δxi

]
P

(4.9)

which is basically the discretized Poisson equation (4.1) expressed in terms of the
velocity and pressure corrections. In the SIMPLE algorithm the velocity corrections

30



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

ũ′i are unknown and hence neglected, therefore p′ is expressed as a only function
of um∗i . Then the corrected pressure is entered again in (4.3) in order to obtain a
new velocity field um∗i and repeat the procedure until the pressure correction falls
below a given tolerance and the velocity field satisfy both continuity and momentum
equation. Because ũ′i is neglected the SIMPLE algorithm converges slowly and
it is used mainly for steady-state simulations. Furthermore, to avoid instabilities
relaxation factors αP and αu are introduced in the computation of pm and um∗i .

pm = pm−1 + αpp
′ (4.10)

um∗i,P = ũm∗i,P − αu
1

AuiP

(
δpm−1

δxi

)
P

(4.11)

To speed up the convergence the PISO algorithm after neglecting ũ′i and computed
the pressure correction p′ using (4.6), computes u′i,P as:

u′i,P = − 1

AuiP

(
δp′

δxi

)
P

(4.12)

Allowing the computation of ũ′i using (4.7).
Then defining the second velocity corrections as:

u′′i,P = ũ′i,P −
1

AuiP

(
δp′′

δxi

)
P

(4.13)

and substituting in the discretized continuity equation (4.8) allows to write the
second pressure correction equation:

δ

δxi

[
ρ

AuiP

(
δp′′

δxi

)]
P

=

[
δ(ρũ′i)

δxi

]
P

(4.14)

So what basically the PISO algorithm makes more compared the SIMPLE algorithm
is to add an inner loop to correct a second time the pressure and the velocity. This
speed up the convergence allowing the use of this algorithm also in transient simu-
lations. Following the procedure described by Equations (4.12) - (4.14), further cor-
rector steps can be created increasing both the convergence and the computational
cost of the algorithm. As said at the beginning of this section the PIMPLE algo-
rithm merge the PIMPLE and the SIMPLE algorithm allowing the user to choose
the number of inner loop (number of corrector steps that can be constructed) and
outer loop ( changing of the coefficient matrix [A] and the source term b ) at each
time step of the simulation. In a very schematic way the PIMPLE algorithm can be
summarized by the following pseudo-code:

for t = to......tn
while n outer loop <= n max outer loop and Tol >= maxTol
.assemble the matrix of the discretized momentum equation
.solve discretized momentum equation
.assemble the matrix of the discretized Poisson equation
.solve Poisson equation for pressure correction
.correct pressure and velocity field

for n inner loops

31



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

.assemble the matrix of the discretized Poisson equation

.solve Poisson equation for pressure correction

.correct pressure and velocity field
end

.solve turbulence and other transport quantities

.update tolerance
end

end

In compressible flows the continuity equation is not only a matter of momentum,
indeed because the density change with the temperature it necessary to introduce a
step for the density correction inside the solution process. As in the incompressible
SIMPLE algorithm the first step is compute um∗ using the momentum equation and
the density ρm−1 of the previous iteration. This allows the computation of the mass
fluxes that a the beginning will not satisfy the continuity equation for each face of
the control volume. Considering the east face Se of the control volume (Figure 3.3)
the mass flux through the face can be written as:

ṁm
e =

(
ρm−1 + ρ′

)
e
(um∗n + u′n)e Se (4.15)

Exapnding the above equation, the mass flow correction is defined as:

ṁ′e =
(
ρm−1u′n

)
Se + (um∗n ρ′)Se + (ρ′u′n)e (4.16)

The last term on the right end sides of the equations has a lower order of magnitude
and converges faster compared to the others therefore it is neglected. As for the
incompressible case, sobstituting the corrected max flux in the momentum equation
allows to identify a relation between the mass flow correction and the pressure
correction p′. Again for the sake of simplicity considering the momentum balance
on the east face of the CV:(

ρm−1u′n
)
Se + (um∗n ρ′)Se =

(
ρm−1Se

)( 1

AP

)
e

(
δp

δn

)
e

(4.17)

It is now necessary to establish a relation between the pressure correction p′ and the
density correction, this can be easily achieved considering the equation of state for
a perfect gas (2.4) and expanding it via a Taylor series expansion:

ρ|pn+p′ = ρ|(pn) +
δρ

δp
p′ = ρ ∗+ρ′ ⇒ ρ′ =

δρ

δp
p′ =

1

RT
p′ = Cρp

′ (4.18)

Where T is the fluid temperature computed solving the energy equation using the
values of the previous iterations. Neglecting the velocity correction as for the in-
compressible case it is now possible to identify a relation that relates directly ṁ′

and p′ :

ṁ′e =
(
ρm−1Se

)( 1

AP

)
e

(
δp

δn

)
e

+

(
Cρṁ

∗

ρm−1

)
e

p′e (4.19)

Where ṁ∗ is defined as the product between um∗n and ρm−1. Writing (4.19) for all
the six faces of the CV and substituting in the continuity equation allows to find
the pressure correction p′ and finally with (4.19) together with (4.16) the veloc-
ity correction u′n. This is basically the SIMPLE part of the PIMPLE algorithm
for compressible flows, in the PISO part second corrections are introduced before
update the matrix coefficients of the discretized equations. The decription of the
SIMPLE,PISO and PIMPLE algorithm has been done consulting [29] and [30]

32



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

4.2 The SET-UP case

To set-up the solver it has been decided to use as validation case the near-sonic
jet flow of the NASA Langely research center [1]. The simulation involves a nozzle
(Acoustic research Nozzle 2, o ARN-2) with radius 1 inch (25.4 mm) and it is
compared with the experimental data of [31] and [32].This flow is near Ma = 1 at
the nozzle exit as for the CFM-56 engine, but it exits into quiescent air, while for
the aircraft case there is a strong co-flow of 252m/s. Moreover, this is an isothermal
case while for the CFM-56 nozzle the outlet temperature is approximately of 600
K. Because this is an axisymmetric case periodic rotating boundary conditions have
been used and below is reported a scheme with the mesh geometry and the physical
initial condition:

Figure 4.1: NASA set-up and validation case

4.2.1 Mesh Generation using the BlockMesh utility

Even if the grids used for the NASA case are available for the download, they are
in the plot3D format which is not easily convertible in OpenFOAM and does not
allow to export the various geometry patches for the definition of the boundary
conditions. For these reasons it has been decided to use the OpenFOAM utility
BlockMesh to generate a mesh similar to the one used by the NASA case. The
principle of BlockMesh is to decompose the domain geometry in a set of hexahedral
blocks. The edges of these block can be straight lines , circles or spline. Each block
is defined by 8 vertices and the local reference system inside the block must be
right handed. The reference system is defined by the order in which the vertices are
presented in the blocks, the type of edges are by default straights lines and to change

33



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

them it is necessary to define a list named edges. Each item of the list contains a
keyword specifying the type of curve connecting two vertices of the block (ex arc,
spline, polyLine etc.), the numbers which identify the vertices to be connected and
a series of interpolation points from which the edge needs to pass. Do define a block
it is necessary to define three entries:

• Vertex numbering In which are identified the vertices composing the blocks.
They are always preceded by the word hex that identifies the shape of the block
which is always an hexaedron.

• Number of cells Where are defined the number of cells in each of the three
directions of the block x1 , x2 and x3.

• Cell expansions ratios This is a very important parameter and it defines
how much the cells expand in each direction of the block. It is defined as :

Ex. ratio =
δe

δs
(4.20)

where δe is the the width of the cell at the end of one edge of the block and δs
is the width of the cell at the beginning of the edge. The expansion happens
in geometric progression and the common ratio q is related to the expansion
ratio through the relation :

q =
n−1
√
Ex. ratio (4.21)

where n is the number of cells of the block’s edge.

After the definition of the blocks with their number of cells and expansion ratios,
it necessary to define the boundaries of the mesh, this is given in a list named
boundary. The boundary is broken into patches (regions), where each patch in the
list has its name as the keyword. The keyword is chosen by the user and it will be
used in the 0 directory to define the initial conditions on that boundary for the start
of the simulation. The patch information is then contained in a sub-dictionary with:

• type, which can be a generic patch on which are applied some boundary
condition, or a geometric condition. In this case it is necessary to define the
patch wall for the nozzle boundaries, the patch symmetryPlane for the axis of
symmetry of the wedge geometry and the patch wedge for the two side faces
of the wedge planes. It is this last geometry patch that defines the periodic
rotating boundary conditions

• faces which is a list of block faces that make up the patch. Each face is
identified by a list of 4 vertex numbers. It is important that looking from inside
the block and starting with any of the vertices, the face must be traversed in
a clock wise direction to define the other vertices.

For further details about the mesh generation using BlockMesh it is possible to see
[24] while the complete script for the mesh generation of the NASA case can be seen
in Appendix B.
About the geometric dimensions, the NASA case and the OpenFOAM test case are
the same. This is not true for the number of blocks and the number of cells in the

34



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

mesh. In particular the mesh constructed with BlockMesh in the OpenFOAM case
has been divided in six blocks and it is a bit less refined compared to the one used
by NASA (see Figures 4.2 - 4.4 and Table 4.1).

Figure 4.2: Near sonic jet case geometry dimensions

Figure 4.3: Near sonic jet case OpenFOAM’s mesh

35



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

Figure 4.4: Near sonic jet case OpenFOAM’s mesh blocks (figure not in scale)

N. cells x N. cells y N. cells z Ex. ratio x Ex. ratio y
Block 1 97 97 1 1 1
Block 2 11 168 1 0.5 150
Block 3 3 168 1 0.5 150
Block 4 46 168 1 0.435 150
Block 5 257 168 1 8.6 150
Block 6 257 97 1 8.6 1

Table 4.1: Near sonic jet case OpenFOAM’s cells per block

4.2.2 Selection of the turbulence model and of the thermo-
physical properties

To run the simulation it has been decided to use the k − ω SST turbulence model.
This model as described in section 2.2.2 is well suited for almost every kind of flow
and it is used in the SST-V version for the NASA test case. The only difference
between the standard k − ω SST model implemented in OpenFOAM and the V
version used in the NASA case is in the production term P (4.22) of both the
transport equation for k and ω which is defined in terms of the vorticity magnitude
Ω =

√
2WijWij with Wij = 1

2

(
∂〈ui〉
∂xj
− ∂〈uj〉

∂xi

)
[33]

P = νTΩ2 − 2

3
kδij

∂ 〈ui〉
∂xj

(4.22)

The fluid exting from the nozzle is air and it is treated as a single mixture perfect
gas with molar mass 28.9 kg/Kmol and constant heat capacity at constant pressure
Cp = 1005 J/kg. The viscosity µ is considered function of the temperature T with
the well known Southerland relation:

µ =
As
√
T

1 + Ts/T
(4.23)

36



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

With As = 1.458 · 10−6
[
Pa · s ·K−1/2

]
and Ts = 110.4 [K] as Southerland’s coeffi-

cients for air. These property are evaluated through the OpenFOAM hePsiTermo
model which uses as variable for the energy equation the fluid internal energy e.
Below is reported the thermophysicalProperties file defined in the constant directory
of the OpenFOAM case.

1 /* -------------------------*- C++ -*----------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version: 7
6 \\/ M anipulation |
7 \*-------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "constant";
14 object thermophysicalProperties;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * *//
17

18 thermoType
19 {
20 type hePsiThermo;
21 mixture pureMixture;
22 transport sutherland;
23 thermo hConst;
24 equationOfState perfectGas;
25 specie specie;
26 energy sensibleInternalEnergy;
27 }
28

29 mixture // air at room temperature (293 K)
30 {
31 specie
32 {
33 molWeight 28.9;
34 }
35 thermodynamics
36 {
37 Cp 1005;
38 Hf 0;
39 }
40

41 transport
42 {
43 As 1.458e-6;
44 Ts 110.4;
45 }
46 }

37



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

47

48 // *****************************************************//

4.2.3 Selection of the discretization schemes

Because the flow is near sonic conditions, it has been decided to use for the diver-
gence terms, differentiation schemes towards the upwind in order to guarantee the
boundedness of the solution. In particular for the velocity and the fluxes on the CV
faces it has been used the GaussLimtedLinear differentiation scheme (see Table 3.3),
while to guarantee the complete stability of the turbulence a pure upwind scheme
has been used for ω and k. To proceed forward in time the Euler scheme has been
selected, this requires to achieve temporal accuracy and numerical stability the con-
straint of a Courant number less than 1. In the monodimensioanl case the Courant
number is defined as:

Co =
u∆t

∆x
(4.24)

where ∆t is the time step of each iteration and ∆x the cell size. If it is smaller
than 1, it guarantee that the information at a certain time step tn comes from
the prevoius time step tn−1 and from the neighbor cell. For all the simulation in
these thesis the maximum Courant number has been set to 0.5 in the controlDict
file. For the Laplacian terms the Gauss linear corrected scheme has been selected
and to evaluate it a linear interpolation scheme between the CV faces has been
chosen. To account the presence of non-orthogonalities in the mesh especially in
the transitions between blocks 1-2 and blocks 3-4 the corrected option has been
selected for the snGradSchemes. Finally, to evaluate the distance from the wall in
the wall-functions of the k−ω SST model the meshWave method has been defined.

1 /* -------------------------*- C++ -*----------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version: 7
6 \\/ M anipulation |
7 \*-------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSchemes;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes

38



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

24 {
25 default Gauss linear;
26 }
27

28 divSchemes
29 {
30 default none;
31 div(phi ,U) Gauss limitedLinearV 1;
32 div(phi ,e) Gauss limitedLinear 1;
33 div(phid ,p) Gauss limitedLinear 1;
34 div(phi ,K) Gauss limitedLinear 1;
35 div(phiv ,p) Gauss limitedLinear 1;
36 div(phi ,k) Gauss upwind;
37 div(phi ,omega) Gauss upwind;
38 div(((rho*nuEff)*dev2(T(grad(U))))) Gauss linear;
39 }
40

41 laplacianSchemes
42 {
43 default Gauss linear corrected;
44 }
45

46 interpolationSchemes
47 {
48 default linear;
49 }
50

51 snGradSchemes
52 {
53 default corrected;
54 }
55

56 wallDist
57 {
58 method meshWave;
59 }
60

61 // *******************************************************//

4.2.4 Selection of the equation solvers

For all the simulation variables the selected solver is the smoothSolver with the
Gauss-Seidel method as a smoother. The tolerance to be reached for each variable
before the solver stops is defined by the keyword tolerance.The only exception is for
the fluid’s density in the continuity equation, which is calculated using the diagonal
solver that as described is section 3.3.2 is a directed method. This allows to have a
density value free of error in order to avoid numerical instabilities due to the near
sonic conditions. The PIMPLE algorithm has been set with two outer loops and
just one inner loop, these parameters are the most used inside the OpenFOAM’s
tutorials and they are suggested in the OpenFOAM’s user guide. Because using

39



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

the utility checkMesh the maximum mesh non-orthogonality has a value of 30.86
and because the corrected option has been used for the evaluation of the surface
normal gradient, a non-orthogonal corrector has been added. Finally, because the
flow is near sonic condition the transonic option has been switched to yes. With this
option active, the pressure and velocity correction inside the PIMPLE algorithm are
strongly relaxed to avoid the blow-up of the solution.

1 /* -------------------------*- C++ -*----------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version: 7
6 \\/ M anipulation |
7 \*-------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object fvSolution;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17 solvers
18 {
19 "rho.*"
20 {
21 solver diagonal;
22 }
23

24 "p.*"
25 {
26 solver smoothSolver;
27 smoother symGaussSeidel;
28 tolerance 1e-08;
29 relTol 0;
30 }
31

32 "(U|e|R).*"
33 {
34 $p;
35 tolerance 1e-05;
36 }
37

38 "(k|omega ).*"
39 {
40 $p;
41 tolerance 1e-08;
42 }
43 }
44

45 PIMPLE

40



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

46 {
47 nOuterCorrectors 2;
48 nCorrectors 1;
49 nNonOrthogonalCorrectors 1;
50

51 transonic yes;
52 }
53

54 // *******************************************************//

4.2.5 Boundary and initial conditions

The boundary conditions are defined in the 0 directory and they are imposed for all
the simulation’s variables (U , p, T , ω, k, νT and αT ). Below is reported a scheme
with the names assigned to each patch of the domain:

Figure 4.5: Near sonic jet case OpenFOAM’s patches

For the inlet the total pressure (1.861 bar) and the total temperature (294.4 K)
have been defined as initial condition for the pressure and the temperature, while
for the velocity has been imposed a zero gradient condition. The outlets have been
join together as an only patch with the name of freestream and for them the wave-
Trasmissive boundary condition have been applied for both pressure and velocity.
This boundary condition is specific for high speed flows and it avoids spurious wave
reflections that would be detrimental for the simulation. The boundary condition
for the free-stream temperature has been set to zero gradient. For the nozzle wall
and the outer wall a noSlip condition have been imposed for the velocity and a

41



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

zeroGradient condition have been imposed for both temperature and pressure. In
the internal part of the domain according to the simulation performed by NASA
the temperature has been set to a value of 294.4 K (the same value of the inlet
total temperature), the pressure to the value of the atmospheric pressure (1 bar)
and for the velocity a very low background ambient condition (Mref = 0.01 corre-
sponding to approximately 3.54 m/s) has been imposed. This is necessary because
flow into quiescent air is very difficult to achieve for most CFD codes. The turbu-
lent quantities k and ω need an initial value for the start of the simulation, this
can be approximated using the relations for isotropic and homogeneous turbulence.
Supposing the velocity fluctuations u′x, u′y and u′z equal to 5% of the nozzle exit-
ing velocity (approximately 310.46 m/s) and a length scale l equal to the nozzle
diameter D = 0.0508 m

k =
1

2

(
u
′2
x + u

′2
y + u

′2
z

)
=

3

2
(0.05 · Uout)2 = 361.32

m2

s2
(4.25)

ω =
C0.75
µ k0.5

D
= 61.48s−1 (4.26)

These values are set as initial values for all the internal part of the domain as well as
for the outlets and the inlet patches. Because the average y+ on the nozzle’s wall has
a value of 0.682 no-wall functions are used on this patch, on the duct wall instead,
the average y+ has a value of 17.42 therefore the wall functions of the k − ω SST
model have been used. Finally, regarding αT it is the turbulent thermal diffusivity
defined as αT = µT

PrT
with PrT the turbulent Prandtl number considered constant

with a value of 0.9. This term arise after the Favre-Averaging of the energy equation
and it induce an additional thermal diffusivity in the turbulent boundary layer that
enhances the heat transfer due to convection. For this last quantity the value has
been set to zero on all the patches and in the internal mesh with the only exceptions
of the duct wall where the alphatWallFunction has been used. The complete files
with the here described boundary conditions can be found in Appendix B.

4.2.6 Simulation control

The parameters for the control of the simulation are specified in the controlDict
file. Since no residual controls have been specified for the simulation variables, the
simulation time has been set to 0.4 s. This correspond approximately to 13 flow
through periods with the conservative assumption of a jet average velocity of 83
m/s. As stated in section 4.2.3 the maximum Courant number has been set to 0.5,
therefore the runTimeModifiable and adjustTimeStep have been switched to yes.
To check the near sonic conditions at the nozzle exit the function MachNo has been
used to evaluate the Mach number at each solver iteration.

1 /* -------------------------*- C++ -*----------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version: 7
6 \\/ M anipulation |
7 \*-------------------------------------------------------*/
8 FoamFile

42



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

9 {
10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object controlDict;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17

18 application rhoPimpleFoam;
19

20 startFrom latestTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.4;
27

28 deltaT 1e-6;
29

30 writeControl adjustableRunTime;
31

32 writeInterval 0.01;
33

34 purgeWrite 2;
35

36 writeFormat ascii;
37

38 writePrecision 8;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48 adjustTimeStep true;
49

50 maxCo 0.5;
51

52 maxDeltaT 1e-2;
53

54 functions
55 {
56 #includeFunc MachNo
57 }
58

59 // *******************************************************//

43



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

4.3 Results and comparisons

In this section are reported the simulations results. They are compared to the ones
provided by the NASA validation case and the experimental results of [31] and [32].

Figure 4.6: U magnitude contour plot

Figure 4.7: k contour plot

Figure 4.8: ω contour plot

44



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

0 5 10 15 20

x/Dj

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
U

/U
j

OpenFOAM Simulation

NASA simulation

(a) Centerline velocity

0 0.2 0.4 0.6 0.8 1 1.2

u/Ujet

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(b) ux profiles

-0.03 -0.02 -0.01 0 0.01 0.02

v/Ujet

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(c) uy profiles

0 2 4 6 8 10

u'v'/Ujet
2 10

-3

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(d) u′v′ profiles

0 5 10 15 20

x/Dj

0

0.005

0.01

0.015

0.02

0.025

k
/U

j2

OpenFOAM Simulation

NASA simulation

(e) Centerline k

0 0.005 0.01 0.015 0.02 0.025 0.03

k/Ujet
2

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(f) k profiles

Figure 4.9: Simulations comparisons OpenFOAM (solid line -), NASA (dashed line
- -)

45



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

0 5 10 15 20

x/Dj

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

U
/U

j

Simulation

Experimental

(a) Centerline velocity

0 0.2 0.4 0.6 0.8 1 1.2

u/Ujet

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(b) ux profiles

-0.03 -0.02 -0.01 0 0.01 0.02

v/Ujet

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(c) uy profiles

0 2 4 6 8 10

u'v'/Ujet
2 10

-3

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(d) u′v′ profiles

0 5 10 15 20

x/Dj

0

0.005

0.01

0.015

0.02

0.025

k
/U

j2

Simulation

Experimental

(e) Centerline k

0 0.005 0.01 0.015 0.02 0.025 0.03

k/Ujet
2

0

0.5

1

1.5

y
/D

je
t

x/D = 2

x/D = 5

x/D = 10

x/D = 15

x/D = 20

(f) k profiles

Figure 4.10: Simulations comparisons OpenFOAM (solid line -), Experimental data
(dashed line - -)

Looking at Figure 4.9 it is clear how the NASA simulation data and the ones
obtained using OpenFOAM are in very good agreement. This is particularly true
if it is considered that the two simulations are performed on two different grids
and with a small difference in the production term of the k − ω SST turbulence
model. The experimental results of Figure 5.15 show instead how the simulation
overpredicts the turbulence, this results in a higher turbulent kinetic energy with the
consequent increase of the turbulent viscosity. With an higher turbulent viscosity,
the jet becomes over-diffusive and this can be seen in the spreading rate of the
centerline velocity which is faster after the end of the jet’s potential core. However,
looking at figure 4.11, it is evident that approaching the self-similar region (x/d >

46



CHAPTER 4. SOLVER SELECTION, SET-UP AND VALIDATION

30) the decay of the centerline velocity is very similar to the analytical one, provided
by the relation:

U0(x)

Uj
=

B

(x− x0) /d
(4.27)

Where d is the nozzle diameter, Uj is the velocity at the nozzle exit, x0 is the jet
virtual origin and B is the velocity decay constant, with a value of approximately
6. This relation has no dependence on the Re number and it can be analytically
demonstrated using the self-similarity hypothesis, based on the experimental obser-
vations that, as the jet decays and spread, the mean velocity profiles changes but
the shapes of the profiles does not change. The interested reader can find a complete
discussion about turbulent round jets and free shear flows in [34]

0 5 10 15 20

x/Dj

0

0.2

0.4

0.6

0.8

1

U
/U

j

Simulation

Experimental

Analitical spreading

Figure 4.11: Analytical spreading rate

As far as has been said, it is possible to say that with this setting the solver
rhoPimpleFoam is well able to predict sonic jet flows. It provides results that are in
very good agreement with the NASA near sonic jet validation case and it is able to
correctly predict the analytical jet spreading given by (4.27). The pour agreement
with the experimental results is mainly due to the RANS approach and because
for axisymmetric cases like this, it is important to solve the turbulence dissipation
terms in a strong conservative form.

47



Chapter 5

Axisymmetric simulations in flight
condition

In this chapter are reported the results for the axisymmetric simulations, with
periodic-rotating boundary conditions, of the coflow jet exiting from a CFM-56
engine. These simulations have as their main aim the modeling of the first phase
in the contrail formation,the Jet Regime. They are developed only to account the
fluid-dynamics of the phenomenon, which means that no soot particles are consid-
ered inside the flow. This strongly simplifies the calculations, avoiding to use a
Lagrangian approach that takes in consideration the effect of the particles on the
fluid. In the Jet Regime the jet is expanded into the atmosphere and mixed with the
ambient air, during this phase one assumes that the jet expansion is not influenced
by the aircraft vortex formation and that it covers a distance of approximately 30
m.[35]. After the definition of the flight conditions, the two types of performed sim-
ulations are presented, in the first one is not considered the wall effect of the duct
surrounding the engine while in the second one this effect is taken in consideration.
The results of the two simulation are finally compared and discussed.

5.1 Flight conditions

The CFM-56 engine is a two-flux turbofan engine where the exit of the effluents
(core flow) is surrounded with a cold air flow (bypass flow) and it is mainly used
on Boeing 737 aircraft. In the simulation the effect of the bypass flow has not been
considered and the geometry of the drain nozzle has been extremely simplified. In
flight cruising condition, this engine can develop around 32, 900 pounds of thrust
(7, 393 N) with the exhaust gases exiting at 480 m/s with a temperature of 580 K.
Table 5.1 taken from [36], reports the internal characteristics of the engine, they will
be used in the definition of the simulation’s initial conditions.(Note : In Table 5.1
us, up and cs, cp are respectively, the velocity and the spreed of sound of the bypass
and core streams.)

5.2 Axisymmetric no-wall case

The first step of the simulation has been the definition of a suitable geometry. The
downstream domain dimension from the nozzle exit has been set to 30 m in order

48



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

to simulate the total length of the jet regime.

CFM-56 Engine

Core flow: Mach 1
Static pressure P (Pa) 24,000

Static Temperature T (K) 3
up ( m/s ) 480.3
cp (m/s ) 480.3

Flow area S ( m2 ) 0.292
AFR (air fuel ratio) 60/1
Mass flow ( kg/s ) 20.2
Bypass flow: Mach 1

Static pressure P (Pa) 31,700
Static temperature T (K) 242

us ( m/s ) 311.6
cs ( m/s ) 311.6

Flow area S ( m2 ) 0.749
Mass flow (kg/s) 106.5

Flight conditions: Mach 0.85
Ambient pressure Ps (Pa) 23,800

Ambient temperature T (K) 219
u ( m/s ) 252
c ( m/s ) 296.6

Table 5.1: Internal engine characteristics

Starting from the nozzle exit the vertical dimension is set to 10 m and it proceeds
forward with an inclination of 7.4°. According to the geometrical characteristic of
the CFM-56 drain nozzle, the inlet and outlet nozzle’s radius have a values of 0.305
and 0.915 m respectively. Figure 5.1 shows the geometry dimensions as a function
of the nozzle exit radius.

Figure 5.1: No wall case geometry dimensions

49



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

5.2.1 Mesh generation

As for the NASA near sonic validation case, a wedge shape mesh with periodic
rotating boundary conditions has been created using the utility BlockMesh. In this
case the domain has been divided in 3 blocks and it has been tried to put the
majority of the cells along the downstream direction of the nozzle exit and in the 2
first diameters over the jet centerline. Indeed, the high value of the coflow velocity,
strongly limits the jet expansion, allowing the flow’s stronger gradients to be inside
this region. To guarantee a smooth transition between each block, the dimension of
the cells obey to a geometrical progression law, which has as starting point the nozzle
exit. Along the radius and the axis of symmetry of the nozzle, the cells have no
expansions ratio, then continuing along the axial direction, the cells slowly increase
their length, while their height along the y-direction remains constant until the
nozzle radius. Over the nozzle radius the height of the cells starts to increase until
reaching the wanted expansion ratio at the top of the domain. Since the starting
point in the expansion of the cells is the upper boundary of the nozzle wall (better
known as nozzle lipline) and the number of cells in the nozzle is the parameter
through which starts the building of the mesh, the correct number of cells in each
block can be evaluated following the here reported procedure:

• Denoting with nx,noz and ny,noz the number of cells in the x and y direction
of the nozzle and considering no expansion ratio inside the nozzle’s block, the
cell lengths along x and y at the nozzle lipline, can be evaluated respectively
as:

∆x =
lnoz
nx,noz

and ∆y =
rnoz
ny,noz

(5.1)

• Considering that the cell elements along the edges of a block are in geometrical
progression, it is possible to write:

ledge = ∆0
qn − 1

q − 1
= ∆0

Ex.ratio
n
n−1 − 1

Ex.ratio
1

n−1 − 1
(5.2)

Where n is the number of cells along the block’s edge and depending on the
edge orientation; ∆0 is the length along x or y of the first cell of the edge.
This length is imposed to be equal to the corresponding nozzle’s cell. In this
way it is guaranteed that the cells at the end of the nozzle’s block and at the
beginning of the new block have the same dimensions.

• Because ∆0 as well as the length of the block’s edge ledge are known parameters
(5.2) can be resolved as a function of n, allowing to obtain the number of cells
of a block’s edge for a fixed expansion ratio. This procedure can also be
repeated for blocks that are not bordering with the nozzle block and allows to
build an hexahedral structured mesh.

To perform a grid independence analysis three grids with increasing refinement
have been generated and below are reported a sketch with the blocks distribution
(Figure 5.2), the Tables with the specifications for each mesh (5.2 - 5.4) and the
front section of the most refined mesh (Figure 5.3).

50



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

Figure 5.2: Blocks in the axisymmetric no-wall case (Figure not in scale)

Mesh 1 63,194 cells
N.cells x N.cells y N.cells z Ex. ratio 1 Ex. ratio 2

Block 1 80 70 1 1 1
Block 2 331 104 1 7 100
Block 3 331 70 1 7 1

Table 5.2: Mesh 1 axisymmetric no-wall case

Mesh 2 139,927 cells
N.cells x N.cells y N.cells z Ex. ratio 1 Ex. ratio 2

Block 1 110 100 1 1 1
Block 2 563 129 1 5 120
Block 3 563 100 1 5 1

Table 5.3: Mesh 2 axisymmetric no-wall case

Mesh 3 202,462 cells
N.cells x N.cells y N.cells z Ex. ratio 1 Ex. ratio 2

Block 1 150 120 1 1 1
Block 2 619 178 1 5 100
Block 3 619 120 1 5 1

Table 5.4: Mesh 3 axisymmetric no-wall case

51



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

Figure 5.3: Mesh 3 axisymmetric no-wall case front section

5.2.2 Boundary and initial conditions

In this new case two inlet boundary conditions have been inserted to account the
presence of the coflow due to the aircraft traveling at flight cruise condition (5.4).The
first one at the nozzle inlet to account the main flow and the second one at the
beginning of block 2 to account the coflow. As for the NASA near sonic validation
case, the two outlets have a waveTransmissive boundary condition for both the
pressure and the velocity while the nozzle wall has noSlip boundary condition for
the velocity.

Figure 5.4: No wall case boundary conditions

At the nozzle inlet, total pressure and temperature boundary conditions have
been imposed. These can be calculated using the values of temperature,pressure
and Mach number at the nozzle exit reported in Table 5.1. With the hypothesis of

52



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

an isentropic expansion inside the nozzle it is possible to write:

ptot = pout

[
1 +

1

2
(k − 1)Ma2

out

] k
k−1

= 45430.3Pa (5.3)

Ttot = Tout

(
1 +

k − 1

2
Ma2

out

)
= 696K (5.4)

For the coflow inlet fixed values for temperature and velocity have been imposed.
These values are the same of the ambient condition reported in Table 5.1. The
pressure instead, has a zero gradient boundary condition on this patch. The ambient
conditions of temperature, pressure and velocity have also been imposed as initial
values in the internal part of the mesh. For the turbulent quantities k and ω the
same hypothesis of Section 4.2.5 have been made. However, because the two values
of velocity at the two inlets are different, there are two initial condition for each of
the turbulent quantities. Using equations (4.25) - (4.26) and the velocity values at
the nozzle exit and in the ambient coflow, the initial conditions for the turbulent
quantities at the two inlets are reported in the following table:

Nozzle inlet Coflow inlet
k0 [m2/s2] 864 238.14
ω0 [s−1] 7.92 4.16

Table 5.5: Turbulent quantities initial conditions

Because in this case the fluid reaches higher velocities during its expansions in
the nozzle, the y+ is higher than 10 on all the three generated meshes, this requires
the use of the wall functions on this patch to have a good wall treatment. Finally,
the parameter αT has been set to zero in all the domain. The boundary and initial
conditions together with the BlockMeshDict file for the axisymmetric no wall case
can be found in Appendix C.

5.2.3 Simulation control

The simulation set up is the same described in Chapter 4, however due to the larger
domain and the high number of cells the simulation has been run in parallel using
ten processor. This is very easy in OpenFOAM, that thanks to the decomposePar
utility and the scotch decomposition method can decompose the simulation domain
in different part of the same size and assign each of them to a processor. The
decomposed simulation has been run on Dragon the cluster of the Illinois University
of Chicago (UIC). Dragon has 18 nodes with 18 cores and 64GB or RAM for each
of them. Each processor belongs to Intel Xenon family with a maximum speed
of 4GHz. Further informations on the Dragon cluster can be found at [37]. To
guarantee the reaching of the steady state, the simulation time has been set to 1.5
s, that with the conservative assumption of an average flow velocity equal to the
one of the coflow, corresponds approximately to 13 flow through periods. Again the
Courant number has been fixed to 0.5 allowing the time step to be variable. Because
the Courant number is fixed and the time-step variable, it has been decided to not
perform a time convergence study.

53



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

5.2.4 Results and validation

To check the validation of the results the the simulation centerline velocity and
the simulation potential core length have been compared to the analytical relation
available in [38].

Figure 5.5: Diagram of round jet in coflow

Looking at Figure 5.5 the relevant physical quantities of a turbulent jet in coflow
are the velocity exiting from the nozzle Uo, the coflow velocity Ua, the potential core
length xe, the half-width bg and the top half-width Bg =

√
2bg.

The half-width bg is defined as the height of the velocity profiles in which the axial
component of the velocity has a value which is 1/e of the centerline jet velocity
Ug. It is assumed to spread constant |ue|dbgdx = β|ue|, with the excess velocity ue
expressed as :

ue =

{
∆U if r ≤ B
0 otherwise (5.5)

This is equivalent to a jet with a sharp boundary and uniform velocity ∆U + Ua,
carrying the same mass flow and excess momentum of the actual jet. With these
hypothesis and remembering that in a jet in coflow the excess momentum Meo =
(Uo−Ua)UoAo is conserved, it is proved that ∆U = ∆Ug

2
= Ug−Ua

2
while the top-half

width B and the excess velocity ∆U are related through the system of equations:{
U∗2 + U∗ − 1

πB∗2
= 0

dB∗

dx
= βs

U∗

1+U∗
(5.6)

Where U∗ = ∆U/Ua, B∗ = B/l∗m, and x∗ = x/l∗m are dimensionless variables,
l∗m = M

1/2
eo /Ua is the excess momentum length scale and βs is a model constant

equal to 0.16. Equation (5.6) can be numerically integrated to obtain a solution for

54



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

∆U(x) and B(x), and consequently for the jet centerline velocity Ug(x).
Adopting the same hypothesis the length of the potential core xe can be estimated
with the relation:

xe
D

=

√
1 + Ua/Uo

βs(1− Ua/Uo)
(5.7)

Equation (5.6) needs initial conditions relative to the jet virtual origin to be inte-
grated: 

∆U∗o = ∆Uo
Ua

B∗o = D
2l∗m

x∗o = −D
2βs(1−Ua/Uo)

(5.8)

This is applicable only in the region after the jet flow is fully developed (x > xe).
To have an idea of the full evolution of the jet centerline velocity, it is possible to
impose for x ≤ xe the centerline velocity equal to Uo, then after determining the
length of the potential core xe, the integration of the governing equations can start
from x∗o = xe/l

∗
m. In a more simple way it can also be demonstrated that in the

near field (x/l∗m ≤ 10) the centerline excess velocity scale as x−1 (5.9) while in the
far field (x/l∗m ≥ 60) as x−2/3 (5.10).

∆Ug
Ua

= 7.0

(
x

l∗m

)−1

(5.9)

∆Ug
Ua

= 2.14

(
x

l∗m

)− 2
3

(5.10)

After this brief explanation of what to expect for a jet in coflow here are reported
the contour plots for the main simulation variables:

Figure 5.6: U magnitude contour plot no wall case

Figure 5.7: T contour plot no wall case

Figure 5.8: p contour plot no wall case

55



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

Figure 5.9: Ma contour plot no wall case

Figure 5.10: k contour plot no wall case

Figure 5.11: ω contour plot no wall case

Figures 5.6 - 5.11 are obtained on Mesh 2. It is clearly visible how the ambient
coflow, strongly limits the jet expansion allowing the jet potential core to be longer.
It is also possible to observe how the the initial conditions at the jet inlet, imposed
using (5.3) and (5.4) led to values of Mach number, temperature and velocity that
are in agreement with the ones specified in Table 5.1. With these boundary condition
the jet has a centerline nozzle exit velocity of 484.4m/s and an average Re number of
1.36 ·106. Looking at the contour plots of the turbulent kinetic energy (Figure 5.10)
and turbulent dissipation rate (Figure 5.11) it may be noticed how the nozzle lipline
is the critical zone regarding the turbulence quantities. It is along this line that the
coflow starts mixing with the flow exiting from the nozzle, expanding gradually the
thickness of the boundary layer which reaches the axis of the nozzle at the end of the
potential core, where the turbulent kinetic energy has its peak. Inside this region the
smaller turbulent eddies begin to develop subtracting energy from the flow exiting
from the nozzle and allowing the jet velocity profiles to become self-similar.
Here are now reported the evolution of the Ux, T , and k along the centerline. The
quantity Ux is in particular compared with the analytical solution given by (5.6).

56



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

0 10 20 30

x [m]

250

300

350

400

450

500

550
U

x
 [

m
/s

]
Centerline velocity

Mesh 1

Mesh 2

Mesh 3

Analitical

Figure 5.12: No wall case centerline velocity

0 10 20 30

x [m]

200

300

400

500

600

T
 [

K
]

Centerline Temperature

Mesh 1

Mesh 2

Mesh 3

Figure 5.13: No wall case centerline temperature

57



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

0 10 20 30

x [m]

0

500

1000

1500
k
 [

m
2
/s

2
]

Centerline k

Mesh 1

Mesh 2

Mesh 3

Figure 5.14: No wall case centerline k

Looking at Figure 5.12 it is evident that all the simulations predict a lower decay
of the centerline velocity compared to the analytical solution given by (5.6). The
analytical solution is obtained using the initial conditions provided by (5.8), they
are computed using a value of Uo equal to the one provided in Table 5.1. This
velocity value is also used to estimate the potential core length with (5.7), in order
to obtain a starting value x∗o = xe/l

∗
m for the integration of the equations. All the

three figures show how the first grid is not enough refined to guarantee a converged
solution, indeed for x > 10 m, Ux, T , and k have fluctuations denoting the not
sufficient mesh refinement over this distance. The temperature in particular, has
a sharp drop with a value of 215K at the end of the domain which is completely
an-physical keeping in mind that the ambient temperature has a value of 219K.
Mesh 2 and Mesh 3 have results that are in very good agreement one to each other,
the potential core length is respectively of 9.377 m and 9.422 m with a relative error
of 5.32 % and 4.87 % respect to the analytical value (9.904 m). This value is also
in agreement to the one provided by [36] as well as the temperature decay along
the nozzle downstream direction. Figure 5.15 shows the profiles of ux, uy, k and T
along the downstream direction of the nozzle. For all the profiles it is evident how
they become self-similar after the potential core. The only exception is the velocity
vertical component and temperature profiles obtained with the first mesh, they are
far from the ones obtained with Mesh 2 and Mesh 3 showing again the not sufficient
grid refinement for x > 10 m. Looking at the turbulent kinetic energy profile, it is
interesting to notice how proceeding along x, the profile peak gradually goes down,
it starts from the lipline y/D = 0.5 until reaching the centerline when the flow is
fully developed. This confirms how the nozzle lipline is the zone in which the coflow

58



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

starts mixing with the main flow exiting from the nozzle, promoting the arise of
turbulence and heat exchange. Finally looking at the ux and T profiles at x/D = 5
and x/D = 10, it is evident how they are in the potential core region, indeed the
developing boundary layer has still not reached the axis of the flow and there is a
flat region where the velocity has the same value of the nozzle exit velocity.

250 300 350 400 450 500

u [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(a) ux profiles

-3 -2 -1 0 1 2

v [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(b) uy profiles

0 500 1000 1500 2000

k [m
2
/s

2
]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(c) k profiles

200 300 400 500 600

T [K]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(d) T profiles

Figure 5.15: Axisymmetric no wall case profiles Mesh 1( Solid line -), Mesh 2 (Dashed
line - -), Mesh 3 (Dotted line ··)

59



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

5.3 Axisymmetric wall case

Here are reported the results for the simulations considering the wall effect of the
duct surrounding the engine. The followed approach is identical to the one described
for the no-wall case and the only change is in the definition of geometry and boundary
conditions. To account the wall effect provided by the duct, a geometry shape similar
to the one provided by the NASA near sonic case has been created. The downstream
dimension after the nozzle exit remains the same of the no wall case, while over the
nozzle a second geometry part divided in three block has been added. Figure 5.16
shows the geometry dimensions as a function of the nozzle radius for this new case.

Figure 5.16: Geometry dimensions for the axisymmetric wall case

5.3.1 Mesh generation

As for the no-wall case the mesh generation has been performed using the BlockMesh
utility. Three meshes with increasing refinement have been created and all of them
are structured hexahedral meshes. As for the for the no-wall case the cell expansion
in both the axial and radial direction starts from the nozzle lipline following a
geometrical progression. The criterion to define the cell size is the same described
in Section 5.2.1, the only difference is in the definition of the expansion ratio along
x for the duct that has a value smaller than one. This is due because the expansion
happens in the opposite direction compared to the x-axis. To have a good refinement
in the duct zone, this mesh part has been divided on three blocks following the
same strategy adopted for the NASA near sonic validation case (see Figure 4.4).
As for the no-wall case, it has been tried to put the majority of the cells along the
radial direction in the first two diameters up to the nozzle centerline using an high
expansion ratio; this because the jet expansion is strongly limited by the coflow and
by the wall at the nozzle exit. Tables 5.6 - 5.8 summarize the mesh parameters for
each block while Figure 5.17 represents the most refined mesh front section. The
BlockMesh file for the most refined grid can be found in Appendix C.

60



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

Mesh 1 127,841 cells
N.cells x N.cells y N.cells z Ex. ratio 1 Ex. ratio 2

Block 1 110 100 1 1 1
Block 2 57 103 1 0.5 160
Block 3 9 103 1 1 160
Block 4 81 103 1 1 160
Block 5 502 103 1 6 160
Block 6 502 100 1 6 1

Table 5.6: Mesh 1 Axisymmetric wall case

Mesh 2 203,334 cells
N.cells x N.cells y N.cells z Ex. ratio 1 Ex. ratio 2

Block 1 110 100 1 1 1
Block 2 57 161 1 0.5 90
Block 3 9 161 1 1 90
Block 4 81 161 1 1 90
Block 5 647 161 1 4 90
Block 6 647 100 1 4 1

Table 5.7: Mesh 2 Axisymmetric wall case

Mesh 3 318,950 cells
N.cells x N.cells y N.cells z Ex. ratio 1 Ex. ratio 2

Block 1 120 110 1 1 1
Block 2 62 215 1 0.5 70
Block 3 10 215 1 1 70
Block 4 88 215 1 1 70
Block 5 838 215 1 3 70
Block 6 838 110 1 3 1

Table 5.8: Mesh 3 Axisymmetric wall case

Figure 5.17: Front section Mesh 3 wall case

61



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

5.3.2 Boundary and initial condition

The boundary and initial conditions are very similar to the ones specified in the
no-wall case. At the nozzle inlet total pressure and total temperature are imposed
using (5.3) and (5.4), while for the outlets the waveTrasmissive boundary condition
remains for both velocity and pressure. The main differences in this case, are the
definition of the noSlip boundary condition for both the nozzle and the duct wall
and the coflow inlet posed behind the duct wall. Also for this case with all the
three generated meshes the y+ has a value grater than 10 on both the wall patches,
requiring again the the use of the wall functions for the turbulent quantities k, ω,
νT and αT . Figure 5.18 shows a simple scheme of the boundary conditions for this
new case, while the OpenFOAM files for the boundary and initial conditions can be
found in Appendix C.

Figure 5.18: Wall case boundary conditions

5.3.3 Results

As for the no-wall the three simulation have been decomposed on 10 cores using
the Dragon cluster. The simulation time as well as the maximum Courant number
have been set respetively to 1.5 s and 0.5 making the same assumption described in
Section 5.2.3. For this case there are no analytical or experimental results through
which compare the simulation data. What has been found is that the wall effect
of the duct strongly limits the potential core length and it allows the centerline
velocity to go below the coflow value, this can be explained looking at the coflow
inlet. Starting from the coflow inlet the coflow proceeds along the duct wall and
when it reaches the duct corner it starts to expand. The turbulent boundary layer
separates and forms a free shear layer in the inclined part of the duct, this creates a
low pressure zone that at the beginning allows a further expansion of the main flow
exiting from the nozzle. However, when the coflow reattaches to the main flow the
pressure have a sudden increase that limits the spreading of the main flow velocity
and push back to the inclined duct, part of the flow in the free shear layer, forming

62



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

a recirculation zone. The higher pressure strongly limits the centerline velocity out
of the nozzle which reaches a value around 210 m/s well below the coflow value of
252 m/s in the free stream over the duct. The formation of the recirculation zone
and the decrease in pressure inside it can be observed looking at Figure 5.19 where
are reported the evolution along the lipline and centerline of pressure and velocity
along the first 10 m of the domain of the Mesh 1.

0 2 4 6 8 10

x/D
jet

200

250

300

350

400

450

500

550

U
x
 [
m

/s
]

Centerline velocity

(a) Centerline velocity

0 2 4 6 8 10

x [m]

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

P
 [
P

a
]

10 4 Centerline pressure

(b) Centerline pressure

0 2 4 6 8 10

x [m]

180

200

220

240

260

280

300

320

U
x
 [
m

/s
]

Lipline velocity

(c) Lipline velocity

0 2 4 6 8 10

x [m]

2.3

2.4

2.5

2.6

2.7

2.8

P
 [
P

a
]

10 4 Lipline pressure

(d) Lipline pressure

Figure 5.19: Axisymmetric wall case lipline and centerline velocity-pressure evolu-
tion

In particular it is interesting to have a look at the quantities along the lipline
(Figures 5.19c and 5.19d). Here, it is well evident the pressure drops after few
centimeters from the nozzle exit with a consequent velocity peak. After this point,
the pressure begins to increase due to the flow reattachment in the recirculation
zone above the nozzle lipline, which ends when the pressure reaches its maximum.
In this point, the velocity has its lower peak and it can be considered the end of
the recirculation zone where the coflow is completely reattached. The same trend of
pressure and velocity can be also seen along the centerline (Figures 5.19a and 5.19b),
with the only difference that here the velocity is higher, therefore when the pressure
drops there are some oscillations due to the formation of shock waves. After the
recirculation zone, the pressure restores to the ambient value, however the pressure
peak has strongly reduced the velocity of the nozzle flow and of the coflow that
start to mix together. This explain why the centerline and lipline velocities have
a value below the free stream coflow value of 252 m/s. The distance between the
upper and lower peak of the lipline velocity can be used for estimate the length of

63



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

the recirculation zone that for this case is of 1.73 m. Figures 5.20 - 5.25 show the
the contour plots for the main simulations variables.

Figure 5.20: U magnitude contour plot wall case

Figure 5.21: T contour plot wall case

Figure 5.22: p contour plot wall case

Figure 5.23: Ma contour plot wall case

Figure 5.24: k contour plot wall case

64



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

Figure 5.25: ω contour plot wall case

Looking at the contours plot of p (Figure 5.22) and Ma (Figure 5.23), it can
be observed how, as the coflow approaches the corner of the inclined part of the
duct it starts to expand reaching a Mach value of one, at this point the free shear
layer starts to form and the pressure drops. Then over the recirculation zone it is
clearly visible the pressure increase with the formation of some shocks close to the
nozzle exit. The recirculation can be also identified looking at the contour plot of
the turbulent kinetic energy (Figure 5.24), indeed this quantity has an high value
not only along the nozzle lipline but also in the inclined part of the duct denoting
the formation of turbulence and mixing. The streamlines inside the recirculation
zone can be seen in Figure 5.26.

Figure 5.26: Stream lines plot for the recirculation zone

All the results here discussed are for the coarsest grid, as for the no-wall case,
to check the grid independence of the results, the velocity, temperature and turbu-
lent kinetic energy profiles along the downstream direction of the nozzle have been
plotted. Because the velocity spreading is faster compared to the no-wall case, the
profiles are taken along a shorter distance at five locations (x/Dj = 2, 5, 10, 15, 20).
Looking at figure 5.27 it can been seen that the results do not change appreciably
increasing the number of cells in the grids , providing the mesh independence of the
results.

65



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

0 100 200 300 400

u [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(a) ux profiles

-40 -20 0 20

v [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(b) uy profiles

0 10 20 30

x [m]

0

1000

2000

3000

4000

5000

6000

k
 [

m
2
/s

2
]

Mesh 1

Mesh 2

Mesh 3

(c) Centerline k

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

650

T
 [

K
]

Mesh 1

Mesh 2

Mesh 3

(d) Centerline temperature

0 5000 10000 15000

k [m 2/s2]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(e) k profiles

200 300 400 500 600 700

T [K]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(f) T profiles

Figure 5.27: Axisymmetric wall case profiles Mesh 1( Solid line -), Mesh 2 (Dashed
line - -), Mesh 3 (Dotted line ··)

For the velocity profiles (Figure 5.27a) the same consideration of the no-wall case
can be done. In particular it can be noticed how the profiles at x/D = 2 − 5 are
inside the potential core region where the developing boundary layer has still not
reached the axis of symmetry of the jet. However, because of the change of pressure
due to the recirculation zone, the potential core has not a constant value of velocity
as for the no wall case, but it has higher values of velocity where the pressure
is lower and lower values of velocity where the pressure is higher. An opposite
trend can be observed instead for the temperature, indeed this quantity directly
follows the pressure behavior with higher values at the end of the recirculation zone
where the pressure has its peak. Another interesting observation can be done for

66



CHAPTER 5. AXISYMMETRIC SIMULATIONS IN FLIGHT CONDITION

the vertical component of the velocity, infact in this case for x/D = 2 − 5, which
are the downstream location below the recirculation zone, this quantity is bigger
of one order of magnitude compared to the no-wall case showing how the mixing
is enhanced by the recirculation. Over the potential core zone, the self similarity
can be well observed for all the profiles with the turbulent kinetic energy that has
lower values compared to the no-wall case due the global lower velocity of the flow.
Finally, Figures 6.23a and 6.23b compare the temperature and velocity along the
centerline of the two axisymmetric cases here analyzed (results of Mesh 2 for the
no-wall case and Mesh 1 for the wall case), while Table 5.9 gives an estimation
of the potential core length for all the meshes used to run the simulation, with
the percentage reduction of the wall case. In the no-wall case the relative error is
computed on the analytical length of the potential core given by (5.7), while in the
wall case it is computed on the value of the most refined grid.

5 10 15 20 25 30

x [m]

200

250

300

350

400

450

500

550

U
x
 [
m

/s
]

Centerline velocity

Wall

No Wall

(a) Centerline velocity comparison

5 10 15 20 25 30

x [m]

250

300

350

400

450

500

550

600

650

T
 [

K
]

Centerline Temperature

Wall

No Wall

(b) Centerline temperature comparison

Figure 5.28: Centerline comparisons

No Wall Case Error % Wall Case Error % % reduction
Mesh 1 8.988 m 9.25 3.015 m 13.06 66.45
Mesh 2 9.377 m 5.32 3.316 m 4.38 64.64
Mesh 3 9.442 m 4.87 3.468 m - 63.27

Table 5.9: Potential core comparisons axisymmetric cases

8.5 9 9.5 10

x [m]

475

480

485

490

495

U
x
 [
m

/s
]

Mesh 1

Mesh 2

Mesh 3

Analitical

(a) Zoom potential core no-wall case

2.5 3 3.5 4

x [m]

425

430

435

440

445

U
x
 [
m

/s
]

Mesh 1

Mesh 2

Mesh 3

(b) Zoom potential core wall case

Figure 5.29: Zoom end of the potential core region axisymmetric cases

67



Chapter 6

Full 3D simulations in flight
conditions

In this chapter the flow conditions analyzed in Chapter 5 with the periodic rotating
boundary conditions, are now simulated on a full 3D grid. As a first approach this
can be seen as a waste of computational resources, indeed the flow is axisymmetric
and for a rough analysis a wedge geometry with periodic rotating boundary condi-
tions is more than sufficient to predict the flow’s behavior with the RANS model.
However, according to the studies of [39], axisymmetric simulations tend to predict
a longer length for jet the potential core and can not be used for running Detached
Eddy simulations (DES) where the full 3D flow’s anisotropies are modeled. Using
the same solver set-up described in Chapter 4 and the same methodology discussed
in Chapter 5, this last part of the work shows the RANS results of the modeled
aircraft jet flow on different 3D grids. Then, the results of the steady state solutions
obtained on the most refined grids, are used as initial condition for the DES mod-
eling with the k − ω SST DES turbulence model in order to have an high quality
solution, as much as possible similar to the real jet flow physics.

6.1 3D mesh generation using Gmsh

To generate the full 3D mesh it has been decided to not use the build in utility
of OpenFOAM SnappyHexMesh. This mesh generator needs the .stl cad file of the
geometry to mesh and it is mainly used to create unstructured grids of complex
geometries. It basically creates the mesh trying to apply subsequent cuts and re-
finements to a meshed block created using BlockMesh, in order to have a meshed
body with the same geometry described in the .stl file. Because the geometry in-
volved in this case is axisymmetric and to have accurate results with the DES model
it is needed a very fine structured grid, it has been decided to use the Open Source
software Gmsh for the mesh generation.

6.1.1 Gmsh overview

Gmsh is a three-dimensional finite element mesh generator with a build-in CAD
engine ad a post-processor. It is build around four modules: geometry, mesh, solver
and post-processing. All geometrical, mesh, solver and post-processing instructions

68



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

can be prescribed either interactively using the graphical interface (GUI) or in text
files using Gmsh’s own scripting language (.geo file). Geometries can be constructed
in Gmsh using different CAD kernels, the built-in CAD kernel or the OpenCAS-
CADE kernel. In both of them the definition of the geometry to mesh happens in
the same way, first it is needed the definition of the points using the point com-
mand, then the definitions of curves (using Line, Circle, Spline commands or
extruding points), then surfaces (using Plane Surface or Surface commands, or
by extruding curves) and finally volumes (using the Volume command or by extrud-
ing surfaces). The created geometry entities are named elementary entities and
each of them need to have an unique tag. The elementary entities can be manipu-
lated in various way using the Translate, Rotate, Scale or Symmetry command.
The Gmsh’s mesh module regroups several 1D, 2D and 3D meshing algorithms and
the mesh generation happens in a very straight forward way. Curves are discretized
first (1D mesh algorithm), the mesh of the curves is then used to mesh the surfaces
(2D mesh algorithm), finally the mesh of the surfaces is used to mesh the volumes
(3D mesh algorithm). The meshing algorithms can be further divided in structured
and unstructured algorithms. The 2D unstructured algorithms generates triangles
and/or quadrangles (when the recombination commands or option are used). The
3D unstructured algorithms generate tetrahedra, or tetrahedra and pyramids. For
all the 2D unstructured algorithms a Delanuy mesh that contains all the points of
the 1D mesh is initially constructed using a divide-and-conquer algorithm. After
that to generate the final 2D mesh the available algorithms are :

• The Mesh Adapt algorithm

• The Delanuy algorithm

• The Frontal Delanuy algorithm

In general the Mesh Adapt algorithm is the most robust, the Delanuy is the fastest
and the Frontal Delanuy is the best in creating high quality cells. In a similar way
for the 3D mesh generation the available algorithm are :

• The Delanuy algorithm

• The Frontal algorithm

• The HXT algorithm

• The MMG3D algorithm (new and experimental)

Among them the most common used and the most robust is the Delanuy algorithm.
The 2D structured algorithms (transfinite and extrusion) generate triangles by de-
fault but with the command Recombine quadrangles can be obtained. The 3D struc-
tured algorithms generate tetrahedra, hexahedra, prisms and pyramids, depending
on the type of the surface they are based on. The creation of a 3D structured mesh
follows the same general principle for the creation of a mesh discussed above, first the
curves need to be meshed using the command Transfinite Curve, this is followed
by the list of the curves on which apply the transfinite algorithm, an expression
denoting the number of nodes for each curve and a Using progression expression
with the common ratio used by the transfinite algorithm to distribute the nodes fol-
lowing a geometrical progression. (Example Transfinite Curve <curves tags> =

69



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

<number of nodes> Using progression < common ratio q>). Defined the trans-
finite curves it is necessary to define the transfinite surfaces, this happens in a
very simple way using the command Transfinite Surface followed by the list of
the surfaces of which apply the transfinite algorithm. The command can be fol-
lowed by an optional argument denoting the way the triangles are oriented when
the mesh is not recombined. (Example Transfinite Surface <surface tags>
<Left| Right| Alternate|
AlternateRight| AlternateLeft>). Finally it is the time to define the transfinite
algorithm on the geometry’s volumes. This can happen in different ways, using
the command Transfinite Volume, followed by the tag of the volume on which
apply the transfinite algorithm and the list of the volume geometry points ordered
in an counterclockwise direction (Example Transfinite Volume <volume tag> =
<list of volume’s points>); or using the Extrude command inside the Gmsh
geometry module. With this command it is possible to generate a geometry vol-
ume on which is already implemented the transfinite algorithm, starting from the
transfinite surfaces. The extrusion can be a rotation or a translation, and in both
cases it is necessary to define the direction along which rotate or translate the trans-
finite surfaces, the surfaces to extrude and the number of layers to create during
the extrusion. The layers can be put in a geometrical progression, using the Using
Progression option followed by the expression for the common ratio q.
About the solver and the post-processing module, the former it is used to drive
external solver and codes on Gmsh through the ONELAB interface, the latter it is
used to post-process simulation data obtained using external software on the mesh
created in the Gmsh environment. Further information about the Gmsh software
and its use can be found at [40] and on the official Gmsh website [41].

6.1.2 Mesh creation

The mesh generation has been done recreating as a first step the 2D geometry in the
Gmsh environment for both the wall and the no-wall case, but with a small change
in the vertical length of the domain front section. Indeed, because the 3D structured
mesh is created using the Extrude command with a rotation of the domain front
section, it is necessary to reduce the height of the domain, in order to have a small
cylinder hole along the domain centerline after the extrusion procedure. This is
necessary because, if the 2D geometry is left unchanged and the extrusion has as
its center the bottom left corner of the 2D geometry, a singularity with no cells is
created along the domain centerline. This does not allow the solver to compute the
gradients along this direction and hence to properly discretize the model equations.
The cylinder hole is then filled with a squared base parallelepiped, with the square
side

√
2 smaller than the hole radius. The radius of the cylinder’s base can be

varied in order to have a finer or coarser meshes along the centerline. In this way
the discretization of the equations along the axis of the 3D geometry is guaranteed.
This mesh procedure is well known for all the full 3D axisymmetric problems and
takes the name of butterfly grid generation. In Gmsh the extrusion of the base
2D geometry has been done for 4 times along an angle of 90°.The base geometry
has exactly the same block definitions and expansion ratios for the axisymmetric
cases analyzed in Chapter 5, the only difference is that in Gmsh rather than define
the expansion ratios, it necessary to define the common ratio q which is related

70



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

to the expansion ratio through (4.21). Five meshes divided on two groups have
been created for both the wall and the no wall cases. In the first mesh group the
radial and axial mesh refinements have been increased leaving the extrusion angle
constant to a value of 10°. This group is composed of three meshes with the half-
section refinement of Mesh 1, Mesh 2 and Mesh 3 of the axisymmetric wall and no
wall cases. Contrarily, in the second group, the axial mesh refinement has been left
unchanged while the extrusion angle has been gradually reduced to 10°, 5° and 2°.
For the no-wall case it has been decided to use the half-section refinement of Mesh 2
of the axisymmetric case, while for the wall case it has been decided to use the half
section refinement of Mesh 1 of the axisymmetric case. Obviously, from what it has
been said it is clear that one mesh is in common between the two groups. Tables
6.1 - 6.2 summarize the mesh data for the full 3D geometry of both the no-wall and
wall cases.

Group 1 - axial and radial refinement
Cells in the half-section Extrusion angle Total number of cells

Mesh 2.5 63,194 10° 2,234,295
Mesh 5M 139,927 10° 4,970,945
Mesh 8M 202,462 10° 7,212,501

(a) Group 1 summary table

Group 2 - angular refinement
Cells in the half-section Extrusion angle Total number of cells

Mesh 10° 139,927 10° 4,970,945
Mesh 5° 139,927 5° 9,897,228
Mesh 2° 139,927 2° 23,662,125

(b) Group 2 summary table

Table 6.1: Meshes for the full 3D no-wall case

Group 1 - axial and radial refinement
Cells in the half-section Extrusion angle Total number of cells

Mesh 4M 127,841 10° 4,026,134
Mesh 8M 202,334 10° 8,088,912
Mesh 12M 319,950 10° 12,265,040

(a) Group 1 summary table

Group 2 - angular refinement
Cells in the half-section Extrusion angle Total number of cells

Mesh 10° 127,841 10° 4,026,134
Mesh 5° 127,841 5° 8,052,268
Mesh 2° 127,841 2° 20,130,670

(b) Group 2 summary table

Table 6.2: Meshes for the full 3D wall case

71



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

The great amount of generated meshes has as main objective to show the grid
independence of the solution varying the mesh refinement in the three coordinates
of the domain. As a general target in the mesh generation, it has been tried to stay
around the range of 20 millions cells for the most refined mesh in order to have a
reasonable computational cost. This explains why the number of cells in Mesh 2 and
Mesh 1 of the axisymmetric no-wall and wall cases have been chosen as half-section
for the angular mesh refinement. Indeed, extruding these half sections every 2° leds
to a 3D mesh of 23,662,125 cells for the no-wall case and 20,130,670 cells for the
wall case. Moreover, the solutions obtained with the periodic-rotating boundary
conditions on these two-half section is not far from the ones obtained with the most
refined grid (Mesh 3). This suggest that this mesh configuration has the best trade
off between computational cost and numerical accuracy. The generated meshes have
been exported in the .msh format and then converted to the OpenFOAM’s format
using the mesh conversion utility gmshToFoam. Figure 6.1 and Figure 6.2 shows the
mesh sections for the most refined cases while Figure 6.3 presents the butterfly grid
strategy used for the mesh generation. The gmsh .geo file for the most refined mesh
generation of both the wall and no-wall cases can be found in AppendixD.

Figure 6.1: 3D mesh no-wall case

Figure 6.2: 3D mesh wall case

72



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.3: Buttefly grid strategy

6.2 Full 3D no wall case - RANS approach
In this section are reported the results for the full 3D no wall cases. For both
the no-wall and wall cases the simulation controls, boundary and initial conditions
are the same of the corresponding axisymmetric cases.(see Sections 5.2.2, 5.2.3 and
5.3.2). The only clear difference is that because they are full 3D cases the boundary
conditions of wedge and symmetryPlane are absent. The most refined cases of 23
million cells (no-wall case) and 20 million cells (wall case) have been run on Theta,
the supercomputer of the Argonne National Laboratory on 4096 cores. Theta is a
Cray XC40 machine based on second-generation of the Intel Xeon Phi processor,
it has 4,392 computers nodes with 64 processors for each node and it can reach a
maximum velocity of 11.69 petaflops. More information about Theta and how to
get an user account on this machine can be found at [42]. All the other simulations
have been run on 40 cores using Dragon. First are reported the results for the first
mesh group in which it has been changed the axial and radial mesh refinement, then
follows the results for the second group in which it has been varied the extrusion
angle. Finally a comparison between the axisymmetric case and the full 3D case is
made.

73



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

6.2.1 Group1 - results

0 10 20 30

x [m]

250

300

350

400

450

500
U

x
 [

m
/s

]
2.5M

5M

8M

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

T
 [

K
]

2.5M

5M

8M

(b) Centerline temperature

200 250 300 350 400 450 500

u [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(c) ux profiles

-0.5 0 0.5

v [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(d) uy profiles

0 10 20 30

x [m]

0

500

1000

1500

k
 [

m
2
/s

2
]

2.5M

5M

8M

(e) Centerline k

0 500 1000 1500 2000

k [m
2
/s

2
]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(f) k profiles

200 300 400 500 600

T [K]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(g) T profiles

Figure 6.4: Results comparisons Group 1 no-wall case Mesh 2.5M (solid line -), Mesh
5M (dashed line - -), Mesh 8M (dotted line :)

74



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

6.2.2 Group2 - results

0 10 20 30

x [m]

250

300

350

400

450

500

U
x
 [

m
/s

]

10°

5°

2°

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

T
 [

K
]

10°

5°

2°

(b) Centerline temperature

200 250 300 350 400 450 500

u [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(c) ux profiles

-0.5 0 0.5

v [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(d) uy profiles

0 10 20 30

x [m]

0

500

1000

1500

k
 [

m
2
/s

2
]

10°

5°

2°

(e) Centerline k

0 500 1000 1500 2000 2500

k [m
2
/s

2
]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(f) k profiles

200 300 400 500 600

T [K]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(g) T profiles

Figure 6.5: Results comparisons Group 2 no-wall case Mesh 10° (solid line -), Mesh
5° (dashed line - -), Mesh 2° (dotted line :)

75



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

From Figures 6.4 - 6.5 it is evident that the simulation solutions converge quite
well for both the groups of meshes. It is interesting to notice how increasing the
number of points, the solution for the centerlines velocity and temperature in the jet
potential core becomes flatter. It is in this region, where the flow is near Ma = 1,
that numerical instabilities, due to a coarse grid, may arise. The only variable that
seems to not converge well is the vertical component of the velocity, indeed for the
less refined cases the profiles for this velocity component, seems to vary a lot es-
pecially far from the nozzle exit. However, between the simulation variables, it is
the one with the lower order of magnitude and the pour agreement between the the
different grids does not affect the validity of the simulation. The same flow char-
acteristic of the axisymmetric case, as the self-similarity of the simulation profiles,
the developing of the boundary layer for the velocity and temperature profiles in
the potential core region and the turbulence that starts to arise from the jet lipline
can be well seen also for this 3D case. To check the grid convergence of the results,
Table 6.3 shows the jet potential core length and its relative error one the value
obtained with the analytical relation (5.7), while Figures 6.6-6.10 show the contour
plots of the main simulation variables obtained on the finest grid of 23,662,125 cells
(Mesh 2° of group 2).

Figure 6.6: U contour plot 3D no-wall case

Figure 6.7: T contour plot 3D no-wall case

Figure 6.8: p contour plot 3D no-wall case

76



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.9: Ma contour plot 3D no-wall case

Figure 6.10: k contour plot 3D no-wall case

Figure 6.11: ω contour plot 3D no-wall case

Group 1
P.C. length [m] Error %[-]

Mesh 2.5M 9.507 4.00
Mesh 5M 9.522 3.85
Mesh 8M 9.607 3.00
(a) Group 1 - axial and radial refinement

Group 2
P.C. length [m] Error %[-]

Mesh 10° 9.522 3.85
Mesh 5° 9.587 3.20
Mesh 2° 9.613 2.94

(b) Group 2 - angular refinement

Table 6.3: Grid convergence potential core - no wall case

8.5 9 9.5 10

x [m]

478

480

482

484

486

488

490

492

U
x
 [

m
/s

]

2.5M

5M

8M

(a) Zoom potential core no-wall case -
Group 1

7 8 9 10

x [m]

470

475

480

485

490

495

U
x
 [

m
/s

]

10°

5°

2°

(b) Zoom potential core no-wall case -
Group 2

Figure 6.12: Zoom end of the potential core region 3D no-wall cases

77



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

6.2.3 Comparisons Axisymmetric-3D

0 10 20 30

x [m]

250

300

350

400

450

500

U
x
 [

m
/s

]
Axisymmetric

3D

Analitical

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

T
 [

K
]

Axisymmetric

3D

(b) Centerline temperature

200 300 400 500

u [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(c) ux profiles

-0.5 0 0.5

v [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(d) uy profiles

0 10 20 30

x [m]

0

500

1000

1500

k
 [
m

2
/s

2
]

Axisymmetric

3D

(e) Centerline k

0 500 1000 1500 2000

k [m 2/s2]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(f) k profiles

200 300 400 500 600

T [K]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(g) T profiles

Figure 6.13: Comparisons between the 3D axisymmetric and the full 3D no-wall
cases. 3D axisymmetric (Solid line -) full 3D (Dashed line - -)

78



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.13 shows the comparisons between the results obtained with Mesh 2
(axisymmetric) and Mesh 2° (full 3D) of the no-wall cases . As can be seen there are
no big differences between the results of the two simulations, but the full 3D case
shows a better agreement with the analytical solution provided by (5.6). In partic-
ular, the full 3D case shows an higher turbulent kinetic energy with a consequent
higher turbulent viscosity νT that makes the flow more diffusive compared to the
axisymmetric case. In the far field, far from the nozzle exit, both the the axisymmet-
ric and 3D curves becomes parallel demonstrating the same centerline spreading for
both the simulations. Regarding the jet potential core length, it is slightly shorter in
the axisymmetric case compared to the full 3D case (9.377 m axisymmetric - 9.613
m 3D), this contradicts what has been stated in [39]. A further proof can be given
considering that the 3D case predicts an higher centerline velocity exiting from the
nozzle compared to the axisymmetric case (3D 486.6 m/s, axisymmetric 484.4 m/s)
and from (5.7), it is evident that the higher is the difference between Uo and Ua, the
shorter is the potential core length.

6.3 Full 3D wall case - RANS approach
Following the same order of the no-wall case here are reported the results for the full
3D simulations of the wall case. Also in this case, varying the mesh refinement, the
solution continues to converge well and the observations done for the axisymmetric
case continue to be valid for the 3D case (See Figures 6.15 and 6.16). Figures
6.17 - 6.22 show the contour plots of the main simulation variables for the most
refined case, while it is interesting to look at Figure 6.14 where are represented the
recirculation streamlines along the full 3D geometry. In particular in the full 3D
case, it is well evident the formation of the free shear layer in the inclined part of the
nozzle duct which allows the further expansion of the flow exiting from the nozzle.

Figure 6.14: 3D streamlines wall case - RANS approach

79



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

6.3.1 Group 1 - results

0 10 20 30

x [m]

200

250

300

350

400

450

500

550
U

x
 [

m
/s

]
4M

8M

12M

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

650

T
 [

K
]

4M

8M

12M

(b) Centerline temperature

0 100 200 300 400

u [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(c) ux profiles

-40 -20 0 20

v [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(d) uy profiles

0 10 20 30

x [m]

0

1000

2000

3000

4000

5000

6000

k
 [

m
2
/s

2
]

4M

8M

12M

(e) Centerline k

0 5000 10000 15000

k [m 2/s2]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(f) k profiles

200 300 400 500 600 700

T [K]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(g) T profiles

Figure 6.15: Results comparisons Group 1 wall case Mesh 4M (solid line -), Mesh
8M (dashed line - -), Mesh 12M (dotted line :)

80



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

6.3.2 Group 2 - results

0 10 20 30

x [m]

200

250

300

350

400

450

500

550

U
x
 [

m
/s

]

10°

5°

2°

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

650

T
 [

K
]

10°

5°

2°

(b) Centerline temperature

0 100 200 300 400

u [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(c) ux profiles

-40 -20 0 20

v [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(d) uy profiles

0 10 20 30

x [m]

0

1000

2000

3000

4000

5000

6000

k
 [

m
2
/s

2
]

10°

5°

2°

(e) Centerline k

0 5000 10000 15000

k [m 2/s2]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(f) k profiles

200 300 400 500 600 700

T [K]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(g) T profiles

Figure 6.16: Results comparisons Group 2 wall case Mesh 2° (solid line -), Mesh 5°
(dashed line - -), Mesh 10° (dotted line :)

81



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.17: U contour plot 3D wall case

Figure 6.18: T contour plot 3D wall case

Figure 6.19: p contour plot 3D wall case

Figure 6.20: Ma contour plot 3D wall case

82



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.21: k contour plot 3D wall case

Figure 6.22: ω contour plot 3D wall case

Group 1
P.C. length [m] Error %[-]

Mesh 4M 3.236 1.22
Mesh 8M 3.250 0.79
Mesh 12M 3.276 -

(a) Group 1 - axial and radial refinement

Group 2
P.C. length [m] Error %[-]

Mesh 10° 3.236 1.85
Mesh 5° 3.198 0.66
Mesh 2° 3.177 -

(b) Group 2 - angular refinement

Table 6.4: Grid convergence potential core - wall case

2.8 3 3.2 3.4

x [m]

441

442

443

444

445

446

447

448

449

U
x
 [

m
/s

]

4M

8M

12M

(a) Zoom potential core wall case - Group
1

2.8 3 3.2 3.4

x [m]

440

442

444

446

448

U
x
 [

m
/s

]

10°

5°

2°

(b) Zoom potential core wall case - Group
2

Figure 6.23: Zoom end of the potential core region 3D wall cases

83



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

6.3.3 Comparisons Axisymmetric-3D

0 10 20 30

x [m]

200

250

300

350

400

450

500

550
U

x
 [
m

/s
]

Axisymmetric

3D

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

650

T
 [
K

]

Axisymmetric

3D

(b) Centerline temperature

0 100 200 300 400

u [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(c) ux profiles

-40 -20 0 20

v [m/s]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(d) uy profiles

0 10 20 30

x [m]

0

1000

2000

3000

4000

5000

6000

k
 [
m

2
/s

2
]

Axisymmetric

3D

(e) Centerline k

0 5000 10000 15000

k [m 2/s2]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(f) k profiles

200 300 400 500 600 700

T [K]

0

0.5

1

1.5

2

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(g) T profiles

Figure 6.24: Comparisons between the 3D axisymmetric and the full 3D wall cases.
3D axisymmetric (Solid line -) full 3D (Dashed line - -)

Figure 6.13 shows the comparison of the results obtained with Mesh 1 (axisymmetric)
and Mesh 2°(full 3D) for the wall case. As for the no-wall case, the axisymmetric

84



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

model tends to predict a lower decay of the centerline velocity. This is due to an
higher prediction of the turbulent kinetic energy k of the 3D model with a consequent
increase of the turbulent viscosity νT . About the length of the potential core it is
the approximately the same in both cases (3.015 m for the axisymmetric case and
3.177 m for the full 3D case), while the potential core velocity is higher in the full 3D
case (umax 3D 535.8 m/s, umax axisymmetric 514.7 m/s). This contradicts again the
conclusion of [39]. Anyway, far from the nozzle exit, when the flow is fully developed
and becomes self-similar the results of the two models agree well one to each other.

6.4 DES simulations

The last step of this work is the use of the k−ω SST DES turbulence model to sim-
ulate the nozzle flow in both the no-wall and wall cases. Since for DES simulations
the grid refinement is very important, and as the mesh cells become smaller, more
turbulent eddies can be captured, it has been decided to perform the simulations
on the most refined grid of the two cases (Mesh 2° with 23,662,125 cells for the no
wall case and 20,130,070 for the wall case ). Due to the high computational cost of
the simulations, the steady state solutions obtained with the RANS approach have
been used as initial conditions for both the simulations. This is possible because the
structure of the equations to solve is exactly the same in both models (see Sections
2.2.2 and 2.2.4) and there is no need to make changes in the fields obtained using
the RANS approach. The only changes have been made in the turbulenceProperties
and in the fvSchemes files. For DES type simulations in the turbulenceProperties file
it has been changed the turbulence model from kOmegaSST to kOmegaSSTDES
and it has been defined the filter width as the maximum cell dimension according
to (2.66). In the fvSchemes to guarantee an higher order of accuracy, the time
scheme has been changed from Euler to Crank-Nicholson, while to have good re-
sults in the energy transferred from the sub-grid scales to the resolved scales the
divergence schemes of k and ω have been changed from a pure upwind scheme to
the LUST scheme [43]. Finally, because the high computational cost and the strong
dependency of the solution from the grid size, no grid convergence study has been
performed.

6.4.1 No wall case - DES approach

In the DES model the turbulent fluctuations are modeled, therefore it is not possible
to reach a time steady solution but a statistically steady solution, which means that
for a period time longer than the turbulent time scales, the average of the simulation
quantities does not change. To have an estimation of when the simulation reached
the statistically steady state a temperature probe has been inserted at a location
six meters over the nozzle exit. When the temperature measured by the probe has
started to measure a constant mean temperature, the statistics have been reset and
restarted. Considering the velocity field, the statistics are computed as:

〈ui〉 =
1

N

N∑
k=1

u
(k)
i (6.1)

85



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

〈
u′iu
′
j

〉
=

1

N

N∑
k=1

(
u

(k)
i − 〈ui〉

)(
u

(k)
j − 〈uj〉

)
(6.2)

Equation (6.1) allows the computation of the average filtered velocity while (6.2)
gives an estimation of the Reynolds stress tensor computed using the filtered quan-
tities. It must be noticed that the statistics computed using (6.1) and (6.2) are
different from the one used in the RANS formulation, indeed in the RANS approach
the velocity is decomposed using (2.7), where u′i is the velocity fluctuations from
the mean velocity 〈ui〉 and not from the filtered average velocity 〈ui〉. In the same
way the quantity u′i used in the LES velocity decomposition (2.44) is different from
the square root of the tensor’s diagonal given by (6.2), because in (2.44) u′i is the
velocity contribution of the sub-grid scales. Using the same relations the statistics
can be computed also for the pressure and the temperature.
For the no-wall case the simulation has been run for 1.2s starting from the RANS
steady state, corresponding to approximately 953 convective times (Tconv = Dj/Uj),
while the statistics have been recorded for 0.74s corresponding to 588 convective
times. To understand if the LES part of the model is used in the majority of the
domain, Figure(6.25) shows on a log-scale the ratio of the turbulent kinetic energy
of the RANS part of the model (it is equivalent to the sub-grid scales turbulent
kinetic energy) and the total turbulent kinetic energy, along the centerline and at
different locations over the nozzle exit. This last quantity is computed as the sum of
the RANS turbulent kinetic energy and the LES turbulent kinetic energy, which is
obtained multiplying by one-half the trace of the tensor given by (6.2). From Figure
(6.25) it is well evident how the simulation is well resolved and that the most criti-
cal zone is the nozzle lipline in the first 20 diameters over the nozzle exit, where at
x/Dj the sub-grid scales turbulent kinetic energy is approximately 30 % of the total.
The validity of the computed statistics is checked computing the Reynolds stresses
profiles and comparing them with the results of Hussein et al. available in [34] (see
Figure 6.26b). These results are for a jet into quiescent air but can be used for a
jet in coflow re-scaling < uiuj > by the centerline excess velocity ∆Ug = Ug − Ua
and using r12 as the location where U − Ua = ∆Ug

2
that for x/Dj = 30 is 0.368 m.

These results are valid in the jet’s self similar region and in this case are computed
at a location 30 Dj over the nozzle exit. For the same location Figure 6.26c shows
the contribution to the total turbulent kinetic energy of the RANS and LES model
parts.

0 10 20 30

x [m]

10 -4

10 -3

10 -2

10 -1

k
s
g

s
/k

to
t
 [
-]

(a) Sgs centerline k contribution

10 -2 10 0

k
sgs

/k
tot

 [-]

0

0.2

0.4

0.6

0.8

1

y
/D

j [
-]

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(b) Sgs profiles k contribution

Figure 6.25: Sgs contributions to k no-wall case

86



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

0 0.5 1 1.5

y/r
12

0

0.02

0.04

0.06

0.08

0.1

<
u

iu
j>

/
 U

g2

uu

vv

ww

uv

(a) Reynolds stresses (b) Hussein et al.results

0 200 400 600 800

k [m 2/s2]

0

0.2

0.4

0.6

0.8

1

y
/D

j

k LES

k SGS

k TOT

(c) Turbulent kinetic energy balance

Figure 6.26: Reynolds stresses comparisons no-wall case

The results between 6.26a and 6.26b are in very good agreement, with the sim-
ulation data that have lower values compared to experimental ones. This is totally
acceptable considering that the performed simulation uses a DES model and that
the experimental data are for a jet in quiescent air. Figure 6.27 shows the simula-
tion comparisons between the RANS and the average quantities of the DES model.
Globally, the jet modeled using the DES model shows a less diffusive behavior com-
pared to the RANS case. Both temperature and velocity scales slowly along the
jet centerline, even though in the far field both the quantities scales in the same
way, as it shown in Figure 6.28 where they are plotted on a log scale. The lower
velocity decay of the DES model can be explained considering the turbulent kinetic
energy profiles that especially few diameters over the nozzle exit have a lower peak
compared to the RANS case.

87



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

0 10 20 30

x [m]

250

300

350

400

450

500

U
x
 [

m
/s

]

RANS

DES

Analitical

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

T
 [

K
]

RANS

DES

(b) Centerline temperature

200 300 400 500

u [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

j

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(c) ux profiles

-0.5 0 0.5 1

v [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

je
t

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(d) uy profiles

0 10 20 30
0

500

1000

1500

RANS

DES

(e) Centerline k

0 500 1000 1500 2000

k [m 2/s2]

0

0.2

0.4

0.6

0.8

1

y
/D

j [
-]

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(f) k profiles

200 300 400 500 600

T [K]

0

0.2

0.4

0.6

0.8

1

y
/D

j

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 20

x/D
j
 = 30

x/D
j
 = 40

(g) T profiles

Figure 6.27: Comparisons between the DES and RANS model for the no-wall case
on Mesh 2° .Solid line (-) RANS, Dashed line (- -) DES

88



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.28 gives the decays of the ceterlines temperature and velocity on a
logarithmic scale along the whole length (Figures 6.28a - 6.28b ) and in the last 4 m
of the domain (Figures 6.28d -6.28). The logarithmic scale is used in order to better
compare the simulation results with the experimental data provided by [38] (Figure
6.29). Since at the end of the domain the flow is not completely in the strongly
advected region (x/l∗m ≥ 60), it has been tried to estimate a power law decay at
x = 30m similar to the ones provided by (5.9) and (5.10). Table 6.5 provide the
power laws for the velocity and temperature centerline spreading. In the power law
fitting l∗m has been evaluated as a mean of the three outlet velocities (Uo = 485.1
m/s) in order to have the same scaling quantity for all the three cases, while as for
the notation used in Section 5.2.4, Ta represents the coflow temperature and ∆Tg
the centerline temperature excess.

10 0 10 1

x/l
m
*  [-]

0.2

0.4

0.6

0.8

1

 U
g
/U

a
 [

-]

Analitical

3D RANS

3D DES

3D AXIS.RANS

(a) Centerline velocity

10 0 10 1

x/l
m
*  [-]

0.4

0.6

0.8

1

1.2

1.4

1.6

 T
g
/T

a
 [

-]

3D RANS

3D DES

3D AXIS. RANS

(b) Centerline temperature

36 38 40

x/l
m
*  [-]

0.15

0.16

0.17

0.18

0.19

0.2

0.21

 U
g
/U

a
 [

-]

Analitical

3D RANS

3D DES

3D AXIS.RANS

(c) Centerline velocity last 5m

36 38 40

x/l
m
*  [-]

0.38

0.4

0.42

0.44

0.46

0.48

 T
g
/T

a
 [

-]

3D RANS

3D DES

3D AXIS. RANS

(d) Centerline temperature last 5m

Figure 6.28: Centerline velocity and temperature decays for the no-wall case. Solid
line ( - ) Simulation, Dashed line (- -) Power law fitting

Centerline decays
Velocity Temperature

2D RANS ∆Ug
Ua

= 5.15
(
x
l∗m

)−0.90
∆Tg
Ta

= 16.03
(
x
l∗m

)−1.01

3D RANS ∆Ug
Ua

= 6.43
(
x
l∗m

)−1.01
∆Tg
Ta

= 23.55
(
x
l∗m

)−1.12

3D DES ∆Ug
Ua

= 4.69
(
x
l∗m

)−0.89
∆Tg
Ta

= 16.79
(
x
l∗m

)−0.99

Table 6.5: Centerline velocity and temperature decay for the no-wall case

Comparing the centerline velocity decay it is interesting to notice how both the

89



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

exponent of the power law and the constant that multiplies the adimensional axial
coordinate, have values between the ones given by (5.9) and (5.10). This again shows
how for x = 30m the jet is between the strongly advected and the weakly advected
region and how in the last meters of the domain the experimental data are satisfied
by the three simulations. However, the domain length between 15 < x/l∗m < 26, the
DES case is in poor agreement with experimental data. Here the the DES centerline
velocity decays too slow, suggesting a not optimal mesh refinement in this zone.

Figure 6.29: Experimental data

Since the main of the DES simulation is to identify vortex structures Figure
6.30 shows the isosurfaces of different Q criterion values colored with the velocity
magnitude. The Q-criterion defines a vortex as a "connected fluid region with a
positive second invariant of ∇u ".[44]. Considering the velocity gradient tensor
D = ∂ui

∂xi
, the second invariant is defined as:

Q =
1

2

(
tr(D)2 − tr(D2

)
)

=
1

2
||Ω2|| − ||S2|| (6.3)

Where Sij = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the well know rate of strain tensor, while Ωij =

1
2

(
∂ui
∂xj
− ∂uj

∂xi

)
is the vorticity tensor. Therefore considering the definition given by

(6.3), the Q criterion represents the local balance between shear strain rate and
vorticity magnitude, defining vortices as areas where the vorticity magnitude is
greater than the magnitude of rate-of-strain [45] .

As it is possible to see in Figure 6.30 the turbulent structures start to be well
formed over the jet potential core length. Inside the potential core region, the iso-
surfaces have an annular shape, meaning that inside this region the turbulence has
not started to arise and that the flow is still laminar. This explains why in the DES
case the turbulent kinetic energy is lower in this part of the domain and why the
potential core length is longer compared to the axisymmetric and 3D RANS cases,
without a well defined transition between its end and the start of the centerline
decay.
To check that the computed statistics have a physical meaning along all the do-
main, Figure 6.31 shows the instantaneous profiles of the centerline temperature

90



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

(a) Q = 5 · 105 s−2 (b) Q = 5 · 104 s−2

(c) Q = 5 · 103 s−2 (d) Q = 5 · 102 s−2

Figure 6.30: Q criterion isosurfaces u ∈ [250, 420] m/s

and velocity and at a location twenty diameters over the nozzle exit (this location
is chosen for the no-wall case because at this point the flow is well out of the poten-
tial core region and the centerline turbulent kinetic energy is near its peak). They
are plotted together with the mean profiles and the the mean profiles with added
and subtracted the turbulent fluctuations. In this way it can be shown that the
instantaneous profiles fall between the two limits given by the mean profiles ± the
turbulent fluctuations, showing the validity of the simulation fluctuations.

0 10 20 30

x [m]

250

300

350

400

450

500

550

V
e

lo
c
it
y
 [

m
/s

]

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

650

T
e

m
p

e
ra

tu
re

 [
K

]

(b) Centerline temperature

200 300 400 500

U [m/s]

0

0.2

0.4

0.6

0.8

1

y
/D

j [
m

]

(c) ux x/D = 20

200 300 400 500 600

Temperature [K]

0

0.2

0.4

0.6

0.8

1

y
/D

j

(d) T x/D = 20

Figure 6.31: Profiles with turbulent fluctuations no-wall case

Finally, Figures 6.32-6.33 show the instantaneous and average contour plots of

91



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

temperature and velocity computed for the last time step of the simulation. The
stochastic nature of turbulent solutions to the full Navier-Stokes is well evident in
the DES model, where the instantaneous snapshots provide a real time-dependent
view of the resolved scales, especially at the end of the domain where the jet starts to
separate. To better show the different scales in the instant snapshot of the velocity
magnitude, Figure 6.32 has been re-scaled to the the values in the interval [250 500]
m/s. Looking at the average contour plot of the DES model velocity (Figure 6.33)
and at the one of the RANS case (Figure 6.6), it is well evident how the potential
core predicted by the DES case is longer compared to the one of the RANS case,
as well as the jet width, this again confirms the lower turbulent kinetic energy and
mixing predicted by DES model.

Figure 6.32: Istantaneous U snapshot no-wall case

Figure 6.33: U mean snapshot no-wall case

Figure 6.34: Istantaneous T snapshot no-wall case

Figure 6.35: T mean snapshot no-wall case

92



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

6.4.2 Wall case - DES approach

Here are reported the results for wall case following the same order of the no-wall
case. In this last case, the simulation has been run for 1.15s (913 convective times)
and the statistics have been recorded for 0.6s (477 convective times).
To decide the time at which starting to record the statistics, it has been used the
same approach of the no-wall case, with the only difference that the probe has been
posed at a location 3 m over the nozzle exit, due to the shorter jet potential core
length of this case. In the wall case even if the mesh is less refined, looking at Figure
6.36 it is possible to notice how the contribution of the SGS to the total turbulent
kinetic energy is lower compared to the no-wall case. This can be explained taking
in consideration the recirculation zone above the nozzle exit. In this region the flow
detaches from the wall and has a lower velocity compared to the coflow and the flow
exiting from the nozzle. Remembering that the turbulent scales are proportional to
Re

9/4
L , the slower is the flow and less refined the mesh has to be in order to guarantee

a good LES simulation. Another effect of the recirculation zone is that in this case
the contribution to the turbulent kinetic energy of the SGS is mainly in the first
five diameters over the nozzle exit. It is along this zone that the recirculation zone
develops, increasing turbulence and mixing that kill the jet exiting from the nozzle.
This explain why in this zone the LES part of the model can not resolve all the
turbulent scales and need the help of the RANS part.

0 10 20 30

x [m]

10 -3

10 -2

k
s
g

s
/k

to
t
 [
-]

(a) Sgs centerline k contribution

10 -2

k
sgs

/k
tot

 [-]

0

0.5

1

1.5

2

y
/D

 [
-]

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(b) Sgs profiles k contribution

Figure 6.36: Sgs contributions to k wall case

Figure 6.37 shows the velocity streamlines around the recirculation zone com-
puted at the last timestep using the DES model. It is well evident how the symmetry
shown in the RANS model (see Figure 6.14 ) completely disappears and the stream-
lines have a chaotic behavior that changes every time step underlining the stochastic
behavior of the Navier-Stokes equations.

93



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.37: 3D streamlines wall case - DES approach

Figure 6.38 shows the comparisons between the RANS and the DES models in
the wall case. As for the no-wall case, in the DES model the centerline temperature
and the centerline velocity have a lower decay compared to the RANS case, this
can be again explained looking at the turbulent kinetic energy that is lower in the
DES case especially in the first diameters over the nozzle exit. However, it can be
noticed that at the end of the domain in the DES case, the centerline velocity con-
tinues to decay, while in the RANS it starts to slowly increase. Figure 6.39 shows
the average centerline Mach number and the average lipline pressure and velocity,
for the three wall cases analyzed since now. The DES case is the one that predicts
the highest velocity peaks and the longest estimated recirculation zone, while the
shortest recirculation zone is predicted by the axisymmetric case. This can be ex-
plained considering that in the axisymmetric approximation, it is not considered the
turbulence around the angular direction and this tends to underestimate the recir-
culation phenomena. The higher velocity and the lower pressure above the nozzle
lipline have their effect on the predicted potential core length of the DES case that
has a shorter length but an higher Mach compared to the axisymmetric and 3D
RANS cases, indeed the lower pressure promotes the increase of the velocity out of
the nozzle exit, but at the same time it calls back fluid from the nozzle flow reducing
the potential core length. The underestimation of the of the recirculation of the two
RANS cases compared to the DES case, can be attributed to the well-known defi-
ciency of two-equation models regarding the over-prediction of the turbulent kinetic
energy in regions with large normal strain (flow region with strong acceleration or
deceleration) as well as the poor prediction of three-dimensional effects in flows with
strong separation as in this case.

94



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

0 10 20 30

x [m]

200

250

300

350

400

450

500

550

U
x
 [

m
/s

]

RANS

DES

(a) Centerline velocity

0 10 20 30

x [m]

250

300

350

400

450

500

550

600

650

T
 [

K
]

RANS

DES

(b) Centerline temperature

-200 0 200 400 600

Ux [m/s]

0

0.5

1

1.5

2

y
/D

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(c) ux profiles

-60 -40 -20 0 20 40

Uy [m/s]

0

0.5

1

1.5

2

y
/D

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(d) uy profiles

0 10 20 30
0

1000

2000

3000

4000

5000

6000

RANS

DES

(e) Centerline k

0 5000 10000 15000
0

0.5

1

1.5

2

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(f) k profiles

200 300 400 500 600 700

T [k]

0

0.5

1

1.5

2

y
/D

x/D
j
 = 2

x/D
j
 = 5

x/D
j
 = 10

x/D
j
 = 15

x/D
j
 = 20

(g) T profiles

Figure 6.38: Comparisons between the DES and RANS model for the wall case on
Mesh 2° Solid line (-) RANS, Dashed line (- -) DES

95



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

0 2 4 6 8 10

x [m]

150

200

250

300

350

400

U
 [

m
/s

]

RANS 3D AXIS.

RANS 3D

DES

(a) Lipline velocity

0 2 4 6 8 10

x [m]

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

P
 [

P
a

]

10 4

RANS 3D AXIS.

RANS 3D

DES

(b) Lipline pressure

0 2 4 6 8 10

x [m]

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
M

a
 [

-]

RANS 3D AXIS.

RANS 3D

DES

(c) Centerline Mach

Figure 6.39: Mach number and lipline velocity and pressure for the three wall cases

This is due to the Boussinesq approximation that assumes alignment of the
Reynolds stress anisotropy and the strain, that leads to a systematic overestimation
of the turbulent kinetic energy production when turbulence an strain rate are not
aligned. This leads to high values of the eddy viscosity that may result in a damping
of the flow oscillations inside the recirculation zone [46]. However, it must be said
that the k−ω SST part of the DES model is used in the wall region of the nozzle duct,
therefore even the DES can not be considered free of the turbulent kinetic energy
overestimation. Table 6.6 summarize the estimated length for the recirculation zone
in the three simulated cases.

Estimated recirculation zone length
AXIS. RANS 1.73 m
3D RANS 2.10 m

DES 3.25 m

Table 6.6: Estimated recirculation zone length for the three wall cases

As for the no wall case, it has been tried to estimate a scaling law for the
centerline temperature and velocity at the end of the domain. However, because the
analytical model of the coflow jet is not valid anymore, the power law fitting has been
computed as Ug

Ua
= A

(
x
lm∗

)n
for the velocity and Tg

Ta
= A

(
x
l∗m

)n
for the temperature.

Figure 6.40 provides on a logaritmic scale the centerline velocity and temperature
decay along the whole length (Figures 6.40a and 6.40b) and in the last 5 m of the
domain (Figures 6.40c and 6.40d, while Table 6.7 gives the power law fitting for
each of the analyzed cases. The temperature scaling is very similar in all the three

96



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

simulation, while for the velocity scaling,the RANS cases show a positive trend and
the DES case a negative trend with the centerline velocity that continues to reduce.
Figure 6.41 shows the Q criterion for the same values of the no-wall case. What is s
immediately evident, is that for the wall cases with the same value of Q criterion it
is possible to identify an higher number of vortex structures. These structures are
mainly due to the recirculation zone over the nozzle exit and are characterized by a
velocity magnitude of the same order of the coflow value. However, approaching the
end of the domain especially for low values of the Q-criterion, they have a strange
elongated shape showing that here the model is inside the grey zone, where the
length scale of the RANS model is comparable to the length scale of the LES model
(See Section 2.2.4).

10 0 10 1

x/l
m
*  [-]

1

1.2

1.4

1.6

1.8

2

U
g
/U

a
 [

-]

3D RANS

3D DES

3D RANS AXIS.

(a) Centerline velocities

10 0 10 1

x/l
m
*  [-]

1.5

2

2.5

T
g
/T

a
 [

-]

3D RANS

3D DES

3D RANS AXIS.

(b) Centerline temperatures

36 38 40

x/l
m
*  [-]

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0.92

U
g
/U

a
 [

-]

3D RANS

3D DES

3D RANS AXIS.

(c) Centerline velocities last 5m

36 38 40

x/l
m
*  [-]

1.16

1.17

1.18

1.19

1.2

T
g
/T

a
 [

-]

3D RANS

3D DES

3D RANS AXIS.

(d) Centerline temperatures last 5m

Figure 6.40: Centerline velocity and tempeature decays for the wall case at the end
of the domain. Solid line ( - ) Simulation, Dashed line (- -) Power law fitting

Centerline decays
Velocity Temperature

2D RANS Ug
Ua

= 0.72
(
x
l∗m

)0.04
Tg
Ta

= 1.87
(
x
l∗m

)−0.12

3D RANS Ug
Ua

= 0.71
(
x
l∗m

)0.05
Tg
Ta

= 1.77
(
x
l∗m

)−0.12

3D DES Ug
Ua

= 1.11
(
x
l∗m

)−0.05
Tg
Ta

= 1.79
(
x
l∗m

)−0.12

Table 6.7: Centerline velocity and temperature decay for the no-wall case

This suggest that it is necessary a mesh refinement in this zone to obtain a more
accurate results and this could be an explanation of why the centerline velocity in the

97



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

DES case decays slower compared to the RANS case. To identify vortex structures
near the nozzle exit it is necessary increase the Q-criterion reaching a value of 6 ·106

s−2. For this value the turbulent structures have no annular shape as in the no
wall case, showing how the recirculation effect created by the nozzle duct strongly
increases the arise of turbulence and flow instability. This also explains why for the
wall case, the turbulent kinetic energy is more than five times higher compared to
the no-wall case. Figures 6.42-6.45 show the instantaneous and the mean contour
plots for the velocity and temperature, in the instantaneous snapshots, to better
show the turbulent structures at the end of the domain, the velocity magnitude has
been rescaled to u ∈ [0, 300] m/s and the temperature to the interval T ∈ [210, 400]
K. Finally, as for the no wall case, to check the physical meaning of the computed
statistics, Figure 6.46 shows the instantaneous profiles and the mean profiles ±
the turbulent fluctuations, for the centerline and lipline temperature and velocity,
together with the radial profiles at a location 5 diameters downstream of the nozzle
exit. This location correspond approximately to the end of the potential where the
centerline turbulent kinetic energy starts rapidly to increase.

(a) Q = 5 · 105 s−2 (b) Q = 5 · 104 s−2

(c) Q = 5 · 103 s−2 (d) Q = 5 · 102 s−2

(e) Q = 6 · 106 s−2

Figure 6.41: Q criterion isosurfaces u ∈ [250, 420] m/s for Q ∈ [5 · 102, 5 · 105] s−2

and u ∈ [0, 500] m/s for Q = 6 · 106 s−2

98



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

Figure 6.42: Istantaneous U snapshot wall case

Figure 6.43: U mean snapshot wall case

Figure 6.44: Istantaneous T snapshot wall case

Figure 6.45: T mean snapshot wall case

99



CHAPTER 6. FULL 3D SIMULATIONS IN FLIGHT CONDITIONS

0 10 20 30

x [m]

200

300

400

500

600

V
e

lo
c
it
y
 [

m
/s

]

(a) Centerline velocity

0 10 20 30

x [m]

200

300

400

500

600

700

T
e

m
p

e
ra

tu
re

 [
K

]

(b) Centerline temperature

0 10 20 30

x [m]

50

100

150

200

250

300

350

400

450

V
e

lo
c
it
y
 [

m
/s

]

(c) Lipline velocity

0 10 20 30

x [m]

200

250

300

350

400

450

500

550

600

T
e

m
p

e
ra

tu
re

 [
K

]

(d) Lipline temperature

0 200 400 600

Velocity [m/s]

0

0.5

1

1.5

2

y
/D

(e) Ux x/D = 5

200 300 400 500 600 700

Temperatue [K]

0

0.5

1

1.5

2

y
/D

(f) T x/D = 5

Figure 6.46: Profiles with turbulent fluctuations wall case

100



Chapter 7

Conclusions and further work

The main aim of this thesis work is the simulation of the Jet Regime in the contrail
formation. As a preliminary study in the UIC project "High-performance comput-
ing and data-driven modeling of aircraft contrails", the exhaust flow exiting from
a CFM-56 engine is simulated without considering soot particles that can act as
nucleation points for the sublimation of the atmospheric water vapour. The ge-
ometry used for the drain nozzle of the CFM-56 engine is the one of the NASA
ARN-2 nozzle, which has been rescaled to take in to account the exit diameter of
0.610 m of the CFM-56 engine. The simulations are performed with OpenFOAM
and the set-up of the simulation parameters using the k − ω SST turbulence model
has been carried on the NASA near sonic jet validation case [1]. The simulations
are performed considering two type of geometries, an axisymmetric geometry and a
full 3D geometry, both considering and not considering the wall effect of the duct
surrounding the nozzle exit. As a final step in the work to show the turbulent struc-
tures and the vortex formation in the 3D case, the hybrid model k− ω DES is used
and the obtained results are compared with the previous simulations. For the no-
wall cases the results are compared with the analytical model and the experimental
results for the centerline velocity spreading available in [38]. All the results are in
well agreement with the analytical and experimental data , especially at the end
of the domain where the jet flow is completely separated. In this region the jet is
between the strongly advected and the weakly advected region and it scales in a
way that is between the asymptotic relations given by (5.9) and (5.10). However,
the DES model predicts a slower centerline decay between 10 and 20 m over the
nozzle exit, this can be caused by a not sufficient grid refinement in this zone. The
DES model allows also to show that without adding turbulence enhancing, the jet’s
turbulence structures begin to form after 15 m from the nozzle exit, explaining why
the DES case predict a lower centerline velocity decay. The lower centerline decay
it is also evident for the temperature, even if for this quantity there is a lower gap
between the three cases. The physics of the problem completely change taking in
consideration the wall effect of the duct over the nozzle that creates a recirculation
zone for the coflow in this region of the domain. The lower pressure of the recircula-
tion zone calls back fluid from the nozzle exit reducing the potential core length and
enhancing the scaling of the centerline velocity and temperature. The length of the
recirculation zone is estimated considering the lipline velocity profile of the nozzle,
where the upper and lower peaks denote respectively the pressure drop due to the
detachment of the coflow and the pressure peak due to the coflow reattachment.

101



CHAPTER 7. CONCLUSIONS AND FURTHER WORK

The lower length of the recirculation zone is predicted by the 3D-axisymmetric case,
this can be explained because in this case it is not considered the angular velocity
of the flow due to the axisymmetric conditions and this may reduce the mixing be-
tween the detached coflow and the main flow exiting from the nozzle. The longer
recirculation zone is instead predicted by the DES model, that consequently predicts
a shorter potential core length. The underestimation of the recirculation zone by
the axisymmetric and 3D RANS cases can be explained considering the Boussineq
approximation that assumes alignment of the Reynolds stress anisotropy and the
strain, that leads to a systematic overestimation of the turbulent kinetic energy pro-
duction when turbulence and strain rate are not aligned. This leads to high values
of the eddy viscosity that may result in a damping of the flow oscillations inside the
recirculation zone. The effect of the recirculation zone strongly increases the arise
of the turbulence compared to the no-wall case, indeed for the same Q-criterion the
wall case shows a lot more turbulent structures that start from the inclined part of
the nozzle duct. Morover, to identify the turbulent structures directly related to the
flow exiting from the nozzle it is necessary to consider a value of the Q-criterion at
least one order of magnitude grater of the no-wall case. Globally, the DES model
predicts a lower turbulent kinetic energy, this explains why for this case the veloc-
ity and the temperature scale slowly compared to the axisymmetric and 3D RANS
cases. The lower turbulent kinetic energy compared to results of the k − ω SST
model, can be also seen in the experimental results of [31] and [32] for the NASA
near sonic validation case, this confirms that the k − ω SST model tends to over
predict this quantity giving the flow a more diffusive character. However, it must
be remembered that in the k−ω SST DES turbulence model the turbulent kinetic-
energy of the sub grid scales is computed using the RANS approach of the k−ω SST,
therefore neither this hybrid model can be considered free of the turbulent kinetic
energy overestimation. Finally, it must be said that these are numerical simulation
and they always need an experiment to be correctly validated, this is particularly
true for the wall case simulations where there are no available analytical models
and experimental results, which are very difficult to obtain considering the high
velocities involved in the flow. As stated an the beginning of this section, this is
a preliminary work to model the Jet phase in the contrail formation, therefore the
future development for this work will be the insertion of soot particles, that will be
tracked in the flow using a Lagrangian approach and the implementation of a suit-
able thermophysical model to take into account the sublimation of the atmospheric
water vapor on them. Moreover, if it will be possible a further mesh improving
without increasing the computational cost,using for example a commercial software,
it will be able to set-up a pure LES model in order to have a more realistic and
reliable simulation.

102



Appendix A

Compressible LES equations

As for the averaging operation, for the derivation of the compressible LES equations
it is useful to introduce the Favre trasformation:

φ̃ =
ρφ

ρ
(A.1)

Applying (A.1) to (2.1), (2.2), (2.3) and (2.4) leads to:

∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (A.2)

(ρũi)

∂t
+

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+
∂σij
∂xj

+ ρf̃i (A.3)

∂
(
ρẼ
)

∂t
+
∂ (ρujE)

∂xj
= −∂puj

∂xj
+
∂ (uiσij)

∂xj
− ∂qj
∂xj

+ SE (A.4)

p = ρRT̃and ĩ = cvT̃ (A.5)

Making the assumption that the spatial filter commutes with the derivatives oper-
ators the equations then becomes:

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0 (A.6)

∂ (ρũi)

∂t
+

∂

∂xj
(ρũiuj) = − ∂p

∂xi
+
∂σij
∂xj

+ ρf̃i (A.7)

∂
(
ρẼ
)

∂t
+

∂

∂xj

(
ρũjE

)
= − ∂

∂xj
(puj) +

∂ (uiσij)

∂xj
− ∂qj
∂xj

+ SE (A.8)

As for the incompressible case to have equations in terms of the only filtered quantity
it is necessary to apply the variable decompostion expressed by (2.44) and then apply
again the Favre’s trasformation:

∂ρ

∂t
+

∂

∂xj
(ρũj) = 0 (A.9)

i



∂ (ρũi)

∂t
+

∂

∂xj
(ρũiũj) = − ∂p

∂xi
+
∂σ̃ij
∂xj

+ ρf̃i +
∂

∂xj
(σij − σ̃ij)︸ ︷︷ ︸

I

+
∂

∂xj
(ρũiũj − ρũiuj)︸ ︷︷ ︸

II
(A.10)

∂
(
ρẼ
)

∂t
+

∂

∂xj

(
ρũjẼ

)
= − ∂

∂xj
(pũj)+

∂ (ũiσ̃ij)

∂xj
− ∂q̃j
∂xj

+SE+
∂

∂xj

(
ρũjẼ − ρũjE

)
︸ ︷︷ ︸

III

+....

....+
∂

∂xj
(pũj − puj)︸ ︷︷ ︸
IV

+
∂

∂xj
(uiσij − ũiσ̃ij)︸ ︷︷ ︸

V

+
∂

∂xj
(q̃j − qj)︸ ︷︷ ︸
VI

(A.11)

Finally considering that Ẽ is defined as:

Ẽ = cvT̃ +
1

2
ρũkũk +

1

2
ρ
(
ũkuk − ũkũk

)︸ ︷︷ ︸
VII

(A.12)

The terms from I to VII needs to be modeled as the residuals stress tensor in the
incompressible case to close the system of equations. This shows how the LES
models become more complicated removing the incompressibility hypothesis.

ii



Appendix B

OpenFOAM’s near sonic case:
blockMesh file, boundary and initial
conditions

BlockMesh file

1 convertToMeters 0.0254;
2

3 vertices
4 (
5 // block1 (nozzle)
6 (0 0 0) //0
7 (7.74 0 0)//1
8 (7.74 0.99996192306417100000 -0.00872653549837390000) //2
9 (0 2.99988576919251000000 -0.02617960649512170000) //3

10 (7.74 0.99996192306417100000 0.00872653549837390000) //4
11 (0 2.99988576919251000000 0.02617960649512170000) //5
12

13 // block2 (upper left)
14 (-4.36 4.49982865378877000000 -0.03926940974268250000) //6
15 (1.42 4.49982865378877000000 -0.03926940974268250000) //7
16 (1.42 50.96805921858080000000 -0.44479151435211700000) //8
17 (-4.36 50.19808853782140000000 -0.43807208201837000000) //9
18 (-4.36 4.49982865378877000000 0.03926940974268250000) //10
19 (1.42 4.49982865378877000000 0.03926940974268250000) //11
20 (1.42 50.96805921858080000000 0.44479151435211700000) //12
21 (-4.36 50.19808853782140000000 0.43807208201837000000) //13
22

23 // block3 (upper middle left)
24 (2.05 4.39983246148235000000 -0.03839675619284510000) //14
25 (2.05 51.01805731473400000000 -0.44522784112703600000) //15
26 (2.05 4.39983246148235000000 0.03839675619284510000) //16
27 (2.05 51.01805731473400000000 0.44522784112703600000) //17
28

29 // block4 (upper nozzle)
30 (7.74 51.73802989934020000000 -0.45151094668586500000) //18
31 (7.74 51.73802989934020000000 0.45151094668586500000) //19
32

iii



33 // block5 (end up)
34 (80 0.99996192306417100000 -0.00872653549837390000) //20
35 (80 62.09763542228500000000 -0.54191785444901900000) //21
36 (80 0.99996192306417100000 0.00872653549837390000) //22
37 (80 62.09763542228500000000 0.54191785444901900000) //23
38

39 // block6 (end lower)
40 (80 0 0) //24
41

42

43 );
44

45 blocks
46 (
47 hex (0 1 2 3 0 1 4 5)
48 (97 97 1) simpleGrading (1 1 1) // block1
49 hex (6 7 8 9 10 11 12 13)
50 (11 168 1) simpleGrading (0.5 150 1) // block2
51 hex (7 14 15 8 11 16 17 12)
52 (3 168 1) simpleGrading (0.5 150 1) // block3
53 hex (14 2 18 15 16 4 19 17)
54 (46 168 1) simpleGrading (0.435 150 1) // block4
55 hex (2 20 21 18 4 22 23 19)
56 (257 168 1) simpleGrading (8.6 150 1) // block5
57 hex (1 24 20 2 1 24 22 4)
58 (257 97 1) simpleGrading (8.6 1 1) // block6
59 );
60

61 edges
62 (
63 polyLine 5 4
64 ((0.83 2.98988614996187000000 0.02609234114013800000)
65 (1.9 2.79989338457968000000 0.02443429939544690000)
66 (4.22 1.90992727305257000000 0.01666768280189410000)
67 (6.07 1.21995354613829000000 0.01064637330801620000))
68 polyLine 3 2
69 ((0.83 2.98988614996187000000 -0.02609234114013800000)
70 (1.9 2.79989338457968000000 -0.02443429939544690000)
71 (4.22 1.90992727305257000000 -0.01666768280189410000)
72 (6.07 1.21995354613829000000 -0.01064637330801620000))
73 );
74

75

76 boundary
77 (
78 inlet
79 {
80 type patch;
81 faces
82 (
83 (0 3 5 0)

iv



84 );
85 }
86 outlets
87 {
88 type patch;
89 inGroups (freestream );
90 faces
91 (
92 //block 2
93 (10 6 9 13)
94 (13 12 8 9)
95 //block 3
96 (12 17 15 8)
97 //block 4
98 (19 18 15 17)
99 //block 5

100 (19 23 21 18)
101 (22 20 21 23)
102 //block 6
103 (24 20 22 24)
104 );
105 }
106

107 outer_wall
108 {
109 type wall;
110 faces
111 (
112

113 (16 4 2 14)
114 (11 16 14 7)
115 (6 7 11 10)
116 );
117 }
118

119 nozzle_wall
120 {
121 type wall;
122 faces
123 (
124 (5 4 2 3)
125 );
126 }
127

128 wedgeFront
129 {
130 type wedge;
131 faces
132 (
133 //block 1
134 (0 1 4 5)

v



135 //block 2
136 (10 11 12 13)
137 //block 3
138 (11 16 17 12)
139 //block 4
140 (16 4 19 17)
141 //block 5
142 (4 22 23 19)
143 //block 6
144 (1 24 22 4)
145 );
146 }
147 wedgeBack
148 {
149 type wedge;
150 faces
151 (
152 // block1
153 (0 1 2 3)
154 // block2
155 (6 7 8 9)
156 // block3
157 (7 14 15 8)
158 // block4
159 (14 2 18 15)
160 // block5
161 (2 20 21 18)
162 // block6
163 (1 24 20 2)
164 );
165 }
166 symmetry_plane
167 {
168 type symmetryPlane;
169 faces
170 (
171 //block 1
172 (0 1 1 0)
173 //block 6
174 (1 24 24 1)
175 );
176 }
177

178

179 );
180

181 mergePatchPairs
182 (
183

184 );

U boundary and initial conditions

vi



1 Uexternal (3.54 0 0);
2

3 dimensions [0 1 -1 0 0 0 0];
4

5 internalField uniform $Uexternal;
6

7 boundaryField
8 {
9 inlet

10 {
11 type zeroGradient;
12 }
13

14 freestream
15 {
16 type waveTransmissive;
17 field U;
18 gamma 1.4;
19 fieldInf $Uexternal;
20 }
21

22 nozzle_wall
23 {
24 type noSlip;
25 }
26

27 outer_wall
28 {
29 type noSlip;
30 }
31

32 symmetry_plane
33 {
34 type symmetryPlane;
35 }
36

37 wedgeFront
38 {
39 type wedge;
40 }
41

42 wedgeBack
43 {
44 type wedge;
45 }
46 #includeEtc "caseDicts/setConstraintTypes"
47 }

p boundary and initial conditions
1 pOut 1e5;
2

3 dimensions [1 -1 -2 0 0 0 0];

vii



4

5 internalField uniform $pOut;
6

7 boundaryField
8 {
9 inlet

10 {
11 type totalPressure;
12 p0 uniform 1.861e5;
13 value uniform 1.861e5;
14 }
15

16 freestream
17 {
18 type waveTransmissive;
19 field p;
20 gamma 1.4;
21 fieldInf $pOut;
22 }
23

24 nozzle_wall
25 {
26 type zeroGradient;
27 }
28

29 outer_wall
30 {
31 type zeroGradient;
32 }
33

34

35 symmetry_plane
36 {
37 type symmetryPlane;
38 }
39

40 wedgeFront
41 {
42 type wedge;
43 }
44

45 wedgeBack
46 {
47 type wedge;
48 }
49 #includeEtc "caseDicts/setConstraintTypes"
50 }

T boundary and initial conditions
1 Texternal 294.4;
2

3 dimensions [0 0 0 1 0 0 0];

viii



4

5 internalField uniform $Texternal;
6

7 boundaryField
8 {
9 inlet

10 {
11 type totalTemperature;
12 gamma 1.4;
13 T0 uniform 294.4;
14 }
15

16 freestream
17 {
18 type inletOutlet;
19 inletValue uniform $Texternal;
20 value uniform $Texternal;
21 }
22

23 nozzle_wall
24 {
25 type zeroGradient;
26 }
27

28 outer_wall
29 {
30 type zeroGradient;
31 }
32

33 symmetry_plane
34 {
35 type symmetryPlane;
36 }
37

38 wedgeFront
39 {
40 type wedge;
41 }
42

43 wedgeBack
44 {
45 type wedge;
46 }
47

48 #includeEtc "caseDicts/setConstraintTypes"
49 }

ω boundary and initial condition
1 omegaInlet 61.48;
2

3 dimensions [0 0 -1 0 0 0 0];
4

ix



5 internalField uniform 61.48;
6

7 boundaryField
8 {
9 inlet

10 {
11 type inletOutlet;
12 inletValue uniform $omegaInlet;
13 value uniform $omegaInlet;
14 }
15

16 freestream
17 {
18 type inletOutlet;
19 inletValue uniform 61.48;
20 value uniform 61.48;
21 }
22

23 nozzle_wall
24 {
25 type fixedValue;
26 value uniform 1e-8;
27 }
28

29 outer_wall
30 {
31 type omegaWallFunction;
32 value uniform 61.48;
33 }
34

35 symmetry_plane
36 {
37 type symmetryPlane;
38 }
39

40

41 wedgeFront
42 {
43 type wedge;
44 }
45

46 wedgeBack
47 {
48 type wedge;
49 }
50

51 #includeEtc "caseDicts/setConstraintTypes"
52 }

νT boundary and initial condition
1 dimensions [0 2 -1 0 0 0 0];
2

x



3 internalField uniform 0.53;
4

5 boundaryField
6 {
7 inlet
8 {
9 type calculated;

10 value uniform 0.53;
11 }
12

13 freestream
14 {
15 type calculated;
16 value uniform 0.53;
17 }
18

19 nozzle_wall
20 {
21 type fixedValue;
22 value uniform 0;
23 }
24

25 outer_wall
26 {
27 type nutkWallFunction;
28 value uniform 0.53;
29 }
30

31 symmetry_plane
32 {
33 type symmetryPlane;
34 }
35

36 wedgeFront
37 {
38 type wedge;
39 }
40

41 wedgeBack
42 {
43 type wedge;
44 }
45

46 #includeEtc "caseDicts/setConstraintTypes"
47 }

k boundary and initial conditions
1 kInlet 361.32;
2

3 dimensions [0 2 -2 0 0 0 0];
4

5 internalField uniform 361.32;

xi



6

7 boundaryField
8 {
9 inlet

10 {
11 type inletOutlet;
12 inletValue uniform $kInlet;
13 value uniform $kInlet;
14 }
15

16 freestream
17 {
18 type inletOutlet;
19 inletValue uniform 361.32;
20 value uniform 361.32;
21 }
22

23 nozzle_wall
24 {
25 type fixedValue;
26 value uniform 1e-8;
27 }
28

29 outer_wall
30 {
31 type kqRWallFunction;
32 value uniform 361.32;
33 }
34

35 symmetry_plane
36 {
37 type symmetryPlane;
38 }
39

40 wedgeFront
41 {
42 type wedge;
43 }
44

45 wedgeBack
46 {
47 type wedge;
48

49 }
50 #includeEtc "caseDicts/setConstraintTypes"
51 }

αT boundary and initial conditions
1 dimensions [1 -1 -1 0 0 0 0];
2

3 internalField uniform 0.0;
4

xii



5 boundaryField
6 {
7 inlet
8 {
9 type calculated;

10 value uniform 0.0;
11 }
12

13 freestream
14 {
15 type calculated;
16 value uniform 0.0;
17 }
18

19 nozzle_wall
20 {
21 type fixedValue;
22 value uniform 0;
23 }
24

25 outer_wall
26 {
27 type compressible :: alphatWallFunction;
28 value uniform 0;
29 }
30

31 symmetry_plane
32 {
33 type symmetryPlane;
34 }
35

36 wedgeFront
37 {
38 type wedge;
39 }
40

41 wedgeBack
42 {
43 type wedge;
44

45 }
46

47 #includeEtc "caseDicts/setConstraintTypes"
48 }

xiii



Appendix C

Axisymmetric simulations:
blockMesh files, boundary and initial
conditions

C.1 Axisymmetric no-wall case
BlockMesh file

1 convertToMeters 1;
2

3 vertices
4 (
5 // block1 (nozzle)
6 (0 0 0) //0
7 (2.3607 0 0)//1
8 (2.3607 0.30498838653457200000 -0.00266159332700404000) //2
9 (0 0.91496515960371700000 -0.00798477998101212000) //3

10 (2.3607 0.30498838653457200000 0.00266159332700404000) //4
11 (0 0.91496515960371700000 0.00798477998101212000) //5
12

13 // block5 (end up)
14 (32.3607 0.30498838653457200000 -0.00266159332700404000 ) //6
15 (32.3607 13.89832887407200000000 -0.12128887859651200000) //7
16 (2.3607 9.99961923064171000000 -0.08726535498373900000) //8
17 (32.3607 0.30498838653457200000 0.00266159332700404000 ) //9
18 (32.3607 13.89832887407200000000 0.12128887859651200000) //10
19 (2.3607 9.99961923064171000000 0.08726535498373900000) //11
20

21 // block6 (end lower)
22 (32.3607 0 0) //12
23

24

25 );
26

27 blocks
28 (
29 hex (0 1 2 3 0 1 4 5) (150 120 1)
30 simpleGrading (1 1 1) // block1

xiv



31 hex (2 6 7 8 4 9 10 11) (619 178 1)
32 simpleGrading (5 100 1) // block2
33 hex (1 12 6 2 1 12 9 4) (619 120 1)
34 simpleGrading (5 1 1) // block3
35 );
36

37 edges
38 (
39 polyLine 5 4
40 ((0.25315 0.91091531381530700000 0.00794943751224370000)
41 (0.4575 0.84836769552764300000 0.00740359271682041000)
42 (0.712 0.75447127095191700000 0.00658417103352311000)
43 (1.2871 0.58352778020409700000 0.00509236979007609000)
44 (1.85135 0.37208583157217800000 0.00324714385894493000
45 ))
46

47 polyLine 3 2
48 ((0.25315 0.91091531381530700000 -0.00794943751224370000)
49 (0.4575 0.84836769552764300000 -0.00740359271682041000)
50 (0.712 0.75447127095191700000 -0.00658417103352311000)
51 (1.2871 0.58352778020409700000 -0.00509236979007609000)
52 (1.85135 0.37208583157217800000 -0.00324714385894493000
53 ))
54

55 );
56

57

58 boundary
59 (
60 nozzle_inlet
61 {
62 type patch;
63 faces
64 (
65 (0 3 5 0)
66 );
67 }
68

69

70 coflow_inlet
71 {
72 type patch;
73 faces
74 (
75 (2 8 11 4)
76 );
77 }
78

79 outlets
80 {
81 type patch;

xv



82 inGroups (freestream );
83 faces
84 (
85 (7 8 11 10) // block2 up
86 (6 7 10 9) // block3 end
87 (12 6 9 12) // block6
88 );
89 }
90

91 nozzle_wall
92 {
93 type wall;
94 faces
95 (
96

97 (2 3 5 4)
98

99 );
100 }
101

102

103 wedgeFront
104 {
105 type wedge;
106 faces
107 (
108 //block 1
109 (0 1 4 5)
110 //block 2
111 (4 9 10 11)
112 //block 3
113 (1 12 9 4)
114 );
115 }
116 wedgeBack
117 {
118 type wedge;
119 faces
120 (
121 // block1
122 (0 1 2 3)
123 // block2
124 (2 6 7 8)
125 //block 3
126 (1 12 6 2)
127 );
128 }
129 symmetry_plane
130 {
131 type symmetryPlane;
132 faces

xvi



133 (
134 //block 1
135 (0 1 1 0)
136 //block 6
137 (1 12 12 1)
138 );
139 }
140 );
141 mergePatchPairs
142 (
143

144 );

U boundary and initial conditions
1 Uexternal (252 0 0);
2

3 dimensions [0 1 -1 0 0 0 0];
4

5 internalField uniform $Uexternal;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type zeroGradient;
12 }
13

14 coflow_inlet
15 {
16 type fixedValue;
17 value uniform (252 0 0);
18 }
19

20 outlets
21 {
22 type waveTransmissive;
23 field U;
24 gamma 1.4;
25 fieldInf 252;
26 }
27

28 nozzle_wall
29 {
30 type noSlip;
31 }
32

33 symmetry_plane
34 {
35 type symmetryPlane;
36 }
37

38 wedgeFront

xvii



39 {
40 type wedge;
41 }
42

43 wedgeBack
44 {
45 type wedge;
46 }
47 #includeEtc "caseDicts/setConstraintTypes"
48 }

p boundary and initial condition
1 pOut 23800;
2

3 dimensions [1 -1 -2 0 0 0 0];
4

5 internalField uniform $pOut;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type totalPressure;
12 p0 uniform 45430.3;
13 value uniform 45430.3;
14 }
15

16

17 coflow_inlet
18 {
19 type zeroGradient;
20 }
21

22 outlets
23 {
24 type waveTransmissive;
25 field p;
26 gamma 1.4;
27 fieldInf $pOut;
28 }
29

30 nozzle_wall
31 {
32 type zeroGradient;
33 }
34

35

36 symmetry_plane
37 {
38 type symmetryPlane;
39 }
40

xviii



41 wedgeFront
42 {
43 type wedge;
44 }
45

46 wedgeBack
47 {
48 type wedge;
49 }
50 #includeEtc "caseDicts/setConstraintTypes"
51 }

T boundary and initial condition
1 Texternal 219;
2

3 dimensions [0 0 0 1 0 0 0];
4

5 internalField uniform $Texternal;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type totalTemperature;
12 gamma 1.4;
13 T0 uniform 696;
14 }
15

16 coflow_inlet
17 {
18 type inletOutlet;
19 inletValue uniform $Texternal;
20 value uniform $Texternal;
21 }
22

23

24 outlets
25 {
26 type inletOutlet;
27 inletValue uniform $Texternal;
28 value uniform $Texternal;
29 }
30

31 nozzle_wall
32 {
33 type zeroGradient;
34 }
35

36 symmetry_plane
37 {
38 type symmetryPlane;
39 }

xix



40

41 wedgeFront
42 {
43 type wedge;
44 }
45

46 wedgeBack
47 {
48 type wedge;
49 }
50

51 #includeEtc "caseDicts/setConstraintTypes"
52 }

ω boundary and initial condition
1 omegaInlet 7.92;
2

3 dimensions [0 0 -1 0 0 0 0];
4

5 internalField uniform ;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type inletOutlet;
12 inletValue uniform $omegaInlet;
13 value uniform $omegaInlet;
14 }
15

16

17 coflow_inlet
18 {
19 type inletOutlet;
20 inletValue uniform 4.16;
21 value uniform 4.16;
22 }
23

24 outlets
25 {
26 type inletOutlet;
27 inletValue uniform 4.16;
28 value uniform 4.16;
29 }
30

31 nozzle_wall
32 {
33 type omegaWallFunction;
34 value uniform 7.92;
35 }
36

37 symmetry_plane

xx



38 {
39 type symmetryPlane;
40 }
41

42

43 wedgeFront
44 {
45 type wedge;
46 }
47

48 wedgeBack
49 {
50 type wedge;
51 }
52

53 #includeEtc "caseDicts/setConstraintTypes"
54 }

νT boundary and initial conditions
1 dimensions [0 2 -1 0 0 0 0];
2

3 internalField uniform 5.15;
4

5 boundaryField
6 {
7 nozzle_inlet
8 {
9 type calculated;

10 value uniform 9.82;
11 }
12

13 coflow_inlet
14 {
15 type calculated;
16 value uniform 5.15;
17 }
18

19 outlets
20 {
21 type calculated;
22 value uniform 5.15;
23 }
24

25 nozzle_wall
26 {
27 type nutkWallFunction;
28 value uniform 9.82;
29 }
30

31 symmetry_plane
32 {
33 type symmetryPlane;

xxi



34 }
35

36 wedgeFront
37 {
38 type wedge;
39 }
40

41 wedgeBack
42 {
43 type wedge;
44 }
45

46 #includeEtc "caseDicts/setConstraintTypes"
47 }

xxii



k boundary and initial condition

1 kInlet 894;
2

3 dimensions [0 2 -2 0 0 0 0];
4

5 internalField uniform 238.14;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type inletOutlet;
12 inletValue uniform $kInlet;
13 value uniform $kInlet;
14 }
15

16

17 coflow_inlet
18 {
19 type inletOutlet;
20 inletValue uniform 238.14;
21 value uniform 238.14;
22 }
23

24 outlets
25 {
26 type inletOutlet;
27 inletValue uniform 238.14;
28 value uniform 238.14;
29 }
30

31 nozzle_wall
32 {
33 type kqRWallFunction;
34 value uniform 864;
35 }
36

37 symmetry_plane
38 {
39 type symmetryPlane;
40 }
41

42 wedgeFront
43 {
44 type wedge;
45 }
46

47 wedgeBack
48 {
49 type wedge;
50

xxiii



51 }
52 #includeEtc "caseDicts/setConstraintTypes"

αT boundary and initial condition
1 dimensions [1 -1 -1 0 0 0 0];
2

3 internalField uniform 0.0;
4

5 boundaryField
6 {
7 nozzle_inlet
8 {
9 type calculated;

10 value uniform 0.0;
11 }
12

13 coflow_inlet
14 {
15 type calculated;
16 value uniform 0.0;
17 }
18

19 outlets
20 {
21 type calculated;
22 value uniform 0.0;
23 }
24

25 nozzle_wall
26 {
27 type compressible :: alphatWallFunction;
28 value uniform 0;
29 }
30

31 symmetry_plane
32 {
33 type symmetryPlane;
34 }
35

36 wedgeFront
37 {
38 type wedge;
39 }
40

41 wedgeBack
42 {
43 type wedge;
44

45 }
46

47 #includeEtc "caseDicts/setConstraintTypes"
48 }

xxiv



C.2 Axisymmetric wall case

BlockMesh File

1 convertToMeters 1;
2

3 vertices
4 (
5 // block1 (nozzle)
6 (0 0 0) //0
7 (2.3607 0 0)//1
8 (2.3607 0.30498838653457200000 -0.00266159332700404000) //2
9 (0 0.91496515960371700000 -0.00798477998101212000) //3

10 (2.3607 0.30498838653457200000 0.00266159332700404000) //4
11 (0 0.91496515960371700000 0.00798477998101212000) //5
12

13 // block2 (upper left)
14 ( -1.3298 1.54085158685891000000 -0.01344680808369860000) //6
15 (0.4331 1.54085158685891000000 -0.01344680808369860000) //7
16 (0.4331 9.74911414035251000000 -0.08507923017987300000) //8
17 ( -1.3298 9.52001296600573000000 -0.08307989452064110000) //9
18 ( -1.3298 1.54085158685891000000 0.01344680808369860000) //10
19 (0.4331 1.54085158685891000000 0.01344680808369860000) //11
20 (0.4331 9.74911414035251000000 0.08507923017987300000) //12
21 ( -1.3298 9.52001296600573000000 0.08307989452064110000) //13
22

23 // block3 (upper middle left)
24 (0.62525 1.50655307289096000000 -0.01314748948688070000) //14
25 (0.62525 9.77408537561868000000 -0.08529715084861280000) //15
26 (0.62525 1.50655307289096000000 0.01314748948688070000) //14
27 (0.62525 9.77408537561868000000 0.08529715084861280000) //15
28

29 // block4 (upper nozzle)
30 (2.3607 9.99961923064171000000 -0.08726535498373900000) //18
31 (2.3607 9.99961923064171000000 0.08726535498373900000) //19
32

33 // block5 (end up)
34 (32.3607 0.30498838653457200000 -0.00266159332700404000 ) //20
35 (32.3607 13.89832887407200000000 -0.12128887859651200000) //21
36 (32.3607 0.30498838653457200000 0.00266159332700404000 ) //22
37 (32.3607 13.89832887407200000000 0.12128887859651200000) //23
38

39 // block6 (end lower)
40 (32.3607 0 0) //24
41

42

43 );
44

45 blocks
46 (
47 hex (0 1 2 3 0 1 4 5) (120 110 1)
48 simpleGrading (1 1 1) // block1

xxv



49 hex (6 7 8 9 10 11 12 13) (62 215 1)
50 simpleGrading (0.5 70 1) // block2
51 hex (7 14 15 8 11 16 17 12) (10 215 1)
52 simpleGrading (1 70 1) // block3
53 hex (14 2 18 15 16 4 19 17) (88 215 1)
54 simpleGrading (1 70 1) // block4
55 hex (2 20 21 18 4 22 23 19) (838 215 1)
56 simpleGrading (3 70 1) // block5
57 hex (1 24 20 2 1 24 22 4) (838 110 1)
58 simpleGrading (3 1 1) // block6
59 );
60

61 edges
62 (
63 polyLine 5 4
64 ((0.25315 0.91091531381530700000 0.00794943751224370000)
65 (0.4575 0.84836769552764300000 0.00740359271682041000)
66 (0.712 0.75447127095191700000 0.00658417103352311000)
67 (1.2871 0.58352778020409700000 0.00509236979007609000)
68 (1.85135 0.37208583157217800000 0.00324714385894493000
69 ))
70

71 polyLine 3 2
72 ((0.25315 0.91091531381530700000 -0.00794943751224370000)
73 (0.4575 0.84836769552764300000 -0.00740359271682041000)
74 (0.712 0.75447127095191700000 -0.00658417103352311000)
75 (1.2871 0.58352778020409700000 -0.00509236979007609000)
76 (1.85135 0.37208583157217800000 -0.00324714385894493000
77 ))
78

79 );
80

81

82 boundary
83 (
84 ingresso
85 {
86 type patch;
87 faces
88 (
89 (0 3 5 0)
90 );
91 }
92 uscita
93 {
94 type patch;
95 inGroups (freestream );
96 faces
97 (
98 //block 2
99 (13 12 8 9)

xxvi



100 (10 6 9 13)
101 //block 3
102 (12 17 15 8)
103 //block 4
104 (19 18 15 17)
105 //block 5
106 (19 23 21 18)
107 (22 20 21 23)
108 //block 6
109 (24 20 22 24)
110 );
111 }
112

113 muro_noslip
114 {
115 type wall;
116 faces
117 (
118

119 (16 4 2 14)
120 (11 16 14 7)
121 (6 7 11 10)
122 );
123 }
124

125 muro_slip
126 {
127 type wall;
128 faces
129 (
130 (5 4 2 3)
131 );
132 }
133

134 wedgeFront
135 {
136 type wedge;
137 faces
138 (
139 //block 1
140 (0 1 4 5)
141 //block 2
142 (10 11 12 13)
143 //block 3
144 (11 16 17 12)
145 //block 4
146 (16 4 19 17)
147 //block 5
148 (4 22 23 19)
149 //block 6
150 (1 24 22 4)

xxvii



151 );
152 }
153 wedgeBack
154 {
155 type wedge;
156 faces
157 (
158 // block1
159 (0 1 2 3)
160 // block2
161 (6 7 8 9)
162 // block3
163 (7 14 15 8)
164 // block4
165 (14 2 18 15)
166 // block5
167 (2 20 21 18)
168 // block6
169 (1 24 20 2)
170 );
171 }
172 symmetry_plane
173 {
174 type symmetryPlane;
175 faces
176 (
177 //block 1
178 (0 1 1 0)
179 //block 6
180 (1 24 24 1)
181 );
182 }
183 );
184

185 mergePatchPairs
186 (
187 );

U boundary and initial conditions
1 Uexternal (252 0 0);
2

3 dimensions [0 1 -1 0 0 0 0];
4

5 internalField uniform $Uexternal;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type zeroGradient;
12 }
13

xxviii



14 coflow_inlet
15 {
16 type fixedValue;
17 value uniform (252 0 0);
18 }
19

20 outlets
21 {
22 type waveTransmissive;
23 field U;
24 gamma 1.4;
25 fieldInf 252;
26 }
27

28 nozzle_wall
29 {
30 type noSlip;
31 }
32

33 duct_wall
34 {
35 type noSlip;
36 }
37

38 symmetry_plane
39 {
40 type symmetryPlane;
41 }
42

43 wedgeFront
44 {
45 type wedge;
46 }
47

48 wedgeBack
49 {
50 type wedge;
51 }
52 #includeEtc "caseDicts/setConstraintTypes"
53 }

p boundary and initial condition
1 pOut 23800;
2

3 dimensions [1 -1 -2 0 0 0 0];
4

5 internalField uniform $pOut;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {

xxix



11 type totalPressure;
12 p0 uniform 45430.3;
13 value uniform 45430.3;
14 }
15

16

17 coflow_inlet
18 {
19 type zeroGradient;
20 }
21

22 outlets
23 {
24 type waveTransmissive;
25 field p;
26 gamma 1.4;
27 fieldInf $pOut;
28 }
29

30 nozzle_wall
31 {
32 type zeroGradient;
33 }
34

35 duct_wall
36 {
37 type zeroGradient;
38 }
39

40

41 symmetry_plane
42 {
43 type symmetryPlane;
44 }
45

46 wedgeFront
47 {
48 type wedge;
49 }
50

51 wedgeBack
52 {
53 type wedge;
54 }
55 #includeEtc "caseDicts/setConstraintTypes"
56 }

T boundary and initial condition
1 Texternal 219;
2

3 dimensions [0 0 0 1 0 0 0];
4

xxx



5 internalField uniform $Texternal;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type totalTemperature;
12 gamma 1.4;
13 T0 uniform 696;
14 }
15

16 coflow_inlet
17 {
18 type inletOutlet;
19 inletValue uniform $Texternal;
20 value uniform $Texternal;
21 }
22

23

24 outlets
25 {
26 type inletOutlet;
27 inletValue uniform $Texternal;
28 value uniform $Texternal;
29 }
30

31 nozzle_wall
32 {
33 type zeroGradient;
34 }
35

36 duct_wall
37 {
38 type zeroGradient;
39 }
40

41 symmetry_plane
42 {
43 type symmetryPlane;
44 }
45

46 wedgeFront
47 {
48 type wedge;
49 }
50

51 wedgeBack
52 {
53 type wedge;
54 }
55

xxxi



56 #includeEtc "caseDicts/setConstraintTypes"
57 }

ω boundary and initial condition
1 omegaInlet 7.92;
2

3 dimensions [0 0 -1 0 0 0 0];
4

5 internalField uniform ;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type inletOutlet;
12 inletValue uniform $omegaInlet;
13 value uniform $omegaInlet;
14 }
15

16

17 coflow_inlet
18 {
19 type inletOutlet;
20 inletValue uniform 4.16;
21 value uniform 4.16;
22 }
23

24 outlets
25 {
26 type inletOutlet;
27 inletValue uniform 4.16;
28 value uniform 4.16;
29 }
30

31 nozzle_wall
32 {
33 type omegaWallFunction;
34 value uniform 7.92;
35 }
36

37 duct_wall
38 {
39 type omegaWallFunction;
40 value uniform 4.16;
41 }
42

43 symmetry_plane
44 {
45 type symmetryPlane;
46 }
47

48

xxxii



49 wedgeFront
50 {
51 type wedge;
52 }
53

54 wedgeBack
55 {
56 type wedge;
57 }
58

59 #includeEtc "caseDicts/setConstraintTypes"
60 }

νT boundary and initial conditions
1 dimensions [0 2 -1 0 0 0 0];
2

3 internalField uniform 5.15;
4

5 boundaryField
6 {
7 nozzle_inlet
8 {
9 type calculated;

10 value uniform 9.82;
11 }
12

13 coflow_inlet
14 {
15 type calculated;
16 value uniform 5.15;
17 }
18

19 outlets
20 {
21 type calculated;
22 value uniform 5.15;
23 }
24

25 nozzle_wall
26 {
27 type nutkWallFunction;
28 value uniform 9.82;
29 }
30

31 duct_wall
32 {
33 type nutkWallFunction;
34 value uniform 5.15;
35 }
36

37 symmetry_plane
38 {

xxxiii



39 type symmetryPlane;
40 }
41

42 wedgeFront
43 {
44 type wedge;
45 }
46

47 wedgeBack
48 {
49 type wedge;
50 }
51

52 #includeEtc "caseDicts/setConstraintTypes"
53 }

k boundary and initial condition
1 kInlet 894;
2

3 dimensions [0 2 -2 0 0 0 0];
4

5 internalField uniform 238.14;
6

7 boundaryField
8 {
9 nozzle_inlet

10 {
11 type inletOutlet;
12 inletValue uniform $kInlet;
13 value uniform $kInlet;
14 }
15

16

17 coflow_inlet
18 {
19 type inletOutlet;
20 inletValue uniform 238.14;
21 value uniform 238.14;
22 }
23

24 outlets
25 {
26 type inletOutlet;
27 inletValue uniform 238.14;
28 value uniform 238.14;
29 }
30

31 nozzle_wall
32 {
33 type kqRWallFunction;
34 value uniform 864;
35 }

xxxiv



36

37 duct_wall
38 {
39 type kqRWallFunction;
40 value uniform 238.14;
41 }
42

43 symmetry_plane
44 {
45 type symmetryPlane;
46 }
47

48 wedgeFront
49 {
50 type wedge;
51 }
52

53 wedgeBack
54 {
55 type wedge;
56

57 }
58 #includeEtc "caseDicts/setConstraintTypes"

αT boundary and initial condition
1 dimensions [1 -1 -1 0 0 0 0];
2

3 internalField uniform 0.0;
4

5 boundaryField
6 {
7 nozzle_inlet
8 {
9 type calculated;

10 value uniform 0.0;
11 }
12

13 coflow_inlet
14 {
15 type calculated;
16 value uniform 0.0;
17 }
18

19 outlets
20 {
21 type calculated;
22 value uniform 0.0;
23 }
24

25 nozzle_wall
26 {
27 type compressible :: alphatWallFunction;

xxxv



28 value uniform 0;
29 }
30

31 duct_wall
32 {
33 type compressible :: alphatWallFunction;
34 value uniform 0;
35 }
36

37 symmetry_plane
38 {
39 type symmetryPlane;
40 }
41

42 wedgeFront
43 {
44 type wedge;
45 }
46

47 wedgeBack
48 {
49 type wedge;
50

51 }
52

53 #includeEtc "caseDicts/setConstraintTypes"
54 }

xxxvi



Appendix D

Gmsh files for the 3D mesh
generation

D.1 No wall case .geo file

1 layer_rotation = 45;
2 //+
3 n_cell_nozzle_y = 100;
4 //+
5 n_cell_nozzle_x = 120;
6 //+
7 qy_nozzle = 1;
8 //+
9 qx_nozzle = 1;

10 //+
11 qx_12 = 1.0029;
12 //+
13 n_cell_two_x = 563;
14 //+
15 qy_3 = 1.0381;
16 //+
17 n_cell_three_y = 129;
18 //+
19 r_hole =0.138;
20 //+
21 n_cell_extruded_arc = 23;
22 //+
23 q_extruded_arc = 1;
24 //+
25 Point (1) = {0, r_hole , 0, 1.0};
26 //+
27 Point (2) = {2.3607 , r_hole , 0, 1.0};
28 //+
29 Point (3) = {32.3607 , r_hole , 0, 1.0};
30 //+
31 Point (4) = {2.3607 , 0.305, 0, 1.0};
32 //+
33 Point (5) = {32.3607 , 0.305, 0, 1.0};

xxxvii



34 //+
35 Point (6) = {32.3607 , 13.89885811 , 0, 1.0};
36 //+
37 Point (7) = {2.3607 , 10, 0, 1.0};
38 //+
39 Point (8) = {0, 0.915, 0, 1.0};
40 //+
41 Point (9) = {0.25315 , 0.89543 , 0, 1.0};
42 //+
43 Point (10) = {0.4575 , 0.8484 , 0, 1.0};
44 //+
45 Point (11) = {1.2871 , 0.58355 , 0, 1.0};
46 //+
47 Point (12) = {1.85135 , 0.3721 , 0, 1.0};
48 //+
49 Line (1) = {1, 2};
50 //+
51 Line (2) = {2, 3};
52 //+
53 Line (3) = {3, 5};
54 //+
55 Line (4) = {4, 5};
56 //+
57 Line (5) = {7, 6};
58 //+
59 Line (6) = {5, 6};
60 //+
61 Line (7) = {4, 7};
62 //+
63 Line (8) = {1, 8};
64 //+
65 Line (9) = {2, 4};
66 //+
67 Spline (10) = {8, 9, 10, 11, 12,4};
68 //+
69 Curve Loop (1) = {1, 9, -10, -8};
70 //+
71 Surface (1) = {1};
72 //+
73 Curve Loop (2) = {2, 3, -4, -9};
74 //+
75 Surface (2) = {2};
76 //+
77 Curve Loop (3) = {4, 6, -5, -7};
78 //+
79 Surface (3) = {3};
80 //+
81 Transfinite Curve {9, 8, 3} = n_cell_nozzle_y +1
82 Using Progression qy_nozzle;
83 // number of points in the nozzle y
84 //+

xxxviii



85 Transfinite Curve {1, 10} = n_cell_nozzle_x +1
86 Using Progression qx_nozzle;
87 // number of points in the nozzle x
88 //+//+
89 Transfinite Curve {2, 4, 5} = n_cell_two_x +1
90 Using Progression qx_12;
91 // number of points x direction block 2
92 //+
93 Transfinite Curve {7, 6} = n_cell_three_y +1
94 Using Progression qy_3;
95 // number of points y direction all domain
96 //+
97 Transfinite Surface {1};
98 //+
99 Transfinite Surface {2};

100 //+
101 Transfinite Surface {3};
102 //+
103 Recombine Surface {2, 1, 3};
104 //+
105 Extrude {{1, 0, 0}, {0, 0, 0}, Pi/2} {
106 Surface {1}; Surface {2}; Surface {3};
107 Layers{layer_rotation }; Recombine;
108 }
109 //+
110 Extrude {{1, 0, 0}, {0, 0, 0}, Pi/2} {
111 Surface {76}; Surface {32}; Surface {54};
112 Layers{layer_rotation }; Recombine;
113 }
114 //+
115 Extrude {{1, 0, 0}, {0, 0, 0}, Pi/2} {
116 Surface {120}; Surface {98}; Surface {142};
117 Layers{layer_rotation }; Recombine;
118 }
119 //+
120 Extrude {{1, 0, 0}, {0, 0, 0}, Pi/2} {
121 Surface {186}; Surface {164}; Surface {208};
122 Layers{layer_rotation }; Recombine;
123 }
124 //+
125 Point (236) = {0, r_hole/2, 0 , 1.0};
126 //+
127 Point (237) = {0, -r_hole/2, 0, 1.0};
128 //+
129 Point (238) = {0, 0, r_hole/2, 1.0};
130 //+
131 Point (239) = {0, 0, -r_hole/2, 1.0};
132 //+
133 Point (240) = {2.3607 , r_hole/2, 0 , 1.0};
134 //+
135 Point (241) = {2.3607 , -r_hole/2, 0, 1.0};

xxxix



136 //+
137 Point (242) = {2.3607 , 0, r_hole/2, 1.0};
138 //+
139 Point (243) = {2.3607 , 0, -r_hole/2, 1.0};
140 //+
141 Point (244) = {32.3607 , r_hole/2, 0 , 1.0};
142 //+
143 Point (245) = {32.3607 , -r_hole/2, 0, 1.0};
144 //+
145 Point (246) = {32.3607 , 0, r_hole/2, 1.0};
146 //+
147 Point (247) = {32.3607 , 0, -r_hole/2, 1.0};
148 //+
149 Line (259) = {236, 239};
150 //+
151 Line (260) = {237, 239};
152 //+
153 Line (261) = {238, 237};
154 //+
155 Line (262) = {236, 238};
156 //+
157 Line (263) = {236, 1};
158 //+
159 Line (264) = {238, 13};
160 //+
161 Line (265) = {101, 239};
162 //+
163 Line (266) = {237, 85};
164 //+
165 Line (267) = {243, 241};
166 //+
167 Line (268) = {242, 241};
168 //+
169 Line (269) = {240, 242};
170 //+
171 Line (270) = {243, 240};
172 //+
173 Line (271) = {240, 2};
174 //+
175 Line (272) = {243, 102};
176 //+
177 Line (273) = {241, 86};
178 //+
179 Line (274) = {242, 14};
180 //+
181 Line (275) = {247, 244};
182 //+
183 Line (276) = {246, 245};
184 //+
185 Line (277) = {247, 245};
186 //+

xl



187 Line (278) = {244, 246};
188 //+
189 Line (279) = {126, 247};
190 //+
191 Line (280) = {245, 100};
192 //+
193 Line (281) = {246, 42};
194 //+
195 Line (282) = {244, 3};
196 //+
197 Line (283) = {236, 240};
198 //+
199 Line (284) = {237, 241};
200 //+
201 Line (285) = {238, 242};
202 //+
203 Line (286) = {239, 243};
204 //+
205 Line (287) = {240, 244};
206 //+
207 Line (288) = {241, 245};
208 //+
209 Line (289) = {242, 246};
210 //+
211 Line (290) = {243, 247};
212 // Cerchio 1 (inizio)
213 //+
214 Curve Loop (4) = {262, 264, -17, -263};
215 //+
216 Plane Surface (264) = {4};
217 //+
218 Curve Loop (5) = {261, 266, -105, -264};
219 //+
220 Plane Surface (265) = {5};
221 //+
222 Curve Loop (6) = {260, -265, -149, -266};
223 //+
224 Plane Surface (266) = {6};
225 //+
226 Curve Loop (7) = {259, -265, 236, -263};
227 //+
228 Plane Surface (267) = {7};
229 //+
230 Curve Loop (8) = {259, -260, -261, -262};
231 //+
232 Plane Surface (268) = {8};
233 //+
234 // Cerchio 2 (mezzo)
235 //+
236 Curve Loop (9) = {267, 273, 150, -272};
237 //+

xli



238 Plane Surface (269) = {9};
239 //+
240 Curve Loop (10) = {268, 273, -106, -274};
241 //+
242 Plane Surface (270) = {10};
243 //+
244 Curve Loop (11) = {269, 274, -18, -271};
245 //+
246 Plane Surface (271) = {11};
247 //+
248 Curve Loop (12) = {237, -271, -270, 272};
249 //+
250 Plane Surface (272) = {12};
251 //+
252 Curve Loop (13) = {267, -268, -269, -270};
253 //+
254 Plane Surface (273) = {13};
255 //+
256 // Cerchio 3 (fine)
257 //+
258 Curve Loop (14) = {276, 280, -128, -281};
259 //+
260 Plane Surface (274) = {14};
261 //+
262 Curve Loop (15) = {194, 279, 277, 280};
263 //+
264 Plane Surface (275) = {15};
265 //+
266 Curve Loop (16) = {275, 282, -258, 279};
267 //+
268 Plane Surface (276) = {16};
269 //+
270 Curve Loop (17) = {282, 40, -281, -278};
271 //+
272 Plane Surface (277) = {17};
273 //+
274 Curve Loop (18) = {275, 278, 276, -277};
275 //+
276 Plane Surface (278) = {18};
277 //+
278 // quadrati_lunghi
279 //+
280 Curve Loop (19) = {289, -278, -287, 269};
281 //+
282 Plane Surface (279) = {19};
283 //+
284 Curve Loop (20) = {288, -276, -289, 268};
285 //+
286 Plane Surface (280) = {20};
287 //+
288 Curve Loop (21) = {277, -288, -267, 290};

xlii



289 //+
290 Plane Surface (281) = {21};
291 //+
292 Curve Loop (22) = {275, -287, -270, 290};
293 //+
294 Plane Surface (282) = {22};
295 //+
296 // quadrati_corti
297 //+
298 Curve Loop (23) = {261, 284, -268, -285};
299 //+
300 Plane Surface (283) = {23};
301 //+
302 Curve Loop (24) = {259, 286, 270, -283};
303 //+
304 Plane Surface (284) = {24};
305 //+
306 Curve Loop (25) = {262, 285, -269, -283};
307 //+
308 Plane Surface (285) = {25};
309 //+
310 Curve Loop (26) = {260, 286, 267, -284};
311 //+
312 Plane Surface (286) = {26};
313 //+
314 // ali_corte
315 //+
316 Curve Loop (27) = {12, -274, -285, 264};
317 //+
318 Plane Surface (287) = {27};
319 //+
320 Curve Loop (28) = {266, 100, -273, -284};
321 //+
322 Plane Surface (288) = {28};
323 //+
324 Curve Loop (29) = {265, 286, 272, -144};
325 //+
326 Plane Surface (289) = {29};
327 //+
328 Curve Loop (30) = {283, 271, -1, -263};
329 //+
330 Plane Surface (290) = {30};
331 //+
332 Curve Loop (31) = {272, 188, 279, -290};
333 //+
334 // ali_lunghe
335 //+
336 Plane Surface (291) = {31};
337 //+
338 Curve Loop (32) = {281, -34, -274, 289};
339 //+

xliii



340 Plane Surface (292) = {32};
341 //+
342 Curve Loop (33) = {271, 2, -282, -287};
343 //+
344 Plane Surface (293) = {33};
345 //+
346 Curve Loop (34) = {280, -122, -273, 288};
347 //+
348 Plane Surface (294) = {34};
349 //+
350 // parallelepipedo_corto
351 //+
352 Surface Loop (1) = {283, 284, 285, 286, 273, 268};
353 //+
354 Volume (13) = {1};
355 //+
356 // parallelepipedo_lungo
357 //+
358 Surface Loop (2) = {279, 280, 281, 282, 273, 278};
359 //+
360 Volume (14) = {2};
361 //+
362 // Volumi_ali_corte
363 //+
364 Surface Loop (3) = {264, 290, 287, 19, 285, 271};
365 //+
366 Volume (15) = {3};
367 //+
368 Surface Loop (4) = {283, 287, 288, 107, 265, 270};
369 //+
370 Volume (16) = {4};
371 //+
372 Surface Loop (5) = {266, 151, 289, 286, 288, 269};
373 //+
374 Volume (17) = {5};
375 //+
376 Surface Loop (6) = {267, 238, 290, 289, 284, 272};
377 //+
378 Volume (18) = {6};
379 //+
380 // Volume_ali_lunghe
381 //+
382 Surface Loop (7) = {270, 292, 294, 280, 129, 274};
383 //+
384 Volume (19) = {7};
385 //+
386 Surface Loop (8) = {275, 195, 294, 269, 281, 291};
387 //+
388 Volume (20) = {8};
389 //+
390 Surface Loop (9) = {271, 41, 292, 277, 293, 279};

xliv



391 //+
392 Volume (21) = {9};
393 //+
394 Surface Loop (10) = {291, 259, 293, 282, 272, 276};
395 //+
396 Volume (22) = {10};
397 //+
398 //
399 // Volume_13_tranfinite
400 //+
401 Transfinite Curve {283, 286, 284, 285} = n_cell_nozzle_x +1
402 Using Progression qx_nozzle;
403 //+
404 Transfinite Curve {270, 267, 268, 269, 261, 262, 259, 260}
405 = layer_rotation +1 Using Progression 1;
406 //+
407 // Volume_14_trasfinite
408 //+
409 Transfinite Curve {288, 289, 287, 290} = n_cell_two_x +1
410 Using Progression qx_12;
411 //+
412 Transfinite Curve {268, 269, 270, 267, 275, 276, 277, 278}
413 = layer_rotation +1 Using Progression 1;
414 //+
415 // Volume_15
416 //+
417 Transfinite Curve {12, 285, 283, 1} = n_cell_nozzle_x +1
418 Using Progression qx_nozzle;
419 //+
420 Transfinite Curve {262, 17, 269, 18} = layer_rotation +1
421 Using Progression 1;
422 //+
423 Transfinite Curve {271, 274, 264, 263} = n_cell_extruded_arc +1
424 Using Progression q_extruded_arc;
425 //+
426 // Volume_16
427 //+
428 Transfinite Curve {100, 284, 285, 12} = n_cell_nozzle_x +1
429 Using Progression qx_nozzle;
430 //+
431 Transfinite Curve {105, 261, 268, 106} = layer_rotation +1
432 Using Progression 1;
433 //+
434 Transfinite Curve {273, 274, 266, 264} = n_cell_extruded_arc +1
435 Using Progression q_extruded_arc;
436 //+
437 // Volume_17
438 //+
439 Transfinite Curve {100, 284, 144, 286} = n_cell_nozzle_x +1
440 Using Progression qx_nozzle;
441 //+

xlv



442 Transfinite Curve {149, 260, 150, 267} = layer_rotation +1
443 Using Progression 1;
444 //+
445 Transfinite Curve {273, 272, 266, 265} = n_cell_extruded_arc +1
446 Using Progression q_extruded_arc;
447 //+
448 // Volume_18
449 //+
450 Transfinite Curve {283, 1, 286, 144} = n_cell_nozzle_x +1
451 Using Progression qx_nozzle;
452 //+
453 Transfinite Curve {259, 236, 237, 270} = layer_rotation +1
454 Using Progression 1;
455 //+
456 Transfinite Curve {272, 271, 265, 263} = n_cell_extruded_arc +1
457 Using Progression q_extruded_arc;
458 //+
459 // Volume_19
460 //+
461 Transfinite Curve {122, 288, 289, 34} = n_cell_two_x +1
462 Using Progression qx_12;
463 //+
464 Transfinite Curve {106, 268, 128, 276} = layer_rotation +1
465 Using Progression 1;
466 //+
467 Transfinite Curve {281, 280, 274, 273} = n_cell_extruded_arc +1
468 Using Progression q_extruded_arc;
469 //+
470 // Volume20
471 //+
472 Transfinite Curve {122, 288, 188, 290} = n_cell_two_x +1
473 Using Progression qx_12;
474 //+
475 Transfinite Curve {150, 267, 194, 277} = layer_rotation +1
476 Using Progression 1;
477 //+
478 Transfinite Curve {279, 280, 273, 272} = n_cell_extruded_arc +1
479 Using Progression q_extruded_arc;
480 //+
481 // Volume_22
482 Transfinite Curve {290, 188, 287, 2} = n_cell_two_x +1
483 Using Progression qx_12;
484 //+
485 Transfinite Curve {270, 237, 275, 258} = layer_rotation +1
486 Using Progression 1;
487 //+
488 Transfinite Curve {279, 282, 272, 271} = n_cell_extruded_arc +1
489 Using Progression q_extruded_arc;
490 //+
491 // Volume_13
492 //

xlvi



493 Transfinite Surface {273};
494 //+
495 Transfinite Surface {284};
496 //+
497 Transfinite Surface {285};
498 //+
499 Transfinite Surface {286};
500 //+
501 Transfinite Surface {283};
502 //+
503 Transfinite Surface {268};
504 // Volume_14
505 //+
506 Transfinite Surface {273};
507 //+
508 Transfinite Surface {282};
509 //+
510 Transfinite Surface {280};
511 //+
512 Transfinite Surface {281};
513 //+
514 Transfinite Surface {279};
515 //+
516 Transfinite Surface {278};
517 //+
518 // Volume_15
519 //+
520 Transfinite Surface {264};
521 //+
522 Transfinite Surface {290};
523 //+
524 Transfinite Surface {19};
525 //+
526 Transfinite Surface {285};
527 //+
528 Transfinite Surface {287};
529 //+
530 Transfinite Surface {271};
531 //+
532 // Volume_16
533 //+
534 Transfinite Surface {287};
535 //+
536 Transfinite Surface {283};
537 //+
538 Transfinite Surface {265};
539 //+
540 Transfinite Surface {107};
541 //+
542 Transfinite Surface {288};
543 //+

xlvii



544 Transfinite Surface {270};
545 //+
546 // Volume_17
547 //+
548 Transfinite Surface {266};
549 //+
550 Transfinite Surface {289};
551 //+
552 Transfinite Surface {286};
553 //+
554 Transfinite Surface {151};
555 //+
556 Transfinite Surface {288};
557 //+
558 Transfinite Surface {269};
559 //+
560 // Volume_18
561 //+
562 Transfinite Surface {267};
563 //+
564 Transfinite Surface {238};
565 //+
566 Transfinite Surface {284};
567 //+
568 Transfinite Surface {289};
569 //+
570 Transfinite Surface {290};
571 //+
572 Transfinite Surface {272};
573 //+
574 // Volume 19
575 //+
576 Transfinite Surface {274};
577 //+
578 Transfinite Surface {280};
579 //+
580 Transfinite Surface {294};
581 //+
582 Transfinite Surface {129};
583 //+
584 Transfinite Surface {270};
585 //+
586 Transfinite Surface {292};
587 //+
588 // Volume_20
589 //+
590 Transfinite Surface {271};
591 //+
592 Transfinite Surface {41};
593 //+
594 Transfinite Surface {292};

xlviii



595 //+
596 Transfinite Surface {293};
597 //+
598 Transfinite Surface {279};
599 //+
600 Transfinite Surface {277};
601 //+
602 // Volume_21
603 //+
604 Transfinite Surface {275};
605 //+
606 Transfinite Surface {294};
607 //+
608 Transfinite Surface {195};
609 //+
610 Transfinite Surface {281};
611 //+
612 Transfinite Surface {291};
613 //+
614 Transfinite Surface {269};
615 //+
616 // Volume_22
617 //+
618 Transfinite Surface {272};
619 //+
620 Transfinite Surface {259};
621 //+
622 Transfinite Surface {282};
623 //+
624 Transfinite Surface {291};
625 //+
626 Transfinite Surface {293};
627 //+
628 Transfinite Surface {276};
629 //+
630 // Transfinite_Volume_13
631 //+
632 Transfinite Volume {13} = {238, 236, 239, 237, 242, 240, 243, 241};
633 //+
634 // Transfinite_Volume_14
635 //+
636 Transfinite Volume {14} = {242, 240, 243, 241, 246, 244, 247, 245};
637 //+
638 // Transfinite_Volume_15
639 //+
640 Transfinite Volume {15} = {13, 1, 236, 238, 14, 2, 240, 242};
641 //+
642 // Transfinite_volume_16
643 //+
644 Transfinite Volume {16} = {13, 238, 237, 85, 14, 242, 241, 86};
645 //+

xlix



646 // Transfinite_volume_17
647 //+
648 Transfinite Volume {17} = {85, 237, 239, 101, 86, 241, 243, 102};
649 //+
650 // Transfinite_volume_18
651 //+
652 Transfinite Volume {18} = {236, 1, 101, 239, 240, 2, 102, 243};
653 //+
654 // Transfinite_volume_19
655 //+
656 Transfinite Volume {19} = {14, 242, 241, 86, 42, 246, 245, 100};
657 //+
658 // Transfinite_volume_20
659 //+
660 Transfinite Volume {20} = {241, 243, 102, 86, 245, 247, 126, 100};
661 //+
662 // Transfinite_volume_21
663 //+
664 Transfinite Volume {21} = {14, 2, 240, 242, 42, 3, 244, 246};
665 //+
666 // Transfinite_volume_22
667 //+
668 Transfinite Volume {22} = {244, 3, 126, 247, 240, 2, 102, 243};
669 //+
670 Mesh.RecombineAll = 1 ;
671 //+
672 Physical Volume (1) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
673 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22};
674 //+
675 Physical Surface (2) = {119, 163, 250, 31, 266, 267,
676 264, 265, 268};
677 //+
678 Physical Surface (3) = {75, 97, 185, 229};
679 //+
680 Physical Surface (4) = {177, 89, 67, 221, 133, 199, 45, 263,
681 275, 278, 274, 277, 276};
682 //+
683 Physical Surface (5) = {181, 71, 93, 225};
684 //+
685 Physical Surface (6) = {115, 159, 27, 246};

D.2 Wall case .geo file

1 layer_rotation = 45;
2 //+
3 qx_12 = 1.0036;
4 //+
5 qx_nozzle = 1;
6 //+
7 qy_nozzle = 1;
8 //+

l



9 n_cell_nozzle_y = 100;
10 //+
11 n_cell_nozzle_x = 110;
12 //+
13 n_cell_two_x = 502;
14 //+
15 n_cell_four_x = 81;
16 //+
17 n_cell_five_x = 64;
18 //+
19 n_cell_extruded_arc = 23;
20 //+
21 q_extruded_arc = 1;
22 //+
23 qx_4 = 1;
24 //+
25 qx_5 = 1.011;
26 //+
27 n_cell_three_y = 103;
28 //+
29 qy_3 = 1.0505;
30 //+
31 r_hole =0.138;
32 //+
33 Point (1) = {0, r_hole , 0, 1.0};
34 //+
35 Point (2) = {2.3607 , r_hole , 0, 1.0};
36 //+
37 Point (3) = {32.3607 , r_hole , 0, 1.0};
38 //+
39 Point (4) = {2.3607 , 0.305, 0, 1.0};
40 //+
41 Point (5) = {32.3607 , 0.305, 0, 1.0};
42 //+
43 Point (6) = {32.3607 , 13.89885811 , 0, 1.0};
44 //+
45 Point (7) = {2.3607 , 10, 0, 1.0};
46 //+
47 Point (8) = {0.62525 , 9.75519375 , 0, 1.0};
48 //+
49 Point (9) = {-1.3298, 9.47941026 , 0, 1.0};
50 //+
51 Point (10) = {-1.3298, 1.54091026 , 0, 1.0};
52 //+
53 Point (11) = {0.62525 , 1.54091026 , 0, 1.0};
54 //+
55 Point (12) = {0, 0.915, 0, 1.0};
56 //+
57 Point (13) = {0.25315 , 0.91095 , 0, 1.0};
58 //+
59 Point (14) = {0.4575 , 0.8484 , 0, 1.0};

li



60 //+
61 Point (15) = {0.712 , 0.7545 , 0 , 1.0};
62 //+
63 Point (16) = {1.2871 , 0.58355 , 0, 1.0};
64 //+
65 Point (17) = {1.85135 , 0.3721 , 0, 1.0};
66 //+
67 Line (1) = {1, 2};
68 //+
69 Line (2) = {2, 3};
70 //+
71 Line (3) = {5, 6};
72 //+
73 Line (4) = {7, 6};
74 //+
75 Line (5) = {7, 8};
76 //+
77 Line (6) = {8, 9};
78 //+
79 Line (7) = {10, 9};
80 //+
81 Line (8) = {11, 8};
82 //+
83 Line (9) = {4, 7};
84 //+
85 Line (10) = {11, 10};
86 //+
87 Line (11) = {4, 11};
88 //+
89 Line (12) = {1, 12};
90 //+
91 BSpline (13) = {12, 13, 14, 15, 16, 17, 4};
92 //+
93 Line (14) = {2, 4};
94 //+
95 Line (15) = {3, 5};
96 //+
97 Line (16) = {4, 5};
98 //+
99 Curve Loop (1) = {13, -14, -1, 12};

100 //+
101 Plane Surface (1) = {1};
102 //+
103 Curve Loop (2) = {9, 4, -3, -16};
104 //+
105 Plane Surface (2) = {2};
106 //+
107 Curve Loop (3) = {2, 15, -16, -14};
108 //+
109 Plane Surface (3) = {3};
110 //+

lii



111 Curve Loop (4) = {8, -5, -9, 11};
112 //+
113 Plane Surface (4) = {4};
114 //+
115 Curve Loop (5) = {7, -6, -8, 10};
116 //+
117 Plane Surface (5) = {5};
118 //+
119 Transfinite Curve {14, 12, 15} = n_cell_nozzle_y +1
120 Using Progression qy_nozzle;
121 // number of points in the nozzle y
122 //+
123 Transfinite Curve {1, 13} = n_cell_nozzle_x +1
124 Using Progression qx_nozzle;
125 // number of points in the nozzle x
126 //+
127 Transfinite Curve {2, 16, 4} = n_cell_two_x +1
128 Using Progression qx_12;
129 // number of points x direction block 2
130 //+
131 Transfinite Curve {7, 8, 9, 3} = n_cell_three_y +1
132 Using Progression qy_3;
133 // number of points y direction all domain
134 //+
135 Transfinite Curve {5, 11} = n_cell_four_x +1
136 Using Progression qx_4;
137 // number of cell x direction block 4
138 //+
139 Transfinite Curve {6, 10} = n_cell_five_x +1
140 Using Progression qx_5;
141 // number of cell x direction block 5
142 //+
143 Transfinite Surface {1};
144 //+
145 Transfinite Surface {4};
146 //+
147 Transfinite Surface {5};
148 //+
149 Transfinite Surface {2};
150 //+
151 Transfinite Surface {3};
152 //+
153 Recombine Surface {5, 4, 2, 1, 3};
154 //+
155 Extrude {{1, 0, 0}, {-1.3298, 0, 0}, Pi/2} {
156 Surface {5}; Surface {4}; Surface {2}; Surface {1};
157 Surface {3}; Layers{layer_rotation }; Recombine;
158 }
159

160 //+
161 Extrude {{1, 0, 0}, {-1.3298, 0, 0}, Pi/2} {

liii



162 Surface {38}; Surface {60}; Surface {82}; Surface {104};
163 Surface {126}; Layers{layer_rotation }; Recombine;
164 }
165 //+
166 Extrude {{1, 0, 0}, {-1.3298, 0, 0}, Pi/2} {
167 Surface {236}; Surface {192}; Surface {148}; Surface {170};
168 Surface {214}; Layers{layer_rotation }; Recombine;
169 }
170 //+
171 Extrude {{1, 0, 0}, {-1.3298, 0, 0}, Pi/2} {
172 Surface {302}; Surface {324}; Surface {280}; Surface {258};
173 Surface {346}; Layers{layer_rotation }; Recombine;
174 }
175 //+
176 Point (236) = {0, r_hole/2, 0 , 1.0};
177 //+
178 Point (237) = {0, -r_hole/2, 0, 1.0};
179 //+
180 Point (238) = {0, 0, r_hole/2, 1.0};
181 //+
182 Point (239) = {0, 0, -r_hole/2, 1.0};
183 //+
184 Point (240) = {2.3607 , r_hole/2, 0 , 1.0};
185 //+
186 Point (241) = {2.3607 , -r_hole/2, 0, 1.0};
187 //+
188 Point (242) = {2.3607 , 0, r_hole/2, 1.0};
189 //+
190 Point (243) = {2.3607 , 0, -r_hole/2, 1.0};
191 //+
192 Point (244) = {32.3607 , r_hole/2, 0 , 1.0};
193 //+
194 Point (245) = {32.3607 , -r_hole/2, 0, 1.0};
195 //+
196 Point (246) = {32.3607 , 0, r_hole/2, 1.0};
197 //+
198 Point (247) = {32.3607 , 0, -r_hole/2, 1.0};
199 //+
200 Line (447) = {245, 247};
201 //+
202 Line (448) = {244, 247};
203 //+
204 Line (449) = {245, 246};
205 //+
206 Line (450) = {246, 244};
207 //+
208 Line (451) = {241, 243};
209 //+
210 Line (452) = {240, 243};
211 //+
212 Line (453) = {240, 242};

liv



213 //+
214 Line (454) = {242, 241};
215 //+
216 Line (455) = {239, 236};
217 //+
218 Line (456) = {238, 237};
219 //+
220 Line (457) = {239, 237};
221 //+
222 Line (458) = {238, 236};
223 //+
224 Line (459) = {239, 235};
225 //+
226 Line (460) = {238, 128};
227 //+
228 Line (461) = {236, 1};
229 //+
230 Line (462) = {237, 192};
231 //+
232 Line (463) = {242, 241};
233 //+
234 Line (464) = {241, 188};
235 //+
236 Line (465) = {242, 124};
237 //+
238 Line (466) = {240, 2};
239 //+
240 Line (467) = {243, 195};
241 //+
242 Line (468) = {246, 147};
243 //+
244 Line (469) = {244, 3};
245 //+
246 Line (470) = {247, 196};
247 //+
248 Line (471) = {245, 194};
249 //+
250 Line (472) = {236, 240};
251 //+
252 Line (473) = {237, 241};
253 //+
254 Line (474) = {238, 242};
255 //+
256 Line (478) = {239, 243};
257 //+
258 Line (479) ={240, 244};
259 //+
260 Line (480) = {241, 245};
261 //+
262 Line (481) = {242, 246};
263 //+

lv



264 Line (482) = {243, 247};
265 //+
266 Curve Loop (6) = {449, 450, 448, -447};
267 //+
268 Plane Surface (452) = {6};
269 //+
270 Curve Loop (7) = {222, -471, 449, 468};
271 //+
272 Plane Surface (453) = {7};
273 //+
274 Curve Loop (8) = {112, -468, 450, 469};
275 //+
276 Plane Surface (454) = {8};
277 //+
278 Curve Loop (9) = {417, -469, 448, 470};
279 //+
280 Plane Surface (455) = {9};
281 //+
282 Curve Loop (10) = {471, 244, -470, -447};
283 //+
284 Plane Surface (456) = {10};
285 //+
286 Curve Loop (11) = {453, 465, -94, -466};
287 //+
288 Plane Surface (457) = {11};
289 //+
290 Curve Loop (12) = {416, -466, 452, 467};
291 //+
292 Plane Surface (458) = {12};
293 //+
294 Curve Loop (13) = {451, 467, -243, -464};
295 //+
296 Plane Surface (459) = {13};
297 //+
298 Curve Loop (14) = {204, -464, -454, 465};
299 //+
300 Plane Surface (460) = {14};
301 //+
302 Curve Loop (15) = {453, 454, 451, -452};
303 //+
304 Plane Surface (461) = {15};
305 //+
306 Curve Loop (16) = {460, -98, -461, -458};
307 //+
308 Plane Surface (462) = {16};
309 //+
310 Curve Loop (17) = {455, 461, -446, -459};
311 //+
312 Plane Surface (463) = {17};
313 //+
314 Curve Loop (18) = {457, 462, 340, -459};

lvi



315 //+
316 Plane Surface (464) = {18};
317 //+
318 Curve Loop (19) = {208, -462, -456, 460};
319 //+
320 Plane Surface (465) = {19};
321 //+
322 Curve Loop (20) = {458, -455, 457, -456};
323 //+
324 Plane Surface (466) = {20};
325 //+
326 // start big side surfaces
327 //+
328 Curve Loop (21) = {467, 238, -470, -482};
329 //+
330 Plane Surface (467) = {21};
331 //+
332 Curve Loop (22) = {469, -2, -466, 479};
333 //+
334 Plane Surface (468) = {22};
335 //+
336 Curve Loop (23) = {465, 106, -468, -481};
337 //+
338 Plane Surface (469) = {23};
339 //+
340 Curve Loop (24) = {-464, 480, 471, -216};
341 //+
342 Plane Surface (470) = {24};
343 //+
344 // end big side surfaces
345 //+
346 // start small side surfaces
347 //+
348 Curve Loop (25) = {-459, 478, 467, 328};
349 //+
350 Plane Surface (471) = {25};
351 //+
352 Curve Loop (26) = {466, -1, -461, 472};
353 //+
354 Plane Surface (472) = {26};
355 //+
356 Curve Loop (27) = {460, -86, -465, -474};
357 //+
358 Plane Surface (473) = {27};
359 //+
360 Curve Loop (28) = {-464, -473, 462, -196};
361 //+
362 Plane Surface (474) = {28};
363 //+
364 // end small side squares
365 //+

lvii



366 // start small squares
367 //+
368 Curve Loop (29) = {458, 472, 453, -474};
369 //+
370 Plane Surface (475) = {29};
371 //+
372 Curve Loop (30) = {451, -478, 457, 473};
373 //+
374 Plane Surface (476) = {30};
375 //+
376 Curve Loop (31) = {455, 472, 452, -478};
377 //+
378 Plane Surface (477) = {31};
379 //+
380 Curve Loop (32) = {456, 473, -454, -474};
381 //+
382 Plane Surface (478) = {32};
383 //+
384 // end small squares
385 // +
386 // start big squares
387 //+
388 Curve Loop (33) = {451, 482, -447, -480};
389 //+
390 Plane Surface (479) = {33};
391 //+
392 Curve Loop (34) = {448, -482, -452, 479};
393 //+
394 Plane Surface (480) = {34};
395 //+
396 Curve Loop (35) = {454, 480, 449, -481};
397 //+
398 Plane Surface (481) = {35};
399 //+
400 Curve Loop (36) = {450, -479, 453, 481};
401 //+
402 Plane Surface (482) = {36};
403 //+
404 // end big squares
405 //+
406 Surface Loop (1) = {461, 466, 476, 475, 478, 477};
407 //+
408 Volume (21) = {1}; // small square
409 //+
410 Surface Loop (2) = {461, 452, 482, 479, 481, 480};
411 //+
412 Volume (22) = {2}; // big square
413 //+
414 Surface Loop (3) = {341, 464, 459, 476, 471, 474};
415 //+
416 Volume (23) = {3}; // small side square NE

lviii



417 //+
418 Surface Loop (4) = {463, 447, 458, 477, 472, 471};
419 //+
420 Volume (24) = {4}; // small side square SE
421 //+
422 Surface Loop (5) = {462, 457, 473, 472, 475, 99};
423 //+
424 Volume (25) = {5}; // small side square SW
425 //+
426 Surface Loop (6) = {460, 465, 478, 209, 473, 474};
427 //+
428 Volume (26) = {6}; // small side square SE
429 //+
430 Surface Loop (7) = {459, 456, 245, 470, 467, 479};
431 //+
432 Volume (27) = {7}; // big side square NE
433 //+
434 Surface Loop (8) = {458, 418, 467, 468, 455, 480};
435 //+
436 Volume (28) = {8}; // big side square SE
437 //+
438 Surface Loop (9) = {454, 113, 482, 457, 468, 469};
439 //+
440 Volume (29) = {9}; // big side square NW
441 //+
442 Surface Loop (10) = {469, 470, 481, 223, 460, 453};
443 //+
444 Volume (30) = {10}; // big side square SW
445 //+
446 // Volume 21
447 // +
448 Transfinite Curve {456, 454, 453, 451, 452, 457, 455, 458}
449 = layer_rotation +1 Using Progression 1;
450 //+
451 Transfinite Curve {473, 474, 472, 478} = n_cell_nozzle_x +1
452 Using Progression qx_nozzle;
453 // +
454 // end
455 //+
456 // Volume 22
457 //+
458 Transfinite Curve {451, 454, 453, 452, 447, 449, 450, 448}
459 = layer_rotation +1 Using Progression 1;
460 //+
461 Transfinite Curve {479, 481, 480, 482} = n_cell_two_x +1
462 Using Progression qx_12;
463 //+
464 // end
465 // +
466 // Volume 23
467 //+

lix



468 Transfinite Curve {457, 340, 243, 451} = layer_rotation +1
469 Using Progression 1;
470 //+
471 Transfinite Curve {478, 328, 196, 473} = n_cell_nozzle_x +1
472 Using Progression qx_nozzle;
473 //+
474 Transfinite Curve {467, 464, 462, 459} = n_cell_extruded_arc +1
475 Using Progression q_extruded_arc;
476 //+
477 // end
478 //+
479 // Volume 24
480 //+
481 Transfinite Curve {328, 478, 472, 1} = n_cell_nozzle_x +1
482 Using Progression qx_nozzle;
483 //+
484 Transfinite Curve {459, 461, 467, 466} = n_cell_extruded_arc +1
485 Using Progression q_extruded_arc;
486 //+
487 Transfinite Curve {416, 452, 455, 446} = layer_rotation +1
488 Using Progression 1;
489 //+
490 // end
491 //+
492 // Volume 25
493 //+
494 Transfinite Curve {474, 86, 472, 1} = n_cell_nozzle_x +1
495 Using Progression qx_nozzle;
496 //+
497 Transfinite Curve {460, 461, 465, 466} = n_cell_extruded_arc +1
498 Using Progression q_extruded_arc;
499 //+
500 Transfinite Curve {94, 453, 458, 98} = layer_rotation +1
501 Using Progression 1;
502 //+
503 // end
504 // +
505 // Volume 26
506 //+
507 Transfinite Curve {473, 474, 86, 196} = n_cell_nozzle_x +1
508 Using Progression qx_nozzle;
509 //+
510 Transfinite Curve {464, 465, 462, 460} = n_cell_extruded_arc +1
511 Using Progression q_extruded_arc;
512 //+
513 Transfinite Curve {208, 456, 204, 454} = layer_rotation +1
514 Using Progression 1;
515 //+
516 // end
517 //+
518 // Volume 27

lx



519 //+
520 Transfinite Curve {238, 482, 216, 480} = n_cell_two_x +1+1
521 Using Progression qx_12;
522 //+
523 Transfinite Curve {467, 464, 470, 471} = n_cell_extruded_arc +1
524 Using Progression q_extruded_arc;
525 //+
526 Transfinite Curve {447, 244, 243, 451} = layer_rotation +1
527 Using Progression 1;
528 //+
529 // end
530 //+
531 // Volume 28
532 //+
533 Transfinite Curve {238, 238, 482, 482, 479, 2} = n_cell_two_x +1
534 Using Progression qx_12;
535 //+
536 Transfinite Curve {467, 466, 470, 469} = n_cell_extruded_arc +1
537 Using Progression q_extruded_arc;
538 //+
539 Transfinite Curve {417, 448, 416, 416, 452} = layer_rotation +1
540 Using Progression 1;
541 //+
542 // end
543 //+
544 // Volume 29
545 //+
546 Transfinite Curve {106, 481, 481, 479, 2} = n_cell_two_x +1
547 Using Progression qx_12;
548 //+
549 Transfinite Curve {465, 466, 469, 468} = n_cell_extruded_arc +1
550 Using Progression q_extruded_arc;
551 //+
552 Transfinite Curve {112, 450, 453, 453, 94} = layer_rotation +1
553 Using Progression 1;
554 //+
555 // end
556 // +
557 // Volume 30
558 //+
559 Transfinite Curve {480, 481, 216, 106} = n_cell_two_x +1
560 Using Progression qx_12;
561 //+
562 Transfinite Curve {464, 465, 471, 468} = n_cell_extruded_arc +1
563 Using Progression q_extruded_arc;
564 //+
565 Transfinite Curve {449, 222, 204, 454} = layer_rotation +1
566 Using Progression 1;
567 //+
568 // end
569 // +

lxi



570 // Trasfinte Surfaces Volume 21
571 //+
572 Transfinite Surface {476};
573 //+
574 Transfinite Surface {461};
575 //+
576 Transfinite Surface {477};
577 //+
578 Transfinite Surface {478};
579 //+
580 Transfinite Surface {475};
581 //+
582 Transfinite Surface {466};
583 //+
584 // end
585 //+
586 // Transfinite Surfaces Volume 22
587 //+
588 Transfinite Surface {461};
589 //+
590 Transfinite Surface {479};
591 //+
592 Transfinite Surface {481};
593 //+
594 Transfinite Surface {452};
595 //+
596 Transfinite Surface {482};
597 //+
598 Transfinite Surface {480};
599 //+
600 // end
601 //+
602 // Transfinite Surfaces Volume 23
603 //+
604 Transfinite Surface {464};
605 //+
606 Transfinite Surface {471};
607 //+
608 Transfinite Surface {341};
609 //+
610 Transfinite Surface {476};
611 //+
612 Transfinite Surface {474};
613 //+
614 Transfinite Surface {459};
615 //+
616 // end
617 //+
618 // Transfinite Surfaces Volume 24
619 //+
620 Transfinite Surface {463};

lxii



621 //+
622 Transfinite Surface {472};
623 //+
624 Transfinite Surface {447};
625 //+
626 Transfinite Surface {477};
627 //+
628 Transfinite Surface {471};
629 //+
630 Transfinite Surface {458};
631 // +
632 // end
633 //+
634 // Transfinite Surfaces Volume 25
635 //+
636 Transfinite Surface {462};
637 //+
638 Transfinite Surface {472};
639 //+
640 Transfinite Surface {475};
641 //+
642 Transfinite Surface {99};
643 //+
644 Transfinite Surface {473};
645 //+
646 Transfinite Surface {457};
647 //+
648 // end
649 //+
650 // Transfinite Surfaces Volume 26
651 //+
652 Transfinite Surface {460};
653 //+
654 Transfinite Surface {209};
655 //+
656 Transfinite Surface {478};
657 //+
658 Transfinite Surface {465};
659 //+
660 Transfinite Surface {473};
661 //+
662 Transfinite Surface {474};
663 //+
664 // end
665 // +
666 // Transfinite Surfaces Volume 27
667 //+
668 Transfinite Surface {459};
669 //+
670 Transfinite Surface {467};
671 //+

lxiii



672 Transfinite Surface {245};
673 //+
674 Transfinite Surface {479};
675 //+
676 Transfinite Surface {470};
677 //+
678 Transfinite Surface {456};
679 //+
680 // end
681 // +
682 // Transfinite Surfaces Volume 28
683 //+
684 Transfinite Surface {455};
685 //+
686 Transfinite Surface {418};
687 //+
688 Transfinite Surface {480};
689 //+
690 Transfinite Surface {458};
691 //+
692 Transfinite Surface {467};
693 //+
694 Transfinite Surface {468};
695 // +
696 // end
697 // +
698 // Transfinite Surfaces Volume 29
699 //+
700 Transfinite Surface {469};
701 //+
702 Transfinite Surface {482};
703 //+
704 Transfinite Surface {113};
705 //+
706 Transfinite Surface {468};
707 //+
708 Transfinite Surface {457};
709 //+
710 Transfinite Surface {454};
711 //+
712 // end
713 //+
714 // Transfinite surfaces Volume 30
715 //+
716 Transfinite Surface {453};
717 //+
718 Transfinite Surface {223};
719 //+
720 Transfinite Surface {470};
721 //+
722 Transfinite Surface {481};

lxiv



723 //+
724 Transfinite Surface {469};
725 //+
726 Transfinite Surface {460};
727 // +
728 // end
729 // +
730 // Transfinite Volumes
731 //+
732 Transfinite Volume {21} = {242, 241, 243, 240, 238, 237, 239, 236};
733 //+
734 Transfinite Volume {22} = {246, 245, 247, 244, 242, 241, 243, 240};
735 //+
736 Transfinite Volume {23} = {235, 192, 237, 239, 195, 188, 241, 243};
737 //+
738 Transfinite Volume {24} = {1, 236, 239, 235, 2, 240, 243, 195};
739 //+
740 Transfinite Volume {25} = {124, 242, 240, 2, 128, 238, 236, 1};
741 //+
742 Transfinite Volume {26} = {124, 188, 241, 242, 128, 192, 237, 238};
743 //+
744 Transfinite Volume {27} = {245, 194, 196, 247, 241, 188, 195, 243};
745 //+
746 Transfinite Volume {28} = {3, 244, 247, 196, 2, 240, 243, 195};
747 //+
748 Transfinite Volume {29} = {147, 246, 244, 3, 124, 242, 240, 2};
749 //+
750 Transfinite Volume {30} = {147, 246, 245, 194, 124, 242, 241, 188};
751 //+
752 // end
753 //+
754 Mesh.RecombineAll = 1 ;
755 //+
756 Physical Volume (1) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
757 11, 12, 13, 14, 15, 16, 17, 18, 19,
758 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30};
759 //+
760 Physical Surface (2) = {466, 464, 463, 462, 465, 451, 103, 345, 213};
761 //+
762 Physical Surface (3) = {355, 25, 135, 289};
763 //+
764 Physical Surface (4) = {73, 183, 401, 271,315, 380, 51,
765 161, 139, 29, 359, 293};
766 //+
767 Physical Surface (5) = {275, 405, 187, 77, 452, 456,
768 453, 454, 455, 117, 227, 249, 422};
769 //+
770 Physical Surface (6) = {147, 37, 301, 367, 59, 323, 169, 388};
771 //+
772 Physical Surface (7) = {333, 439, 201, 91};

lxv



Bibliography

[1] NASA, “Axysimmetric near-sonic jet validation case.” "https://turbmodels.
larc.nasa.gov/jetnearsonic_val.html, (Accessed May 13, 2020).

[2] G. A. Brès, P. Jordan, V. Jaunet, M. Le Rallic, A. V. G. Cavalieri, A. Towne,
S. K. Lele, T. Colonius, and O. T. Schmidt, “Importance of the nozzle-exit
boundary-layer state in subsonic turbulent jets,” Journal of Fluid Mechanics,
p. 83–124, 2018.

[3] M. Zhu, A. C. Pérez, P. Fosso, M. Sanjosé, and S. Moreau, “Isothermal and
heated subsonic jet noise using large eddy simulations on unstructured grids,”
Computers and Fluids, vol. 171, pp. 166 – 192, 2018.

[4] R. Sandberg, N. Sandham, and V. Suponitsky, “Dns of fully turbulent jet flows
in flight conditions including a canonical nozzle,” 17th AIAA/CEAS Aeroacous-
tics Conference (32nd AIAA Aeroacoustics Conference).

[5] H. K. Versteeg and W. Malalasekera, “Conservation laws of fluid motion and
boundary conditions,” in An Introduction to Computational Fluid Dynamics,
ch. 2, pp. 9–39, Edinburgh Gate, Harlow Essex CM20 2JE, England: PEAR-
SON - Prentice Hall, 2007.

[6] S. Pope, “Direct numerical simulation,” in Turbulent Flows, ch. 9, pp. 344–357,
Cambridge University Press, 2001.

[7] S. Pope, “The scales of turbulent motion,” in Turbulent Flows, ch. 6, pp. 182–
263, Cambridge University Press, 2001.

[8] S. Pope, “Turbulent viscosity models,” in Turbulent Flows, ch. 10, pp. 358–386,
Cambridge University Press, 2001.

[9] S. Pope, “Reynolds-stress and related models,” in Turbulent Flows, ch. 11,
pp. 387–462, Cambridge University Press, 2001.

[10] D. C. Wilcox, “Effects of compressibility,” in Turbulence modeling for CFD,
ch. 5, pp. 239 – 297, DCW Industies, 2006.

[11] R. Paoli, Equations notes ME - 518 "Fundamentals of turbulence". Mechanical
Engineering Department, University of Illinois at Chicago, 2019.

[12] H. K. Versteeg and W. Malalasekera, “Turbulnce and its modeling,” in An
Introduction to Computational Fluid Dynamics, ch. 3, pp. 40–113, Edinburgh
Gate, Harlow Essex CM20 2JE, England: PEARSON - Prentice Hall, 2007.

lxvi



[13] D. C. Wilcox, “One-equation and two-equation models,” in Turbulence modeling
for CFD, ch. 4, pp. 107 – 229, DCW Industies, 2006.

[14] J. . Hinze, Turbulence: An introduction to its Mechanism and Theory. Techno-
logical University Delft, Holland: McGrawn-Hill, 1957.

[15] S. Pope, “Large-eddy simulation,” in Turbulent Flows, ch. 13, pp. 558–640,
Cambridge University Press, 2001.

[16] P. Sagaut, S. Deck, and M. Terracol, Multiscale and Multiresolution approaches
in turbulence. 57 Shelton Street Covent Garden, London, UK: Imperial College
Press, 2006.

[17] S. Ghosal, T. S. Lund, P. Moin, and K. Akselvoll, “A dynamic localization
model for large-eddy simulation of turbulent flow,” Journal of Computational
Physics, vol. 125, pp. 187–206, 1996.

[18] C. Fuerby, “On subgrid scale modeling in large eddy simulations of compressible
fluid flow,” Physics of Fluids, vol. 8, no. 2, pp. 1301–1311, 1996.

[19] M. Germano, U. Piomelli, P. Moin, and W. Cabot, “A dynamic subgrid-scale
eddy viscosity model,” Physics of Fluids, vol. 3, no. 7, pp. 1760–1765, 1991.

[20] D. K. Lilly, “A proposed modification of the germano subgrid-scale closure
method,” Physics of Fluids, vol. 4, no. 3, pp. 633–635, 1992.

[21] R. Pomraning, PhD dissertation "Development of Large Eddy Simulation Tur-
bulence Models". Mechanical Engineering Department, University of Wisconsin-
Madison, 2000.

[22] A. Travin, M. Shur, M. Strelets, and P. Spalart, “Detached-eddy simulation
past a circular cilynder,” International Journal of Turbulence and Combustion,
vol. 23, pp. 293–313, 2000.

[23] U. Piomelli, E. Balaras, K. Squires, and P. Spalart, “Interaction of the inner
and outer layers in large eddy simulations with wall-layer models,” International
Journal of Heat and Fluid Flows, vol. 24, pp. 538–550, 2003.

[24] C. J. Greenshields, OpenFOAM-7 User Guide. OpenFOAM Foundation Ltd.,
2019.

[25] J. H. Ferziger and M. Peric, “Introduction to numerical methods,” in Compu-
tational Methods for Fluid Dynamics, ch. 2, pp. 21–63, Springer, 2002.

[26] Y. Saad, Iterative methods for sparse Linear Systems. Society for Industrial
and Applied Mathematics, 2003.

[27] S. Yoon and A. Jameson, Lower-Upper Symmetric-Gauss-Seidel method for the
Euler and Navier- Stokes equations. AIAA Journal 26 (9).

[28] J. H. Ferziger and M. Peric, “Solution of linear equation systems,” in Compu-
tational Methods for Fluid Dynamics, ch. 5, pp. 91–129, Springer, 2002.

lxvii



[29] J. H. Ferziger and M. Peric, “Solution of the navier-stokes equations,” in Com-
putational Methods for Fluid Dynamics, ch. 7, pp. 157–206, Springer, 2002.

[30] F. Moukalled, L. Mangani, and M. Darwish, “Fluid flow computa-
tion:compressible flow,” in The Finite Volume Method in Computational Fluid
Dynamics An Advanced Introduction with OpenFOAM and Matlab, ch. 7,
pp. 655–689, Springer, 2016.

[31] J. Bridges and M. Wernet, “Establishing consensus turbulence statistics for
hot subsonic jets,” AIAA Paper 16th AIAA/CEAS Aeroacoustics Conference,
Stockholm Sweden, June 2010.

[32] J. Bridges and M. Wernet, “The nasa subsonic jet particle image velocimetry
(piv) dataset,” NASA/TM 2011 216807, November 2011.

[33] F. Menter, “Improved two-equation k-omega turbulence model for aerodynamic
flows,” NASA TM 103975, October 1992.

[34] S. Pope, “Free shear flows,” in Turbulent Flows, ch. 5, pp. 96–158, Cambridge
University Press, 2001.

[35] R. Miake-lye, M. Martinez-Sanchez, R. C. Brown, and C. . Kolb, “Plume and
wake dynamics, mixing and chemistry,” Journal of Aircraft, vol. 30, no. 4,
pp. 467 – 470, 1993.

[36] F. Garnier, C. Baudoin, P. Woods, and N. Louisnard, “Engine emission alter-
ation in the near field of an aircraft,” Atmospheric Environment, vol. 31, no. 12,
pp. 1767 – 1781, 1997.

[37] “UIC Mechanical and Industrial Engineering Dragon documentation.” "http:
//dragon.mie.uic.edu/index.php/Main_Page, (Accessed May 26, 2020).

[38] J. Lee and V. Chu, “Turbulent round jet in coflow,” in Turbulent jets and plumes
- A lagrangian approach, ch. 5, pp. 179–203, Kluwer Academic Publisher, 2003.

[39] B. Zang, U. Vevek, and T. New, “OpenFOAM-based numerical simulation
study of an underexpanded supersonic jet.” 55th AIAA Aerospace Sciences Met-
ting, Grapevine, Texas "http://dx.doi.org/10.2514/6.2017-0747, January
9-13,2017.

[40] C. Geuzaine and J. Remacle, “Gmsh: a three dimensional finite element mesh
generator with built-in pre and post- processing facilities,” International Jour-
nal for numerical methods in Engineering, vol. 71, no. 11, pp. 1309 – 1311,
2009.

[41] “Gmsh official website.” "https://gmsh.info/, (Accessed June 3, 2020).

[42] “Theta| Argonne Leadership Computing Facility.” "https://www.alcf.anl.
gov/support-center/theta, (Accessed June 9, 2020).

[43] D. Lindblab, A. Jareteg, and O. Petit, “Implementation and run-time mesh
refinement for the k − ω SST DES turbulence model when applied to airfoils,”
CFD with OpenSorce Software - A course at Chalmers University of Technology,
2014.

lxviii



[44] V. Kolàr̃, “Vortex identification:new requirements and limitations,” Interna-
tional Journal of Heat and Fluid flow, pp. 638 – 652, 2007.

[45] J. Hunt, A. Wray, and P. Moin, “Eddies stream nd convergence zones in turbu-
lent flows,” Center for Turbulence Research Report CTR-S88, pp. 193 – 208.

[46] I. Sofia Larsson, T. Staffan Lundström, and B. Marjavaara, “Calculation of
Klin Aerodynamics with two Rans Turbulence Models and by Ddes,” Flow
Turbulence Combust, vol. 94, pp. 859 – 878, 2015.

lxix


